WO2019182119A1 - Gas barrier laminate - Google Patents

Gas barrier laminate Download PDF

Info

Publication number
WO2019182119A1
WO2019182119A1 PCT/JP2019/012136 JP2019012136W WO2019182119A1 WO 2019182119 A1 WO2019182119 A1 WO 2019182119A1 JP 2019012136 W JP2019012136 W JP 2019012136W WO 2019182119 A1 WO2019182119 A1 WO 2019182119A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
group
barrier laminate
layer
curable monomer
Prior art date
Application number
PCT/JP2019/012136
Other languages
French (fr)
Japanese (ja)
Inventor
博貴 木下
智史 永縄
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020507935A priority Critical patent/JP7222976B2/en
Publication of WO2019182119A1 publication Critical patent/WO2019182119A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers

Definitions

  • the present invention relates to a gas barrier laminate.
  • Patent Document 1 describes a flexible display substrate in which a transparent gas barrier layer made of a metal oxide is laminated on the surface of a transparent plastic film by vapor deposition, ion plating, sputtering, or the like.
  • Patent Document 2 describes a gas barrier film having a gas barrier layer formed by subjecting a polysilazane film to plasma treatment on at least one surface of a substrate.
  • Patent Document 3 discloses a gas barrier having a layer made of a cured product of a curable resin composition containing a thermoplastic resin having a glass transition temperature (Tg) of 140 ° C. or higher and a curable monomer. A film is described.
  • Tg glass transition temperature
  • the gas barrier film of Patent Document 3 is excellent in heat resistance, solvent resistance, interlayer adhesion and the like in addition to gas barrier properties, but does not have sufficient flexibility.
  • the ratio of the thermoplastic resin is increased in the blending ratio of the thermoplastic resin and the curable monomer in the curable resin composition, a layer made of a cured product of the curable resin composition Although improvement in flexibility was observed, it was not sufficient.
  • an object of the present invention is to provide a gas barrier laminate having excellent flexibility.
  • the inventors of the present invention have made reactive functionalities in the chemical structure of the curable monomer constituting the underlayer of the gas barrier laminate including the underlayer and the gas barrier layer.
  • a gas barrier laminate excellent in flexibility can be obtained.
  • the headline and the present invention were completed. That is, the present invention provides the following [1] to [10].
  • a gas barrier laminate including an underlayer and a gas barrier layer, wherein the underlayer includes a cured product of a curable resin composition containing a curable monomer,
  • One reactive functional group has a structure in which one reactive functional group is connected to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group in the molecule,
  • a gas barrier laminate comprising a curable monomer having a long spacer in which the total number of carbon atoms constituting each main chain of an oxyalkylene group is 18 or more.
  • the curable monomer further has a structure in which one reactive functional group and another reactive functional group are linked without any polyalkylene group or polyoxyalkylene group, or 1
  • One reactive functional group has a structure linked to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group, and the polyalkylene group and the polyoxyalkylene
  • the gas barrier laminate according to the above [1] comprising a curable monomer having a short spacer in which the total number of carbon atoms constituting the main chain of the group is 16 or less.
  • the gas barrier laminate according to the above [1] or [2], wherein the underlayer further contains a thermoplastic resin.
  • thermoplastic resin has a glass transition temperature (Tg) of 130 ° C. or higher.
  • thermoplastic resin is a polysulfone resin or an alicyclic hydrocarbon resin.
  • thermoplastic resin is a polysulfone resin or an alicyclic hydrocarbon resin.
  • the underlayer has a thickness of 0.1 to 50 ⁇ m.
  • a gas barrier laminate having excellent flexibility can be provided.
  • the gas barrier laminate of the present invention is a gas barrier laminate including an underlayer and a gas barrier layer, wherein the underlayer includes a cured product of a curable resin composition containing a curable monomer, and the cured
  • the reactive monomer has a structure in which one reactive functional group is linked to another reactive functional group in the molecule via one or both of a polyalkylene group and a polyoxyalkylene group,
  • a curable monomer having a long spacer in which the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is 18 or more hereinafter referred to as a curable monomer having a long spacer).
  • the present invention relates to a gas barrier laminate comprising a base layer and a gas barrier layer, wherein the spacer and the reactive functional group in the molecule of the long spacer curable monomer having a reactive functional group constituting the base layer,
  • the spacer and the reactive functional group in the molecule of the long spacer curable monomer having a reactive functional group constituting the base layer By providing a polyalkylene group and / or a polyoxyalkylene group, the total number of carbon atoms contained in the polyalkylene group or the polyoxyalkylene group is 18 or more, thereby providing excellent flexibility.
  • the “spacer” means a molecular chain that imparts flexibility, such as a polyalkylene group or a polyoxyalkylene group.
  • the underlayer constituting the gas barrier laminate of the present invention contains a cured product of a curable resin composition containing a curable monomer.
  • the curable resin composition contains a curable monomer. Further, it preferably contains a thermoplastic resin described later, and can be prepared by mixing a polymerization initiator and other components and dissolving or dispersing them in a suitable solvent.
  • the curable monomer used in the present invention has a structure in which one reactive functional group is linked to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group. And a long spacer curable monomer in which the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is 18 or more. For a long spacer, when one reactive functional group is linked to another reactive functional group via two or more polyalkylene groups or polyoxyalkylene groups, the polyalkylene group or polyoxyalkylene group respectively.
  • the number of carbon atoms constituting the main chain is the total number of carbon atoms constituting the main chain of two or more polyalkylene groups or polyoxyalkylene groups. Further, when the curable monomer has three or more reactive functional groups in one molecule, the main chain of each of the polyalkylene group and the polyoxyalkylene group interposed between any two reactive functional groups The total number of carbon atoms constituting is necessarily 18 or more. When the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group as the long spacer is 16 or less, flexibility may be lowered. Further, from the viewpoint of improving the solvent resistance of the underlayer, the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is preferably 70 or less, and 42 or less. Is more preferable.
  • the reactive functional group includes a hydroxyl group of alcohol, a carbonyl group of ketone, a carboxyl group of carboxylic acid, a carboxylic acid halide group, a carboxylic anhydride group, an isocyanate group, an epoxy group, and a polymerizable unsaturated group.
  • Etc. Of these, a polymerizable unsaturated group is preferred, and a carbon-carbon unsaturated double bond having radical polymerizability is more preferred.
  • Specific examples include a vinyl group, a (meth) acryloyl group, a maleimide group, and the like, which are easily mixed with a thermoplastic resin, are less likely to cause curing shrinkage of the polymer, and are (meth) acryloyl groups from the viewpoint of easy polymerization. Is preferred.
  • One reactive functional group and the other reactive functional group may be the same or different, but are preferably the same.
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acryloyl group refers to one or both of methacryloyl group and acryloyl group
  • (meth) acrylic “Acid” refers to one or both of methacrylic acid and acrylic acid.
  • the alkylene group constituting the polyalkylene group contained in the molecule of the long spacer curable monomer is not particularly limited, but an alkylene group having 2 to 30 carbon atoms is used. From the viewpoint of imparting flexibility to the base film, it is preferably linear, and specifically, an ethylene group, an n-propylene group, an n-butylene group, an n-pentene group, and the like are preferable, and the flexibility of the gas barrier laminate is preferable. From the viewpoint of further improving the properties, an ethylene group is preferable. A plurality of them can be used in combination.
  • the oxyalkylene group constituting the polyoxyalkylene group contained in the molecule of the long spacer curable monomer is not particularly limited, and preferably an oxygen atom bonded to the alkylene group is preferable. Also, a plurality of them may be combined and used.
  • the long spacer curable monomer may have a structure in which a polyalkylene group and a polyoxyalkylene group are linked as a spacer, and a three-dimensional structure in which a repeating structure of an alkylene group or a repeating structure of an oxyalkylene group is discontinuous. It may be arranged.
  • the long spacer curable monomer is preferably represented by the following formula (1).
  • Z- [Ym- (OY) nR] k (1)
  • Z is a k-valent organic group, and R represents a reactive functional group.
  • Y represents an alkylene group, and OY represents an oxyalkylene group.
  • k is an integer of 2 to 6, m and n are each independently 0 or an integer of 1 or more, and m and n are not 0 at the same time.
  • Y and OY may be discontinuous and the permutation is arbitrary.
  • m is the sum of all alkylene groups in the group represented by [Ym- (O—Y) nR], and n is all oxy groups in the group represented by [Ym- (O—Y) nR].
  • This is the sum of alkylene groups.
  • each Y constituting Ym or each OY constituting (OY) n two or more kinds of alkylene groups or oxyalkylene groups may be used.
  • k groups represented by [Ym- (OY) nR] the permutation of Y and OY, the values of m and n, the alkylene group and oxy used for Y and OY
  • the types of alkylene groups are independent of each other.
  • m or n is 1, Y or OY is a simple alkylene group or oxyalkylene group.
  • Ym and (O—Y) n are represented as polyalkylene. Group, called polyoxyalkylene group.
  • k is 2 to 6, when i and j are arbitrary integers, 1 ⁇ i ⁇ k, 1 ⁇ j ⁇ k, and i ⁇ j, any two [Ym ⁇ (O ⁇ Y) When [Ymi- (OY) ni-R] and [Ymj- (OY) nj-R], which are groups represented by nR], are selected, mi and mj are independent of each other. And ni and nj are independent of each other, and the following expression (3) is always satisfied among mi, mj, ni, and nj. 2 ⁇ mi + 2 ⁇ ni + 2 ⁇ mj + 2 ⁇ nj ⁇ 18 (3)
  • the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is 18 or more and 26 or less. Preferably, it is 18 or more and 24 or less, more preferably 18 or more and 22 or less.
  • the curable monomer includes both a long spacer curable monomer and a short spacer curable monomer, from the viewpoint of both the flexibility of the gas barrier laminate and the solvent resistance of the underlayer.
  • the total number of carbon atoms of the alkylene group and the oxyalkylene group is preferably 28 or more and 70 or less, and more preferably 28 or more and 42 or less.
  • the curable monomer has a structure in which one reactive functional group and another reactive functional group are linked without any polyalkylene group or polyoxyalkylene group, or one reactivity
  • the functional group has a structure linked to another reactive functional group through one or both of a polyalkylene group and a polyoxyalkylene group.
  • the main group of the polyalkylene group and the polyoxyalkylene group It is preferable to include a curable monomer having a short spacer in which the total number of carbon atoms constituting the chain is 16 or less (hereinafter, the curable monomer having the short spacer is referred to as a “short spacer curable monomer”). Sometimes referred to as a “mer”.
  • the number of carbon atoms constituting the main chain is the total number of carbon atoms constituting the main chain of two or more polyalkylene groups or polyoxyalkylene groups.
  • the curable monomer has three or more reactive functional groups in one molecule, the main chain of each of the polyalkylene group and the polyoxyalkylene group interposed between any two reactive functional groups The total number of carbon atoms constituting is 16 or less with respect to at least one reactive functional group combination.
  • the reactive functional group is the same as described above, preferably a polymerizable unsaturated group, and more preferably a carbon-carbon unsaturated double bond having radical polymerizability.
  • Specific examples include a vinyl group, a (meth) acryloyl group, and a maleimide group, and a (meth) acryloyl group is preferable from the viewpoint of easy polymerization.
  • One reactive functional group and the other functional reactive group of the short spacer curable monomer may be the same or different, but are preferably the same.
  • the alkylene group and oxyalkylene group constituting the polyalkylene group and polyoxyalkylene group are the same as those described above.
  • the short spacer curable monomer may have a structure in which a polyalkylene group and a polyoxyalkylene group are connected as a spacer, and a configuration in which a repeating structure of an alkylene group or a repeating structure of an oxyalkylene group is discontinuous. It may be.
  • the solvent resistance of the underlayer is easily improved.
  • the short spacer curable monomer is used alone, the flexibility of the gas barrier laminate may be easily lowered, but by using it together with the long spacer curable monomer, the solvent resistance of the underlayer, The flexibility of the gas barrier laminate can be achieved.
  • the said short spacer curable monomer is represented by following formula (11) similarly to the said long spacer curable monomer.
  • Z is a k-valent organic group, and R represents a reactive functional group.
  • Y represents an alkylene group
  • OY represents an oxyalkylene group
  • k is an integer of 2 to 6
  • m and n are each independently an integer of 0 or 1
  • m and n May take 0 at the same time.
  • m is independently m11 and m12
  • n is independently n11 and n12. It is preferable that the following formula (12) is satisfied among m11, m12, n11, and n12. 2 ⁇ m11 + 2 ⁇ m12 + 2 ⁇ n11 + 2 ⁇ n12 ⁇ 16 (12)
  • k is 2 to 6, when i and j are arbitrary integers, 1 ⁇ i ⁇ k, 1 ⁇ j ⁇ k, and i ⁇ j, any two [Ym ⁇ (O ⁇ Y) When [Ymi- (OY) ni-R] and [Ym1j- (OY) n1j-R], which are groups represented by nR], are selected, m1i and m1j are independent of each other. N1i and n1j are independent of each other, and at least one combination of i and j satisfying the following formula (13) exists between m1i, m1j, n1i, and n1j. 2 ⁇ m1i + 2 ⁇ n1i + 2 ⁇ m1j + 2 ⁇ n1j ⁇ 16 (13)
  • examples of the divalent group include groups represented by the following formula. “-” At both ends represents a bond.
  • examples of the organic group include an aromatic group having 6 to 20 carbon atoms, or a divalent to hexavalent organic group having an alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the aromatic ring and alicyclic ring in the hydrocarbon group may be substituted or unsubstituted.
  • aromatic hydrocarbon groups having 6 to 20 carbon atoms 2 to 6 hydrogen atoms are removed from benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, chrysene ring, fluoranthene ring, pyrene ring, etc.
  • divalent to hexavalent groups formed by the above method are examples of the organic group having 6 to 20 carbon atoms, or a divalent to hexavalent organic group having an alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the aromatic ring and alicyclic ring in the hydrocarbon group may be substituted or un
  • alicyclic hydrocarbon groups include cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, cyclooctyl groups, cyclononyl groups, cyclodecyl groups, cycloundecyl groups, cyclododecyl groups, etc.
  • Examples of the substituent of the hydrocarbon group include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, an aryl group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group, a hydroxyl group, an amino group, a carboxyl group, Examples thereof include sulfonamido groups, N-sulfonylamido groups, alkoxy groups having 1 to 6 carbon atoms such as methoxy groups and ethoxy groups, and halogen atoms such as chlorine and bromine.
  • the organic group is preferably a divalent to hexavalent organic group having an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Such a curable monomer having an organic group is more suitable because it is excellent in compatibility with a thermoplastic resin, and when the thermoplastic resin is a polysulfone resin, it is excellent in compatibility with the polysulfone resin.
  • the divalent to hexavalent organic group having an aromatic hydrocarbon group having 6 to 20 carbon atoms include the above-mentioned aromatic hydrocarbon group having 6 to 20 carbon atoms, a bisphenol group, A fluorene group, a biphenyl group, etc. are mentioned.
  • the curable monomer used in the present invention preferably has a (meth) acryloyl group as a reactive functional group.
  • a bisphenol skeleton such as ethoxylated bisphenol A di (meth) acrylate having a long spacer and a short spacer, and 9,9-bis [4- (2-acryloyloxyethoxy) phenyl having a long spacer and a short spacer as well
  • Those having a 9,9-bisphenylfluorene skeleton such as fluorene and those having a tricyclodecane skeleton such as tricyclodecane dimethanol di (meth) acrylate having a long spacer and a short spacer are preferred.
  • Bifunctional (meth) acrylic acid derivatives include neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphorus Examples include acid di (meth) acrylate, di (acryloxyethyl) isocyanurate, and allylated cyclohexyl di (meth) acrylate.
  • Trifunctional (meth) acrylic acid derivatives include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) ) Acrylate, tris (acryloxyethyl) isocyanurate and the like.
  • Examples of the tetrafunctional (meth) acrylic acid derivative include pentaerythritol tetra (meth) acrylate.
  • pentafunctional (meth) acrylic acid derivatives include propionic acid-modified dipentaerythritol penta (meth) acrylate.
  • hexafunctional (meth) acrylic acid derivative examples include dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate.
  • the curable monomer is usually preferably a polyfunctional monomer from the viewpoint of heat resistance and solvent resistance, and the polyfunctional monomer is easily mixed with a thermoplastic resin, and
  • the bifunctional (meth) acrylic acid derivative is more preferable from the viewpoint that curing shrinkage of the polymer is less likely to curl the cured product.
  • the long spacer curable monomer can be used singly or in combination of two or more.
  • the short spacer curable monomers can be used singly or in combination of two or more.
  • the curable resin composition used for the underlayer of the present invention preferably contains a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, but is preferably an amorphous thermoplastic resin.
  • an amorphous thermoplastic resin By using an amorphous thermoplastic resin, it becomes easy to obtain a resin film and a gas barrier laminate excellent in transparency.
  • the amorphous thermoplastic resin refers to a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
  • thermoplastic resin a thermoplastic resin having a ring structure such as an aromatic ring structure or an alicyclic structure is preferable because a resin film having excellent heat resistance is easily obtained, and a thermoplastic resin having an aromatic ring structure is preferable. A resin is more preferable.
  • thermoplastic resin examples include polysulfone resin, polyarylate resin, polycarbonate resin, and alicyclic hydrocarbon resin.
  • a polysulfone resin and an alicyclic hydrocarbon resin are preferable because a resin film excellent in heat resistance and optical isotropy is easily obtained.
  • the polysulfone resin is a polymer having a sulfone group in the main chain.
  • the polysulfone resin is not particularly limited, and known ones can be used.
  • Examples of the polysulfone resin include polyethersulfone resin, polysulfone resin, polyphenylsulfone resin, and the like.
  • the polysulfone resin used in the present invention may be a modified polysulfone resin. Among these, polyethersulfone resin or polysulfone resin is preferable.
  • the polyarylate resin is a resin made of a polymer compound obtained by a reaction between an aromatic diol and an aromatic dicarboxylic acid or a chloride thereof.
  • the polyarylate resin is not particularly limited, and known ones can be used.
  • the polycarbonate-based resin is a polymer having a carbonate group in the main chain.
  • the polycarbonate resin is not particularly limited, and known resins can be used.
  • Examples of the polycarbonate resin include aromatic polycarbonate resins and aliphatic polycarbonate resins. Of these, aromatic polycarbonate resins are preferred because of excellent heat resistance, mechanical strength, transparency, and the like.
  • Aromatic polycarbonate resins are prepared by reacting aromatic diols with carbonate precursors by interfacial polycondensation or melt transesterification, polymerizing carbonate prepolymers by solid phase transesterification, or opening cyclic carbonate compounds. It can be obtained by a method of polymerizing by a ring polymerization method.
  • the alicyclic hydrocarbon-based resin is a polymer having a cyclic hydrocarbon group in the main chain.
  • the alicyclic hydrocarbon-based resin is not particularly limited, and known ones can be used.
  • Examples of the alicyclic hydrocarbon resins include monocyclic olefin polymers, norbornene polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. .
  • thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
  • the thermoplastic resin When the gas barrier layer is a cured coating film, from the viewpoint of heat resistance in the temperature conditions when drying the coating film, the thermoplastic resin preferably has a glass transition temperature (Tg) exceeding 130 ° C, and 135 ° C. More preferably.
  • the glass transition temperature (Tg) is tan ⁇ (loss elastic modulus / storage elastic modulus) obtained by viscoelasticity measurement (frequency 11 Hz, temperature measurement rate 0 ° C to 250 ° C and tensile mode in the range of 0 ° C to 250 ° C). ) Is the maximum point temperature.
  • the weight average molecular weight (Mw) of the thermoplastic resin (A) is usually 100,000 to 3,000,000, preferably 200,000 to 2,000,000, more preferably 500,000 to 2,000,000. 000 range.
  • the molecular weight distribution (Mw / Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are values in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
  • mass ratio between the curable monomer and the thermoplastic resin is in the above range, solvent resistance or flexibility is easily obtained.
  • the curable monomer and the thermoplastic resin in the curable resin composition satisfy the above mass ratio, and the mass ratio of the long spacer curable monomer and the short spacer curable monomer is in the above range. Then, the base layer is easy to obtain flexibility while maintaining the solvent resistance.
  • the content of the curable monomer in the curable resin composition is in the above range, for example, when the cured resin layer is obtained by a solution casting method or the like, the solvent can be efficiently removed, so The problem of curling due to long process time is eliminated.
  • a polymerization initiator can be contained in the curable resin composition used in the present invention.
  • the polymerization initiator can be used without particular limitation as long as it initiates the curing reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • thermal polymerization initiator examples include organic peroxides and azo compounds.
  • organic peroxides include dialkyl peroxides such as di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide; diacyl peroxides such as acetyl peroxide, lauroyl peroxide, and benzoyl peroxide.
  • Ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide; peroxyketals such as 1,1-bis (t-butylperoxy) cyclohexane; T-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropyl Hydroperoxides such as benzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide; t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, t-butylperoxide Peroxyesters such as oxybenzoate and t-butylperoxyisopropyl carbonate;
  • the azo compound include
  • Photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2 -Methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Amino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpho Alkylphenone-based photopolymerization initiators such as nyl) phenyl
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethyl (2,4,6-trimethylbenzoyl)- Phosphorus photopolymerization initiators such as phenylphosphinate and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide are preferred.
  • a polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • the content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and still more preferably 0.05 to 5% by mass with respect to the entire curable resin composition.
