WO2015152076A1 - Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device - Google Patents

Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device Download PDF

Info

Publication number
WO2015152076A1
WO2015152076A1 PCT/JP2015/059727 JP2015059727W WO2015152076A1 WO 2015152076 A1 WO2015152076 A1 WO 2015152076A1 JP 2015059727 W JP2015059727 W JP 2015059727W WO 2015152076 A1 WO2015152076 A1 WO 2015152076A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier laminate
resin film
layer
long
Prior art date
Application number
PCT/JP2015/059727
Other languages
French (fr)
Japanese (ja)
Inventor
渉 岩屋
公市 永元
智史 永縄
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2016511631A priority Critical patent/JPWO2015152076A1/en
Publication of WO2015152076A1 publication Critical patent/WO2015152076A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a long gas barrier laminate that suppresses generation of wrinkles in a base material and has excellent gas barrier properties, a method for producing the same, a member for an electronic device comprising the gas barrier laminate, and the electronic device
  • the present invention relates to an electronic device including a member.
  • displays such as a liquid crystal display and an electroluminescence (EL) display have a gas barrier on a transparent plastic film instead of a glass plate as a substrate having electrodes in order to realize a reduction in thickness, weight, and flexibility.
  • a so-called gas barrier film in which layers are laminated is used.
  • Patent Literature 1 describes a gas barrier film in which a highly smoothed layer, an intermediate layer, and a gas barrier layer are laminated in this order on a film substrate. This document also describes that a high smoothing layer can be formed using an energy beam curable compound.
  • the present invention has been made in view of the above circumstances, and is composed of a long gas barrier laminate having excellent gas barrier properties while suppressing generation of wrinkles of the base material, a method for producing the same, and the gas barrier laminate.
  • An object of the present invention is to provide an electronic device member and an electronic device including the electronic device member.
  • the present inventors have intensively studied a long gas barrier laminate obtained by laminating a base material, a smoothing layer and a gas barrier layer in this order.
  • the smoothing layer is formed from a cured product of the active energy ray-curable resin composition using a long resin film having a heat shrinkage rate in a specific range as the base material.
  • the inventors have found that a long gas barrier laminate having excellent gas barrier properties with suppressed generation can be obtained, and the present invention has been completed.
  • the following long gas barrier laminates (1) to (6), the production method of the long gas barrier laminates (7) to (11), and the electronic device (12) A member and an electronic device according to (13) are provided.
  • a long gas barrier laminate comprising a cured product of a linear curable resin composition.
  • a method for producing a long gas barrier laminate comprising: (8) The method for producing a long gas barrier laminate according to (7), wherein the annealing temperature in step (I) is 100 to 180 ° C. and the heating time is 30 seconds to 60 minutes.
  • the resin film before annealing treatment has a shrinkage in the longitudinal direction of X 0 (%) when heated at 150 ° C. for 30 minutes, and a shrinkage in the width direction of Y 0 (%). When the shrinkage ratio in the longitudinal direction of the resin film for base material when heated at 150 ° C.
  • X 1 (%) and the shrinkage ratio in the width direction is Y 1 (%)
  • X 1 / X 0 is The method for producing a long gas barrier laminate according to (7), wherein 0.1 to 0.9 and Y 1 / Y 0 is 0.05 to 0.9.
  • the long gas barrier laminate according to (7) which is subjected to heat treatment at 100 to 200 ° C. for 10 seconds to 1 hour in Step (II) and / or Step (III). Production method.
  • step (II) the treatment of step (II) is performed, and the obtained resin film with a smoothing layer is wound up in a roll shape, and then the resin film with a smoothing layer wound up in a roll shape is fed out and conveyed in a certain direction.
  • (12) An electronic device member comprising the long gas barrier laminate according to (1).
  • An electronic device comprising the electronic device member according to (12).
  • the generation of a long gas barrier laminate excellent in gas barrier properties and the production method thereof, the electronic device member comprising the gas barrier laminate, and the electronic An electronic device comprising a device member is provided.
  • the long gas barrier laminate of the present invention is a long gas barrier laminate in which a substrate, a smoothing layer, and a gas barrier layer are laminated in this order.
  • Material is 150 when heated 30 min at °C longitudinal shrinkage X 1 is 0.0% or more and 0.8% or less, the width direction shrinkage Y 1 is less than 0.5% 0.0% It consists of a long resin film,
  • the said smoothing layer consists of the hardened
  • the “long” means one having a length of at least 5 times the width, preferably 10 times or more, and specifically wound in a roll shape. It has a length that can be taken and stored or transported.
  • “long” means that the shape is a strip shape whose longitudinal direction is longer (preferably 10 times or longer) than the width direction. In the following description, “long” may be omitted.
  • the length of the resin film is not particularly limited, but is usually 400 to 2000 m.
  • the width (length in the width direction) of the resin film is not particularly limited, but is usually 450 to 1300 mm, preferably 530 to 1280 mm.
  • the thickness of the resin film is not particularly limited, but is usually 1 to 60 ⁇ m, preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • polyimide polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, acrylic resin, cycloolefin Based polymers, aromatic polymers, and the like.
  • resin components can be used alone or in combination of two or more.
  • polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, or cycloolefin-based polymer is more preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • cycloolefin polymers examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • the resin film may contain various additives as long as the effects of the present invention are not hindered.
  • the additive include an ultraviolet absorber, an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a coloring pigment. What is necessary is just to determine suitably content of these additives according to the objective.
  • the resin film can be obtained by preparing a resin composition containing predetermined components and molding it into a film.
  • the molding method is not particularly limited, and a known method such as a casting method or a melt extrusion method can be used.
  • Resin film used in the present invention the longitudinal shrinkage X 1 when heated for 30 minutes at 0.99 ° C. 0.8% to 0.0% or less, preferably 0.8% or more 0.01% or less, more preferably below 0.5% 0.1% widthwise shrinkage Y 1 0.5% or more 0.0% or less, preferably 0.5% or 0.01% or less, more preferably 0 .05% or more and 0.3% or less.
  • a resin film having a thermal shrinkage rate in the above range as a base material, even when the smoothing layer is heated, the generation of wrinkles of the base material (resin film) due to the thermal contraction of the smoothing layer is suppressed. be able to.
  • a resin film having such characteristics can be obtained efficiently by subjecting the resin film to an annealing treatment.
  • the smoothing layer which comprises the gas-barrier laminated body of this invention consists of hardened
  • a smoothing layer reduces the unevenness
  • the active energy ray-curable resin composition is a composition that contains a polymerizable compound and is cured by irradiation with active energy rays to give a cured product.
  • the polymerizable compound to be used examples include a polymerizable prepolymer and a polymerizable monomer.
  • the polymerizable prepolymer includes a polyester oligomer having a hydroxyl group at both ends, a polyester acrylate prepolymer obtained by a reaction with (meth) acrylic acid, a low molecular weight bisphenol type epoxy resin or a novolac type epoxy resin, )
  • epoxy acrylate prepolymer polyurethane oligomer obtained by reaction with acrylic acid, urethane acrylate prepolymer, polyether polyol obtained by reaction of (meth) acrylic acid, and (meth) acrylic acid
  • examples thereof include a polyol acrylate prepolymer to be obtained.
  • Examples of the polymerizable monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and hydroxypivalic acid.
  • the active energy ray-curable resin composition may contain a polymer resin component that does not have reaction curability, such as an acrylic resin.
  • the viscosity of the composition can be adjusted by adding a polymer resin component.
  • active energy rays examples include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays, and the like. Among these, ultraviolet rays are preferable as the active energy rays because they can be generated using a relatively simple apparatus.
  • the active energy ray curable resin composition that is, the ultraviolet curable resin composition
  • the active energy ray curable resin composition preferably contains a photopolymerization initiator.
  • a photoinitiator will not be specifically limited if a polymerization reaction is started by irradiation of an ultraviolet-ray.
  • the photopolymerization initiator include benzoin-based polymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, and benzoin isobutyl ether; acetophenone, 4′-dimethylaminoacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholino-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -
  • the active energy ray-curable resin composition may contain other components as long as the effects of the present invention are not hindered.
  • other components include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a color pigment. What is necessary is just to determine these content suitably according to the objective.
  • the method for forming the smoothing layer is not particularly limited.
  • an active energy ray-curable resin composition and, if necessary, a coating liquid containing a solvent was prepared, and then this coating liquid was coated on a substrate by a known method, and obtained.
  • a smoothing layer made of a cured product of the active energy ray-curable resin composition can be formed.
  • Solvents used for preparing the coating liquid include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; n-pentane And aliphatic hydrocarbon solvents such as n-hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • Examples of the coating method include a bar coating method, a spin coating method, a dipping method, a roll coating, a gravure coating, a knife coating, an air knife coating, a roll knife coating, a die coating, a screen printing method, a spray coating, and a gravure offset method.
  • drying method When the coating film is dried, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted as the drying method.
  • the drying temperature is usually in the range of 60 to 130 ° C.
  • the drying time is usually several seconds to several tens of minutes.
  • the coating film can be cured by irradiating the coating film with active energy rays.
  • active energy rays include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays, and the like.
  • ultraviolet rays are preferable as the active energy rays because they can be generated using a relatively simple apparatus.
  • light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, and a metal halide lamp can be used as the ultraviolet ray source.
  • No particular restrictions on the quantity of ultraviolet light it is usually 100mJ / cm 2 ⁇ 1,000mJ / cm 2.
  • the irradiation time is usually several seconds to several hours, and the irradiation temperature is usually room temperature to 100 ° C.
  • the thickness of the smoothing layer is usually 20 ⁇ m or less, preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the arithmetic average roughness (Ra) of the surface of the smoothing layer is preferably 5 nm or less, more preferably 0.1 to 5 nm, still more preferably 0.1 to 4 nm, and particularly preferably 1 to 4 nm. .
  • the maximum cross-sectional height (Rt) of the roughness curve is preferably 100 nm or less, more preferably 1 to 100 nm, still more preferably 20 to 80 nm, and particularly preferably 30 to 65 nm.
  • Gas barrier layer which comprises the gas barrier laminated body of this invention is a layer which has the characteristic (gas barrier property) which suppresses permeation
  • the gas barrier layer for example, a layer obtained by subjecting an inorganic vapor deposition film or a layer containing a polymer compound (hereinafter, also referred to as “polymer layer”) to a modification treatment [in this case, the gas barrier layer is In addition, it means not only a region modified by ion implantation treatment or the like, but a “polymer layer including a modified region”. ] Etc. are mentioned.
  • the inorganic vapor deposition film examples include vapor deposition films of inorganic compounds and metals.
  • inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide
  • inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride
  • inorganic carbides Inorganic sulfides
  • inorganic oxynitrides such as silicon oxynitride
  • Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin. These can be used singly or in combination of two or more. Among these, an inorganic vapor-deposited film using an inorganic oxide, inorganic nitride or metal as a raw material is preferable from the viewpoint of gas barrier properties, and further, an inorganic material using an inorganic oxide or inorganic nitride as a raw material from the viewpoint of transparency. A vapor deposition film is preferred.
  • a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, a photo CVD method, etc.
  • the CVD method is mentioned.
  • the thickness of the inorganic vapor deposition film varies depending on the inorganic compound to be used, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm from the viewpoint of gas barrier properties and handling properties.
  • the polymer compound used is a silicon-containing polymer compound, polyimide, polyamide, polyamideimide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, Examples thereof include polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, and aromatic polymer. These polymer compounds can be used alone or in combination of two or more.
  • a silicon-containing polymer compound is preferable because a gas barrier layer having better gas barrier properties can be formed.
  • silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds.
  • a polysilazane compound is preferable because a gas barrier layer having excellent gas barrier properties can be formed even if it is thin.
  • the polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)
  • the compound which has a repeating unit represented by these is preferable.
  • the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.
  • n represents arbitrary natural numbers.
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;
  • alkyl group of the unsubstituted or substituted alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • alkenyl group of an unsubstituted or substituted alkenyl group examples include, for example, a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like having 2 to 2 carbon atoms. 10 alkenyl groups are mentioned.
  • substituents for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • hydroxyl group such as hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;
  • aryl group of an unsubstituted or substituted aryl group examples include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • substituent of the aryl group examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc.
  • alkylsilyl group examples include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tri-t-butylsilyl group, a methyldiethylsilyl group, a dimethylsilyl group, a diethylsilyl group, a methylsilyl group, and an ethylsilyl group.
  • Rx, Ry, and Rz a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.
  • Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.
  • a modified polysilazane compound can also be used as the polysilazane compound.
  • Examples of the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81122, JP-A-1-138108, and JP-A-2-175726.
  • JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333 Examples thereof include those described in Kaihei 5-345826 and JP-A-4-63833.
  • the polysilazane compound perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of easy availability and the ability to form an ion-implanted layer having excellent gas barrier properties.
  • a polysilazane compound a commercially available product as a glass coating material or the like can be used as it is.
  • the polysilazane compounds can be used alone or in combination of two or more.
  • the polymer layer may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired.
  • other components include a curing agent, an anti-aging agent, a light stabilizer, and a flame retardant.
  • the content of the polymer compound in the polymer layer is preferably 50% by mass or more and more preferably 70% by mass or more because a gas barrier layer having better gas barrier properties can be obtained.
  • the thickness of the polymer layer is not particularly limited, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm. In the present invention, even if the thickness of the polymer layer is nano-order, a gas barrier laminate having a sufficient gas barrier property can be obtained.
  • the method for forming the polymer layer is not particularly limited. For example, preparing a polymer layer forming solution containing at least one polymer compound, optionally other components, a solvent, etc., and then applying this polymer layer forming solution by a known method, A polymer layer can be formed by drying the obtained coating film.
  • Solvents used for the polymer layer forming solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n- And aliphatic hydrocarbon solvents such as pentane, n-hexane, and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • Coating methods for the polymer layer forming solution include bar coating, spin coating, dipping, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing, spray coating, and gravure. Examples include an offset method.
  • drying the formed coating film As a method for drying the formed coating film, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually in the range of 60 to 130 ° C.
  • the heating time is usually several seconds to several tens of minutes.
  • Examples of the polymer layer modification treatment include ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, and heat treatment.
  • the ion implantation process is a method of modifying the polymer layer by implanting ions into the polymer layer, as will be described later.
  • the plasma treatment is a method for modifying the polymer layer by exposing the polymer layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the ultraviolet irradiation treatment is a method for modifying the polymer layer by irradiating the polymer layer with ultraviolet rays.
  • the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because the gas barrier layer can be efficiently modified to the inside without roughening the surface of the polymer layer and more excellent in gas barrier properties.
  • ions implanted into the polymer layer ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .; methane, ethane, etc.
  • rare gases such as argon, helium, neon, krypton, and xenon
  • fluorocarbon hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .
  • Ion of alkane gases such as ethylene and propylene
  • Ions of alkadiene gases such as pentadiene and butadiene
  • Ions of alkyne gases such as acetylene
  • Aromatic carbonization such as benzene and toluene
  • Examples include ions of hydrogen-based gases; ions of cycloalkane-based gases such as cyclopropane; ions of cycloalkene-based gases such as cyclopentene; ions of metals; ions of organosilicon compounds. These ions can be used alone or in combination of two or more.
  • ions of rare gases such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a gas barrier layer having better gas barrier properties can be obtained.
  • the ion implantation amount can be appropriately determined according to the purpose of use of the gas barrier laminate (necessary gas barrier properties, transparency, etc.).
  • Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like.
  • the latter method of implanting plasma ions is preferable because the desired barrier layer can be easily obtained.
  • plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, whereby ions (positive ions) in the plasma are It can be performed by injecting into the surface portion of the polymer layer.
  • a plasma generation gas such as a rare gas
  • the thickness of the region into which ions are implanted can be controlled by implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the laminate, etc. Usually, it is 10 to 300 nm.
  • the long gas barrier laminate of the present invention is formed by laminating the base material, the smoothing layer, and the gas barrier layer in this order.
  • the long gas barrier laminate of the present invention may have a layer other than the base material, the smoothing layer, and the gas barrier layer.
  • layers other than the base material, the smoothing layer, and the gas barrier layer include a hard code layer, a conductor layer, a shock absorbing layer, an adhesive layer, and a process sheet.
  • seat has a role which protects a laminated body, when a laminated body is preserve
  • Examples of the layer structure of the gas barrier laminate of the present invention include the following.
  • the thickness is 0.5. It is -3 ⁇ m, preferably 0.5-2 ⁇ m.
  • the gas barrier laminate of the present invention can be produced by the method described later.
  • the thickness of the gas barrier laminate of the present invention is not particularly limited, but is preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, and still more preferably 20 to 40 ⁇ m.
  • the gas barrier layered product of the present invention is preferably 0.1g / (m 2 ⁇ day) or less, more preferably 0.05g / (m 2 ⁇ day ) Or less, and more preferably 0.03 g / (m 2 ⁇ day) or less.
  • the water vapor transmission rate can be measured by the method described in the examples.
  • the manufacturing method of the present invention is a manufacturing method of the long gas barrier laminate of the present invention, in which a long resin film is annealed at 150 ° C. longitudinal shrinkage X 1 when heated for 30 minutes of 0.0% to 0.8% or less, the resin film for the width direction of shrinkage Y 1 is at least 0.5% 0.0% or less of the base material Applying the coating liquid containing the active energy ray-curable resin composition on the resin film for a substrate obtained in Step (I) and Step (I), and curing the obtained coating film A step (II) for forming a smoothing layer and a step (III) for forming a gas barrier layer on the smoothing layer formed in step (II) are characterized.
  • Step (I) is subjected to annealing treatment in the resin film of the elongated 0.8% 30 minutes longitudinal shrinkage X 1 when heated is 0.0% or more at 0.99 ° C. or less, in the width direction shrinkage
  • This is a step of obtaining a resin film for a substrate in which Y 1 is 0.0% or more and 0.5% or less.
  • the method for performing the annealing process is not particularly limited.
  • annealing treatment can be performed by heating a long film to a predetermined temperature while being conveyed in a heating furnace.
  • the heating temperature is not particularly limited, but is usually 100 to 180 ° C., preferably 110 to 160 ° C.
  • the heating time is not particularly limited, but is usually 30 seconds to 60 minutes, preferably 1 minute to 30 minutes.
  • the shrinkage ratio in the longitudinal direction when the resin film before annealing is heated at 150 ° C. for 30 minutes is X 0 (%)
  • the shrinkage ratio in the width direction is Y 0 (%)
  • X 1 the shrinkage rate in the longitudinal direction of the resin film for a substrate after annealing treatment at 150 ° C. for 30 minutes
  • X 1 It is preferable to carry out the annealing treatment so that / X 0 is 0.1 to 0.9 and Y 1 / Y 0 is 0.05 to 0.9.
  • X 1 / X 0 is preferably 0.1 to 0.6, more preferably 0.1 to 0.5
  • Y 1 / Y 0 is preferably 0.05 to 0.6, more preferably 0.05 to 0.5.
  • step (II) a coating liquid containing an active energy ray-curable resin composition is applied onto the substrate resin film obtained in step (I), and the resulting coating film is cured. It is a step of forming a smoothing layer.
  • the smoothing layer is formed, the smoothing layer forming method described above can be used.
  • Step (III) is a step of forming a gas barrier layer on the smoothing layer formed in step (II).
  • the gas barrier layer forming method described above can be used.
  • steps (I) to (III) may be performed continuously, or after finishing each step, the treated resin film is once wound into a roll, and if necessary, The resin film may be fed out and the subsequent steps may be performed.
  • steps (I) to (III) may be performed continuously, or after finishing each step, the treated resin film is once wound into a roll, and if necessary, The resin film may be fed out and the subsequent steps may be performed.
  • the smoothing layer and the barrier layer are formed in step (II) and step (III)
  • generation of wrinkles of the base material can be suppressed, and a long gas barrier laminate can be efficiently produced.
  • the treated resin film is once wound up in a roll shape, and if necessary, the resin film is unrolled to perform the subsequent steps. .
  • step (I) the obtained substrate resin film is wound up in a roll shape, and then the substrate resin film wound up in a roll shape is fed out in a certain direction.
  • step (II) is carried out while being conveyed, and the obtained resin film with a smoothing layer is wound up in a roll shape, and then the resin film with a smoothing layer wound up in a roll shape is fed out in a certain direction.
  • the long gas barrier laminate in which the generation of wrinkles of the substrate is suppressed by carrying out the treatment of step (III) while being conveyed and winding up the obtained gas barrier layer and the resin film with a smoothing layer in a roll shape. Can be manufactured efficiently.
  • step (II) or step (III) wrinkles were generated on the substrate.
  • the method of the present invention performs an annealing process in step (I). For this reason, even if the smoothing layer is heated in step (II) or step (III) and a contraction force is generated, the base material does not follow and deform as a result. The generation of wrinkles is suppressed.
  • the conditions for the heat treatment in step (II) and / or step (III) are, for example, 100 to 200 ° C., 10 seconds to 1 hour, preferably 100 to 150 ° C., 30 seconds to 30 minutes.
  • the long gas barrier laminate of the present invention can be produced efficiently.
  • the electronic device member of the present invention comprises the long gas barrier laminate of the present invention.
  • “consisting of a long gas barrier laminate” includes not only a long gas barrier laminate but also a laminate obtained by cutting the laminate into a predetermined shape.
  • the electronic device member of the present invention is excellent in colorless transparency as well as preventing deterioration of the element due to gas such as water vapor because it has suppressed the generation of wrinkles of the base material and has excellent gas barrier properties. . Therefore, the electronic device member of the present invention is suitable as a display member such as a liquid crystal display or an EL display.
  • the electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the gas barrier laminate of the present invention, it has excellent appearance and durability against water vapor and the like.
  • Resin film (1) Polyethylene terephthalate film (manufactured by Teijin DuPont, trade name: Teijin Tetron film HB3, thickness: 25 ⁇ m)
  • Example 1 The resin film (1) is fed out from the roll of the resin film (1), and the resin film (1) is heated at 130 ° C. for 2 minutes while being conveyed in the heating furnace, and subjected to an annealing treatment, and then wound into a roll. I took it. Next, the annealed resin film (1) is fed out from the roll, and the smoothing layer forming solution (1) obtained in Production Example 1 is applied to the annealed resin film (1) by the bar coating method. The obtained coating film was heated and dried at 70 ° C.
  • the resulting resin film with a smoothing layer was wound into a roll. Subsequently, the resin film with a smoothing layer was fed out from the roll, and perhydropolysilazane (manufactured by AZ Electronic Materials, trade name: AZNL110A-20) was applied to the surface of the smoothing layer by a bar coating method. Was heated at 120 ° C.
  • argon (Ar) is ion-implanted on the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus to form a gas barrier layer, and then the obtained gas barrier layer and resin with a smoothing layer are obtained.
  • a long gas barrier laminate 1 having a layer structure of base material [resin film (1)] / smoothing layer / gas barrier layer was obtained.
  • the plasma ion implantation apparatus and plasma ion implantation conditions used for forming the gas barrier layer are as follows.
  • RF power supply Model number “RF” 56000
  • JEOL high voltage pulse power supply “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
  • Plasma generated gas Ar ⁇ Gas flow rate: 100sccm ⁇ Duty ratio: 0.5% ⁇ Repetition frequency: 1000Hz ⁇ Applied voltage: -10kV ⁇ RF power supply: frequency 13.56 MHz, applied power 1000 W -Chamber internal pressure: 0.2 Pa ⁇ Pulse width: 5 ⁇ sec ⁇ Processing time (ion implantation time): 5 minutes ⁇ Conveying speed: 0.2 m / min
  • Example 2 In Example 1, a gas barrier laminate 2 was obtained by the same method as in Example 1 except that the annealing treatment was performed at 110 ° C. for 2 minutes.
  • Example 1 A gas barrier laminate 3 was obtained in the same manner as in Example 1 except that the annealing process was not performed in Example 1.
  • Example 2 the gas barrier laminate 4 was obtained by the same method as in Example 1 except that the annealing treatment was performed at 80 ° C. for 2 minutes.
  • the gas barrier laminates 1 to 4 obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured and evaluated as follows.
  • the resin film (1) was cut into 10 cm ⁇ 10 cm so that the longitudinal direction and the width direction were the respective sides, and a test piece was obtained. Next, using a hot air oven, the test piece was heated at 150 ° C. for 30 minutes, and then the test piece was taken out. The side length A 0 (cm) in the longitudinal direction and the length B 0 (cm in the width direction) ) Were measured respectively. The following formula to determine the longitudinal shrinkage X 0 and the width direction shrinkage Y 0 of the resin film.
  • the resin film (1) after the annealing treatment [hereinafter referred to as the resin film (1 ′)] is cut into 10 cm ⁇ 10 cm so that the longitudinal direction and the width direction thereof are the respective sides, and a test piece is obtained. Obtained and heat-treated.
  • the length A 1 (cm) of the side in the longitudinal direction and the length B 1 (cm) of the side in the width direction are measured, respectively, and the shrinkage ratio X 1 in the longitudinal direction of the resin film (1 ′) is It was determined in the width direction shrinkage Y 1.
  • Table 1 shows the following.
  • the gas barrier laminates of Examples 1 and 2 are excellent in gas barrier properties and have no wrinkles on the base material.
  • the gas barrier laminate of Comparative Example 1 uses a resin film that has not been annealed as a substrate
  • the gas barrier laminate of Comparative Example 2 uses a resin film that is not sufficiently annealed as a substrate. Thus, wrinkles are formed on the base material of the obtained gas barrier laminate.

