WO2015146323A1 - Functional film and method for producing functional film - Google Patents

Functional film and method for producing functional film Download PDF

Info

Publication number
WO2015146323A1
WO2015146323A1 PCT/JP2015/053618 JP2015053618W WO2015146323A1 WO 2015146323 A1 WO2015146323 A1 WO 2015146323A1 JP 2015053618 W JP2015053618 W JP 2015053618W WO 2015146323 A1 WO2015146323 A1 WO 2015146323A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
film
protective film
surface protective
Prior art date
Application number
PCT/JP2015/053618
Other languages
French (fr)
Japanese (ja)
Inventor
友和 関
英二郎 岩瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015146323A1 publication Critical patent/WO2015146323A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a functional film having a laminated structure of an organic layer and an inorganic layer, and a method for producing the functional film.
  • Gas barrier films such as optical elements, display devices such as liquid crystal displays and organic EL displays, various semiconductor devices, parts and components that require moisture resistance in various devices such as solar cells, and packaging materials for packaging food and electronic components
  • the gas barrier film generally has a configuration in which a plastic film such as a polyethylene terephthalate (PET) film is used as a support (substrate) and a gas barrier layer that exhibits gas barrier properties is formed thereon.
  • PET polyethylene terephthalate
  • the layer which consists of various inorganic compounds, such as a silicon nitride, silicon oxide, aluminum oxide, is known, for example.
  • An inorganic laminated gas barrier film (hereinafter also referred to as a laminated gas barrier film) is known.
  • the inorganic layer mainly exhibits gas barrier properties.
  • an inorganic layer is formed on an organic layer serving as a base, whereby the formation surface of the inorganic layer is smoothed by the organic layer, and the inorganic layer is formed on the organic layer having good smoothness.
  • the uniform inorganic layer without a crack, a crack, etc. is formed, and the outstanding gas barrier performance is acquired. Moreover, more excellent gas barrier performance can be obtained by repeatedly including a plurality of laminated structures of the organic layer and the inorganic layer.
  • RtoR roll-to-roll
  • a support is fed from a support roll formed by winding a long support in a roll shape, and the support, that is, the film-forming material is conveyed in the longitudinal direction, while an organic layer or an inorganic is applied to the support.
  • This is a manufacturing method in which a layer is formed and a support on which an organic layer or an inorganic layer is formed is wound into a roll.
  • the inorganic layer that mainly exhibits gas barrier properties. Therefore, when the inorganic layer is damaged, the gas barrier performance is significantly lowered.
  • the organic layer functions as a base layer for appropriately forming the inorganic layer. Accordingly, when the organic layer is damaged, a proper inorganic layer cannot be formed, and the gas barrier performance is also greatly reduced.
  • the support is thin in consideration of optical characteristics, weight, cost, and the like.
  • the thin support has a weak self-supporting property (so-called stiffness), and is liable to be bent during the transport by RtoR. If the support on which the organic layer or the inorganic layer is formed is bent during conveyance, the previously formed organic layer or inorganic layer is damaged.
  • RtoR it may be unavoidable that a pair of conveying rollers, a guide roller, or the like is in contact with an organic layer or an inorganic layer.
  • the organic layer or the inorganic layer may be damaged by the contact of the roller.
  • a so-called stepped roller having a large end portion diameter is used to sandwich and convey only the end portion of the support. It is known to use contact transport.
  • the stiffness of the support is weak, it becomes increasingly difficult to carry out proper conveyance by such non-contact conveyance.
  • Patent Document 1 and Patent Document 2 describe that an organic layer or an inorganic layer is formed by RtoR using a support in which a laminate film is attached to a non-formation surface of an organic film or an inorganic film.
  • a method for producing a gas barrier film for forming a layer is described. According to this method, by attaching a protective material to the back surface of the support, the support, or the self-supporting property of the laminate including the support, can be secured, and when a thin support is used, Even when non-contact conveyance is used, the organic layer and the inorganic layer can be appropriately formed by RtoR without causing the support to be bent.
  • an organic / inorganic laminated gas barrier film for a top emission type organic EL device used for a mobile phone, a display, or the like.
  • a support having a low retardation value and high optical transparency such as a cycloolefin copolymer (COC) film.
  • the support is preferably thin.
  • a laminated gas barrier film using such a COC film or the like as a support cannot be manufactured inexpensively and appropriately by RtoR using the protective material described above.
  • the protective material does not become a part of the product, but is finally peeled off and discarded. Therefore, an inexpensive polyethylene terephthalate (PET) film or the like is used as the protective material.
  • PET polyethylene terephthalate
  • a vapor phase film forming method such as plasma CVD is used to form a normal inorganic layer.
  • an application method is used in which a coating containing an organic material that becomes the organic layer is applied, dried, and cured. That is, in the production of a laminated gas barrier film, the support and the protective material are exposed to heat by a vapor deposition method such as plasma CVD in the formation of the inorganic layer, and in the formation of the organic layer, Exposed to heat during drying. Furthermore, in the formation of the organic layer, heating may be performed when the coating film is cured.
  • a film having excellent optical characteristics such as a COC film and a PET film are completely different in thermal expansion / shrinkage and thermal characteristics such as Tg. Therefore, both films show different deformations in processes involving heating.
  • RtoR when a film having different thermal characteristics is used between the support and the protective material as described above, there is a stress due to conveyance, bending due to a change in the conveyance route, etc. Due to the different deformations of the two films in the process involving, peeling of the support and the protective material, wrinkles and breakage of the support, and the like cause damage to the inorganic layer.
  • the problem caused by the difference in the thermal characteristics between the support and the protective material does not occur if the support and the protective material are made of the same material, that is, the same thermal characteristics are used.
  • a film having excellent optical properties such as a COC film is very expensive as compared with a PET film or the like.
  • the protective material is a material that is finally discarded. Therefore, when a film having excellent optical properties such as a COC film is used as the support, the cost of the laminated gas barrier film becomes very high if a protective material is used from the same material. Further, even if the same material is used for the support and the protective material, peeling due to air bubbles existing between the support and the protective material, wrinkles and breakage of the support cannot be suppressed.
  • the COC film has low adhesion to the organic layer. Therefore, even if an organic layer is laminated on a support as an underlayer of the inorganic layer, peeling occurs between the support and the organic layer due to stress due to transport or bending due to change of the transport path, etc. As a result, the inorganic layer is damaged.
  • an adhesive is used on a passivation film having a gas barrier property covering an organic EL material as a light emitting element. Laminate the gas barrier film.
  • examples of the passivation film forming material include inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride that exhibit gas barrier properties. Therefore, from the viewpoint of adhesiveness, in the organic / inorganic laminated type gas barrier film used for organic EL devices and the like, the uppermost layer is an inorganic layer, the inorganic layer and the passivation film face each other, and the inorganic materials are bonded to each other. It is preferable to laminate via an adhesive.
  • a protective film for protecting the inorganic layer is attached to the uppermost inorganic layer of the produced gas barrier film.
  • the protective film is peeled off to expose the inorganic layer, and is adhered onto the passivation film.
  • the protective film and the inorganic layer are attached via an adhesive, when the protective film is peeled off, the adhesive remains on the inorganic layer, and adhesion between the passivation film and the inorganic layer is achieved. May interfere.
  • An object of the present invention is to solve such problems of the prior art, and in an organic / inorganic laminated functional film formed by alternately forming an organic layer and an inorganic layer, the organic layer and the inorganic layer Provided with a functional film that stably exhibits the target performance at a low cost and without damage to the inorganic layer, even when heating is involved in the formation of the film, and a method for producing the functional film There is to do.
  • the present inventors have found that in a functional film in which an organic-inorganic laminate is laminated on a gas barrier support having a low retardation value and excellent optical properties, the lowermost layer and the lowest layer of the organic-inorganic laminate.
  • the upper layer is an inorganic layer
  • the difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is within a predetermined range
  • the melting point of the protective film is within a predetermined range
  • the adhesive strength between the gas barrier support and the adhesive layer By using a functional film that defines the adhesive strength between the protective film and the uppermost inorganic layer, the organic layer and the inorganic layer can be formed at a low cost, even when heating is involved in the formation of the organic layer and the inorganic layer.
  • the present invention has been completed by finding that the intended performance is stably exhibited without any damage. That is, this invention provides the functional film of the following structures, and its manufacturing method.
  • the retardation value of the gas barrier support is 300 nm or less
  • the organic-inorganic laminate has one or more organic layers and two or more inorganic layers, and the bottom layer on the gas barrier support side and the top layer on the surface protective film side are inorganic layers,
  • the difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 0 to 80 ppm / ° C.
  • the melting point of the surface protective film is 80 to 170 ° C.
  • the adhesive strength of the gas barrier support and the adhesive layer at 25 ° C. is 0.01 N / 25 mm to 0.15 N / 25 mm
  • a functional film in which the adhesive strength at 25 ° C. between the surface protective film and the uppermost inorganic layer of the organic-inorganic laminate is 0.02 N / 25 mm to 0.06 N / 25 mm.
  • the organic-inorganic laminate has a second mixed layer between the organic layer and the inorganic layer laminated on the organic layer, and the thickness of the second mixed layer is 1 nm to 20 nm (1 ) Or the functional film according to (2).
  • the thickness of the gas barrier support is 20 ⁇ m to 120 ⁇ m
  • the thickness of one organic layer of the organic-inorganic laminate is 0.5 ⁇ m to 5 ⁇ m
  • the thickness of one inorganic layer is 10 nm to 200 nm.
  • the thickness of the adhesive layer is 15 ⁇ m to 250 ⁇ m
  • the thickness of the back surface protective film is 12 ⁇ m to 100 ⁇ m
  • the thickness of the surface protective film is 20 ⁇ m to 100 ⁇ m.
  • Functional film (6) The functional film according to any one of (1) to (5), wherein the glass transition temperature of the gas barrier support is 130 ° C. or higher, and the glass transition temperature of the back surface protective film is 70 ° C. or higher.
  • the adhesive strength between the gas barrier support and the adhesive layer at 100 ° C. is 0.03 N / 25 mm to 0.14 N / 25 mm
  • the adhesive strength at 200 ° C. is 0.04 N / 25 mm to 0.13 N / 25 mm.
  • the adhesive strength between the adhesive layer and the back surface protective film at 100 ° C. is 0.07 N / 25 mm to 0.19 N / 25 mm, and the adhesive strength at 200 ° C. is 0.08 N / 25 mm to 0.18 N / 25 mm (1 ) To (6).
  • the functional film according to any one of (1) to (8), wherein the Young's modulus of the surface protective film is 1 ⁇ 4 or less of the Young's modulus of the gas barrier support and the Young's modulus of the back surface protective film.
  • the pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive material in which the alkyl group portion of the alkyl acrylate monomer has 3 to 10 carbon atoms, or further contains an alkyl methacrylate monomer, and has a temperature of 25 ° C. to 150 ° C. and a UV irradiation amount of 100 mJ.
  • the functional film according to any one of (1) to (9), wherein the volume shrinkage due to crosslinking is 3% or less when crosslinked under the conditions of / cm 2 to 1000 mJ / cm 2 .
  • a long laminate having a gas barrier support, an adhesive layer attached to the gas barrier support, and a back surface protective film attached to the adhesive layer, and a gas barrier support of the elongated laminate A step of producing a composite having an inorganic layer and an organic layer laminated alternately on the surface, and the surface opposite to the back surface protective film is an organic layer; A film forming step of forming the uppermost inorganic layer by vapor phase growth on the organic layer on the surface while transporting the composite in the longitudinal direction; A surface protective film attaching step for attaching a surface protective film on the uppermost inorganic layer formed in the film forming step; The film forming step and the surface protective film attaching step are continuously performed under the same pressure and temperature environment, The retardation value of the gas barrier support is 300 nm or less, The difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 0 to 80 ppm / ° C.
  • the melting point of the surface protective film is 80 to 170 ° C.
  • a method for producing a functional film, wherein an adhesive force between a gas barrier support and an adhesive layer at 25 ° C. is 0.01 N / 25 mm to 0.15 N / 25 mm.
  • the step of producing the composite includes an application step of applying a composition to be an organic layer on the inorganic layer, and a drying step of drying the applied composition of the long laminate in which the inorganic layer is laminated.
  • the method for producing a functional film according to (11) wherein the temperature of the composite is 70 ° C. or higher in the drying step.
  • the step of producing the composite includes an application step of applying a composition to be an organic layer on the inorganic layer, and a drying step of drying the applied composition of the long laminate in which the inorganic layer is laminated. And a curing step of forming an organic layer by irradiating the dried composition with ultraviolet irradiation, and in the curing step, the composite is heated from the back surface protective film side so that the temperature becomes 30 ° C. or higher.
  • the present invention in the organic / inorganic laminated functional film in which the organic layer and the inorganic layer are alternately laminated, even when heating is involved in the formation of the organic layer and the inorganic layer, By using an inexpensive protective material, it is possible to manufacture a functional film having the desired performance without damage to the inorganic layer or the like at a low cost.
  • FIG. 1 (A) and 1 (B) are diagrams conceptually showing an example of the functional film of the present invention
  • FIG. 1 (C) shows an adhesive layer and a back surface protective film from the functional film of the present invention. It is a figure which shows notionally an example of the state which peeled the surface protection film. It is a figure which shows notionally an example of the manufacturing apparatus which enforces the manufacturing method of the functional film of this invention, Comprising: FIG. 2 (A) is a film-forming apparatus of an inorganic layer, FIG.2 (B) is film-forming of an organic layer Device.
  • FIG. 1A conceptually shows an example in which the functional film of the present invention is used as a gas barrier film.
  • the functional film of this invention is not limited to a gas barrier film. That is, the present invention can be used in various known functional films such as various optical films such as a filter that transmits light of a specific wavelength and an antireflection film.
  • the organic / inorganic laminated functional film like the functional film of the present invention, it is the inorganic layer that mainly exhibits the intended function. Therefore, the functional film of the present invention may be configured by selecting an inorganic layer that exhibits a desired function such as light transmittance at a specific wavelength.
  • a functional film having an inorganic layer free from defects such as cracks and cracks can be obtained by having an adhesive layer and a protective material described later.
  • the functional film excellent in the optical characteristic is obtained by selecting the thing which consists of a material excellent in optical characteristics, such as a low retardation value, as a support body. Therefore, the present invention is more suitably used for a gas barrier film that often requires high optical properties and has a large performance deterioration due to damage to the inorganic layer.
  • the gas barrier film according to the functional film of the present invention is an organic / inorganic laminate obtained by alternately laminating inorganic layers 14 and organic layers 16 on the front surface (main surface) of the gas barrier support 12. It has the above-mentioned organic / inorganic laminated type gas barrier film. Note that in FIG. 1A, only the inorganic layer 14 is hatched in order to clarify the configuration.
  • a gas barrier film 10a shown in FIG. 1 (A) has a gas barrier support 12 having an inorganic layer 14 on the surface, an organic layer 16 thereon, and a second inorganic layer 14 thereon.
  • the inorganic layer 14 and the organic layer 16 of the support 12 are alternately formed, and a total of three layers of two inorganic layers 14 and one organic layer 16 are laminated.
  • the two inorganic layers 14 and the one organic layer 16 constitute an organic / inorganic laminate 28 in the present invention.
  • An adhesive layer 20 is attached to the back surface of the gas barrier support 12, that is, the reverse surface (the opposite surface) of the formation surface of the inorganic layer 14 and the organic layer 16.
  • a film 24 is attached.
  • the gas barrier support 12, the adhesive layer 20, and the back surface protective film 24 constitute a laminate 26 in the present invention.
  • the surface protective film 18 is stuck on the organic / inorganic laminate 28, that is, on the second inorganic layer 14.
  • the organic inorganic laminated body 28 was set as the structure which laminated
  • the gas barrier of this invention The film is not limited to this.
  • the organic / inorganic laminate 28 is formed on the second inorganic layer 14, the second organic layer 16, and the third inorganic layer. 14 may be configured to have a total of five layers of three inorganic layers 14 and two organic layers 16 laminated.
  • the organic / inorganic laminate 28 may have a total of seven or more layers in which the inorganic layers 14 and the organic layers 16 are alternately laminated.
  • the organic layer 16 functions as a base layer for properly forming the inorganic layer 14, and the more the number of layers of the combination of the base organic layer 16 and the inorganic layer 14, the better.
  • a gas barrier film having gas barrier properties can be obtained.
  • the lowermost layer on the gas barrier support 12 side and the uppermost layer on the surface protective film 18 side are both inorganic layers 14. This will be described in detail later.
  • the gas barrier film 10 a of the present invention has the organic-inorganic laminate 28 in which the inorganic layers 14 and the organic layers 16 are alternately laminated on the gas barrier support 12. Further, an adhesive layer 20 and a back surface protective film 24 are provided on the back surface of the gas barrier support 12. A surface protective film 18 is provided on the organic / inorganic laminate 28.
  • the adhesive layer 20, the back surface protective film 24, and the surface protective film 18 are finally peeled off, and the inorganic layer 14 and the organic layer 16 are formed on the surface of the gas barrier support 12 as shown in FIG. It is set as the gas barrier film 10b which has only alternately.
  • the gas barrier support 12 is a sheet-like material having a retardation value (Retardation) of 300 nm or less (hereinafter also referred to as a low retardation film).
  • a gas barrier film excellent in optical properties can be obtained.
  • the retardation value of the gas barrier support 12 is preferably 200 nm or less, and more preferably 150 nm or less.
  • the gas barrier support 12 preferably has a total light transmittance of 85% or more.
  • the gas barrier support 12 is made of a plastic (polymer material) such as polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), triacetyl cellulose (TAC), or transparent polyimide.
  • a plastic film is preferably exemplified.
  • the gas barrier support 12 has various functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer on the surface of such a plastic film.
  • membrane) for obtaining may be formed.
  • the thickness of the gas barrier support 12 is preferably 20 to 120 ⁇ m.
  • the thickness of the gas barrier support 12 is preferably 20 to 120 ⁇ m.
  • the thickness of the gas barrier support 12 is more preferably 20 to 75 ⁇ m.
  • the gas barrier support 12 preferably has a glass transition temperature (Tg) of 130 ° C. or higher, and more preferably 140 ° C. or higher.
  • Tg glass transition temperature
  • the inorganic layer 14 and the organic layer 16 are formed on the surface of the gas barrier support 12.
  • the inorganic layer 14 is usually formed by a vapor deposition method such as plasma CVD, and the organic layer 16 is formed by an application method in which a coating containing an organic compound that becomes the organic layer 16 is applied, dried and cured. Is done. That is, in the gas barrier film 10 a, the inorganic layer 14 and the organic layer 16 are formed by a method that involves heating the gas barrier support 12. On the other hand, by using a gas barrier support 12 having a Tg of 130 ° C.
  • thermal damage of the gas barrier support 12 due to heating in the formation of the inorganic layer 14 and the organic layer 16 can be prevented. Furthermore, it is preferable also from the point that the thermal damage of the gas barrier support 12 in the heating process in the manufacture of a product using the gas barrier film 10b from which the adhesive layer 20, the back surface protective film 24 and the surface protective film 18 are peeled can be prevented.
  • the gas barrier support 12 has a difference in linear expansion coefficient from the back surface protective film 24 of 0 to 80 ppm / ° C.
  • the gas barrier support 12 is heated by the formation of the inorganic layer 14 and the organic layer 16 described above.
  • the back surface protective film 24 can be suitably prevented from peeling or deforming. This point will be described in detail later.
  • the organic / inorganic laminate in which the inorganic layers 14 and the organic layers 16 are alternately formed is laminated on the gas barrier support 12.
  • the inorganic layer 14 is a layer made of an inorganic compound.
  • the inorganic layer 14 mainly exhibits the target gas barrier property.
  • the material for forming the inorganic layer 14 is not limited, and various layers made of an inorganic compound that exhibits gas barrier properties can be used. Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide, silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carb
  • silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are suitably used for the gas barrier film because they are highly transparent and can exhibit excellent gas barrier properties.
  • silicon nitride is particularly suitable for its excellent gas barrier properties and high transparency.
  • the thickness of the inorganic layer 14 is preferably 10 to 200 nm.
  • the inorganic layer 14 that stably expresses sufficient gas barrier performance can be formed.
  • the inorganic layer 14 is generally brittle, and if it is too thick, there is a possibility that cracks, cracks, peeling, etc. may occur.
  • the thickness of the inorganic layer 14 is 200 nm or less, cracks will occur. Can be prevented.
  • the thickness of the inorganic layer 14 is preferably 15 to 100 nm, and more preferably 20 to 75 nm.
  • each inorganic layer 14 may be the same, or may mutually differ.
  • the forming material of each inorganic layer 14 may be the same or different. However, in consideration of productivity, production cost, etc., it is preferable to form all the inorganic layers 14 with the same material.
  • the inorganic layer 14 may be formed (film formation) by a known inorganic layer forming method according to the forming material. Specifically, plasma CVD such as CCP-CVD and ICP-CVD, sputtering such as magnetron sputtering and reactive sputtering, and vapor deposition methods (vapor deposition) such as vacuum deposition are preferably exemplified.