  • the solvent used for the preparation of the curable resin composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; dichloromethane Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, 2 -Ketone solvents such as pentanone, isophorone and cyclohexanone; ester solvents such as ethyl acetate and butyl acetate; cellosolv solvents such as ethyl cellosolve; ether solvents such as 1,3-dioxolane;
  • the content of the solvent with respect to the thermoplastic resin contained in the curable resin composition is not particularly limited, but is usually 0.1 to 1000 g, preferably 1 to 100 g with respect to 1 g of the thermoplastic resin. By adjusting the amount of the solvent, the viscosity of the curable resin composition can be adjusted appropriately.
  • the said curable resin composition may further contain well-known additives, such as a plasticizer, antioxidant, and an ultraviolet absorber, in the range which does not impair the objective and effect of this invention.
  • additives such as a plasticizer, antioxidant, and an ultraviolet absorber.
  • the method for curing the curable resin composition can be appropriately determined according to the type of polymerization initiator and curable monomer used.
  • the total content of the curable monomer, the thermoplastic resin, and the polymerization initiator in the curable resin composition is preferably 50% or more, more preferably 70%, based on the total amount of the curable resin composition. More preferably, it is 90% or more. However, it excludes when it has a plasticizer.
  • the thickness of the base layer of the gas barrier laminate of the present invention is not particularly limited, and may be appropriately determined depending on the application.
  • the thickness of the underlayer is usually 0.05 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, and further preferably 3 to 15 ⁇ m.
  • the elongation at break of the underlayer is preferably 3.5% or more, more preferably 4.5% or more, and further preferably 6.0% or more. If the elongation at break of the underlayer is within this range, excellent flexibility is easily obtained.
  • Increasing the thermoplastic resin content ratio of the curable monomer and the thermoplastic resin in the curable resin composition for forming the underlayer increases the elongation at break of the underlayer. There are things to do. However, when the curable monomer does not contain a long spacer curable monomer, even if the content ratio of the thermoplastic resin is increased, the elongation at break of the underlayer should be in such a high range. Is not easy. In the present invention, since the curable monomer contains a long spacer curable monomer, the breaking elongation of the underlayer can be adjusted to such a high range.
  • the base layer is preferably provided with solvent resistance.
  • solvent resistance for example, even when an organic solvent is used to form another layer on the surface of the underlayer, components existing on the underlayer surface migrate to the other layer. Can be suppressed. Therefore, for example, even when the gas barrier layer is formed on the surface of the underlayer using a resin solution containing an organic solvent such as xylene, the gas barrier property is reduced because the components of the underlayer are not easily mixed into the gas barrier layer. It is hard to decline.
  • the material of the gas barrier layer is not particularly limited as long as it has gas barrier properties.
  • examples of the gas barrier layer include a vapor-phase film-forming inorganic layer, a gas barrier resin layer such as polyvinyl alcohol, and a layer obtained by modifying a layer containing a polymer compound.
  • the gas barrier layer of the present invention may be obtained by vapor deposition, sputtering, etc. like a vapor-phase film-forming inorganic layer, or may be one obtained by curing a coating film. From the viewpoint of further improving the flexibility, it is preferable that the gas barrier layer is a cured coating film.
  • the gas barrier layer is preferably a vapor-phase film-forming inorganic layer and a polymer compound because the gas barrier layer is thin and can efficiently form a layer having excellent gas barrier properties.
  • the gas barrier layer is suitable for obtaining a cured coating film, and it is easy to obtain a gas barrier laminate having a high gas barrier property, and a layer containing a polymer compound is subjected to a modification treatment such as ion implantation. It is more preferable that
  • the gas barrier layer is preferably a vapor-deposited inorganic layer.
  • the thickness of the gas barrier layer is appropriately adjusted and used from the viewpoints of gas barrier properties and handleability, but is usually in the range of 10 to 2000 nm, preferably 20 to 1000 nm, more preferably 30 to 500 nm, and still more preferably 40 to 200 nm. .
  • the gas barrier layer may be a laminate of single gas barrier layers, in which case the thickness of the single gas barrier layer is preferably 10 to 600 nm, more preferably 30 to 500 nm.
  • the inorganic substance constituting the vapor-phase film-forming inorganic layer is not particularly limited, and examples thereof include metals such as aluminum, magnesium, zinc, and tin; silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and the like.
  • a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, or a photo CVD method is used.
  • the CVD method such as the method may be mentioned.
  • a method of forming a gas barrier layer that is a cured coating film for example, a method of applying a solution containing a polymer compound or the like as a material of the gas barrier layer by a known coating method, and appropriately drying the obtained coating film Is mentioned.
  • a silicon-containing high molecular compound As a high molecular compound used for forming a layer obtained by subjecting a layer containing a high molecular compound to a modification treatment, a silicon-containing high molecular compound is preferable, and as a silicon-containing high molecular compound, a polysilazane compound, a polycarbosilane compound, Examples include polysilane compounds and polyorganosiloxane compounds. Among these, a polysilazane compound is preferable from the viewpoint of forming a gas barrier layer having excellent gas barrier properties.
  • polysilazane compound examples include inorganic polysilazanes such as perhydropolysilazane, and organic polysilazanes in which part or all of hydrogen in perhydropolysilazane is substituted with an organic group such as an alkyl group. These polysilazane compounds may be used alone or in combination of two or more. In addition, as the polysilazane compound, a commercially available product as a glass coating material or the like can be used as it is.
  • the layer containing the polymer compound may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired.
  • other components include curing agents, other polymers, anti-aging agents, light stabilizers, and flame retardants.
  • modification treatment examples include ion treatment, plasma treatment, ultraviolet irradiation treatment, and the like.
  • ions implanted into the layer containing the polymer compound include ions of rare gases such as argon, helium, neon, krypton, and xenon; fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur Ions of alkane gases such as methane and ethane; ions of alkene gases such as ethylene and propylene; ions of alkadiene gases such as pentadiene and butadiene; alkyne gases such as acetylene and methylacetylene Ions of aromatic hydrocarbon gases such as benzene and toluene; ions of cycloalkane gases such as cyclopropane and cyclohexane; ions of cycloalkene gases such as cyclopentene and cyclohexene; gold, silver, etc.
  • rare gases such as argon, helium, neon, krypton, and xenon
  • fluorocarbon hydrogen, nitrogen
  • conductive metal ion silane (SiH 4) the Ions of the organic silicon compound; and the like.
  • These ions may be used alone or in combination of two or more.
  • One kind of ion is preferred.
  • the method for implanting ions into the layer containing a silicon-containing polymer compound is not particularly limited, and examples include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like. Among them, in the present invention, the latter method of implanting plasma ions is preferable because a gas barrier layer can be easily obtained.
  • the plasma ion implantation method is not particularly limited, and is a method of implanting ions existing in plasma generated using an external electric field, or a plasma generated only by an electric field generated by a negative high voltage pulse without using an external electric field.
  • Known methods such as a method of implanting ions present therein can be mentioned.
  • Examples of the ultraviolet rays used for the ultraviolet irradiation treatment include vacuum ultraviolet light.
  • As the ultraviolet irradiation treatment for modifying by irradiation with vacuum ultraviolet light for example, a method described in JP-A-2017-095758 can be employed.
  • the gas barrier laminate of the present invention may further have other layers.
  • the other layers include a dissolution preventing layer, a process sheet, and an adhesive layer.
  • a dissolution preventing layer may be provided between the underlayer and the gas barrier layer.
  • the dissolution preventing layer is not particularly limited as long as it has a high solvent resistance, but it is formed from a layer formed from an inorganic material or a curable composition containing the short spacer curable monomer as a main component of the resin component. And the like. From the viewpoint of easily obtaining the flexibility of the gas barrier laminate, the thickness of the dissolution preventing layer is preferably not more than 0.3 times, more preferably not more than 0.2 times the thickness of the underlayer. .
  • the process sheet for example, has a role of a support when forming the underlayer, and also has a role of protecting the underlayer when handling, transporting, storing, etc. in the process. It is peeled off when used. It does not specifically limit as a process sheet, Paper; Plastic films, such as a polyethylene terephthalate; Glass etc. are mentioned. Moreover, as a process sheet
  • the release layer can be formed using a conventionally known release agent such as a silicone release agent, a fluorine release agent, an alkyd release agent, or an olefin release agent.
  • the thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 ⁇ m, preferably 0.05 to 1.5 ⁇ m.
  • the thickness of the process sheet is preferably 1 to 500 ⁇ m and more preferably 5 to 300 ⁇ m from the viewpoint of ease of handling.
  • the method for applying the curable resin composition used in the present invention on the process sheet is not particularly limited.
  • Known methods can be used.
  • the method for drying the obtained coating film is not particularly limited.
  • a known drying method such as a hot air drying method, a hot roll drying method, or an infrared irradiation method can be used.
  • the drying temperature of the coating film is appropriately adjusted depending on the solvent used and the like, but is usually 30 to 150 ° C., preferably 50 to 100 ° C.
  • the heating time is usually several seconds to several tens of minutes.
  • the method of forming a base layer on a process sheet is not restricted to this, For example, you may obtain a base layer on a process sheet by transferring the base layer formed separately on a process sheet.
  • the adhesive layer can be used, for example, when it is attached to another resin film or an adherend. From the viewpoint of maximizing the sealing performance of the gas barrier laminate, it is preferable that the gas barrier layer be as close as possible to the object to be sealed. Therefore, the adhesive layer is opposite to the side of the gas barrier layer on which the base layer is laminated. It is preferable to be laminated on the side. Further, it is preferable that the layer interposed between the gas barrier layer and the adhesive layer is kept to a minimum, such as an adhesion improving layer used for improving interlayer adhesion. In this case, in order to protect the adhesive layer until the gas barrier laminate is used, a release film may be provided on the side of the adhesive layer opposite to the side on which the gas barrier layer is laminated.
  • Examples of the layer structure of the gas barrier laminate that is one embodiment of the present invention include the following embodiments.
  • Process sheet / underlayer / gas barrier layer / adhesive layer / release film Process sheet / underlayer / dissolution-preventing layer / gas barrier layer / adhesive layer / release film
  • the mode of the layer configuration described above seals the gas barrier laminate.
  • the state before using as a stop material is represented.
  • the release film is usually peeled and removed, and the exposed adhesive layer surface and the surface of the object to be sealed are bonded to obtain a sealed body. is there.
  • the process sheet is usually peeled and removed, and the underlying layer is exposed to form the layer structure shown below. it can.
  • ⁇ Underlayer / Gas barrier layer / Adhesive layer ⁇ Underlayer / Dissolution prevention layer / Gas barrier layer / Adhesive layer
  • the process sheet has a sufficient function as a support for the gas barrier laminate as described above. If not, it functions as a support or protective material for the gas barrier laminate until it is peeled off.
  • the adhesive layer may be used in the gas barrier laminate of the present invention in which a plurality of gas barrier laminates are laminated with the adhesive layer interposed.
  • the configuration of the gas barrier laminate in this case is not particularly limited.
  • examples of the configuration of the gas barrier laminate include the following. (Underlayer / Gas barrier layer / Adhesive layer / Underlayer / Gas barrier layer) (Underlayer / Gas barrier layer / Adhesive layer / Gas barrier / Underlayer) (Gas barrier layer / Under layer / Adhesive layer / Under layer / Gas barrier layer)
  • the material for forming the adhesive layer is not particularly limited, and a thermosetting adhesive, a moisture sensitive adhesive, a heat sealable adhesive, a pressure sensitive adhesive (pressure sensitive adhesive), and the like can be used. Among these, an adhesive that does not require special treatment for adhesion is preferable.
  • the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives.
  • the formation method of an adhesive layer is not specifically limited, A well-known method can be utilized.
  • the thickness of the pressure-sensitive adhesive layer is usually 0.5 to 200 ⁇ m, preferably 1 to 100 ⁇ m. As said peeling film, the same thing as the above-mentioned process sheet can be used.
  • the water vapor permeability of the gas barrier laminate in an atmosphere of 40 ° C. and 90% relative humidity is usually 1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less, preferably 0.8 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less. More preferably 0.5 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less, and still more preferably 0.1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less.
  • the water vapor transmission rate can be measured by a known method like the evaluation method of the examples.
  • the sealing body of the present invention is formed by sealing an object to be sealed using the gas barrier laminate of the present invention as a sealing material.
  • the object to be sealed include at least one selected from the group consisting of organic EL elements, organic EL display elements, inorganic EL elements, inorganic EL display elements, electronic paper elements, liquid crystal display elements, and solar cell elements. .
  • the method for producing the encapsulant of the present invention is not particularly limited.
  • the process sheet is first peeled and removed.
  • the surface of the exposed adhesive layer and the surface of the object to be sealed are bonded together and bonded under desired conditions to obtain a sealed body.
  • Process sheet / underlayer / dissolution prevention layer / gas barrier layer / adhesive layer / release film Normally, the process sheet is peeled and removed after bonding the surface of the adhesive layer and the surface of the object to be sealed. .
  • Retardation value is less than 10 nm
  • Retardation value is 10 nm or more
  • WVTR Water vapor transmission rate
  • the gas barrier laminate is cut into a circular test piece having an area of 50 cm 2 and using a water vapor transmission rate measuring device (manufactured by MOCON, device name: AQUATRAN) at a gas flow rate of 20 sccm at 40 ° C. and 90% RH.
  • the water vapor transmission rate (g ⁇ m ⁇ 2 ⁇ day ⁇ 1 ) was measured.
  • the lower limit of detection of the measuring device is 0.0005 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
  • the test piece was set to a distance between chucks of 100 mm with a tensile tester (manufactured by Shimadzu Corporation, Autograph), and then a tensile test was performed at a speed of 200 mm / min to determine the elongation at break (% ) Was measured.
  • a tensile tester manufactured by Shimadzu Corporation, Autograph
  • the tensile breaking strain was taken as the elongation at break
  • the test piece had a yield point the tensile break nominal strain was taken as the breaking elongation.
  • Example 1 Formation of foundation layer Curable resin composition 1 used as a foundation layer was prepared as follows.
  • PSF polysulfone resin
  • curable resin composition 1 ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-BPE-10, the total number of carbon atoms in the oxyethylene chain between two acryloyl groups: 20) is added to this solution as a curable monomer. 122 parts by mass and 5 parts by mass of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, Irgacure 819) as a polymerization initiator were added and mixed to prepare curable resin composition 1 did.
  • the curable monomer and polymerization initiator used in this example and other experimental examples do not contain a solvent and are all raw materials having a solid content of 100%.
  • a curable resin composition is applied by hand coating to the surface opposite to the easy-adhesion layer surface of a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., PET100A-4100, thickness 100 ⁇ m) as a process sheet.
  • PET polyethylene terephthalate
  • the resulting coating film was heated at 90 ° C. for 3 minutes to dry the coating film.
  • a PET film (Toyobo Co., Ltd., PET100A-4100, thickness 100 ⁇ m) is laminated so that the surface opposite to the easy-adhesion surface faces, and a belt conveyor type ultraviolet irradiation device ( Using an i-graphics product name: ECS-401GX, using a high-pressure mercury lamp (product name: H04-L41), an ultraviolet lamp height of 100 mm, an ultraviolet lamp output of 3 kW, a light wavelength A curing reaction was performed under the conditions of an illuminance of 365 nm of 400 mW / cm 2 and a light amount of 800 mJ / cm 2 (measured with an ultraviolet light meter UV-351, manufactured by Oak Manufacturing Co., Ltd.) to form a base layer having a thickness of 25 ⁇ m.
  • a belt conveyor type ultraviolet irradiation device Using an i-graphics product name: ECS-401GX, using a high-pressure mercury lamp (product name: H04-L41), an ultraviolet
  • a polysilazane compound (a coating agent containing Perhydropolysilazane (PHPS) as a main component (manufactured by Merck Performance Materials Co., Ltd.) is formed on the underlayer.
  • PHPS Perhydropolysilazane
  • Amiacca NL-110-20, solvent: xylene was applied by spin coating, and vacuum dried for 6 hours to form a polymer compound layer (polysilazane layer) having a thickness of 200 nm containing perhydropolysilazane.
  • the gas flow rate is 100 sccm and the duty ratio is 0. .5%, DC voltage ⁇ 6 kV, frequency 1000 Hz, applied RF power 1000 W, chamber internal pressure 0.2 Pa, DC pulse width 5 ⁇ sec, treatment time 200 seconds, polymer gas layer (polysilazane layer) ) To form a gas barrier layer.
  • the gas barrier layer was produced by laminating the gas barrier layer on the base layer.
  • the obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
  • Example 2 Formation of foundation layer Example 1 except that the foundation layer (thickness after drying: 25 ⁇ m) was formed using the following curable resin composition 2 instead of the curable resin composition 1 in Example 1. Similarly, a gas barrier laminate was produced by laminating a gas barrier layer on the base layer. The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
  • PSF polysulfone resin
  • ethoxylated bisphenol A diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., ABE-300, total number of carbon atoms of oxyethylene chain between two acryloyl groups: 6
  • a curable monomer was added to this solution 61 mass Part, 61 parts by mass of ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-BPE-20, the total number of carbon atoms in the oxyethylene chain between two acryloyl groups: 34), and bis A curable resin composition 2 was prepared by adding and mixing 5 parts by weight of (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure 819, manufactured by BASF).
  • Example 3 In Example 2, except that the base layer (thickness after drying: 25 ⁇ m) was formed using the curable resin composition 3 instead of the curable resin composition 2, the same as in Example 1, on the base layer A gas barrier laminate was produced by laminating a gas barrier layer. The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
  • the curable monomer is ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., ABE-300, the total number of carbon atoms of the oxyethylene chain between two acryloyl groups: 6). 52.3 parts by mass and 69.7 parts by mass of ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-BPE-20, total number of carbon atoms of oxyethylene chain between two acryloyl groups: 34)
  • a curable resin composition 3 was prepared in the same manner as the curable resin composition 2 except that the curable resin composition 2 was changed.
  • Example 4 In Example 1, instead of the gas barrier layer (polysilazane layer into which ions were implanted), a gas barrier layer made of silicon nitride having a thickness of 60 nm was laminated by a sputtering method. Example 1 except that ethoxylated bisphenol A diacrylate (A-BPE-20) was used instead of ethoxylated bisphenol A diacrylate (A-BPE-10) (referred to as curable resin composition 1 ′). Similarly, a gas barrier laminate was produced. The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
  • Example 1 a gas barrier was formed on the underlayer in the same manner as in Example 1, except that the following curable resin composition 4 was used instead of the curable resin composition 1 to form an underlayer (thickness after drying: 25 ⁇ m).
  • a gas barrier laminate was produced by laminating the layers. The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
  • PSF polysulfone resin
  • ethoxylated bisphenol A diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., ABE-300, the total number of carbon atoms in the oxyethylene chain between two acryloyl groups: 6) 122 mass And 1 part by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, Irgacure 819) as a polymerization initiator were added and mixed to prepare a curable resin composition 4. .
  • Example 2 In Example 1, a gas barrier was formed on the underlayer in the same manner as in Example 1 except that the following curable resin composition 5 was used instead of the curable resin composition 1 to form an underlayer (thickness after drying: 25 ⁇ m). A gas barrier laminate was produced by laminating the layers. The solvent resistance and optical isotropy of the obtained underlayer single layer, and the water vapor transmission rate (WVTR) and elongation at break of the gas barrier laminate were evaluated. The results are shown in Table 1.
  • PSF polysulfone resin
  • A-DCP total number of carbon atoms of oxyethylene chain between two acryloyl groups: 2
  • a curable resin composition 5 is prepared by adding and mixing 1 part by mass of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, Irgacure 819) as a polymerization initiator. did.
  • Example 1 by using a long spacer curable monomer as an underlayer of the gas barrier laminate, a gas barrier laminate having a high elongation at break and excellent flexibility can be obtained.
  • a gas barrier laminate having excellent flexibility and solvent resistance was obtained due to the small number of carbon atoms in the spacer of the long spacer curable monomer.
  • Examples 2 and 3 as the base layer of the gas barrier laminate, excellent flexibility is obtained by combining the mass ratio of the long spacer curable monomer and the short spacer curable monomer within a specific range. It was also found that a gas barrier laminate having solvent resistance can be obtained.
  • Comparative Examples 1 and 2 using only the short spacer curable monomer are inferior in flexibility as compared with Examples.
  • gas barrier laminate of the present invention since it has excellent flexibility as well as gas barrier properties, an electronic device that requires both gas barrier properties and flexibility, for example, a flexible organic EL element
  • a flexible organic EL element for example, a flexible organic EL element
  • it is expected to be applied to members for elements that constitute various electronic devices that easily deteriorate in the atmosphere, such as flexible thermoelectric conversion elements.
  • Gas barrier laminate 2 Underlayer 3: Gas barrier layer