Abstract

The present invention is: an elongated gas barrier laminate resulting from laminating a substrate, a smoothing layer, and a gas barrier layer in the given sequence, and characterized by the substrate comprising an elongated resin film that, when heated to 150°C for 30 minutes, has a shrinkage rate (X1) in the lengthwise direction of 0.0-0.8% inclusive and a shrinkage rate (Y1) in the widthwise direction of 0.0-0.5% inclusive, and the smoothing layer comprising the cured product of an active-energy-ray-curable resin composition; a method for producing the elongated gas barrier laminate; an electronic device member comprising the gas barrier laminate; and an electronic device provided with the electronic device member. By means of the present invention, provided are: an elongated gas barrier laminate having superior gas barrier properties and suppressed occurrence of substrate wrinkles; a method for producing same; an electronic device member comprising the gas barrier laminate; and an electronic device provided with the electronic device member.

Description

長尺のガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイスLong gas barrier laminate and method for producing the same, member for electronic device, and electronic device
 本発明は、基材のしわの発生が抑制され、かつ、ガスバリア性に優れる長尺のガスバリア性積層体とその製造方法、前記ガスバリア性積層体からなる電子デバイス用部材、及び、この電子デバイス用部材を備える電子デバイスに関する。 The present invention relates to a long gas barrier laminate that suppresses generation of wrinkles in a base material and has excellent gas barrier properties, a method for producing the same, a member for an electronic device comprising the gas barrier laminate, and the electronic device The present invention relates to an electronic device including a member.
 近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、電極を有する基板として、ガラス板に代えて、透明プラスチックフィルム上にガスバリア層が積層されてなる、いわゆるガスバリアフィルムが用いられている。 In recent years, displays such as a liquid crystal display and an electroluminescence (EL) display have a gas barrier on a transparent plastic film instead of a glass plate as a substrate having electrodes in order to realize a reduction in thickness, weight, and flexibility. A so-called gas barrier film in which layers are laminated is used.
 また、ガスバリアフィルムにおいては、基材表面の凹凸を埋め、層間密着性を向上させるために、基材上に平滑化層を設けることが提案されている。
 例えば、特許文献1には、フィルム基材上に、高平滑化層、中間層及びガスバリア層がこの順に積層されてなるガスバリアフィルムが記載されている。また、この文献には、エネルギー線硬化型化合物を用いて、高平滑化層を形成し得ることも記載されている。
In the gas barrier film, it has been proposed to provide a smoothing layer on the substrate in order to fill the unevenness of the substrate surface and improve interlayer adhesion.
For example, Patent Literature 1 describes a gas barrier film in which a highly smoothed layer, an intermediate layer, and a gas barrier layer are laminated in this order on a film substrate. This document also describes that a high smoothing layer can be formed using an energy beam curable compound.
特開2008-246893号公報JP 2008-246893 A
 近年、電子デバイスのさらなる薄型化、軽量化を実現するために、厚みがより薄い基材を用いたガスバリアフィルムが求められている。
 しかしながら、基材、平滑化層及びガスバリア層がこの順に積層されてなるガスバリアフィルムにおいて、基材を薄くすると、平滑化層やガスバリア層を形成する際の加熱処理により平滑化層が熱収縮して、基材にしわが発生し、ガスバリアフィルムの光学特性を低下させる場合があった。
In recent years, a gas barrier film using a substrate having a thinner thickness has been demanded in order to realize further thinning and weight reduction of electronic devices.
However, in the gas barrier film in which the base material, the smoothing layer, and the gas barrier layer are laminated in this order, when the base material is thinned, the smoothing layer is thermally contracted by the heat treatment when the smoothing layer and the gas barrier layer are formed. In some cases, wrinkles were generated in the base material and the optical properties of the gas barrier film were deteriorated.
 本発明は、上記実情に鑑みてなされたものであり、基材のしわの発生が抑制され、かつ、ガスバリア性に優れる長尺のガスバリア性積層体及びその製造方法、前記ガスバリア性積層体からなる電子デバイス用部材、並びに、この電子デバイス用部材を備える電子デバイスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is composed of a long gas barrier laminate having excellent gas barrier properties while suppressing generation of wrinkles of the base material, a method for producing the same, and the gas barrier laminate. An object of the present invention is to provide an electronic device member and an electronic device including the electronic device member.
 本発明者らは上記課題を解決すべく、基材、平滑化層及びガスバリア層をこの順で積層して得られる長尺のガスバリア性積層体について鋭意検討した。その結果、前記基材として、熱収縮率が特定の範囲である長尺の樹脂フィルムを用い、前記平滑化層を活性エネルギー線硬化型樹脂組成物の硬化物から形成すると、基材のしわの発生が抑制された、ガスバリア性に優れる長尺のガスバリア性積層体を得ることができることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors have intensively studied a long gas barrier laminate obtained by laminating a base material, a smoothing layer and a gas barrier layer in this order. As a result, when the smoothing layer is formed from a cured product of the active energy ray-curable resin composition using a long resin film having a heat shrinkage rate in a specific range as the base material, The inventors have found that a long gas barrier laminate having excellent gas barrier properties with suppressed generation can be obtained, and the present invention has been completed.
 かくして本発明によれば、下記(1)~(6)の長尺のガスバリア性積層体、(7)~(11)の長尺のガスバリア性積層体の製造方法、(12)の電子デバイス用部材、及び、(13)の電子デバイスが提供される。
(1)基材、平滑化層及びガスバリア層がこの順に積層されてなる長尺のガスバリア性積層体であって、前記基材が、150℃で30分加熱したときの長手方向の収縮率Xが0.0%以上0.8%以下で、幅方向の収縮率Yが0.0%以上0.5%以下である長尺の樹脂フィルムからなり、前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるものであること、を特徴とする長尺のガスバリア性積層体。
(2)前記長尺の樹脂フィルムが、アニーリング処理が施されたものである、(1)に記載の長尺のガスバリア性積層体。
(3)前記樹脂フィルムの厚みが1~60μmである、(1)に記載の長尺のガスバリア性積層体。
(4)前記ガスバリア層が、ポリシラザン化合物を含有する層を改質処理して得られる層である、(1)に記載の長尺のガスバリア性積層体。
(5)前記長尺のガスバリア性積層体の厚みが5~100μmである、(1)に記載の長尺のガスバリア性積層体。
(6)前記ガスバリア性積層体の、温度40℃、相対湿度90%における水蒸気透過率が、0.1g/(m・day)以下である、(1)に記載の長尺のガスバリア性積層体。
(7)前記(1)に記載の長尺のガスバリア性積層体の製造方法であって、
 長尺の樹脂フィルムにアニーリング処理を施し、150℃で30分加熱したときの長手方向の収縮率が0.0%以上0.8%以下、幅方向の収縮率が0.0%以上0.5%以下の基材用樹脂フィルムを得るステップ(I)、
 ステップ(I)で得られた基材用樹脂フィルム上に、活性エネルギー線硬化型樹脂組成物を含有する塗工液を塗工し、得られた塗膜を硬化させて平滑化層を形成するステップ(II)、
 ステップ(II)で形成された平滑化層上に、ガスバリア層を形成するステップ(III)、
を有することを特徴とする、長尺のガスバリア性積層体の製造方法。
(8)ステップ(I)のアニーリング処理の加熱温度が、100~180℃、加熱時間が、30秒から60分である、(7)に記載の長尺のガスバリア性積層体の製造方法。
(9)アニーリング処理前の樹脂フィルムの、150℃で30分加熱したときの長手方向の収縮率がX(%)、幅方向の収縮率がY(%)であり、アニーリング処理後の基材用樹脂フィルムの、150℃で30分加熱したときの長手方向の収縮率がX(%)、幅方向の収縮率がY(%)であるときに、X/Xが0.1~0.9、Y/Yが0.05~0.9である、(7)に記載の長尺のガスバリア性積層体の製造方法。
(10)ステップ(II)及び/又はステップ(III)において、100~200℃で、10秒から1時間の加熱処理を施すものである、(7)に記載の長尺のガスバリア性積層体の製造方法。
(11)ステップ(I)を終えた後に、得られた基材用樹脂フィルムをロール状に巻き取り、次いで、ロール状に巻き取った基材用樹脂フィルムを繰り出し、これを一定方向に搬送しながらステップ(II)の処理を行い、得られた平滑化層付樹脂フィルムをロール状に巻き取り、次いで、ロール状に巻き取った平滑化層付樹脂フィルムを繰り出し、これを一定方向に搬送しながらステップ(III)の処理を行い、得られたガスバリア層及び平滑化層付樹脂フィルムをロール状に巻き取ることを特徴とする、(7)に記載の長尺のガスバリア性積層体の製造方法。
(12)前記(1)に記載の長尺のガスバリア性積層体からなる電子デバイス用部材。
(13)前記(12)に記載の電子デバイス用部材を備える電子デバイス。
Thus, according to the present invention, the following long gas barrier laminates (1) to (6), the production method of the long gas barrier laminates (7) to (11), and the electronic device (12) A member and an electronic device according to (13) are provided.
(1) A long gas barrier laminate in which a substrate, a smoothing layer and a gas barrier layer are laminated in this order, and the shrinkage ratio X in the longitudinal direction when the substrate is heated at 150 ° C. for 30 minutes 1 is less than or equal 0.8% or more 0.0%, a resin film elongated shrinkage Y 1 in the width direction is 0.5% or more 0.0%, the smoothing layer, the active energy A long gas barrier laminate comprising a cured product of a linear curable resin composition.
(2) The long gas barrier laminate according to (1), wherein the long resin film is subjected to an annealing treatment.
(3) The long gas barrier laminate according to (1), wherein the resin film has a thickness of 1 to 60 μm.
(4) The long gas barrier laminate according to (1), wherein the gas barrier layer is a layer obtained by modifying a layer containing a polysilazane compound.
(5) The long gas barrier laminate according to (1), wherein the long gas barrier laminate has a thickness of 5 to 100 μm.
(6) The long gas barrier laminate according to (1), wherein the gas barrier laminate has a water vapor transmission rate of 0.1 g / (m 2 · day) or less at a temperature of 40 ° C. and a relative humidity of 90%. body.
(7) The method for producing the long gas barrier laminate according to (1),
When a long resin film is annealed and heated at 150 ° C. for 30 minutes, the shrinkage in the longitudinal direction is 0.0% or more and 0.8% or less, and the shrinkage in the width direction is 0.0% or more and 0.0. Obtaining a resin film for a substrate of 5% or less (I),
On the base material resin film obtained in step (I), a coating solution containing the active energy ray-curable resin composition is applied, and the resulting coating film is cured to form a smoothing layer. Step (II),
Forming a gas barrier layer on the smoothing layer formed in step (II) (III);
A method for producing a long gas barrier laminate, comprising:
(8) The method for producing a long gas barrier laminate according to (7), wherein the annealing temperature in step (I) is 100 to 180 ° C. and the heating time is 30 seconds to 60 minutes.
(9) The resin film before annealing treatment has a shrinkage in the longitudinal direction of X 0 (%) when heated at 150 ° C. for 30 minutes, and a shrinkage in the width direction of Y 0 (%). When the shrinkage ratio in the longitudinal direction of the resin film for base material when heated at 150 ° C. for 30 minutes is X 1 (%) and the shrinkage ratio in the width direction is Y 1 (%), X 1 / X 0 is The method for producing a long gas barrier laminate according to (7), wherein 0.1 to 0.9 and Y 1 / Y 0 is 0.05 to 0.9.
(10) The long gas barrier laminate according to (7), which is subjected to heat treatment at 100 to 200 ° C. for 10 seconds to 1 hour in Step (II) and / or Step (III). Production method.
(11) After completing step (I), the obtained resin film for base material is wound up in a roll shape, and then the resin film for base material wound up in a roll shape is fed out and conveyed in a certain direction. Then, the treatment of step (II) is performed, and the obtained resin film with a smoothing layer is wound up in a roll shape, and then the resin film with a smoothing layer wound up in a roll shape is fed out and conveyed in a certain direction. The process for producing a long gas barrier laminate according to (7), wherein the treatment of step (III) is performed, and the obtained gas barrier layer and the resin film with a smoothing layer are wound into a roll. .
(12) An electronic device member comprising the long gas barrier laminate according to (1).
(13) An electronic device comprising the electronic device member according to (12).
 本発明によれば、基材のしわの発生が抑制され、かつ、ガスバリア性に優れる長尺のガスバリア性積層体とその製造方法、前記ガスバリア性積層体からなる電子デバイス用部材、及び、この電子デバイス用部材を備える電子デバイスが提供される。 According to the present invention, the generation of a long gas barrier laminate excellent in gas barrier properties and the production method thereof, the electronic device member comprising the gas barrier laminate, and the electronic An electronic device comprising a device member is provided.
 以下、本発明を、1)長尺のガスバリア性積層体、2)長尺のガスバリア性積層体の製造方法、並びに、3)電子デバイス用部材及び電子デバイス、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing into 1) a long gas barrier laminate, 2) a method for producing a long gas barrier laminate, and 3) a member for an electronic device and an electronic device. .
1)長尺のガスバリア性積層体
 本発明の長尺のガスバリア性積層体は、基材、平滑化層及びガスバリア層がこの順に積層されてなる長尺のガスバリア性積層体であって、前記基材が、150℃で30分加熱したときの長手方向の収縮率Xが0.0%以上0.8%以下、幅方向の収縮率Yが0.0%以上0.5%以下の長尺の樹脂フィルムからなり、前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなること、を特徴とする。
 ここで、「長尺」とは、幅に対して、少なくとも5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。
1) Long gas barrier laminate The long gas barrier laminate of the present invention is a long gas barrier laminate in which a substrate, a smoothing layer, and a gas barrier layer are laminated in this order. Material is 150 when heated 30 min at ℃ longitudinal shrinkage X 1 is 0.0% or more and 0.8% or less, the width direction shrinkage Y 1 is less than 0.5% 0.0% It consists of a long resin film, The said smoothing layer consists of the hardened | cured material of an active energy ray hardening-type resin composition, It is characterized by the above-mentioned.
