WO2017038141A1 - Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate - Google Patents

Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate Download PDF

Info

Publication number
WO2017038141A1
WO2017038141A1 PCT/JP2016/060617 JP2016060617W WO2017038141A1 WO 2017038141 A1 WO2017038141 A1 WO 2017038141A1 JP 2016060617 W JP2016060617 W JP 2016060617W WO 2017038141 A1 WO2017038141 A1 WO 2017038141A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
film
organic
substrate
Prior art date
Application number
PCT/JP2016/060617
Other languages
French (fr)
Japanese (ja)
Inventor
英二郎 岩瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680043656.9A priority Critical patent/CN107848254B/en
Priority to KR1020187004262A priority patent/KR102103091B1/en
Publication of WO2017038141A1 publication Critical patent/WO2017038141A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to a gas barrier film, a gas barrier film transfer method, a wavelength conversion film using the gas barrier film, a retardation film with a gas barrier layer, and an organic EL laminate.
  • Patent Document 1 discloses, as a method for improving gas barrier properties, a configuration using an inorganic layer as a gas barrier layer, a configuration in which gas barrier layers are multilayered, and a glass transition temperature. It describes that a gas barrier layer is formed on a resin film having a high Tg.
  • a gas barrier film having a high gas barrier property As described above, by using a gas barrier film having a high gas barrier property, various electronic devices such as a display can be made thinner, lighter and more flexible. Therefore, if the gas barrier film can be made thinner, the electronic device can be made thinner and lighter.
  • a gas barrier film As described in Patent Document 1 and the like, such a gas barrier film has a configuration in which a gas barrier layer is formed on a resin film as a substrate. Therefore, in order to make the gas barrier film thinner, it is conceivable to make the substrate thinner.
  • the gas barrier layer having a high gas barrier property is a thin inorganic layer. For this reason, the gas barrier layer is easily cracked even by minute buckling or contact, and the performance deteriorates when cracked. Therefore, when laminating the gas barrier layer on a thin substrate, it is necessary to stabilize the conveyance so that the substrate can be prevented from buckling.
  • Patent Document 4 by attaching a protective material to the back side of the substrate, self-supporting property of the substrate can be ensured, and even when a thin substrate is used, the substrate does not buckle properly. It is described that a gas barrier layer can be formed. If such a method is used, a gas barrier layer can be formed even on a thin substrate of about a few tens of micrometers. However, if the thickness is smaller than this, it becomes difficult to attach a reinforcing protective material to the substrate while transporting the thin substrate.
  • Patent Document 5 describes that a release layer is formed between a substrate and a gas barrier layer, and the gas barrier layer is peeled off from the substrate and transferred to a transfer target.
  • An object of the present invention is to provide a gas barrier film and a gas barrier film transfer method that are thin, transferable, and have high gas barrier properties even after transfer, and to solve such problems of the prior art.
  • Another object of the present invention is to provide a wavelength conversion film, a retardation film with a gas barrier layer, and an organic EL laminate using the gas barrier film.
  • the present inventor has provided a gas barrier having one or more combinations of a substrate and an organic layer which is provided on one surface side of the substrate and which is the surface on which the inorganic layer is formed.
  • a layer, and a release resin layer provided between the substrate and the gas barrier layer, in close contact with the organic layer, and for peeling the substrate and the gas barrier layer finds that the above problem can be solved.
  • the present invention has been completed. That is, this invention provides the gas barrier film of the following structures, the manufacturing method of a gas barrier film, the wavelength conversion film using this gas barrier film, the phase difference film with a gas barrier layer, and an organic electroluminescent laminated body.
  • a substrate (1) a substrate; A gas barrier layer that is provided on one surface side of the substrate and has one or more combinations of an inorganic layer and an organic layer that is a formation surface of the inorganic layer; A gas barrier film provided between a substrate and a gas barrier layer, having a release resin layer in close contact with an organic layer and for peeling the substrate and the gas barrier layer.
  • the material for forming the release resin layer is a cyclic olefin resin having a glass transition temperature Tg of 100 ° C. or higher.
  • the substrate is a polyethylene terephthalate film provided with a release layer.
  • the water vapor transmission rate of the structure excluding the substrate is less than 0.01 g / (m 2 ⁇ day).
  • An element substrate that supports the organic EL element is further included, and the element substrate includes a gas barrier layer and a release resin layer obtained by removing the substrate from the gas barrier film according to any one of (1) to (17).
  • a gas barrier film that is thin, transferable, and has a high gas barrier property after transfer, a method for producing the gas barrier film, a wavelength conversion film using the gas barrier film, and a gas barrier layer positioning A phase difference film and an organic EL laminate can be provided.
  • FIG. 1A is a diagram conceptually showing an example of the gas barrier film of the present invention
  • FIG. 1B is a diagram conceptually showing a state in which the substrate is peeled from the gas barrier film of FIG. It is.
  • FIG. 2 (A) and FIG. 2 (B) are diagrams conceptually showing another example of the gas barrier film of the present invention. It is a figure which shows notionally another example of the gas barrier film of this invention.
  • 4 (A) to 4 (C) are conceptual diagrams for explaining the gas barrier film transfer method of the present invention. It is a figure which shows notionally an example of the phase difference film with a gas barrier layer of this invention. It is a figure which shows notionally an example of the wavelength conversion film of this invention.
  • FIG. 7A to FIG. 7C are diagrams conceptually showing an example of the organic EL laminate of the present invention.
  • FIG. 8A and FIG. 8B are diagrams conceptually showing an example of a film forming apparatus for producing the gas barrier film of the present invention.
  • the gas barrier film of the present invention includes a substrate, a gas barrier layer that is provided on one surface of the substrate, and includes one or more combinations of an inorganic layer and an organic layer on which the inorganic layer is formed, a substrate, and a gas barrier layer. It is a gas barrier film which is provided between and has a release resin layer for adhering to the organic layer and for releasing from the substrate. This gas barrier film is used by peeling only a substrate and transferring a transfer layer including a gas barrier layer and a release resin layer to a transfer target.
  • FIG. 1A conceptually shows an example of the gas barrier film of the present invention.
  • a gas barrier film 10a shown in FIG. 1A basically includes a substrate 12, a gas barrier layer 18 having an organic layer 14 and an inorganic layer 16 laminated on one surface of the substrate 12, and the substrate 12 and the gas barrier layer. And a release resin layer 20 laminated between the two.
  • the gas barrier layer 18 is laminated with the organic layer 14 facing the release resin layer 20, and the inorganic layer 16 is laminated on the organic layer 14. That is, the release resin layer 20 is laminated between the substrate 12 and the organic layer 14.
  • the release resin layer 20 is in close contact with the organic layer 14 and is configured to be peelable from the substrate 12 at the interface with the substrate 12. That is, the peel force (adhesion force) between the organic layer 14 and the release resin layer 20 is greater than the peel force between the substrate 12 and the release resin layer 20.
  • the gas barrier film 10a can peel only the board
  • the transfer of the transfer layer 30 to the transfer target is basically performed by attaching the gas barrier layer 18 side of the gas barrier film 10a to the transfer target, and then peeling the substrate 12 from the gas barrier film 10a.
  • the substrate 12 is peeled off from the gas barrier film 10a and the transfer layer 30 is taken out, and then the transfer layer 30 may be bonded to the transfer body.
  • a transfer type gas barrier film is proposed in which a release layer is formed between the substrate and the gas barrier layer, and the gas barrier layer is peeled off from the substrate and transferred to the transfer target.
  • a shearing force is applied to the gas barrier layer, so that the inorganic layer is broken by the shearing force. Therefore, it was found that the gas barrier layer after transfer may not exhibit a sufficient gas barrier property.
  • this invention has the organic layer 14 as a foundation
  • the release resin layer 20 is configured to be in close contact with the organic layer 14 and to be peelable from the substrate 12 at the interface with the substrate 12.
  • the peeling resin layer 20 existing between the inorganic layer 16 and the peeling surface becomes a stress relaxation layer by peeling at the interface between the peeling resin layer 20 and the substrate 12, and when peeling the substrate 12.
  • Such an shearing force can prevent the inorganic layer 16 from being broken.
  • the release resin layer 20 needs to adjust the peeling force so as to peel off at the interface with the substrate 12, and also needs to have a function as a stress relaxation layer. Therefore, it is difficult to make it suitable as a base layer for the inorganic layer 16.
  • the layer serving as the base of the inorganic layer 16 needs to have an appropriate hardness and higher heat resistance. Therefore, in the case where the organic layer 14 is not provided between the release resin layer 20 and the inorganic layer 16, that is, when the inorganic layer 16 is formed directly on the release resin layer 20, the inorganic layer 16 is appropriate. Cannot be formed, and high gas barrier properties cannot be obtained.
  • the gas barrier film of the present invention since the gas barrier film of the present invention has the organic layer 14 on the release resin layer 20 as the surface on which the inorganic layer 16 is formed, it is provided with a suitable underlayer. Therefore, the inorganic layer 16 can be formed appropriately and high gas barrier properties can be obtained.
  • the gas barrier film of the present invention preferably further has a protective film on the gas barrier layer 18 for protecting the gas barrier layer 18 (more specifically, the inorganic layer 16).
  • the protective film By having the protective film, the inorganic layer 16 can be prevented from cracking when the gas barrier film is transported or wound.
  • the protective film may be peeled to expose the gas barrier layer 18 and then transferred to the transfer target.
  • the organic protective layer 24 may be an adhesive layer having adhesiveness. Since the organic protective layer 24 has adhesiveness, when the transfer layer 30 is transferred to the transfer target, transfer can be easily performed without applying an adhesive or the like.
  • the organic protective layer 24 may be provided on the gas barrier layer 18, and the protective film 26 may be further provided on the organic protective layer 24.
  • the organic protective layer 24 and the protective film 26 it is possible to prevent the inorganic layer 16 from being broken when the gas barrier film is transported or wound.
  • the organic protective layer 24 is an adhesive layer, by having the protective film 26, the transport and winding of the gas barrier film can be facilitated, and dust or the like adheres to the adhesive layer, It can prevent that adhesiveness falls.
  • the gas barrier layer 18 includes one organic layer 14 and one inorganic layer 16.
  • the present invention is not limited to this, and the organic layer and the inorganic layer are not limited thereto.
  • Each of which may have one or more layers, and may have two or more combinations of the inorganic layer 16 and the organic layer 14 serving as a base layer of the inorganic layer 16.
  • the gas barrier film 10d shown in FIG. 3 has the gas barrier layer 18 in which the organic layer 14, the inorganic layer 16, the organic layer 14, and the inorganic layer 16 are formed in this order on the release resin layer 20. That is, the gas barrier layer 18 of the gas barrier film 10 d has a configuration having two combinations of the organic layer 14 and the inorganic layer 16.
  • the gas barrier property can be further improved.
  • the water vapor transmission rate of the structure obtained by removing the substrate 12 from the gas barrier film is preferably less than 0.01 [g / (m 2 ⁇ day)], and 0.005 [ g / (m 2 ⁇ day)] or less is more preferable, and 0.001 [g / (m 2 ⁇ day)] or less is particularly preferable.
  • the configuration in which the substrate 12 is removed from the gas barrier film includes the transfer layer 30 composed of the gas barrier layer 18 and the release resin layer 20. means.
  • the configuration in which the substrate 12 is removed from the gas barrier film includes the gas barrier layer 18 and the release resin layer 20.
  • the gas barrier film of the present invention preferably has a low water vapor transmission rate. Even if the gas barrier film of the present invention is the transfer layer 30 having a high gas barrier property, the inorganic layer 16 can be prevented from cracking and transferred appropriately while maintaining the high gas barrier property.
  • the visible light transmittance of the structure obtained by removing the substrate 12 from the gas barrier film is 85% or more.
  • the retardation value of the transfer layer 30 is preferably 30 nm or less.
  • gas barrier film 10 the gas barrier films 10a to 10d may be collectively referred to as “gas barrier film 10”.
  • low density polyethylene LDPE
  • high density polyethylene HDPE
  • polyethylene naphthalate PEN
  • polyamide PA
  • polyethylene terephthalate PET
  • polyvinyl chloride PVC
  • polyvinyl Alcohol PVA
  • polyacrylonitrile PAN
  • polyimide PI
  • PC polycarbonate
  • PP polypropylene
  • PS polystyrene
  • Films (resin films) made of various resin materials such as ABS, cycloolefin copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC) are preferably exemplified.
  • a protective layer on the surface of such a film, necessary functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, a stress relaxation layer, a release layer
  • a substrate in which a layer (film) that expresses a film is formed may be used as the substrate 12.
  • the elongation at break is high and difficult to break at the time of transportation, it can be made thinner, the melting point is high and heat resistance, it can be easily peeled at the interface with the release resin layer 20, and it is inexpensive.
  • a PET film on which a release layer is formed is preferable. More specifically, a PET film having a release layer formed on the surface on which the release resin layer 20 is formed is preferable.
  • the thickness of the substrate 12 is preferably 5 to 125 ⁇ m, more preferably 5 to 100 ⁇ m, and particularly preferably 10 to 50 ⁇ m.
  • the mechanical strength of the gas barrier film 10 is sufficiently ensured and peeling can be easily performed at the time of transfer.
  • the organic layer 14 is a layer made of an organic compound, and is basically obtained by polymerizing (crosslinking) a monomer, an oligomer, or the like that becomes the organic layer 14.
  • the organic layer 14 is a surface on which the inorganic layer 16 is formed. Specifically, the organic layer 14 mainly functions as a base layer for properly forming the inorganic layer 16 that exhibits gas barrier properties in the gas barrier film 10. By having such an organic layer 14, irregularities on the surface of the release resin layer 20 (or the lower inorganic layer 16), foreign matters attached to the surface of the release resin layer 20 (or the lower inorganic layer 16), and the like The surface on which the inorganic layer 16 is formed can be made into a state suitable for the formation of the inorganic layer 16.
  • An appropriate inorganic layer 16 can be formed on the entire surface of 20 (or the lower inorganic layer 16) without any gap, and the inorganic layer 16 having high gas barrier properties can be formed.
  • the glass transition temperature Tg of the organic layer 14 is higher than the glass transition temperature Tg of the peeling resin layer 20, and it is preferable that it is 200 degreeC or more.
  • the inorganic layer 16 can be appropriately formed.
  • the organic layer 14 preferably has appropriate flexibility in order to prevent the inorganic layer 16 from cracking.
  • the glass transition temperature Tg may be measured according to JIS K7121.
  • the material for forming the organic layer 14 is not limited, and various known organic compounds can be used. Specifically, polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Thermoplastic resins such as ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acrylic compounds; polysiloxane and other An organosilicon compound film is preferably exemplified. A plurality of these may be used in combination.
  • the organic layer 14 composed of a polymer of a radical curable compound and / or a cationic curable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • acrylic resins and methacrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomer polymers are used in the organic layer 14 in terms of low refractive index, high transparency and excellent optical properties. As a preferred example.
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa (meth) acrylate
  • Acrylic resins and methacrylic resins mainly composed of polymers such as acrylate and / or methacrylate monomers and oligomers are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the material for forming the organic layer 14 is preferably an ultraviolet curable resin or an electron beam curable resin.
  • an ultraviolet curable resin or an electron beam curable resin as a material for forming the organic layer 14, the peeling force with the release resin layer 20 can be easily adjusted by the irradiation amount of the ultraviolet ray or the electron beam. Can be realized. Therefore, the gas barrier film 10 can be configured to peel at the interface between the release resin layer 20 and the substrate 12.
  • the material for forming the organic layer 14 is a resin material containing 5% or more and less than 50% monofunctional or higher acrylate having an adamantane skeleton, or 5% or more and less than 50% bifunctional or higher acrylate having a fluorene skeleton.
  • the resin material is preferably included.
  • Such an organic layer 14 may be formed (film formation) by a known method for forming a layer made of an organic compound in accordance with the organic layer 14 to be formed. As an example, a coating method is illustrated.
  • the organic layer 14 is prepared by, for example, preparing a coating composition containing an organic solvent, an organic compound (monomers, dimers, trimers, oligomers, polymers, etc.) to be the organic layer 14, and a crosslinking agent. It can be applied on 20 to form a coating film, and the coating film can be formed by drying and curing. By forming by a coating method, a thin organic layer 14 is obtained.
  • metal oxides and nitrides specifically, silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and mixtures of two or more thereof are highly transparent and can exhibit excellent gas barrier properties. In this respect, it is preferably used.
  • silicon nitride, silicon oxide, and a mixture thereof are more preferably used because they have high gas barrier properties, high transparency, and high flexibility.
  • Such an inorganic layer 16 is formed by CCP-CVD (capacitive coupling type plasma chemical vapor deposition) or ICP-CVD (inductively coupled plasma chemical vapor deposition) depending on the material of the inorganic layer 16 and the like.
  • CCP-CVD capactive coupling type plasma chemical vapor deposition
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • Sputtering, vacuum deposition or the like may be performed by a known vapor deposition method.
  • the thickness of the inorganic layer 16 may be determined as appropriate according to the forming material so that the target gas barrier property can be exhibited. According to the study by the present inventors, the thickness of the inorganic layer 16 is preferably 10 to 200 nm, more preferably 15 to 100 nm, and particularly preferably 20 to 75 nm. By setting the thickness of the inorganic layer 16 to 10 nm or more, sufficient gas barrier performance is stably exhibited. In addition, the inorganic layer 16 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. However, if the thickness of the inorganic layer 16 is 200 nm or less, cracks will occur. Can be prevented.
  • each inorganic layer 16 may be the same or different.
  • the forming material of each inorganic layer 16 may be the same or different.
  • a release resin layer 20 is provided between the substrate 12 and the organic layer 14.
  • the release resin layer 20 is a resin layer that is in close contact with the organic layer 14 and can be peeled off from the substrate 12 at the interface with the substrate 12.
  • the release resin layer 20 peels the substrate 12 and the gas barrier layer 18 from each other.
  • the release resin layer 20 is a layer that also functions as a stress relaxation layer that suppresses the application of shear force to the inorganic layer 16 when the substrate 12 is peeled off. Further, after the substrate 12 is peeled, the release resin layer 20 also functions as a support.
  • the release resin layer 20 preferably has low water content and high heat resistance.
  • the inorganic layer 16 exhibiting high gas barrier properties is formed by vacuum film formation such as plasma CVD.
  • the moisture content of the release resin layer 20 is high, moisture is released even if evacuation is performed, so that the degree of vacuum cannot be increased and the inorganic layer 16 may not be formed.
  • the release resin layer 20 expands and contracts due to absorption and release of moisture, the inorganic layer 16 may be broken and high gas barrier properties may not be obtained. Therefore, it is preferable that the release resin layer 20 has a low water content.
  • the inorganic layer 16 is formed by plasma CVD etc., it is preferable that heat resistance is high.
  • the organic layer 14 is formed on the release resin layer 20 by, for example, coating. Therefore, cycloolefin copolymer (COC) is used as a material for forming the release resin layer 20 from the viewpoint of the coating property of the coating composition to be the organic layer 14, solvent resistance, and optical properties such as retardation. preferable.
  • COC cycloolefin copolymer
  • Such a release resin layer 20 can be formed by, for example, the same coating method as that for the organic layer 14. By forming by a coating method, a thin release resin layer 20 is obtained.
  • the thickness of the release resin layer 20 is set to 25 ⁇ m or less, it is preferable to cause problems such as cracks in the release resin layer 20 and curling of the gas barrier film 10 due to the release resin layer 20 being too thick.
  • the gas barrier film 10 can be easily wound into a roll shape.
  • the hardness of the release resin layer 20 is preferably lower than the hardness of the organic layer 14, and the Young's modulus of the release resin layer 20 is the organic layer 14.
  • the Young's modulus is preferably lower. That is, the release resin layer 20 is preferably softer than the organic layer 14.
  • the release resin layer 20 is preferably thicker than the organic layer 14.
  • the organic layer 14 serving as the base layer of the inorganic layer 16 has higher heat resistance. Therefore, it is preferable to use a material having a higher glass transition temperature Tg as a material for forming the organic layer 14.
  • a material having a high glass transition temperature Tg is hard and difficult to stretch. Therefore, by reducing the thickness of the hard organic layer 14 and increasing the thickness of the soft release resin layer 20, the release resin is obtained.
  • the layer 20 can function properly as a stress relaxation layer, and cracking of the inorganic layer 16 when the substrate 12 is peeled can be prevented to obtain high gas barrier properties.
  • the peeling force between the release resin layer 20 and the substrate 12 and the peeling force between the release resin layer 20 and the organic layer 14 are the same as the peeling force between the release resin layer 20 and the organic layer 14. If it is higher than the peeling force with 12, there is no limitation. Further, the peeling force between the release resin layer 20 and the substrate 12 is preferably 0.04 N / 25 mm to 1 N / 25 mm. By setting the peeling force between the release resin layer 20 and the substrate 12 in the above range, it is possible to prevent the peeling force from being weakened during transportation due to the peeling force being too weak, and the peeling force is too strong. It is possible to suppress inconveniences such as damage to the inorganic layer 16 and peeling of the gas barrier film 10 during peeling. In addition, what is necessary is just to measure peeling force (adhesion force) according to the 180 degree peeling test method of JISZ0237.
  • the material for forming the organic protective layer 24 is not particularly limited, and various known organic compounds similar to the organic layer 14 can be used.
  • the organic protective layer 24 is an adhesive layer
  • various known adhesive materials can be used. From the viewpoint of optical properties, particularly retardation and haze, it is preferable to use an acrylic pressure-sensitive adhesive as the pressure-sensitive adhesive material.
  • the acrylic pressure-sensitive adhesive include SK Dyne series (manufactured by Soken Chemical Co., Ltd.).
  • the thickness of the organic protective layer 24 may be appropriately set according to the material for forming the organic protective layer 24 and the characteristics of the inorganic layer 16. According to the study by the present inventors, the thickness of the organic protective layer 24 is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 25 ⁇ m, and particularly preferably 1 to 10 ⁇ m. preferable. By setting the thickness of the organic protective layer 24 to 0.1 ⁇ m or more, the inorganic layer 16 can be appropriately protected. Moreover, the workability
  • the protective film 26 various known sheet-like materials that are used as known protective films can be used.
  • the film (resin film) which consists of various resin materials illustrated with the above-mentioned board
  • the material for forming the protective film 26 has a Young's modulus of 6 GPa or less.
  • the protective film 26 is stuck on the inorganic layer 16 that is the uppermost layer of the gas barrier layer 18 of the gas barrier film 10, and is used by being peeled off from the inorganic layer 16 when transferring the gas barrier film 10. .
  • the Young's modulus of the forming material of the protective film 26 is set to 6 GPa or less, damage to the inorganic layer 16 when the protective film 26 is peeled can be more suitably prevented, and high gas barrier properties can be obtained.
  • LDPE, HDPE, PP, PET, PEN, PVC, PI, and the like are preferably exemplified as the material for forming the protective film 26.
  • an adhesive layer may be formed on the surface of the inorganic layer 16 side.
  • the gas barrier film transfer method of the present invention is a method of attaching a transfer layer comprising a gas barrier layer and a release resin layer by attaching the surface of the gas barrier film opposite to the substrate to the transfer target and peeling the substrate. Transfer to the transfer body.
  • the transfer method of the present invention will be described below with reference to FIGS. 4 (A) to 4 (C) and FIG.
  • the surface of the gas barrier film 10b opposite to the substrate 12, that is, the organic protective layer 24 side is pasted toward the retardation film 112 side.
  • Match There is no limitation in the method of bonding, and various methods for bonding known film-like materials can be used. Such bonding may be performed in a sheet form, or by roll-to-roll (hereinafter also referred to as RtoR) using the long gas barrier film 10b and the retardation film 112. May be.
  • the gas barrier film 10b has an adhesive layer.
  • an adhesive is applied to an object to be transferred before bonding to the gas barrier film 10b. Bonding with the film 10b may be performed.
  • the protective film 26 is provided on the organic protective layer 24 (or the inorganic layer 16)
  • the protective film 26 is peeled off and bonded to the transferred body before the gas barrier film is bonded to the transferred body. Just do it.
  • the substrate 12 is peeled from the gas barrier film 10 b bonded to the retardation film 112.
  • substrate 12 there is no limitation also on the peeling method of the board
  • the transfer layer 30 of the gas barrier film 10b is transferred to the phase difference film 112 which is a transfer target, and a phase difference film 110 with a gas barrier layer as shown in FIG. 5 can be obtained.
  • the inorganic layer 16 can be prevented from cracking when the substrate 12 is peeled off, so that the transfer layer 30 can be transferred to the transfer object while maintaining high gas barrier properties.
  • the thickness of the transfer layer 30 can be made very thin, the influence on the optical properties such as transparency and retardation value can be reduced.
  • the transfer target to which the gas barrier film is transferred there is no limitation on the transfer target to which the gas barrier film is transferred.
  • High gas barrier properties are required, and it is suitable for sealing optical members such as organic EL elements and wavelength conversion materials. .
  • the transfer layer 30 having the resin layer 20 has a configuration laminated on the retardation film 112.
  • the retardation film 110 with a gas barrier layer is a film having a high gas barrier property in addition to the optical characteristics of the retardation film itself while suppressing an increase in thickness because the thickness of the transfer layer 30 is very thin. be able to.
  • FIG. 6 is an example of a wavelength conversion film in which the gas barrier film of the present invention is transferred to seal the wavelength conversion layer.
  • the wavelength conversion film 100 shown in FIG. 6 includes a wavelength conversion layer 102, a gas barrier film 104 laminated on one surface of the wavelength conversion layer 102, and a transfer layer 30 laminated on the other surface of the wavelength conversion layer 102. Have.
  • the gas barrier film 104 is for sealing the wavelength conversion layer 102, and is not particularly limited as long as it has gas barrier properties required for sealing the wavelength conversion layer 102, and a known gas barrier film can be used as appropriate. It is.
  • one surface of the wavelength conversion layer 102 is sealed with a conventional gas barrier film 104, and the other surface is transferred from the gas barrier film 10 of the present invention. It is sealed using Thus, the thickness of the whole wavelength conversion film can be made thin by sealing at least one surface of the wavelength conversion layer with the gas barrier film of the present invention.
  • 7 (A) to 7 (C) are examples of organic EL laminates in which the organic EL element is sealed by transferring the gas barrier film of the present invention.
  • An organic EL stacked body 120 a illustrated in FIG. 7A includes an element substrate 122, an organic EL element 124 formed on the element substrate 122, and a transfer layer 30 that is stacked to cover the organic EL element 124.
  • the element substrate 122 all element substrates used in various organic EL devices can be used. Specifically, an element substrate made of glass, plastic, metal, ceramic, or the like is exemplified. In order to prevent deterioration of the organic EL element 124 due to moisture or the like, it is preferable that moisture or the like can be prevented from passing through the element substrate 122 and reaching the organic EL element 124. Therefore, the element substrate 122 is preferably a substrate made of a material having a low content of moisture or the like and a low transmittance of moisture or the like, such as glass or metal.