Abstract

The present invention provides a gas barrier laminate which exhibits excellent flexibility, while comprising a base layer and a gas barrier layer. This gas barrier laminate is configured such that: the base layer contains a cured product of a curable resin composition that contains a curable monomer; and the curable monomer contains a curable monomer having a long spacer, said curable monomer having, in each molecule, a structure wherein one reactive functional group is connected to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group, with the total number of carbon atoms that constitute the main chains of the polyalkylene group and the polyoxyalkylene group being 18 or more.

Description

ガスバリア性積層体Gas barrier laminate
 本発明は、ガスバリア性積層体に関する。 The present invention relates to a gas barrier laminate.
 近年、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ等のディスプレイデバイスには、薄型化、軽量化及びフレキシブル化等を実現するために、デバイスを構成する封止材料として、従来のガラスに代えて、厚さの薄い透明プラスチックフィルムを用いることが検討されている。
 しかし、一般にプラスチックフィルムは、ガラスに比べて、大気中の水蒸気や酸素等の透過が大きく、透明プラスチックフィルムをディスプレイデバイスの支持基板として使用する場合、前記支持基板を透過した水蒸気や酸素等が、ディスプレイデバイス内部の素子等に作用し、デバイスの性能が低下したり、寿命が短くなるという問題があった。
 この問題を解決するため、水蒸気や酸素の透過を抑制する特性を有するフィルム(以下、この特性を「ガスバリア性」といい、ガスバリア性を有する積層体を「ガスバリア性積層体」という。)をディスプレイデバイスの封止材料として用いることが提案されている。
 例えば、特許文献1には、透明プラスチックフィルム表面に、蒸着法、イオンプレーティング法、スパッター法等により、金属酸化物からなる透明ガスバリア層を積層したフレキシブルディスプレイ基板が記載されている。
 また、特許文献2には、基材の少なくとも片面に、ポリシラザン膜にプラズマ処理を施して形成されたガスバリア層を有するガスバリアフィルムが記載されている。
 このような中、さらに高性能なディスプレイデバイス等が求められており、電子デバイス用部材等に使用されるガスバリア積層体にも、ガスバリア性に加えて、耐熱性、耐溶剤性、層間密着性に優れ、複屈折率が低く光学等方性に優れる等、様々な特性に優れることが要求されるようになってきている。
 上記要求に対し、例えば、特許文献3には、ガラス転移温度(Tg)が140℃以上の熱可塑性樹脂及び硬化性単量体を含有する硬化性樹脂組成物の硬化物からなる層を有するガスバリアフィルムが記載されている。
In recent years, display devices such as liquid crystal displays and organic electroluminescence (EL) displays, in order to realize thinning, weight reduction and flexibility, as a sealing material constituting the device, instead of conventional glass, The use of a thin transparent plastic film has been studied.
However, in general, the plastic film has a larger transmission of water vapor, oxygen, etc. in the atmosphere than glass, and when the transparent plastic film is used as a support substrate for a display device, the water vapor, oxygen, etc. transmitted through the support substrate, There is a problem that the device performance or the life is shortened by acting on elements inside the display device.
In order to solve this problem, a film having a characteristic of suppressing the permeation of water vapor and oxygen (hereinafter, this characteristic is referred to as “gas barrier property”, and a laminate having the gas barrier property is referred to as “gas barrier laminate”) is displayed. It has been proposed to be used as a sealing material for devices.
For example, Patent Document 1 describes a flexible display substrate in which a transparent gas barrier layer made of a metal oxide is laminated on the surface of a transparent plastic film by vapor deposition, ion plating, sputtering, or the like.
Patent Document 2 describes a gas barrier film having a gas barrier layer formed by subjecting a polysilazane film to plasma treatment on at least one surface of a substrate.
Under such circumstances, there is a demand for higher-performance display devices, etc. In addition to gas barrier properties, gas barrier laminates used for electronic device members have heat resistance, solvent resistance, and interlayer adhesion. There are increasing demands for excellent properties such as excellent birefringence and low optical isotropy.
For example, Patent Document 3 discloses a gas barrier having a layer made of a cured product of a curable resin composition containing a thermoplastic resin having a glass transition temperature (Tg) of 140 ° C. or higher and a curable monomer. A film is described.
特開2010-192764公報JP 2010-192664 A 特開2012-204452公報JP 2012-204452 A 国際公開第2013/065812号International Publication No. 2013/065812
 しかしながら、特許文献3のガスバリアフィルムは、ガスバリア性に加えて、耐熱性、耐溶剤性、層間密着性等に優れるものの、フレキシブル性を十分に有していない。特許文献3のガスバリアフィルムにおいて、硬化性樹脂組成物における熱可塑性樹脂及び硬化性単量体の配合比において、熱可塑性樹脂の比率を増やしていけば、硬化性樹脂組成物の硬化物からなる層のフレキシブル性の向上が認められるものの、十分なものではなかった。 However, the gas barrier film of Patent Document 3 is excellent in heat resistance, solvent resistance, interlayer adhesion and the like in addition to gas barrier properties, but does not have sufficient flexibility. In the gas barrier film of Patent Document 3, if the ratio of the thermoplastic resin is increased in the blending ratio of the thermoplastic resin and the curable monomer in the curable resin composition, a layer made of a cured product of the curable resin composition Although improvement in flexibility was observed, it was not sufficient.
 本発明は、上記を鑑み、フレキシブル性に優れるガスバリア性積層体を提供することを課題とする。 In view of the above, an object of the present invention is to provide a gas barrier laminate having excellent flexibility.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下地層及びガスバリア層を含むガスバリア性積層体の、下地層を構成する硬化性単量体の化学構造において、反応性官能基間にスペーサーとして用いるポリアルキレン基やポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計を特定の範囲にすることにより、フレキシブル性に優れるガスバリア性積層体が得られることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1]下地層及びガスバリア層を含むガスバリア性積層体であって、前記下地層が、硬化性単量体を含有する硬化性樹脂組成物の硬化物を含み、前記硬化性単量体は、分子内に1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、又は両方を介在して連結する構造を有し、当該ポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が18以上である長スペーサーを有する硬化性単量体を含む、ガスバリア性積層体。
[2]前記硬化性単量体が、さらに、1つの反応性官能基と他の反応性官能基とが、ポリアルキレン基又はポリオキシアルキレン基のいずれも介在さずに連結する構造、又は1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、もしくは両方を介在して連結する構造を有しており、当該ポリアルキレン基及びポリオキシアルキレン基の主鎖を構成する炭素原子の数の合計が16以下である短スペーサーを有する硬化性単量体を含む、上記[1]に記載のガスバリア性積層体。
[3]前記下地層が、さらに熱可塑性樹脂を含む、上記[1]又は[2]に記載のガスバリア性積層体。
[4]前記熱可塑性樹脂のガラス転移温度(Tg)が130℃以上である、上記[3]に記載のガスバリア性積層体。
[5]前記熱可塑性樹脂が、ポリスルホン系樹脂、又は脂環式炭化水素系樹脂である、上記[3]又は[4]に記載のガスバリア性積層体。
[6]前記下地層の厚さが0.1~50μmである、上記[1]~[5]のいずれかに記載のガスバリア性積層体。
[7]前記下地層の破断伸度が3.5%以上である、上記[1]~[6]のいずれかに記載のガスバリア性積層体。
[8]前記ガスバリア層は、硬化した塗膜である、上記[1]~[7]のいずれかに記載のガスバリア性積層体。
[9]前記ガスバリア層は、硬化したポリシラザン系化合物を含む層に改質処理を施したものである、上記[1]~[8]のいずれかに記載のガスバリア性積層体。
[10]前記ガスバリア性積層体が、さらに工程シートを含む、上記[1]~[9]のいずれかに記載のガスバリア性積層体。
As a result of intensive studies to solve the above problems, the inventors of the present invention have made reactive functionalities in the chemical structure of the curable monomer constituting the underlayer of the gas barrier laminate including the underlayer and the gas barrier layer. By making the total number of carbon atoms constituting each main chain of the polyalkylene group or polyoxyalkylene group used as a spacer between the groups within a specific range, a gas barrier laminate excellent in flexibility can be obtained. The headline and the present invention were completed.
That is, the present invention provides the following [1] to [10].
[1] A gas barrier laminate including an underlayer and a gas barrier layer, wherein the underlayer includes a cured product of a curable resin composition containing a curable monomer, One reactive functional group has a structure in which one reactive functional group is connected to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group in the molecule, A gas barrier laminate comprising a curable monomer having a long spacer in which the total number of carbon atoms constituting each main chain of an oxyalkylene group is 18 or more.
[2] The curable monomer further has a structure in which one reactive functional group and another reactive functional group are linked without any polyalkylene group or polyoxyalkylene group, or 1 One reactive functional group has a structure linked to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group, and the polyalkylene group and the polyoxyalkylene The gas barrier laminate according to the above [1], comprising a curable monomer having a short spacer in which the total number of carbon atoms constituting the main chain of the group is 16 or less.
[3] The gas barrier laminate according to the above [1] or [2], wherein the underlayer further contains a thermoplastic resin.
[4] The gas barrier laminate according to [3], wherein the thermoplastic resin has a glass transition temperature (Tg) of 130 ° C. or higher.
[5] The gas barrier laminate according to the above [3] or [4], wherein the thermoplastic resin is a polysulfone resin or an alicyclic hydrocarbon resin.
[6] The gas barrier laminate according to any one of [1] to [5], wherein the underlayer has a thickness of 0.1 to 50 μm.
[7] The gas barrier laminate according to any one of [1] to [6], wherein the underlying layer has a breaking elongation of 3.5% or more.
[8] The gas barrier laminate according to any one of [1] to [7], wherein the gas barrier layer is a cured coating film.
[9] The gas barrier laminate according to any one of the above [1] to [8], wherein the gas barrier layer is obtained by modifying a layer containing a cured polysilazane compound.
[10] The gas barrier laminate according to any one of [1] to [9], wherein the gas barrier laminate further includes a process sheet.
 本発明によれば、フレキシブル性に優れるガスバリア性積層体を提供することができる。 According to the present invention, a gas barrier laminate having excellent flexibility can be provided.
本発明のガスバリア性積層体の一例を示す断面構成図である。It is a section lineblock diagram showing an example of a gas barrier layered product of the present invention.
[ガスバリア性積層体]
 本発明のガスバリア性積層体は、下地層及びガスバリア層を含むガスバリア性積層体であって、前記下地層が、硬化性単量体を含有する硬化性樹脂組成物の硬化物を含み、前記硬化性単量体は、分子内に1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、又は両方を介在して連結する構造を有し、当該ポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が18以上である長スペーサーを有する硬化性単量体(以下、長スペーサーを有する硬化性単量体を、「長スペーサー硬化性単量体」ということがある)を含む。
 本発明は、下地層及びガスバリア層を含むガスバリア性積層体の、下地層を構成する反応性官能基を有する、長スペーサー硬化性単量体の分子内において、反応性官能基間に、スペーサーとなるポリアルキレン基及び/又はポリオキシアルキレン基を介在させ、ポリアルキレン基やポリオキシアルキレン基に含まれる炭素原子の数の合計を18以上とすることで、優れたフレキシブル性を付与することができる。また、後述する特定の短スペーサーを有する硬化性単量体とを組み合わせることにより、フレキシブル性のみならず耐溶剤性を同時に満たすガスバリア性積層体を得ることが容易である。
 なお、本明細書において、「スペーサー」とは、ポリアルキレン基、ポリオキシアルキレン基のような、柔軟性を付与する分子鎖を意味するものとする。
[Gas barrier laminate]
The gas barrier laminate of the present invention is a gas barrier laminate including an underlayer and a gas barrier layer, wherein the underlayer includes a cured product of a curable resin composition containing a curable monomer, and the cured The reactive monomer has a structure in which one reactive functional group is linked to another reactive functional group in the molecule via one or both of a polyalkylene group and a polyoxyalkylene group, A curable monomer having a long spacer in which the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is 18 or more (hereinafter referred to as a curable monomer having a long spacer). , Sometimes referred to as “long spacer curable monomer”).
The present invention relates to a gas barrier laminate comprising a base layer and a gas barrier layer, wherein the spacer and the reactive functional group in the molecule of the long spacer curable monomer having a reactive functional group constituting the base layer, By providing a polyalkylene group and / or a polyoxyalkylene group, the total number of carbon atoms contained in the polyalkylene group or the polyoxyalkylene group is 18 or more, thereby providing excellent flexibility. . Further, by combining with a curable monomer having a specific short spacer described later, it is easy to obtain a gas barrier laminate that simultaneously satisfies not only flexibility but also solvent resistance.
In the present specification, the “spacer” means a molecular chain that imparts flexibility, such as a polyalkylene group or a polyoxyalkylene group.
<下地層>
 本発明のガスバリア性積層体を構成する下地層は、硬化性単量体を含有する硬化性樹脂組成物の硬化物を含む。
〈硬化性樹脂組成物〉
 硬化性樹脂組成物は、硬化性単量体を含む。さらに後述する熱可塑性樹脂を含むことが好ましく、重合開始剤やその他の成分を混合し、適当な溶媒に溶解又は分散させることにより調製することができる。
<Underlayer>
The underlayer constituting the gas barrier laminate of the present invention contains a cured product of a curable resin composition containing a curable monomer.
<Curable resin composition>
The curable resin composition contains a curable monomer. Further, it preferably contains a thermoplastic resin described later, and can be prepared by mixing a polymerization initiator and other components and dissolving or dispersing them in a suitable solvent.
(硬化性単量体)
 本発明に用いる硬化性単量体は、1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、又は両方を介在して連結する構造を有しており、当該ポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が18以上である長スペーサー硬化性単量体を含む。長スペーサーに関し、1つの反応性官能基が、ポリアルキレン基又はポリオキシアルキレン基を2つ以上介在して他の反応性官能基と連結する場合には、ポリアルキレン基又はポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数は、2つ以上のポリアルキレン基又はポリオキシアルキレン基の、主鎖を構成する炭素原子の数の合計である。また、硬化性単量体が一分子中に3つ以上の反応性官能基を有する場合、任意の2つの反応性官能基の間に介在するポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が、必ず18以上である。
 長スペーサーとしてのポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が16以下であると、フレキシブル性が低下することがある。また、下地層の耐溶剤性を向上させる観点から、ポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が70以下であることが好ましく、42以下であることがより好ましい。
(Curable monomer)
The curable monomer used in the present invention has a structure in which one reactive functional group is linked to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group. And a long spacer curable monomer in which the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is 18 or more. For a long spacer, when one reactive functional group is linked to another reactive functional group via two or more polyalkylene groups or polyoxyalkylene groups, the polyalkylene group or polyoxyalkylene group respectively. The number of carbon atoms constituting the main chain is the total number of carbon atoms constituting the main chain of two or more polyalkylene groups or polyoxyalkylene groups. Further, when the curable monomer has three or more reactive functional groups in one molecule, the main chain of each of the polyalkylene group and the polyoxyalkylene group interposed between any two reactive functional groups The total number of carbon atoms constituting is necessarily 18 or more.
When the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group as the long spacer is 16 or less, flexibility may be lowered. Further, from the viewpoint of improving the solvent resistance of the underlayer, the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is preferably 70 or less, and 42 or less. Is more preferable.
 本発明においては、反応性官能基として、アルコール類の水酸基、ケトン類のカルボニル基、カルボン酸類のカルボキシル基、カルボン酸ハライド基、カルボン酸無水物基、イソシアネート基、エポキシ基、重合性不飽和基等が挙げられる。この中で、重合性不飽和基が好ましく、ラジカル重合性を有する炭素-炭素不飽和二重結合がより好ましい。具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、熱可塑性樹脂と混ざりやすく、かつ、重合物の硬化収縮が起こりにくく、重合が容易な観点から(メタ)アクリロイル基が好ましい。
 一つの反応性官能基と、他の反応性官能基は同じであっても、異なっていてもよいが、同じであることが好ましい。
 本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。
In the present invention, the reactive functional group includes a hydroxyl group of alcohol, a carbonyl group of ketone, a carboxyl group of carboxylic acid, a carboxylic acid halide group, a carboxylic anhydride group, an isocyanate group, an epoxy group, and a polymerizable unsaturated group. Etc. Of these, a polymerizable unsaturated group is preferred, and a carbon-carbon unsaturated double bond having radical polymerizability is more preferred. Specific examples include a vinyl group, a (meth) acryloyl group, a maleimide group, and the like, which are easily mixed with a thermoplastic resin, are less likely to cause curing shrinkage of the polymer, and are (meth) acryloyl groups from the viewpoint of easy polymerization. Is preferred.
One reactive functional group and the other reactive functional group may be the same or different, but are preferably the same.
In the present invention, “(meth) acrylate” refers to one or both of methacrylate and acrylate, “(meth) acryloyl group” refers to one or both of methacryloyl group and acryloyl group, and “(meth) acrylic” “Acid” refers to one or both of methacrylic acid and acrylic acid.
 長スペーサー硬化性単量体の分子内に含まれるポリアルキレン基を構成するアルキレン基として、特に制限されないが、炭素数が2~30のアルキレン基が用いられる。下地膜にフレキシブル性を付与する観点から直鎖であることが好ましく、具体的には、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンテン基等が好ましく、ガスバリア性積層体のフレキシブル性をより高める観点から、エチレン基が好ましい。また、それらを複数組み合わせ用いることができる。
 同様に、長スペーサー硬化性単量体の分子内に含まれるポリオキシアルキレン基を構成するオキシアルキレン基としては、特に制限されず、好ましくは、前記アルキレン基に酸素原子が結合したものが好ましい。また、それらを複数組み合わせ、用いてもよい。
 さらに、長スペーサー硬化性単量体は、スペーサーとしてポリアルキレン基及びポリオキシアルキレン基が連結された構造を有するものでもよく、アルキレン基の繰り返し構造又はオキシアルキレン基の繰り返し構造が不連続である立体配置となっていてもよい。
The alkylene group constituting the polyalkylene group contained in the molecule of the long spacer curable monomer is not particularly limited, but an alkylene group having 2 to 30 carbon atoms is used. From the viewpoint of imparting flexibility to the base film, it is preferably linear, and specifically, an ethylene group, an n-propylene group, an n-butylene group, an n-pentene group, and the like are preferable, and the flexibility of the gas barrier laminate is preferable. From the viewpoint of further improving the properties, an ethylene group is preferable. A plurality of them can be used in combination.
Similarly, the oxyalkylene group constituting the polyoxyalkylene group contained in the molecule of the long spacer curable monomer is not particularly limited, and preferably an oxygen atom bonded to the alkylene group is preferable. Also, a plurality of them may be combined and used.
Further, the long spacer curable monomer may have a structure in which a polyalkylene group and a polyoxyalkylene group are linked as a spacer, and a three-dimensional structure in which a repeating structure of an alkylene group or a repeating structure of an oxyalkylene group is discontinuous. It may be arranged.
 前記長スペーサー硬化性単量体が、下記式(1)で表されることが好ましい。
Z-[Ym-(O-Y)n-R]k    (1)
 Zはk価の有機基であり、Rは、反応性官能基を示す。
Yは、アルキレン基を表し、O-Yは、オキシアルキレン基を表す。
kは2~6の整数であり、m、nは、それぞれ独立に、0又は1以上の整数であり、m及びnが同時に0となることはない。