  • plasma CVD such as CCP-CVD and ICP-CVD
  • sputtering such as magnetron sputtering and reactive sputtering
  • vapor deposition methods vapor deposition
  • the inorganic layer 14 is formed in the surface of the gas barrier support body 12.
  • the gas barrier support has a low retardation value
  • the adhesion between the gas barrier support and the organic layer is low. Even if formed, peeling occurs between the support and the organic layer due to stress due to conveyance, bending due to a change in the conveyance path, and the like, resulting in damage to the inorganic layer.
  • the inorganic layer 14 is formed on the surface of the gas barrier support 12. That is, the lowermost layer of the organic / inorganic laminate 28 is the inorganic layer 14. Thereby, even when the gas barrier support 12 having a low retardation value with excellent optical properties is used, the adhesion between the gas barrier support 12 and the organic / inorganic laminate 28 is improved, and peeling is prevented. Can prevent damage.
  • the inorganic layer 14 formed on the surface of the gas barrier support 12 not only exhibits gas barrier properties but also functions as a protective layer for the gas barrier support 12.
  • the organic layer 16 is formed by a coating method using a paint containing an organic compound.
  • This paint includes methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) organic solvents.
  • the plastic film used as the gas barrier support 12 may have low resistance to the organic solvent, and the plastic film may be dissolved depending on the combination of the plastic film and the organic solvent.
  • the low retardation film as described above has low resistance to organic solvents and often dissolves. That is, when the organic layer 16 is formed on the surface of the gas barrier support 12, the surface of the gas barrier support 12 may be dissolved depending on the combination of the forming material of the gas barrier support 12 and the organic solvent contained in the paint. . When such dissolution of the gas barrier support 12 occurs, the retardation value of the gas barrier support 12 changes, the light transmittance decreases, the haze increases, and the optical characteristics of the gas barrier film are greatly reduced. Resulting in.
  • the inorganic layer 14 is formed on the surface of the gas barrier support 12, and the organic layers 16 and the inorganic layers 14 are alternately laminated thereon.
  • the inorganic layer 14 acts as a protective layer against the organic solvent contained in the coating material forming the organic layer 16. Therefore, even when the resistance of the gas barrier support 12 to the organic solvent is low, it is possible to prevent the gas barrier support 12 from being dissolved by the paint and to maintain the optical characteristics of the gas barrier support 12, and to provide a gas barrier film having excellent optical characteristics. Obtainable.
  • the gas barrier support 12 is interposed between the inorganic layer 14 and the gas barrier support 12.
  • the mixed layer between the inorganic layer 14 and the gas barrier support 12 is the first mixed layer in the present invention.
  • the adhesion between the inorganic layer 14 and the gas barrier support 12 can be improved, the strength of the gas barrier film 10a can be improved, and the gas barrier support It is also possible to prevent a decrease in gas barrier properties due to the peeling of the inorganic layer 14 from the body 12.
  • a component in which the organic layer 16 is formed and a component in which the inorganic layer 14 is formed are mixed between the organic layer 16 serving as a base layer and the inorganic layer 14 formed on the surface of the organic layer 16. It may have a region such as a layer.
  • the mixed layer between the organic layer 16 and the inorganic layer 14 is the second mixed layer in the present invention.
  • the thicknesses of the first mixed layer and the second mixed layer are not particularly limited, but the adhesion between the gas barrier support 12 and the inorganic layer 14, the adhesion between the organic layer 16 and the inorganic layer 14, and the strength. From the viewpoint of production efficiency, the thickness of the first mixed layer and the second mixed layer is preferably 1 nm to 20 nm.
  • the mixed layer is a layer containing a component derived from the gas barrier support 12 or the organic layer 16 and a component derived from the inorganic layer 14.
  • the position where the component derived from the inorganic layer 14 disappears is the boundary between the gas barrier support 12 or the organic layer 16 and the mixed layer, and the position where the component derived from the gas barrier support 12 or the organic layer 16 disappears, It is a boundary between the inorganic layer 14 and the mixed layer.
  • the inorganic layer 14 is formed by a vapor deposition method such as plasma CVD.
  • a vapor deposition method such as plasma CVD.
  • the deposition conditions By adjusting the deposition conditions, the presence or absence of the mixed layer, the thickness of the mixed layer, and the like can be adjusted.
  • the mixed layer is formed by a method of adjusting the plasma intensity generated by adjusting input power or the like, a method of adjusting a bias applied when the inorganic layer 14 is formed, or the like.
  • the presence or absence, the thickness of the mixed layer, etc. can be adjusted.
  • the uppermost layer of the organic-inorganic laminate 28 is the inorganic layer 14.
  • the inorganic layer 14 it is possible to prevent outgas emission due to the organic layer 16. Therefore, in the configuration in which the uppermost layer of the organic / inorganic laminate 28 is the inorganic layer 14, for example, a device that is easily affected by unnecessary gas components such as an organic EL device needs to be disposed on the organic / inorganic laminate 28 side. In some cases.
  • the inorganic layer 14 as the uppermost layer of the organic / inorganic laminate 28, when the gas barrier film 10a is used for a top emission type organic EL device or the like, the passivation film made of an inorganic material of the organic EL device and the uppermost layer are used.
  • the upper inorganic layer 14 can be faced and bonded. That is, since the same inorganic materials are bonded to each other with an adhesive, the adhesion between the passivation film and the inorganic layer 14 can be improved, moisture and gas can be prevented from entering, and the organic EL material which is a light emitting element of the organic EL device Deterioration can be prevented.
  • the organic layer 16 is a layer made of an organic compound, and is basically a cross-linked (polymerized) organic compound that becomes the organic layer 16. As described above, the organic layer 16 functions as a base layer for properly forming the inorganic layer 14 that exhibits gas barrier properties. By having such a base organic layer 16, the surface on which the inorganic layer 14 is formed can be flattened and made uniform to be in a state suitable for the formation of the inorganic layer 14. In the laminated type gas barrier film in which the underlying organic layer 16 and the inorganic layer 14 are laminated, it is possible to form the appropriate inorganic layer 14 on the entire surface of the film without gaps, and to have excellent gas barrier properties. A gas barrier film can be obtained.
  • the material for forming the organic layer 16 is not limited, and various known organic compounds can be used. Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc.
  • An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
  • the organic layer 16 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • the glass transition temperature is 120 ° C., mainly composed of acrylate and / or methacrylate monomers and oligomer polymers, in terms of low refractive index, high transparency and excellent optical properties.
  • the above acrylic resin and methacrylic resin are preferably exemplified as the organic layer 16.
  • An acrylic resin and a methacrylic resin mainly composed of a polymer are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the inorganic layer 14 can be formed on a base having a high three-dimensional crosslink density. Can be formed.
  • the thickness of the organic layer 16 is preferably 0.5 to 5 ⁇ m.
  • the thickness of the organic layer 16 is more preferably 1 to 3 ⁇ m.
  • each organic layer 16 when it has the some organic layer 16 like the gas barrier film 100 shown in FIG.1 (B), the thickness of each organic layer 16 may be the same, or may mutually differ.
  • the forming material of each organic layer 16 may be the same or different. However, in consideration of productivity, production cost, etc., it is preferable to form all the organic layers 16 with the same material.
  • the organic layer 16 is basically formed by a coating method. That is, when the organic layer 16 is formed, first, monomers, dimers, trimers, oligomers and the like as the organic compound that becomes the organic layer 16, and further, a polymerization initiator, a silane coupling agent, a surfactant, and an increasing viscosity agent The paint which dissolves etc. in the organic solvent is adjusted. Next, this paint is applied to the surface of the inorganic layer 14 and dried. After drying, an organic compound is polymerized by ultraviolet irradiation, electron beam irradiation, heating, or the like to form the organic layer 16.
  • the adhesive layer 20 is attached to the back surface of the gas barrier support 12, and the back surface protective film 24 is attached to the adhesive layer 20.
  • the gas barrier support 12, the adhesive layer 20, and the back surface protective film 24 constitute the laminate 26 in the present invention.
  • the back surface protective film 24 is weak in the stiffness of the gas barrier support 12 and is formed in each layer by roll-to-roll (hereinafter also referred to as RtoR).
  • RtoR roll-to-roll
  • the gas barrier support 12 is supported from the back side to ensure self-supporting property and enable stable conveyance without bending or formation of wrinkles.
  • the back surface protective film 24 has thermal characteristics different from those of the gas barrier support 12. Specifically, the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 is 0 to 80 ppm / ° C.
  • the adhesive strength between the adhesive layer 20 and the gas barrier support 12 at 25 ° C. is 0.01 to 0.15 N / 25 mm.
  • the adhesive force between the adhesive layer 20 and the back surface protective film 24 at 25 ° C. is 0.05 to 0.20 N / 25 mm.
  • the adhesive strength between the gas barrier support 12 and the adhesive layer 20, the adhesive strength between the adhesive layer 20 and the back surface protective film 24, the linear expansion coefficient of the gas barrier support and the linear expansion of the back surface protective film are as described above. Specify the difference from the coefficient. Thereby, even when an expensive gas barrier support 12 such as a COC film is used, the gas barrier film 10a having the inorganic layer 14 free from damage such as cracks and cracks is realized without increasing the cost.
  • the gas barrier support 12 has a retardation value composed of PC, COP, COC, TAC, transparent polyimide, and the like as low as 300 nm or less. A retardation film is used. Further, the gas barrier support 12 preferably has a total light transmittance of 85% or more. On the other hand, since the back surface protective film 24 is finally peeled off and discarded, it is preferable to use an inexpensive film such as a PET film.
  • a low retardation film such as a COC film and a PET film or the like, for example, have a large difference in Tg, one of which thermally expands and the other thermally contracts, and the thermal expansion / contraction rate differs greatly. Characteristic, that is, linear expansion coefficient is different.
  • the laminated body 26 having the gas barrier support 12 and the back surface protective film 24 having different thermal characteristics is used to form the inorganic layer 14 or the organic layer 16 on the surface of the gas barrier support 12 by RtoR, the inorganic layer 14
  • the gas barrier support 12 and the back surface protective film 24 show completely different deformations due to heat caused by plasma or the like when forming the organic layer 16, or heat caused by drying when the organic layer 16 is formed.
  • the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 is set to 0 to 80 ppm / ° C., and the adhesive layer 20 and the gas barrier support 12
  • the adhesive strength at 25 ° C. is set to 0.01 to 0.15 N / 25 mm. That is, the difference in thermal characteristics between the gas barrier support 12 and the back surface protective film 24 is within a predetermined range, and the adhesive layer 20 and the gas barrier support 12 are attached with very weak force.
  • the adhesive layer 20 and the gas barrier support 12 having a weak adhesion force are It peels and then repeats being stuck again by tension. By repeating this peeling and sticking, different deformations of the gas barrier support 12 and the back surface protective film 24 are absorbed. Moreover, even if the bubble between the gas barrier support 12 and the back surface protective film 24 expands, the bubble is released when it is once peeled off.
  • the adhesive strength of the adhesive layer 20 and the back surface protective film 24 at 25 ° C. is 0.05 to 0.20 N / 25 mm.
  • the back surface protective film 24 has a difference in linear expansion coefficient from that of the gas barrier support 12 within a predetermined range, and the adhesive strength between the gas barrier support 12 and the back surface protective film 24 and the adhesive layer 20 is within the above range. It is said. Thereby, in manufacture of the gas barrier film by RtoR, conveyance can be stabilized by the back surface protective film 24. Further, even when an expensive low retardation film such as a COC film is used as the gas barrier support 12 in order to obtain a gas barrier film 10a having excellent optical properties, the back surface protection of an inexpensive one such as a PET film is possible. The film 24 can be used.
  • the gas barrier film 10a is finally the gas barrier film 10b from which the adhesive layer 20 and the back surface protective film 24 have been peeled off.
  • the adhesion layer 20 since the adhesive force of the adhesion layer 20 and the gas barrier support body 12 is weak, the adhesion layer 20 can also be easily peeled by peeling the back surface protective film 24, and also the inorganic layer 14 is damaged. It is possible to perform the peeling without performing, and to prevent the adhesive layer 20 from remaining on the gas barrier support 12.
  • the gas barrier film 10b can be obtained, and can be suitably used as a gas barrier film used for a top emission type organic EL device used for a mobile phone or a display.
  • the adhesive force between the adhesive layer 20 and the gas barrier support 12 is less than 0.01 N / 25 mm, sufficient adhesive force between the adhesive layer 20 and the gas barrier support 12 cannot be obtained, or the adhesive layer 20 and the gas barrier support 12 may unnecessarily peel off. If the adhesive force between the adhesive layer 20 and the gas barrier support 12 exceeds 0.15 N / 25 mm, the inorganic layer 14 may be damaged when the back surface protective film 24 or the like is peeled off. Further, when the back surface protective film 24 or the like is peeled off, the adhesive layer 20 remains on the gas barrier support 12, that is, an adhesive residue is generated, or peeling and sticking between the adhesive layer 20 and the gas barrier support 12 are performed.
  • the repetition does not occur, and different deformations of the gas barrier support 12 and the back surface protective film 24 cannot be absorbed. Furthermore, inconveniences such as inability to open bubbles present between the adhesive layer 20 and the gas barrier support 12 may occur.
  • the adhesive force between the adhesive layer 20 and the gas barrier support 12 is 0.01 to 0.15 N / 25 mm.
  • the adhesive force between the adhesive layer 20 and the back surface protective film 24 is less than 0.05 N / 25 mm, sufficient adhesive force between the adhesive layer 20 and the back surface protective film 24 cannot be obtained. There is a possibility that inconveniences such as adhesive residue on the gas barrier support side occur. If the adhesive force between the adhesive layer 20 and the back surface protective film 24 exceeds 0.20 N / 25 mm, the inorganic layer 14 may be damaged when the back surface protective film 24 or the like is peeled off. Further, there is a case where peeling and sticking are not repeated between the pressure-sensitive adhesive layer 20 and the back surface protective film 24, and different deformations of the gas barrier support 12 and the back surface protective film 24 cannot be absorbed.
  • the adhesive strength between the adhesive layer 20 and the back surface protective film 24 is preferably 0.05 to 0.20 N / 25 mm.
  • the adhesive force of the adhesive layer 20 and the back surface protective film 24 is the pressure sensitive adhesive layer 20 and the gas barrier support 12. It is preferable that it is larger than the adhesive strength.
  • the pressure-sensitive adhesive force between the pressure-sensitive adhesive layer 20 and the gas-barrier support 12 is 0.01 to 0.15 N / 25 mm
  • the pressure-sensitive adhesive strength between the pressure-sensitive adhesive layer 20 and the back surface protective film 24 is 0.
  • known methods that are performed using various adhesives and adhesive tapes can be used.
  • the adhesive strength in the above range is also referred to as slight adhesion.
  • the pressure-sensitive adhesive layer 20 may be made of various adhesives that can obtain the above-mentioned pressure-sensitive adhesive force depending on the gas barrier support 12 and the back surface protective film 24.
  • the material of the pressure-sensitive adhesive layer 20 include acrylic resin adhesives, epoxy resin adhesives, urethane resin adhesives, vinyl resin adhesives, rubber adhesives, and the like.
  • the adhesive layer 20 is preferably made of a material having 3 to 10 carbon atoms in the alkyl group portion of the alkyl acrylate monomer. Alternatively, it is preferable to further contain an alkyl methacrylate monomer. Thus, the use of a material having a long-chain alkyl group moiety as the material of the adhesive layer 20 is preferable in that the volume shrinkage when cured is as low as 3% or less, and the adhesiveness is low.
  • the thickness of the adhesive layer 20 is preferably 15 to 250 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer 20 is more preferably 25 to 150 ⁇ m.
  • an adhesion layer 20 by the well-known method according to the adhesive agent etc. to utilize.
  • a method of forming by applying an adhesive and a method of forming using an adhesive tape (adhesive tape) are exemplified.
  • coating the coating liquid used as the material of the adhesion layer 20 it superposes
  • the volumetric shrinkage due to polymerization (crosslinking) is 3% or less when UV-cured under conditions of a temperature of 25 ° C. to 150 ° C. and a UV irradiation amount of 100 mJ / cm 2 to 1000 mJ / cm 2 .
  • the back surface protective film 24 can be a sheet-like material made of various materials, particularly various plastic films. Is available.
  • the gas barrier film 10a of the present invention has the RtoR by the back surface protective film 24 as described above by setting the difference in the linear expansion coefficient between the gas barrier support 12 and the back surface protective film 24 in such a range.
  • the back surface protective film 24 When using a film having excellent optical properties such as a low retardation film such as a COC film, an inexpensive PET film should be used as the back surface protective film 24 while stabilizing the transportation of the gas barrier support 12 in Therefore, the gas barrier film 10a which is inexpensive and does not damage the inorganic layer 14 is realized.
  • the back surface protective film 24 can be sufficiently absorbed. It can be more suitably applied when the difference in coefficient of linear expansion from the gas barrier support 12 is 10 ppm to 80 ppm / ° C.
  • the difference in linear expansion coefficient is less than 10 ppm, the selection range of the material is narrowed, and the same material as the gas barrier support 12 may have to be selected.
  • the cost becomes twice or more.
  • the difference in linear expansion coefficient exceeds 80 ppm, deformation itself due to heat in the film forming process becomes large, and a high-quality inorganic film cannot be obtained.
  • the produced gas barrier film is incorporated into various devices or used, deformation due to heat increases, and a desired gas barrier property may not be exhibited.
  • the back surface protective film 24 is finally peeled off and discarded. Therefore, it is preferable to use a low-cost material.
  • a plastic film made of PET, PP or the like is preferably exemplified.
  • the thickness of the back surface protective film 24 is preferably 12 to 100 ⁇ m.
  • the thickness of the back surface protective film 24 is preferably 12 to 100 ⁇ m.
  • etc. Can be reduced by making the thickness of the back surface protective film 24 into 100 micrometers or less.
  • the lightweight gas barrier film 10a is obtained.
  • the thickness of the back surface protective film 24 is more preferably 25 to 75 ⁇ m.
  • the thickness ratio between the gas barrier support 12 and the back surface protective film 24 is preferably 0.1 to 5 as the ratio of “back surface protective film 24 / gas barrier support 12”.
  • the ratio of the thicknesses of the gas barrier support 12 and the back surface protective film 24 within this range, the inorganic layer 14 and the organic layer 14 are formed due to the difference in thermal characteristics between the gas barrier support 12 and the back surface protective film 24. It is preferable in that the stress that the back surface protective film 24 gives to the inorganic layer 14 or the like during formation of the layer 16 or the like can be reduced, and higher gas barrier properties can be obtained.
  • the glass transition temperature (Tg) of the back surface protective film 24 is 70 degreeC or more, and it is more preferable that it is 80 degreeC or more.
  • Tg glass transition temperature
  • the gas barrier film 10a is protected from the back surface by heating during the formation of the inorganic layer 14 and the organic layer 16 by setting the Tg of the back surface protective film 24 to 70 ° C. or higher, like the gas barrier support 12 described above.
  • the film 24 is preferable in that heat damage and dissolution of the film 24 can be prevented.
  • the water vapor transmission rate (WVTR) of the back surface protective film 24 is preferably 0.1 to 10 [g / (m 2 ⁇ day)].
  • the gas barrier support 12 having a low retardation value with excellent optical characteristics is used.
  • Such a gas barrier support 12 may have a high water vapor transmission rate.
  • the inorganic layer 14 is formed directly on the gas barrier support 12 from the viewpoint of adhesion. For this reason, water vapor, oxygen or the like that has passed through the gas barrier support reaches the lowermost inorganic layer, and there is a possibility that adhesion may be reduced or gas barrier properties may be reduced due to oxidation of the inorganic layer.
  • the water vapor transmission rate of the back surface protective film 24 is a value measured based on a moisture permeability test method (cup method) of moisture-proof packaging material of JIS Z0208.
  • the friction coefficient of the surface by which the back surface protective film 24 is exposed is 0.6 or less.
  • the friction coefficient of the back surface protective film 24 is a friction coefficient of back surface protective films measured based on JISK7125.
  • the adhesive strength of the adhesive layer 20 and the gas barrier support 12 at 100 ° C. is preferably 0.03 to 0.14 N / 25 mm, and the adhesive strength at 200 ° C. is 0.04 to 0.13 N / 25 mm. It is preferably 25 mm.
  • the adhesive strength between the adhesive layer 20 and the back surface protective film 24 at 100 ° C. is preferably 0.07 to 0.19 N / 25 mm, and the adhesive strength at 200 ° C. is 0.08 to 0.18 N / 25 mm. Is preferred.
  • the adhesive strength of the adhesive layer 20, the gas barrier support 12 and the back surface protective film 24 is increased by heating during the formation of the inorganic layer 14 and the organic layer 16 by RtoR.
  • the difference in deformation due to heat between the gas barrier support 12 and the back surface protective film 24 is prevented by repeating peeling and sticking between the adhesive layer 20 and the gas barrier support 12 and / or the back surface protective film 24. It is possible to more suitably prevent the gas barrier support 12 and the back surface protective film 24 from peeling off, wrinkles of the gas barrier support 12 and the like due to the different deformations.
  • a surface protective film 18 is attached to the surface of the organic-inorganic laminate 28 of the gas barrier support 12. That is, the surface protective film 18 is stuck on the surface of the uppermost inorganic layer 14 of the organic-inorganic laminate 28.