Here, the “long” means one having a length of at least 5 times the width, preferably 10 times or more, and specifically wound in a roll shape. It has a length that can be taken and stored or transported.
(1)基材
 本発明のガスバリア性積層体を構成する基材は、150℃で30分加熱したときの長手方向の収縮率Xが0.0%以上0.8%以下、幅方向の収縮率Yが0.0%以上0.5%以下の長尺の樹脂フィルムからなる。
 本発明において、「長尺」とは、その形状が、幅方向に比べて、長手方向が長い(好ましくは10倍以上の長さ)帯状であることを意味する。また、以下の説明において、「長尺の」を省略することがある。
(1) substrate constituting the gas barrier laminate of the substrate present invention, when heated for 30 minutes at 0.99 ° C. longitudinal shrinkage X 1 is 0.8% or more 0.0% less, in the width direction shrinkage Y 1 is made of a resin film elongated 0.5% to 0.0%.
In the present invention, “long” means that the shape is a strip shape whose longitudinal direction is longer (preferably 10 times or longer) than the width direction. In the following description, “long” may be omitted.
 樹脂フィルムの長さ(長手方向の長さ)は、特に限定されないが、通常、400~2000mである。樹脂フィルムの幅(幅方向の長さ)は、特に限定されないが、通常、450~1300mm、好ましくは530~1280mmである。樹脂フィルムの厚みは、特に限定されないが、通常、1~60μm、好ましくは5~50μm、より好ましくは10~30μmである。 The length of the resin film (length in the longitudinal direction) is not particularly limited, but is usually 400 to 2000 m. The width (length in the width direction) of the resin film is not particularly limited, but is usually 450 to 1300 mm, preferably 530 to 1280 mm. The thickness of the resin film is not particularly limited, but is usually 1 to 60 μm, preferably 5 to 50 μm, more preferably 10 to 30 μm.
 前記樹脂フィルムの樹脂成分としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの樹脂成分は一種単独で、あるいは二種以上を組み合わせて用いることができる。
As the resin component of the resin film, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, acrylic resin, cycloolefin Based polymers, aromatic polymers, and the like.
These resin components can be used alone or in combination of two or more.
 これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド又はシクロオレフィン系ポリマーがより好ましく、ポリエステル又はシクロオレフィン系ポリマーがさらに好ましい。 Among these, polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, or cycloolefin-based polymer is more preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。 Examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
 シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。 Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
 樹脂フィルムは、本発明の効果を妨げない範囲において、各種添加剤を含有していてもよい。添加剤としては、紫外線吸収剤、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、着色顔料等が挙げられる。これらの添加剤の含有量は、目的に合わせて適宜決定すればよい。 The resin film may contain various additives as long as the effects of the present invention are not hindered. Examples of the additive include an ultraviolet absorber, an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a coloring pigment. What is necessary is just to determine suitably content of these additives according to the objective.
 樹脂フィルムは、所定の成分を含む樹脂組成物を調製し、これをフィルム状に成形することにより得ることができる。成形方法は特に限定されず、キャスト法や溶融押出法等の公知の方法を利用することができる。 The resin film can be obtained by preparing a resin composition containing predetermined components and molding it into a film. The molding method is not particularly limited, and a known method such as a casting method or a melt extrusion method can be used.
 本発明に用いる樹脂フィルムは、150℃で30分加熱したときの長手方向の収縮率Xは0.0%以上0.8%以下、好ましくは0.01%以上0.8%以下、より好ましくは0.1%以上0.5%以下で、幅方向の収縮率Yは0.0%以上0.5%以下、好ましくは0.01%以上0.5%以下、より好ましくは0.05%以上0.3%以下のものである。
 熱収縮率が上記範囲である樹脂フィルムを基材として用いることで、平滑化層が加熱された場合であっても、平滑化層の熱収縮による基材(樹脂フィルム)のしわの発生を抑えることができる。
 後述するように、このような特性を有する樹脂フィルムは、樹脂フィルムにアニーリング処理を施すことにより、効率よく得ることができる。
Resin film used in the present invention, the longitudinal shrinkage X 1 when heated for 30 minutes at 0.99 ° C. 0.8% to 0.0% or less, preferably 0.8% or more 0.01% or less, more preferably below 0.5% 0.1% widthwise shrinkage Y 1 0.5% or more 0.0% or less, preferably 0.5% or 0.01% or less, more preferably 0 .05% or more and 0.3% or less.
By using a resin film having a thermal shrinkage rate in the above range as a base material, even when the smoothing layer is heated, the generation of wrinkles of the base material (resin film) due to the thermal contraction of the smoothing layer is suppressed. be able to.
As will be described later, a resin film having such characteristics can be obtained efficiently by subjecting the resin film to an annealing treatment.
(2)平滑化層
 本発明のガスバリア性積層体を構成する平滑化層は、活性エネルギー線硬化型樹脂組成物の硬化物からなる。平滑化層は、基材表面の凹凸を低減し、ガスバリア性積層体の層間密着性を向上させるものである。
(2) Smoothing layer The smoothing layer which comprises the gas-barrier laminated body of this invention consists of hardened | cured material of an active energy ray hardening-type resin composition. A smoothing layer reduces the unevenness | corrugation of the base-material surface, and improves the interlayer adhesiveness of a gas-barrier laminated body.
 活性エネルギー線硬化型樹脂組成物は、重合性化合物を含有し、活性エネルギー線の照射により硬化し、硬化物を与える組成物である。 The active energy ray-curable resin composition is a composition that contains a polymerizable compound and is cured by irradiation with active energy rays to give a cured product.
 用いる重合性化合物としては、重合性プレポリマーや重合性モノマーが挙げられる。
 重合性プレポリマーとしては、両末端に水酸基を有するポリエステルオリゴマーと、(メタ)アクリル酸との反応により得られるポリエステルアクリレート系プレポリマー、低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂と、(メタ)アクリル酸との反応により得られるエポキシアクリレート系プレポリマー、ポリウレタンオリゴマーと、(メタ)アクリル酸との反応により得られるウレタンアクリレート系プレポリマー、ポリエーテルポリオールと、(メタ)アクリル酸との反応により得られるポリオールアクリレート系プレポリマー等が挙げられる。
Examples of the polymerizable compound to be used include a polymerizable prepolymer and a polymerizable monomer.
The polymerizable prepolymer includes a polyester oligomer having a hydroxyl group at both ends, a polyester acrylate prepolymer obtained by a reaction with (meth) acrylic acid, a low molecular weight bisphenol type epoxy resin or a novolac type epoxy resin, ) By reaction of epoxy acrylate prepolymer, polyurethane oligomer obtained by reaction with acrylic acid, urethane acrylate prepolymer, polyether polyol obtained by reaction of (meth) acrylic acid, and (meth) acrylic acid Examples thereof include a polyol acrylate prepolymer to be obtained.
 重合性モノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート; エチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド変性ヒドロキノンジビニルエーテル、エチレンオキサイド変性ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、ジトリメチロールプロパンポリビニルエーテル等のビニル化合物;が挙げられるが、必ずしもこれらに限定されるものではない。
 これらの重合性化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 ここで、(メタ)アクリロイル基なる表記は、アクリロイル基及びメタクリロイル基の両方を含む意味である。
Examples of the polymerizable monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and hydroxypivalic acid. Neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphate di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyania Bifunctional (meth) acrylates such as nurate di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propionic acid-modified dipentaeri Trifunctional (meth) acrylates such as lithol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate; propionic acid modified dipentaerythritol penta (Meth) acrylates such as (meth) acrylates, pentaerythritol hexa (meth) acrylates, caprolactone-modified dipentaerythritol hexa (meth) acrylates and more than four functional (meth) acrylates; ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexanediol Divinyl ether, trimethylolpropane divinyl ether, ethylene oxide modified hydroquinone divinyl ether, ethylene oxide Id modified bisphenol A divinyl ether, pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, vinyl compounds such as ditrimethylolpropane polyvinyl ether; including without necessarily limited thereto.
These polymerizable compounds can be used singly or in combination of two or more.
Here, the notation of (meth) acryloyl group means to include both acryloyl group and methacryloyl group.
 また、前記活性エネルギー線硬化性樹脂組成物中に、それ自身は反応硬化性を有しないような高分子樹脂成分、例えばアクリル樹脂を含ませてもよい。高分子樹脂成分の添加により該組成物の粘度を調整することができる。 Further, the active energy ray-curable resin composition may contain a polymer resin component that does not have reaction curability, such as an acrylic resin. The viscosity of the composition can be adjusted by adding a polymer resin component.
 活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等が挙げられる。これらの中でも、比較的簡便な装置を用いて発生させることができることから、活性エネルギー線としては、紫外線が好ましい。
 活性エネルギー線として紫外線を用いる場合、活性エネルギー線硬化型樹脂組成物(すなわち、紫外線硬化型樹脂組成物)は、光重合開始剤を含有することが好ましい。
Examples of active energy rays include ultraviolet rays, electron beams, α rays, β rays, γ rays, and the like. Among these, ultraviolet rays are preferable as the active energy rays because they can be generated using a relatively simple apparatus.
When ultraviolet rays are used as the active energy rays, the active energy ray curable resin composition (that is, the ultraviolet curable resin composition) preferably contains a photopolymerization initiator.
 光重合開始剤は、紫外線の照射により重合反応を開始させるものであれば、特に限定されない。光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系重合開始剤;アセトフェノン、4’-ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン系重合開始剤;ベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン等のベンゾフェノン系重合開始剤;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン等のアントラキノン系重合開始剤;2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系重合開始剤;等が挙げられる。
 光重合開始剤の含有量は、特に限定されないが、通常、前記重合性化合物に対して、0.2~30質量%、好ましくは0.5~20質量%である。
A photoinitiator will not be specifically limited if a polymerization reaction is started by irradiation of an ultraviolet-ray. Examples of the photopolymerization initiator include benzoin-based polymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, and benzoin isobutyl ether; acetophenone, 4′-dimethylaminoacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholino-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl -Propane-1 An acetophenone-based polymerization initiator such as —one; a benzophenone-based polymerization initiator such as benzophenone, 4-phenylbenzophenone, 4,4′-diethylaminobenzophenone, 4,4′-dichlorobenzophenone; 2-methylanthraquinone, 2-ethylanthraquinone, Anthraquinone polymerization initiators such as 2-t-butylanthraquinone and 2-aminoanthraquinone; thioxanthones such as 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone and 2,4-diethylthioxanthone System polymerization initiators; and the like.
The content of the photopolymerization initiator is not particularly limited, but is usually 0.2 to 30% by mass, preferably 0.5 to 20% by mass with respect to the polymerizable compound.
 活性エネルギー線硬化型樹脂組成物は、本発明の効果を妨げない範囲で、その他の成分を含有してもよい。
 その他の成分としては、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、着色顔料等が挙げられる。これらの含有量は、目的に合わせて適宜決定すればよい。
The active energy ray-curable resin composition may contain other components as long as the effects of the present invention are not hindered.
Examples of other components include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a color pigment. What is necessary is just to determine these content suitably according to the objective.
 平滑化層を形成する方法は特に限定されない。例えば、活性エネルギー線硬化型樹脂組成物、及び必要に応じて溶媒を含有する塗工液を調製し、次いで、基材上に、この塗工液を公知の方法により塗工し、得られた塗膜を硬化させることにより、活性エネルギー線硬化型樹脂組成物の硬化物からなる平滑化層を形成することができる。また、必要に応じて、塗膜を硬化させる前に、乾燥処理を施してもよい。 The method for forming the smoothing layer is not particularly limited. For example, an active energy ray-curable resin composition and, if necessary, a coating liquid containing a solvent was prepared, and then this coating liquid was coated on a substrate by a known method, and obtained. By smoothing the coating film, a smoothing layer made of a cured product of the active energy ray-curable resin composition can be formed. Moreover, you may give a drying process before hardening a coating film as needed.
 塗工液の調製に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Solvents used for preparing the coating liquid include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; n-pentane And aliphatic hydrocarbon solvents such as n-hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane.
These solvents can be used alone or in combination of two or more.
 塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。 Examples of the coating method include a bar coating method, a spin coating method, a dipping method, a roll coating, a gravure coating, a knife coating, an air knife coating, a roll knife coating, a die coating, a screen printing method, a spray coating, and a gravure offset method.
 塗膜を乾燥させる場合、その乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を採用できる。乾燥温度は、通常60~130℃の範囲である。乾燥時間は、通常数秒から数十分である。 When the coating film is dried, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted as the drying method. The drying temperature is usually in the range of 60 to 130 ° C. The drying time is usually several seconds to several tens of minutes.
 塗膜の硬化は、塗膜に活性エネルギー線を照射することにより行うことができる。
 活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等が挙げられる。これらの中でも、比較的簡便な装置を用いて発生させることができることから、活性エネルギー線としては、紫外線が好ましい。
 活性エネルギー線として紫外線を用いる場合、紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、ブラックライトランプ、メタルハライドランプ等の光源を用いることができる。紫外線の光量には特に制限はないが、通常100mJ/cm~1,000mJ/cmである。照射時間は、通常数秒~数時間であり、照射温度は、通常室温~100℃である。
The coating film can be cured by irradiating the coating film with active energy rays.
Examples of active energy rays include ultraviolet rays, electron beams, α rays, β rays, γ rays, and the like. Among these, ultraviolet rays are preferable as the active energy rays because they can be generated using a relatively simple apparatus.
When ultraviolet rays are used as the active energy rays, light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, and a metal halide lamp can be used as the ultraviolet ray source. No particular restrictions on the quantity of ultraviolet light, it is usually 100mJ / cm 2 ~ 1,000mJ / cm 2. The irradiation time is usually several seconds to several hours, and the irradiation temperature is usually room temperature to 100 ° C.
 平滑化層の厚みは、通常、20μm以下、好ましくは0.1~20μm、より好ましくは0.5~10μmである。 The thickness of the smoothing layer is usually 20 μm or less, preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm.
 平滑化層の表面の算術平均粗さ(Ra)は、好ましくは5nm以下、より好ましくは0.1~5nmであり、さらに好ましくは0.1~4nmであり、特に好ましくは1~4nmである。粗さ曲線の最大断面高さ(Rt)は、好ましくは100nm以下、より好ましくは1~100nm、さらに好ましくは20~80nm、特に好ましくは30~65nmである。
 Ra、Rtが、上記範囲内であることで、他の層との密着性により優れ、ガスバリア性により優れるガスバリア性積層体を得ることができる。
 Ra、Rtは、光干渉顕微鏡を用いて、平滑化層を500μm×500μmの領域について観察することにより求めることができる。
The arithmetic average roughness (Ra) of the surface of the smoothing layer is preferably 5 nm or less, more preferably 0.1 to 5 nm, still more preferably 0.1 to 4 nm, and particularly preferably 1 to 4 nm. . The maximum cross-sectional height (Rt) of the roughness curve is preferably 100 nm or less, more preferably 1 to 100 nm, still more preferably 20 to 80 nm, and particularly preferably 30 to 65 nm.
When Ra and Rt are within the above ranges, a gas barrier laminate having excellent adhesion to other layers and excellent gas barrier properties can be obtained.
Ra and Rt can be obtained by observing the smoothing layer in a 500 μm × 500 μm region using an optical interference microscope.
(3)ガスバリア層
 本発明のガスバリア性積層体を構成するガスバリア層は、酸素や水蒸気等のガスの透過を抑制する特性(ガスバリア性)を有する層である。
(3) Gas barrier layer The gas barrier layer which comprises the gas barrier laminated body of this invention is a layer which has the characteristic (gas barrier property) which suppresses permeation | transmission of gas, such as oxygen and water vapor | steam.
 ガスバリア層としては、例えば、無機蒸着膜や高分子化合物を含む層(以下、「高分子層」ということがある。)に改質処理を施して得られたもの〔この場合、ガスバリア層とは、イオン注入処理等により改質された領域のみを意味するのではなく、「改質された領域を含む高分子層」を意味する。〕等が挙げられる。 As the gas barrier layer, for example, a layer obtained by subjecting an inorganic vapor deposition film or a layer containing a polymer compound (hereinafter, also referred to as “polymer layer”) to a modification treatment [in this case, the gas barrier layer is In addition, it means not only a region modified by ion implantation treatment or the like, but a “polymer layer including a modified region”. ] Etc. are mentioned.
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。
Examples of the inorganic vapor deposition film include vapor deposition films of inorganic compounds and metals.
As the raw material for the vapor-deposited film of the inorganic compound, inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride; inorganic carbides; Inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides and the like.
Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin.
These can be used singly or in combination of two or more.
Among these, an inorganic vapor-deposited film using an inorganic oxide, inorganic nitride or metal as a raw material is preferable from the viewpoint of gas barrier properties, and further, an inorganic material using an inorganic oxide or inorganic nitride as a raw material from the viewpoint of transparency. A vapor deposition film is preferred.
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。 As a method of forming an inorganic vapor deposition film, a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, a photo CVD method, etc. The CVD method is mentioned.
 無機蒸着膜の厚さは、使用する無機化合物によっても異なるが、ガスバリア性と取り扱い性の観点から、好ましくは50~300nm、より好ましくは50~200nmの範囲である。 The thickness of the inorganic vapor deposition film varies depending on the inorganic compound to be used, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm from the viewpoint of gas barrier properties and handling properties.
 高分子層に改質処理を施して得られるガスバリア層において、用いる高分子化合物としては、ケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
In the gas barrier layer obtained by modifying the polymer layer, the polymer compound used is a silicon-containing polymer compound, polyimide, polyamide, polyamideimide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, Examples thereof include polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, and aromatic polymer.
These polymer compounds can be used alone or in combination of two or more.
 これらの中でも、高分子化合物としては、より優れたガスバリア性を有するガスバリア層を形成し得ることから、ケイ素含有高分子化合物が好ましい。ケイ素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。なかでも、薄くても優れたガスバリア性を有するガスバリア層を形成できることから、ポリシラザン系化合物が好ましい。ポリシラザン系化合物を含む層に改質処理を施すことで、酸素、窒素、ケイ素を主構成原子として有する層(酸窒化珪素層)を形成することができる。 Among these, as the polymer compound, a silicon-containing polymer compound is preferable because a gas barrier layer having better gas barrier properties can be formed. Examples of silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds. Among these, a polysilazane compound is preferable because a gas barrier layer having excellent gas barrier properties can be formed even if it is thin. By subjecting the layer containing the polysilazane compound to a modification treatment, a layer (silicon oxynitride layer) having oxygen, nitrogen, and silicon as main constituent atoms can be formed.
 ポリシラザン系化合物は、分子内に-Si-N-結合(シラザン結合)を含む繰り返し単位を有する高分子化合物である。具体的には、式(1) The polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
で表される繰り返し単位を有する化合物が好ましい。また、用いるポリシラザン系化合物の数平均分子量は、特に限定されないが、100~50,000であるのが好ましい。 The compound which has a repeating unit represented by these is preferable. The number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.
 前記式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
In said formula (1), n represents arbitrary natural numbers.
Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;
 前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。 Examples of the alkyl group of the unsubstituted or substituted alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
 無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。 Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
 無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。 Examples of the alkenyl group of an unsubstituted or substituted alkenyl group include, for example, a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like having 2 to 2 carbon atoms. 10 alkenyl groups are mentioned.
 前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。 Examples of the substituent for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。 Examples of the aryl group of an unsubstituted or substituted aryl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。 Examples of the substituent of the aryl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc. An aryl group having a substituent; and the like.
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。 Examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tri-t-butylsilyl group, a methyldiethylsilyl group, a dimethylsilyl group, a diethylsilyl group, a methylsilyl group, and an ethylsilyl group.
 これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1~6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。 Among these, as Rx, Ry, and Rz, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.
 前記式(1)で表される繰り返し単位を有するポリシラザン系化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
 また、本発明においては、ポリシラザン系化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、特開昭62-195024号公報、特開平2-84437号公報、特開昭63-81122号公報、特開平1-138108号公報等、特開平2-175726号公報、特開平5-238827号公報、特開平5-238827号公報、特開平6-122852号公報、特開平6-306329号公報、特開平6-299118号公報、特開平9-31333号公報、特開平5-345826号公報、特開平4-63833号公報等に記載されているものが挙げられる。
 これらの中でも、ポリシラザン系化合物としては、入手容易性、及び優れたガスバリア性を有するイオン注入層を形成できる観点から、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。
 また、ポリシラザン系化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.
In the present invention, a modified polysilazane compound can also be used as the polysilazane compound. Examples of the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81122, JP-A-1-138108, and JP-A-2-175726. JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333, Examples thereof include those described in Kaihei 5-345826 and JP-A-4-63833.
Among these, as the polysilazane compound, perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of easy availability and the ability to form an ion-implanted layer having excellent gas barrier properties.
Moreover, as a polysilazane compound, a commercially available product as a glass coating material or the like can be used as it is.
The polysilazane compounds can be used alone or in combination of two or more.
 高分子層は、上述した高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含有してもよい。他の成分としては、硬化剤、老化防止剤、光安定剤、難燃剤等が挙げられる。
 高分子層中の高分子化合物の含有量は、より優れたガスバリア性を有するガスバリア層が得られることから、50質量%以上が好ましく、70質量%以上がより好ましい。
The polymer layer may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired. Examples of other components include a curing agent, an anti-aging agent, a light stabilizer, and a flame retardant.
The content of the polymer compound in the polymer layer is preferably 50% by mass or more and more preferably 70% by mass or more because a gas barrier layer having better gas barrier properties can be obtained.
 高分子層の厚みは、特に制限されないが、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
 本発明においては、高分子層の厚みがナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
The thickness of the polymer layer is not particularly limited, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm.
In the present invention, even if the thickness of the polymer layer is nano-order, a gas barrier laminate having a sufficient gas barrier property can be obtained.
 高分子層を形成する方法は特に限定されない。例えば、高分子化合物の少なくとも一種、所望により他の成分、及び溶剤等を含有する高分子層形成用溶液を調製し、次いで、この高分子層形成用溶液を、公知の方法により塗工し、得られた塗膜を乾燥することにより、高分子層を形成することができる。 The method for forming the polymer layer is not particularly limited. For example, preparing a polymer layer forming solution containing at least one polymer compound, optionally other components, a solvent, etc., and then applying this polymer layer forming solution by a known method, A polymer layer can be formed by drying the obtained coating film.
 高分子層形成用溶液に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Solvents used for the polymer layer forming solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n- And aliphatic hydrocarbon solvents such as pentane, n-hexane, and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane.
These solvents can be used alone or in combination of two or more.