 一つの[Ym-(O-Y)n-R]で表される基において、Y及びO-Yは不連続でもよく、順列も任意である。mは[Ym-(O-Y)n-R]で表される基におけるすべてのアルキレン基の総和、nは[Ym-(O-Y)n-R]で表される基におけるすべてのオキシアルキレン基の総和である。Ymを構成する各Yまたは(O-Y)nを構成する各O-Yとして、2種以上のアルキレン基又はオキシアルキレン基を用いてもよい。k個の[Ym-(O-Y)n-R]で表される基において、それぞれのY及びO-Yの順列、m及びnの値、Y及びO-Yに用いられるアルキレン基及びオキシアルキレン基の種類は互いに独立である。
 なお、m又はnが1である場合、Y又はO-Yは単なるアルキレン基又はオキシアルキレン基であるが、このような場合も含めて、本発明ではYm、(O-Y)nをポリアルキレン基、ポリオキシアルキレン基と呼ぶ。
The long spacer curable monomer is preferably represented by the following formula (1).
Z- [Ym- (OY) nR] k (1)
Z is a k-valent organic group, and R represents a reactive functional group.
Y represents an alkylene group, and OY represents an oxyalkylene group.
k is an integer of 2 to 6, m and n are each independently 0 or an integer of 1 or more, and m and n are not 0 at the same time.
In one group represented by [Ym- (OY) nR], Y and OY may be discontinuous and the permutation is arbitrary. m is the sum of all alkylene groups in the group represented by [Ym- (O—Y) nR], and n is all oxy groups in the group represented by [Ym- (O—Y) nR]. This is the sum of alkylene groups. As each Y constituting Ym or each OY constituting (OY) n, two or more kinds of alkylene groups or oxyalkylene groups may be used. In k groups represented by [Ym- (OY) nR], the permutation of Y and OY, the values of m and n, the alkylene group and oxy used for Y and OY The types of alkylene groups are independent of each other.
When m or n is 1, Y or OY is a simple alkylene group or oxyalkylene group. In this case, Ym and (O—Y) n are represented as polyalkylene. Group, called polyoxyalkylene group.
 例えば、k=2の時、mはそれぞれ独立にm1、m2であり、nはそれぞれ独立にn1、n2である。また、m1、m2、n1、及びn2の間で下記式(2)を満たす。
2・m1+2・m2+2・n1+2・n2≧18    (2)
For example, when k = 2, m is independently m1 and m2, and n is independently n1 and n2. Further, the following formula (2) is satisfied among m1, m2, n1, and n2.
2 · m1 + 2 · m2 + 2 · n1 + 2 · n2 ≧ 18 (2)
 kが2~6の場合について一般化すると、i、jを任意の整数、1≦i≦k、1≦j≦k、i≠jとした場合に、任意の2つの[Ym-(O-Y)n-R]で表される基である[Ymi-(O-Y)ni-R]と[Ymj-(O-Y)nj-R]を選択した場合、miとmjは互いに独立であり、niとnjは互いに独立であり、mi、mj、ni、及びnjの間で必ず下記式(3)を満たす。
2・mi+2・ni+2・mj+2・nj≧18    (3)
Generalizing the case where k is 2 to 6, when i and j are arbitrary integers, 1 ≦ i ≦ k, 1 ≦ j ≦ k, and i ≠ j, any two [Ym− (O− Y) When [Ymi- (OY) ni-R] and [Ymj- (OY) nj-R], which are groups represented by nR], are selected, mi and mj are independent of each other. And ni and nj are independent of each other, and the following expression (3) is always satisfied among mi, mj, ni, and nj.
2 · mi + 2 · ni + 2 · mj + 2 · nj ≧ 18 (3)
 上記式(1)及び式(3)において、長スペーサー硬化性単量体としては、k=2又はk=3であってよく、k=2であってもよい。
 また、長スペーサー硬化性単量体のみを用いる時は、耐溶剤性の観点から、ポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が18以上26以下であることが好ましく、より好ましくは18以上24以下、さらに好ましくは18以上22以下である。
 前記硬化性単量体が、長スペーサー硬化性単量体と短スペーサー硬化性単量体のいずれも含む場合には、ガスバリア性積層体のフレキシブル性と下地層の耐溶剤性の両立の観点から、アルキレン基及びオキシアルキレン基のそれぞれの炭素数の合計が28以上70以下であることが好ましく、28以上42以下であることがより好ましい。
In the above formulas (1) and (3), the long spacer curable monomer may be k = 2 or k = 3, or k = 2.
When only the long spacer curable monomer is used, from the viewpoint of solvent resistance, the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group is 18 or more and 26 or less. Preferably, it is 18 or more and 24 or less, more preferably 18 or more and 22 or less.
In the case where the curable monomer includes both a long spacer curable monomer and a short spacer curable monomer, from the viewpoint of both the flexibility of the gas barrier laminate and the solvent resistance of the underlayer. The total number of carbon atoms of the alkylene group and the oxyalkylene group is preferably 28 or more and 70 or less, and more preferably 28 or more and 42 or less.
 さらに、前記硬化性単量体が、1つの反応性官能基と他の反応性官能基とが、ポリアルキレン基又はポリオキシアルキレン基のいずれも介在さずに連結する構造、又は1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、もしくは両方を介在して連結する構造を有しており、当該ポリアルキレン基及びポリオキシアルキレン基の主鎖を構成する炭素原子の数の合計が16以下である短スペーサーを有する硬化性単量体を含むことが好ましい(以下、該短スペーサーを有する硬化性単量体を、「短スペーサー硬化性単量体」ということがある)。短スペーサーに関し、1つの反応性官能基が、ポリアルキレン基又はポリオキシアルキレン基を2つ以上介在して他の反応性官能基と連結する場合には、ポリアルキレン基又はポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数は、2つ以上のポリアルキレン基又はポリオキシアルキレン基の、主鎖を構成する炭素原子の数の合計である。また、硬化性単量体が一分子中に3つ以上の反応性官能基を有する場合、任意の2つの反応性官能基の間に介在するポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が、少なくとも1組の反応性官能基の組み合わせについて16以下である。 Further, the curable monomer has a structure in which one reactive functional group and another reactive functional group are linked without any polyalkylene group or polyoxyalkylene group, or one reactivity The functional group has a structure linked to another reactive functional group through one or both of a polyalkylene group and a polyoxyalkylene group. The main group of the polyalkylene group and the polyoxyalkylene group It is preferable to include a curable monomer having a short spacer in which the total number of carbon atoms constituting the chain is 16 or less (hereinafter, the curable monomer having the short spacer is referred to as a “short spacer curable monomer”). Sometimes referred to as a “mer”. With respect to the short spacer, when one reactive functional group is connected to another reactive functional group via two or more polyalkylene groups or polyoxyalkylene groups, The number of carbon atoms constituting the main chain is the total number of carbon atoms constituting the main chain of two or more polyalkylene groups or polyoxyalkylene groups. Further, when the curable monomer has three or more reactive functional groups in one molecule, the main chain of each of the polyalkylene group and the polyoxyalkylene group interposed between any two reactive functional groups The total number of carbon atoms constituting is 16 or less with respect to at least one reactive functional group combination.
 反応性官能基としては、前述したものと同様であり、重合性不飽和基が好ましく、ラジカル重合性を有する炭素-炭素不飽和二重結合がより好ましい。具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、重合が容易な点から(メタ)アクリロイル基が好ましい。
 短スペーサー硬化性単量体が有する一つの反応性官能基と他の官能性反応基は同じであっても、異なっていてもよいが、同じであることが好ましい。
The reactive functional group is the same as described above, preferably a polymerizable unsaturated group, and more preferably a carbon-carbon unsaturated double bond having radical polymerizability. Specific examples include a vinyl group, a (meth) acryloyl group, and a maleimide group, and a (meth) acryloyl group is preferable from the viewpoint of easy polymerization.
One reactive functional group and the other functional reactive group of the short spacer curable monomer may be the same or different, but are preferably the same.
 ポリアルキレン基及びポリオキシアルキレン基を構成するアルキレン基及びオキシアルキレン基としては、前述したものと同様である。
 短スペーサー硬化性単量体は、スペーサーとしてポリアルキレン基及びポリオキシアルキレン基が連結された構造を有するものでもよく、アルキレン基の繰り返し構造又はオキシアルキレン基の繰り返し構造が不連続である立体配置となっていてもよい。
The alkylene group and oxyalkylene group constituting the polyalkylene group and polyoxyalkylene group are the same as those described above.
The short spacer curable monomer may have a structure in which a polyalkylene group and a polyoxyalkylene group are connected as a spacer, and a configuration in which a repeating structure of an alkylene group or a repeating structure of an oxyalkylene group is discontinuous. It may be.
 短スペーサーとしてのポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が好ましくは16以下であることにより、下地層の耐溶剤性が向上しやすくなる。短スペーサー硬化性単量体を単独で用いると、ガスバリア性積層体のフレキシブル性が低下しやすくなるおそれがあるが、長スペーサー硬化性単量体との併用により、下地層の耐溶剤性と、ガスバリア性積層体のフレキシブル性の両立を図り得る。 When the total number of carbon atoms constituting each main chain of the polyalkylene group and the polyoxyalkylene group as the short spacer is preferably 16 or less, the solvent resistance of the underlayer is easily improved. When the short spacer curable monomer is used alone, the flexibility of the gas barrier laminate may be easily lowered, but by using it together with the long spacer curable monomer, the solvent resistance of the underlayer, The flexibility of the gas barrier laminate can be achieved.
 前記短スペーサー硬化性単量体は、前記長スペーサー硬化性単量体と同様に、下記式(11)で表されることが好ましい。
Z-[(Y)m-(O-Y)n-R]k    (11)
 Zはk価の有機基であり、Rは、反応性官能基を示す。
Yは、アルキレン基を表し、O-Yは、オキシアルキレン基を表し、kは2~6の整数であり、m、nは、それぞれ独立に、0又は1以上の整数であり、m及びnは同時に0をとってもよい。
It is preferable that the said short spacer curable monomer is represented by following formula (11) similarly to the said long spacer curable monomer.
Z-[(Y) m- (OY) nR] k (11)
Z is a k-valent organic group, and R represents a reactive functional group.
Y represents an alkylene group, OY represents an oxyalkylene group, k is an integer of 2 to 6, m and n are each independently an integer of 0 or 1, m and n May take 0 at the same time.
 k=2の時、mはそれぞれ独立にm11、m12であり、nはそれぞれ独立にn11、n12である。m11、m12、n11、及びn12の間で下記式(12)を満たすことが好ましい。
2・m11+2・m12+2・n11+2・n12≦16    (12)
When k = 2, m is independently m11 and m12, and n is independently n11 and n12. It is preferable that the following formula (12) is satisfied among m11, m12, n11, and n12.
2 · m11 + 2 · m12 + 2 · n11 + 2 · n12 ≦ 16 (12)
 kが2~6の場合について一般化すると、i、jを任意の整数、1≦i≦k、1≦j≦k、i≠jとした場合に、任意の2つの[Ym-(O-Y)n-R]で表される基である[Ymi-(O-Y)ni-R]と[Ym1j-(O-Y)n1j-R]を選択した場合、m1iとm1jは互いに独立であり、n1iとn1jは互いに独立であり、m1i、m1j、n1i、及びn1jの間で下記式(13)を満たすi、jの組み合わせが少なくとも1組存在する。
2・m1i+2・n1i+2・m1j+2・n1j≦16    (13)
Generalizing the case where k is 2 to 6, when i and j are arbitrary integers, 1 ≦ i ≦ k, 1 ≦ j ≦ k, and i ≠ j, any two [Ym− (O− Y) When [Ymi- (OY) ni-R] and [Ym1j- (OY) n1j-R], which are groups represented by nR], are selected, m1i and m1j are independent of each other. N1i and n1j are independent of each other, and at least one combination of i and j satisfying the following formula (13) exists between m1i, m1j, n1i, and n1j.
2 · m1i + 2 · n1i + 2 · m1j + 2 · n1j ≦ 16 (13)
 上記式(11)及び式(13)において、短スペーサー硬化性単量体として、k=2又はk=3であってよく、k=2であってもよい。 In the above formula (11) and formula (13), the short spacer curable monomer may be k = 2 or k = 3, or k = 2.
 式(1)及び式(11)におけるZで表される有機基のうち、2価であるものとして、例えば、下記式で示される基が挙げられる。両末端の「-」は、結合手を表す。
Figure JPOXMLDOC01-appb-C000001
Of the organic groups represented by Z in Formula (1) and Formula (11), examples of the divalent group include groups represented by the following formula. “-” At both ends represents a bond.
Figure JPOXMLDOC01-appb-C000001
 さらに上記を含め、有機基としては、炭素原子数が6~20の芳香族、又は炭素原子数が3~20の脂環式の炭化水素基を有する2~6価の有機基が挙げられる。前記炭化水素基における芳香環や脂環は置換されていても、無置換であってもよい。
 炭素原子数が6~20の芳香族の炭化水素基として、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、クリセン環、フルオランテン環、及びピレン環等から2~6つの水素原子をとり除くことで形成される2~6価の基が挙げられる。
 脂環式の炭化水素基として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基等のシクロアルキル基や、ジシクロペンタニル基、1-アダマンチル基、2-アダマンチル基、ノルボルニル基、イソボルニル基等の縮合環基から水素原子をとり除くことで形成される2~6価の基が挙げられる。
 前記炭化水素基の置換基としては、メチル基、エチル基等の炭素数1~20のアルキル基、フェニル基、ナフチル基等の炭素数6~16のアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、また、メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基、塩素、臭素等のハロゲン原子等が挙げられる。
 有機基は、炭素原子数が6~20の芳香族の炭化水素基を有する2~6価の有機基であることが好ましい。このような有機基を有する硬化性単量体は、熱可塑性樹脂との相溶性に優れ、熱可塑性樹脂がポリスルホン系樹脂である場合、ポリスルホン系樹脂との相溶性に優れるためさらに好適である。炭素原子数が6~20の芳香族の炭化水素基を有する2~6価の有機基としては、上記の炭素原子数が6~20の芳香族の炭化水素基それ自体のほか、ビスフェノール基、フルオレン基、ビフェニル基等が挙げられる。
Further, including the above, examples of the organic group include an aromatic group having 6 to 20 carbon atoms, or a divalent to hexavalent organic group having an alicyclic hydrocarbon group having 3 to 20 carbon atoms. The aromatic ring and alicyclic ring in the hydrocarbon group may be substituted or unsubstituted.
As aromatic hydrocarbon groups having 6 to 20 carbon atoms, 2 to 6 hydrogen atoms are removed from benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, chrysene ring, fluoranthene ring, pyrene ring, etc. And divalent to hexavalent groups formed by the above method.
Examples of alicyclic hydrocarbon groups include cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, cyclooctyl groups, cyclononyl groups, cyclodecyl groups, cycloundecyl groups, cyclododecyl groups, etc. Dicyclopentanyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group, isobornyl group and other divalent to hexavalent groups formed by removing a hydrogen atom from a condensed ring group.
Examples of the substituent of the hydrocarbon group include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, an aryl group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group, a hydroxyl group, an amino group, a carboxyl group, Examples thereof include sulfonamido groups, N-sulfonylamido groups, alkoxy groups having 1 to 6 carbon atoms such as methoxy groups and ethoxy groups, and halogen atoms such as chlorine and bromine.
The organic group is preferably a divalent to hexavalent organic group having an aromatic hydrocarbon group having 6 to 20 carbon atoms. Such a curable monomer having an organic group is more suitable because it is excellent in compatibility with a thermoplastic resin, and when the thermoplastic resin is a polysulfone resin, it is excellent in compatibility with the polysulfone resin. Examples of the divalent to hexavalent organic group having an aromatic hydrocarbon group having 6 to 20 carbon atoms include the above-mentioned aromatic hydrocarbon group having 6 to 20 carbon atoms, a bisphenol group, A fluorene group, a biphenyl group, etc. are mentioned.
 本発明に用いる硬化性単量体としては、反応性官能基として(メタ)アクリロイル基を有するものが好ましく、フレキシブル性、耐溶剤性を制御する観点から、上記式において、本発明の範囲に含まれる長スペーサー及び短スペーサーを有するエトキシ化ビスフェノールAジ(メタ)アクリレート等のビスフェノール骨格を有するもの、同様に長スペーサー及び短スペーサーを有する9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等の9,9-ビスフェニルフルオレン骨格を有するもの、長スペーサー及び短スペーサーを有するトリシクロデカンジメタノールジ(メタ)アクリレート等のトリシクロデカン骨格を有するものが好ましい。
 また、2官能の(メタ)アクリル酸誘導体としては、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート等が挙げられる。
The curable monomer used in the present invention preferably has a (meth) acryloyl group as a reactive functional group. From the viewpoint of controlling flexibility and solvent resistance, the above formula is included in the scope of the present invention. Having a bisphenol skeleton such as ethoxylated bisphenol A di (meth) acrylate having a long spacer and a short spacer, and 9,9-bis [4- (2-acryloyloxyethoxy) phenyl having a long spacer and a short spacer as well Those having a 9,9-bisphenylfluorene skeleton such as fluorene and those having a tricyclodecane skeleton such as tricyclodecane dimethanol di (meth) acrylate having a long spacer and a short spacer are preferred.
Bifunctional (meth) acrylic acid derivatives include neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphorus Examples include acid di (meth) acrylate, di (acryloxyethyl) isocyanurate, and allylated cyclohexyl di (meth) acrylate.
 3官能の(メタ)アクリル酸誘導体としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
 4官能の(メタ)アクリル酸誘導体としては、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能の(メタ)アクリル酸誘導体としては、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能の(メタ)アクリル酸誘導体としては、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Trifunctional (meth) acrylic acid derivatives include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) ) Acrylate, tris (acryloxyethyl) isocyanurate and the like.
Examples of the tetrafunctional (meth) acrylic acid derivative include pentaerythritol tetra (meth) acrylate.
Examples of pentafunctional (meth) acrylic acid derivatives include propionic acid-modified dipentaerythritol penta (meth) acrylate.
Examples of the hexafunctional (meth) acrylic acid derivative include dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate.
 これらの中でも、硬化性単量体は、通常、耐熱性及び耐溶剤性の観点から、多官能型の単量体が好ましく、多官能の単量体としては、熱可塑性樹脂と混ざりやすく、かつ、重合物の硬化収縮が起こりにくく硬化物のカールが抑制できるという観点から、2官能(メタ)アクリル酸誘導体がさらに好ましい。 Among these, the curable monomer is usually preferably a polyfunctional monomer from the viewpoint of heat resistance and solvent resistance, and the polyfunctional monomer is easily mixed with a thermoplastic resin, and The bifunctional (meth) acrylic acid derivative is more preferable from the viewpoint that curing shrinkage of the polymer is less likely to curl the cured product.
 長スペーサー硬化性単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 同様に、短スペーサー硬化性単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
The long spacer curable monomer can be used singly or in combination of two or more.
Similarly, the short spacer curable monomers can be used singly or in combination of two or more.
(熱可塑性樹脂)
 本発明の下地層に用いる硬化性樹脂組成物には、熱可塑性樹脂を含むことが好ましい。
 熱可塑性樹脂は、特に限定されないが、非晶性熱可塑性樹脂が好ましい。非晶性熱可塑性樹脂を用いることで、透明性に優れる樹脂フィルムやガスバリア性積層体が得られ易くなる。
 ここで、非晶性熱可塑性樹脂とは、示差走査熱量測定において、融点が観測されない熱可塑性樹脂をいう。
(Thermoplastic resin)
The curable resin composition used for the underlayer of the present invention preferably contains a thermoplastic resin.
The thermoplastic resin is not particularly limited, but is preferably an amorphous thermoplastic resin. By using an amorphous thermoplastic resin, it becomes easy to obtain a resin film and a gas barrier laminate excellent in transparency.
Here, the amorphous thermoplastic resin refers to a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
 また、熱可塑性樹脂としては、耐熱性に優れる樹脂フィルムが得られ易いことから、芳香族環構造又は脂環式構造等の環構造を有する熱可塑性樹脂が好ましく、芳香族環構造を有する熱可塑性樹脂がより好ましい。 Moreover, as the thermoplastic resin, a thermoplastic resin having a ring structure such as an aromatic ring structure or an alicyclic structure is preferable because a resin film having excellent heat resistance is easily obtained, and a thermoplastic resin having an aromatic ring structure is preferable. A resin is more preferable.
 熱可塑性樹脂の具体例としては、ポリスルホン系樹脂、ポリアリレート系樹脂、ポリカーボネート系樹脂、及び脂環式炭化水素系樹脂等が挙げられる。これらの中でも、耐熱性および光学等方性に優れる樹脂フィルムが得られ易いことから、ポリスルホン系樹脂、及び脂環式炭化水素系樹脂が好ましい。 Specific examples of the thermoplastic resin include polysulfone resin, polyarylate resin, polycarbonate resin, and alicyclic hydrocarbon resin. Among these, a polysulfone resin and an alicyclic hydrocarbon resin are preferable because a resin film excellent in heat resistance and optical isotropy is easily obtained.
 ポリスルホン系樹脂は、主鎖中に、スルホン基を有する高分子である。ポリスルホン系樹脂としては、特に限定されず、公知のものが使用できる。ポリスルホン系樹脂は、例えば、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリフェニルスルホン樹脂等が挙げられる。また、本発明に用いるポリスルホン系樹脂は、変性ポリスルホン系樹脂であってもよい。これらの中で、ポリエーテルスルホン樹脂又はポリスルホン樹脂が好ましい。
 