  • the inorganic layer 14 is hard and brittle because it is dense. Therefore, it is easily damaged when it receives an impact directly from the outside. As described above, the inorganic layer 14 mainly exhibits gas barrier properties in the gas barrier film 10a of the present invention. Therefore, when the inorganic layer 14 is damaged, the gas barrier property is lowered. On the other hand, by sticking the surface protective film 18 on the uppermost inorganic layer 14, the inorganic layer 14 is protected and damage to the inorganic layer 14 is prevented.
  • the adhesive strength between the surface protective film 18 and the uppermost inorganic layer 14 at 25 ° C. is 0.02 N / 25 mm to 0.06 N / 25 mm.
  • the surface protective film 18 is peeled from the inorganic layer 14. Therefore, if the adhesive force between the surface protective film and the inorganic layer is strong, the inorganic layer may be damaged when the surface protective film is peeled off.
  • the surface protective film 18 can be peeled without damaging the inorganic layer 14, and optical characteristics and A gas barrier film excellent in gas barrier properties can be used in an apparatus such as an organic EL device.
  • the material of the surface protective film 18 has a melting point (melting point) of 80 ° C. to 170 ° C.
  • the surface protective film 18 is used in a peeled state like the gas barrier film 10b.
  • the inorganic material of the uppermost inorganic layer of the gas barrier film and the passivation film of the organic EL device are bonded together with an adhesive.
  • the adhesive for favorably bonding the inorganic materials and the adhesive suitably used for adhering the surface protective film are made of different materials. Therefore, when the surface protective film and the uppermost inorganic layer are bonded via an adhesive, the adhesive remains on the inorganic layer, and the function of the adhesive that bonds the inorganic layer and the passivation film is inhibited. This causes inconveniences such as
  • the surface protective film 18 is stuck directly on the uppermost inorganic layer 14 without using an adhesive.
  • thermocompression bonding is used as a method of attaching the surface protective film without using an adhesive. Therefore, even when heat is applied to the surface protective film by thermocompression bonding, problems such as peeling due to a difference in thermal characteristics between the back surface protective film and the gas barrier support may occur.
  • the melting point of the material of the surface protective film 18 is set to 80 ° C. to 170 ° C. Thereby, thermocompression bonding can be performed at a relatively low temperature, and problems caused by a difference in thermal characteristics between the back surface protective film and the gas barrier support can be suitably reduced.
  • the surface protection film 18 by setting the melting point of the material of the surface protection film 18 to 80 ° C. to 170 ° C., immediately after forming the inorganic layer 14, the surface is formed by thermocompression using heat generated when the inorganic layer 14 is formed.
  • the protective film 18 can be stuck.
  • the material of the surface protective film 18 is not particularly limited as long as the glass transition temperature satisfies the above range. Specifically, polyethylene (PE), polypropylene (PP), or the like can be suitably used as the material for the surface protective film 18. In particular, low-density polyethylene is suitably used as the material for the surface protective film 18.
  • the thickness of the surface protection film 18 is preferably 20 ⁇ m to 100 ⁇ m. By making the thickness of the surface protective film 18 20 ⁇ m or more, it is preferable in that the effect of protecting the uppermost inorganic layer 14 is sufficiently exhibited, and the gas barrier film 10a can be stably conveyed by RtoR. .
  • the thickness of the surface protective film 18 is preferably 100 ⁇ m or less, so that a lightweight gas barrier film 10a can be obtained, and the roll diameter when wound with RtoR can be reduced. Further, from the viewpoint of protecting the inorganic layer 14 and reducing the weight, the thickness of the surface protective film 18 is preferably 30 ⁇ m to 70 ⁇ m.
  • the Young's modulus of the surface protective film 18 is preferably 1 ⁇ 4 or less of the Young's modulus of the gas barrier support 12 and the Young's modulus of the back surface protective film 24.
  • the water vapor permeability of the surface protective film 18 is preferably 0.5 to 25 [g / (m 2 ⁇ day)].
  • the water vapor transmission rate of the surface protective film 18 is 0.5 to 25 [g / (m 2 ⁇ day)].
  • FIG. 2A and 2B conceptually show an example of a production apparatus for producing the gas barrier film 10a of the present invention.
  • This manufacturing apparatus includes an inorganic film forming apparatus 32 that forms the inorganic layer 14 and an organic film forming apparatus 30 that forms the organic layer 16.
  • FIG. 2A shows an inorganic film forming apparatus 32
  • FIG. 2B shows an organic film forming apparatus 30.
  • Both the inorganic film forming apparatus 32 shown in FIG. 2A and the organic film forming apparatus 30 shown in FIG. 2B send out the forming material from a roll formed by winding a long forming material.
  • the above-mentioned RtoR Roll to Roll
  • Such RtoR enables high-productivity and efficient production of the gas barrier film 10a.
  • the manufacturing apparatus shown in FIG. 2 (A) and FIG. 2 (B) attaches the adhesive layer 20 to the back surface of the long gas barrier support 12 as shown in FIG.
  • the inorganic layer 14 and the organic layer are formed on the surface of the gas barrier support 12 of the laminate 26 formed by sticking the back surface protective film 24 to the adhesive layer 20, that is, on the opposite surface (opposite surface) of the adhesive layer 20. 16 are alternately formed to manufacture the gas barrier film 10a and the like. Therefore, in the inorganic film forming apparatus 32 shown in FIG. 2A, the film forming material Za is a long laminate 26 and a surface in which one or more layers are formed on the surface of the laminate 26. Is the material of the organic layer 16. On the other hand, in the organic film forming apparatus shown in FIG. 2B, the film forming material Zb is the material of the inorganic layer 14 having one or more layers formed on the surface of the stacked body 26 and the surface thereof.
  • the inorganic film forming apparatus 32 is an apparatus for forming the inorganic layer 14 on the surface of the film forming material Za by a vapor phase growth method, and includes a supply chamber 56, a film forming chamber 58, and a winding chamber 60.
  • the inorganic film forming apparatus 32 conveys a long material to be formed such as a conveying roller pair, a guide member that regulates the position of the film forming material Za in the width direction, and various sensors.
  • various members provided in a known apparatus that performs film formation by a vapor deposition method may be included.
  • the supply chamber 56 includes a rotation shaft 64, a guide roller 68, and a vacuum exhaust unit 70.
  • a material roll 61 which is a laminated body 26 in which the laminated body 26, the organic layer 16, and the like are formed and wound with a long film-forming material Za, is loaded on a rotating shaft 64.
  • the film forming material Za passes through a predetermined conveyance path from the supply chamber 56 to the winding shaft 92 of the winding chamber 60 through the film forming chamber 58. Passed.
  • the inorganic film forming apparatus 32 that uses RtoR synchronizes the feeding of the film forming material Za from the material roll 61 and the winding of the film forming material Za with the inorganic layer formed on the winding shaft 92.
  • an inorganic layer is continuously formed on the film forming material Za in the film forming chamber 58 while transporting the film forming material Za in the longitudinal direction.
  • the rotating shaft 64 is rotated clockwise in the drawing by a driving source (not shown), the film forming material Za is fed from the material roll 61, and a predetermined path is guided by the guide roller 68, so that the partition wall 72. From the slit 72 a formed in the step S, the film is sent to the film formation chamber 58.
  • the inorganic film forming apparatus 32 is provided with a vacuum evacuation unit 74 in the supply chamber 56 and a vacuum evacuation unit 76 in the winding chamber 60, respectively, as a preferred embodiment.
  • the pressure in the supply chamber 56 and the take-up chamber 60 is adjusted according to the pressure in the film forming chamber 58 described later, that is, the film forming pressure, by the respective vacuum exhaust means. Maintain a predetermined pressure. As a result, the pressure in the adjacent chamber is prevented from affecting the pressure in the film forming chamber 58.
  • the vacuum evacuation means 70 is not particularly limited, and various known vacuum evacuation means used in a vacuum film formation apparatus such as a vacuum pump such as a turbo pump, a mechanical booster pump, a dry pump, and a rotary pump, Is available. In this regard, the same applies to the other vacuum exhaust means 74 and 76 described later.
  • the film forming chamber 58 is for forming an inorganic layer on the surface of the stacked body 26 or the organic layer 16 that is the film forming material Za by a vapor phase growth method.
  • the film forming chamber 58 includes a drum 80, a film forming unit 82, the vacuum exhaust unit 74 described above, and guide rollers 84a and 84b.
  • a film roll 87 for supplying a surface protective film F for protecting the deposited inorganic layer 14 is also disposed in the film forming chamber 58.
  • the film forming material Za conveyed to the film forming chamber 58 is guided to a predetermined path by the guide roller 84a and is wound around a predetermined position of the drum 80.
  • the film forming material Za is transported in the longitudinal direction while being positioned at a predetermined position by the drum 80, and the inorganic layer 14 is continuously formed.
  • the vacuum evacuation means 74 evacuates the inside of the film forming chamber 58 to obtain a degree of vacuum corresponding to the formation of the inorganic layer 14.
  • the drum 80 is a cylindrical member that rotates in the counterclockwise direction around the center line.
  • the film forming material Za supplied from the supply chamber 56 and guided to a predetermined path by the guide roller 84a and wound around a predetermined position of the drum 80 is wound around a predetermined area of the peripheral surface of the drum 80, and the drum
  • the inorganic layer 14 is formed on the surface by the film forming means 82 while being transported along a predetermined transport path while being supported / guided by 80.
  • the drum 80 may include temperature adjusting means, and the laminate 26 may be cooled, for example, during the formation of the inorganic layer 14.
  • the film forming means 82 forms the inorganic layer 14 on the surface of the film forming material Za by a vapor phase growth method.
  • the inorganic layer 14 may be formed by a known vapor deposition method such as the formation method described in the above-mentioned patent document. Therefore, the film forming method in the film forming means 82 is not particularly limited, and any known film forming method such as CVD, plasma CVD, sputtering, vacuum deposition, ion plating, etc. can be used.
  • the film forming means 82 is composed of various members according to the vapor phase growth method to be performed.
  • the film forming chamber 58 is for depositing the inorganic layer 14 by ICP-CVD (inductively coupled plasma CVD)
  • the film forming means 82 may include an induction coil for forming an induction magnetic field, It has gas supply means for supplying the reaction gas to the membrane region.
  • the film forming chamber 58 is for depositing the inorganic layer 14 by the CCP-CVD method (capacitive coupling type plasma CVD)
  • the film forming means 82 is hollow and has a large number of small surfaces on the surface facing the drum 62.
  • a high-frequency electrode having a hole and connected to a reaction gas supply source, a shower electrode acting as a reaction gas supply means, and the like are configured. If the film forming chamber 58 forms the inorganic layer 14 by vacuum deposition, the film forming means 82 heats the crucible filling the film forming material, the shutter for shielding the crucible, and the film forming material in the crucible. It has a heating means and the like. Further, if the film forming chamber 58 is for depositing the inorganic layer 14 by sputtering, the film forming means 82 includes a target holding means, a high frequency electrode, a gas supply means, and the like.
  • the formation conditions of the inorganic layer 14, such as temperature and pressure, may be appropriately set according to the type of the film forming unit 82, the target film thickness, film forming rate, and the like.
  • the pressure in the film formation chamber 58 is preferably 20 Pa to 200 Pa, and the temperature is preferably 0 ° C. to 80 ° C.
  • the pressure in the film formation chamber 58 is preferably 0.1 Pa to 10 Pa and the temperature is preferably 0 ° C. to 80 ° C.
  • the film forming material Za on which the inorganic layer 14 is formed and the surface protective film F is adhered while being supported / conveyed by the drum 80 is guided to a predetermined path by the guide roller 84b, and is formed in the partition 75. From 75a, it is conveyed to the winding chamber 60.
  • the film forming chamber 58 includes the film roll 87 for supplying the surface protective film F for protecting the formed inorganic layer 14.
  • the film roll 87 is formed by winding the surface protective film F in a roll shape.
  • the film roll 87 is supported by a rotating shaft 86 that is rotated by a drive source (not shown), and rotates in synchronization with the transport of the film forming material Za to send out the surface protective film F.
  • the surface protection film F is brought into contact with the surface of the inorganic layer 14 by the guide roller 84b and is laminated / adhered to the film forming material Za. That is, in the film forming chamber 58, the guide roller 84b also functions as a sticking roller for the surface protective film F to the film forming material Za.
  • the surface protective film F stuck on the inorganic layer 14 is a gas barrier film shown in FIG. It is the surface protection film 18 in 10a.
  • the surface protective film F adhered on the inorganic layer 14 has an organic composition described later. The surface protective film F is peeled off when the organic layer 16 is formed in the membrane device 30.
  • the surface protective film F is applied in the film forming chamber 58 immediately after the inorganic layer 14 is formed. That is, the step of forming the inorganic layer 14 and the step of attaching the surface protective film F that protects the inorganic layer 14 are continuously performed under the same pressure and temperature environment.
  • the surface protective film F can be thermocompression bonded using the heat applied in the film forming step. it can.
  • the surface protective film F is attached continuously under the same pressure as the film forming step, that is, under vacuum, and therefore, between the surface protective film F and the inorganic layer 14. It is possible to reduce the mixing of bubbles.
  • the pressure and temperature in the attaching process that is, the pressure and temperature in the film forming chamber 58 may be set as appropriate according to the film forming method performed in the film forming process.
  • the guide roller 84b that acts as a sticking roller for the surface protective film F may have a heating means.
  • the guide roller 84b disposed at the position closest to the drum 80 on the downstream side of the drum 80 and the film forming means 82 is an adhesive roller for attaching the surface protective film F.
  • the present invention is not limited to this, and the second and subsequent guide rollers from the drum 80 may be used as the adhering rollers.
  • the surface protection film F may be attached before the film forming material Za on which the inorganic layer 14 is formed by the film forming unit 82 comes into contact with another guide roller or the like. preferable. Therefore, it is preferable that the guide roller 84b disposed at a position closest to the drum 80 is a sticking roller.
  • the adhering step is performed in the film forming chamber 58 which is the same chamber as the film forming step.
  • the present invention is not limited to this, and the adhering step is the film forming chamber 58. It is good also as a structure performed in a different chamber.
  • a configuration in which the sticking process is performed in the winding chamber 60 may be adopted, or a chamber for performing the sticking process may be provided between the film forming chamber 58 and the winding chamber 60.
  • the temperature and pressure in this chamber may be set to be the same as the temperature and pressure in the film formation chamber.
  • the inorganic film-forming apparatus 32 of the example of illustration although it was set as the structure which sticks the surface protection film F also to inorganic layers 14 other than the uppermost inorganic layer 14, it is not limited to this, It becomes the uppermost layer.
  • the surface protective film F may be attached only to the inorganic layer 14.
  • the same plastic film as the surface protective film 18 can be used, and it is the same material as the surface protective film 18. May be different materials.
  • the winding chamber 60 includes a guide roller 90, a winding shaft 92, and the above-described vacuum exhaust means 76.
  • the film-formed film forming material Za that has been transported to the winding chamber 60 is wound into a roll shape by a winding shaft 92 to form the inorganic layer 14 and the surface protective film F is adhered thereto.
  • the material roll 93 is formed by winding the material Za.
  • This material roll 93 is supplied to the organic film forming apparatus 30, or is supplied to the next step as a material roll 93 formed by winding the gas barrier film 10a, which is a functional film of the present invention.
  • the organic film forming apparatus 30 shown in FIG. 2 (B) applies a coating material to be the organic layer 16 while transporting a long film-forming material Zb in the longitudinal direction, and after drying, coats the coating film by light irradiation.
  • This is an apparatus for forming an organic layer 16 by crosslinking (polymerizing) the contained organic compound and curing it.
  • the organic film forming apparatus 30 includes, as an example, a coating unit 36, a drying unit 38, a light irradiation unit 40, a rotating shaft 42, a winding shaft 46, and a pair of conveying rollers 48 and 50. .
  • the organic film forming apparatus 30 also includes a winding shaft 44 that peels off and winds up the surface protective film F attached by the inorganic film forming apparatus 32 that forms the inorganic layer 14.
  • the organic film forming apparatus 30 performs film formation by coating while conveying a long material to be formed such as a pair of transport rollers, a guide member for the material to be deposited Zb, and various sensors. You may have the various members provided in a well-known apparatus.
  • a material roll 93 formed by winding a long film-forming material Zb that is the stacked body 26 on which the stacked body 26, the inorganic layer 14, and the like are formed is loaded on the rotating shaft 42.
  • the film forming material Zb is pulled out from the material roll 61, passes through the conveying roller pair 48, and passes under the coating unit 36, the drying unit 38, and the light irradiation unit 40. Then, it passes through a predetermined conveying path that reaches the winding shaft 46 through the conveying roller pair 50.
  • the film forming material Za from the material roll 61 is fed out and the film forming material Zb on which the organic layer is formed on the winding shaft 46 is synchronously performed.
  • the coating material 36 is applied with the coating material that is an organic layer
  • the drying device 38 is used to dry the coating material
  • the light irradiation device 40 is used.
  • the organic layer is formed by curing.
  • the surface protection film F is adhered to the surface of the inorganic layer 14, so that the transport by the transport roller pair 48 is performed. And the surface protection film F is peeled from the film-forming material Zb by winding by the winding shaft 44 that rotates in synchronization with this conveyance. That is, in the organic film forming apparatus 30, the transport roller pair 48 also functions as a peeling roller for the surface protective film F.
  • the coating means 36 applies a paint for forming the organic layer 16 prepared in advance on the surface of the film forming material Zb.
  • This paint is obtained by dissolving an organic compound such as a monomer, which becomes the organic layer 16 by crosslinking and polymerizing in an organic solvent, in the organic solvent.
  • the coating material contains a silane coupling agent in order to improve the adhesion of the organic layer 16.
  • necessary components such as a surfactant, a polymerization initiator, and an increasing viscosity agent may be appropriately added to this paint.
  • the application of the paint is all known coating methods such as die coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, etc. Is available. Above all, because the coating can be applied in a non-contact manner, the surface of the film-forming material Zb is not damaged, and the bead formation is excellent in the embedding of the surface of the film-forming material Zb, etc. Are preferably used.
  • the film forming material Zb is then transported to the drying unit 38 and the coating applied by the coating unit 36 is dried.
  • the method of drying the paint by the drying means 38 is not limited, and before the film-forming material Zb reaches the light irradiation means 40, the paint is dried and the organic solvent is removed to allow crosslinking (polymerization).
  • Any known drying means can be used as long as it can be brought into a stable state.
  • Various known methods can be used. As an example, heat drying with a heater, heat drying with warm air, and the like are exemplified.
  • the drying temperature is preferably set to 70 ° C. or higher so that the temperature of the film forming material Zb at the time of drying in the drying means 38 is 70 ° C. or higher.
  • the adhesion between the organic layer 16 and the inorganic layer 14 is further improved by drying the coating material with the film-forming material Zb at a temperature of 70 ° C. or higher. preferable.
  • the film forming material Zb is transported to the light irradiation means 40.
  • the light irradiation means 40 irradiates the coating material applied by the application means 36 and dried by the drying means 38 with ultraviolet rays or visible light, and crosslinks (polymerizes) an organic compound such as a monomer contained in the coating material to cure it.
  • the organic layer 16 is used.
  • the light irradiation area by the light irradiation means 40 in the film forming material Zb may be made an inert atmosphere by nitrogen substitution or the like, if necessary.
  • a temperature of the film forming material Zb, that is, the coating film may be adjusted at the time of curing by using a backup roller or the like that contacts the back surface.
  • Deposition during curing so that the temperature of the film-forming material Zb when the coating film is cured by the light irradiation means 40 is preferably 30 ° C. or higher (more preferably 50 ° C. or higher, more preferably 60 ° C. or higher).
  • the heating temperature of the film material Zb is preferably 30 ° C. or higher (more preferably 50 ° C. or higher, more preferably 60 ° C. or higher).
  • the crosslinking (polymerization) of the organic compound that becomes the organic layer is not limited to photopolymerization. That is, various methods according to the organic compound used as the organic layer 16 can be used for crosslinking of the organic compound, such as heat polymerization, electron beam polymerization, and plasma polymerization.
  • various methods according to the organic compound used as the organic layer 16 can be used for crosslinking of the organic compound, such as heat polymerization, electron beam polymerization, and plasma polymerization.
  • an acrylic resin such as an acrylic resin or a methacrylic resin is preferably used as the organic layer 16
  • photopolymerization is preferably used.
  • the film-forming material Zb on which the organic layer 16 has been formed in this manner is nipped and conveyed by the conveyance roller pair 50 to reach the take-up shaft 46, and is taken up again in a roll shape by the take-up shaft 46.
  • the material roll 61 is formed by winding the film forming material Zb on which the layer 16 is formed.
  • the material roll 61 is supplied to the inorganic film forming apparatus 32 as a material roll 61 formed by winding the film forming material Zb on which the organic layer 16 is formed.
  • the adhesive layer 20 is formed on the long gas barrier support 12, and the long laminate 26 is produced by attaching the back surface protective film 24 to the adhesive layer 20.
  • the laminate 26 may be applied to a long sheet-like material such as a feeding means for a long sheet-like material from a material roll or a laminating roller in a known organic layer deposition apparatus shown in FIG.