  • gas barrier film 10 of the present invention (more specifically, the transfer layer 30) may be used as an element substrate as in the organic EL laminate 120b shown in FIG. 7B. Or what transferred the gas barrier film 10 of this invention to the resin base material may be used as an element substrate.
  • the organic EL element 124 is a known organic EL element having, for example, an organic electroluminescent layer and a transparent electrode and a reflective electrode that are an electrode pair that holds the organic electroluminescent layer. As shown in the figure, the organic EL element 124 is sealed with a transfer layer 30 transferred from the gas barrier film 10 of the present invention. Thus, by sealing the organic EL element 124 with the gas barrier film of the present invention, the thickness of the entire organic EL laminate can be reduced.
  • the organic EL laminate may be a top emission type that emits light from the transfer layer 30 side or a bottom emission type that emits light from the element substrate 122 side.
  • a passivation film 126 may be provided between the organic EL element 124 and the transfer layer 30 as in the organic EL stacked body 120c shown in FIG. That is, the organic EL element 124 may be sealed with the passivation film 126 and the transfer layer 30 may be transferred onto the passivation film 126.
  • the passivation film 126 is for preventing moisture, oxygen, and the like from reaching the organic EL element 124 and degrading the organic EL element 124.
  • various films (layers) made of a material exhibiting gas barrier properties, which are used in known organic EL devices, can be used.
  • the passivation film 126 may be formed by a known method corresponding to the film forming material.
  • RtoR means that a processed object is sent out from a roll formed by winding a long processed object, and is subjected to processing such as film formation while being conveyed in the longitudinal direction. This is a manufacturing method in which the material is wound again in a roll shape.
  • the release resin layer 20 is formed over the substrate 12 using a film formation apparatus conceptually illustrated in FIG. Specifically, for example, a coating composition containing an organic solvent and an organic compound that becomes the release resin layer 20 is prepared.
  • a substrate roll Ra obtained by winding a long substrate 12 into a roll is loaded into a predetermined position of the organic film forming apparatus.
  • the substrate 12 is sent out from the substrate roll Ra and passed through a predetermined path to the winding position.
  • a coating composition that becomes the release resin layer 20 is filled in a predetermined position of the coating unit 40.
  • the film forming apparatus includes a transport roller pair 48 for transporting the substrate 12 through a predetermined path.
  • the substrate 12 is fed out from the substrate roll Ra and conveyed in the longitudinal direction, and the prepared coating composition is applied to the substrate 12 in the coating unit 40, and then the coated coating composition is dried in the drying unit 42. Then, if necessary, the cured resin 44 is irradiated with ultraviolet rays or heated to form the release resin layer 20. Further, a long film in which the release resin layer 20 is formed on the substrate 12 is wound into a roll to obtain a base roll Rb.
  • a protective film is laminated
  • the substrate 12 on which the release resin layer 20 is formed is used as the film formation substrate Za, and the organic layer 14 is formed on the release resin layer 20 of the film formation substrate Za.
  • the formation of the organic layer 14 may be basically performed in the same manner as the formation of the release resin layer 20 using an organic film forming apparatus as shown in FIG. That is, for example, a coating composition containing an organic solvent, an organic compound that becomes the organic layer 14, and a polymerization initiator is prepared. Further, a base material roll Rb obtained by winding a long film-forming base material Za in a roll shape is loaded into a predetermined position of the organic film forming apparatus. Next, the deposition target substrate Za is sent out from the substrate roll Rb, and is passed through a predetermined path to the winding position.
  • a coating composition that becomes the organic layer 14 is filled in a predetermined position of the coating unit 40. Then, the film-forming substrate Za is sent out from the substrate roll Rb, and the prepared coating composition is applied onto the release resin layer 20 in the application unit 40 while being conveyed in the longitudinal direction, and then applied.
  • the composition is dried in the drying unit 42 and the organic compound 14 is polymerized (crosslinked) by ultraviolet irradiation or the like in the curing unit 44 to form the organic layer 14. Further, the long film-forming substrate Za on which the organic layer 14 is formed is wound into a roll shape to form a substrate roll Rc.
  • a protective film may be attached to the organic layer 14 after the organic layer 14 is formed.
  • the protective film is preferably attached before the organic layer 14 contacts another member such as a guide roller. Thereby, it is possible to prevent the organic layer 14 that is the base layer of the inorganic layer 16 from being damaged, and the inorganic layer 16 can be appropriately formed on the smooth organic layer 14, thereby obtaining a gas barrier film that exhibits high gas barrier properties. Can do.
  • the film formation of the release resin layer 20 and the film formation of the organic layer 14 are performed.
  • the present invention is not limited to this, and winding is not performed after the film formation of the release resin layer. Subsequently, the organic layer 14 may be formed.
  • the film formation of the release resin layer 20 and the film formation of the organic layer 14 may be performed continuously.
  • the deposition target substrate Zb is sent out from the substrate roll Rc, and the paper passes through a predetermined path from the supply chamber 50 to the winding chamber 54 through the deposition chamber 52.
  • the base material roll Rc is loaded so that the organic layer 14 becomes a film formation surface in the film formation chamber 52.
  • the protective film roll 26 ⁇ / b> R is loaded at a predetermined position in the film forming chamber 52.
  • the protective film 26 is sent out from the protective film roll 26 ⁇ / b> R, and the paper passes through a predetermined path from the film formation chamber 52 to the winding chamber 54.
  • the supply chamber 50 is evacuated by the vacuum evacuation means 50a
  • the film formation chamber 52 is evacuated by the vacuum evacuation means 52a
  • the take-up chamber 54 is evacuated by the vacuum evacuation means 54a.
  • the film formation substrate Zb is sent out from the substrate roll Rc, guided by the guide roller 58, and conveyed to the film formation chamber 52.
  • the film formation substrate Zb conveyed to the film formation chamber 52 is guided by the guide roller 60 and wound around the circumferential surface of the cylindrical drum 62.
  • the drum 62 also functions as an electrode in CCP-CVD.
  • the drum 62 has a temperature adjustment function as a preferred embodiment.
  • the film-forming substrate Zb is formed with the inorganic layer 16 formed by CCP-CVD while being transported along a predetermined path by the drum 62, and the substrate 12 has a release resin layer 20 and a combination of the organic layer 14 and the inorganic layer 16. Is a laminated film formed.
  • CCP-CVD is a film forming means having an electrode pair composed of a drum 62 and a shower electrode 64, a source gas supply unit 68, a high-frequency power source 70, and the like.
  • the formation of the inorganic layer 16 by plasma CVD may be performed by a known method according to the material for forming the inorganic layer 16 or the like.
  • the inorganic layer 16 can be formed by various known vapor deposition methods such as ICP-CVD (inductively coupled plasma enhanced chemical vapor deposition), sputtering, and vacuum deposition. It is.
  • the protective film 26 is sent out from the protective film roll 26R and conveyed in the longitudinal direction in synchronization with the conveyance of the film formation substrate Zb.
  • the film-forming substrate Zb on which the inorganic layer 16 is formed and the protective film 26 are laminated and pressure-bonded by the lamination roller pair 72, whereby the gas barrier film 10 is produced.
  • An adhesive layer may be formed on the surface of the protective film 26 that faces the inorganic layer 16.
  • the protective film 26 is attached after the inorganic layer 16 is formed and before the inorganic layer 16 contacts other members such as a guide roller. Thereby, the damage of the inorganic layer 16 is prevented and the gas barrier film 10 which expresses the target gas barrier property is obtained.
  • the protective film is peeled off and the inorganic layer 16 is formed before the inorganic layer 16 is formed.
  • the protective film is preferably peeled off at a position where there is no member such as a guide roller in contact with the organic layer 14 along the path to the film forming means of the inorganic layer 16.
  • the substrate 12 on which the release resin layer 20, the organic layer 14, and the inorganic layer 16 are formed is used as a film formation base material.
  • the organic film forming apparatus as shown in FIG. 5 may be used in the same manner as the release resin layer 20 and the organic layer 14.
  • Example 1 As Example 1, a gas barrier film 10a shown in FIG.
  • the coating liquid A1 to be the release resin layer 20 As the coating liquid A1 to be the release resin layer 20, a COC resin (APEL 6015T manufactured by Mitsui Chemicals, Inc.) was dissolved in cyclohexane to prepare a coating liquid having a solid content concentration of 10%.
  • the coating solution A1 was filled in the coating unit 40 of a film forming apparatus using RtoR as shown in FIG.
  • the coating unit 40 used a die coater. Further, a substrate roll Ra obtained by winding the substrate 12 in a roll shape was loaded at a predetermined position, and the substrate 12 was inserted into a predetermined transport path.
  • the coating liquid A1 is applied to the substrate 12 by the coating unit 40 so that the dry film thickness becomes 2 ⁇ m, and in the drying unit 42, the drying temperature is 100 ° C. for 3 minutes.
  • the release resin layer 20 was formed on the substrate 12 by drying. In this case, the curing part 44 was not used. That is, the material for forming the release resin layer 20 is a cycloolefin copolymer.
  • the glass transition temperature Tg of the formed release resin layer 20 was measured by a high-sensitivity differential scanning calorimeter (Hitachi High-Tech Science Co., Ltd., DSC7000X) according to JIS K 7121, and found to be 145 ° C.
  • the organic layer 14 was formed on the formed release resin layer 20 by the following procedure.
  • the coating solution B1 was filled in the coating unit 40 of a film forming apparatus using RtoR as shown in FIG.
  • the coating unit 40 used a die coater.
  • a base material roll Rb formed by winding a substrate 12 having a release resin layer 20 (hereinafter sometimes referred to as “film formation base material Za”) into a roll shape is loaded at a predetermined position to form a film.
  • the base material Za was inserted through a predetermined conveyance path.
  • the coating liquid B1 is applied onto the release resin layer 20 of the film-forming substrate Za so that the dry film thickness is 1 ⁇ m while the film-forming substrate Za is conveyed in the longitudinal direction.
  • the drying unit 42 is dried at a drying temperature of 50 ° C.
  • the curing unit 44 is irradiated with ultraviolet rays (integrated irradiation amount is about 700 mJ / cm 2 ) to be cured, and the organic layer 14 is formed on the release resin layer 20. Formed.
  • the protective film of polyethylene was affixed on the organic layer 14, and it wound up after that.
  • the glass transition temperature Tg of the formed organic layer 14 was measured according to JIS K 7121 using a high-sensitivity differential scanning calorimeter (DSC7000X, manufactured by Hitachi High-Tech Science Co., Ltd.), the measurement limit was 250 ° C. or higher.
  • the inorganic layer 16 was formed on the formed organic layer 14 by the following procedure.
  • a base material roll Rc formed by winding a certain film in a roll shape was loaded, and a protective film roll 26R was loaded at a predetermined position in the film forming chamber 52.
  • the film-forming substrate Zb was sent out from the substrate roll Rc, and passed through a predetermined conveyance path from the supply chamber 50 to the winding chamber 54 through the film-forming chamber 52.
  • the protective film 26 was sent out from the protective film roll 26 ⁇ / b> R and passed through a predetermined conveyance path from the film forming chamber 52 to the winding chamber 54. In this state, while the film-forming substrate Zb and the protective film 26 are conveyed synchronously, the protective film is peeled off from the film-forming substrate Zb after passing through the film surface touch roll immediately before film formation, A silicon nitride film was formed as the inorganic layer 16 by CCP-CVD on the surface of the organic layer 14 of the film formation substrate Zb supported / guided by the drum 62 in 52. Next, the protective film 26 was laminated and pasted on the inorganic layer 16 by the pair of laminating rollers 72 to produce a gas barrier film 10a as shown in FIG.
  • Example 2 Further, a gas barrier film 10b as shown in FIG. 2A was produced in the same manner as in Example 1 except that the organic protective layer 24 shown below was formed on the inorganic layer 16.
  • coating liquid C1 to be the organic protective layer 24 As coating liquid C1 to be the organic protective layer 24, urethane skeleton acrylic polymer (Acryt 8BR930 manufactured by Taisei Fine Chemical Co., Ltd.), photopolymerization initiator (Irg184 manufactured by BASF Japan), silane coupling agent (KBM5103 manufactured by Shin-Etsu Silicone Co., Ltd.), softening
  • the agent (Byron U1400 manufactured by Toyobo Co., Ltd.) was weighed so as to have a weight ratio of 78: 10: 10: 2, and dissolved in methyl ethyl ketone to prepare a coating solution having a solid content concentration of 15%.
  • the coating solution C1 was filled in the coating unit 40 of a film forming apparatus using RtoR as shown in FIG.
  • the coating unit 40 used a die coater.
  • a substrate roll formed by winding a substrate 12 on which the release resin layer 20, the organic layer 14, and the inorganic layer 16 are formed (hereinafter, may be referred to as “deposition substrate Zc”) in a roll shape is placed at a predetermined position.
  • the film formation substrate Zc was inserted through a predetermined transport path.
  • the coating liquid C1 is applied onto the inorganic layer 16 of the film forming substrate Zc by the coating unit 40 so that the dry film thickness is 1 ⁇ m while the film forming substrate Zc is conveyed in the longitudinal direction.
  • the drying unit 42 is dried at a drying temperature of 100 ° C.
  • the curing unit 44 is irradiated with ultraviolet rays (integrated irradiation amount of about 600 mJ / cm 2 ) to be cured and the organic protective layer 24 is formed on the inorganic layer 16. Formed.
  • Example 3 As the coating solution to be the organic protective layer 24, the following coating solution C2 was used, the thickness of the organic protective layer 24 was set to 3 ⁇ m, and after the organic protective layer 24 was formed, A gas barrier film 10c as shown in FIG. 2 (B) was produced in the same manner as in Example 2 except that a separator film (film binder BD manufactured by Fujimori Kogyo Co., Ltd.) was attached as the protective film 26.
  • the coating liquid C2 was obtained by diluting SK Dyne NT21 (manufactured by Soken Chemical Co., Ltd.) with a curing agent L-45 (manufactured by Soken Chemical Co., Ltd.) in a ratio of 100: 2, and then solid-concentrating 15%.
  • the organic protective layer 24 is an acrylic pressure-sensitive adhesive.
  • Example 4 A gas barrier film 10c was produced in the same manner as in Example 3 except that a urethane-based adhesive (No. 96 manufactured by Rock Paint Co., Ltd.) was used as the coating liquid C3 to be the organic protective layer 24.
  • the organic protective layer 24 is a urethane adhesive.
  • Example 5 A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution A2 was used as the coating solution to be the release resin layer 20.
  • the coating liquid A2 was prepared so that COC resin (APEL 6509T manufactured by Mitsui Chemicals, Inc.) was dissolved in cyclohexane and the solid content concentration was 10%. It was 70 degreeC when the glass transition temperature Tg of the formed peeling resin layer 20 was measured like the previous.
  • a gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution A3 was used as the coating solution to be the release resin layer 20.
  • Coating solution A3 was prepared by dissolving COC resin (APEL 6011T, manufactured by Mitsui Chemicals, Inc.) with cyclohexane so that the solid content concentration was 10%. It was 105 degreeC when the glass transition temperature Tg of the formed peeling resin layer 20 was measured similarly to the previous.
  • Example 7 A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution A4 was used as the coating solution to be the release resin layer 20.
  • the coating liquid A4 was prepared by dissolving COP resin (Arton D4540, manufactured by JSR Corporation) with cyclohexane so that the solid concentration was 10%. It was 128 degreeC when the glass transition temperature Tg of the formed peeling resin layer 20 was measured like the previous.
  • Example 8 A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 20 ⁇ m.
  • Example 9 A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 10 ⁇ m.
  • Example 10 A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 0.5 ⁇ m.
  • Example 11 A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 0.1 ⁇ m.
  • a gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating liquid B2 was used as the coating liquid to be the organic layer 14.
  • the coating liquid B2 was prepared by blending A-DPH (Shin Nakamura Chemical Co., Ltd., Tg 250 ° C. or higher) and A-600 (Shin Nakamura Chemical Co., Ltd., Tg-22 ° C.) at a ratio of 4: 1.
  • a photopolymerization initiator (Irg819 manufactured by BASF Japan) was weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%. It was 180 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
  • a gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution B3 was used as the coating solution to be the organic layer 14.
  • the coating solution B3 was prepared by blending A-DPH (Shin Nakamura Chemical Co., Ltd., Tg 250 ° C. or higher) and A-600 (Shin Nakamura Chemical Co., Ltd., Tg-22 ° C.) to 1: 1,
  • a photopolymerization initiator (Irg819 manufactured by BASF Japan) was weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%. It was 114 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
  • Example 14 A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution B4 was used as the coating solution to be the organic layer 14.
  • the coating solution B4 was prepared by weighing EB3702 (Tg 53 ° C.) manufactured by Daicel Ornex Co., Ltd. and a photopolymerization initiator (Irg819 manufactured by BASF Japan) at a weight ratio of 97: 3, and dissolving them in methyl ethyl ketone. The concentration was adjusted to 15%. It was 53 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
  • Example 15 A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution B5 was used as the coating solution to be the organic layer 14.
  • the coating solution B5 was formulated such that A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd., Tg 250 ° C. or higher) and 1-ADMA (1-adamantyl methacrylate, Osaka Organic Chemical Co., Ltd. Tg 250 ° C.) were 1: 1.
  • This and a photopolymerization initiator (Irg819 manufactured by BASF Japan) were weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%. That is, the material for forming the organic layer contains one or more acrylates having an adamantane skeleton. It was 250 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
  • a gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating liquid B6 was used as the coating liquid to be the organic layer 14.
  • the coating liquid B6 was formulated with A-DPH (Shin Nakamura Chemical Co., Ltd. Tg 250 ° C. or higher) and EA-200 (acrylate monomer Osaka Gas Chemical Co., Ltd. Tg 211 ° C.) to a ratio of 1: 1 and light.
  • a polymerization initiator (Irg819 manufactured by BASF Japan) was weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%. That is, the material for forming the organic layer contains a bifunctional or higher acrylate having a fluorene skeleton. It was 230 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
  • Example 19 A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid B1 to be the organic layer 14 were changed to set the dry film thickness to 0.1 ⁇ m.
  • Example 20 A gas barrier film 10a was produced in the same manner as in Example 1 except that a silicone release film (Film Binder BD manufactured by Fujimori Kogyo Co., Ltd.) was used as the substrate 12.
  • a silicone release film Frazier BD manufactured by Fujimori Kogyo Co., Ltd.
  • Example 21 A gas barrier film 10c was produced in the same manner as in Example 3 except that the solid content concentration and the coating amount of the coating liquid C2 to be the organic protective layer 24 were changed to make the film thickness 50 ⁇ m.
  • Example 22 A gas barrier film 10c was produced in the same manner as in Example 3 except that the solid content concentration and the coating amount of the coating liquid C2 to be the organic protective layer 24 were changed to change the film thickness to 0.1 ⁇ m.
  • Example 1 A gas barrier film was produced in the same manner as in Example 1 except that the release resin layer 20 was not formed.
  • the substrate 12 was peeled as follows. First, a 200 mm square bonded film was punched into a 100 mm square using a Thomson blade so that the end face was surely peeled off. Next, with the TAC film side down, the surface of the TAC film was adsorbed and held by an adsorption plate having high flatness, and then an adhesive tape (Nitto Cello Tape (registered trademark)) for grasping the substrate 12 was attached to the end by about 2 cm. Subsequently, the adhesive tape was drawn parallel to the sample so that the substrate 12 drawn an arc as in the 180 degree peel test. In this way, the substrate 12 was peeled off. The peeling was performed in an environment with a temperature of 25 ° C. and a humidity of 50% RH.
  • Example 3 which has the organic protective layer 24 used as an adhesion layer on the inorganic layer 16, the Fujitac (made by TD80 Fuji Film Co., Ltd.) which has not bonded the adhesion film is transferred. Transfer was carried out in the same manner except that the body was used.
  • the water vapor transmission rate of the gas barrier film 10 transferred to the transfer medium and peeled off the substrate 12 was measured by a calcium corrosion method (method described in JP-A-2005-283561).
  • the conditions of the constant temperature and humidity treatment were a temperature of 40 ° C. and a relative humidity of 90% RH.
  • the water vapor permeability of Fujitac alone was 400 [g / (m 2 ⁇ day)]. Based on the measured water vapor transmission rate, evaluation was performed according to the following criteria.
  • Total light transmittance The total light transmittance of the transferred transfer layer 30 was measured using a spectrophotometer (Nippon Denshoku Co., Ltd. haze meter SH7000). Based on the measured total light transmittance, the following criteria were used for evaluation. A: Total light transmittance is 90% or more B: Total light transmittance is 88% or more and less than 90% C: Total light transmittance is 86% or more and less than 88% D: Total light transmittance is 84% or more and less than 86%
  • Retardation value The retardation value (Re value) of the transferred transfer layer 30 was measured with KOBRA-WR (manufactured by Oji Scientific Instruments). Based on the measured retardation value, the following criteria were used for evaluation. A: Retardation value is 5 nm or less B: Retardation value is more than 5 nm and less than 10 nm C: Retardation value is more than 10 nm and less than 20 nm D: Retardation value is more than 20 nm The results are shown in the following table.
  • the example of the present invention having a release resin layer between the substrate and the gas barrier layer and peeling at the interface between the release resin layer and the substrate is a gas barrier as compared with the comparative example. It can be seen that it has excellent properties and optical properties. Moreover, it turns out that it is preferable that a peeling resin layer is a cyclic olefin resin whose glass transition temperature Tg is 100 degreeC or more from the comparison of Example 1, 5 and 6. FIG. Moreover, it can be seen from the comparison between Example 1 and Example 7 that the release resin layer is preferably a cycloolefin copolymer. Further, from the comparison between Examples 1 and 8 to 11, it can be seen that the thickness of the release resin layer is preferably 0.1 to 25 ⁇ m, more preferably 0.5 to 15 ⁇ m.
  • the glass transition temperature Tg of the organic layer is preferably 200 ° C. or higher.
  • the organic layer preferably contains 5% or more and less than 50% of monofunctional or higher acrylate having an adamantane skeleton, or bifunctional or higher acrylate having a fluorene skeleton. It is understood that it is preferable to contain 5% or more and less than 50%.
  • the thickness of the organic layer is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 5 ⁇ m, and further preferably 0.2 to 3 ⁇ m. I understand that.
  • the inorganic layer is preferably silicon nitride.
  • Examples 2 to 4, 21, and 22 show that it is preferable to have the organic protective layer 24 on the inorganic layer 16. Further, it can be seen from the comparison between Example 3 and Example 4 that an acrylic adhesive is preferably used as the organic protective layer 24. Further, from the comparison with Examples 3, 21 and 22, it can be seen that the thickness of the organic protective layer 24 is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 25 ⁇ m.
  • composition for forming quantum dot layer The following quantum dot-containing polymerizable composition A was prepared, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, and then dried under reduced pressure for 30 minutes to be used as a coating composition.
  • the quantum dot concentration in the following toluene dispersion was 1% by mass.
  • Quantum dot-containing polymerizable composition A -Toluene dispersion of quantum dots 1 (emission maximum: 520 nm) 10.0 parts by mass-Toluene dispersion of quantum dots 2 (emission maximum: 630 nm) 1.0 parts by mass-80.8 parts by mass of lauryl methacrylate-Trimethylolpropane 18.2 parts by mass of triacrylate / 1.0 part by mass of photopolymerization initiator (Irgacure 819 (manufactured by BASF))
  • the coating film was sandwiched between the first film and the second film. While continuously transporting in this state, after passing through a heating zone at 60 ° C. for 3 minutes, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.), curing by irradiating with ultraviolet rays, quantum dots
  • the quantum dot layer (wavelength conversion layer 102) containing was formed.
  • the irradiation amount of ultraviolet rays was 2000 mJ / cm 2 .
  • the substrate 12 was peeled from each of the first film and the second film to produce a quantum dot film (wavelength conversion film 100).
  • the luminance of the wavelength conversion film 100 immediately after production and the luminance after being left in an environment of temperature 60 ° C. and humidity 90% RH for 1000 hours (after humidification) are measured, and the durability is determined from the amount of change. evaluated.
  • the measurement of luminance was performed as follows. First, a commercially available liquid crystal display device (Amazon Kindle Kindle Fire HDX 7 ") was disassembled, and a backlight unit with a blue light source was taken out. Next, a wavelength conversion film cut into a rectangle on the light guide plate of the backlight unit The two prism sheets taken out from the liquid crystal display device were placed on top of each other so that the directions of the concavo-convex patterns on the surface were orthogonal to each other. The backlight unit was turned on, and the luminance was measured with a luminance meter (SR3 manufactured by TOPCON) installed at a position of 740 mm in the vertical direction from the front surface of the backlight unit.
  • SR3 luminance meter
  • the wavelength conversion film sealed using the gas barrier film of this invention has high durability.
  • Example 24 A retardation film 110 with a gas barrier layer as shown in FIG. 5 was produced using the produced gas barrier film 10.
  • As the retardation film 112 special polycarbonate W138 (manufactured by Teijin Limited) was used.
  • PDS1 manufactured by Panac Corporation
  • an optical adhesive film was bonded to the retardation film 112.
  • a laminator Proteus manufactured by Fellows
  • the substrate 12 of the gas barrier film 10 was peeled off to produce a retardation film 110 with a gas barrier layer.
  • the retardation film 110 with a gas barrier layer to which the gas barrier film of the present invention has been transferred has high gas barrier properties while maintaining optical characteristics.
  • Example 25 Using the produced gas barrier film 10, an organic EL laminate 120a as shown in FIG. 7A was produced.
  • a glass plate having a thickness of 500 ⁇ m and a size of 20 ⁇ 20 mm was prepared as the element substrate 122.
  • the periphery 2 mm of the element substrate 122 was masked with ceramic.
  • the element substrate subjected to masking was loaded into a general vacuum deposition apparatus, an electrode made of metal aluminum having a thickness of 100 nm was formed by vacuum deposition, and a lithium fluoride layer having a thickness of 1 nm was further formed. .
  • the following organic compound layers were sequentially formed on the element substrate 122 by vacuum deposition.
  • Tris (8-hydroxyquinolinato) aluminum film thickness 60 nm (Second hole transport layer) N, N′-diphenyl-N, N′-dinaphthylbenzidine: film thickness 40 nm (First hole transport layer) copper phthalocyanine: film thickness 10 nm
  • the element substrate 122 on which these layers are formed is loaded into a general sputtering apparatus, and ITO (Indium Tin Oxide indium tin oxide) is used as a target, and a 0.2 ⁇ m thick ITO film is formed by DC magnetron sputtering. A transparent electrode made of a thin film was formed. In this manner, an organic EL element 124 which is a light emitting element using an organic EL material was formed on the element substrate 122.
  • Example 26 After removing the masking, the element substrate 122 on which the organic EL element 124 is formed is loaded into a general plasma CVD apparatus, and a passivation film 126 having a thickness of 1500 nm made of silicon nitride is formed by plasma CVD (CCP-CVD). Except that was formed, an organic EL laminated body 120c as shown in FIG. 7C was produced in the same manner as in Example 25.
  • Example 27 An organic EL laminate 124 was produced in the same manner as in Example 25 except that the gas barrier film 10a of Example 1 was used as the element substrate 122. Specifically, the gas barrier film 10a of Example 1 is transferred to a TAC film with an adhesive layer in which an optical adhesive film (PDS1 Panac Co., Ltd.) is bonded to Fuji Tac (TD80 manufactured by Fuji Film Co., Ltd.), and the substrate 12 The laminate from which the substrate was peeled was used as the element substrate 122. Then, an organic EL element 124 was formed on the release resin layer 20 of the element substrate 122. Thereafter, in the same manner as above, the organic EL element 124 was sealed with another gas barrier film 10a to produce an organic EL laminate 124.
  • PDS1 Panac Co., Ltd. an optical adhesive film
  • Fuji Tac Fuji Tac
  • the produced organic EL laminate 124 was left for 200 hours in an environment of a temperature of 60 ° C. and a humidity of 90% RH. After standing, each organic EL laminated body 124 was made to emit light by applying a voltage of 7 V using a SMU2400 type source measure unit manufactured by Keithell. Observation with a microscope from the gas barrier film 10a side, the presence or absence of dark spots was confirmed, and the following criteria were used for evaluation. A: Generation of dark spots was not observed at all B: Generation of dark spots was slightly observed C: Generation of dark spots was clearly recognized D: Area ratio of dark spots was larger Evaluation As a result, the organic EL laminates of Examples 25 to 27 were all A. From the above results, the effects of the present invention are clear.