The polysulfone resin is a polymer having a sulfone group in the main chain. The polysulfone resin is not particularly limited, and known ones can be used. Examples of the polysulfone resin include polyethersulfone resin, polysulfone resin, polyphenylsulfone resin, and the like. Further, the polysulfone resin used in the present invention may be a modified polysulfone resin. Among these, polyethersulfone resin or polysulfone resin is preferable.
 ポリアリレート系樹脂は、芳香族ジオールと芳香族ジカルボン酸又はそのクロライドとの反応により得られる高分子化合物からなる樹脂である。ポリアリレート系樹脂としては、特に限定されず、公知のものが使用できる。 The polyarylate resin is a resin made of a polymer compound obtained by a reaction between an aromatic diol and an aromatic dicarboxylic acid or a chloride thereof. The polyarylate resin is not particularly limited, and known ones can be used.
 ポリカーボネート系樹脂は、主鎖中にカーボネート基を有する高分子である。ポリカーボネート系樹脂としては、特に限定されず、公知のものが使用できる。ポリカーボネート系樹脂としては、芳香族ポリカーボネート樹脂や脂肪族ポリカーボネート樹脂等が挙げられる。なかでも、耐熱性、機械的強度、透明性等に優れることから、芳香族ポリカーボネート樹脂が好ましい。
 芳香族ポリカーボネート樹脂は、芳香族ジオールとカーボネート前駆体とを界面重縮合法や溶融エステル交換法で反応させる方法や、カーボネートプレポリマーを固相エステル交換法により重合させる方法や、環状カーボネート化合物の開環重合法により重合させる方法によって得ることができる。
The polycarbonate-based resin is a polymer having a carbonate group in the main chain. The polycarbonate resin is not particularly limited, and known resins can be used. Examples of the polycarbonate resin include aromatic polycarbonate resins and aliphatic polycarbonate resins. Of these, aromatic polycarbonate resins are preferred because of excellent heat resistance, mechanical strength, transparency, and the like.
Aromatic polycarbonate resins are prepared by reacting aromatic diols with carbonate precursors by interfacial polycondensation or melt transesterification, polymerizing carbonate prepolymers by solid phase transesterification, or opening cyclic carbonate compounds. It can be obtained by a method of polymerizing by a ring polymerization method.
 脂環式炭化水素系樹脂は、主鎖中に環状の炭化水素基を有する高分子である。脂環式炭化水素系樹脂としては、特に限定されず、公知のものが使用できる。脂環式炭化水素系樹脂としては、例えば、単環の環状オレフィン系重合体、ノルボルネン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。市販品としては、アペル(三井化学社製のエチレン-シクロオレフィン共重合体)、TOPAS(ポリプラスチックス社製、エチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
 熱可塑性樹脂は1種単独で、あるいは2種以上を組み合わせて用いることができる。
The alicyclic hydrocarbon-based resin is a polymer having a cyclic hydrocarbon group in the main chain. The alicyclic hydrocarbon-based resin is not particularly limited, and known ones can be used. Examples of the alicyclic hydrocarbon resins include monocyclic olefin polymers, norbornene polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. . Commercially available products include Apel (Mitsui Chemicals ethylene-cycloolefin copolymer), TOPAS (Polyplastics company, ethylene-cycloolefin copolymer), Arton (JSR company norbornene polymer), Zeonoa (norbornene polymer manufactured by Nippon Zeon Co., Ltd.) and the like can be mentioned.
A thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
 ガスバリア層が硬化した塗膜である場合に、塗膜を乾燥させる際の温度条件における耐熱性の観点から、熱可塑性樹脂は、ガラス転移温度(Tg)が130℃を超えることが好ましく、135℃以上であることがより好ましい。
 ここでガラス転移温度(Tg)は、粘弾性測定(周波数11Hz、昇温速度3℃/分で0~250℃の範囲で引張モードによる測定)により得られたtanδ(損失弾性率/貯蔵弾性率)の最大点の温度をいう。
 熱可塑性樹脂(A)の重量平均分子量(Mw)は、通常、100,000~3,000,000、好ましくは200,000~2,000,000、より好ましくは500,000~2,000,000の範囲である。また、分子量分布(Mw/Mn)は、好ましくは、1.0~5.0、より好ましくは、2.0~4.5の範囲である。重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。
When the gas barrier layer is a cured coating film, from the viewpoint of heat resistance in the temperature conditions when drying the coating film, the thermoplastic resin preferably has a glass transition temperature (Tg) exceeding 130 ° C, and 135 ° C. More preferably.
Here, the glass transition temperature (Tg) is tan δ (loss elastic modulus / storage elastic modulus) obtained by viscoelasticity measurement (frequency 11 Hz, temperature measurement rate 0 ° C to 250 ° C and tensile mode in the range of 0 ° C to 250 ° C). ) Is the maximum point temperature.
The weight average molecular weight (Mw) of the thermoplastic resin (A) is usually 100,000 to 3,000,000, preferably 200,000 to 2,000,000, more preferably 500,000 to 2,000,000. 000 range. The molecular weight distribution (Mw / Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5. The weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are values in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
 硬化性樹脂組成物中において、該硬化性単量体と熱可塑性樹脂との含有量は、質量比で、好ましくは、硬化性単量体:熱可塑性樹脂=70:30~10:90、より好ましくは、65:35~20:80である。
 硬化性単量体と熱可塑性樹脂との質量比が上記の範囲であれば、耐溶剤性、又はフレキシブル性が得やすくなる。
 本発明の範囲に含まれる長スペーサー硬化性単量体と短スペーサー硬化性単量体を同時に用い、かつ、長スペーサー硬化性単量体のアルキレン基及びオキシアルキレン基のそれぞれの炭素数の合計が28以上である場合、ガスバリア性積層体のフレキシブル性と下地層の耐溶剤性の両立の観点から、それぞれの硬化性単量体との質量比は、好ましくは、長スペーサー硬化性単量体:短スペーサー硬化性単量体=80:20~20:80、より好ましくは、70:30~30:70、さらに好ましくは、60:40~40:60である。
 また、長スペーサー硬化性単量体のアルキレン基及びオキシアルキレン基のそれぞれの炭素数の合計が27以下である場合には、ガスバリア性積層体のフレキシブル性と下地層の耐溶剤性の両立の観点から、それぞれの硬化性単量体との質量比は、好ましくは、長スペーサー硬化性単量体:短スペーサー硬化性単量体=100:0~60:40、より好ましくは、100:0~70:30であることが好ましい。
 硬化性樹脂組成物中の硬化性単量体と熱可塑性樹脂とが上記質量比を満たし、かつ長スペーサー硬化性単量体と短スペーサー硬化性単量体との質量比が上記の範囲にあると、下地層は耐溶剤性を維持したままフレキシブル性が得やすくなる。
 また、硬化性樹脂組成物中の硬化性単量体の含有量が上記範囲であれば、例えば、硬化樹脂層を溶液キャスト法等によって得る場合、効率よく溶媒を除去することができるため、乾燥工程の長時間化によるカールの発生の問題が解消される。
In the curable resin composition, the content of the curable monomer and the thermoplastic resin is, in mass ratio, preferably curable monomer: thermoplastic resin = 70: 30 to 10:90, Preferably, it is 65:35 to 20:80.
When the mass ratio between the curable monomer and the thermoplastic resin is in the above range, solvent resistance or flexibility is easily obtained.
The long spacer curable monomer and the short spacer curable monomer included in the scope of the present invention are used at the same time, and the total number of carbon atoms of the alkylene group and the oxyalkylene group of the long spacer curable monomer is When it is 28 or more, from the viewpoint of achieving both the flexibility of the gas barrier laminate and the solvent resistance of the underlayer, the mass ratio with each curable monomer is preferably a long spacer curable monomer: Short spacer curable monomer = 80: 20 to 20:80, more preferably 70:30 to 30:70, and still more preferably 60:40 to 40:60.
Moreover, when the total number of carbon atoms of the alkylene group and oxyalkylene group of the long spacer curable monomer is 27 or less, the viewpoint of both the flexibility of the gas barrier laminate and the solvent resistance of the underlayer Therefore, the mass ratio of each curable monomer is preferably long spacer curable monomer: short spacer curable monomer = 100: 0 to 60:40, more preferably 100: 0 to 70:30 is preferred.
The curable monomer and the thermoplastic resin in the curable resin composition satisfy the above mass ratio, and the mass ratio of the long spacer curable monomer and the short spacer curable monomer is in the above range. Then, the base layer is easy to obtain flexibility while maintaining the solvent resistance.
Further, if the content of the curable monomer in the curable resin composition is in the above range, for example, when the cured resin layer is obtained by a solution casting method or the like, the solvent can be efficiently removed, so The problem of curling due to long process time is eliminated.
 本発明に用いる硬化性樹脂組成物においては、重合開始剤を含有させることができる。重合開始剤は、硬化反応を開始させるものであれば、特に制限なく用いることができ、例えば、熱重合開始剤や光重合開始剤が挙げられる。 In the curable resin composition used in the present invention, a polymerization initiator can be contained. The polymerization initiator can be used without particular limitation as long as it initiates the curing reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
 熱重合開始剤としては、有機過酸化物やアゾ系化合物が挙げられる。
 有機過酸化物としては、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類;アセチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド類;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール類;t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド等のヒドロパーオキサイド類;t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシエステル類;等が挙げられる。
 アゾ系化合物としては、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。
Examples of the thermal polymerization initiator include organic peroxides and azo compounds.
Examples of organic peroxides include dialkyl peroxides such as di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide; diacyl peroxides such as acetyl peroxide, lauroyl peroxide, and benzoyl peroxide. ; Ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide; peroxyketals such as 1,1-bis (t-butylperoxy) cyclohexane; T-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropyl Hydroperoxides such as benzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide; t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, t-butylperoxide Peroxyesters such as oxybenzoate and t-butylperoxyisopropyl carbonate;
Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropionitrile), 2,2′-azobis (2 , 4-dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2- (carbamoylazo) ) Isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
 光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル]チタニウム等のチタノセン系光重合開始剤;1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル系光重合開始剤;ベンゾフェノン、p-クロロベンゾフェノン、ベンゾイル安息香酸、o-ベンゾイル安息香酸メチル、4-メチルベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-(13-アクリロイル-1,4,7,10,13-ペンタオキサトリデシル)-ベンゾフェノン等のベンゾフェノン系光重合開始剤;チオキサントン、2-クロロチオキサントン、3-メチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン系光重合開始剤;等が挙げられる。 Photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2 -Methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Amino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpho Alkylphenone-based photopolymerization initiators such as nyl) phenyl] -1-butanone; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethyl (2 , 4,6-trimethylbenzoyl) -phenylphosphinate, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, etc .; -Titanocene photopolymerization initiator such as cyclopentadien-1-yl) -bis [2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl] titanium; 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone-1- [9-ethyl-6- Oxime ester photopolymerization initiators such as (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime); benzophenone, p-chlorobenzophenone, benzoylbenzoic acid, o-benzoylbenzoic acid Methyl, 4-methylbenzophenone, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3'-dimethyl-4-methoxybenzophenone, 2,4,6-trimethyl Benzophenone photopolymerization initiators such as benzophenone and 4- (13-acryloyl-1,4,7,10,13-pentaoxatridecyl) -benzophenone; thioxanthone, 2-chlorothioxanthone, 3-methylthioxanthone, 2,4 -Dimethyl Thioxanthone photopolymerization initiators such as thioxanthone, 2,4-diisopropylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone; Can be mentioned.
 上記の光重合開始剤の中でも、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤が好ましい。
 重合開始剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Among the above photopolymerization initiators, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethyl (2,4,6-trimethylbenzoyl)- Phosphorus photopolymerization initiators such as phenylphosphinate and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide are preferred.
A polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
 重合開始剤の含有量は、硬化性樹脂組成物全体に対して、0.05~15質量%が好ましく、0.05~10質量%がより好ましく、0.05~5質量%がさらに好ましい。 The content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and still more preferably 0.05 to 5% by mass with respect to the entire curable resin composition.
 前記硬化性樹脂組成物の調製に用いる溶媒としては、特に制限されず、例えば、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、塩化エチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、プロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;エチルセロソルブ等のセロソルブ系溶剤;1,3-ジオキソラン等のエーテル系溶媒;等が挙げられる。 The solvent used for the preparation of the curable resin composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; dichloromethane Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, 2 -Ketone solvents such as pentanone, isophorone and cyclohexanone; ester solvents such as ethyl acetate and butyl acetate; cellosolv solvents such as ethyl cellosolve; ether solvents such as 1,3-dioxolane;
 前記硬化性樹脂組成物中に含まれる熱可塑性樹脂に対する溶媒の含有量は、特に限定されないが、熱可塑性樹脂1gに対し、通常、0.1~1000g、好ましくは、1~100gである。溶媒の量を調節することによって、硬化性樹脂組成物の粘度を適宜なものに調節することができる。 The content of the solvent with respect to the thermoplastic resin contained in the curable resin composition is not particularly limited, but is usually 0.1 to 1000 g, preferably 1 to 100 g with respect to 1 g of the thermoplastic resin. By adjusting the amount of the solvent, the viscosity of the curable resin composition can be adjusted appropriately.
 また、前記硬化性樹脂組成物は、本発明の目的、効果を損なわない範囲内で、可塑剤、酸化防止剤、紫外線吸収剤等の、公知の添加剤をさらに含有していてもよい。
 前記硬化性樹脂組成物を硬化させる方法は、用いる重合開始剤や硬化性単量体の種類に応じて適宜決定することができる。
Moreover, the said curable resin composition may further contain well-known additives, such as a plasticizer, antioxidant, and an ultraviolet absorber, in the range which does not impair the objective and effect of this invention.
The method for curing the curable resin composition can be appropriately determined according to the type of polymerization initiator and curable monomer used.
 前記硬化性樹脂組成物中の硬化性単量体、熱可塑性樹脂、及び重合開始剤の含有量の合計量は、硬化性樹脂組成物全量に対し、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは90%以上である。但し、可塑剤を有する場合は除く。 The total content of the curable monomer, the thermoplastic resin, and the polymerization initiator in the curable resin composition is preferably 50% or more, more preferably 70%, based on the total amount of the curable resin composition. More preferably, it is 90% or more. However, it excludes when it has a plasticizer.
 本発明のガスバリア性積層体の下地層の厚さは、特に限定されず、用途に応じて適宜決定すればよい。下地層の厚さは、通常、0.05~100μm、好ましくは0.1~50μm、より好ましくは、0.5~30μm、さらに好ましくは3~15μmである。 The thickness of the base layer of the gas barrier laminate of the present invention is not particularly limited, and may be appropriately determined depending on the application. The thickness of the underlayer is usually 0.05 to 100 μm, preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and further preferably 3 to 15 μm.
 前記下地層の破断伸度が、好ましくは3.5%以上であり、より好ましくは4.5%以上であり、さらに好ましくは6.0%以上である。下地層の破断伸度がこの範囲にあれば、優れたフレキシブル性が得やすい。下地層を形成するための硬化性樹脂組成物中における該硬化性単量体と熱可塑性樹脂との含有量について、熱可塑性樹脂の含有量比率を増加させると、下地層の破断伸度が上昇することがある。しかしながら、硬化性単量体が長スペーサー硬化性単量体を含まない場合には、熱可塑性樹脂の含有量比率を増やしたとしても、下地層の破断伸度をこのような高い範囲とすることは容易ではない。本発明では、硬化性単量体が長スペーサー硬化性単量体を含むために、下地層の破断伸度をこのような高い範囲に調整することが可能である。 The elongation at break of the underlayer is preferably 3.5% or more, more preferably 4.5% or more, and further preferably 6.0% or more. If the elongation at break of the underlayer is within this range, excellent flexibility is easily obtained. Increasing the thermoplastic resin content ratio of the curable monomer and the thermoplastic resin in the curable resin composition for forming the underlayer increases the elongation at break of the underlayer. There are things to do. However, when the curable monomer does not contain a long spacer curable monomer, even if the content ratio of the thermoplastic resin is increased, the elongation at break of the underlayer should be in such a high range. Is not easy. In the present invention, since the curable monomer contains a long spacer curable monomer, the breaking elongation of the underlayer can be adjusted to such a high range.
 前記下地層は、耐溶剤性を付与されたものであることが好ましい。前記下地層が耐溶剤性を有する場合、例えば、下地層表面に他の層を形成する際に有機溶剤を用いる場合であっても、下地層表面に存在する成分が、当該他の層に移行することを抑制することができる。したがって、例えば、下地層表面に、有機溶剤、例えば、キシレン等を含む樹脂溶液を用いてガスバリア層を形成する場合であっても、下地層の成分がガスバリア層に混入しにくいため、ガスバリア性が低下しにくい。 The base layer is preferably provided with solvent resistance. When the underlayer has solvent resistance, for example, even when an organic solvent is used to form another layer on the surface of the underlayer, components existing on the underlayer surface migrate to the other layer. Can be suppressed. Therefore, for example, even when the gas barrier layer is formed on the surface of the underlayer using a resin solution containing an organic solvent such as xylene, the gas barrier property is reduced because the components of the underlayer are not easily mixed into the gas barrier layer. It is hard to decline.
<ガスバリア層>
 ガスバリア層は、ガスバリア性を有する限り、材質等は特に限定されない。例えば、ガスバリア層としては、気相成膜無機層、ポリビニルアルコール等のガスバリア性樹脂層、高分子化合物を含む層に改質処理をして得られる層が挙げられる。
 また、本発明のガスバリア層は、気相成膜無機層のように蒸着、スパッタリング等により得られるものであってもよいし、塗膜を硬化したものであってもよいが、ガスバリア性積層体のフレキシブル性をさらに高める観点からは、ガスバリア層が、硬化した塗膜であることが好ましい。
 本発明では、ガスバリア層は、厚さが薄く、ガスバリア性に優れる層を効率よく形成できることから、気相成膜無機層、及び高分子化合物が好ましい。また、ガスバリア層は、塗膜を硬化して得ることに適しており、ガスバリア性の高いガスバリア性積層体が得られ易い、高分子化合物を含む層にイオン注入等の改質処理を施したものであることがより好ましい。また、別の態様として、下地層の耐溶剤性が十分でない場合には、ガスバリア層は気相成膜無機層であることが好ましい。
<Gas barrier layer>
The material of the gas barrier layer is not particularly limited as long as it has gas barrier properties. For example, examples of the gas barrier layer include a vapor-phase film-forming inorganic layer, a gas barrier resin layer such as polyvinyl alcohol, and a layer obtained by modifying a layer containing a polymer compound.
Further, the gas barrier layer of the present invention may be obtained by vapor deposition, sputtering, etc. like a vapor-phase film-forming inorganic layer, or may be one obtained by curing a coating film. From the viewpoint of further improving the flexibility, it is preferable that the gas barrier layer is a cured coating film.
In the present invention, the gas barrier layer is preferably a vapor-phase film-forming inorganic layer and a polymer compound because the gas barrier layer is thin and can efficiently form a layer having excellent gas barrier properties. In addition, the gas barrier layer is suitable for obtaining a cured coating film, and it is easy to obtain a gas barrier laminate having a high gas barrier property, and a layer containing a polymer compound is subjected to a modification treatment such as ion implantation. It is more preferable that Moreover, as another aspect, when the solvent resistance of the underlayer is not sufficient, the gas barrier layer is preferably a vapor-deposited inorganic layer.
 ガスバリア層の厚さは、ガスバリア性と取り扱い性の観点から適宜調整され用いられるが、通常10~2000nm、好ましくは20~1000nm、より好ましくは30~500nm、さらに好ましくは40~200nmの範囲である。 The thickness of the gas barrier layer is appropriately adjusted and used from the viewpoints of gas barrier properties and handleability, but is usually in the range of 10 to 2000 nm, preferably 20 to 1000 nm, more preferably 30 to 500 nm, and still more preferably 40 to 200 nm. .