  • a known method using RtoR such as a method using an apparatus incorporating a means for laminating a long sheet-like material, to produce a long laminate sheet obtained by sticking two sheet-like materials with an adhesive layer do it.
  • a drying part and a curing part of the adhesive layer 20 are unnecessary.
  • the laminated body 26 may be formed by forming a laminated body in which the adhesive layer 20 is attached to the back surface protective film 24 and attaching the gas barrier support 12 to the adhesive layer 20 of the laminated body. Or the laminated body 26 may form the laminated body which affixed the adhesion layer 20 on the gas barrier support body 12, and may affix the back surface protective film 24 on the adhesion layer 20 of this laminated body.
  • a low retardation film is used as the gas barrier support 12
  • a method of forming a laminate in which the adhesive layer 20 is adhered to the back surface protective film 24 and laminating the gas barrier support 12 thereon is provided. It is preferably used.
  • this roll When a roll formed by winding such a laminated body 26 is produced, this roll is loaded as a material roll 61 onto the rotation shaft 64 of the supply chamber 56 of the inorganic film forming apparatus 32.
  • the material roll 61 When the material roll 61 is loaded on the rotating shaft 64, the film forming material Za is drawn out and passed through a predetermined path from the supply chamber 56 through the film forming chamber 58 to the winding shaft 92 of the winding chamber 60.
  • the film formation material Za sent out from the material roll 61 is guided by the guide roller 68 and conveyed to the film formation chamber 58.
  • the film forming material Za transferred to the film forming chamber 58 is guided by the guide roller 84a, wound around the drum 80, supported by the drum 80, and transferred through a predetermined path by the film forming means 82.
  • the first inorganic layer 14 is formed by CCP-CVD.
  • the surface protection film F sent out from the film roll 87 is stuck on the first inorganic layer 14.
  • the inorganic layer 14 may be formed by a known vapor deposition method according to the inorganic layer 14 to be formed. Therefore, the process gas to be used, the film formation conditions, and the like may be set / selected as appropriate according to the inorganic layer 14 to be formed, the film thickness, and the like.
  • the film forming material Zb on which the inorganic layer 14 is formed is guided by the guide roller 84b and conveyed to the winding chamber 60.
  • the film forming material Zb transported to the winding chamber 60 is guided to the winding shaft 92 by the guide roller 90, wound in a roll shape by the winding shaft 92, and used as a material roll 93.
  • a material roll 93 formed by winding the laminated body 26 on which the first inorganic layer 14 is formed is loaded on the rotating shaft 42 of the organic film forming apparatus 30.
  • the laminate 26 formed with the first inorganic layer 14 that is the film-forming material Zb is pulled out of the material roll 93, passes through the conveying roller pair 48, It passes through the coating means 36, the drying means 38, and the light irradiation means 40, passes through a pair of transport rollers 50, and reaches a take-up shaft 46.
  • the film-forming material Zb drawn from the material roll 93 is peeled off from the surface protection film F by the transport roller pair 48 and then transported to the coating means 36, and the coating material to be the organic layer 16 is applied to the surface.
  • the paint to be the organic layer 16 is obtained by dissolving an organic compound such as a monomer, a silan coupling agent, a polymerization initiator, and the like in an organic solvent according to the organic layer 16 to be formed.
  • the film-forming material Zb to which the coating material to be the organic layer 16 is applied is then heated by the drying means 38 to remove the organic solvent and dry the coating material.
  • the film-forming material Zb from which the coating material has been dried is then irradiated with ultraviolet rays or the like by the light irradiation unit, and the organic compound is polymerized and cured to form the first organic layer 16.
  • the organic compound that becomes the organic layer 16 may be cured in an inert atmosphere such as a nitrogen atmosphere. Further, the laminated body 26 may be heated when the organic compound to be the organic layer 16 is cured.
  • the film-forming material Zb on which the first organic layer 16 is formed is conveyed by the conveying roller pair 50 and wound in a roll shape by the take-up shaft 46, and the inorganic layer 14 and the organic layer 16 are layered one by one.
  • the material roll 61 formed by winding the formed laminate 26 is supplied again to the inorganic film forming apparatus 32 shown in FIG.
  • the material roll 61 formed by winding the laminated body 26 in which the inorganic layer 14 and the organic layer 16 are formed one by one is loaded on the rotating shaft 64 of the inorganic film forming apparatus 32 in the same manner as described above.
  • the layered body 26 in which the inorganic layer 14 and the organic layer 16 are formed is pulled out as a film forming material Za and passed through the take-up shaft 92, and the second layer is formed on the first organic layer 16.
  • the inorganic layer 14 is formed, and further, the surface protective film 18 is adhered, and the organic / inorganic laminate 28 and the surface protective film 18 including the inorganic layer 14, the organic layer 16, and the inorganic layer 14 are formed.
  • the gas barrier film 10a is wound around a winding shaft 92 in a roll shape, and is shipped or stored as a product as a material roll 93 around which the gas barrier film 10a is wound, or is supplied to the next step or the like.
  • the rear surface protective film 24 is provided, even when the gas barrier support 12 is thin and weak, the formation of the inorganic layer 14 and the organic layer 16 by RtoR is stable.
  • the film forming materials Za and Zb can be conveyed.
  • the adhesive layer 20 and the gas barrier support 12 are slightly adhered, and further, the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 is different. 0 to 80 ppm / ° C.
  • the gas barrier film 10a causes peeling of the gas barrier support 12 and back surface protective film 24, wrinkles of the gas barrier support 12 and the like. This prevents damage to the inorganic layer 14 due to this.
  • the inorganic layer 14 can be prevented from being damaged. Further, since the surface protective film 18 and the inorganic layer 14 are slightly adhesive, damage to the inorganic layer 14 when the surface protective film 18 is peeled can be prevented. Further, since the melting point of the surface protective film 18 is 80 to 170 ° C., it can be thermocompression bonded at a low temperature, and problems caused by the adhesive remaining can be prevented.
  • Example 1 As the gas barrier support 12, a long COC film (F1 film, manufactured by Gunze Co., Ltd.) having a width of 1000 mm and a thickness of 50 ⁇ m was prepared.
  • the gas barrier support 12 has a linear expansion coefficient (CTE) of 65 ppm / ° C. and a retardation value (Re) of 5 nm.
  • the Young's modulus is 3 GPa.
  • water vapor transmission rate (WVTR) is 1 [g / (m 2 ⁇ day)].
  • the back surface protective film 24 a long PET film (Lumirror, manufactured by Toray Industries, Inc.) having a width of 1000 mm and a thickness of 50 ⁇ m was prepared.
  • the back surface protective film 24 has a linear expansion coefficient (CTE) of 15 ppm / ° C. and a friction coefficient ( ⁇ ) of 0.6.
  • the Young's modulus is 4.5 GPa.
  • the water vapor transmission rate (WVTR) is 3 [g / (m 2 ⁇ day)].
  • LDPE long low density polyethylene film
  • STYTECT PAC-2 manufactured by Sanei Kaken Co., Ltd.
  • the surface protective film has a melting point Tm of 108 ° C.
  • the Young's modulus is 0.3 GPa.
  • the water vapor transmission rate (WVTR) is 20 [g / (m 2 ⁇ day)]. It is.
  • An acrylic resin adhesive (adhesive material) containing an alkyl acrylate monomer having 3 to 10 carbon atoms in the alkyl group portion was applied to one surface of the back surface protective film 24 as the adhesive layer 20.
  • This adhesive was obtained by preparing in the same manner as the pressure-sensitive adhesive coating solution described in Example 1 of JP-A-2008-38103. The adhesive was applied so that the cured adhesive layer 20 had a thickness of 50 ⁇ m.
  • the adhesive was irradiated with ultraviolet rays to be in a semi-cured state.
  • a gas barrier support 12 (COC film) was adhered to the semi-cured adhesive to produce a laminate 26 composed of the gas barrier support 12, the adhesive layer 20, and the back surface protective film 24.
  • the above process was performed using the well-known apparatus by RtoR which has an application
  • a material roll 61 formed by winding the laminated body 26 (film formation material Za) is loaded on the rotating shaft 64 of the inorganic film forming apparatus 32 shown in FIG.
  • An inorganic layer 14 having a thickness of 25 nm was formed on the surface of the support 12 (the surface opposite to the surface on which the pressure-sensitive adhesive layer 20 was formed), and the surface protective film F was attached by thermocompression bonding.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas.
  • the supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas.
  • the film forming pressure was 50 Pa.
  • the shower film-forming electrode was supplied with 3000 W of plasma excitation power at a frequency of 13.5 MHz from a high-frequency power source. Further, 500 W bias power was supplied to the drum 80 from a bias power source. During the film formation, the temperature of the drum 80 was adjusted to 20 ° C.
  • the material roll 93 formed by winding the laminated body 26 on which the inorganic layer 14 was formed was taken out from the winding chamber 60.
  • the cross-section of the laminate 26 on which the inorganic layer 14 was formed was measured by SEM, the thickness of the mixed layer formed by mixing the forming component of the gas barrier support 12 and the forming component of the inorganic layer 14 was 5 nm.
  • a material roll 93 formed by winding the laminate 26 (film formation material Zb) on which the inorganic layer 14 is formed is loaded on the rotating shaft 42 of the organic film forming apparatus 30 shown in FIG.
  • An organic layer 16 having a thickness of 3 ⁇ m was formed on the surface.
  • the coating material for forming the organic layer 16 is MEK (methyl ethyl ketone) added with TMPTA (manufactured by Daicel Cytec), photopolymerization initiator (Irg189 manufactured by Ciba Chemicals), and silane coupling agent (KBM5103 manufactured by Shin-Etsu Silicone). And prepared. That is, the organic layer 16 is a layer formed by polymerizing TMPTA.
  • the addition amount of the photopolymerization initiator was 2% by mass in the concentration excluding the organic solvent, and the addition amount of the silane coupling agent was 10% by mass in the concentration excluding the organic solvent (that is, TMPTA in the solid content was 88%). mass%). Moreover, the solid content concentration of the paint obtained by diluting the components blended in these ratios with MEK was 15% by mass (that is, MEK was 85% by mass).
  • the coating means 36 used a die coater.
  • the drying means 38 used the apparatus which blows off the drying wind from a nozzle, and drying was performed at 80 degreeC.
  • the light irradiation means 40 was irradiated with ultraviolet rays to carry out polymerization. The curing with ultraviolet rays was performed while heating the gas barrier support 12 to 80 ° C. from the back side so that the irradiation amount of the ultraviolet rays was about 500 mJ / cm 2 in terms of the integrated irradiation amount.
  • a material roll 61 formed by winding the laminate 26 in which the organic layer 16 is formed on the inorganic layer 14 is loaded again into the inorganic film forming apparatus 32 shown in FIG.
  • the inorganic layer 14 having a thickness of 50 nm is formed, and the surface protective film 18 is attached by thermocompression bonding, and the inorganic layer 14 is formed on the surface of the laminate 26 composed of the gas barrier support 12, the adhesive layer 20, and the back protective film 24.
  • a gas barrier film 10a shown in FIG. 1 (A) formed by forming an organic / inorganic laminate 28 composed of the organic layer 16 and the inorganic layer 14 and the surface protective film 18 was produced.
  • the adhesive strength (25 ° C.) between the surface protective film 18 and the uppermost inorganic layer 14 of the gas barrier film 10a was measured according to JIS Z0237 using a peel tester, the adhesive strength was 0.04 N / 25 mm. Met.
  • the cross section of the gas barrier film 10a was measured by SEM, the formation component of the organic layer 16 and the formation component of the inorganic layer 14 existing between the organic layer 16 and the inorganic layer 14 formed on the organic layer 16
  • the thickness of the mixed layer formed by mixing was 5 nm.
  • Example 2 except that the thickness of the back surface protective film 24 was 38 ⁇ m; Except for the thickness of the back surface protective film 24 being 75 ⁇ m (Example 3); A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that the thickness of the back surface protective film 24 was changed to 20 ⁇ m (Example 4).
  • Example 5 Except for the thickness of the gas barrier support 12 being 25 ⁇ m (Example 5); Example 6 except that the thickness of the gas barrier support 12 is 25 ⁇ m and the thickness of the back surface protective film 24 is 75 ⁇ m; Except for the thickness of the gas barrier support 12 being 100 ⁇ m (Example 7); A gas barrier film 10a shown in FIG. 1A is produced in the same manner as in Example 1 except that the thickness of the gas barrier support 12 is 100 ⁇ m and the thickness of the back surface protective film 24 is 38 ⁇ m (Example 8). did.
  • Example 9 Except for changing the thickness of the surface protective film 18 to 25 ⁇ m (Example 9); A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that the thickness of the surface protective film 18 was changed to 75 ⁇ m (Example 10).
  • Example 11 Except for changing the thickness of the adhesive layer 20 to 25 ⁇ m (Example 11); Except for changing the thickness of the adhesive layer 20 to 75 ⁇ m (Example 12); Except for changing the thickness of the adhesive layer 20 to 100 ⁇ m (Example 13); Except for changing the thickness of the adhesive layer 20 to 150 ⁇ m (Example 14); A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that the thickness of the adhesive layer 20 was changed to 200 ⁇ m (Example 15).
  • Example 16 Except for changing the back surface protective film 24 to a PEN film having a thickness of 50 ⁇ m and a linear expansion coefficient of 13 ppm / ° C. (Teonex manufactured by Teijin DuPont Films) (Example 16); Except for changing the back surface protective film 24 to a PI film having a thickness of 50 ⁇ m and a linear expansion coefficient of 27 ppm / ° C.
  • Example 17 The back protective film 24 is changed to a PI film (Kapton manufactured by Toray DuPont) with a thickness of 50 ⁇ m and a linear expansion coefficient of 27 ppm / ° C., and the gas barrier support 12 has a thickness of 50 ⁇ m, a linear expansion coefficient of 77 ppm / ° C., and a retardation value of 148 nm.
  • a gas barrier film 10a shown in FIG. 1 (A) was produced in the same manner as in Example 1 except that the PC film was changed to S148 (manufactured by Teijin Limited) (Example 18).
  • Example 19 Except for changing the conditions for forming the adhesive layer 20 so that the adhesive strength with the gas barrier support 12 is 0.01 (Example 19); Except for changing the conditions for forming the adhesive layer 20 so that the adhesive strength with the gas barrier support 12 is 0.05 (Example 20); The conditions for forming the adhesive layer 20 were changed, and the adhesive strength with the gas barrier support 12 was changed to 0.15 (Example 21); Except for changing the conditions at the time of forming the adhesive layer 20 so that the adhesive strength with the back surface protective film 24 is 0.05 (Example 22); Except for changing the conditions for forming the adhesive layer 20 and setting the adhesive strength with the back surface protective film 24 to 0.20 (Example 23); The gas barrier film 10a shown in FIG.
  • Example 26 Except that the surface of the back surface protective film 24 opposite to the surface on which the adhesive layer 20 is formed is subjected to corona treatment to roughen the surface roughness and the friction coefficient is 0.4 (Example 26). In the same manner as in Example 1, a gas barrier film 10a shown in FIG.
  • Example 27 is the same as Example 1 except that the surface protective film 18 is changed to a PP film (SUNYTECT PAC-3 manufactured by Sanei Kaken Co., Ltd.) having a thickness of 50 ⁇ m, a melting point Tm of 165 ° C., and a Young's modulus of 0.6.
  • PP film SNYTECT PAC-3 manufactured by Sanei Kaken Co., Ltd.
  • Example 28 The temperature of the drum 80 was changed to 5 ° C., and the thickness of the mixed layer between the gas barrier support 12 and the inorganic layer 14 was changed to 1 nm (Example 28); The temperature of the drum 80 was changed to 60 ° C., and the thickness of the mixed layer between the gas barrier support 12 and the inorganic layer 14 was 20 nm (Example 29); The temperature of the drum 80 was changed to 5 ° C., and the thickness of the mixed layer between the organic layer 16 and the inorganic layer 14 was changed to 1 nm (Example 30); The temperature of the drum 80 was changed to 60 ° C., and the mixed layer between the organic layer 16 and the inorganic layer 14 was changed to 20 nm (Example 31); The gas barrier film 10a shown in FIG.
  • Example 32 to 35 Change the conditions when forming the adhesive layer 20, The adhesive strength between the gas barrier support and the adhesive layer at 100 ° C. is 0.03 N / 25 mm. Except for the adhesive force of the adhesive layer and the back surface protective film at 100 ° C. being 0.07 N / 25 mm (Example 32); Change the conditions when forming the adhesive layer 20, Adhesive strength of the gas barrier support and adhesive layer at 100 ° C. is 0.14 N / 25 mm Except for the adhesive force of the adhesive layer and the back surface protective film at 100 ° C. being 0.19 N / 25 mm (Example 33); Change the conditions when forming the adhesive layer 20, The adhesive strength between the gas barrier support and the adhesive layer at 200 ° C.
  • Example 34 Change the conditions when forming the adhesive layer 20, The adhesive strength between the gas barrier support and the adhesive layer at 200 ° C. is 0.13 N / 25 mm.
  • the gas barrier film shown in FIG. 1 (A) was the same as Example 1 except that the adhesive force between the adhesive layer and the back surface protective film at 200 ° C. was 0.18 N / 25 mm (Example 35). 10a was produced.
  • Example 1 A gas barrier film was produced in the same manner as in Example 1 except that the back surface protective film and the adhesive layer were not provided.
  • Example 2 A gas barrier film was produced in the same manner as in Example 1 except that the surface protective film was not provided.
  • Example 7 A gas barrier film was produced in the same manner as in Example 1 except that the organic / inorganic laminate was configured in the order of an organic layer, an inorganic layer, and an organic layer from the gas barrier support side (Comparative Example 7).
  • a gas barrier film was prepared in the same manner as in Example 1 except that the back protective film was changed to a PE film (SUNYTECT PAC-2 manufactured by Sanei Kaken Co., Ltd.) having a thickness of 50 ⁇ m and a linear expansion coefficient of 160 ppm / ° C. Produced.
  • PE film SNYTECT PAC-2 manufactured by Sanei Kaken Co., Ltd.
  • the gas barrier film of the present invention is 9 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day) before and after peeling of the back surface protective film 24 and the surface protective film 18. It has an excellent gas barrier property of less than In Example 21, since the adhesive force between the gas barrier support 12 and the adhesive layer 20 is slightly higher than that of the other examples, repeated peeling and sticking between the gas barrier support 12 and the adhesive layer 20 are performed. It is considered that the inorganic layer 14 is slightly damaged due to this, and the gas barrier property is slightly decreased. In Example 22, the adhesive strength between the back surface protective film 24 and the adhesive layer 20 is slightly lower than in the other examples. Therefore, after the back surface protective film 24 is peeled off, the adhesive layer remains on the gas barrier support 12 side. Occurred intermittently.
  • Comparative Example 1 in which the back surface protective film and the adhesive layer are not provided does not have the back surface protective film, and thus has no self-supporting property and poor sliding property. Therefore, nicks and wrinkles were generated by the transport of RtoR, and cracks in the gas barrier support occurred. As a result, the gas barrier property was lowered. Further, in Comparative Example 2 that does not have the surface protective film 18, the inorganic layer directly touches the guide roller during conveyance with RtoR. As a result, the inorganic layer was cracked and the gas barrier property was lowered.
  • Comparative Example 3 in which the adhesive strength between the gas barrier support and the adhesive layer is 2 N / 25 mm, the adhesive strength is too high, so that peeling and sticking are repeated between the gas barrier support 12 and the adhesive layer 20. Therefore, deformation cannot be suppressed. As a result, wrinkles were generated and gas barrier properties were lowered. Further, in Comparative Example 4 in which the adhesive strength between the gas barrier support and the adhesive layer is 0.005 N / 25 mm, the adhesive strength is too weak, so that it peels off during the transport of RtoR, resulting in the inorganic layer. Cracks, cracks, etc. occurred in the gas and the gas barrier properties were lowered.
  • Comparative Example 5 in which the adhesive strength between the surface protective film and the inorganic layer is 0.2 N / 25 mm, the adhesive strength of the surface protective film is too high. Part was observed to remain on the inorganic layer. Moreover, since the adhesive force was too high, the surface inorganic film was damaged at the time of peeling. As a result, the gas barrier properties were lowered. Further, in Comparative Example 6 in which the adhesive strength between the surface protective film and the inorganic layer is 0.001 N / 25 mm, the adhesive strength of the surface protective film is too low, so that it peels off during the transport of RtoR. As a result, cracks and cracks were generated in the inorganic layer, and the gas barrier properties were lowered.
  • Comparative Example 7 in which the lowermost layer and the uppermost layer were organic layers, the adhesion between the lowermost organic layer and the gas barrier support was low, and an appropriate organic / inorganic laminate could not be formed.
  • Comparative Example 8 in which the difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 95 ppm, the back surface protective film melts with heat and breaks during transportation. As a result, cracks and cracks were generated in the inorganic layer, and the gas barrier properties were lowered.
  • Comparative Example 9 where the melting point of the surface protective film is 260 ° C., the adhesion between the surface protective film and the inorganic layer is low, and the surface is peeled off during transportation, and the inorganic layer is damaged by contact with the guide roller or the like. , Gas barrier properties decreased.