 高分子層形成用溶液の塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。 Coating methods for the polymer layer forming solution include bar coating, spin coating, dipping, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing, spray coating, and gravure. Examples include an offset method.
 形成された塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常60~130℃の範囲である。加熱時間は、通常数秒から数十分である。 As a method for drying the formed coating film, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed. The heating temperature is usually in the range of 60 to 130 ° C. The heating time is usually several seconds to several tens of minutes.
 高分子層の改質処理としては、イオン注入処理、プラズマ処理、紫外線照射処理、熱処理等が挙げられる。
 イオン注入処理は、後述するように、高分子層にイオンを注入して、高分子層を改質する方法である。
 プラズマ処理は、高分子層をプラズマ中に晒して、高分子層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。
 紫外線照射処理は、高分子層に紫外線を照射して高分子層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
 これらの中でも、高分子層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
Examples of the polymer layer modification treatment include ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, and heat treatment.
The ion implantation process is a method of modifying the polymer layer by implanting ions into the polymer layer, as will be described later.
The plasma treatment is a method for modifying the polymer layer by exposing the polymer layer to plasma. For example, plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
The ultraviolet irradiation treatment is a method for modifying the polymer layer by irradiating the polymer layer with ultraviolet rays. For example, the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
Among these, the ion implantation treatment is preferable because the gas barrier layer can be efficiently modified to the inside without roughening the surface of the polymer layer and more excellent in gas barrier properties.
 高分子層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン等のシクロアルカン系ガス類のイオン;シクロペンテン等のシクロアルケン系ガス類のイオン;金属のイオン;有機ケイ素化合物のイオン;等が挙げられる。
 これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、より簡便にイオンを注入することができ、より優れたガスバリア性を有するガスバリア層が得られることから、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオンが好ましい。
As ions implanted into the polymer layer, ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .; methane, ethane, etc. Ion of alkane gases such as ethylene and propylene; Ions of alkadiene gases such as pentadiene and butadiene; Ions of alkyne gases such as acetylene; Aromatic carbonization such as benzene and toluene Examples include ions of hydrogen-based gases; ions of cycloalkane-based gases such as cyclopropane; ions of cycloalkene-based gases such as cyclopentene; ions of metals; ions of organosilicon compounds.
These ions can be used alone or in combination of two or more.
Among these, ions of rare gases such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a gas barrier layer having better gas barrier properties can be obtained.
 イオンの注入量は、ガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定することができる。 The ion implantation amount can be appropriately determined according to the purpose of use of the gas barrier laminate (necessary gas barrier properties, transparency, etc.).
 イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便に目的のバリア層が得られることから、後者のプラズマイオンを注入する方法が好ましい。 Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like. In particular, in the present invention, the latter method of implanting plasma ions is preferable because the desired barrier layer can be easily obtained.
 プラズマイオン注入は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、高分子層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、高分子層の表面部に注入して行うことができる。 In the plasma ion implantation, for example, plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, whereby ions (positive ions) in the plasma are It can be performed by injecting into the surface portion of the polymer layer.
 イオン注入により、イオンが注入される領域の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、高分子層の厚み、積層体の使用目的等に応じて決定すればよいが、通常、10~300nmである。 By ion implantation, the thickness of the region into which ions are implanted can be controlled by implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the laminate, etc. Usually, it is 10 to 300 nm.
(4)長尺のガスバリア性積層体
 本発明の長尺のガスバリア性積層体は、前記基材、平滑化層及びガスバリア層がこの順に積層されてなる。
(4) Long gas barrier laminate The long gas barrier laminate of the present invention is formed by laminating the base material, the smoothing layer, and the gas barrier layer in this order.
 本発明の長尺のガスバリア性積層体は、基材、平滑化層、ガスバリア層以外の層を有するものであってもよい。
 基材、平滑化層、ガスバリア層以外の層としては、ハードコード層、導電体層、衝撃吸収層、粘着剤層、工程シート等が挙げられる。なお、工程シートは、積層体を保存、運搬等する際に、積層体を保護する役割を有し、積層体が使用される際には剥離されるものである。
The long gas barrier laminate of the present invention may have a layer other than the base material, the smoothing layer, and the gas barrier layer.
Examples of layers other than the base material, the smoothing layer, and the gas barrier layer include a hard code layer, a conductor layer, a shock absorbing layer, an adhesive layer, and a process sheet. In addition, a process sheet | seat has a role which protects a laminated body, when a laminated body is preserve | saved, conveyed, etc., and peels when a laminated body is used.
 本発明のガスバリア性積層体の層構成の例としては、次のものが挙げられる。
(i)基材/平滑化層/ガスバリア層
(ii)ハードコート層/基材/平滑化層/ガスバリア層
 本発明のガスバリア性積層体がハードコート層を有する場合、その厚みは、0.5~3μm、好ましくは0.5~2μmである。
 本発明のガスバリア性積層体は、後述する方法により製造することができる。
Examples of the layer structure of the gas barrier laminate of the present invention include the following.
(I) Substrate / Smoothing layer / Gas barrier layer (ii) Hard coat layer / Substrate / Smoothing layer / Gas barrier layer When the gas barrier laminate of the present invention has a hard coat layer, the thickness is 0.5. It is -3 μm, preferably 0.5-2 μm.
The gas barrier laminate of the present invention can be produced by the method described later.
 本発明のガスバリア性積層体の厚みは、特に限定されないが、好ましくは、5~100μm、より好ましくは、10~50μm、さらに好ましくは、20~40μmである。 The thickness of the gas barrier laminate of the present invention is not particularly limited, but is preferably 5 to 100 μm, more preferably 10 to 50 μm, and still more preferably 20 to 40 μm.
 本発明のガスバリア性積層体の、温度40℃、相対湿度90%における、水蒸気透過率は、好ましくは0.1g/(m・day)以下、より好ましくは0.05g/(m・day)以下、さらに好ましくは、0.03g/(m・day)以下である。下限値は特になく、小さいほど好ましいが、通常は、0.001g/(m・day)以上である。
 水蒸気透過率は、実施例に記載の方法により測定することができる。
The gas barrier layered product of the present invention, the temperature 40 ° C., 90% relative humidity, the water vapor permeability is preferably 0.1g / (m 2 · day) or less, more preferably 0.05g / (m 2 · day ) Or less, and more preferably 0.03 g / (m 2 · day) or less. There is no particular lower limit, and the lower the better, the better, but it is usually 0.001 g / (m 2 · day) or more.
The water vapor transmission rate can be measured by the method described in the examples.
2)長尺のガスバリア性積層体の製造方法
 本発明の製造方法は、本発明の長尺のガスバリア性積層体の製造方法であって、長尺の樹脂フィルムにアニーリング処理を施し、150℃で30分加熱したときの長手方向の収縮率Xが0.0%以上0.8%以下、幅方向の収縮率Yが0.0%以上0.5%以下の基材用樹脂フィルムを得るステップ(I)、ステップ(I)で得られた基材用樹脂フィルム上に、活性エネルギー線硬化型樹脂組成物を含有する塗工液を塗工し、得られた塗膜を硬化させて平滑化層を形成するステップ(II)、ステップ(II)で形成された平滑化層上に、ガスバリア層を形成するステップ(III)、を有することを特徴とする。
2) Manufacturing Method of Long Gas Barrier Laminate The manufacturing method of the present invention is a manufacturing method of the long gas barrier laminate of the present invention, in which a long resin film is annealed at 150 ° C. longitudinal shrinkage X 1 when heated for 30 minutes of 0.0% to 0.8% or less, the resin film for the width direction of shrinkage Y 1 is at least 0.5% 0.0% or less of the base material Applying the coating liquid containing the active energy ray-curable resin composition on the resin film for a substrate obtained in Step (I) and Step (I), and curing the obtained coating film A step (II) for forming a smoothing layer and a step (III) for forming a gas barrier layer on the smoothing layer formed in step (II) are characterized.
 ステップ(I)は、長尺の樹脂フィルムにアニーリング処理を施し、150℃で30分加熱したときの長手方向の収縮率Xが0.0%以上0.8%以下、幅方向の収縮率Yが0.0%以上0.5%以下の基材用樹脂フィルムを得るステップである。 Step (I) is subjected to annealing treatment in the resin film of the elongated 0.8% 30 minutes longitudinal shrinkage X 1 when heated is 0.0% or more at 0.99 ° C. or less, in the width direction shrinkage This is a step of obtaining a resin film for a substrate in which Y 1 is 0.0% or more and 0.5% or less.
 用いる長尺の樹脂フィルムとしては、先に示したものと同様のものが挙げられる。
 アニーリング処理を行う方法は特に限定されない。例えば、長尺のフィルムを、加熱炉内を搬送しながら、所定の温度に加熱することにより、アニーリング処理を行うことができる。
 加熱温度は、特に限定されないが、通常、100~180℃、好ましくは110~160℃である。加熱時間は、特に限定されないが、通常、30秒~60分、好ましくは1分~30分である。
 この加熱条件を適宜決定することにより、上記の収縮率を有する樹脂フィルムを得ることができる。
 上記収縮率は、実施例に記載の方法に従って求めることができる。
Examples of the long resin film to be used include the same ones as described above.
The method for performing the annealing process is not particularly limited. For example, annealing treatment can be performed by heating a long film to a predetermined temperature while being conveyed in a heating furnace.
The heating temperature is not particularly limited, but is usually 100 to 180 ° C., preferably 110 to 160 ° C. The heating time is not particularly limited, but is usually 30 seconds to 60 minutes, preferably 1 minute to 30 minutes.
By appropriately determining the heating conditions, a resin film having the above shrinkage can be obtained.
The shrinkage rate can be determined according to the method described in the examples.
 本発明の方法においては、アニーリング処理前の樹脂フィルムの、150℃で30分加熱したときの長手方向の収縮率がX(%)、幅方向の収縮率がY(%)であり、アニーリング処理後の基材用樹脂フィルムの、150℃で30分加熱したときの長手方向の収縮率がX(%)、幅方向の収縮率がY(%)であるときに、X/Xが0.1~0.9、Y/Yが0.05~0.9となるように、アニーリング処理を行うことが好ましい。X/Xは、好ましくは0.1~0.6、より好ましくは0.1~0.5であり、Y/Yは、好ましくは0.05~0.6、より好ましくは0.05~0.5である。 In the method of the present invention, the shrinkage ratio in the longitudinal direction when the resin film before annealing is heated at 150 ° C. for 30 minutes is X 0 (%), and the shrinkage ratio in the width direction is Y 0 (%). When the shrinkage rate in the longitudinal direction of the resin film for a substrate after annealing treatment at 150 ° C. for 30 minutes is X 1 (%) and the shrinkage rate in the width direction is Y 1 (%), X 1 It is preferable to carry out the annealing treatment so that / X 0 is 0.1 to 0.9 and Y 1 / Y 0 is 0.05 to 0.9. X 1 / X 0 is preferably 0.1 to 0.6, more preferably 0.1 to 0.5, and Y 1 / Y 0 is preferably 0.05 to 0.6, more preferably 0.05 to 0.5.
 ステップ(II)は、ステップ(I)で得られた基材用樹脂フィルム上に、活性エネルギー線硬化型樹脂組成物を含有する塗工液を塗工し、得られた塗膜を硬化させて平滑化層を形成するステップである。
 平滑化層を形成する際は、先に説明した平滑化層の形成方法を利用することができる。
In step (II), a coating liquid containing an active energy ray-curable resin composition is applied onto the substrate resin film obtained in step (I), and the resulting coating film is cured. It is a step of forming a smoothing layer.
When the smoothing layer is formed, the smoothing layer forming method described above can be used.
 ステップ(III)は、ステップ(II)で形成された平滑化層上に、ガスバリア層を形成するステップである。
 ガスバリア層を形成する際は、先に説明したガスバリア層の形成方法を利用することができる。
Step (III) is a step of forming a gas barrier layer on the smoothing layer formed in step (II).
When forming the gas barrier layer, the gas barrier layer forming method described above can be used.
 本発明の方法においては、ステップ(I)~(III)を連続的に行ってもよいし、各ステップを終えた後に、一旦、処理後の樹脂フィルムをロール状に巻き取り、必要に応じて、その樹脂フィルムを繰り出して、その後のステップを行ってもよい。
 本発明においては、ステップ(II)およびステップ(III)で平滑化層およびバリア層を形成する際に、基材のしわの発生が抑制することができ、長尺のガスバリア性積層体を効率よく製造することができるという理由から、各ステップを終えた後に、一旦、処理後の樹脂フィルムをロール状に巻き取り、必要に応じて、その樹脂フィルムを繰り出して、その後のステップを行うことが好ましい。
 具体的には、ステップ(I)を終えた後に、得られた基材用樹脂フィルムをロール状に巻き取り、次いで、ロール状に巻き取った基材用樹脂フィルムを繰り出し、これを一定方向に搬送しながらステップ(II)の処理を行い、得られた平滑化層付樹脂フィルムをロール状に巻き取り、次いで、ロール状に巻き取った平滑化層付樹脂フィルムを繰り出し、これを一定方向に搬送しながらステップ(III)の処理を行い、得られたガスバリア層及び平滑化層付樹脂フィルムをロール状に巻き取ることにより、基材のしわの発生が抑制された長尺のガスバリア性積層体を効率よく製造することができる。
In the method of the present invention, steps (I) to (III) may be performed continuously, or after finishing each step, the treated resin film is once wound into a roll, and if necessary, The resin film may be fed out and the subsequent steps may be performed.
In the present invention, when the smoothing layer and the barrier layer are formed in step (II) and step (III), generation of wrinkles of the base material can be suppressed, and a long gas barrier laminate can be efficiently produced. For the reason that it can be manufactured, after finishing each step, it is preferable that the treated resin film is once wound up in a roll shape, and if necessary, the resin film is unrolled to perform the subsequent steps. .