Abstract

Provided are: a gas barrier film which is thin and transferrable and exhibits high gas barrier properties after transfer; and a method for transferring a gas barrier film. Also provided are a wavelength conversion film, a retardation film with a gas barrier layer and an organic EL laminate, each of which uses this gas barrier film. This gas barrier film comprises: a base; a gas barrier layer which is formed on one surface of the base and has one or more combinations of an inorganic layer and an organic layer serving as a formation surface for the inorganic layer; and a releasing resin layer which is arranged between the substrate and the gas barrier layer for the purpose of the separation of the substrate, and which closely adheres to the organic layer.

Description

ガスバリアフィルム、ガスバリアフィルムの転写方法、波長変換フィルム、ガスバリア層付位相差フィルム、および有機EL積層体Gas barrier film, gas barrier film transfer method, wavelength conversion film, phase difference film with gas barrier layer, and organic EL laminate
 本発明は、ガスバリアフィルムおよびガスバリアフィルムの転写方法、ならびに、このガスバリアフィルムを用いた波長変換フィルム、ガスバリア層付位相差フィルムおよび有機EL積層体に関する。 The present invention relates to a gas barrier film, a gas barrier film transfer method, a wavelength conversion film using the gas barrier film, a retardation film with a gas barrier layer, and an organic EL laminate.
 近年、有機ELデバイス(有機エレクトロルミネッセンスデバイス)、太陽電池、量子ドットフィルムなどのデバイスあるいはディスプレイ材料、水分または酸素によって変質する薬剤を収容する輸液バックなどの包装材料において、高いガスバリア性が要求される。
 そのため、これら部材では、必要なガスバリア性を付与するために、ガスバリアフィルムを貼着したり、ガスバリアフィルムで封止したりしている。
In recent years, high gas barrier properties are required for devices such as organic EL devices (organic electroluminescence devices), solar cells, quantum dot films, or display materials, and packaging materials such as infusion bags that contain drugs that are altered by moisture or oxygen. .
Therefore, in these members, a gas barrier film is attached or sealed with a gas barrier film in order to impart necessary gas barrier properties.
 ガスバリアフィルムを高いガスバリア性が求められる分野に用いるために、特許文献1には、ガスバリア性を向上させる方法として、ガスバリア層として無機層を用いる構成、ガスバリア層を多層化する構成、およびガラス転移温度Tgの高い樹脂フィルムにガスバリア層を形成すること、が記載されている。 In order to use a gas barrier film in a field where high gas barrier properties are required, Patent Document 1 discloses, as a method for improving gas barrier properties, a configuration using an inorganic layer as a gas barrier layer, a configuration in which gas barrier layers are multilayered, and a glass transition temperature. It describes that a gas barrier layer is formed on a resin film having a high Tg.
 高いガスバリア性を有するガスバリアフィルムは様々な電子デバイスや機能性フィルムに展開され、従来、封止することが困難だった材料を封止することを可能にしている。
 例えば、特許文献2には、LCD等のバックライトユニットに用いられる量子ドットフィルムとして、量子ドット層(QD蛍光体材料フィルム層)を2枚のガスバリアフィルムで挟持することにより量子ドットを保護した、積層型の量子ドットフィルムが記載されている。
 また、特許文献3には、ガスバリアフィルムを用いて有機EL素子を封止することが記載されている。
A gas barrier film having a high gas barrier property is developed in various electronic devices and functional films, and makes it possible to seal materials that have been difficult to seal.
For example, in Patent Document 2, as a quantum dot film used in a backlight unit such as an LCD, the quantum dots are protected by sandwiching a quantum dot layer (QD phosphor material film layer) between two gas barrier films. A stacked quantum dot film is described.
Patent Document 3 describes sealing an organic EL element using a gas barrier film.
 このようにガスバリア性の高いガスバリアフィルムを用いることで、ディスプレイ等の種々の電子デバイスの薄型化、軽量化やフレキシブル化を行うことができる。したがって、ガスバリアフィルムをさらに薄型化できれば、電子デバイスのさらなる薄型化、軽量化等を行うことができる。
 特許文献1等に記載されるように、このようなガスバリアフィルムは、樹脂フィルムを基板として、この基板上にガスバリア層が形成された構成を有する。そのため、ガスバリアフィルムを薄型化するには、基板を薄型化することが考えられる。
 ここで、高いガスバリア性を有するガスバリア層は、薄い無機層である。このため、ガスバリア層は、微小な座屈や接触などでも割れやすく、割れると性能が低下してしまう。そのため、薄型の基板にガスバリア層を積層する際には、基板が座屈するのを防止できるように搬送を安定化させる必要がある。
As described above, by using a gas barrier film having a high gas barrier property, various electronic devices such as a display can be made thinner, lighter and more flexible. Therefore, if the gas barrier film can be made thinner, the electronic device can be made thinner and lighter.
As described in Patent Document 1 and the like, such a gas barrier film has a configuration in which a gas barrier layer is formed on a resin film as a substrate. Therefore, in order to make the gas barrier film thinner, it is conceivable to make the substrate thinner.
Here, the gas barrier layer having a high gas barrier property is a thin inorganic layer. For this reason, the gas barrier layer is easily cracked even by minute buckling or contact, and the performance deteriorates when cracked. Therefore, when laminating the gas barrier layer on a thin substrate, it is necessary to stabilize the conveyance so that the substrate can be prevented from buckling.
 特許文献4では、基板の裏面側に保護材料を貼着することにより、基板の自己支持性を確保することができ、薄い基板を用いた場合でも、基板の座屈を生じることなく、適正にガスバリア層を形成できることが記載されている。
 このような方法を用いれば、10数μm程度の薄い基板にもガスバリア層を形成することが可能となる。しかしながら、これよりも薄くなると、薄い基板を搬送しつつ、この基板に補強用の保護材料を貼り合わせること自体が困難になってしまう。
In Patent Document 4, by attaching a protective material to the back side of the substrate, self-supporting property of the substrate can be ensured, and even when a thin substrate is used, the substrate does not buckle properly. It is described that a gas barrier layer can be formed.
If such a method is used, a gas barrier layer can be formed even on a thin substrate of about a few tens of micrometers. However, if the thickness is smaller than this, it becomes difficult to attach a reinforcing protective material to the substrate while transporting the thin substrate.
 このようなガスバリアフィルムの薄型化に伴う問題を解決する方法として、ガスバリア層のみを封止対象物(被転写体)に転写する転写方式が提案されている。 As a method for solving such a problem associated with the thinning of the gas barrier film, a transfer method in which only the gas barrier layer is transferred to an object to be sealed (transfer object) has been proposed.
 例えば、特許文献5には、基板とガスバリア層との間に離型層を形成し、ガスバリア層を基板から剥離させて被転写体に転写することが記載されている。 For example, Patent Document 5 describes that a release layer is formed between a substrate and a gas barrier layer, and the gas barrier layer is peeled off from the substrate and transferred to a transfer target.
米国特許5654084号US Pat. No. 5,565,084 特表2013-544018号公報Special table 2013-544018 gazette 特開2014-197537号公報JP 2014-197537 A 特開2015-66812号公報Japanese Patent Laying-Open No. 2015-66812 特開2007-118564号公報JP 2007-118564 A
 前述のとおり、高いガスバリア性を実現するために、ガスバリア層に無機層を用いる構成がある。
 ここで、本発明者の検討によれば、特許文献5に記載されるような、ガスバリア層を基板から剥離して被転写体に転写する転写方式のガスバリアフィルムでは、ガスバリア層と基板とを剥離する際に、ガスバリア層にせん断力が加わるため、このせん断力によって無機層が割れてしまい、転写後のガスバリア層が十分なガスバリア性を発現できない場合があることがわかった。
As described above, there is a configuration in which an inorganic layer is used for the gas barrier layer in order to realize high gas barrier properties.
Here, according to the study of the present inventor, as described in Patent Document 5, in the gas barrier film of the transfer system in which the gas barrier layer is peeled off from the substrate and transferred to the transfer target, the gas barrier layer and the substrate are peeled off. In this case, since a shearing force is applied to the gas barrier layer, the inorganic layer is broken by this shearing force, and it has been found that the gas barrier layer after transfer may not exhibit a sufficient gas barrier property.
 本発明の目的は、このような従来技術の問題点を解決することにあり、薄く、転写可能で、かつ、転写後も高いガスバリア性を有するガスバリアフィルムおよびガスバリアフィルムの転写方法を提供し、また、このガスバリアフィルムを用いた波長変換フィルム、ガスバリア層付位相差フィルムおよび有機EL積層体を提供することにある。 An object of the present invention is to provide a gas barrier film and a gas barrier film transfer method that are thin, transferable, and have high gas barrier properties even after transfer, and to solve such problems of the prior art. Another object of the present invention is to provide a wavelength conversion film, a retardation film with a gas barrier layer, and an organic EL laminate using the gas barrier film.
 本発明者は、上記課題を達成すべく鋭意研究した結果、基板と、基板の一方の面側に設けられ、無機層と無機層の形成面である有機層との組み合わせを1組以上有するガスバリア層と、基板とガスバリア層との間に設けられ、有機層と密着し、かつ、基板とガスバリア層とを剥離するための剥離樹脂層と、を有することにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の構成のガスバリアフィルムおよびガスバリアフィルムの製造方法、ならびに、このガスバリアフィルムを用いた波長変換フィルム、ガスバリア層付位相差フィルムおよび有機EL積層体を提供する。
As a result of diligent research to achieve the above-mentioned problems, the present inventor has provided a gas barrier having one or more combinations of a substrate and an organic layer which is provided on one surface side of the substrate and which is the surface on which the inorganic layer is formed. A layer, and a release resin layer provided between the substrate and the gas barrier layer, in close contact with the organic layer, and for peeling the substrate and the gas barrier layer, finds that the above problem can be solved, The present invention has been completed.
That is, this invention provides the gas barrier film of the following structures, the manufacturing method of a gas barrier film, the wavelength conversion film using this gas barrier film, the phase difference film with a gas barrier layer, and an organic electroluminescent laminated body.
 (1) 基板と、
 基板の一方の面側に設けられ、無機層とこの無機層の形成面である有機層との組み合わせを1組以上有するガスバリア層と、
 基板とガスバリア層との間に設けられ、有機層と密着し、かつ、基板とガスバリア層とを剥離するための剥離樹脂層と、を有するガスバリアフィルム。
 (2) 剥離樹脂層が有機層よりも厚い(1)に記載のガスバリアフィルム。
 (3) 剥離樹脂層の形成材料が、ガラス転移温度Tgが100℃以上の環状オレフィン樹脂である(1)または(2)に記載のガスバリアフィルム。
 (4) 剥離樹脂層の形成材料が、シクロオレフィンコポリマーである(3)に記載のガスバリアフィルム。
 (5) 剥離樹脂層の厚さが0.1~25μmである(1)~(4)のいずれかに記載のガスバリアフィルム。
 (6) 無機層の形成材料が、窒化ケイ素、酸化ケイ素、または、これらの混合物である(1)~(5)のいずれかに記載のガスバリアフィルム。
 (7) 有機層の形成材料が、紫外線硬化樹脂または電子線硬化樹脂であり、硬化後のガラス転移温度Tgが200℃以上である(1)~(6)のいずれかに記載のガスバリアフィルム。
 (8) 有機層の形成材料が、アダマンタン骨格を有する1官能以上のアクリレートを5%以上、50%未満含む(7)に記載のガスバリアフィルム。
 (9) 有機層の形成材料が、フルオレン骨格を有する2官能以上のアクリレートを5%以上、50%未満含む(7)に記載のガスバリアフィルム。
 (10) 有機層の厚さが、0.1~5μmである(1)~(9)のいずれかに記載のガスバリアフィルム。
 (11) ガスバリア層上に設けられた、保護フィルムまたは有機保護層、をさらに有する(1)~(10)のいずれかに記載のガスバリアフィルム。
 (12) 有機保護層がアクリル系粘着剤である(11)に記載のガスバリアフィルム。
 (13) 有機保護層上に設けられた保護フィルム、をさらに有する(11)または(12)に記載のガスバリアフィルム。
 (14) 有機保護層の厚さが、0.1~50μmである(11)~(13)のいずれかに記載のガスバリアフィルム。
 (15) 基板が、離型層を付与されたポリエチレンテレフタレートフィルムである(1)~(14)のいずれかに記載のガスバリアフィルム。
 (16) 基板を除いた構成の水蒸気透過率が、0.01g/(m2・day)未満である(1)~(15)のいずれかに記載のガスバリアフィルム。
 (17) 基板を除いた構成の可視光透過率が85%以上、リタデーション値が30nm以下である(1)~(16)のいずれかに記載のガスバリアフィルム。
 (18) ガスバリア層および剥離樹脂層を備える転写層を、被転写体に転写するガスバリアフィルムの転写方法であって、(1)~(17)のいずれかに記載のガスバリアフィルムの基板とは反対側の面を被転写体に貼着し、基板を剥離するガスバリアフィルムの転写方法。
 (19) 被転写体が波長変換材料、位相差フィルム、有機EL素子、および、有機EL素子上に形成されたパッシベーション膜のいずれかである(18)に記載のガスバリアフィルムの転写方法。
 (20) 波長変換層と、
 波長変換層上に積層された、(1)~(17)のいずれかに記載のガスバリアフィルムから基板を除いた、ガスバリア層および剥離樹脂層を備える転写層とを有する波長変換フィルム。
 (21) 位相差フィルムと、
 位相差フィルム上に積層された、(1)~(17)のいずれかに記載のガスバリアフィルムから基板を除いた、ガスバリア層および剥離樹脂層を備える転写層とを有するガスバリア層付位相差フィルム。
 (22) 有機EL素子と、
 有機EL上に積層された、(1)~(17)のいずれかに記載のガスバリアフィルムから基板を除いた、ガスバリア層および剥離樹脂層を備える転写層とを有する有機EL積層体。
 (23) 有機EL素子と転写層との間に、パッシベーション膜を有する(22)に記載の有機EL積層体。
 (24) 有機EL素子を支持する素子基板をさらに有し、この素子基板が、(1)~(17)のいずれかに記載のガスバリアフィルムから基板を除いた、ガスバリア層および剥離樹脂層を備える転写層を含む(22)または(23)に記載の有機EL積層体。
(1) a substrate;
A gas barrier layer that is provided on one surface side of the substrate and has one or more combinations of an inorganic layer and an organic layer that is a formation surface of the inorganic layer;
A gas barrier film provided between a substrate and a gas barrier layer, having a release resin layer in close contact with an organic layer and for peeling the substrate and the gas barrier layer.
(2) The gas barrier film according to (1), wherein the release resin layer is thicker than the organic layer.
(3) The gas barrier film according to (1) or (2), wherein the material for forming the release resin layer is a cyclic olefin resin having a glass transition temperature Tg of 100 ° C. or higher.
(4) The gas barrier film according to (3), wherein the material for forming the release resin layer is a cycloolefin copolymer.
(5) The gas barrier film according to any one of (1) to (4), wherein the release resin layer has a thickness of 0.1 to 25 μm.
(6) The gas barrier film according to any one of (1) to (5), wherein the inorganic layer forming material is silicon nitride, silicon oxide, or a mixture thereof.
(7) The gas barrier film according to any one of (1) to (6), wherein the material for forming the organic layer is an ultraviolet curable resin or an electron beam curable resin, and the glass transition temperature Tg after curing is 200 ° C. or higher.
(8) The gas barrier film according to (7), wherein the organic layer forming material contains 5% or more and less than 50% of monofunctional or higher acrylates having an adamantane skeleton.
(9) The gas barrier film according to (7), wherein the organic layer forming material contains 5% or more and less than 50% of a bifunctional or higher functional acrylate having a fluorene skeleton.
(10) The gas barrier film according to any one of (1) to (9), wherein the organic layer has a thickness of 0.1 to 5 μm.
(11) The gas barrier film according to any one of (1) to (10), further comprising a protective film or an organic protective layer provided on the gas barrier layer.
(12) The gas barrier film according to (11), wherein the organic protective layer is an acrylic pressure-sensitive adhesive.
(13) The gas barrier film according to (11) or (12), further comprising a protective film provided on the organic protective layer.
(14) The gas barrier film according to any one of (11) to (13), wherein the organic protective layer has a thickness of 0.1 to 50 μm.
(15) The gas barrier film according to any one of (1) to (14), wherein the substrate is a polyethylene terephthalate film provided with a release layer.
(16) The gas barrier film according to any one of (1) to (15), wherein the water vapor transmission rate of the structure excluding the substrate is less than 0.01 g / (m 2 · day).
(17) The gas barrier film according to any one of (1) to (16), wherein the visible light transmittance of the configuration excluding the substrate is 85% or more and the retardation value is 30 nm or less.
(18) A gas barrier film transfer method for transferring a transfer layer comprising a gas barrier layer and a release resin layer to a transfer target, opposite to the gas barrier film substrate according to any one of (1) to (17) A method for transferring a gas barrier film, in which the side surface is attached to an object to be transferred and the substrate is peeled off.
(19) The gas barrier film transfer method according to (18), wherein the transfer target is any one of a wavelength conversion material, a retardation film, an organic EL element, and a passivation film formed on the organic EL element.
(20) a wavelength conversion layer;
A wavelength conversion film comprising a transfer layer comprising a gas barrier layer and a release resin layer, the substrate being removed from the gas barrier film according to any one of (1) to (17), which is laminated on the wavelength conversion layer.
(21) a retardation film;
A phase difference film with a gas barrier layer, comprising a transfer layer comprising a gas barrier layer and a release resin layer, the substrate being removed from the gas barrier film according to any one of (1) to (17), which is laminated on the phase difference film.
(22) an organic EL element;
An organic EL laminate having a transfer layer including a gas barrier layer and a release resin layer obtained by removing the substrate from the gas barrier film according to any one of (1) to (17), which is laminated on the organic EL.
(23) The organic EL laminate according to (22), which has a passivation film between the organic EL element and the transfer layer.
(24) An element substrate that supports the organic EL element is further included, and the element substrate includes a gas barrier layer and a release resin layer obtained by removing the substrate from the gas barrier film according to any one of (1) to (17). The organic EL laminate according to (22) or (23), comprising a transfer layer.
 このような本発明によれば、薄く、転写可能で、かつ、転写後も高いガスバリア性を有するガスバリアフィルムおよびガスバリアフィルムの製造方法、ならびに、このガスバリアフィルムを用いた波長変換フィルム、ガスバリア層付位相差フィルムおよび有機EL積層体を提供できる。 According to the present invention, a gas barrier film that is thin, transferable, and has a high gas barrier property after transfer, a method for producing the gas barrier film, a wavelength conversion film using the gas barrier film, and a gas barrier layer positioning A phase difference film and an organic EL laminate can be provided.
図1(A)は、本発明のガスバリアフィルムの一例を概念的に示す図であり、図1(B)は、図1(A)のガスバリアフィルムから基板を剥離する状態を概念的に示す図である。FIG. 1A is a diagram conceptually showing an example of the gas barrier film of the present invention, and FIG. 1B is a diagram conceptually showing a state in which the substrate is peeled from the gas barrier film of FIG. It is. 図2(A)および図2(B)はそれぞれ、本発明のガスバリアフィルムの他の一例を概念的に示す図である。FIG. 2 (A) and FIG. 2 (B) are diagrams conceptually showing another example of the gas barrier film of the present invention. 本発明のガスバリアフィルムの他の一例を概念的に示す図である。It is a figure which shows notionally another example of the gas barrier film of this invention. 図4(A)~図4(C)は、本発明のガスバリアフィルムの転写方法を説明するための概念図である。4 (A) to 4 (C) are conceptual diagrams for explaining the gas barrier film transfer method of the present invention. 本発明のガスバリア層付位相差フィルムの一例を概念的に示す図である。It is a figure which shows notionally an example of the phase difference film with a gas barrier layer of this invention. 本発明の波長変換フィルムの一例を概念的に示す図である。It is a figure which shows notionally an example of the wavelength conversion film of this invention. 図7(A)~図7(C)はそれぞれ、本発明の有機EL積層体の一例を概念的に示す図である。FIG. 7A to FIG. 7C are diagrams conceptually showing an example of the organic EL laminate of the present invention. 図8(A)および図8(B)は、本発明のガスバリアフィルムを製造する成膜装置の一例を概念的に示す図である。FIG. 8A and FIG. 8B are diagrams conceptually showing an example of a film forming apparatus for producing the gas barrier film of the present invention.
 以下、本発明のガスバリアフィルムについて、図面に示される好適実施形態を基に、詳細に説明する。 Hereinafter, the gas barrier film of the present invention will be described in detail based on preferred embodiments shown in the drawings.
 本発明のガスバリアフィルムは、基板と、基板の一方の面側に設けられる、無機層とこの無機層の形成面である有機層との組み合わせを1組以上有するガスバリア層と、基板とガスバリア層との間に設けられ、有機層と密着し、かつ、基板と剥離するための剥離樹脂層と、を有するガスバリアフィルムである。このガスバリアフィルムは、基板のみを剥離されて、ガスバリア層および剥離樹脂層を含む転写層を被転写体に転写して用いられるものである。 The gas barrier film of the present invention includes a substrate, a gas barrier layer that is provided on one surface of the substrate, and includes one or more combinations of an inorganic layer and an organic layer on which the inorganic layer is formed, a substrate, and a gas barrier layer. It is a gas barrier film which is provided between and has a release resin layer for adhering to the organic layer and for releasing from the substrate. This gas barrier film is used by peeling only a substrate and transferring a transfer layer including a gas barrier layer and a release resin layer to a transfer target.
 図1(A)に、本発明のガスバリアフィルムの一例を概念的に示す。
 図1(A)に示すガスバリアフィルム10aは、基本的に、基板12と、基板12の一方の面に積層される、有機層14および無機層16を有するガスバリア層18と、基板12とガスバリア層18との間に積層される剥離樹脂層20とを有して構成される。
 また、図1(A)に示すように、ガスバリア層18は有機層14を剥離樹脂層20側に向けて積層されており、無機層16は有機層14上に積層されている。すなわち、剥離樹脂層20は、基板12と有機層14との間に積層されている。
FIG. 1A conceptually shows an example of the gas barrier film of the present invention.
A gas barrier film 10a shown in FIG. 1A basically includes a substrate 12, a gas barrier layer 18 having an organic layer 14 and an inorganic layer 16 laminated on one surface of the substrate 12, and the substrate 12 and the gas barrier layer. And a release resin layer 20 laminated between the two.
As shown in FIG. 1A, the gas barrier layer 18 is laminated with the organic layer 14 facing the release resin layer 20, and the inorganic layer 16 is laminated on the organic layer 14. That is, the release resin layer 20 is laminated between the substrate 12 and the organic layer 14.
 ここで、図1(B)に示すように、ガスバリアフィルム10aにおいて、剥離樹脂層20は、有機層14と密着し、かつ、基板12との界面で基板12と剥離可能に構成されている。すなわち、有機層14と剥離樹脂層20との剥離力(密着力)が、基板12と剥離樹脂層20との剥離力よりも大きい。
 これにより、ガスバリアフィルム10aは、基板12のみを剥離されて、ガスバリア層18および剥離樹脂層20を含む転写層30を、封止対象物である被転写体に転写することができる。
 なお、転写層30の被転写体への転写は、基本的に、ガスバリアフィルム10aのガスバリア層18側を被転写体に貼り合わせた後に、ガスバリアフィルム10aから基板12を剥離して、転写層30を被転写体に転写するものであるが、ガスバリアフィルム10aから基板12を剥離して転写層30を取り出してから、転写層30を被転写体に貼り合せてもよい。
Here, as shown in FIG. 1B, in the gas barrier film 10 a, the release resin layer 20 is in close contact with the organic layer 14 and is configured to be peelable from the substrate 12 at the interface with the substrate 12. That is, the peel force (adhesion force) between the organic layer 14 and the release resin layer 20 is greater than the peel force between the substrate 12 and the release resin layer 20.
Thereby, the gas barrier film 10a can peel only the board | substrate 12, and can transcribe | transfer the transfer layer 30 containing the gas barrier layer 18 and the peeling resin layer 20 to the to-be-transferred object which is a sealing target object.
The transfer of the transfer layer 30 to the transfer target is basically performed by attaching the gas barrier layer 18 side of the gas barrier film 10a to the transfer target, and then peeling the substrate 12 from the gas barrier film 10a. The substrate 12 is peeled off from the gas barrier film 10a and the transfer layer 30 is taken out, and then the transfer layer 30 may be bonded to the transfer body.
 前述のとおり、より薄型のガスバリアフィルムとして、基板とガスバリア層との間に離型層を形成し、ガスバリア層を基板から剥離させて被転写体に転写する転写方式のガスバリアフィルムが提案されている。
 しかしながら、本発明者の検討によれば、このような転写方式のガスバリアフィルムでは、ガスバリア層と基板とを剥離する際に、ガスバリア層にせん断力が加わるため、このせん断力によって無機層が割れてしまい、転写後のガスバリア層が十分なガスバリア性を発現できない場合があることがわかった。
As described above, as a thinner gas barrier film, a transfer type gas barrier film is proposed in which a release layer is formed between the substrate and the gas barrier layer, and the gas barrier layer is peeled off from the substrate and transferred to the transfer target. .
However, according to the study of the present inventors, in such a transfer type gas barrier film, when the gas barrier layer and the substrate are peeled off, a shearing force is applied to the gas barrier layer, so that the inorganic layer is broken by the shearing force. Therefore, it was found that the gas barrier layer after transfer may not exhibit a sufficient gas barrier property.
 これに対して、本発明においては、ガスバリア性を発現する無機層16の下地として、有機層14を有し、この有機層14と基板12との間に、剥離樹脂層20を有し、この剥離樹脂層20が、有機層14と密着し、かつ、基板12との界面で基板12と剥離可能に構成されている。
 剥離の際に、剥離樹脂層20と基板12との界面で剥離することで、無機層16と剥離面との間に存在する剥離樹脂層20が応力緩和層となり、基板12を剥離する際にかかるせん断力によって、無機層16が割れてしまうことを防止できる。
On the other hand, in this invention, it has the organic layer 14 as a foundation | substrate of the inorganic layer 16 which expresses gas barrier property, and has the peeling resin layer 20 between this organic layer 14 and the board | substrate 12, The release resin layer 20 is configured to be in close contact with the organic layer 14 and to be peelable from the substrate 12 at the interface with the substrate 12.
When peeling, the peeling resin layer 20 existing between the inorganic layer 16 and the peeling surface becomes a stress relaxation layer by peeling at the interface between the peeling resin layer 20 and the substrate 12, and when peeling the substrate 12. Such an shearing force can prevent the inorganic layer 16 from being broken.
 ここで、前述のとおり、剥離樹脂層20は、基板12との界面で剥離するように剥離力を調整する必要があり、また、応力緩和層としての機能も持たせる必要がある。そのため、無機層16の下地層として適切なものとすることが難しい。特に、高いガスバリア性を有する無機層16を得るためには、無機層16の下地となる層は、適度な硬さを有し、また、より高い耐熱性を有する必要がある。
 そのため、剥離樹脂層20と無機層16との間に有機層14を有さない構成の場合、すなわち、剥離樹脂層20上に直接、無機層16を形成した場合には、無機層16を適正に形成することができず、高いガスバリア性を得ることができない。
Here, as described above, the release resin layer 20 needs to adjust the peeling force so as to peel off at the interface with the substrate 12, and also needs to have a function as a stress relaxation layer. Therefore, it is difficult to make it suitable as a base layer for the inorganic layer 16. In particular, in order to obtain the inorganic layer 16 having high gas barrier properties, the layer serving as the base of the inorganic layer 16 needs to have an appropriate hardness and higher heat resistance.
Therefore, in the case where the organic layer 14 is not provided between the release resin layer 20 and the inorganic layer 16, that is, when the inorganic layer 16 is formed directly on the release resin layer 20, the inorganic layer 16 is appropriate. Cannot be formed, and high gas barrier properties cannot be obtained.
 これに対して、本発明のガスバリアフィルムは、無機層16の形成面として、剥離樹脂層20上に有機層14を有するので、好適な下地層を備える。そのため、無機層16を適正に形成することができ、高いガスバリア性を得ることができる。 On the other hand, since the gas barrier film of the present invention has the organic layer 14 on the release resin layer 20 as the surface on which the inorganic layer 16 is formed, it is provided with a suitable underlayer. Therefore, the inorganic layer 16 can be formed appropriately and high gas barrier properties can be obtained.
 また、本発明のガスバリアフィルムは、さらに、ガスバリア層18(より具体的には無機層16)を保護するための保護フィルムを、ガスバリア層18上に有しているのが好ましい。
 保護フィルムを有することで、ガスバリアフィルムの搬送の際や巻取りの際に、無機層16が割れることを防止できる。
 なお、ガスバリアフィルムが、保護フィルムを有する場合には、この保護フィルムを剥離してガスバリア層18を表出させてから被転写体への転写を行えばよい。
Further, the gas barrier film of the present invention preferably further has a protective film on the gas barrier layer 18 for protecting the gas barrier layer 18 (more specifically, the inorganic layer 16).
By having the protective film, the inorganic layer 16 can be prevented from cracking when the gas barrier film is transported or wound.
When the gas barrier film has a protective film, the protective film may be peeled to expose the gas barrier layer 18 and then transferred to the transfer target.
 また、図2(A)に示すガスバリアフィルム10bのように、ガスバリア層18(より具体的には無機層16)上に、ガスバリア層18を保護するための有機保護層24を有しているのも好ましい。
 有機保護層24を有することで、ガスバリアフィルムの搬送の際や巻取りの際に、無機層16が割れることを防止できる。
 なお、有機保護層24を有する場合には、剥離樹脂層20、ガスバリア層18および有機保護層24が転写層30となり、有機保護層24は、剥離樹脂層20およびガスバリア層18と共に被転写体に転写される。
Further, like the gas barrier film 10b shown in FIG. 2A, an organic protective layer 24 for protecting the gas barrier layer 18 is provided on the gas barrier layer 18 (more specifically, the inorganic layer 16). Is also preferable.
By having the organic protective layer 24, it is possible to prevent the inorganic layer 16 from cracking when the gas barrier film is transported or wound.