 ガスバリア層は、単層のガスバリア層を積層したものであってもよく、その場合、単層のガスバリア層の厚さは好ましくは10~600nm、より好ましくは30~500nmである。 The gas barrier layer may be a laminate of single gas barrier layers, in which case the thickness of the single gas barrier layer is preferably 10 to 600 nm, more preferably 30 to 500 nm.
 気相成膜無機層を構成する無機物としては、特に制限されず、例えば、アルミニウム、マグネシウム、亜鉛、及びスズ等の金属;酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。 The inorganic substance constituting the vapor-phase film-forming inorganic layer is not particularly limited, and examples thereof include metals such as aluminum, magnesium, zinc, and tin; silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and the like. Inorganic oxides; inorganic nitrides such as silicon nitride, aluminum nitride, titanium nitride; inorganic carbides; inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides Can be mentioned. These can be used singly or in combination of two or more.
 気相成膜無機層を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。 As a method for forming a vapor phase inorganic layer, a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, or a photo CVD method is used. The CVD method such as the method may be mentioned.
 硬化した塗膜であるガスバリア層を形成する方法としては、例えば、ガスバリア層の材料として高分子化合物等を含む溶液を、公知の塗布方法により、塗布し、得られた塗膜を適宜乾燥する方法が挙げられる。 As a method of forming a gas barrier layer that is a cured coating film, for example, a method of applying a solution containing a polymer compound or the like as a material of the gas barrier layer by a known coating method, and appropriately drying the obtained coating film Is mentioned.
 高分子化合物を含む層に改質処理を施した層の形成に用いる高分子化合物としては、ケイ素含有高分子化合物が好ましく、ケイ素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。これらの中でも、優れたガスバリア性を有するガスバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。 As a high molecular compound used for forming a layer obtained by subjecting a layer containing a high molecular compound to a modification treatment, a silicon-containing high molecular compound is preferable, and as a silicon-containing high molecular compound, a polysilazane compound, a polycarbosilane compound, Examples include polysilane compounds and polyorganosiloxane compounds. Among these, a polysilazane compound is preferable from the viewpoint of forming a gas barrier layer having excellent gas barrier properties.
 ポリシラザン系化合物としては、ペルヒドロポリシラザン等の無機ポリシラザンや、ペルヒドロポリシラザンの水素の一部又は全部がアルキル基等の有機基で置換された有機ポリシラザンが挙げられる。これらのポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせてもよい。
 また、ポリシラザン系化合物は、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
Examples of the polysilazane compound include inorganic polysilazanes such as perhydropolysilazane, and organic polysilazanes in which part or all of hydrogen in perhydropolysilazane is substituted with an organic group such as an alkyl group. These polysilazane compounds may be used alone or in combination of two or more.
In addition, as the polysilazane compound, a commercially available product as a glass coating material or the like can be used as it is.
 前記高分子化合物を含む層は、上述した高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、硬化剤、他の高分子、老化防止剤、光安定剤、難燃剤等が挙げられる。 The layer containing the polymer compound may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired. Examples of other components include curing agents, other polymers, anti-aging agents, light stabilizers, and flame retardants.
 改質処理としては、イオン注入処理のほか、プラズマ処理、紫外線照射処理等が挙げられる。 Examples of the modification treatment include ion treatment, plasma treatment, ultraviolet irradiation treatment, and the like.
 イオン注入処理において、高分子化合物を含む層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;金、銀等の導電性の金属のイオン;シラン(SiH)又は有機ケイ素化合物のイオン;等が挙げられる。
 これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いてもよい。
 この中でも、より簡便に注入することができ、特に優れたガスバリア性を有するガスバリア層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトンからなる群から選ばれる少なくとも一種のイオンが好ましい。
In the ion implantation process, ions implanted into the layer containing the polymer compound include ions of rare gases such as argon, helium, neon, krypton, and xenon; fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur Ions of alkane gases such as methane and ethane; ions of alkene gases such as ethylene and propylene; ions of alkadiene gases such as pentadiene and butadiene; alkyne gases such as acetylene and methylacetylene Ions of aromatic hydrocarbon gases such as benzene and toluene; ions of cycloalkane gases such as cyclopropane and cyclohexane; ions of cycloalkene gases such as cyclopentene and cyclohexene; gold, silver, etc. conductive metal ion; silane (SiH 4) the Ions of the organic silicon compound; and the like.
These ions may be used alone or in combination of two or more.
Among these, at least selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton, because it can be more easily injected and a gas barrier layer having particularly excellent gas barrier properties can be obtained. One kind of ion is preferred.
 ケイ素含有高分子化合物を含む層に注入されるイオンの注入量は、形成するガスバリアフィルムの使用目的等に合わせて適宜決定すればよい。 What is necessary is just to determine suitably the injection quantity of the ion inject | poured into the layer containing a silicon-containing high molecular compound according to the intended purpose etc. of the gas barrier film to form.
 ケイ素含有高分子化合物を含む層にイオンを注入する方法としては、特に限定されないが、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便にガスバリア層が得られることから、後者のプラズマイオンを注入する方法が好ましい。 The method for implanting ions into the layer containing a silicon-containing polymer compound is not particularly limited, and examples include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like. Among them, in the present invention, the latter method of implanting plasma ions is preferable because a gas barrier layer can be easily obtained.
 プラズマイオン注入法としては、特に限定されず、外部電界を用いて発生させたプラズマ中に存在するイオンを注入する方法、外部電界を用いることなく負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを注入する方法等の公知の方法が挙げられる。 The plasma ion implantation method is not particularly limited, and is a method of implanting ions existing in plasma generated using an external electric field, or a plasma generated only by an electric field generated by a negative high voltage pulse without using an external electric field. Known methods such as a method of implanting ions present therein can be mentioned.
 紫外線照射処理に用いられる紫外線としては、例えば、真空紫外光が挙げられる。
 真空紫外光を照射して改質する紫外線照射処理としては、例えば、特開2017-095758号公報等に記載の方法を採用することができる。
Examples of the ultraviolet rays used for the ultraviolet irradiation treatment include vacuum ultraviolet light.
As the ultraviolet irradiation treatment for modifying by irradiation with vacuum ultraviolet light, for example, a method described in JP-A-2017-095758 can be employed.
 本発明のガスバリア性積層体は、さらに、他の層を有するものであってもよい。
 他の層としては、例えば、溶解防止層、工程シート、接着剤層が挙げられる。
The gas barrier laminate of the present invention may further have other layers.
Examples of the other layers include a dissolution preventing layer, a process sheet, and an adhesive layer.
 前記下地層の耐溶剤性が十分でない場合、前記下地層とガスバリア層との間に、溶解防止層を設けてもよい。溶解防止層は、耐溶剤性の高い層であれば特に限定されないが、無機物から形成された層や、上述の短スペーサー硬化性単量体を樹脂成分の主成分とする硬化性組成物から形成された層等が挙げられる。ガスバリア性積層体のフレキシブル性を得易くする観点から、溶解防止層の厚さは、下地層の厚さの0.3倍以下であることが好ましく、0.2倍以下であることがより好ましい。 If the solvent resistance of the underlayer is not sufficient, a dissolution preventing layer may be provided between the underlayer and the gas barrier layer. The dissolution preventing layer is not particularly limited as long as it has a high solvent resistance, but it is formed from a layer formed from an inorganic material or a curable composition containing the short spacer curable monomer as a main component of the resin component. And the like. From the viewpoint of easily obtaining the flexibility of the gas barrier laminate, the thickness of the dissolution preventing layer is preferably not more than 0.3 times, more preferably not more than 0.2 times the thickness of the underlayer. .
 工程シートは、例えば、下地層を形成する場合の支持体の役割、また、工程内等で下地層をハンドリング、運搬、保管等する際に、下地層を保護する役割を有し、下地層が使用される際には剥離されるものである。
 工程シートとしては、特に限定されず、紙;ポリエチレンテレフタレート等のプラスチックフィルム;ガラス等が挙げられる。
 また、工程シートとしては、取り扱い易さの点から、紙や、プラスチックフィルム上に剥離剤層を設けたものであってもよい。剥離層は、シリコーン系剥離剤、フッ素系剥離剤、アルキッド系剥離剤、オレフィン系剥離剤等、従来公知の剥離剤を用いて形成することができる。
 剥離剤層の厚さは、特に制限されないが、通常、0.02~2.0μm、好ましくは0.05~1.5μmである。
The process sheet, for example, has a role of a support when forming the underlayer, and also has a role of protecting the underlayer when handling, transporting, storing, etc. in the process. It is peeled off when used.
It does not specifically limit as a process sheet, Paper; Plastic films, such as a polyethylene terephthalate; Glass etc. are mentioned.
Moreover, as a process sheet | seat, what provided the release agent layer on the paper or the plastic film from the point of the ease of handling may be sufficient. The release layer can be formed using a conventionally known release agent such as a silicone release agent, a fluorine release agent, an alkyd release agent, or an olefin release agent.
The thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 μm, preferably 0.05 to 1.5 μm.
 工程シートの厚さは、取り扱い易さの点から、1~500μmが好ましく、5~300μmがより好ましい。 The thickness of the process sheet is preferably 1 to 500 μm and more preferably 5 to 300 μm from the viewpoint of ease of handling.
 工程シート上に、本発明に用いた硬化性樹脂組成物を塗工する方法は特に制限されない。例えば、バーコート法、スピンコート法、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等、公知の方法を利用することができる。得られた塗膜を乾燥する方法は特に制限されない。例えば、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、公知の乾燥方法を利用することができる。
 塗膜の乾燥温度は、使用する溶媒等により適宜調整するが、通常、30~150℃、好ましくは、50~100℃である。加熱時間は、通常、数秒から数十分である。
 なお、工程シート上に下地層を形成する方法はこれに限られず、例えば、別途形成した下地層を工程シート上に転移させることによって工程シート上に下地層を得てもよい。
The method for applying the curable resin composition used in the present invention on the process sheet is not particularly limited. For example, bar coating method, spin coating method, dipping method, roll coating method, gravure coating method, knife coating method, air knife coating method, roll knife coating method, die coating method, screen printing method, spray coating method, gravure offset method, etc. Known methods can be used. The method for drying the obtained coating film is not particularly limited. For example, a known drying method such as a hot air drying method, a hot roll drying method, or an infrared irradiation method can be used.
The drying temperature of the coating film is appropriately adjusted depending on the solvent used and the like, but is usually 30 to 150 ° C., preferably 50 to 100 ° C. The heating time is usually several seconds to several tens of minutes.
In addition, the method of forming a base layer on a process sheet is not restricted to this, For example, you may obtain a base layer on a process sheet by transferring the base layer formed separately on a process sheet.
 接着剤層は、例えば、他の樹脂フィルムや、被着体等に貼着する際に用いることができる。ガスバリア性積層体の封止性能を最大限に発揮する観点から、ガスバリア層が被封止物になるべく近いことが好ましいため、接着剤層はガスバリア層における下地層が積層されている側と反対の側に積層されることが好ましい。また、ガスバリア層と接着剤層の間に介在する層は、層間接着性向上のために用いられる接着性向上層など、最小限にとどめることが好ましい。この場合、ガスバリア性積層体の使用時までの接着剤層の保護のため、接着剤層のガスバリア層が積層されている側と反対の側に剥離フィルムを設けてもよい。
 このような本発明の一態様であるガスバリア性積層体が有する層構成としては、例えば、以下に示す態様が挙げられる。
 ・工程シート/下地層/ガスバリア層/接着剤層/剥離フィルム
 ・工程シート/下地層/溶解防止層/ガスバリア層/接着剤層/剥離フィルム
 前記した層構成の態様は、ガスバリア性積層体を封止材として使用する前の状態を表したものである。
 ガスバリア性積層体を封止材として使用する際には、通常、剥離フィルムを剥離除去し、露出した接着剤層の面と被封止物の面とを接着させて封止体を得るものである。また、封止材の接着剤層の面と被封止物の面とを接着させた後には、通常、工程シートを剥離除去し、下地層を露出させて以下に示す層構成とすることができる。
 ・下地層/ガスバリア層/接着剤層
 ・下地層/溶解防止層/ガスバリア層/接着剤層
 なお、工程シートは、上述のとおり、下地層がガスバリア性積層体の支持体としての機能を十分有していない場合に、剥離除去されるまでの間、ガスバリア性積層体の支持体または保護材として機能する。
The adhesive layer can be used, for example, when it is attached to another resin film or an adherend. From the viewpoint of maximizing the sealing performance of the gas barrier laminate, it is preferable that the gas barrier layer be as close as possible to the object to be sealed. Therefore, the adhesive layer is opposite to the side of the gas barrier layer on which the base layer is laminated. It is preferable to be laminated on the side. Further, it is preferable that the layer interposed between the gas barrier layer and the adhesive layer is kept to a minimum, such as an adhesion improving layer used for improving interlayer adhesion. In this case, in order to protect the adhesive layer until the gas barrier laminate is used, a release film may be provided on the side of the adhesive layer opposite to the side on which the gas barrier layer is laminated.
Examples of the layer structure of the gas barrier laminate that is one embodiment of the present invention include the following embodiments.
Process sheet / underlayer / gas barrier layer / adhesive layer / release film Process sheet / underlayer / dissolution-preventing layer / gas barrier layer / adhesive layer / release film The mode of the layer configuration described above seals the gas barrier laminate. The state before using as a stop material is represented.
When the gas barrier laminate is used as a sealing material, the release film is usually peeled and removed, and the exposed adhesive layer surface and the surface of the object to be sealed are bonded to obtain a sealed body. is there. In addition, after bonding the surface of the adhesive layer of the sealing material and the surface of the object to be sealed, the process sheet is usually peeled and removed, and the underlying layer is exposed to form the layer structure shown below. it can.
・ Underlayer / Gas barrier layer / Adhesive layer ・ Underlayer / Dissolution prevention layer / Gas barrier layer / Adhesive layer As mentioned above, the process sheet has a sufficient function as a support for the gas barrier laminate as described above. If not, it functions as a support or protective material for the gas barrier laminate until it is peeled off.
 また、接着剤層は、本発明のガスバリア性積層体において複数のガスバリア性積層体が、接着剤層を介在して積層されることに用いられてもよい。
 この場合のガスバリア性積層体の構成は、特に限定されない。例えば、下地層とガスバリア層からなるガスバリア性積層体を2枚積層する場合、ガスバリア性積層体の構成としては下記に示すものが挙げられる。
(下地層/ガスバリア層/接着剤層/下地層/ガスバリア層)
(下地層/ガスバリア層/接着剤層/ガスバリア/下地層)
(ガスバリア層/下地層/接着剤層/下地層/ガスバリア層)
The adhesive layer may be used in the gas barrier laminate of the present invention in which a plurality of gas barrier laminates are laminated with the adhesive layer interposed.
The configuration of the gas barrier laminate in this case is not particularly limited. For example, when two gas barrier laminates comprising a base layer and a gas barrier layer are laminated, examples of the configuration of the gas barrier laminate include the following.
(Underlayer / Gas barrier layer / Adhesive layer / Underlayer / Gas barrier layer)
(Underlayer / Gas barrier layer / Adhesive layer / Gas barrier / Underlayer)
(Gas barrier layer / Under layer / Adhesive layer / Under layer / Gas barrier layer)
 接着剤層の形成材料は特に限定されず、熱硬化性の接着剤、感湿性接着剤、ヒートシール性の接着剤、粘着剤(感圧接着剤)等を用いることができる。これらのうちでも、接着のために特段の処理を必要としない粘着剤が好ましい。粘着剤としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられる。
 粘着剤層の形成方法は特に限定されず、公知の方法を利用することができる。
 粘着剤層の厚さは、通常0.5~200μm、好ましくは1~100μmである。
 上記の剥離フィルムとしては、上述の工程シートと同じものを用いることができる。
The material for forming the adhesive layer is not particularly limited, and a thermosetting adhesive, a moisture sensitive adhesive, a heat sealable adhesive, a pressure sensitive adhesive (pressure sensitive adhesive), and the like can be used. Among these, an adhesive that does not require special treatment for adhesion is preferable. Examples of the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives.
The formation method of an adhesive layer is not specifically limited, A well-known method can be utilized.
The thickness of the pressure-sensitive adhesive layer is usually 0.5 to 200 μm, preferably 1 to 100 μm.
As said peeling film, the same thing as the above-mentioned process sheet can be used.
 本発明のガスバリア性積層体がガスバリア性を有することは、ガスバリア積層体の水蒸気透過率の値から確認できる。
 ガスバリア性積層体の、40℃、相対湿度90%雰囲気下における水蒸気透過率は、通常1g・m-2・day-1以下であり、好ましくは0.8g・m-2・day-1以下であり、より好ましくは0.5g・m-2・day-1以下であり、さらに好ましくは0.1g・m-2・day-1以下である。なお、水蒸気透過率は、実施例の評価方法のように公知の方法で測定することができる。
It can be confirmed from the value of the water vapor transmission rate of the gas barrier laminate that the gas barrier laminate of the present invention has gas barrier properties.
The water vapor permeability of the gas barrier laminate in an atmosphere of 40 ° C. and 90% relative humidity is usually 1 g · m −2 · day −1 or less, preferably 0.8 g · m −2 · day −1 or less. More preferably 0.5 g · m −2 · day −1 or less, and still more preferably 0.1 g · m −2 · day −1 or less. The water vapor transmission rate can be measured by a known method like the evaluation method of the examples.
[封止体]
 本発明の封止体は、被封止物を、本発明のガスバリア性積層体を封止材として、封止されてなるものである。
 被封止物としては、有機EL素子、有機ELディスプレイ素子、無機EL素子、無機ELディスプレイ素子、電子ペーパー素子、液晶ディスプレイ素子、及び太陽電池素子からなる群より選択される少なくとも1種が挙げられる。
[Sealed body]
The sealing body of the present invention is formed by sealing an object to be sealed using the gas barrier laminate of the present invention as a sealing material.
Examples of the object to be sealed include at least one selected from the group consisting of organic EL elements, organic EL display elements, inorganic EL elements, inorganic EL display elements, electronic paper elements, liquid crystal display elements, and solar cell elements. .
(封止体の作製方法)
 本発明の封止体の作製方法は、特に限定されないが、例えば、封止材とする本発明のガスバリア性積層体が、以下に示す態様であった場合には、先ず工程シートを剥離除去し、露出した接着剤層の面と被封止物の面とを貼り合わせ、所望の条件で接着させて封止体を得るものである。
 ・工程シート/下地層/溶解防止層/ガスバリア層/接着剤層/剥離フィルム
 通常、工程シートは、接着剤層の面と被封止物の面とを接着させた後には、剥離除去される。
 このような封止体の作製方法によれば、下地層がガスバリア性フィルムの支持体としての機能を十分有していない場合であっても、すなわち、下地層の厚さが非常に薄い場合等であっても、工程シートが剥離除去されるまでの間、工程シートがガスバリア性フィルムの支持体として機能するため、ガスバリア性積層体の破断や変形が防止され、取り扱い性に優れる。
(Method for producing sealing body)
The method for producing the encapsulant of the present invention is not particularly limited. For example, when the gas barrier laminate of the present invention used as an encapsulant has the following mode, the process sheet is first peeled and removed. The surface of the exposed adhesive layer and the surface of the object to be sealed are bonded together and bonded under desired conditions to obtain a sealed body.
Process sheet / underlayer / dissolution prevention layer / gas barrier layer / adhesive layer / release film Normally, the process sheet is peeled and removed after bonding the surface of the adhesive layer and the surface of the object to be sealed. .