Specifically, after step (I) is completed, the obtained substrate resin film is wound up in a roll shape, and then the substrate resin film wound up in a roll shape is fed out in a certain direction. Step (II) is carried out while being conveyed, and the obtained resin film with a smoothing layer is wound up in a roll shape, and then the resin film with a smoothing layer wound up in a roll shape is fed out in a certain direction. The long gas barrier laminate in which the generation of wrinkles of the substrate is suppressed by carrying out the treatment of step (III) while being conveyed and winding up the obtained gas barrier layer and the resin film with a smoothing layer in a roll shape. Can be manufactured efficiently.
 従来のガスバリア性積層体を製造する場合において、薄い基材を使用した場合、ステップ(II)やステップ(III)において乾燥等を目的とする加熱処理を行ったときに、平滑化層が収縮し、基材にしわが発生することがあった。 When manufacturing a conventional gas barrier laminate, when a thin substrate is used, the smoothing layer shrinks when heat treatment for drying or the like is performed in step (II) or step (III). In some cases, wrinkles were generated on the substrate.
 一方、本発明の方法は、ステップ(I)でアニーリング処理を施すものである。このため、ステップ(II)やステップ(III)において、平滑化層が加熱され、収縮力が生じた場合であっても、基材がそれに追従して変形することがなく、結果として、基材のしわの発生が抑制される。
 ステップ(II)及び/又はステップ(III)における加熱処理の条件としては、例えば、100~200℃で、10秒~1時間、好ましくは100~150℃で、30秒~30分である。
On the other hand, the method of the present invention performs an annealing process in step (I). For this reason, even if the smoothing layer is heated in step (II) or step (III) and a contraction force is generated, the base material does not follow and deform as a result. The generation of wrinkles is suppressed.
The conditions for the heat treatment in step (II) and / or step (III) are, for example, 100 to 200 ° C., 10 seconds to 1 hour, preferably 100 to 150 ° C., 30 seconds to 30 minutes.
 本発明の方法によれば、本発明の長尺のガスバリア性積層体を効率よく製造することができる。 According to the method of the present invention, the long gas barrier laminate of the present invention can be produced efficiently.
3)電子デバイス用部材及び電子デバイス
 本発明の電子デバイス用部材は、本発明の長尺のガスバリア性積層体からなることを特徴とする。
 なお、「長尺のガスバリア性積層体からなる」とは、長尺のガスバリア性積層体のみならず、該積層体を所定の形状に裁断したものも含む意である。
 本発明の電子デバイス用部材は、基材のしわの発生が抑制され、さらに、優れたガスバリア性を有しているので、水蒸気等のガスによる素子の劣化を防ぐと同時に、無色透明性に優れる。したがって、本発明の電子デバイス用部材は、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;等として好適である。
3) Electronic device member and electronic device The electronic device member of the present invention comprises the long gas barrier laminate of the present invention.
Note that “consisting of a long gas barrier laminate” includes not only a long gas barrier laminate but also a laminate obtained by cutting the laminate into a predetermined shape.
The electronic device member of the present invention is excellent in colorless transparency as well as preventing deterioration of the element due to gas such as water vapor because it has suppressed the generation of wrinkles of the base material and has excellent gas barrier properties. . Therefore, the electronic device member of the present invention is suitable as a display member such as a liquid crystal display or an EL display.
 本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
 本発明の電子デバイスは、本発明のガスバリア性積層体からなる電子デバイス用部材を備えているので、外観、及び水蒸気等に対する耐久性に優れたものである。
The electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery.
Since the electronic device of the present invention includes the electronic device member comprising the gas barrier laminate of the present invention, it has excellent appearance and durability against water vapor and the like.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
Unless otherwise indicated, the part and% in each example are based on mass.
(材料)
 各例で用いた材料を以下に示す。
・樹脂フィルム(1):ポリエチレンテレフタレートフィルム(帝人デュポン社製、商品名:テイジンテトロンフィルムHB3、厚み:25μm)
(material)
The materials used in each example are shown below.
Resin film (1): Polyethylene terephthalate film (manufactured by Teijin DuPont, trade name: Teijin Tetron film HB3, thickness: 25 μm)
(ガスバリア性積層体の各層の厚みの測定)
 実施例及び比較例で得られたガスバリア性積層体の各層の厚みは、触針式段差計(AMBIOS TECNOLOGY社製、XP-1)を用いて測定した。
(Measurement of thickness of each layer of gas barrier laminate)
The thickness of each layer of the gas barrier laminates obtained in Examples and Comparative Examples was measured using a stylus type step meter (manufactured by AMBIOS TECNOLOGY, XP-1).
〔製造例1〕
 重合性化合物として、ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20部をメチルイソブチルケトン100部に溶解させた後、光重合開始剤(BASF社製、商品名:Irgacure127)3部を添加して、平滑化層形成用溶液(1)を調製した。
[Production Example 1]
As a polymerizable compound, 20 parts of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) was dissolved in 100 parts of methyl isobutyl ketone, and then a photopolymerization initiator (manufactured by BASF, trade name: A smoothing layer forming solution (1) was prepared by adding 3 parts of Irgacure 127).
〔実施例1〕
 樹脂フィルム(1)のロールから樹脂フィルム(1)を繰り出し、樹脂フィルム(1)を、加熱炉内を搬送しながら、130℃で2分間加熱し、アニーリング処理を行った後、ロール状に巻き取った。
 次いで、ロールからアニーリング処理後の樹脂フィルム(1)を繰り出し、アニーリング処理後の樹脂フィルム(1)上に、製造例1で得た平滑化層形成用溶液(1)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取った。
 次いで、ロールから平滑化層付樹脂フィルムを繰り出し、平滑化層表面に、ペルヒドロポリシラザン(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をバーコート法により塗布し、得られた塗膜を120℃で2分間加熱し、厚み150nmのペルヒドロポリシラザン層を形成した。その後、改質処理として、プラズマイオン注入装置を用いてペルヒドロポリシラザン層の表面に、アルゴン(Ar)をプラズマイオン注入し、ガスバリア層を形成した後、得られたガスバリア層及び平滑化層付樹脂フィルムをロール状に巻き取ることにより、基材〔樹脂フィルム(1)〕/平滑化層/ガスバリア層、の層構成を有する長尺のガスバリア性積層体1を得た。
[Example 1]
The resin film (1) is fed out from the roll of the resin film (1), and the resin film (1) is heated at 130 ° C. for 2 minutes while being conveyed in the heating furnace, and subjected to an annealing treatment, and then wound into a roll. I took it.
Next, the annealed resin film (1) is fed out from the roll, and the smoothing layer forming solution (1) obtained in Production Example 1 is applied to the annealed resin film (1) by the bar coating method. The obtained coating film was heated and dried at 70 ° C. for 1 minute, and then irradiated with UV light using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1 .466W, twice the number of passes), and after forming a smoothing layer having a thickness of 1 μm, the resulting resin film with a smoothing layer was wound into a roll.
Subsequently, the resin film with a smoothing layer was fed out from the roll, and perhydropolysilazane (manufactured by AZ Electronic Materials, trade name: AZNL110A-20) was applied to the surface of the smoothing layer by a bar coating method. Was heated at 120 ° C. for 2 minutes to form a 150 nm thick perhydropolysilazane layer. Thereafter, as a modification treatment, argon (Ar) is ion-implanted on the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus to form a gas barrier layer, and then the obtained gas barrier layer and resin with a smoothing layer are obtained. By winding the film in a roll shape, a long gas barrier laminate 1 having a layer structure of base material [resin film (1)] / smoothing layer / gas barrier layer was obtained.
 ガスバリア層を形成するために用いたプラズマイオン注入装置及びプラズマイオン注入条件は以下の通りである。
(プラズマイオン注入装置)
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
(プラズマイオン注入条件)
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/分
The plasma ion implantation apparatus and plasma ion implantation conditions used for forming the gas barrier layer are as follows.
(Plasma ion implantation system)
RF power supply: Model number “RF” 56000, JEOL high voltage pulse power supply: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd. (plasma ion implantation conditions)
・ Plasma generated gas: Ar
・ Gas flow rate: 100sccm
・ Duty ratio: 0.5%
・ Repetition frequency: 1000Hz
・ Applied voltage: -10kV
・ RF power supply: frequency 13.56 MHz, applied power 1000 W
-Chamber internal pressure: 0.2 Pa
・ Pulse width: 5μsec
・ Processing time (ion implantation time): 5 minutes ・ Conveying speed: 0.2 m / min
〔実施例2〕
 実施例1において、アニーリング処理として、110℃で2分間加熱したことを除き、実施例1と同様の方法により、ガスバリア性積層体2を得た。
[Example 2]
In Example 1, a gas barrier laminate 2 was obtained by the same method as in Example 1 except that the annealing treatment was performed at 110 ° C. for 2 minutes.
〔比較例1〕
 実施例1において、アニーリング処理を行わなかったことを除き、実施例1と同様の方法により、ガスバリア性積層体3を得た。
[Comparative Example 1]
A gas barrier laminate 3 was obtained in the same manner as in Example 1 except that the annealing process was not performed in Example 1.
〔比較例2〕
 実施例1において、アニーリング処理として、80℃で2分間加熱したことを除き、実施例1と同様の方法により、ガスバリア性積層体4を得た。
[Comparative Example 2]
In Example 1, the gas barrier laminate 4 was obtained by the same method as in Example 1 except that the annealing treatment was performed at 80 ° C. for 2 minutes.
 実施例1、2及び比較例1、2で得たガスバリア性積層体1~4について、以下の測定、評価を行った。 The gas barrier laminates 1 to 4 obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured and evaluated as follows.
(樹脂フィルムの収縮率)
 樹脂フィルム(1)を、その長手方向と幅方向がそれぞれの辺になるように、10cm×10cmに裁断し、試験片を得た。次いで、熱風オーブンを用いて、この試験片を150℃で30分加熱した後、試験片を取り出し、長手方向の辺の長さA(cm)と幅方向の辺の長さB(cm)をそれぞれ測定した。以下の式により、樹脂フィルムの長手方向の収縮率Xと幅方向の収縮率Yを求めた。
(Resin film shrinkage)
The resin film (1) was cut into 10 cm × 10 cm so that the longitudinal direction and the width direction were the respective sides, and a test piece was obtained. Next, using a hot air oven, the test piece was heated at 150 ° C. for 30 minutes, and then the test piece was taken out. The side length A 0 (cm) in the longitudinal direction and the length B 0 (cm in the width direction) ) Were measured respectively. The following formula to determine the longitudinal shrinkage X 0 and the width direction shrinkage Y 0 of the resin film.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に、アニーリング処理後の樹脂フィルム(1)〔以下、樹脂フィルム(1’)という〕を、その長手方向と幅方向がそれぞれの辺になるように、10cm×10cmに裁断し、試験片を得、加熱処理を施した。
 長手方向の辺の長さA(cm)と幅方向の辺の長さB(cm)をそれぞれ測定し、以下の式により、樹脂フィルム(1’)の長手方向の収縮率Xと幅方向の収縮率Yを求めた。
Similarly, the resin film (1) after the annealing treatment [hereinafter referred to as the resin film (1 ′)] is cut into 10 cm × 10 cm so that the longitudinal direction and the width direction thereof are the respective sides, and a test piece is obtained. Obtained and heat-treated.
The length A 1 (cm) of the side in the longitudinal direction and the length B 1 (cm) of the side in the width direction are measured, respectively, and the shrinkage ratio X 1 in the longitudinal direction of the resin film (1 ′) is It was determined in the width direction shrinkage Y 1.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
(水蒸気透過率測定)
 温度40℃、相対湿度90%における、ガスバリア性積層体1~4の水蒸気透過率を、水蒸気透過率測定装置(LYSSY社製、L80-5000)を用いて測定した。
 測定結果を第1表に示す。
(Water vapor transmission rate measurement)
The water vapor transmission rate of the gas barrier laminates 1 to 4 at a temperature of 40 ° C. and a relative humidity of 90% was measured using a water vapor transmission rate measuring device (L80-5000, manufactured by LYSSY).
The measurement results are shown in Table 1.
(外観評価)
 得られたガスバリア性積層体の基材を観察し、以下の基準で外観を評価した。
○:基材にしわが生じていない。
×:基材にしわが生じている。
 評価結果を第1表に示す。
(Appearance evaluation)
The base material of the obtained gas barrier laminate was observed and the appearance was evaluated according to the following criteria.
○: Wrinkles are not generated on the substrate.
X: The base material is wrinkled.
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 第1表から、以下のことがわかる。
 実施例1、2のガスバリア性積層体は、ガスバリア性に優れ、基材にしわが生じていない。
 一方、比較例1のガスバリア性積層体は、アニール処理を行っていない樹脂フィルムを基材として使用し、比較例2のガスバリア性積層体は、アニール処理が十分でない樹脂フィルムを基材として使用したものであり、得られたガスバリア性積層体の基材にしわが生じている。
Table 1 shows the following.
The gas barrier laminates of Examples 1 and 2 are excellent in gas barrier properties and have no wrinkles on the base material.
On the other hand, the gas barrier laminate of Comparative Example 1 uses a resin film that has not been annealed as a substrate, and the gas barrier laminate of Comparative Example 2 uses a resin film that is not sufficiently annealed as a substrate. Thus, wrinkles are formed on the base material of the obtained gas barrier laminate.