When the organic protective layer 24 is provided, the release resin layer 20, the gas barrier layer 18, and the organic protective layer 24 become the transfer layer 30, and the organic protective layer 24 is attached to the transfer object together with the release resin layer 20 and the gas barrier layer 18. Transcribed.
 また、有機保護層24は、粘着性を有する粘着層であってもよい。
 有機保護層24が粘着性を有することで、転写層30を被転写体へ転写する際に、粘着剤の塗布等を行うことなく、容易に転写を行うことができる。
The organic protective layer 24 may be an adhesive layer having adhesiveness.
Since the organic protective layer 24 has adhesiveness, when the transfer layer 30 is transferred to the transfer target, transfer can be easily performed without applying an adhesive or the like.
 また、図2(B)に示すガスバリアフィルム10cのように、ガスバリア層18上に、有機保護層24を有し、さらに、有機保護層24上に保護フィルム26を有していてもよい。
 有機保護層24および保護フィルム26を有することで、ガスバリアフィルムの搬送の際や巻取りの際に、無機層16が割れることを防止できる。
 また、有機保護層24が粘着層である場合には、保護フィルム26を有することで、ガスバリアフィルムの搬送や巻取りを容易にすることができ、また、粘着層にゴミ等が付着したり、粘着性が低下したりするのを防止できる。
Further, as in the gas barrier film 10 c shown in FIG. 2B, the organic protective layer 24 may be provided on the gas barrier layer 18, and the protective film 26 may be further provided on the organic protective layer 24.
By having the organic protective layer 24 and the protective film 26, it is possible to prevent the inorganic layer 16 from being broken when the gas barrier film is transported or wound.
In addition, when the organic protective layer 24 is an adhesive layer, by having the protective film 26, the transport and winding of the gas barrier film can be facilitated, and dust or the like adheres to the adhesive layer, It can prevent that adhesiveness falls.
 また、図1(A)に示す例では、ガスバリア層18は、1層の有機層14と1層の無機層16とを有する構成としたが、これに限定はされず、有機層および無機層をそれぞれ1層以上有していてもよく、無機層16と、この無機層16の下地層となる有機層14との組み合わせを2組以上有していてもよい。
 例えば、図3に示すガスバリアフィルム10dは、剥離樹脂層20上に、有機層14、無機層16、有機層14、および無機層16がこの順に形成されたガスバリア層18を有する。すなわち、ガスバリアフィルム10dのガスバリア層18は、有機層14と無機層16との組み合わせを2組有する構成である。
 このように、有機層14と無機層16との組み合わせを2組以上有することで、ガスバリア性をより向上することができる。
In the example shown in FIG. 1A, the gas barrier layer 18 includes one organic layer 14 and one inorganic layer 16. However, the present invention is not limited to this, and the organic layer and the inorganic layer are not limited thereto. Each of which may have one or more layers, and may have two or more combinations of the inorganic layer 16 and the organic layer 14 serving as a base layer of the inorganic layer 16.
For example, the gas barrier film 10d shown in FIG. 3 has the gas barrier layer 18 in which the organic layer 14, the inorganic layer 16, the organic layer 14, and the inorganic layer 16 are formed in this order on the release resin layer 20. That is, the gas barrier layer 18 of the gas barrier film 10 d has a configuration having two combinations of the organic layer 14 and the inorganic layer 16.
Thus, by having two or more combinations of the organic layer 14 and the inorganic layer 16, the gas barrier property can be further improved.
 ここで、本発明のガスバリアフィルムにおいて、このガスバリアフィルムから基板12を除いた構成の水蒸気透過率は、0.01[g/(m2・day)]未満であるのが好ましく、0.005[g/(m2・day)]以下であるのがより好ましく、0.001[g/(m2・day)]以下であるのが特に好ましい。例えば、このガスバリアフィルムが基板12と、ガスバリア層18と、剥離樹脂層20とからなる場合、ガスバリアフィルムから基板12を除いた構成は、ガスバリア層18と剥離樹脂層20とからなる転写層30を意味する。また、ガスバリアフィルムが基板12と、ガスバリア層18と、剥離樹脂層20と、有機保護層24とからなる場合、ガスバリアフィルムから基板12を除いた構成とは、ガスバリア層18と、剥離樹脂層20と、有機保護層24とからなる転写層30を意味する。
 本発明のガスバリアフィルムは、水蒸気透過率が低いことが好ましい。
本発明のガスバリアフィルムは、ガスバリア性が高い転写層30であっても、無機層16の割れ等を防止して、高いガスバリア性を維持したまま、適性に転写することができる。
Here, in the gas barrier film of the present invention, the water vapor transmission rate of the structure obtained by removing the substrate 12 from the gas barrier film is preferably less than 0.01 [g / (m 2 · day)], and 0.005 [ g / (m 2 · day)] or less is more preferable, and 0.001 [g / (m 2 · day)] or less is particularly preferable. For example, when the gas barrier film is composed of the substrate 12, the gas barrier layer 18, and the release resin layer 20, the configuration in which the substrate 12 is removed from the gas barrier film includes the transfer layer 30 composed of the gas barrier layer 18 and the release resin layer 20. means. When the gas barrier film includes the substrate 12, the gas barrier layer 18, the release resin layer 20, and the organic protective layer 24, the configuration in which the substrate 12 is removed from the gas barrier film includes the gas barrier layer 18 and the release resin layer 20. And a transfer layer 30 composed of the organic protective layer 24.
The gas barrier film of the present invention preferably has a low water vapor transmission rate.
Even if the gas barrier film of the present invention is the transfer layer 30 having a high gas barrier property, the inorganic layer 16 can be prevented from cracking and transferred appropriately while maintaining the high gas barrier property.
 また、本発明のガスバリアフィルムにおいて、このガスバリアフィルムから基板12を除いた構成の可視光透過率は、85%以上であるのが好ましい。また、転写層30のリタデーション値は30nm以下であるのが好ましい。
 転写層30の可視光透過率およびリタデーション値を上記範囲とすることで、本発明のガスバリアフィルムを転写して、量子ドットフィルム等の波長変換層や、有機EL素子等の光学部材を封止する場合、あるいは、位相差フィルム等の光学フィルムにガスバリア性を付与する場合に、これらの被転写体の光学性能に影響を及ぼすことなく、光学部材の封止やガスバリア性の付与を行うことができる。
In the gas barrier film of the present invention, it is preferable that the visible light transmittance of the structure obtained by removing the substrate 12 from the gas barrier film is 85% or more. The retardation value of the transfer layer 30 is preferably 30 nm or less.
By setting the visible light transmittance and retardation value of the transfer layer 30 within the above ranges, the gas barrier film of the present invention is transferred to seal a wavelength conversion layer such as a quantum dot film and an optical member such as an organic EL element. In this case, or when gas barrier properties are imparted to an optical film such as a retardation film, the optical member can be sealed and the gas barrier properties can be imparted without affecting the optical performance of these transferred materials. .
 次に、本発明のガスバリアフィルムの各構成要素の材料および構成等について説明する。以下、ガスバリアフィルム10a~10dを、「ガスバリアフィルム10」と総称する場合がある。 Next, the material and configuration of each component of the gas barrier film of the present invention will be described. Hereinafter, the gas barrier films 10a to 10d may be collectively referred to as “gas barrier film 10”.
 ガスバリアフィルム10において、基板12は、各種のガスバリアフィルムや各種の積層型のガスバリアフィルムにおいて基板(支持体)として利用されている、公知のシート状物が、各種、利用可能である。 In the gas barrier film 10, various known sheet-like materials that are used as substrates (supports) in various gas barrier films and various laminated gas barrier films can be used as the substrate 12.
 基板12としては、具体的には、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、シクロオレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)などの、各種の樹脂材料からなるフィルム(樹脂フィルム)が、好適に例示される。 Specifically, as the substrate 12, low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl Alcohol (PVA), polyacrylonitrile (PAN), polyimide (PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), Films (resin films) made of various resin materials such as ABS, cycloolefin copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC) are preferably exemplified.
 本発明においては、このようなフィルムの表面に、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、応力緩和層、離型層等の、必要な機能を発現する層(膜)が形成されているものを、基板12として用いてもよい。 In the present invention, on the surface of such a film, necessary functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, a stress relaxation layer, a release layer A substrate in which a layer (film) that expresses a film is formed may be used as the substrate 12.
 中でも、破断伸び率が高く搬送時に破断しにくいためより薄くできること、融点が高く耐熱性があること、剥離樹脂層20との界面での剥離を容易にできること、安価であること等の観点から、基板12としては、離型層が形成されたPETフィルムが好ましい。より具体的には、PETフィルムの、剥離樹脂層20が形成される面に、離型層が形成されたものが好ましい。 Among them, from the viewpoints that the elongation at break is high and difficult to break at the time of transportation, it can be made thinner, the melting point is high and heat resistance, it can be easily peeled at the interface with the release resin layer 20, and it is inexpensive. As the substrate 12, a PET film on which a release layer is formed is preferable. More specifically, a PET film having a release layer formed on the surface on which the release resin layer 20 is formed is preferable.
 基板12の厚さは、ガスバリアフィルム10の用途や形成材料等に応じて、適宜、設定すればよい。
 本発明者らの検討によれば、基板12の厚さは、5~125μmが好ましく、5~100μmがより好ましく、10~50μmが特に好ましい。
 基板12の厚さを、上記範囲とすることにより、ガスバリアフィルム10の機械的強度を十分に確保すると共に、転写の際に、剥離を容易に行うことができる等の点で好ましい。
What is necessary is just to set the thickness of the board | substrate 12 suitably according to the use of the gas barrier film 10, a formation material, etc.
According to the study by the present inventors, the thickness of the substrate 12 is preferably 5 to 125 μm, more preferably 5 to 100 μm, and particularly preferably 10 to 50 μm.
By setting the thickness of the substrate 12 in the above range, it is preferable in that the mechanical strength of the gas barrier film 10 is sufficiently ensured and peeling can be easily performed at the time of transfer.
 有機層14は、有機化合物からなる層で、基本的に、有機層14となるモノマやオリゴマ等を重合(架橋)したものである。 The organic layer 14 is a layer made of an organic compound, and is basically obtained by polymerizing (crosslinking) a monomer, an oligomer, or the like that becomes the organic layer 14.
 有機層14は、無機層16の形成面である。具体的には、有機層14は主に、ガスバリアフィルム10において、ガスバリア性を発現する無機層16を適正に形成するための、下地層として機能する。
 このような有機層14を有することにより、剥離樹脂層20(あるいは下層の無機層16)の表面の凹凸や、剥離樹脂層20(あるいは下層の無機層16)の表面に付着している異物等を包埋して、無機層16を成膜する面を、この無機層16の成膜に適した状態にできる。これにより、剥離樹脂層20(あるいは下層の無機層16)の表面の凹凸や、異物の付着による凹凸のような、無機層16を形成する無機化合物が着膜し難い領域を無くし、剥離樹脂層20(あるいは下層の無機層16)の表面全面に、隙間無く、適正な無機層16を成膜することが可能になり、高いガスバリア性を有する無機層16を形成することができる。
The organic layer 14 is a surface on which the inorganic layer 16 is formed. Specifically, the organic layer 14 mainly functions as a base layer for properly forming the inorganic layer 16 that exhibits gas barrier properties in the gas barrier film 10.
By having such an organic layer 14, irregularities on the surface of the release resin layer 20 (or the lower inorganic layer 16), foreign matters attached to the surface of the release resin layer 20 (or the lower inorganic layer 16), and the like The surface on which the inorganic layer 16 is formed can be made into a state suitable for the formation of the inorganic layer 16. This eliminates areas where the inorganic compound forming the inorganic layer 16 is difficult to deposit, such as irregularities on the surface of the release resin layer 20 (or the lower inorganic layer 16) and irregularities due to adhesion of foreign matter, and the release resin layer. An appropriate inorganic layer 16 can be formed on the entire surface of 20 (or the lower inorganic layer 16) without any gap, and the inorganic layer 16 having high gas barrier properties can be formed.
 また、有機層14のガラス転移温度Tgは、剥離樹脂層20のガラス転移温度Tgよりも高いのが好ましく、200℃以上であるのが好ましい。
 ガラス転移温度Tgが200℃以上の高い耐熱性を有する有機層14とすることで、無機層16を適正に成膜することが可能となる。
 また、有機層14は、無機層16の割れ等を防止するため適度な柔軟性を有するのが好ましい。
 なお、ガラス転移温度Tgは、JIS K 7121に準拠して測定すればよい。
Moreover, it is preferable that the glass transition temperature Tg of the organic layer 14 is higher than the glass transition temperature Tg of the peeling resin layer 20, and it is preferable that it is 200 degreeC or more.
By forming the organic layer 14 having a high heat resistance with a glass transition temperature Tg of 200 ° C. or higher, the inorganic layer 16 can be appropriately formed.
The organic layer 14 preferably has appropriate flexibility in order to prevent the inorganic layer 16 from cracking.
Note that the glass transition temperature Tg may be measured according to JIS K7121.
 ガスバリアフィルム10において、有機層14の形成材料には、限定はなく、公知の有機化合物が、各種、利用可能である。
 具体的には、ポリエステル、(メタ)アクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリル化合物、などの熱可塑性樹脂;ポリシロキサンや、その他の有機ケイ素化合物の膜;が好適に例示される。これらは、複数を併用してもよい。
In the gas barrier film 10, the material for forming the organic layer 14 is not limited, and various known organic compounds can be used.
Specifically, polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Thermoplastic resins such as ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acrylic compounds; polysiloxane and other An organosilicon compound film is preferably exemplified. A plurality of these may be used in combination.
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル硬化性化合物および/またはエーテル基を官能基に有するカチオン硬化性化合物の重合物から構成された有機層14は、好適である。
 中でも特に、屈折率が低いこと、透明性が高く光学特性に優れること等の点で、アクリレートおよび/またはメタクリレートのモノマやオリゴマの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、有機層14として好適に例示される。
 その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上、特に3官能以上のアクリレートおよび/またはメタクリレートのモノマやオリゴマなどの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
Among them, the organic layer 14 composed of a polymer of a radical curable compound and / or a cationic curable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
Among these, acrylic resins and methacrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomer polymers are used in the organic layer 14 in terms of low refractive index, high transparency and excellent optical properties. As a preferred example.
Among them, in particular, dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), etc. Acrylic resins and methacrylic resins mainly composed of polymers such as acrylate and / or methacrylate monomers and oligomers are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
 ここで、有機層14の形成材料は、紫外線硬化樹脂または電子線硬化樹脂であるのが好ましい。
 有機層14の形成材料として、紫外線硬化樹脂あるいは電子線硬化樹脂を用いることで、紫外線あるいは電子線の照射量によって、剥離樹脂層20との剥離力を容易に調整することができ、強い剥離力を実現できる。したがって、ガスバリアフィルム10を、剥離樹脂層20と基板12との界面で剥離する構成とすることができる。
Here, the material for forming the organic layer 14 is preferably an ultraviolet curable resin or an electron beam curable resin.
By using an ultraviolet curable resin or an electron beam curable resin as a material for forming the organic layer 14, the peeling force with the release resin layer 20 can be easily adjusted by the irradiation amount of the ultraviolet ray or the electron beam. Can be realized. Therefore, the gas barrier film 10 can be configured to peel at the interface between the release resin layer 20 and the substrate 12.
 また、有機層14の形成材料は、アダマンタン骨格を有する1官能以上のアクリレートを5%以上、50%未満含む樹脂材料、あるいは、フルオレン骨格を有する2官能以上のアクリレートを5%以上、50%未満含む樹脂材料であるのが好ましい。
 有機層14の形成材料として、アダマンタン骨格を有する1官能以上のアクリレート、あるいは、フルオレン骨格を有する2官能以上のアクリレートを含む樹脂材料を用いることで、高いガラス転移温度Tgを維持したまま、硬化収縮時の収縮率を低くすることができ、有機層14上に形成された無機層16が割れることを防止できる。
The material for forming the organic layer 14 is a resin material containing 5% or more and less than 50% monofunctional or higher acrylate having an adamantane skeleton, or 5% or more and less than 50% bifunctional or higher acrylate having a fluorene skeleton. The resin material is preferably included.
By using a resin material containing a monofunctional or higher acrylate having an adamantane skeleton or a bifunctional or higher acrylate having a fluorene skeleton as a material for forming the organic layer 14, curing shrinkage is maintained while maintaining a high glass transition temperature Tg. The shrinkage rate at the time can be reduced, and the inorganic layer 16 formed on the organic layer 14 can be prevented from cracking.
 このような有機層14は、形成する有機層14に応じて、有機化合物からなる層を形成する公知の方法で形成(成膜)すればよい。一例として、塗布法が例示される。 Such an organic layer 14 may be formed (film formation) by a known method for forming a layer made of an organic compound in accordance with the organic layer 14 to be formed. As an example, a coating method is illustrated.
 有機層14は、例えば、有機溶剤、有機層14となる有機化合物(モノマ、ダイマ、トリマ、オリゴマ、ポリマ等)、及び架橋剤を含む塗布組成物を調製し、この塗布組成物を剥離樹脂層20上に塗布して塗膜を形成し、塗膜を乾燥及び硬化して形成することができる。
 塗布法で形成することで、薄い有機層14が得られる。
The organic layer 14 is prepared by, for example, preparing a coating composition containing an organic solvent, an organic compound (monomers, dimers, trimers, oligomers, polymers, etc.) to be the organic layer 14, and a crosslinking agent. It can be applied on 20 to form a coating film, and the coating film can be formed by drying and curing.
By forming by a coating method, a thin organic layer 14 is obtained.
 なお、ガスバリアフィルム10が複数の有機層14を有する場合は、各有機層14の厚さは、同じでも、互いに異なってもよい。また、各有機層14の形成材料は、同じでも異なってもよい。 In addition, when the gas barrier film 10 has the some organic layer 14, the thickness of each organic layer 14 may be the same, or may mutually differ. Moreover, the forming material of each organic layer 14 may be the same or different.
 無機層16は、無機化合物からなる層である。
 ガスバリアフィルム10において、目的とするガスバリア性は、主として無機層16により発現する。
The inorganic layer 16 is a layer made of an inorganic compound.
In the gas barrier film 10, the target gas barrier property is mainly expressed by the inorganic layer 16.
 無機層16の形成材料には、限定はなく、ガスバリア性を発現する無機化合物からなる層が、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物;等の、無機化合物からなる膜が、好適に例示される。また、これらの2種以上の混合物も、利用可能である。
 特に、金属酸化物および窒化物、具体的には、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、これらの2種以上の混合物は、透明性が高く、かつ、優れたガスバリア性を発現できる点で、好適に利用される。中でも特に、窒化ケイ素、酸化ケイ素、これらの混合物は、優れたガスバリア性に加え、透明性も高く、また、柔軟性も高いため、より好適に利用される。
The material for forming the inorganic layer 16 is not limited, and various layers made of an inorganic compound exhibiting gas barrier properties can be used.
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and A film made of an inorganic compound such as these hydrogen-containing materials is preferably exemplified. A mixture of two or more of these can also be used.
In particular, metal oxides and nitrides, specifically, silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and mixtures of two or more thereof are highly transparent and can exhibit excellent gas barrier properties. In this respect, it is preferably used. Among these, silicon nitride, silicon oxide, and a mixture thereof are more preferably used because they have high gas barrier properties, high transparency, and high flexibility.
 このような無機層16の形成は、無機層16の形成材料等に応じて、CCP-CVD(容量結合型プラズマ化学気相蒸着法)、ICP-CVD(誘導結合型プラズマ化学気相蒸着法)、スパッタリング、真空蒸着等の、公知の気相成膜法で行えばよい。 Such an inorganic layer 16 is formed by CCP-CVD (capacitive coupling type plasma chemical vapor deposition) or ICP-CVD (inductively coupled plasma chemical vapor deposition) depending on the material of the inorganic layer 16 and the like. , Sputtering, vacuum deposition or the like may be performed by a known vapor deposition method.
 無機層16の膜厚は、形成材料に応じて、目的とするガスバリア性を発現できる厚さを、適宜、決定すればよい。本発明者らの検討によれば、無機層16の厚さは、10~200nmが好ましく、15~100nmがより好ましく、20~75nmが特に好ましい。
 無機層16の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する。また、無機層16は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層16の厚さを200nm以下とすることにより、割れが発生することを防止できる。
The thickness of the inorganic layer 16 may be determined as appropriate according to the forming material so that the target gas barrier property can be exhibited. According to the study by the present inventors, the thickness of the inorganic layer 16 is preferably 10 to 200 nm, more preferably 15 to 100 nm, and particularly preferably 20 to 75 nm.
By setting the thickness of the inorganic layer 16 to 10 nm or more, sufficient gas barrier performance is stably exhibited. In addition, the inorganic layer 16 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. However, if the thickness of the inorganic layer 16 is 200 nm or less, cracks will occur. Can be prevented.
 なお、ガスバリアフィルム10が複数の無機層16を有する場合には、各無機層16の厚さは、同じでも異なってもよい。また、各無機層16の形成材料は、同じでも異なってもよい。 In addition, when the gas barrier film 10 has the some inorganic layer 16, the thickness of each inorganic layer 16 may be the same or different. Moreover, the forming material of each inorganic layer 16 may be the same or different.
 ガスバリアフィルム10において、基板12と有機層14との間には、剥離樹脂層20を有する。
 前述のとおり、剥離樹脂層20は、有機層14と密着し、かつ、基板12との界面でこの基板12と剥離可能な樹脂層である。剥離樹脂層20は、基板12とガスバリア層18とを剥離する。剥離樹脂層20は、基板12の剥離の際に無機層16にせん断力がかかるのを抑制する応力緩和層としても機能する層である。また、基板12の剥離後は、剥離樹脂層20が、支持体としても機能する。
In the gas barrier film 10, a release resin layer 20 is provided between the substrate 12 and the organic layer 14.
As described above, the release resin layer 20 is a resin layer that is in close contact with the organic layer 14 and can be peeled off from the substrate 12 at the interface with the substrate 12. The release resin layer 20 peels the substrate 12 and the gas barrier layer 18 from each other. The release resin layer 20 is a layer that also functions as a stress relaxation layer that suppresses the application of shear force to the inorganic layer 16 when the substrate 12 is peeled off. Further, after the substrate 12 is peeled, the release resin layer 20 also functions as a support.
 剥離樹脂層20は、含水性が低く、耐熱性が高いことが好ましい。
 前述のとおり、高いガスバリア性を発現する無機層16は、プラズマCVD等の真空成膜により形成される。剥離樹脂層20の含水性が高いと、真空引きを行っても、水分を放出するため、真空度を高くできず、無機層16を形成できないおそれがある。また、無機層16を形成した場合であっても、水分の吸収及び放出により剥離樹脂層20が伸縮すると、無機層16が割れてしまい、高いガスバリア性を得られないおそれがある。したがって、剥離樹脂層20は、含水性が低いのが好ましい。また、プラズマCVD等により無機層16を形成するために耐熱性が高いことが好ましい。
The release resin layer 20 preferably has low water content and high heat resistance.
As described above, the inorganic layer 16 exhibiting high gas barrier properties is formed by vacuum film formation such as plasma CVD. When the moisture content of the release resin layer 20 is high, moisture is released even if evacuation is performed, so that the degree of vacuum cannot be increased and the inorganic layer 16 may not be formed. Even when the inorganic layer 16 is formed, if the release resin layer 20 expands and contracts due to absorption and release of moisture, the inorganic layer 16 may be broken and high gas barrier properties may not be obtained. Therefore, it is preferable that the release resin layer 20 has a low water content. Moreover, since the inorganic layer 16 is formed by plasma CVD etc., it is preferable that heat resistance is high.
 基板12および有機層14との密着性、含水性および耐熱性等の観点から、剥離樹脂層20の形成材料としては、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)等のガラス転移温度Tgが100℃以上の環状オレフィン樹脂であるのが好ましい。 From the viewpoints of adhesion between the substrate 12 and the organic layer 14, water content, heat resistance, and the like, as a forming material of the release resin layer 20, a glass transition temperature Tg of cycloolefin copolymer (COC), cycloolefin polymer (COP), or the like. Is preferably a cyclic olefin resin of 100 ° C. or higher.
 また、前述のとおり、剥離樹脂層20上には、有機層14が例えば塗布により形成される。そのため、有機層14となる塗布組成物の塗布性の観点や溶剤耐性、ならびに、リタデーション等の光学特性の観点から、剥離樹脂層20の形成材料としては、シクロオレフィンコポリマー(COC)を用いるのが好ましい。 As described above, the organic layer 14 is formed on the release resin layer 20 by, for example, coating. Therefore, cycloolefin copolymer (COC) is used as a material for forming the release resin layer 20 from the viewpoint of the coating property of the coating composition to be the organic layer 14, solvent resistance, and optical properties such as retardation. preferable.
 このような剥離樹脂層20は、例えば、有機層14と同様の、塗布法により形成することができる。
 塗布法で形成することで、薄い剥離樹脂層20が得られる。
Such a release resin layer 20 can be formed by, for example, the same coating method as that for the organic layer 14.
By forming by a coating method, a thin release resin layer 20 is obtained.
 剥離樹脂層20の厚さは、剥離樹脂層20の形成材料や、有機層14、無機層16および基板12の特性に応じて、適宜設定すればよい。本発明者らの検討によれば、剥離樹脂層20の厚さは、0.1~25μmとするのが好ましく、0.5~15μmとするのがより好ましく、1~10μmとするのが特に好ましい。
 剥離樹脂層20の厚さを0.1μm以上とすることにより、基板12および有機層14との密着性を適切に制御でき、基板12との界面での剥離を容易にすることができ、また、基板12の剥離の際に無機層16にかかるせん断力を低減して、無機層16が割れるのを防止できる。
 また剥離樹脂層20の厚さを25μm以下とすることにより、剥離樹脂層20が厚すぎることに起因する、剥離樹脂層20のクラックや、ガスバリアフィルム10のカール等の問題の発生を、好適に抑制することができ、また、ガスバリアフィルム10をロール状に巻取りやすくすることができる。
The thickness of the release resin layer 20 may be appropriately set according to the material for forming the release resin layer 20 and the characteristics of the organic layer 14, the inorganic layer 16, and the substrate 12. According to the study by the present inventors, the thickness of the release resin layer 20 is preferably 0.1 to 25 μm, more preferably 0.5 to 15 μm, and particularly preferably 1 to 10 μm. preferable.
By setting the thickness of the release resin layer 20 to 0.1 μm or more, the adhesion between the substrate 12 and the organic layer 14 can be appropriately controlled, and peeling at the interface with the substrate 12 can be facilitated. The shearing force applied to the inorganic layer 16 when the substrate 12 is peeled can be reduced to prevent the inorganic layer 16 from cracking.
In addition, by setting the thickness of the release resin layer 20 to 25 μm or less, it is preferable to cause problems such as cracks in the release resin layer 20 and curling of the gas barrier film 10 due to the release resin layer 20 being too thick. In addition, the gas barrier film 10 can be easily wound into a roll shape.
 また、基板12を剥離する際の応力緩和の観点から、剥離樹脂層20の硬さは、有機層14の硬さよりも低いのが好ましく、また、剥離樹脂層20のヤング率は、有機層14のヤング率よりも低いのが好ましい。すなわち、剥離樹脂層20は有機層14よりも柔らかいのが好ましい。 Further, from the viewpoint of stress relaxation when peeling the substrate 12, the hardness of the release resin layer 20 is preferably lower than the hardness of the organic layer 14, and the Young's modulus of the release resin layer 20 is the organic layer 14. The Young's modulus is preferably lower. That is, the release resin layer 20 is preferably softer than the organic layer 14.
 ここで、剥離樹脂層20の厚さは、有機層14の厚さよりも厚いのが好ましい。
 前述のとおり、無機層16の下地層となる有機層14は、耐熱性がより高いことが好ましい。したがって、有機層14の形成材料としてはガラス転移温度Tgがより高い材料を用いることが好ましい。ここで、一般に、ガラス転移温度Tgが高い材料は硬く、伸びにくいものとなるため、硬い有機層14の厚さを薄くして、柔らかい剥離樹脂層20の厚さを厚くすることで、剥離樹脂層20を応力緩和層として適正に機能させることができ、基板12を剥離する際の無機層16の割れを防止して高いガスバリア性を得ることができる。
Here, the release resin layer 20 is preferably thicker than the organic layer 14.
As described above, it is preferable that the organic layer 14 serving as the base layer of the inorganic layer 16 has higher heat resistance. Therefore, it is preferable to use a material having a higher glass transition temperature Tg as a material for forming the organic layer 14. Here, in general, a material having a high glass transition temperature Tg is hard and difficult to stretch. Therefore, by reducing the thickness of the hard organic layer 14 and increasing the thickness of the soft release resin layer 20, the release resin is obtained. The layer 20 can function properly as a stress relaxation layer, and cracking of the inorganic layer 16 when the substrate 12 is peeled can be prevented to obtain high gas barrier properties.
 また、剥離樹脂層20と基板12との剥離力、および、剥離樹脂層20と有機層14との剥離力は、剥離樹脂層20と有機層14との剥離力が、剥離樹脂層20と基板12との剥離力よりも高ければ、限定はない。
 また、剥離樹脂層20と基板12との剥離力は、0.04N/25mm~1N/25mmが好ましい。
 剥離樹脂層20と基板12との剥離力を上記範囲とすることで、剥離力が弱過ぎることにより搬送中等に剥離してしまうことを抑制でき、また、剥離力が強過ぎることにより基板12を剥離する際に無機層16を損傷してしまうこと、ガスバリアフィルム10が変形してしまうこと等の不都合を抑制できる。