According to such a method for producing a sealing body, even when the underlayer does not have a sufficient function as a support for the gas barrier film, that is, when the underlayer is very thin, etc. Even so, since the process sheet functions as a support for the gas barrier film until the process sheet is peeled and removed, the gas barrier laminate is prevented from being broken or deformed, and the handleability is excellent.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例及び比較例で作製した下地層単層の耐溶剤性、光学等方性、またガスバリア性積層体の水蒸気透過率(WVTR)、破断伸度の評価は、以下の方法で行った。 Evaluation of the solvent resistance, optical isotropy, and water vapor transmission rate (WVTR) and elongation at break of the gas barrier laminate were performed by the following methods.
(1)耐溶剤性
 下地層を25mm×25mmの試験片に裁断し、試験片をキシレン溶媒中に2分間浸漬させ、浸漬前後の試験片の変化を目視により観察し、下記の基準に従い耐溶剤性を評価した。
○:変化なし。
△:若干のカールがみられるが、実用上問題ない。
×:白化、膨潤、カール等、外形変化が生じる。
(2)光学等方性
 下地層を10mm×10mmの試験片に裁断し、下地層の面内位相差(リターデーション)を、位相差測定装置(Oji Scientific Instruments社製、KOBRA-WR)を用い測定し、下記の基準に従い光学等方性を評価した。
○:リターデーション値が10nm未満
×:リターデーション値が10nm以上
(3)水蒸気透過率(WVTR)
 ガスバリア性積層体を50cmの面積の円形状の試験片に裁断し、水蒸気透過率測定装置(MOCON社製、装置名:AQUATRAN)を用い、40℃90%RH条件下にてガス流量20sccmで水蒸気透過率(g・m-2・day-1)を測定した。なお、測定装置の検出下限は0.0005g・m-2・day-1である。ガスバリア性積層体は、下地層を形成するのに用いたPETフィルムを剥がすと自立性に劣るため、当該PETフィルムが積層された状態で測定を行った。ガスバリア層の水蒸気透過率はPETフィルムよりもはるかに小さいため、PETフィルムの積層によるWVTRへの影響は小さい。
(4)破断伸度
 下地層を15mm×150mmの試験片に裁断し、JIS K7127:1999に従い、破断伸度を測定した。具体的には、上記試験片を、引張試験機(島津製作所社製,オートグラフ)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、破断伸度(%)を測定した。なお、試験片が降伏点を持たない場合には引張り破断ひずみを、降伏点を持つ場合には引張り破断呼びひずみを破断伸度とした。
(1) Solvent resistance The base layer is cut into 25 mm × 25 mm test pieces, the test pieces are immersed in a xylene solvent for 2 minutes, and the changes in the test pieces before and after immersion are visually observed. Sex was evaluated.
○: No change.
Δ: Some curling is observed, but there is no practical problem.
X: Changes in external shape such as whitening, swelling, curling, etc. occur.
(2) Optical isotropy The underlayer is cut into 10 mm × 10 mm test pieces, and the in-plane retardation of the underlayer (retardation) is measured using a phase difference measuring device (manufactured by Oji Scientific Instruments, KOBRA-WR). The optical isotropy was measured according to the following criteria.
○: Retardation value is less than 10 nm ×: Retardation value is 10 nm or more (3) Water vapor transmission rate (WVTR)
The gas barrier laminate is cut into a circular test piece having an area of 50 cm 2 and using a water vapor transmission rate measuring device (manufactured by MOCON, device name: AQUATRAN) at a gas flow rate of 20 sccm at 40 ° C. and 90% RH. The water vapor transmission rate (g · m −2 · day −1 ) was measured. The lower limit of detection of the measuring device is 0.0005 g · m −2 · day −1 . Since the gas barrier laminate was inferior in self-supporting property when the PET film used to form the underlayer was peeled off, the measurement was performed in a state where the PET film was laminated. Since the water vapor transmission rate of the gas barrier layer is much smaller than that of the PET film, the influence on the WVTR due to the lamination of the PET film is small.
(4) Elongation at break The underlayer was cut into 15 mm × 150 mm test pieces, and the elongation at break was measured according to JIS K7127: 1999. Specifically, the test piece was set to a distance between chucks of 100 mm with a tensile tester (manufactured by Shimadzu Corporation, Autograph), and then a tensile test was performed at a speed of 200 mm / min to determine the elongation at break (% ) Was measured. When the test piece did not have a yield point, the tensile breaking strain was taken as the elongation at break, and when the test piece had a yield point, the tensile break nominal strain was taken as the breaking elongation.
(実施例1)
(1)下地層の形成
 下地層となる硬化性樹脂組成物1を以下のように調製した。
<硬化性樹脂組成物1>
 熱可塑性樹脂として、ポリスルホン樹脂(PSF)のペレット(BASF社製、ULTRASON S6010、Tg=187℃)100質量部を1,3-ジオキソランとトルエンの混合溶媒(1,3-ジオキソラン:トルエンの質量比が7:3であるもの)に溶解して、PSFの25質量%溶液を調製した。次いで、この溶液に、硬化性単量体として、エトキシ化ビスフェノールAジアクリレート(新中村化学工業社製、A-BPE-10、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:20)122質量部、及び重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製、Irgacure819)5質量部を添加、混合して、硬化性樹脂組成物1を調製した。なお、本実施例及び他の実験例において使用した硬化性単量体および重合開始剤は溶媒を含まず、全て固形分100%の原料である。
 次に、工程シートとしてのポリエチレンテレフテレート(PET)フィルム(東洋紡社製、PET100A-4100、厚さ100μm)の易接着層面とは反対の面に、硬化性樹脂組成物をハンドコートにて塗布し、得られた塗膜を90℃で3分間加熱することで塗膜を乾燥させた。
 さらに、この乾燥させた塗膜上に、PETフィルム(東洋紡社製、PET100A-4100、厚さ100μm)を易接着面とは反対の面が対向するように積層し、ベルトコンベア式紫外線照射装置(アイグラフィックス社製、製品名:ECS-401GX)を使用し、高圧水銀ランプ(アイグラフィックス社製、製品名:H04-L41)にて、紫外線ランプ高さ100mm、紫外線ランプ出力3kw、光線波長365nmの照度が400mW/cm、光量が800mJ/cm(オーク製作所社製、紫外線光量計UV-351にて測定)となる条件で硬化反応を行い、厚さ25μmの下地層を形成した。
(Example 1)
(1) Formation of foundation layer Curable resin composition 1 used as a foundation layer was prepared as follows.
<Curable resin composition 1>
As a thermoplastic resin, 100 parts by mass of polysulfone resin (PSF) pellets (manufactured by BASF, ULTRASON S6010, Tg = 187 ° C.) are mixed solvent of 1,3-dioxolane and toluene (mass ratio of 1,3-dioxolane: toluene) Is 7: 3) to prepare a 25% by mass solution of PSF. Subsequently, ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-BPE-10, the total number of carbon atoms in the oxyethylene chain between two acryloyl groups: 20) is added to this solution as a curable monomer. 122 parts by mass and 5 parts by mass of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, Irgacure 819) as a polymerization initiator were added and mixed to prepare curable resin composition 1 did. The curable monomer and polymerization initiator used in this example and other experimental examples do not contain a solvent and are all raw materials having a solid content of 100%.
Next, a curable resin composition is applied by hand coating to the surface opposite to the easy-adhesion layer surface of a polyethylene terephthalate (PET) film (Toyobo Co., Ltd., PET100A-4100, thickness 100 μm) as a process sheet. The resulting coating film was heated at 90 ° C. for 3 minutes to dry the coating film.
Further, on this dried coating film, a PET film (Toyobo Co., Ltd., PET100A-4100, thickness 100 μm) is laminated so that the surface opposite to the easy-adhesion surface faces, and a belt conveyor type ultraviolet irradiation device ( Using an i-graphics product name: ECS-401GX, using a high-pressure mercury lamp (product name: H04-L41), an ultraviolet lamp height of 100 mm, an ultraviolet lamp output of 3 kW, a light wavelength A curing reaction was performed under the conditions of an illuminance of 365 nm of 400 mW / cm 2 and a light amount of 800 mJ / cm 2 (measured with an ultraviolet light meter UV-351, manufactured by Oak Manufacturing Co., Ltd.) to form a base layer having a thickness of 25 μm.
(2)ガスバリア層の積層
 次いで、前記塗膜上に積層した前記PETフィルムを剥離し、下地層上にポリシラザン化合物(ペルヒドロポリシラザン(PHPS)を主成分とするコーティング剤(メルクパフォーマンスマテリアルズ社製、アミアクカNL-110-20、溶媒:キシレン)をスピンコート法により塗布し、6時間真空乾燥させることで、ペルヒドロポリシラザンを含む、厚さ200nmの高分子化合物層(ポリシラザン層)を形成した。
 次に、プラズマイオン注入装置(日本電子社製、RF電源:「RF」56000;栗田製作所社製、高電圧パルス電源:PV-3-HSHV-0835)を用いて、ガス流量100sccm、Duty比0.5%、印加DC電圧-6kV、周波数1000Hz、印加RF電力1000W、チャンバー内圧0.2Pa、DCパルス幅5μsec、処理時間200秒の条件で、アルゴンガス由来のイオンを高分子化合物層(ポリシラザン層)の表面に注入し、ガスバリア層を形成した。このように、下地層上にガスバリア層を積層することにより、ガスバリア性積層体を作製した。
 得られた下地層単層の耐溶剤性、光学等方性、破断伸度、またガスバリア性積層体の水蒸気透過率(WVTR)の評価を行った。結果を表1に示す。
(2) Lamination of gas barrier layer Next, the PET film laminated on the coating film is peeled off, and a polysilazane compound (a coating agent containing Perhydropolysilazane (PHPS) as a main component (manufactured by Merck Performance Materials Co., Ltd.) is formed on the underlayer. Amiacca NL-110-20, solvent: xylene) was applied by spin coating, and vacuum dried for 6 hours to form a polymer compound layer (polysilazane layer) having a thickness of 200 nm containing perhydropolysilazane.
Next, using a plasma ion implantation apparatus (manufactured by JEOL Ltd., RF power supply: “RF” 56000; Kurita Seisakusho, high voltage pulse power supply: PV-3-HSHV-0835), the gas flow rate is 100 sccm and the duty ratio is 0. .5%, DC voltage −6 kV, frequency 1000 Hz, applied RF power 1000 W, chamber internal pressure 0.2 Pa, DC pulse width 5 μsec, treatment time 200 seconds, polymer gas layer (polysilazane layer) ) To form a gas barrier layer. Thus, the gas barrier layer was produced by laminating the gas barrier layer on the base layer.
The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
(実施例2)
(1)下地層の形成
 実施例1において、硬化性樹脂組成物1の代わりに下記硬化性樹脂組成物2を用い下地層(乾燥後の厚さ:25μm)を形成した以外は、実施例1と同様に、下地層上にガスバリア層を積層することにより、ガスバリア性積層体を作製した。
 得られた下地層単層の耐溶剤性、光学等方性、破断伸度、またガスバリア性積層体の水蒸気透過率(WVTR)の評価を行った。結果を表1に示す。
<硬化性樹脂組成物2>
 熱可塑性樹脂として、ポリスルホン樹脂(PSF)のペレット(BASF社製、ULTRASON S6010、Tg=187℃)100質量部を1,3-ジオキソランとトルエンの混合溶媒(1,3-ジオキソラン:トルエン=7:3)に溶解して、PSFの25質量%溶液を調製した。次いで、この溶液に、硬化性単量体として、エトキシ化ビスフェノールAジアクリレート(新中村化学工業社製、ABE-300、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:6)61質量部、エトキシ化ビスフェノールAジアクリレート(新中村化学工業社製、A-BPE-20、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:34)61質量部、及び重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製、Irgacure819)5質量部を添加、混合して、硬化性樹脂組成物2を調製した。
(Example 2)
(1) Formation of foundation layer Example 1 except that the foundation layer (thickness after drying: 25 μm) was formed using the following curable resin composition 2 instead of the curable resin composition 1 in Example 1. Similarly, a gas barrier laminate was produced by laminating a gas barrier layer on the base layer.
The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
<Curable resin composition 2>
As a thermoplastic resin, 100 parts by mass of polysulfone resin (PSF) pellets (manufactured by BASF, ULTRASON S6010, Tg = 187 ° C.) was mixed with 1,3-dioxolane and toluene (1,3-dioxolane: toluene = 7: A 25% by mass solution of PSF was prepared by dissolving in 3). Next, ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., ABE-300, total number of carbon atoms of oxyethylene chain between two acryloyl groups: 6) as a curable monomer was added to this solution 61 mass Part, 61 parts by mass of ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-BPE-20, the total number of carbon atoms in the oxyethylene chain between two acryloyl groups: 34), and bis A curable resin composition 2 was prepared by adding and mixing 5 parts by weight of (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure 819, manufactured by BASF).
(実施例3)
 実施例2において、硬化性樹脂組成物2の代わりに硬化性樹脂組成物3を用い下地層(乾燥後の厚さ:25μm)を形成した以外は、実施例1と同様に、下地層上にガスバリア層を積層することにより、ガスバリア性積層体を作製した。
 得られた下地層単層の耐溶剤性、光学等方性、破断伸度、またガスバリア性積層体の水蒸気透過率(WVTR)の評価を行った。結果を表1に示す。
<硬化性樹脂組成物3>
 硬化性樹脂組成物2において、硬化性単量体について、エトキシ化ビスフェノールAジアクリレート(新中村化学工業社製、ABE-300、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:6)を52.3質量部及びエトキシ化ビスフェノールAジアクリレート(新中村化学工業社製、A-BPE-20、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:34)を69.7質量部に変更した以外は、硬化性樹脂組成物2と同様に硬化性樹脂組成物3を調製した。
(Example 3)
In Example 2, except that the base layer (thickness after drying: 25 μm) was formed using the curable resin composition 3 instead of the curable resin composition 2, the same as in Example 1, on the base layer A gas barrier laminate was produced by laminating a gas barrier layer.
The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
<Curable resin composition 3>
In the curable resin composition 2, the curable monomer is ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., ABE-300, the total number of carbon atoms of the oxyethylene chain between two acryloyl groups: 6). 52.3 parts by mass and 69.7 parts by mass of ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-BPE-20, total number of carbon atoms of oxyethylene chain between two acryloyl groups: 34) A curable resin composition 3 was prepared in the same manner as the curable resin composition 2 except that the curable resin composition 2 was changed.
(実施例4)
 実施例1において、ガスバリア層(イオンを注入したポリシラザン層)の代わりに、スパッタリング法により、厚さ60nmの窒化ケイ素からなるガスバリア層を積層し、硬化性樹脂組成物1において、硬化性単量体としてエトキシ化ビスフェノールAジアクリレート(A-BPE-10)の代わりにエトキシ化ビスフェノールAジアクリレート(A-BPE-20)とした(硬化性樹脂組成物1’とする)以外は、実施例1と同様にしてガスバリア性積層体を作製した。
 得られた下地層単層の耐溶剤性、光学等方性、破断伸度、またガスバリア性積層体の水蒸気透過率(WVTR)の評価を行った。結果を表1に示す。
Example 4
In Example 1, instead of the gas barrier layer (polysilazane layer into which ions were implanted), a gas barrier layer made of silicon nitride having a thickness of 60 nm was laminated by a sputtering method. Example 1 except that ethoxylated bisphenol A diacrylate (A-BPE-20) was used instead of ethoxylated bisphenol A diacrylate (A-BPE-10) (referred to as curable resin composition 1 ′). Similarly, a gas barrier laminate was produced.
The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
(比較例1)
 実施例1において、硬化性樹脂組成物1の代わりに下記硬化性樹脂組成物4を用い下地層(乾燥後の厚さ:25μm)とした以外は、実施例1と同様に下地層上にガスバリア層を積層することにより、ガスバリア性積層体を作製した。
 得られた下地層単層の耐溶剤性、光学等方性、破断伸度、またガスバリア性積層体の水蒸気透過率(WVTR)の評価を行った。結果を表1に示す。
<硬化性樹脂組成物4>
 熱可塑性樹脂として、ポリスルホン樹脂(PSF)のペレット(BASF社製、ULTRASON S6010、Tg=187℃)100質量部を1,3-ジオキソランとトルエンの混合溶媒(1,3-ジオキソラン:トルエン=7:3)に溶解して、PSFの25質量%溶液を調製した。次いで、この溶液に、硬化性単量体として、エトキシ化ビスフェノールAジアクリレート(新中村化学工業社製、ABE-300、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:6)122質量部、及び、重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製、Irgacure819)1質量部を添加、混合して、硬化性樹脂組成物4を調製した。
(Comparative Example 1)
In Example 1, a gas barrier was formed on the underlayer in the same manner as in Example 1, except that the following curable resin composition 4 was used instead of the curable resin composition 1 to form an underlayer (thickness after drying: 25 μm). A gas barrier laminate was produced by laminating the layers.
The obtained underlayer single layer was evaluated for solvent resistance, optical isotropy, elongation at break, and water vapor transmission rate (WVTR) of the gas barrier laminate. The results are shown in Table 1.
<Curable resin composition 4>
As a thermoplastic resin, 100 parts by mass of polysulfone resin (PSF) pellets (manufactured by BASF, ULTRASON S6010, Tg = 187 ° C.) was mixed with 1,3-dioxolane and toluene (1,3-dioxolane: toluene = 7: A 25% by mass solution of PSF was prepared by dissolving in 3). Next, ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., ABE-300, the total number of carbon atoms in the oxyethylene chain between two acryloyl groups: 6) 122 mass And 1 part by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, Irgacure 819) as a polymerization initiator were added and mixed to prepare a curable resin composition 4. .
(比較例2)
 実施例1において、硬化性樹脂組成物1の代わりに下記硬化性樹脂組成物5を用い下地層(乾燥後の厚さ:25μm)とした以外は、実施例1と同様に下地層上にガスバリア層を積層することにより、ガスバリア性積層体を作製した。
 得られた下地層単層の耐溶剤性、光学等方性、またガスバリア性積層体の水蒸気透過率(WVTR)、破断伸度の評価を行った。結果を表1に示す。
<硬化性樹脂組成物5>
 熱可塑性樹脂として、ポリスルホン樹脂(PSF)のペレット(BASF社製、ULTRASON S6010、Tg=187℃)100質量部を1,3-ジオキソランとトルエンの混合溶媒(1,3-ジオキソラン:トルエン=7:3)に溶解して、PSFの25質量%溶液を調製した。次いで、この溶液に、硬化性単量体として、トリシクロデカンジメタノールジアクリレート(新中村化学工業社製、A-DCP、2つのアクリロイル基間のオキシエチレン鎖の炭素数の合計:2)122質量部、及び、重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製、Irgacure819)1質量部を添加、混合して、硬化性樹脂組成物5を調製した。
(Comparative Example 2)
In Example 1, a gas barrier was formed on the underlayer in the same manner as in Example 1 except that the following curable resin composition 5 was used instead of the curable resin composition 1 to form an underlayer (thickness after drying: 25 μm). A gas barrier laminate was produced by laminating the layers.
The solvent resistance and optical isotropy of the obtained underlayer single layer, and the water vapor transmission rate (WVTR) and elongation at break of the gas barrier laminate were evaluated. The results are shown in Table 1.
<Curable resin composition 5>
As a thermoplastic resin, 100 parts by mass of polysulfone resin (PSF) pellets (manufactured by BASF, ULTRASON S6010, Tg = 187 ° C.) were mixed with 1,3-dioxolane and toluene (1,3-dioxolane: toluene = 7: A 25% by mass solution of PSF was prepared by dissolving in 3). Next, tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-DCP, total number of carbon atoms of oxyethylene chain between two acryloyl groups: 2) is added to this solution as a curable monomer. A curable resin composition 5 is prepared by adding and mixing 1 part by mass of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, Irgacure 819) as a polymerization initiator. did.
 以下に、実施例、比較例で使用した、硬化性単量体の化学構造式を示す。ここで、s及びtは、正の整数を表す。
Figure JPOXMLDOC01-appb-C000002
The chemical structural formulas of curable monomers used in Examples and Comparative Examples are shown below. Here, s and t represent positive integers.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~4では、ガスバリア性積層体の下地層として、長スペーサー硬化性単量体を用いたことで、下地層の破断伸度が高く、フレキシブル性が優れるガスバリア性積層体が得られることが分かった。
 また、実施例1では、長スペーサー硬化性単量体のスペーサーの炭素数が少ないことに起因して、フレキシブル性に優れかつ耐溶剤性を有するガスバリア性積層体が得られることが分かった。
 また、実施例2及び3では、ガスバリア性積層体の下地層として、長スペーサー硬化性単量体と短スペーサー硬化性単量体との質量比を特定の範囲に組み合わせることで、フレキシブル性に優れかつ耐溶剤性を有するガスバリア性積層体が得られることが分かった。
 これに対し、短スペーサー硬化性単量体のみを用いた比較例1、2は、実施例と比較してフレキシブル性に劣る。
In Examples 1 to 4, by using a long spacer curable monomer as an underlayer of the gas barrier laminate, a gas barrier laminate having a high elongation at break and excellent flexibility can be obtained. I understood.
Further, in Example 1, it was found that a gas barrier laminate having excellent flexibility and solvent resistance was obtained due to the small number of carbon atoms in the spacer of the long spacer curable monomer.
Further, in Examples 2 and 3, as the base layer of the gas barrier laminate, excellent flexibility is obtained by combining the mass ratio of the long spacer curable monomer and the short spacer curable monomer within a specific range. It was also found that a gas barrier laminate having solvent resistance can be obtained.
On the other hand, Comparative Examples 1 and 2 using only the short spacer curable monomer are inferior in flexibility as compared with Examples.
 本発明のガスバリア性積層体によれば、ガスバリア性を有することはもとより、優れたフレキシブル性を有していることから、ガスバリア性及びフレキシブル性を同時に要求される電子デバイス、例えば、フレキシブル有機EL素子等、また、フレキシブル熱電変換素子等、大気劣化し易い各種電子デバイスを構成する素子用の部材に適用されることが期待される。 According to the gas barrier laminate of the present invention, since it has excellent flexibility as well as gas barrier properties, an electronic device that requires both gas barrier properties and flexibility, for example, a flexible organic EL element In addition, it is expected to be applied to members for elements that constitute various electronic devices that easily deteriorate in the atmosphere, such as flexible thermoelectric conversion elements.
1:ガスバリア性積層体
2:下地層
3:ガスバリア層
 