  • the gas barrier properties immediately after the production and the gas barrier properties after a lapse of a predetermined time were measured, and durability was evaluated.
  • Example 36 Except for changing the gas barrier support 12 to a COP film (ARTON manufactured by JSR) having a thickness of 50 ⁇ m and a water vapor transmission rate of 100 [g / (m 2 ⁇ day)] (Example 36); Except for changing the gas barrier support 12 to a TAC film having a thickness of 50 ⁇ m and a water vapor transmission rate of 600 [g / (m 2 ⁇ day)] (Fuji Film, Fuji Tac) (Example 37); Similarly, a gas barrier film 10a shown in FIG.
  • COP film ARTON manufactured by JSR
  • Example 38 Except for changing the back surface protective film 24 to a PEN film having a thickness of 50 ⁇ m and a water vapor transmission rate of 2 [g / (m 2 ⁇ day)] (Teonex manufactured by Teijin DuPont Films) (Example 38); Except that the back surface protective film 24 was changed to a PC film (S148, manufactured by Teijin Limited) having a thickness of 50 ⁇ m and a water vapor transmission rate of 100 [g / (m 2 ⁇ day)] (Example 39); Thus, a gas barrier film 10a shown in FIG.
  • Example 40 Except for changing the surface protective film 18 to a PP film (SUNYTECT PAC-3 manufactured by Sanei Kaken Co., Ltd.) having a thickness of 50 ⁇ m and a water vapor transmission rate of 10 [g / (m 2 ⁇ day)] (Example 40);
  • Example 41 is the same as Example 1 except that the surface protection film 18 is changed to a PET + PE composite film (Panabrid, manufactured by Panac) having a thickness of 50 ⁇ m and a water vapor transmission rate of 3 [g / (m 2 ⁇ day)].
  • a gas barrier film 10a shown in FIG.
  • Example 42 The gas barrier support 12 is changed to a COP film (ARTON manufactured by JSR) having a thickness of 50 ⁇ m and a water vapor transmission rate of 100 [g / (m 2 ⁇ day)], and the back protective film 24 is changed to a thickness of 50 ⁇ m and a water vapor transmission rate of 100 [ g / (m 2 ⁇ day)]
  • a gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that it was changed to a PC film (S148 manufactured by Teijin Ltd.) (Example 42). .
  • the water vapor permeability [g / (m 2 ⁇ day)] of the produced gas barrier film was measured by a calcium corrosion method (a method described in JP-A-2005-283561).
  • the conditions for the constant temperature and humidity treatment were a temperature of 40 ° C. and a humidity of 90% RH.
  • Evaluation is the ratio of water vapor permeability [g / (m 2 ⁇ day)] after leaving for 1000 hours to water vapor permeability [g / (m 2 ⁇ day)] immediately after production, More than 85% "A”; “B” for 55% or more and less than 85%; 30% or more and less than 55% "C”; Those less than 30% were evaluated as “D”.
  • the results are shown in Table 5 below.
  • the water vapor transmission rate of the back protective film is 0.1 to 10 [g / (m 2 ⁇ day)], and the water vapor transmission rate of the surface protective film is 0.5 to 25 [g.
  • Examples 1, 36 to 38, 40, and 41, which are / (m 2 ⁇ day)] have high gas barrier properties after being left for 1000 hours and are excellent in durability.
  • Example 1 and Example 39 when the water vapor transmission rate of the back surface protective film exceeds 25 [g / (m 2 ⁇ day)].
  • the gas barrier property after leaving for 1000 hours is slightly lowered and the durability is slightly lowered. From the above results, the effects of the present invention are clear.
  • Organic film forming apparatus 10a, 10b, 100 Gas barrier film 12 Gas barrier support 14 Inorganic layer 16 Organic layer 18 Surface protective film 20 Adhesive layer 24 Back surface protective film 26 Laminated body 28 Organic / inorganic laminated body 30 Organic film forming apparatus 32 Inorganic film forming apparatus 36 Coating means 38 Drying means 40 Light irradiation means 42, 64, 86 Rotating shaft 44, 46, 92 Winding shaft 48, 50 Conveying roller pair 56 Supply chamber 58 Film forming chamber 60 Winding chamber 61, 93 Material roll 68, 84a, 84b, 90 Guide rollers 70, 74, 76 Vacuum exhaust means 72, 75 Partitions 72a, 75a Slit 80 Drum 82 Film forming means 87 Film roll

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention addresses the problem of providing: a low-cost functional film which is free from damage on an inorganic layer or the like and stably exhibits an aimed performance; and a method for producing this functional film. The problem is solved by a functional film wherein: the retardation value of a gas barrier supporting body is 300 nm or less; the lowermost layer and the uppermost layer of an organic-inorganic laminate are inorganic layers; the difference between the linear expansion coefficient of the gas barrier supporting body and the linear expansion coefficient of a backside protective film is 0-80 ppm/°C; the melting point of a frontside protective film is 80-170°C; the adhesive force between the gas barrier supporting body and an adhesive layer is from 0.01 N/25 mm to 0.15 N/25 mm; and the adhesive force between the frontside protective film and an inorganic layer is from 0.02 N/25 mm to 0.06 N/25 mm.

Description

機能性フィルムおよび機能性フィルムの製造方法Functional film and method for producing functional film
 本発明は、有機層と無機層との積層構造を有する機能性フィルム、および、この機能性フィルムの製造方法に関する。 The present invention relates to a functional film having a laminated structure of an organic layer and an inorganic layer, and a method for producing the functional film.
 光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、各種の半導体装置、太陽電池等の各種装置において防湿性が必要な部位や部品、食品や電子部品等を包装する包装材料などガスバリアフィルムが利用されている。
 ガスバリアフィルムは、一般的に、ポリエチレンテレフタレート(PET)フィルム等のプラスチックフィルムを支持体(基板)として、その上に、ガスバリア性を発現するガスバリア層を形成してなる構成を有する。また、ガスバリアフィルムに用いられるガスバリア層としては、例えば、窒化ケイ素、酸化珪素、酸化アルミニウム等の各種の無機化合物からなる層が知られている。
Gas barrier films such as optical elements, display devices such as liquid crystal displays and organic EL displays, various semiconductor devices, parts and components that require moisture resistance in various devices such as solar cells, and packaging materials for packaging food and electronic components Has been.
The gas barrier film generally has a configuration in which a plastic film such as a polyethylene terephthalate (PET) film is used as a support (substrate) and a gas barrier layer that exhibits gas barrier properties is formed thereon. Moreover, as a gas barrier layer used for a gas barrier film, the layer which consists of various inorganic compounds, such as a silicon nitride, silicon oxide, aluminum oxide, is known, for example.
 このようなガスバリアフィルムにおいて、より高いガスバリア性能が得られる構成として、支持体の上に、有機化合物からなる有機層と、無機化合物からなる無機層とを交互に積層した積層構造を有する、有機/無機積層型のガスバリアフィルム(以下、積層型のガスバリアフィルムとも言う)が知られている。
 積層型のガスバリアフィルムにおいても、主にガスバリア性を発現するのは無機層である。積層型のガスバリアフィルムでは、下地となる有機層の上に無機層を形成することにより、有機層によって無機層の形成面を平滑化して、良好な平滑性を有する有機層の上に無機層を形成する。これにより、ヒビや割れ等のない均一な無機層を形成して、優れたガスバリア性能を得ている。また、この有機層と無機層との積層構造を、複数、繰り返し有することにより、より優れたガスバリア性能を得ることができる。
In such a gas barrier film, as a configuration for obtaining higher gas barrier performance, an organic / organic layer having a laminated structure in which an organic layer made of an organic compound and an inorganic layer made of an inorganic compound are alternately laminated on a support. An inorganic laminated gas barrier film (hereinafter also referred to as a laminated gas barrier film) is known.
In the laminated gas barrier film, the inorganic layer mainly exhibits gas barrier properties. In a laminated gas barrier film, an inorganic layer is formed on an organic layer serving as a base, whereby the formation surface of the inorganic layer is smoothed by the organic layer, and the inorganic layer is formed on the organic layer having good smoothness. Form. Thereby, the uniform inorganic layer without a crack, a crack, etc. is formed, and the outstanding gas barrier performance is acquired. Moreover, more excellent gas barrier performance can be obtained by repeatedly including a plurality of laminated structures of the organic layer and the inorganic layer.
 このような積層型のガスバリアフィルムの製造方法として、いわゆるロール・トゥ・ロール(以下、RtoRとも言う)が知られている。RtoRとは、長尺な支持体をロール状に巻回してなる支持体ロールから支持体を送り出し、支持体、すなわち、被成膜材料を長手方向に搬送しつつ、支持体に有機層や無機層を形成し、有機層や無機層を形成した支持体をロール状に巻回する製造方法である。
 RtoRを利用することにより、長尺な支持体を搬送しつつ、連続的に有機層や無機層を形成できるので、非常に高い生産性で積層型のガスバリアフィルムを製造できる。
A so-called roll-to-roll (hereinafter also referred to as RtoR) is known as a method for producing such a laminated gas barrier film. RtoR means that a support is fed from a support roll formed by winding a long support in a roll shape, and the support, that is, the film-forming material is conveyed in the longitudinal direction, while an organic layer or an inorganic is applied to the support. This is a manufacturing method in which a layer is formed and a support on which an organic layer or an inorganic layer is formed is wound into a roll.
By using RtoR, an organic layer or an inorganic layer can be continuously formed while transporting a long support, so that a laminated gas barrier film can be produced with very high productivity.
 ところで、前述のように、積層型のガスバリアフィルムにおいて、主にガスバリア性を発現するのは、無機層である。従って、無機層が損傷すると、ガスバリア性能が大幅に低下する。
 また、積層型のガスバリアフィルムにおいて、有機層は、無機層を適正に形成するための下地層として作用する。従って、有機層が損傷すると、適正な無機層が形成できず、同様に、ガスバリア性能が大幅に低下する。
As described above, in the laminated gas barrier film, it is the inorganic layer that mainly exhibits gas barrier properties. Therefore, when the inorganic layer is damaged, the gas barrier performance is significantly lowered.
In the laminated gas barrier film, the organic layer functions as a base layer for appropriately forming the inorganic layer. Accordingly, when the organic layer is damaged, a proper inorganic layer cannot be formed, and the gas barrier performance is also greatly reduced.
 一方で、積層型のガスバリアフィルムでは、光学特性、重量、コスト等を考慮すると、支持体は薄い方が有利である。
 しかしながら、薄い支持体は、自己支持性(いわゆるコシ)が弱く、RtoRによる搬送中に、折れ曲がってしまう等の不都合が生じ易い。有機層や無機層を形成した支持体が、搬送中に折れ曲がると、先に形成した有機層や無機層を損傷してしまう。
On the other hand, in the laminated gas barrier film, it is advantageous that the support is thin in consideration of optical characteristics, weight, cost, and the like.
However, the thin support has a weak self-supporting property (so-called stiffness), and is liable to be bent during the transport by RtoR. If the support on which the organic layer or the inorganic layer is formed is bent during conveyance, the previously formed organic layer or inorganic layer is damaged.
 また、RtoRでは、搬送ローラ対やガイドローラ等が有機層や無機層に接触することが避けられない場合がある。しかしながら、このローラの接触によって、有機層や無機層が損傷してしまう場合が有る。
 このような不都合を解消するために、RtoRを利用する積層型のガスバリアフィルムの製造では、端部の径が大きい、いわゆる段付きローラを用いて、支持体の端部のみを挟持搬送する、非接触搬送を利用することが知られている。
 しかしながら、支持体のコシが弱い場合には、このような非接触搬送によって適正な搬送を行うのは、益々、困難になる。
In addition, in RtoR, it may be unavoidable that a pair of conveying rollers, a guide roller, or the like is in contact with an organic layer or an inorganic layer. However, the organic layer or the inorganic layer may be damaged by the contact of the roller.
In order to eliminate such inconvenience, in the production of a laminated gas barrier film using RtoR, a so-called stepped roller having a large end portion diameter is used to sandwich and convey only the end portion of the support. It is known to use contact transport.
However, when the stiffness of the support is weak, it becomes increasingly difficult to carry out proper conveyance by such non-contact conveyance.
 このような不都合を解消するために、特許文献1や特許文献2には、有機膜や無機膜の非形成面にラミネートフィルムを貼着してなる支持体を用いて、RtoRによって有機層や無機層を形成するガスバリアフィルムの製造方法が記載されている。
 この方法によれば、支持体の裏面に保護材料を貼着することにより、支持体、あるいは、支持体を含む積層体の自己支持性を確保することができ、薄い支持体を用いた場合や、非接触搬送を利用する場合でも、支持体の折れ曲がりを生じることなく、RtoRによって適正に有機層や無機層を形成できる。
In order to eliminate such inconveniences, Patent Document 1 and Patent Document 2 describe that an organic layer or an inorganic layer is formed by RtoR using a support in which a laminate film is attached to a non-formation surface of an organic film or an inorganic film. A method for producing a gas barrier film for forming a layer is described.
According to this method, by attaching a protective material to the back surface of the support, the support, or the self-supporting property of the laminate including the support, can be secured, and when a thin support is used, Even when non-contact conveyance is used, the organic layer and the inorganic layer can be appropriately formed by RtoR without causing the support to be bent.
 また、RtoRの製造におけるハンドリングやロールへの巻き回しの際に、表面の無機層がガイドローラ等に接触して無機層が損傷することを防止するために、成膜した無機層の表面に保護フィルムを貼着することも行われている(特許文献3)。 In addition, in order to prevent the inorganic layer on the surface from coming into contact with the guide roller or the like and damaging the inorganic layer during handling in RtoR manufacturing or winding around a roll, the surface of the deposited inorganic layer is protected. A film is also pasted (Patent Document 3).
特開2011-149057号公報JP 2011-149057 A 特開2011-167967号公報JP 2011-167967 A 特開2012-192738号公報JP 2012-192738 A
 ところで、近年では、有機/無機積層型のガスバリアフィルムを、携帯電話やディスプレイなどに利用される、トップエミッション方式の有機ELデバイス等に利用することが考えられている。
 このような用途に利用される積層型のガスバリアフィルムでは、シクロオレフィンコポリマー(COC)フィルムなど、リタデーション値が低く、高い光透過性を有する光学特性に優れた支持体を用いる必要が有る。また、ガスバリアフィルムの光学特性という点では、支持体は、薄い方が好ましい。
By the way, in recent years, it has been considered to use an organic / inorganic laminated gas barrier film for a top emission type organic EL device used for a mobile phone, a display, or the like.
In a laminated gas barrier film used for such applications, it is necessary to use a support having a low retardation value and high optical transparency, such as a cycloolefin copolymer (COC) film. In terms of optical properties of the gas barrier film, the support is preferably thin.
 しかしながら、このようなCOCフィルム等を支持体として用いる積層型のガスバリアフィルムでは、前述の保護材料を用いたRtoRによる製造を、安価かつ適正に行うことができない。 However, a laminated gas barrier film using such a COC film or the like as a support cannot be manufactured inexpensively and appropriately by RtoR using the protective material described above.
 すなわち、保護材料を利用する積層型のガスバリアフィルムの製造において、保護材料は、製品の一部とはならず、最終的には、剥離されて廃棄される。そのため、保護材料としては、安価なポリエチレンテレフタレート(PET)フィルム等が用いられる。 That is, in the production of a laminated gas barrier film using a protective material, the protective material does not become a part of the product, but is finally peeled off and discarded. Therefore, an inexpensive polyethylene terephthalate (PET) film or the like is used as the protective material.
 一方、積層型のガスバリアフィルムでは、通常の無機層の形成にはプラズマCVD等の気相成膜法が利用される。また、有機層の形成には、有機層となる有機材料を含有する塗料を、塗布、乾燥して硬化する、塗布法が利用されている。
 すなわち、積層型のガスバリアフィルムの製造においては、支持体および保護材料は、無機層の形成では、プラズマCVD等の気相成膜法による熱に曝され、また、有機層の形成では、塗料の乾燥の際に熱に曝される。さらに、有機層の形成では、塗膜を硬化する際に加熱を行う場合も有る。
On the other hand, in the case of a laminated gas barrier film, a vapor phase film forming method such as plasma CVD is used to form a normal inorganic layer. For the formation of the organic layer, an application method is used in which a coating containing an organic material that becomes the organic layer is applied, dried, and cured.
That is, in the production of a laminated gas barrier film, the support and the protective material are exposed to heat by a vapor deposition method such as plasma CVD in the formation of the inorganic layer, and in the formation of the organic layer, Exposed to heat during drying. Furthermore, in the formation of the organic layer, heating may be performed when the coating film is cured.
 ところが、COCフィルムのような光学特性に優れたフィルムと、PETフィルムとでは、熱膨張/熱収縮や、Tgなどの熱的特性が、全く異なる。そのため、加熱を伴うプロセスにおいては、両フィルムは異なる変形を示す。
 RtoRによる積層型のガスバリアフィルムの製造において、このように支持体と保護材料とで熱的特性が異なるフィルムを用いた場合には、搬送によるストレスや搬送経路の変更による屈曲等も有るため、加熱を伴うプロセスにおける両フィルムの異なる変形によって、支持体と保護材料の剥離や、支持体のシワや折れ等が生じ、これに起因して、無機層が損傷してしまう。
 また、支持体と保護材料との間を完全に密着することは難しく、支持体と保護材料との間には気泡が存在する。そのため、加熱を伴うプロセスにおいて、この気泡が膨張して、支持体と保護材料の剥離や、支持体のシワや折れ等が発生してしまう。
However, a film having excellent optical characteristics such as a COC film and a PET film are completely different in thermal expansion / shrinkage and thermal characteristics such as Tg. Therefore, both films show different deformations in processes involving heating.
In the production of a laminated gas barrier film by RtoR, when a film having different thermal characteristics is used between the support and the protective material as described above, there is a stress due to conveyance, bending due to a change in the conveyance route, etc. Due to the different deformations of the two films in the process involving, peeling of the support and the protective material, wrinkles and breakage of the support, and the like cause damage to the inorganic layer.
Moreover, it is difficult to completely adhere between the support and the protective material, and bubbles exist between the support and the protective material. For this reason, in the process involving heating, the bubbles expand, and the support and the protective material are peeled off, and the support is wrinkled or broken.
 支持体と保護材料との熱的特性の違いに起因する問題は、支持体と保護材料とで、同じ材料からなるもの、すなわち、熱的特性が同じ材料を用いれば生じない。
 しかしながら、COCフィルムのような光学特性に優れたフィルムは、PETフィルム等に比して、非常に高価である。また、前述のように、保護材料は、最終的には廃棄される材料である。そのため、支持体としてCOCフィルムのような光学特性に優れたフィルムを用いた場合には、同じ材料から保護材料を用いると、積層型のガスバリアフィルムのコストが、非常に高くなってしまう。
 また、支持体と保護材料とで同じ材料を用いたとしても、支持体と保護材料との間に存在する気泡に起因する剥離や、支持体のシワや折れ等は抑制することができない。
The problem caused by the difference in the thermal characteristics between the support and the protective material does not occur if the support and the protective material are made of the same material, that is, the same thermal characteristics are used.
However, a film having excellent optical properties such as a COC film is very expensive as compared with a PET film or the like. Further, as described above, the protective material is a material that is finally discarded. Therefore, when a film having excellent optical properties such as a COC film is used as the support, the cost of the laminated gas barrier film becomes very high if a protective material is used from the same material.
Further, even if the same material is used for the support and the protective material, peeling due to air bubbles existing between the support and the protective material, wrinkles and breakage of the support cannot be suppressed.
 また、光学特性に優れたフィルムの中でも、COCフィルムは、有機層との密着性が低い。そのため、無機層の下地層として、有機層を支持体の上に積層しても、搬送によるストレスや搬送経路の変更による屈曲等によって、支持体と有機層とに剥離が生じ、これに起因して、無機層が損傷してしまう。 Of the films having excellent optical properties, the COC film has low adhesion to the organic layer. Therefore, even if an organic layer is laminated on a support as an underlayer of the inorganic layer, peeling occurs between the support and the organic layer due to stress due to transport or bending due to change of the transport path, etc. As a result, the inorganic layer is damaged.
 ところで、有機/無機積層型のガスバリアフィルムを、トップエミッション方式の有機ELデバイス等に利用する場合には、発光素子である有機EL材料を覆うガスバリア性を有するパッシベーション膜の上に、接着剤を用いてこのガスバリアフィルムを積層する。 By the way, when an organic / inorganic laminated type gas barrier film is used for a top emission type organic EL device or the like, an adhesive is used on a passivation film having a gas barrier property covering an organic EL material as a light emitting element. Laminate the gas barrier film.
 このような有機ELデバイスにおいて、パッシベーション膜の形成材料としては、ガスバリア性を発現する窒化ケイ素、酸化ケイ素および酸化窒化ケイ素等の無機材料が例示されている。
 そのため、接着性の観点から、有機ELデバイス等に利用する、有機/無機積層型のガスバリアフィルムにおいては、最上層を無機層として、この無機層とパッシベーション膜とを対面して、無機材料同士を接着剤を介して積層することが好ましい。
In such an organic EL device, examples of the passivation film forming material include inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride that exhibit gas barrier properties.