Claims (13)

  1.  基材、平滑化層及びガスバリア層がこの順に積層されてなる長尺のガスバリア性積層体であって、
     前記基材が、150℃で30分加熱したときの長手方向の収縮率Xが0.0%以上0.8%以下で、幅方向の収縮率Yが0.0%以上0.5%以下である長尺の樹脂フィルムからなり、
     前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるものであること、を特徴とする長尺のガスバリア性積層体。
    A long gas barrier laminate in which a substrate, a smoothing layer and a gas barrier layer are laminated in this order,
    Wherein the substrate, the longitudinal shrinkage X 1 when heated for 30 minutes at 0.99 ° C. is not more than 0.8% above 0.0%, shrinkage Y 1 in the width direction of 0.0% or more 0.5 % Of a long resin film,
    The long gas barrier laminate, wherein the smoothing layer is made of a cured product of an active energy ray-curable resin composition.
  2.  前記長尺の樹脂フィルムが、アニーリング処理が施されたものである請求項1に記載の長尺のガスバリア性積層体。 The long gas barrier laminate according to claim 1, wherein the long resin film is subjected to an annealing treatment.
  3.  前記樹脂フィルムの厚みが1~60μmである、請求項1に記載の長尺のガスバリア性積層体。 2. The long gas barrier laminate according to claim 1, wherein the resin film has a thickness of 1 to 60 μm.
  4.  前記ガスバリア層が、ポリシラザン化合物を含有する層を改質処理して得られる層である、請求項1に記載の長尺のガスバリア性積層体。 The long gas barrier laminate according to claim 1, wherein the gas barrier layer is a layer obtained by modifying a layer containing a polysilazane compound.
  5.  前記長尺のガスバリア性積層体の厚みが5~100μmである、請求項1に記載の長尺のガスバリア性積層体。 2. The long gas barrier laminate according to claim 1, wherein the long gas barrier laminate has a thickness of 5 to 100 μm.
  6.  前記ガスバリア性積層体の、温度40℃、相対湿度90%における水蒸気透過率が、0.1g/(m・day)以下である、請求項1に記載の長尺のガスバリア性積層体。 2. The long gas barrier laminate according to claim 1, wherein the gas barrier laminate has a water vapor permeability of 0.1 g / (m 2 · day) or less at a temperature of 40 ° C. and a relative humidity of 90%.
  7.  請求項1に記載の長尺のガスバリア性積層体の製造方法であって、
     長尺の樹脂フィルムにアニーリング処理を施し、150℃で30分加熱したときの長手方向の収縮率が0.0%以上0.8%以下、幅方向の収縮率が0.0%以上0.5%以下の基材用樹脂フィルムを得るステップ(I)、
     ステップ(I)で得られた基材用樹脂フィルム上に、活性エネルギー線硬化型樹脂組成物を含有する塗工液を塗工し、得られた塗膜を硬化させて平滑化層を形成するステップ(II)、
     ステップ(II)で形成された平滑化層上に、ガスバリア層を形成するステップ(III)、
    を有することを特徴とする、長尺のガスバリア性積層体の製造方法。
    A method for producing the long gas barrier laminate according to claim 1,
    When a long resin film is annealed and heated at 150 ° C. for 30 minutes, the shrinkage in the longitudinal direction is 0.0% or more and 0.8% or less, and the shrinkage in the width direction is 0.0% or more and 0.0. Obtaining a resin film for a substrate of 5% or less (I),
    On the base material resin film obtained in step (I), a coating solution containing the active energy ray-curable resin composition is applied, and the resulting coating film is cured to form a smoothing layer. Step (II),
    Forming a gas barrier layer on the smoothing layer formed in step (II) (III);
    A method for producing a long gas barrier laminate, comprising:
  8.  ステップ(I)のアニーリング処理の加熱温度が、100~180℃、加熱時間が、30秒から60分である、請求項7に記載の長尺のガスバリア性積層体の製造方法。 The method for producing a long gas barrier laminate according to claim 7, wherein the heating temperature of the annealing treatment in step (I) is 100 to 180 ° C and the heating time is 30 seconds to 60 minutes.
  9.  アニーリング処理前の樹脂フィルムの、150℃で30分加熱したときの長手方向の収縮率がX(%)、幅方向の収縮率がY(%)であり、アニーリング処理後の基材用樹脂フィルムの、150℃で30分加熱したときの長手方向の収縮率がX(%)、幅方向の収縮率がY(%)であるときに、X/Xが0.1~0.9、Y/Yが0.05~0.9である、請求項7に記載の長尺のガスバリア性積層体の製造方法。 For the resin film before annealing treatment, the shrinkage ratio in the longitudinal direction when heated at 150 ° C. for 30 minutes is X 0 (%) and the shrinkage ratio in the width direction is Y 0 (%). When the shrinkage rate in the longitudinal direction when the resin film is heated at 150 ° C. for 30 minutes is X 1 (%) and the shrinkage rate in the width direction is Y 1 (%), X 1 / X 0 is 0.1. The method for producing a long gas barrier laminate according to claim 7, wherein Y is 0.9 and Y 1 / Y 0 is 0.05 to 0.9.
  10.  ステップ(II)及び/又はステップ(III)において、100~200℃で、10秒から1時間の加熱処理を施すものである、請求項7に記載の長尺のガスバリア性積層体の製造方法。 The method for producing a long gas barrier laminate according to claim 7, wherein in step (II) and / or step (III), heat treatment is performed at 100 to 200 ° C for 10 seconds to 1 hour.
  11.  ステップ(I)を終えた後に、得られた基材用樹脂フィルムをロール状に巻き取り、次いで、
     ロール状に巻き取った基材用樹脂フィルムを繰り出し、これを一定方向に搬送しながらステップ(II)の処理を行い、得られた平滑化層付樹脂フィルムをロール状に巻き取り、次いで、
     ロール状に巻き取った平滑化層付樹脂フィルムを繰り出し、これを一定方向に搬送しながらステップ(III)の処理を行い、得られたガスバリア層及び平滑化層付樹脂フィルムをロール状に巻き取ることを特徴とする、請求項7に記載の長尺のガスバリア性積層体の製造方法。
    After finishing step (I), the obtained resin film for base material is wound up into a roll, and then
    Rolling out the resin film for a substrate wound up in a roll shape, performing the treatment of step (II) while conveying this in a certain direction, winding up the obtained resin film with a smoothing layer in a roll shape,
    The resin film with a smoothing layer wound up in a roll shape is fed out and processed in step (III) while being conveyed in a certain direction, and the resulting gas barrier layer and the resin film with a smoothing layer are wound into a roll shape. The manufacturing method of the elongate gas-barrier laminated body of Claim 7 characterized by the above-mentioned.
  12.  請求項1に記載の長尺のガスバリア性積層体からなる電子デバイス用部材。 An electronic device member comprising the long gas barrier laminate according to claim 1.
  13.  請求項12に記載の電子デバイス用部材を備える電子デバイス。 An electronic device comprising the electronic device member according to claim 12.
PCT/JP2015/059727 2014-03-31 2015-03-27 Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device WO2015152076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511631A JPWO2015152076A1 (en) 2014-03-31 2015-03-27 Long gas barrier laminate and method for producing the same, member for electronic device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073105 2014-03-31
JP2014073105 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152076A1 true WO2015152076A1 (en) 2015-10-08