 なお、剥離力(密着力)は、JIS Z 0237の180°剥離試験方法に準じて測定すればよい。
Further, the peeling force between the release resin layer 20 and the substrate 12 and the peeling force between the release resin layer 20 and the organic layer 14 are the same as the peeling force between the release resin layer 20 and the organic layer 14. If it is higher than the peeling force with 12, there is no limitation.
Further, the peeling force between the release resin layer 20 and the substrate 12 is preferably 0.04 N / 25 mm to 1 N / 25 mm.
By setting the peeling force between the release resin layer 20 and the substrate 12 in the above range, it is possible to prevent the peeling force from being weakened during transportation due to the peeling force being too weak, and the peeling force is too strong. It is possible to suppress inconveniences such as damage to the inorganic layer 16 and peeling of the gas barrier film 10 during peeling.
In addition, what is necessary is just to measure peeling force (adhesion force) according to the 180 degree peeling test method of JISZ0237.
 有機保護層24は、有機化合物からなる層で、ガスバリア層18(より具体的には無機層16)の上に形成され、このガスバリア層18を保護する層である。 The organic protective layer 24 is a layer made of an organic compound, and is formed on the gas barrier layer 18 (more specifically, the inorganic layer 16), and is a layer that protects the gas barrier layer 18.
 有機保護層24の形成材料には、特に限定はなく、有機層14と同様の、公知の有機化合物が、各種、利用可能である。 The material for forming the organic protective layer 24 is not particularly limited, and various known organic compounds similar to the organic layer 14 can be used.
 有機保護層24が粘着層である場合、その形成材料には限定はなく、種々の公知の粘着材料が利用可能である。
 光学特性、特にリタデーションやヘイズ等の観点から、粘着材料としてアクリル系の粘着剤を用いるのが好ましい。
 アクリル系粘着剤としては、SKダインシリーズ(綜研化学株式会社製)等が例示される。
When the organic protective layer 24 is an adhesive layer, there are no limitations on the forming material, and various known adhesive materials can be used.
From the viewpoint of optical properties, particularly retardation and haze, it is preferable to use an acrylic pressure-sensitive adhesive as the pressure-sensitive adhesive material.
Examples of the acrylic pressure-sensitive adhesive include SK Dyne series (manufactured by Soken Chemical Co., Ltd.).
 有機保護層24の厚さは、有機保護層24の形成材料や無機層16の特性に応じて、適宜設定すればよい。本発明者らの検討によれば、有機保護層24の厚さは、0.1~50μmとするのが好ましく、0.5~25μmとするのがより好ましく、1~10μmとするのが特に好ましい。
 有機保護層24の厚さを0.1μm以上とすることにより、無機層16を適正に保護することができる。また有機保護層24の厚さを50μm以下とすることにより、ガスバリアフィルム10を被転写体に貼着する際の作業性を向上できる。
The thickness of the organic protective layer 24 may be appropriately set according to the material for forming the organic protective layer 24 and the characteristics of the inorganic layer 16. According to the study by the present inventors, the thickness of the organic protective layer 24 is preferably 0.1 to 50 μm, more preferably 0.5 to 25 μm, and particularly preferably 1 to 10 μm. preferable.
By setting the thickness of the organic protective layer 24 to 0.1 μm or more, the inorganic layer 16 can be appropriately protected. Moreover, the workability | operativity at the time of sticking the gas barrier film 10 to a to-be-transferred body can be improved by the thickness of the organic protective layer 24 being 50 micrometers or less.
 保護フィルム26は、公知の保護フィルムとして利用されている公知のシート状物が、各種、利用可能である。
 一例として、前述の基板12で例示した各種の樹脂材料からなるフィルム(樹脂フィルム)が、好適に例示される。
As the protective film 26, various known sheet-like materials that are used as known protective films can be used.
As an example, the film (resin film) which consists of various resin materials illustrated with the above-mentioned board | substrate 12 is illustrated suitably.
 保護フィルム26をガスバリア層18(より具体的には無機層16)の表面上に形成する場合は、この保護フィルム26の形成材料は、ヤング率が6GPa以下であるのが好ましい。この場合、保護フィルム26は、ガスバリアフィルム10が有するガスバリア層18の最上層となる無機層16上に貼着され、ガスバリアフィルム10を転写する際には、無機層16から剥離されて利用される。保護フィルム26の形成材料のヤング率を6GPa以下とすることにより、保護フィルム26を剥離する際における無機層16の損傷を、より好適に防止でき、高いガスバリア性を得ることができる。 この点を考慮すると、保護フィルム26の形成材料としては、LDPE、HDPE、PP、PET、PEN、PVC、PI等が好適に例示される。 When the protective film 26 is formed on the surface of the gas barrier layer 18 (more specifically, the inorganic layer 16), it is preferable that the material for forming the protective film 26 has a Young's modulus of 6 GPa or less. In this case, the protective film 26 is stuck on the inorganic layer 16 that is the uppermost layer of the gas barrier layer 18 of the gas barrier film 10, and is used by being peeled off from the inorganic layer 16 when transferring the gas barrier film 10. . By setting the Young's modulus of the forming material of the protective film 26 to 6 GPa or less, damage to the inorganic layer 16 when the protective film 26 is peeled can be more suitably prevented, and high gas barrier properties can be obtained. Considering this point, LDPE, HDPE, PP, PET, PEN, PVC, PI, and the like are preferably exemplified as the material for forming the protective film 26.
 保護フィルム26の厚さは、ガスバリアフィルム10に要求される厚さ、保護フィルム26の形成材料のヤング率等に応じて、適宜、設定すればよい。
 本発明者らの検討によれば、保護フィルム26の厚さは、10~300μmが好ましく、30~50μmがより好ましい。
 保護フィルム26の厚さを10μm以上とすることにより、巻取り時等に外部から受ける衝撃等に起因する無機層16の損傷を好適に防止できること、搬送時のシワおよび変形を抑制できること等の点で好ましい。
 保護フィルム26の厚さを300μm以下とすることにより、ガスバリアフィルム10が不要に厚くなることを防止できる等の点で好ましい。
What is necessary is just to set the thickness of the protective film 26 suitably according to the thickness requested | required of the gas barrier film 10, the Young's modulus of the forming material of the protective film 26, etc.
According to the study by the present inventors, the thickness of the protective film 26 is preferably 10 to 300 μm, and more preferably 30 to 50 μm.
By setting the thickness of the protective film 26 to 10 μm or more, it is possible to suitably prevent damage to the inorganic layer 16 due to impact received from the outside during winding, etc., and to prevent wrinkles and deformation during transportation. Is preferable.
By setting the thickness of the protective film 26 to 300 μm or less, it is preferable in that the gas barrier film 10 can be prevented from becoming unnecessarily thick.
 保護フィルム26において、無機層16側の面に、粘着層が形成されていてもよい。 In the protective film 26, an adhesive layer may be formed on the surface of the inorganic layer 16 side.
 次に、本発明のガスバリアフィルムの転写方法(「本発明の転写方法」ともいう)について説明する。
 本発明のガスバリアフィルムの転写方法は、上記ガスバリアフィルムの基板とは反対側の面を被転写体に貼着し、基板を剥離することで、ガスバリア層および剥離樹脂層を備える転写層を、被転写体に転写する。
 以下、本発明の転写方法について、図4(A)~図4(C)および図5を用いて説明する。
Next, the gas barrier film transfer method of the present invention (also referred to as “transfer method of the present invention”) will be described.
The gas barrier film transfer method of the present invention is a method of attaching a transfer layer comprising a gas barrier layer and a release resin layer by attaching the surface of the gas barrier film opposite to the substrate to the transfer target and peeling the substrate. Transfer to the transfer body.
The transfer method of the present invention will be described below with reference to FIGS. 4 (A) to 4 (C) and FIG.
 図4(A)~図4(C)は、ガスバリアフィルムとして、図2(A)に示すような、粘着層として有機保護層24を有するガスバリアフィルム10bを用い、このガスバリアフィルム10bを被転写体である位相差フィルム112に転写する例を示したものである。 4A to 4C, a gas barrier film 10b having an organic protective layer 24 as an adhesive layer as shown in FIG. 2A is used as a gas barrier film, and the gas barrier film 10b is transferred to a transfer object. This shows an example of transferring to the retardation film 112.
 まず、図4(A)および図4(B)に示すように、ガスバリアフィルム10bの、基板12とは反対側の面、すなわち、有機保護層24側を、位相差フィルム112側に向けて貼り合わせる。
 貼り合わせの方法には限定はなく、公知のフィルム状物の貼り合わせ方法が各種、利用可能である。また、このような貼り合わせは、枚様式で行ってもよいし、長尺なガスバリアフィルム10bおよび位相差フィルム112を用いて、ロール・トゥ・ロール(以下、RtoRとも言う)によって貼り合わせを行ってもよい。
First, as shown in FIG. 4 (A) and FIG. 4 (B), the surface of the gas barrier film 10b opposite to the substrate 12, that is, the organic protective layer 24 side is pasted toward the retardation film 112 side. Match.
There is no limitation in the method of bonding, and various methods for bonding known film-like materials can be used. Such bonding may be performed in a sheet form, or by roll-to-roll (hereinafter also referred to as RtoR) using the long gas barrier film 10b and the retardation film 112. May be.
 なお、図示例においては、ガスバリアフィルム10bが粘着層を有する構成としたが、これに限定はされず、ガスバリアフィルム10bとの貼り合わせの前に、被転写体に粘着剤を塗布して、ガスバリアフィルム10bとの貼り合わせを行ってもよい。
 また、有機保護層24(あるいは無機層16)上に保護フィルム26を有する場合には、ガスバリアフィルムを被転写体に貼り合わせる前に、保護フィルム26を剥離して被転写体への貼り合わせを行えばよい。
In the illustrated example, the gas barrier film 10b has an adhesive layer. However, the present invention is not limited to this, and an adhesive is applied to an object to be transferred before bonding to the gas barrier film 10b. Bonding with the film 10b may be performed.
In addition, when the protective film 26 is provided on the organic protective layer 24 (or the inorganic layer 16), the protective film 26 is peeled off and bonded to the transferred body before the gas barrier film is bonded to the transferred body. Just do it.
 次に、図4(C)に示すように、位相差フィルム112に貼り合わせたガスバリアフィルム10bから基板12を剥離する。
 基板12の剥離方法にも限定はなく、公知のフィルム状物の剥離方法が各種、利用可能である。
 また、このような基板12の剥離は、枚様式で行ってもよいし、RtoRによって行ってもよい。
Next, as illustrated in FIG. 4C, the substrate 12 is peeled from the gas barrier film 10 b bonded to the retardation film 112.
There is no limitation also on the peeling method of the board | substrate 12, and various peeling methods of a well-known film-form thing can be utilized.
Further, such peeling of the substrate 12 may be performed in a sheet form or by RtoR.
 このようにして、ガスバリアフィルム10bの転写層30を被転写体である位相差フィルム112に転写して、図5に示すようなガスバリア層付位相差フィルム110とすることができる。
 本発明のガスバリアフィルムの転写方法は、基板12の剥離の際に無機層16が割れるのを防止できるので、高いガスバリア性を維持したまま、転写層30を被転写体に転写することができる。
 また、転写層30の厚さを非常に薄くできるので、透明性や、リタデーション値等の光学特性への影響を低減できる。
In this manner, the transfer layer 30 of the gas barrier film 10b is transferred to the phase difference film 112 which is a transfer target, and a phase difference film 110 with a gas barrier layer as shown in FIG. 5 can be obtained.
In the gas barrier film transfer method of the present invention, the inorganic layer 16 can be prevented from cracking when the substrate 12 is peeled off, so that the transfer layer 30 can be transferred to the transfer object while maintaining high gas barrier properties.
Moreover, since the thickness of the transfer layer 30 can be made very thin, the influence on the optical properties such as transparency and retardation value can be reduced.
 なお、本発明において、ガスバリアフィルムを転写する被転写体には限定はない。高いガスバリア性を有し、また、透明性が高く、低リタデーションで光学特性に優れる点から、高いガスバリア性が求められる、有機EL素子や波長変換材料等の光学部材の封止に好適に用いられる。また、各種光学フィルムに高いガスバリア性を付与して、光学フィルム兼ガスバリアフィルムとして利用することも可能である。 In the present invention, there is no limitation on the transfer target to which the gas barrier film is transferred. High gas barrier properties, high transparency, low retardation, and excellent optical characteristics. High gas barrier properties are required, and it is suitable for sealing optical members such as organic EL elements and wavelength conversion materials. . Moreover, it is also possible to give a high gas barrier property to various optical films and use it as an optical film and gas barrier film.
 以下、本発明のガスバリアフィルムを用いた部材について説明する。
 本発明のガスバリアフィルムを用いた、本発明のガスバリア層付位相差フィルムの一例である、図5に示すガスバリア層付位相差フィルム110は、有機保護層24、無機層16、有機層14および剥離樹脂層20を有する転写層30が、位相差フィルム112上に積層された構成を有する。
 このガスバリア層付位相差フィルム110は、転写層30の厚さが非常に薄いため、厚さの増加を抑えたまま、位相差フィルム自体の光学特性に加えて、高いガスバリア性を有するフィルムとすることができる。
Hereinafter, the member using the gas barrier film of the present invention will be described.
The retardation film 110 with a gas barrier layer shown in FIG. 5, which is an example of the retardation film with a gas barrier layer of the present invention using the gas barrier film of the present invention, includes an organic protective layer 24, an inorganic layer 16, an organic layer 14, and a release layer. The transfer layer 30 having the resin layer 20 has a configuration laminated on the retardation film 112.
The retardation film 110 with a gas barrier layer is a film having a high gas barrier property in addition to the optical characteristics of the retardation film itself while suppressing an increase in thickness because the thickness of the transfer layer 30 is very thin. be able to.
 図6は、本発明のガスバリアフィルムを転写して波長変換層を封止した、波長変換フィルムの一例である。
 図6に示す波長変換フィルム100は、波長変換層102と、波長変換層102の一方の面に積層されたガスバリアフィルム104と、波長変換層102の他方の面に積層された転写層30とを有する。
FIG. 6 is an example of a wavelength conversion film in which the gas barrier film of the present invention is transferred to seal the wavelength conversion layer.
The wavelength conversion film 100 shown in FIG. 6 includes a wavelength conversion layer 102, a gas barrier film 104 laminated on one surface of the wavelength conversion layer 102, and a transfer layer 30 laminated on the other surface of the wavelength conversion layer 102. Have.
 波長変換層102は、入射光の波長を変換して出射する機能を有するものであり、例えば、量子ドットを樹脂等のバインダー中に分散してなる量子ドット層である。
 量子ドット層に含有される量子ドットの種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の量子ドットを適宜選択すればよい。
 また、量子ドット層に含有されるバインダーの種類にも特に限定はなく、量子ドットの種類、求められる性能等に応じて、種々の公知のバインダーを適宜選択すればよい。
The wavelength conversion layer 102 has a function of converting and emitting the wavelength of incident light, and is, for example, a quantum dot layer formed by dispersing quantum dots in a binder such as a resin.
There are no particular limitations on the type of quantum dots contained in the quantum dot layer, and various known quantum dots may be appropriately selected according to the required wavelength conversion performance or the like.
Further, the type of binder contained in the quantum dot layer is not particularly limited, and various known binders may be appropriately selected depending on the type of quantum dots, required performance, and the like.
 ガスバリアフィルム104は、波長変換層102を封止するためのものであり、波長変換層102の封止に求められるガスバリア性を有するものであれば特に限定はなく、公知のガスバリアフィルムが適宜利用可能である。 The gas barrier film 104 is for sealing the wavelength conversion layer 102, and is not particularly limited as long as it has gas barrier properties required for sealing the wavelength conversion layer 102, and a known gas barrier film can be used as appropriate. It is.
 図6に示すように、波長変換フィルム100は、波長変換層102の一方の面を、従来のガスバリアフィルム104で封止し、他方の面を、本発明のガスバリアフィルム10から転写した転写層30を用いて封止したものである。
 このように、波長変換層の少なくとも一方の面を本発明のガスバリアフィルムで封止することで、波長変換フィルム全体の厚さを薄くすることができる。
As shown in FIG. 6, in the wavelength conversion film 100, one surface of the wavelength conversion layer 102 is sealed with a conventional gas barrier film 104, and the other surface is transferred from the gas barrier film 10 of the present invention. It is sealed using
Thus, the thickness of the whole wavelength conversion film can be made thin by sealing at least one surface of the wavelength conversion layer with the gas barrier film of the present invention.
 なお、図6に示す例では、波長変換層の一方の面を本発明のガスバリアフィルムで封止する構成としたが、これに限定はされず、波長変換層の両面を本発明のガスバリアフィルムで封止する構成としてもよい。これにより、波長変換フィルム全体の厚さをさらに薄くすることができる。 In addition, in the example shown in FIG. 6, although it was set as the structure which seals one surface of the wavelength conversion layer with the gas barrier film of this invention, it is not limited to this, Both surfaces of the wavelength conversion layer are made with the gas barrier film of this invention. It is good also as a structure sealed. Thereby, the thickness of the whole wavelength conversion film can be made still thinner.
 図7(A)~図7(C)はそれぞれ、本発明のガスバリアフィルムを転写して有機EL素子を封止した、有機EL積層体の一例である。 7 (A) to 7 (C) are examples of organic EL laminates in which the organic EL element is sealed by transferring the gas barrier film of the present invention.
 図7(A)に示す有機EL積層体120aは、素子基板122と、素子基板122上に形成された有機EL素子124と、有機EL素子124を覆って積層された転写層30とを有する。
 素子基板122は、各種の有機EL装置に用いられている素子基板が、全て利用可能である。具体的には、ガラス、プラスチック、金属、および、セラミック等からなる素子基板が例示される。また、水分等による有機EL素子124の劣化を防止するために、水分等が素子基板122を透過して有機EL素子124に至るのを防止できるのが好ましい。そのため、素子基板122は、ガラスや金属等のように、水分等の含有量が低く、かつ、水分等の透過率が低い材料からなる基板を用いるのが好ましい。
An organic EL stacked body 120 a illustrated in FIG. 7A includes an element substrate 122, an organic EL element 124 formed on the element substrate 122, and a transfer layer 30 that is stacked to cover the organic EL element 124.
As the element substrate 122, all element substrates used in various organic EL devices can be used. Specifically, an element substrate made of glass, plastic, metal, ceramic, or the like is exemplified. In order to prevent deterioration of the organic EL element 124 due to moisture or the like, it is preferable that moisture or the like can be prevented from passing through the element substrate 122 and reaching the organic EL element 124. Therefore, the element substrate 122 is preferably a substrate made of a material having a low content of moisture or the like and a low transmittance of moisture or the like, such as glass or metal.
 なお、図7(B)に示す有機EL積層体120bのように、素子基板として、本発明のガスバリアフィルム10(より具体的には転写層30)を用いてもよい。あるいは、本発明のガスバリアフィルム10を樹脂基材に転写したものを素子基板として用いてもよい。 Note that the gas barrier film 10 of the present invention (more specifically, the transfer layer 30) may be used as an element substrate as in the organic EL laminate 120b shown in FIG. 7B. Or what transferred the gas barrier film 10 of this invention to the resin base material may be used as an element substrate.
 有機EL素子124は、例えば、有機電界発光層と、有機電界発光層を挾持する電極対である透明電極および反射電極と、を有する公知の有機EL素子である。
 図に示すように、有機EL素子124は、本発明のガスバリアフィルム10から転写された転写層30により封止されている。
 このように、有機EL素子124を本発明のガスバリアフィルムで封止することで、有機EL積層体全体の厚さを薄くすることができる。
The organic EL element 124 is a known organic EL element having, for example, an organic electroluminescent layer and a transparent electrode and a reflective electrode that are an electrode pair that holds the organic electroluminescent layer.
As shown in the figure, the organic EL element 124 is sealed with a transfer layer 30 transferred from the gas barrier film 10 of the present invention.
Thus, by sealing the organic EL element 124 with the gas barrier film of the present invention, the thickness of the entire organic EL laminate can be reduced.
 なお、有機EL積層体は、転写層30側から光を出射するトップエミッション型であっても、素子基板122側から光を出射するボトムエミッション型であってもよい。 The organic EL laminate may be a top emission type that emits light from the transfer layer 30 side or a bottom emission type that emits light from the element substrate 122 side.
 また、図7(C)に示す有機EL積層体120cのように、有機EL素子124と転写層30との間にパッシベーション膜126を有していてもよい。
 すなわち、有機EL素子124をパッシベーション膜126で封止し、このパッシベーション膜126上に転写層30を転写する構成としてもよい。
 パッシベーション膜126は、水分や酸素等が有機EL素子124に至って、有機EL素子124が劣化するのを防止するためのものである。
 このようなパッシベーション膜126としては、公知の有機EL装置に利用される、ガスバリア性を発現する材料からなる各種の膜(層)が利用可能である。具体的には、無機層16と同様の、ガスバリア性を有する、窒化ケイ素、酸化ケイ素等の無機化合物からなる膜が例示される。
 パッシベーション膜126は、膜の形成材料に応じた公知の方法で成膜すればよい。
Further, a passivation film 126 may be provided between the organic EL element 124 and the transfer layer 30 as in the organic EL stacked body 120c shown in FIG.
That is, the organic EL element 124 may be sealed with the passivation film 126 and the transfer layer 30 may be transferred onto the passivation film 126.
The passivation film 126 is for preventing moisture, oxygen, and the like from reaching the organic EL element 124 and degrading the organic EL element 124.
As such a passivation film 126, various films (layers) made of a material exhibiting gas barrier properties, which are used in known organic EL devices, can be used. Specifically, a film made of an inorganic compound such as silicon nitride and silicon oxide having gas barrier properties similar to the inorganic layer 16 is exemplified.
The passivation film 126 may be formed by a known method corresponding to the film forming material.
 以下、図8(A)および図8(B)を参照して、本発明のガスバリアフィルムの製造方法を説明する。
 なお、以下の例は、好ましい態様として、長尺な基板12や保護フィルム26等を用いて、RtoRによってガスバリアフィルムの製造を行うものである。周知のように、RtoRとは、長尺な被処理物を巻回してなるロールから被処理物を送り出して、長手方向に搬送しつつ成膜等の処理を行い、処理済の被処理物を、再度、ロール状に巻回する製造方法である。
Hereinafter, with reference to FIG. 8 (A) and FIG. 8 (B), the manufacturing method of the gas barrier film of this invention is demonstrated.
In addition, the following example manufactures a gas barrier film by RtoR using the elongate board | substrate 12, the protective film 26, etc. as a preferable aspect. As is well known, RtoR means that a processed object is sent out from a roll formed by winding a long processed object, and is subjected to processing such as film formation while being conveyed in the longitudinal direction. This is a manufacturing method in which the material is wound again in a roll shape.
 まず、図8(A)に概念的に示す成膜装置を用いて、基板12上に剥離樹脂層20を形成する。
 具体的には、例えば、有機溶剤と、剥離樹脂層20となる有機化合物と、を含む塗布組成物を調製する。
 一方、長尺な基板12をロール状に巻回してなる基板ロールRaを、有機成膜装置の所定位置に装填する。次いで、基板ロールRaから基板12を送り出して、巻取り位置に到る所定の経路に通紙する。さらに、剥離樹脂層20となる塗布組成物を塗布部40の所定位置に充填する。成膜装置は、基板12を所定の経路で搬送するための搬送ローラ対48を有する。
 その上で、基板ロールRaから基板12を送り出して、長手方向に搬送しつつ、調製した塗布組成物を塗布部40において基板12に塗布し、次いで、塗布した塗布組成物を乾燥部42において乾燥して、さらに必要に応じて硬化部44において紫外線照射や加熱等を行って、剥離樹脂層20を形成する。さらに、基板12上に剥離樹脂層20が形成された長尺なフィルムをロール状に巻回して、基材ロールRbとする。
 なお、図示は省略するが、好ましい態様として、剥離樹脂層20を形成した後、保護フィルムを積層して、その後、巻取りを行って基材ロールRbとする。
First, the release resin layer 20 is formed over the substrate 12 using a film formation apparatus conceptually illustrated in FIG.
Specifically, for example, a coating composition containing an organic solvent and an organic compound that becomes the release resin layer 20 is prepared.
On the other hand, a substrate roll Ra obtained by winding a long substrate 12 into a roll is loaded into a predetermined position of the organic film forming apparatus. Next, the substrate 12 is sent out from the substrate roll Ra and passed through a predetermined path to the winding position. Further, a coating composition that becomes the release resin layer 20 is filled in a predetermined position of the coating unit 40. The film forming apparatus includes a transport roller pair 48 for transporting the substrate 12 through a predetermined path.
Then, the substrate 12 is fed out from the substrate roll Ra and conveyed in the longitudinal direction, and the prepared coating composition is applied to the substrate 12 in the coating unit 40, and then the coated coating composition is dried in the drying unit 42. Then, if necessary, the cured resin 44 is irradiated with ultraviolet rays or heated to form the release resin layer 20. Further, a long film in which the release resin layer 20 is formed on the substrate 12 is wound into a roll to obtain a base roll Rb.
In addition, although illustration is abbreviate | omitted, after forming the peeling resin layer 20, as a preferable aspect, a protective film is laminated | stacked and it winds up after that and is set as base-material roll Rb.
 次に、剥離樹脂層20を形成した基板12を被成膜基材Zaとして、被成膜基材Zaの剥離樹脂層20上に有機層14を形成する。有機層14の形成は、基本的に、図8(A)に示すような有機成膜装置を用いて剥離樹脂層20の形成と同様に行えばよい。
 すなわち、例えば、有機溶剤、有機層14となる有機化合物、および重合開始剤を含む塗布組成物を調製する。
 また、長尺な被成膜基材Zaをロール状に巻回してなる基材ロールRbを、有機成膜装置の所定位置に装填する。次いで、基材ロールRbから被成膜基材Zaを送り出して、巻取り位置に到る所定の経路に通紙する。さらに、有機層14となる塗布組成物を塗布部40の所定位置に充填する。
 その上で、基材ロールRbから被成膜基材Zaを送り出して、長手方向に搬送しつつ、調製した塗布組成物を塗布部40において剥離樹脂層20上に塗布し、次いで、塗布した塗布組成物を乾燥部42において乾燥して、硬化部44において紫外線照射等によって有機化合物を重合(架橋)して有機層14を形成する。さらに、有機層14を形成した長尺な被成膜基材Zaをロール状に巻回して、基材ロールRcとする。
Next, the substrate 12 on which the release resin layer 20 is formed is used as the film formation substrate Za, and the organic layer 14 is formed on the release resin layer 20 of the film formation substrate Za. The formation of the organic layer 14 may be basically performed in the same manner as the formation of the release resin layer 20 using an organic film forming apparatus as shown in FIG.
That is, for example, a coating composition containing an organic solvent, an organic compound that becomes the organic layer 14, and a polymerization initiator is prepared.
Further, a base material roll Rb obtained by winding a long film-forming base material Za in a roll shape is loaded into a predetermined position of the organic film forming apparatus. Next, the deposition target substrate Za is sent out from the substrate roll Rb, and is passed through a predetermined path to the winding position. Further, a coating composition that becomes the organic layer 14 is filled in a predetermined position of the coating unit 40.
Then, the film-forming substrate Za is sent out from the substrate roll Rb, and the prepared coating composition is applied onto the release resin layer 20 in the application unit 40 while being conveyed in the longitudinal direction, and then applied. The composition is dried in the drying unit 42 and the organic compound 14 is polymerized (crosslinked) by ultraviolet irradiation or the like in the curing unit 44 to form the organic layer 14. Further, the long film-forming substrate Za on which the organic layer 14 is formed is wound into a roll shape to form a substrate roll Rc.
 なお、有機層14の形成後、有機層14に保護フィルムを貼着してもよい。保護フィルムの貼着は、有機層14がガイドローラ等の他の部材に接触する前に行うのが好ましい。
 これにより、無機層16の下地層である有機層14が損傷するのを防止でき、平滑な有機層14上に適正に無機層16を形成できるので、高いガスバリア性を発現するガスバリアフィルムを得ることができる。
 また、上記例では、剥離樹脂層20の成膜と、有機層14の成膜とをそれぞれ行う構成としたが、これに限定はされず、剥離樹脂層の成膜後、巻取りを行わず、続けて、有機層14の成膜を行ってもよい。すなわち、基板12の搬送経路中に、剥離樹脂層20を形成するための塗布部40、乾燥部42および硬化部44、ならびに、有機層14を形成するための塗布部40、乾燥部42および硬化部44を配置した成膜装置を用いて、剥離樹脂層20の成膜と、有機層14の成膜とを連続して行ってもよい。
A protective film may be attached to the organic layer 14 after the organic layer 14 is formed. The protective film is preferably attached before the organic layer 14 contacts another member such as a guide roller.
Thereby, it is possible to prevent the organic layer 14 that is the base layer of the inorganic layer 16 from being damaged, and the inorganic layer 16 can be appropriately formed on the smooth organic layer 14, thereby obtaining a gas barrier film that exhibits high gas barrier properties. Can do.
In the above example, the film formation of the release resin layer 20 and the film formation of the organic layer 14 are performed. However, the present invention is not limited to this, and winding is not performed after the film formation of the release resin layer. Subsequently, the organic layer 14 may be formed. That is, in the conveyance path of the substrate 12, a coating unit 40, a drying unit 42 and a curing unit 44 for forming the release resin layer 20, and a coating unit 40, a drying unit 42 and curing for forming the organic layer 14. Using the film forming apparatus in which the portion 44 is disposed, the film formation of the release resin layer 20 and the film formation of the organic layer 14 may be performed continuously.