Therefore, from the viewpoint of adhesiveness, in the organic / inorganic laminated type gas barrier film used for organic EL devices and the like, the uppermost layer is an inorganic layer, the inorganic layer and the passivation film face each other, and the inorganic materials are bonded to each other. It is preferable to laminate via an adhesive.
 ここで、前述のとおり、無機層は脆く割れやすいため、作製したガスバリアフィルムの最上層の無機層には、無機層を保護するための保護フィルムを貼着している。このようなガスバリアフィルムを有機ELデバイス等に組み込む際には、保護フィルムを剥離して無機層を表出させて、パッシベーション膜上に接着する。
 ここで、保護フィルムと無機層とを接着剤を介して貼着した場合には、保護フィルムを剥離した際に、無機層上に接着剤が残存して、パッシベーション膜と無機層との接着を阻害するおそれがある。
Here, as described above, since the inorganic layer is brittle and easily broken, a protective film for protecting the inorganic layer is attached to the uppermost inorganic layer of the produced gas barrier film. When such a gas barrier film is incorporated into an organic EL device or the like, the protective film is peeled off to expose the inorganic layer, and is adhered onto the passivation film.
Here, when the protective film and the inorganic layer are attached via an adhesive, when the protective film is peeled off, the adhesive remains on the inorganic layer, and adhesion between the passivation film and the inorganic layer is achieved. May interfere.
 本発明の目的は、このような従来技術の問題点を解決することにあり、有機層と無機層とを交互に形成してなる有機/無機積層型の機能性フィルムにおいて、有機層および無機層の形成に加熱を伴う場合であっても、低コストで、かつ、無機層の損傷が無い、目的とする性能を安定して発揮する機能性フィルム、および、この機能性フィルムの製造方法を提供することにある。 An object of the present invention is to solve such problems of the prior art, and in an organic / inorganic laminated functional film formed by alternately forming an organic layer and an inorganic layer, the organic layer and the inorganic layer Provided with a functional film that stably exhibits the target performance at a low cost and without damage to the inorganic layer, even when heating is involved in the formation of the film, and a method for producing the functional film There is to do.
 本発明者は、上記課題を達成すべく鋭意研究した結果、リタデーション値が低い光学特性に優れたガスバリア支持体に有機無機積層体を積層した機能性フィルムにおいて、有機無機積層体の最下層および最上層を無機層とし、ガスバリア支持体の線膨張係数と裏面保護フィルムの線膨張係数との差を所定の範囲とし、保護フィルムの融点を所定の範囲とし、ガスバリア支持体と粘着層との粘着力、保護フィルムと最上層の無機層との粘着力をそれぞれ規定した機能性フィルムを用いることにより、有機層および無機層の形成に加熱を伴う場合であっても、低コストで、かつ、無機層の損傷が無い、目的とする性能を安定して発揮することを見出し、本発明を完成させた。
 すなわち、本発明は以下の構成の機能性フィルムおよびその製造方法を提供する。
As a result of intensive research aimed at achieving the above-mentioned problems, the present inventors have found that in a functional film in which an organic-inorganic laminate is laminated on a gas barrier support having a low retardation value and excellent optical properties, the lowermost layer and the lowest layer of the organic-inorganic laminate. The upper layer is an inorganic layer, the difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is within a predetermined range, the melting point of the protective film is within a predetermined range, and the adhesive strength between the gas barrier support and the adhesive layer By using a functional film that defines the adhesive strength between the protective film and the uppermost inorganic layer, the organic layer and the inorganic layer can be formed at a low cost, even when heating is involved in the formation of the organic layer and the inorganic layer. The present invention has been completed by finding that the intended performance is stably exhibited without any damage.
That is, this invention provides the functional film of the following structures, and its manufacturing method.
 (1) ガスバリア支持体と、無機層および有機層が交互に積層されてなりガスバリア支持体上に形成される有機無機積層体と、ガスバリア支持体の有機無機積層体の形成面とは逆面(反対側の面)に貼着される粘着層と、粘着層に貼着される裏面保護フィルムと、有機無機積層体上に積層される保護フィルムとを有し、
 ガスバリア支持体のリタデーション値が、300nm以下であり、
 有機無機積層体は、1以上の有機層と2以上の無機層とを有し、ガスバリア支持体側である最下層および表面保護フィルム側である最上層は、無機層であり、
 ガスバリア支持体の線膨張係数と裏面保護フィルムの線膨張係数との差が、0~80ppm/℃であり、
 表面保護フィルムの融点が、80~170℃であり、
 ガスバリア支持体と粘着層との25℃における粘着力が、0.01N/25mm~0.15N/25mmであり、
 表面保護フィルムと有機無機積層体の最上層の無機層との25℃における粘着力が、0.02N/25mm~0.06N/25mmである機能性フィルム。
 (2) ガスバリア支持体と有機無機積層体の最下層の無機層との間に第1の混合層を有し、第1の混合層の厚みが1nm~20nmである(1)に記載の機能性フィルム。
 (3) 有機無機積層体において、有機層とこの有機層上に積層される無機層との間に第2の混合層を有し、第2の混合層の厚みが1nm~20nmである(1)または(2)に記載の機能性フィルム。
 (4) 粘着層と裏面保護フィルムとの25℃における粘着力が、0.05N/25mm~0.20N/25mmである(1)~(3)のいずれかに記載の機能性フィルム。
 (5) ガスバリア支持体の厚みが、20μm~120μmであり、有機無機積層体の1つの有機層の厚みが、0.5μm~5μmであり、1つの無機層の厚みが、10nm~200nmであり、粘着層の厚みが、15μm~250μmであり、裏面保護フィルムの厚みが、12μm~100μmであり、表面保護フィルムの厚みが、20μm~100μmである(1)~(4)のいずれかに記載の機能性フィルム。
 (6) ガスバリア支持体のガラス転移温度が、130℃以上であり、裏面保護フィルムのガラス転移温度が、70℃以上である(1)~(5)のいずれかに記載の機能性フィルム。
 (7) ガスバリア支持体と粘着層との100℃における粘着力が、0.03N/25mm~0.14N/25mm、200℃における粘着力が、0.04N/25mm~0.13N/25mmであり、粘着層と裏面保護フィルムとの100℃における粘着力が、0.07N/25mm~0.19N/25mm、200℃における粘着力が、0.08N/25mm~0.18N/25mmである(1)~(6)のいずれかに記載の機能性フィルム。
 (8) 裏面保護フィルムの摩擦係数が、0.6以下である(1)~(7)のいずれかに記載の機能性フィルム。
 (9) 表面保護フィルムのヤング率は、ガスバリア支持体のヤング率、および、裏面保護フィルムのヤング率の1/4以下である(1)~(8)のいずれかに記載の機能性フィルム。
 (10) 粘着層は、アクリル酸アルキルモノマーのアルキル基部分の炭素数が3~10のもの、あるいはさらに、メタクリル酸アルキルモノマーを含む粘着材料からなり、温度25℃~150℃、UV照射量100mJ/cm2~1000mJ/cm2の条件で架橋した際の、架橋による体積収縮率が3%以下である(1)~(9)のいずれかに記載の機能性フィルム。
 (11) ガスバリア支持体と、ガスバリア支持体に貼着される粘着層と、粘着層に貼着される裏面保護フィルムとを有する長尺な積層体、ならびに、長尺な積層体のガスバリア支持体上に交互に積層される無機層および有機層を有し、裏面保護フィルムとは反対側の表面が有機層である複合体を作製する工程と、
 複合体を長手方向に搬送しつつ、表面の有機層上に気相成長法により最上層の無機層を形成する成膜工程と、
 成膜工程で形成された最上層の無機層上に、表面保護フィルムを貼り付ける表面保護フィルム貼付工程とを有し、
 成膜工程と表面保護フィルム貼り付け工程とを、同じ圧力、温度の環境下で連続的に行うものであり、
 ガスバリア支持体のリタデーション値が、300nm以下であり、
 ガスバリア支持体の線膨張係数と裏面保護フィルムの線膨張係数との差が、0~80ppm/℃であり、
 表面保護フィルムの融点が、80~170℃であり、
 ガスバリア支持体と粘着層との25℃における粘着力が、0.01N/25mm~0.15N/25mmである機能性フィルムの製造方法。
 (12) 複合体を作製する工程は、無機層が積層された長尺な積層体の、無機層上に有機層となる組成物を塗布する塗布工程と、塗布した組成物を乾燥させる乾燥工程とを有し、乾燥工程において、複合体の温度が、70℃以上となる(11)に記載の機能性フィルムの製造方法。
 (13) 複合体を作製する工程は、無機層が積層された長尺な積層体の、無機層上に有機層となる組成物を塗布する塗布工程と、塗布した組成物を乾燥させる乾燥工程と、乾燥した組成物に紫外線の照射を行って硬化させて有機層を形成する硬化工程とを有し、硬化工程において、複合体を温度30℃以上となるように裏面保護フィルム側から加熱しつつ、紫外線の照射を行う(11)または(12)に記載の機能性フィルムの製造方法。
(1) The gas barrier support, the organic / inorganic laminate formed on the gas barrier support by alternately laminating the inorganic layer and the organic layer, and the surface of the gas barrier support on which the organic / inorganic laminate is formed ( Having a pressure-sensitive adhesive layer attached to the opposite surface), a back surface protective film attached to the pressure-sensitive adhesive layer, and a protective film laminated on the organic-inorganic laminate,
The retardation value of the gas barrier support is 300 nm or less,
The organic-inorganic laminate has one or more organic layers and two or more inorganic layers, and the bottom layer on the gas barrier support side and the top layer on the surface protective film side are inorganic layers,
The difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 0 to 80 ppm / ° C.
The melting point of the surface protective film is 80 to 170 ° C.,
The adhesive strength of the gas barrier support and the adhesive layer at 25 ° C. is 0.01 N / 25 mm to 0.15 N / 25 mm,
A functional film in which the adhesive strength at 25 ° C. between the surface protective film and the uppermost inorganic layer of the organic-inorganic laminate is 0.02 N / 25 mm to 0.06 N / 25 mm.
(2) The function according to (1), wherein the first mixed layer is provided between the gas barrier support and the lowermost inorganic layer of the organic-inorganic laminate, and the thickness of the first mixed layer is 1 nm to 20 nm. Sex film.
(3) The organic-inorganic laminate has a second mixed layer between the organic layer and the inorganic layer laminated on the organic layer, and the thickness of the second mixed layer is 1 nm to 20 nm (1 ) Or the functional film according to (2).
(4) The functional film according to any one of (1) to (3), wherein the adhesive force between the adhesive layer and the back surface protective film at 25 ° C. is 0.05 N / 25 mm to 0.20 N / 25 mm.
(5) The thickness of the gas barrier support is 20 μm to 120 μm, the thickness of one organic layer of the organic-inorganic laminate is 0.5 μm to 5 μm, and the thickness of one inorganic layer is 10 nm to 200 nm. The thickness of the adhesive layer is 15 μm to 250 μm, the thickness of the back surface protective film is 12 μm to 100 μm, and the thickness of the surface protective film is 20 μm to 100 μm. Functional film.
(6) The functional film according to any one of (1) to (5), wherein the glass transition temperature of the gas barrier support is 130 ° C. or higher, and the glass transition temperature of the back surface protective film is 70 ° C. or higher.
(7) The adhesive strength between the gas barrier support and the adhesive layer at 100 ° C. is 0.03 N / 25 mm to 0.14 N / 25 mm, and the adhesive strength at 200 ° C. is 0.04 N / 25 mm to 0.13 N / 25 mm. The adhesive strength between the adhesive layer and the back surface protective film at 100 ° C. is 0.07 N / 25 mm to 0.19 N / 25 mm, and the adhesive strength at 200 ° C. is 0.08 N / 25 mm to 0.18 N / 25 mm (1 ) To (6).
(8) The functional film according to any one of (1) to (7), wherein the back surface protective film has a friction coefficient of 0.6 or less.
(9) The functional film according to any one of (1) to (8), wherein the Young's modulus of the surface protective film is ¼ or less of the Young's modulus of the gas barrier support and the Young's modulus of the back surface protective film.
(10) The pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive material in which the alkyl group portion of the alkyl acrylate monomer has 3 to 10 carbon atoms, or further contains an alkyl methacrylate monomer, and has a temperature of 25 ° C. to 150 ° C. and a UV irradiation amount of 100 mJ. The functional film according to any one of (1) to (9), wherein the volume shrinkage due to crosslinking is 3% or less when crosslinked under the conditions of / cm 2 to 1000 mJ / cm 2 .
(11) A long laminate having a gas barrier support, an adhesive layer attached to the gas barrier support, and a back surface protective film attached to the adhesive layer, and a gas barrier support of the elongated laminate A step of producing a composite having an inorganic layer and an organic layer laminated alternately on the surface, and the surface opposite to the back surface protective film is an organic layer;
A film forming step of forming the uppermost inorganic layer by vapor phase growth on the organic layer on the surface while transporting the composite in the longitudinal direction;
A surface protective film attaching step for attaching a surface protective film on the uppermost inorganic layer formed in the film forming step;
The film forming step and the surface protective film attaching step are continuously performed under the same pressure and temperature environment,
The retardation value of the gas barrier support is 300 nm or less,
The difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 0 to 80 ppm / ° C.
The melting point of the surface protective film is 80 to 170 ° C.,
A method for producing a functional film, wherein an adhesive force between a gas barrier support and an adhesive layer at 25 ° C. is 0.01 N / 25 mm to 0.15 N / 25 mm.
(12) The step of producing the composite includes an application step of applying a composition to be an organic layer on the inorganic layer, and a drying step of drying the applied composition of the long laminate in which the inorganic layer is laminated. The method for producing a functional film according to (11), wherein the temperature of the composite is 70 ° C. or higher in the drying step.
(13) The step of producing the composite includes an application step of applying a composition to be an organic layer on the inorganic layer, and a drying step of drying the applied composition of the long laminate in which the inorganic layer is laminated. And a curing step of forming an organic layer by irradiating the dried composition with ultraviolet irradiation, and in the curing step, the composite is heated from the back surface protective film side so that the temperature becomes 30 ° C. or higher. The method for producing a functional film according to (11) or (12), wherein ultraviolet irradiation is performed.
 このような本発明によれば、有機層と無機層とを交互に積層してなる有機/無機積層型の機能性フィルムにおいて、有機層および無機層の形成に加熱を伴う場合であっても、安価な保護材料を用いて、無機層等の損傷が無く、目的とする性能を有する機能性フィルムを、低コストで製造できる。 According to the present invention, in the organic / inorganic laminated functional film in which the organic layer and the inorganic layer are alternately laminated, even when heating is involved in the formation of the organic layer and the inorganic layer, By using an inexpensive protective material, it is possible to manufacture a functional film having the desired performance without damage to the inorganic layer or the like at a low cost.
図1(A)および図1(B)は、本発明の機能性フィルムの一例を概念的に示す図であり、図1(C)は、本発明の機能性フィルムから粘着層、裏面保護フィルムおよび表面保護フィルムを剥離した状態の一例を概念的に示す図である。1 (A) and 1 (B) are diagrams conceptually showing an example of the functional film of the present invention, and FIG. 1 (C) shows an adhesive layer and a back surface protective film from the functional film of the present invention. It is a figure which shows notionally an example of the state which peeled the surface protection film. 本発明の機能性フィルムの製造方法を実施する製造装置の一例を概念的に示す図であって、図2(A)は無機層の成膜装置、図2(B)は有機層の成膜装置である。It is a figure which shows notionally an example of the manufacturing apparatus which enforces the manufacturing method of the functional film of this invention, Comprising: FIG. 2 (A) is a film-forming apparatus of an inorganic layer, FIG.2 (B) is film-forming of an organic layer Device.
 以下、本発明の機能性フィルムおよび機能性フィルムの製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。 Hereinafter, the functional film of the present invention and the method for producing the functional film will be described in detail based on the preferred embodiments shown in the accompanying drawings.
 図1(A)に、本発明の機能性フィルムをガスバリアフィルムに利用した一例を、概念的に示す。 FIG. 1A conceptually shows an example in which the functional film of the present invention is used as a gas barrier film.
 なお、本発明の機能性フィルムは、ガスバリアフィルムに限定はされない。すなわち、本発明は、特定の波長の光を透過するフィルタや光反射防止フィルムなどの各種の光学フィルム等、公知の機能性フィルムに、各種、利用可能である。
 本発明の機能性フィルムのように、有機/無機の積層型の機能性フィルムにおいて、主に目的とする機能を発現するのは、無機層である。従って、特定波長の光透過性など、目的とする機能を発現する無機層を選択して、本発明の機能性フィルムを構成すればよい。
In addition, the functional film of this invention is not limited to a gas barrier film. That is, the present invention can be used in various known functional films such as various optical films such as a filter that transmits light of a specific wavelength and an antireflection film.
In the organic / inorganic laminated functional film like the functional film of the present invention, it is the inorganic layer that mainly exhibits the intended function. Therefore, the functional film of the present invention may be configured by selecting an inorganic layer that exhibits a desired function such as light transmittance at a specific wavelength.
 しかしながら、本発明によれば、後述する粘着層および保護材料を有することにより、ヒビや割れ等の欠陥の無い無機層を有する機能性フィルムを得ることができる。また、支持体として、リタデーション値が低い等の光学特性に優れる材料からなる物を選択することで、光学特性に優れた機能性フィルムが得られる。
 従って、本発明は、高い光学特性を要求される場合が多く、かつ、無機層の損傷による性能劣化が大きいガスバリアフィルムには、より好適に利用される。
However, according to the present invention, a functional film having an inorganic layer free from defects such as cracks and cracks can be obtained by having an adhesive layer and a protective material described later. Moreover, the functional film excellent in the optical characteristic is obtained by selecting the thing which consists of a material excellent in optical characteristics, such as a low retardation value, as a support body.
Therefore, the present invention is more suitably used for a gas barrier film that often requires high optical properties and has a large performance deterioration due to damage to the inorganic layer.
 本発明の機能性フィルムにかかるガスバリアフィルムは、ガスバリア支持体12の表(おもて)面(主面)に、無機層14と有機層16とを交互に積層してなる有機無機積層体を有する、前述の有機/無機積層型のガスバリアフィルムである。なお、図1(A)においては、構成を明瞭にするために、無機層14のみにハッチを付している。
 図1(A)に示すガスバリアフィルム10aは、ガスバリア支持体12の表面に無機層14を有し、その上に有機層16を有し、その上に2層目の無機層14を有する、ガスバリア支持体12の無機層14と有機層16とを交互に形成した、2層の無機層14と1層の有機層16との合計3層を積層してなる構成を有する。この2層の無機層14と1層の有機層16とによって、本発明における有機無機積層体28が構成される。
 また、ガスバリア支持体12の裏面、すなわち、無機層14および有機層16の形成面の逆面(反対側の面)には、粘着層20が貼着され、この粘着層20には、裏面保護フィルム24が貼着される。このガスバリア支持体12、粘着層20および裏面保護フィルム24によって、本発明における積層体26が構成される。
 さらに、有機無機積層体28の上、すなわち、2層目の無機層14上には、表面保護フィルム18が貼着される。
The gas barrier film according to the functional film of the present invention is an organic / inorganic laminate obtained by alternately laminating inorganic layers 14 and organic layers 16 on the front surface (main surface) of the gas barrier support 12. It has the above-mentioned organic / inorganic laminated type gas barrier film. Note that in FIG. 1A, only the inorganic layer 14 is hatched in order to clarify the configuration.
A gas barrier film 10a shown in FIG. 1 (A) has a gas barrier support 12 having an inorganic layer 14 on the surface, an organic layer 16 thereon, and a second inorganic layer 14 thereon. The inorganic layer 14 and the organic layer 16 of the support 12 are alternately formed, and a total of three layers of two inorganic layers 14 and one organic layer 16 are laminated. The two inorganic layers 14 and the one organic layer 16 constitute an organic / inorganic laminate 28 in the present invention.
An adhesive layer 20 is attached to the back surface of the gas barrier support 12, that is, the reverse surface (the opposite surface) of the formation surface of the inorganic layer 14 and the organic layer 16. A film 24 is attached. The gas barrier support 12, the adhesive layer 20, and the back surface protective film 24 constitute a laminate 26 in the present invention.
Furthermore, the surface protective film 18 is stuck on the organic / inorganic laminate 28, that is, on the second inorganic layer 14.
 なお、図1(A)に示すガスバリアフィルム10aにおいては、有機無機積層体28は、無機層14および有機層16を、この順番で交互に合計3層積層した構成としたが、本発明のガスバリアフィルムは、これに限定はされない。
 例えば、図1(B)に示すガスバリアフィルム100のように、有機無機積層体28は、2層目の無機層14の上に、さらに、2層目の有機層16および3層目の無機層14を積層した、3層の無機層14と2層の有機層16との、合計5層を有する構成でもよい。あるいは、さらに、有機無機積層体28は、無機層14と有機層16とを交互に積層した、合計7層以上を有する構成であってもよい。
 後述するが、有機層16は、無機層14を適正に形成するための下地層としてとして作用するものであり、下地の有機層16と無機層14との組み合わせの積層数が多いほど、優れたガスバリア性を有するガスバリアフィルムを得られる。
In addition, in the gas barrier film 10a shown to FIG. 1 (A), although the organic inorganic laminated body 28 was set as the structure which laminated | stacked the inorganic layer 14 and the organic layer 16 alternately in total in this order, the gas barrier of this invention The film is not limited to this.