Family

ID=54240400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059727 WO2015152076A1 (en) 2014-03-31 2015-03-27 Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device

Country Status (3)

Country Link
JP (1) JPWO2015152076A1 (en)
TW (1) TWI667133B (en)
WO (1) WO2015152076A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144593A (en) * 2016-02-16 2017-08-24 東レフィルム加工株式会社 Method for producing gas barrier film
JP2018098009A (en) * 2016-12-12 2018-06-21 住友化学株式会社 Manufacturing method of organic electronic device, substrate with electrodes and organic electronic device
JP2020157693A (en) * 2019-03-27 2020-10-01 日本製紙株式会社 Hard coat film, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044231A (en) * 2004-06-28 2006-02-16 Dainippon Printing Co Ltd Gas barrier film, substrate for display using the same and display
JP2006281505A (en) * 2005-03-31 2006-10-19 Teijin Ltd Gas barrier transparent laminated film
JP2010143091A (en) * 2008-12-19 2010-07-01 Dainippon Printing Co Ltd Gas-barrier sheet, method for manufacturing gas-barrier sheet, and product
JP2013119567A (en) * 2011-12-06 2013-06-17 Lintec Corp Composition for forming intermediate layer for gas barrier film, gas barrier film and method for producing the same, and electronic part or optical part

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131456A (en) * 2009-12-24 2011-07-07 Du Pont-Toray Co Ltd Gas-barrier polyimide film and metal layered product using the same
JP2012067193A (en) * 2010-09-24 2012-04-05 Konica Minolta Holdings Inc Method for cleaning gas barrier film, gas barrier package and organic electronic device
TWI625241B (en) * 2011-08-22 2018-06-01 Mitsubishi Chem Corp Transparent laminated film
EP2786808A4 (en) * 2011-11-30 2016-05-25 Lintec Corp Manufacturing method for gas barrier film, and electronic member or optical member provided with gas barrier film
JP2013229364A (en) * 2012-04-24 2013-11-07 Toppan Printing Co Ltd Sealing film for flexible solar cell
US20150132587A1 (en) * 2012-04-26 2015-05-14 Konica Minolta, Inc. Gas barrier film and electronic device using the same
JP5835083B2 (en) * 2012-04-27 2015-12-24 コニカミノルタ株式会社 Organic electronics devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044231A (en) * 2004-06-28 2006-02-16 Dainippon Printing Co Ltd Gas barrier film, substrate for display using the same and display
JP2006281505A (en) * 2005-03-31 2006-10-19 Teijin Ltd Gas barrier transparent laminated film
JP2010143091A (en) * 2008-12-19 2010-07-01 Dainippon Printing Co Ltd Gas-barrier sheet, method for manufacturing gas-barrier sheet, and product
JP2013119567A (en) * 2011-12-06 2013-06-17 Lintec Corp Composition for forming intermediate layer for gas barrier film, gas barrier film and method for producing the same, and electronic part or optical part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144593A (en) * 2016-02-16 2017-08-24 東レフィルム加工株式会社 Method for producing gas barrier film
JP2018098009A (en) * 2016-12-12 2018-06-21 住友化学株式会社 Manufacturing method of organic electronic device, substrate with electrodes and organic electronic device
JP2020157693A (en) * 2019-03-27 2020-10-01 日本製紙株式会社 Hard coat film, and manufacturing method thereof

Also Published As

Publication number Publication date
TW201540503A (en) 2015-11-01
TWI667133B (en) 2019-08-01
JPWO2015152076A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6883127B2 (en) Long gas barrier laminate and its manufacturing method
JP6690034B2 (en) Gas barrier laminate, electronic device member and electronic device
JP6719631B2 (en) Gas barrier laminate, manufacturing method thereof, electronic device member, and electronic device
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
JP6993962B2 (en) Long gas barrier laminate
WO2014157686A1 (en) Laminate, method for producing same, member for electronic device, and electronic device
WO2015152076A1 (en) Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device
WO2013175910A1 (en) Gas barrier layered product, and production method for gas barrier layered product
JP6544832B2 (en) Gas barrier laminate, member for electronic device and electronic device
JPWO2017164387A1 (en) Gas barrier film and method for producing gas barrier film
EP3437855B1 (en) Gas barrier laminated body, member for electronic device, and electronic device
JP6694380B2 (en) Gas barrier laminate, electronic device member, and electronic device
JPWO2017208770A1 (en) LAMINATE, ELECTRONIC DEVICE MEMBER, AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772310

Country of ref document: EP

Kind code of ref document: A1