 次いで、図8(B)に概念的に示すような無機成膜装置において、剥離樹脂層20および有機層14を形成した基板12(以下、「被成膜基材Zb」という場合がある)に無機層16を形成し、さらに、無機層16に保護フィルム26を貼着して、ガスバリアフィルム10を作製する。
 図8(B)に示す無機成膜装置は、一例として、CCP-CVD(容量結合型プラズマ化学気相蒸着法)によって無機層16を形成するものであり、供給室50と、成膜室52と、巻取り室54とを有する。
 まず、供給室50の所定位置に基材ロールRcを装填する。次いで、基材ロールRcから被成膜基材Zbを送り出して、供給室50から成膜室52を経て巻取り室54に到る所定の経路を通紙する。基材ロールRcは、有機層14が成膜室52における成膜面となるように装填する。
 また、成膜室52の所定位置に保護フィルムロール26Rを装填する。次いで、保護フィルムロール26Rから保護フィルム26を送り出し、成膜室52から巻取り室54に到る所定の経路を通紙する。
Next, in the inorganic film forming apparatus conceptually shown in FIG. 8B, the substrate 12 (hereinafter, sometimes referred to as “deposition substrate Zb”) on which the release resin layer 20 and the organic layer 14 are formed is used. The inorganic layer 16 is formed, and the protective film 26 is attached to the inorganic layer 16 to produce the gas barrier film 10.
In the inorganic film forming apparatus shown in FIG. 8B, as an example, the inorganic layer 16 is formed by CCP-CVD (capacitive coupling type plasma chemical vapor deposition), and a supply chamber 50 and a film forming chamber 52 are formed. And a winding chamber 54.
First, the base roll Rc is loaded at a predetermined position in the supply chamber 50. Next, the deposition target substrate Zb is sent out from the substrate roll Rc, and the paper passes through a predetermined path from the supply chamber 50 to the winding chamber 54 through the deposition chamber 52. The base material roll Rc is loaded so that the organic layer 14 becomes a film formation surface in the film formation chamber 52.
Further, the protective film roll 26 </ b> R is loaded at a predetermined position in the film forming chamber 52. Next, the protective film 26 is sent out from the protective film roll 26 </ b> R, and the paper passes through a predetermined path from the film formation chamber 52 to the winding chamber 54.
 次いで、供給室50を真空排気手段50aにより、成膜室52を真空排気手段52aにより、巻取り室54を真空排気手段54aにより、それぞれ排気して、各室を所定の圧力に減圧する。
 各室が所定の圧力になったら、被成膜基材Zbおよび保護フィルム26の搬送を開始する。
Next, the supply chamber 50 is evacuated by the vacuum evacuation means 50a, the film formation chamber 52 is evacuated by the vacuum evacuation means 52a, and the take-up chamber 54 is evacuated by the vacuum evacuation means 54a.
When each chamber reaches a predetermined pressure, conveyance of the film formation substrate Zb and the protective film 26 is started.
 被成膜基材Zbは、基材ロールRcから送り出されて、ガイドローラ58に案内されて、成膜室52に搬送される。
 成膜室52に搬送された被成膜基材Zbは、ガイドローラ60に案内されて、円筒状のドラム62の周面に巻き掛けられる。ドラム62は、CCP-CVDにおける電極としても作用するものである。なお、ドラム62は、好ましい態様として温度調節機能を有する。被成膜基材Zbは、ドラム62によって所定の経路を搬送されつつ、CCP-CVDによって無機層16を形成され、基板12に、剥離樹脂層20と、有機層14および無機層16の組み合わせとが形成された積層フィルムとされる。CCP-CVDは、ドラム62とシャワー電極64とからなる電極対、原料ガス供給部68、および、高周波電源70等を有する成膜手段である。
 プラズマCVDによる無機層16の形成は、無機層16の形成材料等に応じた公知の方法で行えばよい。また、無機層16の形成は、CCP-CVD以外にも、ICP-CVD(誘導結合型プラズマ化学気相蒸着法)、スパッタリング、真空蒸着等、公知の気相成膜法が、各種、利用可能である。
The film formation substrate Zb is sent out from the substrate roll Rc, guided by the guide roller 58, and conveyed to the film formation chamber 52.
The film formation substrate Zb conveyed to the film formation chamber 52 is guided by the guide roller 60 and wound around the circumferential surface of the cylindrical drum 62. The drum 62 also functions as an electrode in CCP-CVD. The drum 62 has a temperature adjustment function as a preferred embodiment. The film-forming substrate Zb is formed with the inorganic layer 16 formed by CCP-CVD while being transported along a predetermined path by the drum 62, and the substrate 12 has a release resin layer 20 and a combination of the organic layer 14 and the inorganic layer 16. Is a laminated film formed. CCP-CVD is a film forming means having an electrode pair composed of a drum 62 and a shower electrode 64, a source gas supply unit 68, a high-frequency power source 70, and the like.
The formation of the inorganic layer 16 by plasma CVD may be performed by a known method according to the material for forming the inorganic layer 16 or the like. In addition to CCP-CVD, the inorganic layer 16 can be formed by various known vapor deposition methods such as ICP-CVD (inductively coupled plasma enhanced chemical vapor deposition), sputtering, and vacuum deposition. It is.
 一方、この被成膜基材Zbの搬送に同期して、保護フィルムロール26Rから保護フィルム26が送り出されて、長手方向に搬送される。
 無機層16を形成された被成膜基材Zbおよび保護フィルム26は、積層ローラ対72によって積層および圧着されて、ガスバリアフィルム10が作製される。
 なお、保護フィルム26の無機層16と対面する面には粘着層が形成されていてもよい。
On the other hand, the protective film 26 is sent out from the protective film roll 26R and conveyed in the longitudinal direction in synchronization with the conveyance of the film formation substrate Zb.
The film-forming substrate Zb on which the inorganic layer 16 is formed and the protective film 26 are laminated and pressure-bonded by the lamination roller pair 72, whereby the gas barrier film 10 is produced.
An adhesive layer may be formed on the surface of the protective film 26 that faces the inorganic layer 16.
 RtoRによってガスバリアフィルム10を作製する際には、保護フィルム26の貼着は、無機層16を形成した後、無機層16がガイドローラ等の他の部材に接触する前に行うのが好ましい。
 これにより、無機層16の損傷を防止して、目的とするガスバリア性を発現するガスバリアフィルム10を得られる。
When producing the gas barrier film 10 by RtoR, it is preferable that the protective film 26 is attached after the inorganic layer 16 is formed and before the inorganic layer 16 contacts other members such as a guide roller.
Thereby, the damage of the inorganic layer 16 is prevented and the gas barrier film 10 which expresses the target gas barrier property is obtained.
 積層ローラ対72による積層フィルムと保護フィルム26との積層および貼着によって作製されたガスバリアフィルム10は、成膜室52から巻取り室54に搬送されて、ガイドローラ76によって所定の経路に案内されて、巻き取られ、長尺なガスバリアフィルム10を巻回したバリアフィルムロールRdとされる。 The gas barrier film 10 produced by laminating and sticking the laminated film and the protective film 26 by the laminated roller pair 72 is conveyed from the film forming chamber 52 to the take-up chamber 54 and guided to a predetermined path by the guide roller 76. Thus, the barrier film roll Rd is wound and wound with the long gas barrier film 10.
 なお、被成膜基材Zbが、有機層14上に保護フィルムを有するものである場合には、無機層16の成膜前に、保護フィルムを剥離して無機層16の成膜を行えばよい。
 保護フィルムの剥離は、無機層16の成膜手段に至る経路であって、有機層14に接触するガイドローラ等の部材が無い位置で行うのが好ましい。
In addition, when the to-be-deposited base material Zb has a protective film on the organic layer 14, the protective film is peeled off and the inorganic layer 16 is formed before the inorganic layer 16 is formed. Good.
The protective film is preferably peeled off at a position where there is no member such as a guide roller in contact with the organic layer 14 along the path to the film forming means of the inorganic layer 16.
 なお、無機層16上にさらに、有機保護層24を形成する場合には、剥離樹脂層20、有機層14および無機層16を形成した基板12を被成膜基材として、図8(A)に示すような有機成膜装置を用いて、剥離樹脂層20および有機層14と同様にして形成すればよい。 When the organic protective layer 24 is further formed on the inorganic layer 16, the substrate 12 on which the release resin layer 20, the organic layer 14, and the inorganic layer 16 are formed is used as a film formation base material. The organic film forming apparatus as shown in FIG. 5 may be used in the same manner as the release resin layer 20 and the organic layer 14.
 以上、本発明のガスバリアフィルムについて詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 The gas barrier film of the present invention has been described in detail above, but the present invention is not limited to the above-described embodiment, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.
 以下、本発明の具体的実施例を挙げ、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.
 [実施例1]
 実施例1として、図1(A)に示すガスバリアフィルム10aを作製した。
[Example 1]
As Example 1, a gas barrier film 10a shown in FIG.
 <剥離樹脂層20の形成>
 基板12として、幅1000mm、厚さ50μm、長さ100mの長尺なPETフィルム(東洋紡株式会社製、コスモシャインA4100)を用いた。
 この基板12の未下塗り面側に、以下の手順で剥離樹脂層20を形成した。
<Formation of release resin layer 20>
As the substrate 12, a long PET film having a width of 1000 mm, a thickness of 50 μm, and a length of 100 m (Toyobo Co., Ltd., Cosmo Shine A4100) was used.
A release resin layer 20 was formed on the uncoated surface side of the substrate 12 by the following procedure.
 剥離樹脂層20となる塗布液A1として、COC樹脂(三井化学株式会社製 APEL 6015T)をシクロヘキサンで溶解し、固形分濃度10%の塗布液を調製した。
 この塗布液A1を、図8(A)に示すようなRtoRによる成膜装置の塗布部40に充填した。塗布部40はダイコータを用いた。また、基板12をロール状に巻回してなる基板ロールRaを所定の位置に装填して、基板12を所定の搬送経路に挿通した。
 その上で、基板12を長手方向に搬送しつつ、乾燥膜厚が2μmになるように塗布部40によって塗布液A1を基板12に塗布して、乾燥部42において、乾燥温度100℃で3分間乾燥させて、基板12上に剥離樹脂層20を形成した。この際においては、硬化部44は使用しなかった。
 すなわち、剥離樹脂層20の形成材料は、シクロオレフィンコポリマーである。
As the coating liquid A1 to be the release resin layer 20, a COC resin (APEL 6015T manufactured by Mitsui Chemicals, Inc.) was dissolved in cyclohexane to prepare a coating liquid having a solid content concentration of 10%.
The coating solution A1 was filled in the coating unit 40 of a film forming apparatus using RtoR as shown in FIG. The coating unit 40 used a die coater. Further, a substrate roll Ra obtained by winding the substrate 12 in a roll shape was loaded at a predetermined position, and the substrate 12 was inserted into a predetermined transport path.
Then, while the substrate 12 is transported in the longitudinal direction, the coating liquid A1 is applied to the substrate 12 by the coating unit 40 so that the dry film thickness becomes 2 μm, and in the drying unit 42, the drying temperature is 100 ° C. for 3 minutes. The release resin layer 20 was formed on the substrate 12 by drying. In this case, the curing part 44 was not used.
That is, the material for forming the release resin layer 20 is a cycloolefin copolymer.
 形成した剥離樹脂層20のガラス転移温度Tgを高感度型示差走査熱量計(日立ハイテクサイエンス社製、DSC7000X)によって、JIS K 7121に準拠して測定したところ、145℃であった。 The glass transition temperature Tg of the formed release resin layer 20 was measured by a high-sensitivity differential scanning calorimeter (Hitachi High-Tech Science Co., Ltd., DSC7000X) according to JIS K 7121, and found to be 145 ° C.
 <有機層14の形成>
 次に、形成した剥離樹脂層20上に、以下の手順で有機層14を形成した。
 有機層14となる塗布液B1として、A-DPH(新中村化学工業株式会社製)および光重合開始剤(BASFジャパン製 Irg819)を用意し、重量比率として97:3となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液を調製した。
<Formation of organic layer 14>
Next, the organic layer 14 was formed on the formed release resin layer 20 by the following procedure.
As coating liquid B1 to be the organic layer 14, A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.) and a photopolymerization initiator (Irg819 manufactured by BASF Japan) are prepared and weighed so that the weight ratio is 97: 3. These were dissolved in methyl ethyl ketone to prepare a coating solution having a solid concentration of 15%.
 この塗布液B1を、図8(A)に示すようなRtoRによる成膜装置の塗布部40に充填した。塗布部40はダイコータを用いた。また、剥離樹脂層20を有する基板12(以下、「被成膜基材Za」という場合がある)をロール状に巻回してなる基材ロールRbを所定の位置に装填して、被成膜基材Zaを所定の搬送経路に挿通した。
 その上で、被成膜基材Zaを長手方向に搬送しつつ、乾燥膜厚が1μmになるように塗布部40によって塗布液B1を被成膜基材Zaの剥離樹脂層20上に塗布して、乾燥部42において、乾燥温度50℃で3分間乾燥させて、硬化部44において、紫外線を照射し(積算照射量約700mJ/cm2)硬化させて、剥離樹脂層20上に有機層14を形成した。
 なお、有機層14を硬化させた後の、有機層14側の面に最初に接触するロールに接触する前に、有機層14上にポリエチレンの保護フィルムを貼り付け、その後に巻き取った。
The coating solution B1 was filled in the coating unit 40 of a film forming apparatus using RtoR as shown in FIG. The coating unit 40 used a die coater. In addition, a base material roll Rb formed by winding a substrate 12 having a release resin layer 20 (hereinafter sometimes referred to as “film formation base material Za”) into a roll shape is loaded at a predetermined position to form a film. The base material Za was inserted through a predetermined conveyance path.
Then, the coating liquid B1 is applied onto the release resin layer 20 of the film-forming substrate Za so that the dry film thickness is 1 μm while the film-forming substrate Za is conveyed in the longitudinal direction. The drying unit 42 is dried at a drying temperature of 50 ° C. for 3 minutes, and the curing unit 44 is irradiated with ultraviolet rays (integrated irradiation amount is about 700 mJ / cm 2 ) to be cured, and the organic layer 14 is formed on the release resin layer 20. Formed.
In addition, before contacting the roll which contacts the surface by the side of the organic layer 14 after hardening the organic layer 14, the protective film of polyethylene was affixed on the organic layer 14, and it wound up after that.
 形成した有機層14のガラス転移温度Tgを高感度型示差走査熱量計(日立ハイテクサイエンス社製、DSC7000X)によって、JIS K 7121に準拠して測定したところ、250℃以上の測定限界であった。 When the glass transition temperature Tg of the formed organic layer 14 was measured according to JIS K 7121 using a high-sensitivity differential scanning calorimeter (DSC7000X, manufactured by Hitachi High-Tech Science Co., Ltd.), the measurement limit was 250 ° C. or higher.
 <無機層16の形成>
 次に、形成した有機層14上に、以下の手順で無機層16を形成した。
 図8(B)に示されるような成膜装置の供給室50の所定位置に、剥離樹脂層20および有機層14が形成された基板12(以下、「被成膜基材Zb」という場合がある)をロール状に巻回してなる基材ロールRcを装填し、成膜室52の所定位置に保護フィルムロール26Rを装填した。さらに、基材ロールRcから被成膜基材Zbを送り出して、供給室50から成膜室52を経て巻取り室54に到る所定の搬送経路に通紙した。また、保護フィルムロール26Rから保護フィルム26を送り出して、成膜室52から巻取り室54に到る所定の搬送経路に通紙した。
 この状態で、被成膜基材Zbと保護フィルム26とを同期して搬送しつつ、成膜直前の膜面タッチロールを通過後に被成膜基材Zbから保護フィルムを剥離し、成膜室52内のドラム62に支持/案内される被成膜基材Zbの有機層14の表面にCCP-CVDによって無機層16として窒化ケイ素膜を形成した。次いで、積層ローラ対72によって、無機層16上に保護フィルム26を積層および貼着して、図1に示すようなガスバリアフィルム10aを作製して、巻き取った。
<Formation of inorganic layer 16>
Next, the inorganic layer 16 was formed on the formed organic layer 14 by the following procedure.
A substrate 12 on which a release resin layer 20 and an organic layer 14 are formed at a predetermined position in a supply chamber 50 of a film forming apparatus as shown in FIG. A base material roll Rc formed by winding a certain film in a roll shape was loaded, and a protective film roll 26R was loaded at a predetermined position in the film forming chamber 52. Furthermore, the film-forming substrate Zb was sent out from the substrate roll Rc, and passed through a predetermined conveyance path from the supply chamber 50 to the winding chamber 54 through the film-forming chamber 52. Further, the protective film 26 was sent out from the protective film roll 26 </ b> R and passed through a predetermined conveyance path from the film forming chamber 52 to the winding chamber 54.
In this state, while the film-forming substrate Zb and the protective film 26 are conveyed synchronously, the protective film is peeled off from the film-forming substrate Zb after passing through the film surface touch roll immediately before film formation, A silicon nitride film was formed as the inorganic layer 16 by CCP-CVD on the surface of the organic layer 14 of the film formation substrate Zb supported / guided by the drum 62 in 52. Next, the protective film 26 was laminated and pasted on the inorganic layer 16 by the pair of laminating rollers 72 to produce a gas barrier film 10a as shown in FIG.
 無機層16の形成には、原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)および水素ガス(流量2000sccm)を用いた。電源は、周波数13.56MHzの高周波電源を用い、プラズマ励起電力は8kWとした。成膜圧力は40Paとした。無機層16の膜厚は、30nmであった。
 保護フィルム26の貼着は、無機層16を形成した後、無機層16が他の部材に接触する前に行った。また、保護フィルム26として、ポリエチレンフィルムを用いた。
In forming the inorganic layer 16, silane gas (flow rate 160sccm), ammonia gas (flow rate 370sccm), and hydrogen gas (flow rate 2000sccm) were used as source gases. The power supply was a high frequency power supply with a frequency of 13.56 MHz, and the plasma excitation power was 8 kW. The film forming pressure was 40 Pa. The film thickness of the inorganic layer 16 was 30 nm.
The protective film 26 was attached after the inorganic layer 16 was formed and before the inorganic layer 16 was in contact with other members. A polyethylene film was used as the protective film 26.
 [実施例2]
 さらに、無機層16上に以下に示す有機保護層24を形成した以外は、実施例1と同様にして、図2(A)に示すようなガスバリアフィルム10bを作製した。
[Example 2]
Further, a gas barrier film 10b as shown in FIG. 2A was produced in the same manner as in Example 1 except that the organic protective layer 24 shown below was formed on the inorganic layer 16.
 有機保護層24となる塗布液C1として、ウレタン骨格アクリルポリマー(大成ファインケミカル株式会社製 アクリット8BR930)、光重合開始剤(BASFジャパン製 Irg184)、シランカップリング剤(信越シリコーン株式会社製 KBM5103)、軟化剤(東洋紡株式会社製 バイロンU1400)を、重量比率として78:10:10:2となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液を調製した。
 この塗布液C1を、図8(A)に示すようなRtoRによる成膜装置の塗布部40に充填した。塗布部40はダイコータを用いた。また、剥離樹脂層20、有機層14および無機層16を形成した基板12(以下、「被成膜基材Zc」という場合がある)をロール状に巻回してなる基板ロールを所定の位置に装填して、被成膜基材Zcを所定の搬送経路に挿通した。
 その上で、被成膜基材Zcを長手方向に搬送しつつ、乾燥膜厚が1μmになるように塗布部40によって塗布液C1を被成膜基材Zcの無機層16上に塗布して、乾燥部42において、乾燥温度100℃で3分間乾燥させて、硬化部44において、紫外線を照射し(積算照射量約600mJ/cm2)、硬化させて無機層16上に有機保護層24を形成した。
As coating liquid C1 to be the organic protective layer 24, urethane skeleton acrylic polymer (Acryt 8BR930 manufactured by Taisei Fine Chemical Co., Ltd.), photopolymerization initiator (Irg184 manufactured by BASF Japan), silane coupling agent (KBM5103 manufactured by Shin-Etsu Silicone Co., Ltd.), softening The agent (Byron U1400 manufactured by Toyobo Co., Ltd.) was weighed so as to have a weight ratio of 78: 10: 10: 2, and dissolved in methyl ethyl ketone to prepare a coating solution having a solid content concentration of 15%.
The coating solution C1 was filled in the coating unit 40 of a film forming apparatus using RtoR as shown in FIG. The coating unit 40 used a die coater. In addition, a substrate roll formed by winding a substrate 12 on which the release resin layer 20, the organic layer 14, and the inorganic layer 16 are formed (hereinafter, may be referred to as “deposition substrate Zc”) in a roll shape is placed at a predetermined position. The film formation substrate Zc was inserted through a predetermined transport path.
Then, the coating liquid C1 is applied onto the inorganic layer 16 of the film forming substrate Zc by the coating unit 40 so that the dry film thickness is 1 μm while the film forming substrate Zc is conveyed in the longitudinal direction. The drying unit 42 is dried at a drying temperature of 100 ° C. for 3 minutes, and the curing unit 44 is irradiated with ultraviolet rays (integrated irradiation amount of about 600 mJ / cm 2 ) to be cured and the organic protective layer 24 is formed on the inorganic layer 16. Formed.
 [実施例3]
 有機保護層24となる塗布液として、以下の塗布液C2を用い、有機保護層24の厚さを3μmとし、有機保護層24形成後に、先と同様にして、最初の膜面タッチロールにて、保護フィルム26としてセパレータフィルム(藤森工業株式会社製フィルムバイナBD)を貼り付けた以外は、実施例2と同様にして、図2(B)に示すようなガスバリアフィルム10cを作製した。
 塗布液C2は、SKダインNT21(綜研化学株式会社製)に硬化剤L-45(綜研化学株式会社製)を100:2の割合で添加したものを酢酸ブチルで希釈し、固形分濃度15%に調製した。
 この有機保護層24は、アクリル系粘着剤である。
[Example 3]
As the coating solution to be the organic protective layer 24, the following coating solution C2 was used, the thickness of the organic protective layer 24 was set to 3 μm, and after the organic protective layer 24 was formed, A gas barrier film 10c as shown in FIG. 2 (B) was produced in the same manner as in Example 2 except that a separator film (film binder BD manufactured by Fujimori Kogyo Co., Ltd.) was attached as the protective film 26.
The coating liquid C2 was obtained by diluting SK Dyne NT21 (manufactured by Soken Chemical Co., Ltd.) with a curing agent L-45 (manufactured by Soken Chemical Co., Ltd.) in a ratio of 100: 2, and then solid-concentrating 15%. Prepared.
The organic protective layer 24 is an acrylic pressure-sensitive adhesive.
 [実施例4]
 有機保護層24のとなる塗布液C3として、ウレタン系接着剤(ロックペイント株式会社製96番)を用いた以外は実施例3と同様にしてガスバリアフィルム10cを作製した。
 この有機保護層24は、ウレタン系接着剤である。
[Example 4]
A gas barrier film 10c was produced in the same manner as in Example 3 except that a urethane-based adhesive (No. 96 manufactured by Rock Paint Co., Ltd.) was used as the coating liquid C3 to be the organic protective layer 24.
The organic protective layer 24 is a urethane adhesive.
 [実施例5]
 剥離樹脂層20となる塗布液として、以下の塗布液A2を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液A2は、COC樹脂(三井化学株式会社製 APEL 6509T)をシクロヘキサンで溶解し、固形分濃度が10%となるように調製した。
 形成した剥離樹脂層20のガラス転移温度Tgを、先と同様にして測定したところ、70℃であった。
[Example 5]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution A2 was used as the coating solution to be the release resin layer 20.
The coating liquid A2 was prepared so that COC resin (APEL 6509T manufactured by Mitsui Chemicals, Inc.) was dissolved in cyclohexane and the solid content concentration was 10%.
It was 70 degreeC when the glass transition temperature Tg of the formed peeling resin layer 20 was measured like the previous.
 [実施例6]
 剥離樹脂層20となる塗布液として、以下の塗布液A3を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液A3は、COC樹脂(三井化学株式会社製 APEL 6011T)をシクロヘキサンで溶解し、固形分濃度が10%となるように調製した。
 形成した剥離樹脂層20のガラス転移温度Tgを、先と同様にして測定したところ、105℃であった。
[Example 6]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution A3 was used as the coating solution to be the release resin layer 20.
Coating solution A3 was prepared by dissolving COC resin (APEL 6011T, manufactured by Mitsui Chemicals, Inc.) with cyclohexane so that the solid content concentration was 10%.
It was 105 degreeC when the glass transition temperature Tg of the formed peeling resin layer 20 was measured similarly to the previous.
 [実施例7]
 剥離樹脂層20となる塗布液として、以下の塗布液A4を用いた以外は、実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液A4は、COP樹脂(JSR株式会社製 アートン D4540)をシクロヘキサンで溶解し、固形分濃度が10%となるように調製した。
 形成した剥離樹脂層20のガラス転移温度Tgを、先と同様にして測定したところ、128℃であった。
[Example 7]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution A4 was used as the coating solution to be the release resin layer 20.
The coating liquid A4 was prepared by dissolving COP resin (Arton D4540, manufactured by JSR Corporation) with cyclohexane so that the solid concentration was 10%.
It was 128 degreeC when the glass transition temperature Tg of the formed peeling resin layer 20 was measured like the previous.
 [実施例8]
 剥離樹脂層20となる塗布液A1の固形分濃度および塗布量を変更して、乾燥膜厚を20μmとした以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 8]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 20 μm.
 [実施例9]
 剥離樹脂層20となる塗布液A1の固形分濃度および塗布量を変更して、乾燥膜厚を10μmとした以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 9]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 10 μm.
 [実施例10]
 剥離樹脂層20となる塗布液A1の固形分濃度および塗布量を変更して、乾燥膜厚を0.5μmとした以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 10]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 0.5 μm.
 [実施例11]
 剥離樹脂層20となる塗布液A1の固形分濃度および塗布量を変更して、乾燥膜厚を0.1μmとした以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 11]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid A1 to be the release resin layer 20 were changed to set the dry film thickness to 0.1 μm.
 [実施例12]
 有機層14となる塗布液として、以下の塗布液B2を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液B2は、A-DPH(新中村化学工業株式会社製 Tg250℃以上)およびA-600(新中村化学工業株式会社製 Tg-22℃)を4:1となるように配合し、これと光重合開始剤(BASFジャパン製 Irg819)を重量比率で97:3となるように秤量し、メチルエチルケトンに溶解させ、固形分濃度15%に調製した。
 形成した有機層14のガラス転移温度Tgを先と同様にして測定したところ180℃であった。
[Example 12]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating liquid B2 was used as the coating liquid to be the organic layer 14.
The coating liquid B2 was prepared by blending A-DPH (Shin Nakamura Chemical Co., Ltd., Tg 250 ° C. or higher) and A-600 (Shin Nakamura Chemical Co., Ltd., Tg-22 ° C.) at a ratio of 4: 1. A photopolymerization initiator (Irg819 manufactured by BASF Japan) was weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%.
It was 180 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
 [実施例13]
 有機層14となる塗布液として、以下の塗布液B3を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液B3は、A-DPH(新中村化学工業株式会社製 Tg250℃以上)およびA-600(新中村化学工業株式会社製 Tg-22℃)を1:1となるように配合し、これと光重合開始剤(BASFジャパン製 Irg819)を重量比率で97:3となるように秤量し、メチルエチルケトンに溶解させ、固形分濃度15%に調製した。
 形成した有機層14のガラス転移温度Tgを先と同様にして測定したところ114℃であった。
[Example 13]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution B3 was used as the coating solution to be the organic layer 14.
The coating solution B3 was prepared by blending A-DPH (Shin Nakamura Chemical Co., Ltd., Tg 250 ° C. or higher) and A-600 (Shin Nakamura Chemical Co., Ltd., Tg-22 ° C.) to 1: 1, A photopolymerization initiator (Irg819 manufactured by BASF Japan) was weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%.
It was 114 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
 [実施例14]
 有機層14となる塗布液として、以下の塗布液B4を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液B4は、ダイセルオルネクス株式会社製EB3702(Tg53℃)および光重合開始剤(BASFジャパン製 Irg819)を、重量比率として97:3となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%に調製した。
 形成した有機層14のガラス転移温度Tgを先と同様にして測定したところ53℃であった。
[Example 14]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution B4 was used as the coating solution to be the organic layer 14.
The coating solution B4 was prepared by weighing EB3702 (Tg 53 ° C.) manufactured by Daicel Ornex Co., Ltd. and a photopolymerization initiator (Irg819 manufactured by BASF Japan) at a weight ratio of 97: 3, and dissolving them in methyl ethyl ketone. The concentration was adjusted to 15%.
It was 53 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
 [実施例15]
 有機層14となる塗布液として、以下の塗布液B5を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液B5は、A-DPH(新中村化学工業株式会社製 Tg250℃以上)および1-ADMA(1―アダマンチルメタクリレート 大阪有機化学工業株式会社製 Tg250℃)を1:1となるように配合し、これと光重合開始剤(BASFジャパン製 Irg819)を重量比率で97:3となるように秤量し、メチルエチルケトンに溶解させ、固形分濃度15%に調製した。
 すなわち、有機層の形成材料は、アダマンタン骨格を有する1官能以上のアクリレートを含むものである。
 形成した有機層14のガラス転移温度Tgを先と同様にして測定したところ250℃であった。
[Example 15]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating solution B5 was used as the coating solution to be the organic layer 14.
The coating solution B5 was formulated such that A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd., Tg 250 ° C. or higher) and 1-ADMA (1-adamantyl methacrylate, Osaka Organic Chemical Co., Ltd. Tg 250 ° C.) were 1: 1. This and a photopolymerization initiator (Irg819 manufactured by BASF Japan) were weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%.
That is, the material for forming the organic layer contains one or more acrylates having an adamantane skeleton.
It was 250 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
 [実施例16]
 有機層14となる塗布液として、以下の塗布液B6を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 塗布液B6は、A-DPH(新中村化学工業株式会社製 Tg250℃以上)およびEA-200(アクリレートモノマー 大阪ガスケミカル株式会社製 Tg211℃)を1:1となるように配合し、これと光重合開始剤(BASFジャパン製 Irg819)を重量比率で97:3となるように秤量し、メチルエチルケトンに溶解させ、固形分濃度15%に調製した。
 すなわち、有機層の形成材料は、フルオレン骨格を有する2官能以上のアクリレートを含むものである。
 形成した有機層14のガラス転移温度Tgを先と同様にして測定したところ230℃であった。
[Example 16]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the following coating liquid B6 was used as the coating liquid to be the organic layer 14.
The coating liquid B6 was formulated with A-DPH (Shin Nakamura Chemical Co., Ltd. Tg 250 ° C. or higher) and EA-200 (acrylate monomer Osaka Gas Chemical Co., Ltd. Tg 211 ° C.) to a ratio of 1: 1 and light. A polymerization initiator (Irg819 manufactured by BASF Japan) was weighed to a weight ratio of 97: 3, dissolved in methyl ethyl ketone, and adjusted to a solid content concentration of 15%.