For example, as in the gas barrier film 100 shown in FIG. 1B, the organic / inorganic laminate 28 is formed on the second inorganic layer 14, the second organic layer 16, and the third inorganic layer. 14 may be configured to have a total of five layers of three inorganic layers 14 and two organic layers 16 laminated. Alternatively, the organic / inorganic laminate 28 may have a total of seven or more layers in which the inorganic layers 14 and the organic layers 16 are alternately laminated.
As will be described later, the organic layer 16 functions as a base layer for properly forming the inorganic layer 14, and the more the number of layers of the combination of the base organic layer 16 and the inorganic layer 14, the better. A gas barrier film having gas barrier properties can be obtained.
 なお、有機無機積層体28において、ガスバリア支持体12側である最下層、および、表面保護フィルム18側である最上層は、いずれも無機層14である。
 この点については、後に詳述する。
In the organic / inorganic laminate 28, the lowermost layer on the gas barrier support 12 side and the uppermost layer on the surface protective film 18 side are both inorganic layers 14.
This will be described in detail later.
 前述のように、本発明のガスバリアフィルム10aは、ガスバリア支持体12の上に、無機層14と有機層16とを、交互に積層した有機無機積層体28を有する。また、ガスバリア支持体12の裏面には、粘着層20および裏面保護フィルム24が設けられる。また、有機無機積層体28の上には表面保護フィルム18が設けられる。
 ここで、粘着層20、裏面保護フィルム24および表面保護フィルム18は、最終的には剥離され、図1(C)に示すような、ガスバリア支持体12の表面に無機層14と有機層16とを交互に有するのみのガスバリアフィルム10bとされる。この点に関しては、図1(B)に示すガスバリアフィルム100も同様である。
As described above, the gas barrier film 10 a of the present invention has the organic-inorganic laminate 28 in which the inorganic layers 14 and the organic layers 16 are alternately laminated on the gas barrier support 12. Further, an adhesive layer 20 and a back surface protective film 24 are provided on the back surface of the gas barrier support 12. A surface protective film 18 is provided on the organic / inorganic laminate 28.
Here, the adhesive layer 20, the back surface protective film 24, and the surface protective film 18 are finally peeled off, and the inorganic layer 14 and the organic layer 16 are formed on the surface of the gas barrier support 12 as shown in FIG. It is set as the gas barrier film 10b which has only alternately. In this regard, the same applies to the gas barrier film 100 shown in FIG.
 本発明のガスバリアフィルム10aにおいて、ガスバリア支持体12は、リタデーション値(Retardation)が300nm以下のシート状物(以下、低リタデーションフィルムとも言う)である。
 ガスバリア支持体12として、リタデーション値が300nm以下の低リタデーションフィルムを用いることにより、光学特性に優れたガスバリアフィルムを得ることができる。これにより、例えば、本発明のガスバリアフィルムを有機ELデバイス等に利用した際に、光のコントラスト低下、外光反射に起因する視認性の低下等を防止できる。
 この点を考慮すると、ガスバリア支持体12のリタデーション値は、200nm以下が好ましく、150nm以下がより好ましい。
 さらに、本発明においては、同様の理由で、ガスバリア支持体12は、全光線透過率が85%以上であるのが好ましい。
In the gas barrier film 10a of the present invention, the gas barrier support 12 is a sheet-like material having a retardation value (Retardation) of 300 nm or less (hereinafter also referred to as a low retardation film).
By using a low retardation film having a retardation value of 300 nm or less as the gas barrier support 12, a gas barrier film excellent in optical properties can be obtained. Thereby, for example, when the gas barrier film of the present invention is used for an organic EL device or the like, it is possible to prevent a decrease in light contrast and a decrease in visibility due to reflection of external light.
Considering this point, the retardation value of the gas barrier support 12 is preferably 200 nm or less, and more preferably 150 nm or less.
Furthermore, in the present invention, for the same reason, the gas barrier support 12 preferably has a total light transmittance of 85% or more.
 ガスバリア支持体12としては、具体的には、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、トリアセチルセルロース(TAC)、透明ポリイミドなどのプラスチック(高分子材料)からなるプラスチックフィルムが、好適に例示される。
 なお、ガスバリア支持体12は、このようなプラスチックフィルムの表面に、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、応力緩和層等の、各種の機能を得るための層(膜)が形成されているものであってもよい。
Specifically, the gas barrier support 12 is made of a plastic (polymer material) such as polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), triacetyl cellulose (TAC), or transparent polyimide. A plastic film is preferably exemplified.
The gas barrier support 12 has various functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer on the surface of such a plastic film. The layer (film | membrane) for obtaining may be formed.
 本発明において、ガスバリア支持体12の厚さは、好ましくは20~120μmである。
 ガスバリア支持体12の厚さを20μm以上とすることにより、無機層14および有機層16の形成によるカールが大きくなることを抑制でき、かつ、これによりロールとして巻き取ることが容易になる、ガスバリアフィルム10a、あるいは、粘着層20、裏面保護フィルム24および表面保護フィルム18を剥離したガスバリアフィルム10bに十分な機械的強度を付与できる等の点で好ましい。
 また、ガスバリア支持体12の厚さを120μm以下とすることにより、光学特性が良好なガスバリアフィルム10bが得られる、薄手化したガスバリアフィルム10a(10b)が得られる、可撓性の良好なガスバリアフィルム10a(10b)が得られる、軽量なガスバリアフィルム10a(10b)が得られる、ガスバリアフィルム10bを利用する製品(有機ELデバイス等)でも軽量化や薄手化を図れる等の点で好ましい。
 以上の点を考慮すると、ガスバリア支持体12の厚さは、20~75μmがより好ましい。
In the present invention, the thickness of the gas barrier support 12 is preferably 20 to 120 μm.
By setting the thickness of the gas barrier support 12 to 20 μm or more, it is possible to suppress an increase in curling due to the formation of the inorganic layer 14 and the organic layer 16, and this makes it easy to wind up as a roll. 10a, or the gas barrier film 10b from which the pressure-sensitive adhesive layer 20, the back surface protective film 24 and the surface protective film 18 have been peeled off.
Further, by setting the thickness of the gas barrier support 12 to 120 μm or less, a gas barrier film 10b with good optical characteristics can be obtained, and a thin gas barrier film 10a (10b) can be obtained. 10a (10b) is obtained, a lightweight gas barrier film 10a (10b) is obtained, and a product using the gas barrier film 10b (such as an organic EL device) is preferable in terms of reduction in weight and thickness.
Considering the above points, the thickness of the gas barrier support 12 is more preferably 20 to 75 μm.
 また、ガスバリア支持体12は、ガラス転移温度(Tg)が130℃以上であるのが好ましく、140℃以上であるのがより好ましい。
 前述のように、ガスバリア支持体12の表面には、無機層14および有機層16が形成される。ここで、無機層14は、通常、プラズマCVDなどの気相成膜法で形成され、有機層16は、有機層16となる有機化合物を含有する塗料を塗布、乾燥および硬化する塗布法で形成される。すなわち、ガスバリアフィルム10aは、ガスバリア支持体12の加熱を伴う方法で無機層14および有機層16が形成される。
 これに対し、ガスバリア支持体12として、Tgが130℃以上のものを用いることにより、無機層14および有機層16の形成における加熱によるガスバリア支持体12の熱損傷を防止できる。さらに、粘着層20、裏面保護フィルム24および表面保護フィルム18を剥離したガスバリアフィルム10bを利用する製品の製造における加熱工程におけるガスバリア支持体12の熱損傷を防止できる等の点でも好ましい。
In addition, the gas barrier support 12 preferably has a glass transition temperature (Tg) of 130 ° C. or higher, and more preferably 140 ° C. or higher.
As described above, the inorganic layer 14 and the organic layer 16 are formed on the surface of the gas barrier support 12. Here, the inorganic layer 14 is usually formed by a vapor deposition method such as plasma CVD, and the organic layer 16 is formed by an application method in which a coating containing an organic compound that becomes the organic layer 16 is applied, dried and cured. Is done. That is, in the gas barrier film 10 a, the inorganic layer 14 and the organic layer 16 are formed by a method that involves heating the gas barrier support 12.
On the other hand, by using a gas barrier support 12 having a Tg of 130 ° C. or higher, thermal damage of the gas barrier support 12 due to heating in the formation of the inorganic layer 14 and the organic layer 16 can be prevented. Furthermore, it is preferable also from the point that the thermal damage of the gas barrier support 12 in the heating process in the manufacture of a product using the gas barrier film 10b from which the adhesive layer 20, the back surface protective film 24 and the surface protective film 18 are peeled can be prevented.
 さらに、ガスバリア支持体12は、裏面保護フィルム24との線膨張係数の差が0~80ppm/℃である。
 ガスバリア支持体12の線膨張係数と、裏面保護フィルム24の線膨張係数との差を0~80ppm/℃とすることにより、前述の無機層14および有機層16の形成における加熱によるガスバリア支持体12と裏面保護フィルム24との剥離や変形を好適に防止できる。
 この点については後に詳述する。
Further, the gas barrier support 12 has a difference in linear expansion coefficient from the back surface protective film 24 of 0 to 80 ppm / ° C.
By setting the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 to 0 to 80 ppm / ° C., the gas barrier support 12 is heated by the formation of the inorganic layer 14 and the organic layer 16 described above. And the back surface protective film 24 can be suitably prevented from peeling or deforming.
This point will be described in detail later.
 前述のように、本発明のガスバリアフィルム10aにおいて、ガスバリア支持体12の上には、無機層14と有機層16とが交互に形成された有機無機積層体が積層される。
 無機層14は、無機化合物からなる層である。ガスバリアフィルム10aにおいて、無機層14は、目的とするガスバリア性を、主に発現するものである。
As described above, in the gas barrier film 10a of the present invention, the organic / inorganic laminate in which the inorganic layers 14 and the organic layers 16 are alternately formed is laminated on the gas barrier support 12.
The inorganic layer 14 is a layer made of an inorganic compound. In the gas barrier film 10a, the inorganic layer 14 mainly exhibits the target gas barrier property.
 無機層14の形成材料には、限定はなく、ガスバリア性を発現する無機化合物からなる層が、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化珪素、酸化窒化珪素、酸炭化珪素、酸化窒化炭化珪素などの珪素酸化物; 窒化珪素、窒化炭化珪素などの珪素窒化物; 炭化珪素等の珪素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物が、好適に例示される。
 特に、窒化珪素、酸化珪素、酸窒化珪素、酸化アルミニウムは、透明性が高く、かつ、優れたガスバリア性を発現できる点で、ガスバリアフィルムには、好適に利用される。中でも特に、窒化珪素は、優れたガスバリア性に加え、透明性も高く、好適に利用される。
The material for forming the inorganic layer 14 is not limited, and various layers made of an inorganic compound that exhibits gas barrier properties can be used.
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide, silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
In particular, silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are suitably used for the gas barrier film because they are highly transparent and can exhibit excellent gas barrier properties. Of these, silicon nitride is particularly suitable for its excellent gas barrier properties and high transparency.
 本発明において、無機層14の厚さは、好ましくは10~200nmである。
 無機層14の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層14が形成できる。また、無機層14は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層14の厚さを200nm以下とすることにより、割れが発生することを防止できる。
 また、このような点を考慮すると、無機層14の厚さは、15~100nmにするのが好ましく、特に、20~75nmとするのが好ましい。
In the present invention, the thickness of the inorganic layer 14 is preferably 10 to 200 nm.
By setting the thickness of the inorganic layer 14 to 10 nm or more, the inorganic layer 14 that stably expresses sufficient gas barrier performance can be formed. Further, the inorganic layer 14 is generally brittle, and if it is too thick, there is a possibility that cracks, cracks, peeling, etc. may occur. However, if the thickness of the inorganic layer 14 is 200 nm or less, cracks will occur. Can be prevented.
In consideration of such points, the thickness of the inorganic layer 14 is preferably 15 to 100 nm, and more preferably 20 to 75 nm.
 なお、図1(A)に示すガスバリアフィルム10aのように、複数の無機層14を有する場合には、各無機層14の厚さは、同じでも、互いに異なってもよい。
 同様に、ガスバリアフィルム10aのように、複数の無機層14を有する場合には、各無機層14の形成材料も、同じでも異なってもよい。しかしながら、生産性や生産コスト等を考慮すれば、全ての無機層14を同じ材料で形成するのが好ましい。
In addition, when it has the some inorganic layer 14 like the gas barrier film 10a shown to FIG. 1 (A), the thickness of each inorganic layer 14 may be the same, or may mutually differ.
Similarly, in the case of having a plurality of inorganic layers 14 as in the gas barrier film 10a, the forming material of each inorganic layer 14 may be the same or different. However, in consideration of productivity, production cost, etc., it is preferable to form all the inorganic layers 14 with the same material.
 本発明のガスバリアフィルム10において、無機層14は、形成材料に応じた公知の無機層の形成方法で形成(成膜)すればよい。
 具体的には、CCP-CVDやICP-CVD等のプラズマCVD、マグネトロンスパッタリングや反応性スパッタリング等のスパッタリング、真空蒸着などの気相成膜法(気相成長法)が、好適に例示される。
In the gas barrier film 10 of the present invention, the inorganic layer 14 may be formed (film formation) by a known inorganic layer forming method according to the forming material.
Specifically, plasma CVD such as CCP-CVD and ICP-CVD, sputtering such as magnetron sputtering and reactive sputtering, and vapor deposition methods (vapor deposition) such as vacuum deposition are preferably exemplified.
 ここで、図1(A)に示すように、本発明の機能性フィルムにかかるガスバリアフィルム10aにおいては、ガスバリア支持体12の表面に無機層14が形成される。
 前述のとおり、ガスバリア支持体が低リタデーション値を有する場合には、ガスバリア支持体と有機層との密着性が低いため、1層目の無機層の下地層としてガスバリア支持体12上に有機層を形成しても、搬送によるストレスや搬送経路の変更による屈曲等によって、支持体と有機層とに剥離が生じ、これに起因して、無機層が損傷してしまう。
Here, as shown to FIG. 1 (A), in the gas barrier film 10a concerning the functional film of this invention, the inorganic layer 14 is formed in the surface of the gas barrier support body 12. As shown in FIG.
As described above, when the gas barrier support has a low retardation value, the adhesion between the gas barrier support and the organic layer is low. Even if formed, peeling occurs between the support and the organic layer due to stress due to conveyance, bending due to a change in the conveyance path, and the like, resulting in damage to the inorganic layer.
 これに対して、本発明においては、ガスバリア支持体12の表面に無機層14を形成する。すなわち、有機無機積層体28の最下層を無機層14とする。これにより、光学特性に優れた低リタデーション値を有するガスバリア支持体12を用いた場合でも、ガスバリア支持体12と有機無機積層体28との密着性を向上して、剥離を防止し、無機層14の損傷を防止できる。
 また、このようなガスバリア支持体12の表面に形成される無機層14は、ガスバリア性を発現するのみならず、ガスバリア支持体12の保護層としても作用する。
On the other hand, in the present invention, the inorganic layer 14 is formed on the surface of the gas barrier support 12. That is, the lowermost layer of the organic / inorganic laminate 28 is the inorganic layer 14. Thereby, even when the gas barrier support 12 having a low retardation value with excellent optical properties is used, the adhesion between the gas barrier support 12 and the organic / inorganic laminate 28 is improved, and peeling is prevented. Can prevent damage.
In addition, the inorganic layer 14 formed on the surface of the gas barrier support 12 not only exhibits gas barrier properties but also functions as a protective layer for the gas barrier support 12.
 前述のように、有機層16は、有機化合物を含有する塗料を用いる塗布法によって形成される。この塗料には、メチルエチルケトン(MEK)やメチルイソブチルケトン(MIBK)有機溶剤が含まれる。
 ところが、ガスバリア支持体12となるプラスチックフィルムは、有機溶剤に対する耐性が低い場合が有り、プラスチックフィルムと有機溶剤との組み合わせによっては、プラスチックフィルムが溶解してしまう場合が有る。特に、前述のような低リタデーションフィルムは、有機溶剤に対する耐性が低く、溶解してしまう場合が多い。すなわち、ガスバリア支持体12の表面に有機層16を形成すると、ガスバリア支持体12の形成材料と塗料が含有する有機溶剤との組み合わせによっては、ガスバリア支持体12の表面が溶解してしまう場合が有る。
 このようなガスバリア支持体12の溶解が生じると、ガスバリア支持体12のリタデーション値が変化する、光透過率が下がる、ヘイズが上がる等の不都合が生じ、ガスバリアフィルムの光学的な特性が大幅に低減してしまう。
As described above, the organic layer 16 is formed by a coating method using a paint containing an organic compound. This paint includes methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) organic solvents.
However, the plastic film used as the gas barrier support 12 may have low resistance to the organic solvent, and the plastic film may be dissolved depending on the combination of the plastic film and the organic solvent. In particular, the low retardation film as described above has low resistance to organic solvents and often dissolves. That is, when the organic layer 16 is formed on the surface of the gas barrier support 12, the surface of the gas barrier support 12 may be dissolved depending on the combination of the forming material of the gas barrier support 12 and the organic solvent contained in the paint. .
When such dissolution of the gas barrier support 12 occurs, the retardation value of the gas barrier support 12 changes, the light transmittance decreases, the haze increases, and the optical characteristics of the gas barrier film are greatly reduced. Resulting in.
 これに対し、図1(A)に示すガスバリアフィルム10aのように、ガスバリア支持体12の表面に無機層14を形成して、その上に、有機層16と無機層14とを交互に積層することにより、無機層14が、有機層16を形成する塗料が含有する有機溶剤に対する保護層として作用する。
 そのため、ガスバリア支持体12の有機溶剤に対する耐性が低い場合でも、塗料によるガスバリア支持体12の溶解を防止して、ガスバリア支持体12の光学特性を維持することができ、光学特性に優れるガスバリアフィルムを得ることができる。
On the other hand, like the gas barrier film 10a shown in FIG. 1A, the inorganic layer 14 is formed on the surface of the gas barrier support 12, and the organic layers 16 and the inorganic layers 14 are alternately laminated thereon. Thereby, the inorganic layer 14 acts as a protective layer against the organic solvent contained in the coating material forming the organic layer 16.
Therefore, even when the resistance of the gas barrier support 12 to the organic solvent is low, it is possible to prevent the gas barrier support 12 from being dissolved by the paint and to maintain the optical characteristics of the gas barrier support 12, and to provide a gas barrier film having excellent optical characteristics. Obtainable.
 ここで、図1(A)に示すガスバリアフィルム10aのように、ガスバリア支持体12の表面に無機層14を有する構成では、無機層14とガスバリア支持体12との間に、ガスバリア支持体12の形成成分と無機層14の形成成分とが混合された、混合層のような領域を有してもよい。無機層14とガスバリア支持体12との間の混合層は、本発明における第1の混合層である。
 ガスバリア支持体12と無機層14との間にこのような混合層を有することにより、無機層14とガスバリア支持体12の密着性を向上して、ガスバリアフィルム10aの強度を向上できると共に、ガスバリア支持体12からの無機層14の剥離に起因するガスバリア性の低下も防止できる。
Here, in the configuration having the inorganic layer 14 on the surface of the gas barrier support 12 as in the gas barrier film 10 a shown in FIG. 1A, the gas barrier support 12 is interposed between the inorganic layer 14 and the gas barrier support 12. You may have an area | region like a mixed layer in which the formation component and the formation component of the inorganic layer 14 were mixed. The mixed layer between the inorganic layer 14 and the gas barrier support 12 is the first mixed layer in the present invention.
By having such a mixed layer between the gas barrier support 12 and the inorganic layer 14, the adhesion between the inorganic layer 14 and the gas barrier support 12 can be improved, the strength of the gas barrier film 10a can be improved, and the gas barrier support It is also possible to prevent a decrease in gas barrier properties due to the peeling of the inorganic layer 14 from the body 12.
 同様に、下地層となる有機層16と、この有機層16の表面に形成される無機層14との間に、有機層16の形成成分と無機層14の形成成分とが混合された、混合層のような領域を有してもよい。有機層16と無機層14との間の混合層は、本発明における第2の混合層である。
 有機層16と無機層14との間にこのような混合層を有することにより、無機層14と有機層16との密着性を向上して、ガスバリアフィルム10aの強度を向上できると共に、有機層16からの無機層14の剥離に起因するガスバリア性の低下も防止できる。
Similarly, a component in which the organic layer 16 is formed and a component in which the inorganic layer 14 is formed are mixed between the organic layer 16 serving as a base layer and the inorganic layer 14 formed on the surface of the organic layer 16. It may have a region such as a layer. The mixed layer between the organic layer 16 and the inorganic layer 14 is the second mixed layer in the present invention.
By having such a mixed layer between the organic layer 16 and the inorganic layer 14, the adhesiveness between the inorganic layer 14 and the organic layer 16 can be improved, the strength of the gas barrier film 10a can be improved, and the organic layer 16 It is also possible to prevent the gas barrier property from being lowered due to the peeling of the inorganic layer 14 from the substrate.