1: Gas barrier laminate 2: Underlayer 3: Gas barrier layer

Claims (10)

  1.  下地層及びガスバリア層を含むガスバリア性積層体であって、前記下地層が、硬化性単量体を含有する硬化性樹脂組成物の硬化物を含み、前記硬化性単量体は、分子内に1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、又は両方を介在して連結する構造を有し、当該ポリアルキレン基及びポリオキシアルキレン基のそれぞれの主鎖を構成する炭素原子の数の合計が18以上である長スペーサーを有する硬化性単量体を含む、ガスバリア性積層体。 A gas barrier laminate including an underlayer and a gas barrier layer, wherein the underlayer includes a cured product of a curable resin composition containing a curable monomer, and the curable monomer is contained in a molecule. One reactive functional group has a structure linked to another reactive functional group via one or both of a polyalkylene group and a polyoxyalkylene group, and the polyalkylene group and the polyoxyalkylene group A gas barrier laminate comprising a curable monomer having a long spacer in which the total number of carbon atoms constituting each main chain is 18 or more.
  2.  前記硬化性単量体が、さらに、1つの反応性官能基と他の反応性官能基とが、ポリアルキレン基又はポリオキシアルキレン基のいずれも介在さずに連結する構造、又は1つの反応性官能基が他の反応性官能基と、ポリアルキレン基及びポリオキシアルキレン基のいずれか一方、もしくは両方を介在して連結する構造を有しており、当該ポリアルキレン基及びポリオキシアルキレン基の主鎖を構成する炭素原子の数の合計が16以下である短スペーサーを有する硬化性単量体を含む、請求項1に記載のガスバリア性積層体。 The curable monomer further has a structure in which one reactive functional group and another reactive functional group are linked without any polyalkylene group or polyoxyalkylene group, or one reactivity The functional group has a structure linked to another reactive functional group through one or both of a polyalkylene group and a polyoxyalkylene group. The main group of the polyalkylene group and the polyoxyalkylene group The gas barrier laminate according to claim 1, comprising a curable monomer having a short spacer in which the total number of carbon atoms constituting the chain is 16 or less.
  3.  前記下地層が、さらに熱可塑性樹脂を含む、請求項1又は2に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1 or 2, wherein the underlayer further contains a thermoplastic resin.
  4.  前記熱可塑性樹脂のガラス転移温度(Tg)が130℃以上である、請求項3に記載のガスバリア性積層体。 The gas barrier laminate according to claim 3, wherein a glass transition temperature (Tg) of the thermoplastic resin is 130 ° C or higher.
  5.  前記熱可塑性樹脂が、ポリスルホン系樹脂、又は脂環式炭化水素系樹脂である、請求項3又は4に記載のガスバリア性積層体。 The gas barrier laminate according to claim 3 or 4, wherein the thermoplastic resin is a polysulfone resin or an alicyclic hydrocarbon resin.
  6.  前記下地層の厚さが0.1~50μmである、請求項1~5のいずれか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 5, wherein the thickness of the underlayer is 0.1 to 50 µm.
  7.  前記下地層の破断伸度が3.5%以上である、請求項1~6のいずれか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 6, wherein the elongation at break of the underlayer is 3.5% or more.
  8.  前記ガスバリア層は、硬化した塗膜である、請求項1~7のいずれか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 7, wherein the gas barrier layer is a cured coating film.
  9.  前記ガスバリア層は、硬化したポリシラザン系化合物を含む層に改質処理を施したものである、請求項1~8のいずれか1項に記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 8, wherein the gas barrier layer is obtained by modifying a layer containing a cured polysilazane compound.
  10.  前記ガスバリア性積層体が、さらに工程シートを含む、請求項1~9のいずれか1項に記載のガスバリア性積層体。
     
    The gas barrier laminate according to any one of claims 1 to 9, wherein the gas barrier laminate further comprises a process sheet.
PCT/JP2019/012136 2018-03-23 2019-03-22 Gas barrier laminate WO2019182119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507935A JP7222976B2 (en) 2018-03-23 2019-03-22 Gas barrier laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018055703 2018-03-23
JP2018-055703 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182119A1 true WO2019182119A1 (en) 2019-09-26

Family

ID=67987836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012136 WO2019182119A1 (en) 2018-03-23 2019-03-22 Gas barrier laminate

Country Status (3)

Country Link
JP (1) JP7222976B2 (en)
TW (1) TW201940337A (en)
WO (1) WO2019182119A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111174A1 (en) * 2018-11-30 2020-06-04 コニカミノルタ株式会社 Laminate, method for producing same, and electronic device provided with same
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
WO2022039019A1 (en) * 2020-08-19 2022-02-24 コニカミノルタ株式会社 Composition for electronic device sealing, method for forming electronic device sealing film, and electronic device sealing film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176519A (en) * 2011-02-25 2012-09-13 Fujifilm Corp Barrier laminate and method of manufacturing the same
WO2013065812A1 (en) * 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
JP2014189585A (en) * 2013-03-26 2014-10-06 Lintec Corp Curable resin composition, resin film, gas barrier film and electronic device
WO2017038141A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176519A (en) * 2011-02-25 2012-09-13 Fujifilm Corp Barrier laminate and method of manufacturing the same
WO2013065812A1 (en) * 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
JP2014189585A (en) * 2013-03-26 2014-10-06 Lintec Corp Curable resin composition, resin film, gas barrier film and electronic device
WO2017038141A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Product list of photo curable monomers (brand-name:NK ester). Monomer-oligomer", SHIN-NAKAMURA.COM, 10 June 2014 (2014-06-10), Retrieved from the Internet <URL:http://www.shin-nakamura.com/products/pdf/monomer-oligomer.pdf> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111174A1 (en) * 2018-11-30 2020-06-04 コニカミノルタ株式会社 Laminate, method for producing same, and electronic device provided with same
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
WO2022039019A1 (en) * 2020-08-19 2022-02-24 コニカミノルタ株式会社 Composition for electronic device sealing, method for forming electronic device sealing film, and electronic device sealing film

Also Published As

Publication number Publication date
JPWO2019182119A1 (en) 2021-03-25
JP7222976B2 (en) 2023-02-15
TW201940337A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP5988989B2 (en) GAS BARRIER FILM AND MANUFACTURING METHOD THEREOF, GAS BARRIER FILM LAMINATE, ELECTRONIC DEVICE MEMBER, AND ELECTRONIC DEVICE
WO2013018602A1 (en) Gas barrier adhesive sheet, method for producing same, electronic member, and optical member
TWI602707B (en) Gas barrier film laminate, method of manufacturing the same, and electronic device
JP7222976B2 (en) Gas barrier laminate
JP7401463B2 (en) Gas barrier laminate
JP6082354B2 (en) Curable resin composition, curable resin molded body, cured resin molded body, production method thereof, and laminate
CN113226750B (en) Gas barrier laminate
JP6126884B2 (en) Curable resin composition, resin film, gas barrier film, and electronic device
JP7069497B2 (en) Gas barrier film and encapsulant
TWI791502B (en) Functional films and devices
JP7218346B2 (en) gas barrier film
JP2023114821A (en) optical film
CN115734875A (en) Optical film, method for producing optical film, transparent conductive film, and gas barrier film
CN115335224A (en) Laminate for transparent conductive film, and method for producing transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771796

Country of ref document: EP

Kind code of ref document: A1