That is, the material for forming the organic layer contains a bifunctional or higher acrylate having a fluorene skeleton.
It was 230 degreeC when the glass transition temperature Tg of the formed organic layer 14 was measured like the previous.
 [実施例17]
 無機層16として、酸化アルミニウム膜(アルミナ膜)を形成した以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
 酸化アルミニウム膜は、一般的なスパッタリング装置により形成した。具体的には、アルミナ焼結体をターゲットとして用いて、DCマグネトロンスパッタリングによって、酸化アルミニウム膜からなる無機層16を形成した。
[Example 17]
A gas barrier film 10a was produced in the same manner as in Example 1 except that an aluminum oxide film (alumina film) was formed as the inorganic layer 16.
The aluminum oxide film was formed by a general sputtering apparatus. Specifically, the inorganic layer 16 made of an aluminum oxide film was formed by DC magnetron sputtering using an alumina sintered body as a target.
 [実施例18]
 有機層14となる塗布液B1の固形分濃度および塗布量を変更して、乾燥膜厚を5μmとした以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 18]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid B1 to be the organic layer 14 were changed to set the dry film thickness to 5 μm.
 [実施例19]
 有機層14となる塗布液B1の固形分濃度および塗布量を変更して、乾燥膜厚を0.1μmとした以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 19]
A gas barrier film 10a was produced in the same manner as in Example 1 except that the solid content concentration and the coating amount of the coating liquid B1 to be the organic layer 14 were changed to set the dry film thickness to 0.1 μm.
 [実施例20]
 基板12としてシリコーン剥離フィルム(藤森工業株式会社製 フィルムバイナBD)を用いた以外は実施例1と同様にしてガスバリアフィルム10aを作製した。
[Example 20]
A gas barrier film 10a was produced in the same manner as in Example 1 except that a silicone release film (Film Binder BD manufactured by Fujimori Kogyo Co., Ltd.) was used as the substrate 12.
 [実施例21]
 有機保護層24となる塗布液C2の固形分濃度および塗布量を変更して、膜厚を50μmとした以外は、実施例3と同様にしてガスバリアフィルム10cを作製した。
[Example 21]
A gas barrier film 10c was produced in the same manner as in Example 3 except that the solid content concentration and the coating amount of the coating liquid C2 to be the organic protective layer 24 were changed to make the film thickness 50 μm.
 [実施例22]
 有機保護層24となる塗布液C2の固形分濃度および塗布量を変更して、膜厚を0.1μmとした以外は、実施例3と同様にしてガスバリアフィルム10cを作製した。
[Example 22]
A gas barrier film 10c was produced in the same manner as in Example 3 except that the solid content concentration and the coating amount of the coating liquid C2 to be the organic protective layer 24 were changed to change the film thickness to 0.1 μm.
 [比較例1]
 剥離樹脂層20の形成を行わなかった以外は、実施例1と同様にしてガスバリアフィルムを作製した。
[Comparative Example 1]
A gas barrier film was produced in the same manner as in Example 1 except that the release resin layer 20 was not formed.
 [比較例2]
 剥離樹脂層20を形成する際に、乾燥後に紫外線を積算照射量約3000mJ/cm2で照射し、硬化させて巻き取った。次に、有機層14を形成する際の紫外線の積算照射量を約50mJ/cm2に変更した。これら以外は実施例1と同様にしてガスバリアフィルムを作製した。
 これにより、剥離樹脂層20と基板12との剥離力を強くしつつ、有機層14と剥離樹脂層20との剥離力を弱くした。これにより、有機層14と剥離樹脂層20との剥離力を、剥離樹脂層20と基板12との剥離力よりも弱くした。すなわち、剥離樹脂層20と有機層14との間で剥離するようにした。
[Comparative Example 2]
When the release resin layer 20 was formed, it was irradiated with ultraviolet rays after drying at an integrated dose of about 3000 mJ / cm 2 , cured and wound up. Next, the integrated irradiation amount of ultraviolet rays when forming the organic layer 14 was changed to about 50 mJ / cm 2 . A gas barrier film was produced in the same manner as in Example 1 except for these.
Thereby, the peeling force between the organic layer 14 and the peeling resin layer 20 was weakened while the peeling force between the peeling resin layer 20 and the substrate 12 was strengthened. Thereby, the peeling force between the organic layer 14 and the release resin layer 20 was made weaker than the release force between the release resin layer 20 and the substrate 12. That is, the peeling resin layer 20 and the organic layer 14 were peeled off.
 [評価]
 作製した実施例1~22および比較例1、2のガスバリアフィルムについて、ガスバリア性および光学特性の評価を行った。
[Evaluation]
The gas barrier films of Examples 1 to 22 and Comparative Examples 1 and 2 thus prepared were evaluated for gas barrier properties and optical characteristics.
 <ガスバリア性>
 (転写工程)
 被転写体として、フジタック(TD80 富士フィルム株式会社製)に光学粘着フィルム(PDS1 パナック株式会社製)を貼合した、粘着層つきの200mm角のTACフィルムを用意した。
 作製したガスバリアフィルム10の保護フィルム26を剥離した後、被転写体の粘着層とガスバリアフィルム10の無機層16とが接するようにラミネーター(フェローズ社製プロテウス)によって貼り合せた。これにより、200mm角の貼合フィルムを得た。ラミネート圧力0.5MPa、搬送速度5m/minとした。
 貼合後、ガスバリアフィルム10の基板12を剥がした。基板12は、以下のようにして剥離した。まず、端面が確実に剥がれるように200mm角の貼合フィルムを、トムソン刃を用いて100mm角に打ち抜いた。次いで、TACフィルム側を下にして、平面性の高い吸着プレートによってTACフィルム面を吸着保持した後に、基板12を掴むための粘着テープ(日東セロテープ(登録商標))を端に2cmほど貼った。続いて、基板12が180度ピール試験と同様に円弧を描くように、粘着テープをサンプルと平行に引いた。このようにして、基板12を剥離した。剥離の際は、温度25℃湿度50%RHの環境下で行った。
 なお、無機層16上に粘着層となる有機保護層24を有する、実施例3、4、21および22については、粘着フィルムを貼合していないフジタック(TD80 富士フィルム株式会社製)を被転写体とした以外は同様にして転写を行った。
<Gas barrier properties>
(Transfer process)
A 200 mm square TAC film with an adhesive layer prepared by bonding an optical adhesive film (PDS1 Panac Co., Ltd.) to Fujitac (TD80 manufactured by Fuji Film Co., Ltd.) was prepared as a transfer target.
After the protective film 26 of the produced gas barrier film 10 was peeled off, it was bonded by a laminator (Proteus manufactured by Fellows) so that the adhesive layer of the transfer target and the inorganic layer 16 of the gas barrier film 10 were in contact with each other. This obtained the 200 mm square bonding film. The laminating pressure was 0.5 MPa and the conveyance speed was 5 m / min.
After bonding, the substrate 12 of the gas barrier film 10 was peeled off. The substrate 12 was peeled as follows. First, a 200 mm square bonded film was punched into a 100 mm square using a Thomson blade so that the end face was surely peeled off. Next, with the TAC film side down, the surface of the TAC film was adsorbed and held by an adsorption plate having high flatness, and then an adhesive tape (Nitto Cello Tape (registered trademark)) for grasping the substrate 12 was attached to the end by about 2 cm. Subsequently, the adhesive tape was drawn parallel to the sample so that the substrate 12 drawn an arc as in the 180 degree peel test. In this way, the substrate 12 was peeled off. The peeling was performed in an environment with a temperature of 25 ° C. and a humidity of 50% RH.
In addition, about Example 3, 4, 21 and 22 which has the organic protective layer 24 used as an adhesion layer on the inorganic layer 16, the Fujitac (made by TD80 Fuji Film Co., Ltd.) which has not bonded the adhesion film is transferred. Transfer was carried out in the same manner except that the body was used.
 (水蒸気透過率測定)
 被転写体に転写し基板12を剥離したガスバリアフィルム10の水蒸気透過率を、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって、測定した。恒温恒湿処理の条件は、温度40℃、相対湿度90%RHとした。
 また、フジタック単体の水蒸気透過率は400[g/(m2・day)]であった。
 測定した水蒸気透過率に基づいて、以下の基準で評価した。
  A:水蒸気透過率が5×10-5[g/(m2・day)]未満
  B:水蒸気透過率が5×10-5以上1×10-4[g/(m2・day)]未満
  C:水蒸気透過率が1×10-4以上5×10-4[g/(m2・day)]未満
  D:水蒸気透過率が5×10-4以上1×10-3[g/(m2・day)]未満
  E:水蒸気透過率が1×10-3[g/(m2・day)]以上
(Water vapor transmission rate measurement)
The water vapor transmission rate of the gas barrier film 10 transferred to the transfer medium and peeled off the substrate 12 was measured by a calcium corrosion method (method described in JP-A-2005-283561). The conditions of the constant temperature and humidity treatment were a temperature of 40 ° C. and a relative humidity of 90% RH.
The water vapor permeability of Fujitac alone was 400 [g / (m 2 · day)].
Based on the measured water vapor transmission rate, evaluation was performed according to the following criteria.
A: Water vapor transmission rate is less than 5 × 10 −5 [g / (m 2 · day)] B: Water vapor transmission rate is 5 × 10 −5 or more and less than 1 × 10 −4 [g / (m 2 · day)] C: Water vapor transmission rate is 1 × 10 −4 or more and less than 5 × 10 −4 [g / (m 2 · day)] D: Water vapor transmission rate is 5 × 10 −4 or more and 1 × 10 −3 [g / (m Less than 2 · day)] E: Water vapor transmission rate is 1 × 10 -3 [g / (m 2 · day)] or more
 <光学特性>
 作製したガスバリアフィルム10の保護フィルム26を剥離した後に、基板12を剥離して、剥離樹脂層20およびガスバリア層18(有機層14および無機層16)を含む転写層30を取り出した。次いで、この転写層30の全光線透過率およびリタデーション値を測定した。
 (全光線透過率)
 取り出した転写層30の全光線透過率を、分光光度計(日本電色社製ヘーズメーターSH7000)を用いて測定した。
 測定した全光線透過率に基づいて以下の基準で評価した。
  A:全光線透過率が90%以上
  B:全光線透過率が88%以上90%未満
  C:全光線透過率が86%以上88%未満
  D:全光線透過率が84%以上86%未満
<Optical characteristics>
After the protective film 26 of the produced gas barrier film 10 was peeled off, the substrate 12 was peeled off, and the transfer layer 30 including the release resin layer 20 and the gas barrier layer 18 (the organic layer 14 and the inorganic layer 16) was taken out. Next, the total light transmittance and retardation value of the transfer layer 30 were measured.
(Total light transmittance)
The total light transmittance of the transferred transfer layer 30 was measured using a spectrophotometer (Nippon Denshoku Co., Ltd. haze meter SH7000).
Based on the measured total light transmittance, the following criteria were used for evaluation.
A: Total light transmittance is 90% or more B: Total light transmittance is 88% or more and less than 90% C: Total light transmittance is 86% or more and less than 88% D: Total light transmittance is 84% or more and less than 86%
 (リタデーション値)
 取り出した転写層30のリタデーション値(Re値)をKOBRA-WR(王子計測機器株式会社製)で測定した。
 測定したリタデーション値に基づいて以下の基準で評価した。
  A:リタデーション値が5nm以下
  B:リタデーション値が5nm超10nm以下
  C:リタデーション値が10nm超20nm以下
  D:リタデーション値が20nm超
 結果を下記の表に示す。
(Retardation value)
The retardation value (Re value) of the transferred transfer layer 30 was measured with KOBRA-WR (manufactured by Oji Scientific Instruments).
Based on the measured retardation value, the following criteria were used for evaluation.
A: Retardation value is 5 nm or less B: Retardation value is more than 5 nm and less than 10 nm C: Retardation value is more than 10 nm and less than 20 nm D: Retardation value is more than 20 nm The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、基板とガスバリア層との間に剥離樹脂層を有し、剥離樹脂層と基板との界面で剥離する本発明の実施例は、比較例に比較して、ガスバリア性および光学特性に優れることがわかる。
 また、実施例1、5および6の対比から、剥離樹脂層は、ガラス転移温度Tgが100℃以上の環状オレフィン樹脂であるのが好ましいことがわかる。
 また、実施例1と実施例7との対比から、剥離樹脂層は、シクロオレフィンコポリマーであるのが好ましいことがわかる。
 また、実施例1および8~11の対比から、剥離樹脂層の厚さは、0.1~25μmが好ましく、0.5~15μmがより好ましいことがわかる。
As shown in Table 1 above, the example of the present invention having a release resin layer between the substrate and the gas barrier layer and peeling at the interface between the release resin layer and the substrate is a gas barrier as compared with the comparative example. It can be seen that it has excellent properties and optical properties.
Moreover, it turns out that it is preferable that a peeling resin layer is a cyclic olefin resin whose glass transition temperature Tg is 100 degreeC or more from the comparison of Example 1, 5 and 6. FIG.
Moreover, it can be seen from the comparison between Example 1 and Example 7 that the release resin layer is preferably a cycloolefin copolymer.
Further, from the comparison between Examples 1 and 8 to 11, it can be seen that the thickness of the release resin layer is preferably 0.1 to 25 μm, more preferably 0.5 to 15 μm.
 また、実施例1、12~14の対比から、有機層のガラス転移温度Tgは、200℃以上が好ましいことがわかる。
 また、実施例1、15および16の対比から、有機層は、アダマンタン骨格を有する1官能以上のアクリレートを5%以上、50%未満含むのが好ましく、あるいは、フルオレン骨格を有する2官能以上のアクリレートを5%以上、50%未満含むのが好ましいことがわかる。
 また、実施例1、18および19の対比から、有機層の厚さは0.1~50μmであるのが好ましく、0.1~5μmであることがより好ましく、0.2~3μmがさらに好ましいことがわかる。
 また、実施例1と実施例17との対比から、無機層は窒化ケイ素であるのが好ましいことがわかる。
Further, from the comparison of Examples 1 and 12 to 14, it is found that the glass transition temperature Tg of the organic layer is preferably 200 ° C. or higher.
Further, from the comparison with Examples 1, 15 and 16, the organic layer preferably contains 5% or more and less than 50% of monofunctional or higher acrylate having an adamantane skeleton, or bifunctional or higher acrylate having a fluorene skeleton. It is understood that it is preferable to contain 5% or more and less than 50%.
Further, from the comparison with Examples 1, 18 and 19, the thickness of the organic layer is preferably 0.1 to 50 μm, more preferably 0.1 to 5 μm, and further preferably 0.2 to 3 μm. I understand that.
Further, from the comparison between Example 1 and Example 17, it can be seen that the inorganic layer is preferably silicon nitride.
 また、実施例2~4、21、22から、無機層16上に有機保護層24を有するのが好ましいことがわかる。
 また、実施例3と実施例4との対比から、有機保護層24としてアクリル系粘着剤を用いるのが好ましいことがわかる。
 また、実施例3、21および22の対比から有機保護層24の厚さは、0.1~50μmが好ましく、0.5~25μmがより好ましいことがわかる。
Further, Examples 2 to 4, 21, and 22 show that it is preferable to have the organic protective layer 24 on the inorganic layer 16.
Further, it can be seen from the comparison between Example 3 and Example 4 that an acrylic adhesive is preferably used as the organic protective layer 24.
Further, from the comparison with Examples 3, 21 and 22, it can be seen that the thickness of the organic protective layer 24 is preferably 0.1 to 50 μm, more preferably 0.5 to 25 μm.
 [実施例23]
 作製したガスバリアフィルム10を用いて、図6に示すような波長変換フィルム100を作製した。波長変換フィルムは、波長変換層として量子ドット層を有する量子ドットフィルムとした。
[Example 23]
A wavelength conversion film 100 as shown in FIG. 6 was produced using the produced gas barrier film 10. The wavelength conversion film was a quantum dot film having a quantum dot layer as a wavelength conversion layer.
 <量子ドット層形成用組成物の調製>
 下記の量子ドット含有重合性組成物Aを調製し、孔径0.2μmのポリプロピレン製フィルタでろ過した後、30分間減圧乾燥して塗布組成物として用いた。以下のトルエン分散液中の量子ドット濃度は、1質量%であった。
(量子ドット含有重合性組成物A)
・量子ドット1のトルエン分散液(発光極大:520nm)10.0質量部
・量子ドット2のトルエン分散液(発光極大:630nm) 1.0質量部
・ラウリルメタクリレート               80.8質量部
・トリメチロールプロパントリアクリレート       18.2質量部
・光重合開始剤                     1.0質量部
(イルガキュア819(BASF社製))
<Preparation of composition for forming quantum dot layer>
The following quantum dot-containing polymerizable composition A was prepared, filtered through a polypropylene filter having a pore size of 0.2 μm, and then dried under reduced pressure for 30 minutes to be used as a coating composition. The quantum dot concentration in the following toluene dispersion was 1% by mass.
(Quantum dot-containing polymerizable composition A)
-Toluene dispersion of quantum dots 1 (emission maximum: 520 nm) 10.0 parts by mass-Toluene dispersion of quantum dots 2 (emission maximum: 630 nm) 1.0 parts by mass-80.8 parts by mass of lauryl methacrylate-Trimethylolpropane 18.2 parts by mass of triacrylate / 1.0 part by mass of photopolymerization initiator (Irgacure 819 (manufactured by BASF))
 <量子ドットフィルムの作製>
 二つのフィルム(第一のフィルムおよび第二のフィルム)として、実施例1のガスバリアフィルム10aを用意した。つまり、第一のフィルムおよび第二のフィルムとして、同じ構成のものを用いた。
 まず、第一のフィルムを、1m/分、60N/mの張力で連続搬送しながら、無機層16上の保護フィルム26を剥離し、無機層16上に、上記で調製した塗布組成物をダイコーターにて塗布し、50μmの厚さの塗膜を形成した。
 次いで、塗膜の形成されたフィルムをバックアップローラに巻きかけた。第二のフィルムから保護フィルム26を剥離し、無機層16面が塗膜に接する向きでラミネートした。このようにして、第一のフィルムおよび第二のフィルムで、塗膜を挟持した。
 この状態で連続搬送しながら、60℃の加熱ゾーンを3分間通過させた後、160W/cmの空冷メタルハライドランプ(アイグラフィックス株式会社製)を用いて、紫外線を照射して硬化させ、量子ドットを含有する量子ドット層(波長変換層102)を形成した。なお、紫外線の照射量は2000mJ/cm2であった。
 第一のフィルムおよび第二のフィルムそれぞれから基板12を剥離して、量子ドットフィルム(波長変換フィルム100)を作製した。
<Preparation of quantum dot film>
The gas barrier film 10a of Example 1 was prepared as two films (a first film and a second film). That is, the thing of the same structure was used as a 1st film and a 2nd film.
First, while continuously transporting the first film at a tension of 1 m / min and 60 N / m, the protective film 26 on the inorganic layer 16 is peeled off, and the coating composition prepared above is applied to the inorganic layer 16 by Daiko. A 50 μm thick coating film was formed.
Next, the film on which the coating film was formed was wound around a backup roller. The protective film 26 was peeled off from the second film and laminated so that the surface of the inorganic layer 16 was in contact with the coating film. In this way, the coating film was sandwiched between the first film and the second film.
While continuously transporting in this state, after passing through a heating zone at 60 ° C. for 3 minutes, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.), curing by irradiating with ultraviolet rays, quantum dots The quantum dot layer (wavelength conversion layer 102) containing was formed. The irradiation amount of ultraviolet rays was 2000 mJ / cm 2 .
The substrate 12 was peeled from each of the first film and the second film to produce a quantum dot film (wavelength conversion film 100).
 [評価]
 作製した実施例23の波長変換フィルム100について、耐久性の評価を行った。
[Evaluation]
Durability evaluation was performed about the produced wavelength conversion film 100 of Example 23. FIG.
 具体的には、作製直後の波長変換フィルム100の輝度と、温度60℃、湿度90%RHの環境下に1000時間放置した後(加湿後)の輝度を測定し、その変化量から耐久性を評価した。
 輝度の測定は、以下のようにして行った。
 まず、市販の液晶表示装置(Amazon社製 Kindle Fire HDX 7")を分解し、青色光源を備えるバックライトユニットを取り出した。次に、バックライトユニットの導光板上に矩形に切り出した波長変換フィルムを置き、その上に、上記液晶表示装置から取り出した2枚のプリズムシートを、表面の凹凸パターンの向きが直交するように重ねて配置した。
 バックライトユニットを点灯し、バックライトユニットの前面から垂直方向740mmの位置に設置した輝度計(TOPCON社製 SR3)にて輝度を測定した。
Specifically, the luminance of the wavelength conversion film 100 immediately after production and the luminance after being left in an environment of temperature 60 ° C. and humidity 90% RH for 1000 hours (after humidification) are measured, and the durability is determined from the amount of change. evaluated.
The measurement of luminance was performed as follows.
First, a commercially available liquid crystal display device (Amazon Kindle Kindle Fire HDX 7 ") was disassembled, and a backlight unit with a blue light source was taken out. Next, a wavelength conversion film cut into a rectangle on the light guide plate of the backlight unit The two prism sheets taken out from the liquid crystal display device were placed on top of each other so that the directions of the concavo-convex patterns on the surface were orthogonal to each other.
The backlight unit was turned on, and the luminance was measured with a luminance meter (SR3 manufactured by TOPCON) installed at a position of 740 mm in the vertical direction from the front surface of the backlight unit.
 測定の結果、加湿前後での輝度の変化は1%以下であった。したがって、本発明のガスバリアフィルムを用いて封止した波長変換フィルムは、高い耐久性を有することがわかる。 As a result of measurement, the change in luminance before and after humidification was 1% or less. Therefore, it turns out that the wavelength conversion film sealed using the gas barrier film of this invention has high durability.
 [実施例24]
 作製したガスバリアフィルム10を用いて、図5に示すようなガスバリア層付位相差フィルム110を作製した。
 位相差フィルム112として、特殊ポリカーボネートW138(帝人株式会社製)を用いた。
 まず、位相差フィルム112に光学粘着フィルム(PDS1 パナック株式会社製)を貼合した。
 次に、実施例1のガスバリアフィルム10aの保護フィルム26を剥離した後、位相差フィルム112の粘着層側とガスバリアフィルム10の無機層16とが接するように、ラミネーター(フェローズ社製プロテウス)によって貼り合せた。貼合後、ガスバリアフィルム10の基板12を剥がし、ガスバリア層付位相差フィルム110を作製した。
[Example 24]
A retardation film 110 with a gas barrier layer as shown in FIG. 5 was produced using the produced gas barrier film 10.
As the retardation film 112, special polycarbonate W138 (manufactured by Teijin Limited) was used.
First, an optical adhesive film (PDS1 manufactured by Panac Corporation) was bonded to the retardation film 112.
Next, after peeling off the protective film 26 of the gas barrier film 10a of Example 1, it is pasted by a laminator (Proteus manufactured by Fellows) so that the adhesive layer side of the retardation film 112 and the inorganic layer 16 of the gas barrier film 10 are in contact with each other. Combined. After bonding, the substrate 12 of the gas barrier film 10 was peeled off to produce a retardation film 110 with a gas barrier layer.
 [評価]
 作製した実施例24のガスバリア層付位相差フィルム110について、光学特性の評価を行った。
[Evaluation]
The optical properties of the produced retardation film 110 with a gas barrier layer of Example 24 were evaluated.
 具体的には、位相差フィルム112単体、および、ガスバリア層付位相差フィルム110それぞれのリタデーション値を測定したところ、差は2%以下であった。したがって、本発明のガスバリアフィルムを転写したガスバリア層付位相差フィルム110は、光学特性を維持しつつ、高いガスバリア性を有することがわかる。 Specifically, when the retardation values of the retardation film 112 alone and the retardation film 110 with a gas barrier layer were measured, the difference was 2% or less. Therefore, it can be seen that the retardation film 110 with a gas barrier layer to which the gas barrier film of the present invention has been transferred has high gas barrier properties while maintaining optical characteristics.
 [実施例25]
 作製したガスバリアフィルムを10用いて、図7(A)に示すような有機EL積層体120aを作製した。
[Example 25]
Using the produced gas barrier film 10, an organic EL laminate 120a as shown in FIG. 7A was produced.
 <有機EL素子の作製>
 厚さ500μm、大きさ20×20mmのガラス板を素子基板122として用意した。
 この素子基板122の周辺2mmを、セラミックによってマスキングした。さらに、マスキングを施した素子基板を一般的な真空蒸着装置に装填して、真空蒸着によって、厚さ100nmの金属アルミニウムからなる電極を形成し、さらに、厚さ1nmのフッ化リチウム層を形成した。次いで、この素子基板122に、真空蒸着によって、以下の有機化合物層を、順次、形成した。
・(発光層兼電子輸送層)トリス(8-ヒドロキシキノリナト)アルミニウム:膜厚60nm
・(第2正孔輸送層)N,N’-ジフェニル-N,N’-ジナフチルベンジジン:膜厚40nm
・(第1正孔輸送層)銅フタロシアニン:膜厚10nm
 さらに、これらの層を形成した素子基板122を、一般的なスパッタリング装置に装填して、ITO(Indium Tin Oxide 酸化インジウム錫)をターゲットとして用いて、DCマグネトロンスパッタリングによって、厚さ0.2μmのITO薄膜からなる透明電極を形成した。このようにして、素子基板122上に、有機EL材料を用いる発光素子である有機EL素子124を形成した。
<Production of organic EL element>
A glass plate having a thickness of 500 μm and a size of 20 × 20 mm was prepared as the element substrate 122.
The periphery 2 mm of the element substrate 122 was masked with ceramic. Further, the element substrate subjected to masking was loaded into a general vacuum deposition apparatus, an electrode made of metal aluminum having a thickness of 100 nm was formed by vacuum deposition, and a lithium fluoride layer having a thickness of 1 nm was further formed. . Next, the following organic compound layers were sequentially formed on the element substrate 122 by vacuum deposition.
(Light emitting layer and electron transport layer) Tris (8-hydroxyquinolinato) aluminum: film thickness 60 nm
(Second hole transport layer) N, N′-diphenyl-N, N′-dinaphthylbenzidine: film thickness 40 nm
(First hole transport layer) copper phthalocyanine: film thickness 10 nm
Furthermore, the element substrate 122 on which these layers are formed is loaded into a general sputtering apparatus, and ITO (Indium Tin Oxide indium tin oxide) is used as a target, and a 0.2 μm thick ITO film is formed by DC magnetron sputtering. A transparent electrode made of a thin film was formed. In this manner, an organic EL element 124 which is a light emitting element using an organic EL material was formed on the element substrate 122.
 <ガスバリアフィルムの転写>
 次いで、有機EL素子124を形成した素子基板122から、マスキングを除去した。マスキングを除去した素子基板122にアクリル系の接着剤を塗布した。次に、実施例1のガスバリアフィルム10aから保護フィルム26を剥離し、無機層16側を接着剤面に向けてガスバリアフィルム10aを貼り合せ、その後、ガスバリアフィルム10aの基板を剥離して、有機EL積層体120aを作製した。
<Transfer of gas barrier film>
Next, the masking was removed from the element substrate 122 on which the organic EL element 124 was formed. An acrylic adhesive was applied to the element substrate 122 from which the masking was removed. Next, the protective film 26 is peeled from the gas barrier film 10a of Example 1, the gas barrier film 10a is bonded with the inorganic layer 16 side facing the adhesive surface, and then the substrate of the gas barrier film 10a is peeled off. A laminated body 120a was produced.
 [実施例26]
 マスキングを除去した後に、有機EL素子124が形成された素子基板122を一般的なプラズマCVD装置に装填して、プラズマCVD(CCP-CVD)によって、窒化ケイ素からなる、厚さ1500nmのパッシベーション膜126を形成した以外は、実施例25と同様にして、図7(C)に示すような有機EL積層体120cを作製した。
[Example 26]
After removing the masking, the element substrate 122 on which the organic EL element 124 is formed is loaded into a general plasma CVD apparatus, and a passivation film 126 having a thickness of 1500 nm made of silicon nitride is formed by plasma CVD (CCP-CVD). Except that was formed, an organic EL laminated body 120c as shown in FIG. 7C was produced in the same manner as in Example 25.
 [実施例27]
 素子基板122として、実施例1のガスバリアフィルム10aを用いた以外は実施例25と同様にして、有機EL積層体124を作製した。
 具体的には、フジタック(TD80 富士フィルム株式会社製)に光学粘着フィルム(PDS1 パナック株式会社製)を貼合した、粘着層つきのTACフィルムに、実施例1のガスバリアフィルム10aを転写し、基板12を剥離した積層体を素子基板122として用いた。そして、この素子基板122の剥離樹脂層20上に有機EL素子124を形成した。
 その後、先と同様にして、もう1枚のガスバリアフィルム10aで有機EL素子124を封止して有機EL積層体124を作製した。
[Example 27]
An organic EL laminate 124 was produced in the same manner as in Example 25 except that the gas barrier film 10a of Example 1 was used as the element substrate 122.
Specifically, the gas barrier film 10a of Example 1 is transferred to a TAC film with an adhesive layer in which an optical adhesive film (PDS1 Panac Co., Ltd.) is bonded to Fuji Tac (TD80 manufactured by Fuji Film Co., Ltd.), and the substrate 12 The laminate from which the substrate was peeled was used as the element substrate 122. Then, an organic EL element 124 was formed on the release resin layer 20 of the element substrate 122.
Thereafter, in the same manner as above, the organic EL element 124 was sealed with another gas barrier film 10a to produce an organic EL laminate 124.
 [評価]
 作製した実施例25~27の有機EL積層体について、耐久性の評価を行った。
[Evaluation]
Durability evaluation was performed on the fabricated organic EL laminates of Examples 25 to 27.
 具体的には、作製した有機EL積層体124を、温度60℃、湿度90%RHの環境下に、200時間、放置した。放置後、各有機EL積層体124を、Keithlel社製のSMU2400型ソースメジャーユニットを用いて7Vの電圧を印加して発光させた。顕微鏡によって、ガスバリアフィルム10a側から観測して、ダークスポットの発生の有無を確認し、以下の基準で評価した。
  A:ダークスポットの発生が全く見られなかった
  B:ダークスポットの発生が、わずかに見られた
  C:ダークスポットの発生が明らかに認められた
  D:ダークスポットの面積の割合の方が大きい
 評価の結果、実施例25~27の有機EL積層体はいずれもAであった。
 以上の結果より、本発明の効果は明らかである。
Specifically, the produced organic EL laminate 124 was left for 200 hours in an environment of a temperature of 60 ° C. and a humidity of 90% RH. After standing, each organic EL laminated body 124 was made to emit light by applying a voltage of 7 V using a SMU2400 type source measure unit manufactured by Keithell. Observation with a microscope from the gas barrier film 10a side, the presence or absence of dark spots was confirmed, and the following criteria were used for evaluation.
A: Generation of dark spots was not observed at all B: Generation of dark spots was slightly observed C: Generation of dark spots was clearly recognized D: Area ratio of dark spots was larger Evaluation As a result, the organic EL laminates of Examples 25 to 27 were all A.
From the above results, the effects of the present invention are clear.
 10 ガスバリアフィルム
 12 基板
 14 有機層
 16 無機層
 18 ガスバリア層
 20 剥離樹脂層
 24 有機保護層
 26 保護フィルム
 30 転写層
 40 塗布部
 42 乾燥部
 44 硬化部
 48 搬送ローラ対
 50 供給室
 50a、52a、54a 真空排気手段
 52 成膜室
 54 巻取り室
 58、60、76 ガイドローラ
 62 ドラム
 64 シャワー電極
 68 原料ガス供給部
 70 高周波電源
 72 積層ローラ対
 100 波長変換フィルム
 102 波長変換層
 104 ガスバリアフィルム
 110 ガスバリア層付位相差フィルム
 112 位相差フィルム
 120 有機EL積層体
 122 素子基板
 124 有機EL素子
 126 パッシベーション膜
 
DESCRIPTION OF SYMBOLS 10 Gas barrier film 12 Substrate 14 Organic layer 16 Inorganic layer 18 Gas barrier layer 20 Release resin layer 24 Organic protective layer 26 Protective film 30 Transfer layer 40 Application part 42 Drying part 44 Curing part 48 Conveying roller pair 50 Supply chamber 50a, 52a, 54a Vacuum Exhaust means 52 Film forming chamber 54 Winding chamber 58, 60, 76 Guide roller 62 Drum 64 Shower electrode 68 Raw material gas supply unit 70 High frequency power source 72 Laminated roller pair 100 Wavelength conversion film 102 Wavelength conversion layer 104 Gas barrier film 110 Gas barrier layer attached Phase difference film 112 Phase difference film 120 Organic EL laminate 122 Element substrate 124 Organic EL element 126 Passivation film

Claims (24)

  1.  基板と、
     前記基板の一方の面側に設けられ、無機層と前記無機層の形成面である有機層との組み合わせを1組以上有するガスバリア層と、
     前記基板と前記ガスバリア層との間に設けられ、前記有機層と密着し、かつ、前記基板と前記ガスバリア層とを剥離するための剥離樹脂層と、
     を有することを特徴とするガスバリアフィルム。
    A substrate,
    A gas barrier layer which is provided on one surface side of the substrate and has one or more combinations of an inorganic layer and an organic layer which is a formation surface of the inorganic layer;
    A release resin layer provided between the substrate and the gas barrier layer, in close contact with the organic layer, and for separating the substrate and the gas barrier layer;
    A gas barrier film comprising:
  2.  前記剥離樹脂層が前記有機層よりも厚い請求項1に記載のガスバリアフィルム。 The gas barrier film according to claim 1, wherein the release resin layer is thicker than the organic layer.
  3.  前記剥離樹脂層の形成材料が、ガラス転移温度Tgが100℃以上の環状オレフィン樹脂である請求項1または2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, wherein a material for forming the release resin layer is a cyclic olefin resin having a glass transition temperature Tg of 100 ° C or higher.
  4.  前記剥離樹脂層の形成材料が、シクロオレフィンコポリマーである請求項3に記載のガスバリアフィルム。 The gas barrier film according to claim 3, wherein the material for forming the release resin layer is a cycloolefin copolymer.
  5.  前記剥離樹脂層の厚さが、0.1~25μmである請求項1~4のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 4, wherein the release resin layer has a thickness of 0.1 to 25 µm.
  6.  前記無機層の形成材料が、窒化ケイ素、酸化ケイ素、または、これらの混合物である請求項1~5のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 5, wherein the material for forming the inorganic layer is silicon nitride, silicon oxide, or a mixture thereof.
  7.  前記有機層の形成材料が、紫外線硬化樹脂または電子線硬化樹脂であり、硬化後のガラス転移温度Tgが200℃以上である請求項1~6のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 6, wherein the material for forming the organic layer is an ultraviolet curable resin or an electron beam curable resin, and a glass transition temperature Tg after curing is 200 ° C or higher.
  8.  前記有機層の形成材料が、アダマンタン骨格を有する1官能以上のアクリレートを5%以上、50%未満含む請求項7に記載のガスバリアフィルム。 The gas barrier film according to claim 7, wherein the organic layer forming material contains 5% or more and less than 50% of monofunctional or higher acrylate having an adamantane skeleton.
  9.  前記有機層の形成材料が、フルオレン骨格を有する2官能以上のアクリレートを5%以上、50%未満含む請求項7に記載のガスバリアフィルム。 The gas barrier film according to claim 7, wherein the material for forming the organic layer contains 5% or more and less than 50% of a bifunctional or higher functional acrylate having a fluorene skeleton.
  10.  前記有機層の厚さが、0.1~5μmである請求項1~9のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 9, wherein the organic layer has a thickness of 0.1 to 5 µm.
  11.  前記ガスバリア層上に設けられた、保護フィルムまたは有機保護層、
    をさらに有する請求項1~10のいずれか一項に記載のガスバリアフィルム。
    A protective film or an organic protective layer provided on the gas barrier layer;
    The gas barrier film according to any one of claims 1 to 10, further comprising:
  12.  前記有機保護層がアクリル系粘着剤である請求項11に記載のガスバリアフィルム。 The gas barrier film according to claim 11, wherein the organic protective layer is an acrylic pressure-sensitive adhesive.
  13.  前記有機保護層上に設けられた保護フィルム、
    をさらに有する請求項11または12に記載のガスバリアフィルム。
    A protective film provided on the organic protective layer;
    The gas barrier film according to claim 11 or 12, further comprising:
  14.  前記有機保護層の厚さが、0.1~50μmである請求項11~13のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 11 to 13, wherein the organic protective layer has a thickness of 0.1 to 50 µm.
  15.  前記基板が、離型層を付与されたポリエチレンテレフタレートフィルムである請求項1~14のいずれか一項に記載のガスバリアフィルム。
     
    The gas barrier film according to any one of claims 1 to 14, wherein the substrate is a polyethylene terephthalate film provided with a release layer.
  16.  前記基板を除いた構成の水蒸気透過率が、0.01g/(m2・day)未満である請求項1~15のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 15, wherein the water vapor transmission rate of the structure excluding the substrate is less than 0.01 g / (m 2 · day).
  17.  前記基板を除いた構成の可視光透過率が85%以上、リタデーション値が30nm以下である請求項1~16のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 16, wherein the visible light transmittance of the constitution excluding the substrate is 85% or more and the retardation value is 30 nm or less.
  18.  前記ガスバリア層および前記剥離樹脂層を備える転写層を、前記被転写体に転写するガスバリアフィルムの転写方法であって、
     請求項1~17のいずれか一項に記載のガスバリアフィルムの前記基板とは反対側の面を被転写体に貼着し、
     前記基板を剥離するガスバリアフィルムの転写方法。
    A gas barrier film transfer method for transferring a transfer layer comprising the gas barrier layer and the release resin layer to the transfer target,
    The gas barrier film according to any one of claims 1 to 17, wherein the surface opposite to the substrate is attached to a transfer target,
    A method for transferring a gas barrier film for peeling off the substrate.
  19.  前記被転写体が、波長変換材料、位相差フィルム、有機EL素子、および、有機EL素子上に形成されたパッシベーション膜のいずれかである請求項18に記載のガスバリアフィルムの転写方法。 The method for transferring a gas barrier film according to claim 18, wherein the transfer target is any one of a wavelength conversion material, a retardation film, an organic EL element, and a passivation film formed on the organic EL element.
  20.  波長変換層と、
     前記波長変換層上に積層され、請求項1~17のいずれか一項に記載のガスバリアフィルムから前記基板を除いた、前記ガスバリア層および前記剥離樹脂層を備える転写層と、
     を有する波長変換フィルム。
    A wavelength conversion layer;
    A transfer layer comprising the gas barrier layer and the release resin layer, wherein the substrate is removed from the gas barrier film according to any one of claims 1 to 17, which is laminated on the wavelength conversion layer;
    A wavelength conversion film having:
  21.  位相差フィルムと、
     前記位相差フィルム上に積層された、請求項1~17のいずれか一項に記載のガスバリアフィルムから前記基板を除いた、前記ガスバリア層および前記剥離樹脂層を備える転写層と、
     を有するガスバリア層付位相差フィルム。
    Retardation film,
    A transfer layer comprising the gas barrier layer and the release resin layer obtained by removing the substrate from the gas barrier film according to any one of claims 1 to 17, which is laminated on the retardation film.
    A phase difference film with a gas barrier layer.
  22.  有機EL素子と、
     前記有機EL上に積層された、請求項1~17のいずれか一項に記載のガスバリアフィルムから前記基板を除いた、前記ガスバリア層および前記剥離樹脂層を備える転写層と、
     を有する有機EL積層体。
    An organic EL element;
    A transfer layer comprising the gas barrier layer and the release resin layer obtained by removing the substrate from the gas barrier film according to any one of claims 1 to 17, which is laminated on the organic EL,
    The organic electroluminescent laminated body which has this.
  23.  前記有機EL素子と前記転写層との間に、パッシベーション膜を有する請求項22に記載の有機EL積層体。 The organic EL laminate according to claim 22, further comprising a passivation film between the organic EL element and the transfer layer.
  24.  前記有機EL素子を支持する素子基板、
     をさらに有し、
    前記素子基板が、請求項1~17のいずれか一項に記載のガスバリアフィルムから前記基板を除いた、前記ガスバリア層および前記剥離樹脂層を備える転写層を含む請求項22または23に記載の有機EL積層体。
    An element substrate for supporting the organic EL element;
    Further comprising
    The organic material according to claim 22 or 23, wherein the element substrate includes a transfer layer comprising the gas barrier layer and the release resin layer, wherein the substrate is removed from the gas barrier film according to any one of claims 1 to 17. EL laminate.
PCT/JP2016/060617 2015-08-28 2016-03-31 Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate WO2017038141A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680043656.9A CN107848254B (en) 2015-08-28 2016-03-31 Gas barrier film, the transfer method of gas barrier film, Wavelength conversion film, the phase difference film with gas barrier layer and organic EL layer stack
KR1020187004262A KR102103091B1 (en) 2015-08-28 2016-03-31 Gas barrier film, transfer method of gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic EL laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-169184 2015-08-28
JP2015169184A JP6527053B2 (en) 2015-08-28 2015-08-28 Gas barrier film and transfer method of gas barrier film

Publications (1)

Publication Number Publication Date
WO2017038141A1 true WO2017038141A1 (en) 2017-03-09

Family

ID=58187367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060617 WO2017038141A1 (en) 2015-08-28 2016-03-31 Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate

Country Status (5)

Country Link
JP (1) JP6527053B2 (en)
KR (1) KR102103091B1 (en)
CN (1) CN107848254B (en)
TW (1) TWI678827B (en)
WO (1) WO2017038141A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182119A1 (en) * 2018-03-23 2019-09-26 リンテック株式会社 Gas barrier laminate
CN111163929A (en) * 2017-10-05 2020-05-15 凸版印刷株式会社 Phosphor protective film, wavelength conversion sheet, and light-emitting unit
WO2021002375A1 (en) * 2019-07-04 2021-01-07 積水化学工業株式会社 Sealant for organic el display element
WO2021090804A1 (en) * 2019-11-06 2021-05-14 富士フイルム株式会社 Optical laminate, polarizing plate, and image display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431012B (en) * 2017-03-30 2022-05-03 琳得科株式会社 Functional film and device
JP6924893B2 (en) 2018-03-05 2021-08-25 富士フイルム株式会社 Manufacturing method of gas barrier film, optical element and gas barrier film
JP7153870B2 (en) * 2018-05-31 2022-10-17 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition for encapsulating organic EL element, method for manufacturing organic EL light emitting device, and organic EL light emitting device
JP2019212399A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Uv-curable resin composition for sealing organic el element, method for manufacturing organic el light-emitting device, and organic el light-emitting device
EP3843128A4 (en) 2018-08-24 2021-10-27 FUJIFILM Corporation Organic thin film transistor and method for manufacturing organic thin film transistor
JPWO2020085466A1 (en) * 2018-10-26 2021-09-16 凸版印刷株式会社 Manufacturing method of wavelength conversion sheet, phosphor protective film, wavelength conversion sheet with release film and wavelength conversion sheet
KR102437157B1 (en) * 2018-11-06 2022-08-26 주식회사 엘지화학 Polarizing Plate
EP3904079A4 (en) * 2018-12-27 2022-09-14 Lintec Corporation Gas barrier laminate
TWI709801B (en) * 2019-06-05 2020-11-11 睿亞光電股份有限公司 Wavelength-converting device
CN114731744A (en) * 2019-11-13 2022-07-08 味之素株式会社 Sheet for sealing
WO2022196756A1 (en) * 2021-03-18 2022-09-22 大日本印刷株式会社 Film for wavelength conversion sheet, and wavelength conversion sheet, backlight, and liquid crystal display device which use same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118564A (en) * 2005-09-28 2007-05-17 Fujifilm Corp Gas barrier material, its production process, and method for mounting gas barrier layer
JP2010006039A (en) * 2007-09-05 2010-01-14 Fujifilm Corp Gas barrier film, and method for sealing display element using gas barrier film
JP2013028706A (en) * 2011-07-28 2013-02-07 Fujifilm Corp Curable resin raw material composition for optical component, optical component using the same, and new compound used therein
WO2014104060A1 (en) * 2012-12-27 2014-07-03 富士フイルム株式会社 Temporary bonding layer for manufacturing semiconductor devices, layered product, and method for manufacturing semiconductor devices
WO2015022882A1 (en) * 2013-08-12 2015-02-19 富士フイルム株式会社 Optical film, barrier film, light conversion member, backlight unit and liquid crystal display device
WO2015046311A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Functional film amd method for producing functional film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160495A (en) 1974-11-22 1976-05-26 Seiko Instr & Electronics ATSUMISUBERISH INDOSHINO SHIJIKOZO
JP3763482B2 (en) * 1995-02-24 2006-04-05 尾池工業株式会社 Transfer foil for plastic liquid crystal panel
JP4702594B2 (en) * 2004-12-21 2011-06-15 Dic株式会社 Photocurable composition for liquid crystal panel seal and liquid crystal panel
JP2007118563A (en) * 2005-03-11 2007-05-17 Dainippon Printing Co Ltd Transfer foil and image forming product using it
KR20200039806A (en) 2010-11-10 2020-04-16 나노시스, 인크. Quantum dot films, lighting devices, and lighting methods
JP2013067110A (en) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd Gas barrier film, gas barrier layer, apparatus, and method for manufacturing gas barrier film
JP2013211283A (en) * 2012-02-29 2013-10-10 Fujifilm Corp Transparent conductive film and organic thin film solar cell including the same
JP5810012B2 (en) * 2012-03-07 2015-11-11 富士フイルム株式会社 Curable composition, sealing material for semiconductor light emitting device using the same, and semiconductor light emitting device
JPWO2014103756A1 (en) * 2012-12-25 2017-01-12 コニカミノルタ株式会社 Gas barrier film
CN104938025A (en) 2013-03-08 2015-09-23 富士胶片株式会社 Organic el laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118564A (en) * 2005-09-28 2007-05-17 Fujifilm Corp Gas barrier material, its production process, and method for mounting gas barrier layer
JP2010006039A (en) * 2007-09-05 2010-01-14 Fujifilm Corp Gas barrier film, and method for sealing display element using gas barrier film
JP2013028706A (en) * 2011-07-28 2013-02-07 Fujifilm Corp Curable resin raw material composition for optical component, optical component using the same, and new compound used therein
WO2014104060A1 (en) * 2012-12-27 2014-07-03 富士フイルム株式会社 Temporary bonding layer for manufacturing semiconductor devices, layered product, and method for manufacturing semiconductor devices
WO2015022882A1 (en) * 2013-08-12 2015-02-19 富士フイルム株式会社 Optical film, barrier film, light conversion member, backlight unit and liquid crystal display device
WO2015046311A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Functional film amd method for producing functional film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163929A (en) * 2017-10-05 2020-05-15 凸版印刷株式会社 Phosphor protective film, wavelength conversion sheet, and light-emitting unit
JPWO2019069827A1 (en) * 2017-10-05 2020-09-17 凸版印刷株式会社 Fluorescent protective film, wavelength conversion sheet and light emitting unit
JP7259755B2 (en) 2017-10-05 2023-04-18 凸版印刷株式会社 Phosphor protection film, wavelength conversion sheet and light emitting unit
US11642869B2 (en) 2017-10-05 2023-05-09 Toppan Printing Co., Ltd. Phosphor protection film, wavelength conversion sheet, and light-emitting unit
WO2019182119A1 (en) * 2018-03-23 2019-09-26 リンテック株式会社 Gas barrier laminate
JPWO2019182119A1 (en) * 2018-03-23 2021-03-25 リンテック株式会社 Gas barrier laminate
JP7222976B2 (en) 2018-03-23 2023-02-15 リンテック株式会社 Gas barrier laminate
WO2021002375A1 (en) * 2019-07-04 2021-01-07 積水化学工業株式会社 Sealant for organic el display element
WO2021090804A1 (en) * 2019-11-06 2021-05-14 富士フイルム株式会社 Optical laminate, polarizing plate, and image display device
JPWO2021090804A1 (en) * 2019-11-06 2021-05-14
JP7417623B2 (en) 2019-11-06 2024-01-18 富士フイルム株式会社 Optical laminates, polarizing plates, and image display devices

Also Published As

Publication number Publication date
KR20180030121A (en) 2018-03-21
JP6527053B2 (en) 2019-06-05
TW201709586A (en) 2017-03-01
TWI678827B (en) 2019-12-01
JP2017043060A (en) 2017-03-02
KR102103091B1 (en) 2020-04-21
CN107848254A (en) 2018-03-27
CN107848254B (en) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2017038141A1 (en) Gas barrier film, method for transferring gas barrier film, wavelength conversion film, retardation film with gas barrier layer, and organic el laminate
JP6401680B2 (en) Method for producing gas barrier film and method for transferring gas barrier film
US10164210B2 (en) Functional film
WO2016125479A1 (en) Wavelength conversion member, backlight unit comprising same, liquid crystal display device, and wavelength conversion member manufacturing method
TW201601906A (en) Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
KR101745293B1 (en) Method for producing electronic device and composite film
JP6427459B2 (en) Functional film and method for producing functional film
JP6399982B2 (en) Method for producing gas barrier film
WO2015146323A1 (en) Functional film and method for producing functional film
WO2015046311A1 (en) Functional film amd method for producing functional film
JP3332605B2 (en) Transparent functional film containing functional ultrafine particles, transparent functional film, and method for producing the same
JP6262108B2 (en) Method for producing functional film
JP6744487B2 (en) Gas barrier film and method for producing gas barrier film
WO2015046302A1 (en) Functional film and process for manufacturing functional film
JP6924893B2 (en) Manufacturing method of gas barrier film, optical element and gas barrier film
WO2020066496A1 (en) Method for producing electronic device laminate, and electronic device laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187004262

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841173

Country of ref document: EP

Kind code of ref document: A1