 第1の混合層、および、第2の混合層の厚さには特に限定はないが、ガスバリア支持体12と無機層14との密着性、有機層16と無機層14との密着性、強度および生産効率の観点から、第1の混合層および第2の混合層の厚さは、1nm~20nmであることが好ましい。
 なお、混合層は、ガスバリア支持体12あるいは有機層16に由来する成分と、無機層14に由来する成分とを含む層である。したがって、無機層14に由来する成分が無くなった位置が、ガスバリア支持体12あるいは有機層16と混合層との境界であり、ガスバリア支持体12あるいは有機層16に由来する成分が無くなった位置が、無機層14と混合層との境界である。
The thicknesses of the first mixed layer and the second mixed layer are not particularly limited, but the adhesion between the gas barrier support 12 and the inorganic layer 14, the adhesion between the organic layer 16 and the inorganic layer 14, and the strength. From the viewpoint of production efficiency, the thickness of the first mixed layer and the second mixed layer is preferably 1 nm to 20 nm.
The mixed layer is a layer containing a component derived from the gas barrier support 12 or the organic layer 16 and a component derived from the inorganic layer 14. Therefore, the position where the component derived from the inorganic layer 14 disappears is the boundary between the gas barrier support 12 or the organic layer 16 and the mixed layer, and the position where the component derived from the gas barrier support 12 or the organic layer 16 disappears, It is a boundary between the inorganic layer 14 and the mixed layer.
 前述のように、無機層14は、プラズマCVD等の気相成膜法で形成するが、この成膜条件を調節することにより、混合層の形成の有無や混合層の厚さ等を調節できる。
 例えば、プラズマCVDで無機層14を形成する際には、投入電力等を調節して生成するプラズマ強度を調節する方法、無機層14の形成時にかけるバイアスを調節する方法等で、混合層の形成の有無や混合層の厚さ等を調節できる。
As described above, the inorganic layer 14 is formed by a vapor deposition method such as plasma CVD. By adjusting the deposition conditions, the presence or absence of the mixed layer, the thickness of the mixed layer, and the like can be adjusted. .
For example, when the inorganic layer 14 is formed by plasma CVD, the mixed layer is formed by a method of adjusting the plasma intensity generated by adjusting input power or the like, a method of adjusting a bias applied when the inorganic layer 14 is formed, or the like. The presence or absence, the thickness of the mixed layer, etc. can be adjusted.
 他方、前述のように、本発明の機能性フィルムにかかるガスバリアフィルムは、有機無機積層体28の最上層が無機層14である。
 このように、有機無機積層体28の最上層を無機層14とすることにより、有機層16に起因するアウトガスの排出を防止できる。従って、有機無機積層体28の最上層が無機層14である構成は、例えば、有機無機積層体28側に、有機ELデバイス等の不要なガス成分に悪影響を受けやすいデバイスを配置する必要が有る場合に、好適である。
 また、有機無機積層体28の最上層を無機層14とすることにより、ガスバリアフィルム10aをトップエミッション方式の有機ELデバイス等に利用する場合に、有機ELデバイスの、無機材料からなるパッシベーション膜と最上層の無機層14とを対面して接着することができる。すなわち、同じ無機材料同士を接着剤により接着するので、パッシベーション膜と無機層14との密着性を向上でき、水分やガスの浸入を防止して、有機ELデバイスの発光素子である有機EL材料の劣化を防止できる。
On the other hand, as described above, in the gas barrier film according to the functional film of the present invention, the uppermost layer of the organic-inorganic laminate 28 is the inorganic layer 14.
Thus, by making the uppermost layer of the organic / inorganic laminate 28 the inorganic layer 14, it is possible to prevent outgas emission due to the organic layer 16. Therefore, in the configuration in which the uppermost layer of the organic / inorganic laminate 28 is the inorganic layer 14, for example, a device that is easily affected by unnecessary gas components such as an organic EL device needs to be disposed on the organic / inorganic laminate 28 side. In some cases.
Further, by using the inorganic layer 14 as the uppermost layer of the organic / inorganic laminate 28, when the gas barrier film 10a is used for a top emission type organic EL device or the like, the passivation film made of an inorganic material of the organic EL device and the uppermost layer are used. The upper inorganic layer 14 can be faced and bonded. That is, since the same inorganic materials are bonded to each other with an adhesive, the adhesion between the passivation film and the inorganic layer 14 can be improved, moisture and gas can be prevented from entering, and the organic EL material which is a light emitting element of the organic EL device Deterioration can be prevented.
 有機層16は、有機化合物からなる層で、基本的に、有機層16となる有機化合物を、架橋(重合)したものである。
 前述のように、有機層16は、ガスバリア性を発現する無機層14を適正に形成するための、下地層として機能する。このような下地の有機層16を有することにより、無機層14の形成面の平坦化や均一化を図って、無機層14の形成に適した状態にできる。
 下地の有機層16および無機層14を積層した積層型のガスバリアフィルムでは、これにより、フィルムの全面に、隙間無く、適正な無機層14を形成することが可能になり、優れたガスバリア性を有するガスバリアフィルムを得ることができる。
The organic layer 16 is a layer made of an organic compound, and is basically a cross-linked (polymerized) organic compound that becomes the organic layer 16.
As described above, the organic layer 16 functions as a base layer for properly forming the inorganic layer 14 that exhibits gas barrier properties. By having such a base organic layer 16, the surface on which the inorganic layer 14 is formed can be flattened and made uniform to be in a state suitable for the formation of the inorganic layer 14.
In the laminated type gas barrier film in which the underlying organic layer 16 and the inorganic layer 14 are laminated, it is possible to form the appropriate inorganic layer 14 on the entire surface of the film without gaps, and to have excellent gas barrier properties. A gas barrier film can be obtained.
 ガスバリアフィルム10aにおいて、有機層16の形成材料には、限定はなく、公知の有機化合物が、各種、利用可能である。
 具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機珪素化合物の膜が好適に例示される。これらは、複数を併用してもよい。
In the gas barrier film 10a, the material for forming the organic layer 16 is not limited, and various known organic compounds can be used.
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc. An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物の重合物から構成された有機層16は、好適である。 Among them, the organic layer 16 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
 中でも特に、上記強度に加え、屈折率が低い、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、ガラス転移温度が120℃以上のアクリル樹脂やメタクリル樹脂は、有機層16として好適に例示される。
 その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、1,9-ノナンジオールジ(メタ)アクリレート(A-NOD-N)、1,6ヘキサンジオールジアクリレート(A-HD-N)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、(変性)ビスフェノールAジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上のアクリレートおよび/またはメタクリレートのモノマー等の重合体を主成分とする、アクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
In particular, in addition to the above strength, the glass transition temperature is 120 ° C., mainly composed of acrylate and / or methacrylate monomers and oligomer polymers, in terms of low refractive index, high transparency and excellent optical properties. The above acrylic resin and methacrylic resin are preferably exemplified as the organic layer 16.
Among them, dipropylene glycol di (meth) acrylate (DPGDA), 1,9-nonanediol di (meth) acrylate (A-NOD-N), 1,6 hexanediol diacrylate (A-HD-N), Bifunctional or higher acrylate and / or methacrylate monomers such as trimethylolpropane tri (meth) acrylate (TMPTA), (modified) bisphenol A di (meth) acrylate, dipentaerythritol hexa (meth) acrylate (DPHA), etc. An acrylic resin and a methacrylic resin mainly composed of a polymer are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
 有機層16を、アクリル樹脂やメタクリル樹脂、特に2官能以上のアクリル樹脂やメタクリル樹脂で形成することにより、三次元架橋密度が高い下地の上に無機層14を形成できるので、より緻密でガスバリア性が高い無機層14を形成できる。 By forming the organic layer 16 with an acrylic resin or a methacrylic resin, particularly an acrylic resin or a methacrylic resin having two or more functions, the inorganic layer 14 can be formed on a base having a high three-dimensional crosslink density. Can be formed.
 有機層16の厚さは、0.5~5μmが好ましい。
 有機層16の厚さを0.5μm以上とすることにより、無機層14の全面を確実に有機層16で覆い、かつ、有機層16の表面すなわち無機層14の形成面を平坦化できる。
 また、有機層16の厚さを5μm以下とすることにより、有機層16が厚すぎることに起因する、有機層16のクラックや、ガスバリアフィルム10aのカール等の問題の発生を、好適に抑制することができる。
 以上の点を考慮すると、有機層16の厚さは、1~3μmとするのが、より好ましい。
The thickness of the organic layer 16 is preferably 0.5 to 5 μm.
By setting the thickness of the organic layer 16 to 0.5 μm or more, the entire surface of the inorganic layer 14 can be reliably covered with the organic layer 16, and the surface of the organic layer 16, that is, the formation surface of the inorganic layer 14 can be planarized.
In addition, by setting the thickness of the organic layer 16 to 5 μm or less, occurrence of problems such as cracks in the organic layer 16 and curling of the gas barrier film 10a due to the organic layer 16 being too thick is suitably suppressed. be able to.
Considering the above points, the thickness of the organic layer 16 is more preferably 1 to 3 μm.
 なお、図1(B)に示すガスバリアフィルム100のように、複数の有機層16を有する場合には、各有機層16の厚さは、同じでも、互いに異なってもよい。
 同様に、ガスバリアフィルム100のように、複数の有機層16を有する場合には、各有機層16の形成材料も、同じでも異なってもよい。しかしながら、生産性や生産コスト等を考慮すれば、全ての有機層16を同じ材料で形成するのが好ましい。
In addition, when it has the some organic layer 16 like the gas barrier film 100 shown in FIG.1 (B), the thickness of each organic layer 16 may be the same, or may mutually differ.
Similarly, in the case of having a plurality of organic layers 16 as in the gas barrier film 100, the forming material of each organic layer 16 may be the same or different. However, in consideration of productivity, production cost, etc., it is preferable to form all the organic layers 16 with the same material.
 本発明において、有機層16は、基本的に、塗布法で形成される。
 すなわち、有機層16を形成する際には、まず、有機層16となる有機化合物としてモノマー、ダイマー、トリマー、オリゴマー等、さらには、重合開始剤、シランカップリング剤、界面活性剤、増加粘剤等を有機溶剤に溶解してなる塗料を調節する。次いで、この塗料を無機層14の表面に塗布し、乾燥する。乾燥後、紫外線照射や電子線照射、加熱等によって、有機化合物を重合して、有機層16を形成する。
In the present invention, the organic layer 16 is basically formed by a coating method.
That is, when the organic layer 16 is formed, first, monomers, dimers, trimers, oligomers and the like as the organic compound that becomes the organic layer 16, and further, a polymerization initiator, a silane coupling agent, a surfactant, and an increasing viscosity agent The paint which dissolves etc. in the organic solvent is adjusted. Next, this paint is applied to the surface of the inorganic layer 14 and dried. After drying, an organic compound is polymerized by ultraviolet irradiation, electron beam irradiation, heating, or the like to form the organic layer 16.
 本発明のガスバリアフィルム10aにおいて、ガスバリア支持体12の裏面には、粘着層20が貼着され、この粘着層20には、裏面保護フィルム24が貼着される。
 前述のように、このガスバリア支持体12、粘着層20および裏面保護フィルム24によって、本発明における積層体26が構成される。
In the gas barrier film 10 a of the present invention, the adhesive layer 20 is attached to the back surface of the gas barrier support 12, and the back surface protective film 24 is attached to the adhesive layer 20.
As described above, the gas barrier support 12, the adhesive layer 20, and the back surface protective film 24 constitute the laminate 26 in the present invention.
 裏面保護フィルム24は、前述の特許文献1や特許文献2に記載される例と同様、ガスバリア支持体12のコシ等が弱く、ロール・トゥ・ロール(以下、RtoRともいう)による各層の形成において、適正な搬送が困難な場合に、裏面側からガスバリア支持体12を支持して、自己支持性を確保し、折れ曲がりやシワの形成等の無い安定した搬送を可能にするためのものである。
 ここで、前述のとおり、本発明のガスバリアフィルム10aにおいては、裏面保護フィルム24は、ガスバリア支持体12とは異なる熱的特性を有するものである。具体的には、ガスバリア支持体12の線膨張係数と裏面保護フィルム24の線膨張係数との差が、0~80ppm/℃である。
 さらに、本発明のガスバリアフィルム10aにおいては、粘着層20とガスバリア支持体12との25℃における粘着力が0.01~0.15N/25mmである。
 また、好ましくは、粘着層20と裏面保護フィルム24との25℃における粘着力が0.05~0.20N/25mmである。
 本発明は、このようにガスバリア支持体12と粘着層20との粘着力、および、粘着層20と裏面保護フィルム24との粘着力と、ガスバリア支持体の線膨張係数と裏面保護フィルムの線膨張係数との差を規定する。
 これにより、COCフィルム等の高価なガスバリア支持体12を用いた場合でも、コストを向上することなく、ヒビや割れ等の損傷のない無機層14を有するガスバリアフィルム10aを実現している。
As in the examples described in Patent Document 1 and Patent Document 2 described above, the back surface protective film 24 is weak in the stiffness of the gas barrier support 12 and is formed in each layer by roll-to-roll (hereinafter also referred to as RtoR). When proper conveyance is difficult, the gas barrier support 12 is supported from the back side to ensure self-supporting property and enable stable conveyance without bending or formation of wrinkles.
Here, as described above, in the gas barrier film 10 a of the present invention, the back surface protective film 24 has thermal characteristics different from those of the gas barrier support 12. Specifically, the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 is 0 to 80 ppm / ° C.
Further, in the gas barrier film 10a of the present invention, the adhesive strength between the adhesive layer 20 and the gas barrier support 12 at 25 ° C. is 0.01 to 0.15 N / 25 mm.
Preferably, the adhesive force between the adhesive layer 20 and the back surface protective film 24 at 25 ° C. is 0.05 to 0.20 N / 25 mm.
In the present invention, the adhesive strength between the gas barrier support 12 and the adhesive layer 20, the adhesive strength between the adhesive layer 20 and the back surface protective film 24, the linear expansion coefficient of the gas barrier support and the linear expansion of the back surface protective film are as described above. Specify the difference from the coefficient.
Thereby, even when an expensive gas barrier support 12 such as a COC film is used, the gas barrier film 10a having the inorganic layer 14 free from damage such as cracks and cracks is realized without increasing the cost.
 前述のように、本発明のガスバリアフィルム10aにおいては、優れた光学特性を実現するために、ガスバリア支持体12として、PC、COP、COC、TACおよび透明ポリイミド等からなるリタデーション値が300nm以下の低リタデーションフィルムを用いる。さらに、ガスバリア支持体12は、全光線透過率が85%以上であるのが好ましい。
 他方、裏面保護フィルム24は、最終的には剥離して廃棄するものであるので、PETフィルム等の安価なフィルムを用いるのが好ましい。
As described above, in the gas barrier film 10a of the present invention, in order to realize excellent optical properties, the gas barrier support 12 has a retardation value composed of PC, COP, COC, TAC, transparent polyimide, and the like as low as 300 nm or less. A retardation film is used. Further, the gas barrier support 12 preferably has a total light transmittance of 85% or more.
On the other hand, since the back surface protective film 24 is finally peeled off and discarded, it is preferable to use an inexpensive film such as a PET film.
 ところがCOCフィルム等の低リタデーションフィルムと、PETフィルム等とでは、例えば、Tgに大きな差がある、一方が熱膨張して他方が熱収縮する、熱膨張/収縮率が大きく異なるなど、互いの熱的特性、すなわち、線膨張係数が異なる。
 このように熱的特性が異なるガスバリア支持体12と裏面保護フィルム24とを有する積層体26を用いて、ガスバリア支持体12の表面にRtoRによって無機層14や有機層16を形成すると、無機層14を形成する際のプラズマ等による熱や、有機層16を形成する際の乾燥による熱によって、ガスバリア支持体12と裏面保護フィルム24とが全く異なる変形を示し、搬送によるストレスや搬送経路の変更による屈曲等も有るため、これにより、ガスバリア支持体12と裏面保護フィルム24の剥離や、ガスバリア支持体12のシワや折れ等が生じてしまう。また、このガスバリア支持体12と裏面保護フィルム24の剥離やガスバリア支持体12のシワ等に起因して、適正な無機層14が形成できず、さらに、先に形成した無機層14が損傷して、ガスバリア性が低下してしまう。
However, a low retardation film such as a COC film and a PET film or the like, for example, have a large difference in Tg, one of which thermally expands and the other thermally contracts, and the thermal expansion / contraction rate differs greatly. Characteristic, that is, linear expansion coefficient is different.
When the laminated body 26 having the gas barrier support 12 and the back surface protective film 24 having different thermal characteristics is used to form the inorganic layer 14 or the organic layer 16 on the surface of the gas barrier support 12 by RtoR, the inorganic layer 14 The gas barrier support 12 and the back surface protective film 24 show completely different deformations due to heat caused by plasma or the like when forming the organic layer 16, or heat caused by drying when the organic layer 16 is formed. Since there is also a bend or the like, this causes peeling of the gas barrier support 12 and the back surface protective film 24, wrinkles or breakage of the gas barrier support 12 and the like. Further, due to peeling of the gas barrier support 12 and the back surface protective film 24, wrinkles of the gas barrier support 12, etc., the proper inorganic layer 14 cannot be formed, and further, the previously formed inorganic layer 14 is damaged. , Gas barrier properties are reduced.
 裏面保護フィルム24として、ガスバリア支持体12と同じ材料のフィルムを用いれば、裏面保護フィルム24とガスバリア支持体12との熱的特性の違いに起因する問題は生じない。
 しかしながら、COCフィルム等の低リタデーションフィルムなど、光学特性が高いフィルムは、高価であるため、最終的に廃棄する裏面保護フィルムとして、低リタデーションフィルムなどの高い光学特性を有するフィルム等を利用すると、ガスバリアフィルムのコストが、非常に高くなってしまう。
 また、ガスバリア支持体と裏面保護フィルムとで同じ材料を用いたとしても、ガスバリア支持体と裏面保護フィルムとの間に存在する気泡に起因する剥離や、ガスバリア支持体のシワや折れ等は抑制することができない。
If a film made of the same material as that of the gas barrier support 12 is used as the back surface protection film 24, a problem caused by a difference in thermal characteristics between the back surface protection film 24 and the gas barrier support body 12 does not occur.
However, since a film having high optical properties such as a low retardation film such as a COC film is expensive, when a film having high optical properties such as a low retardation film is used as a rear surface protective film to be finally discarded, a gas barrier is used. The cost of the film becomes very high.
In addition, even if the same material is used for the gas barrier support and the back surface protective film, peeling due to air bubbles existing between the gas barrier support and the back surface protective film, wrinkles and breakage of the gas barrier support are suppressed. I can't.
 これに対し、本発明のガスバリアフィルム10aにおいては、ガスバリア支持体12の線膨張係数と裏面保護フィルム24の線膨張係数との差を0~80ppm/℃とし、粘着層20とガスバリア支持体12との25℃における粘着力を0.01~0.15N/25mmとする。すなわち、ガスバリア支持体12と裏面保護フィルム24との熱的特性の差を所定の範囲内とすると共に、粘着層20と、ガスバリア支持体12とは、非常に弱い力で貼着される。
 そのため、RtoRによる無機層14や有機層16の形成の際の加熱によって、ガスバリア支持体12と裏面保護フィルム24とが異なる変形を示すと、貼着力の弱い粘着層20とガスバリア支持体12とが剥離して、次いで、張力によって、再度、貼着されることを繰り返す。
 この剥離および貼着の繰り返しによって、ガスバリア支持体12と裏面保護フィルム24との互いに異なる変形が吸収される。また、ガスバリア支持体12と裏面保護フィルム24との間の気泡が膨張しても、一旦、剥離した際に、気泡が開放される。
 その結果、両者の異なる変形や両者の間に存在する気泡に起因するガスバリア支持体12と裏面保護フィルム24の剥離や、ガスバリア支持体12のシワ等が生じることがなく、これに起因する無機層14の損傷や不適正な無機層14の形成を防止できる。
In contrast, in the gas barrier film 10a of the present invention, the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 is set to 0 to 80 ppm / ° C., and the adhesive layer 20 and the gas barrier support 12 The adhesive strength at 25 ° C. is set to 0.01 to 0.15 N / 25 mm. That is, the difference in thermal characteristics between the gas barrier support 12 and the back surface protective film 24 is within a predetermined range, and the adhesive layer 20 and the gas barrier support 12 are attached with very weak force.
Therefore, when the gas barrier support 12 and the back surface protective film 24 exhibit different deformations due to heating during the formation of the inorganic layer 14 or the organic layer 16 by RtoR, the adhesive layer 20 and the gas barrier support 12 having a weak adhesion force are It peels and then repeats being stuck again by tension.
By repeating this peeling and sticking, different deformations of the gas barrier support 12 and the back surface protective film 24 are absorbed. Moreover, even if the bubble between the gas barrier support 12 and the back surface protective film 24 expands, the bubble is released when it is once peeled off.
As a result, there is no peeling of the gas barrier support 12 and the back surface protective film 24 due to the different deformations of the two or bubbles existing between them, wrinkles of the gas barrier support 12, etc., and the inorganic layer resulting from this 14 and the formation of an inappropriate inorganic layer 14 can be prevented.
 また、好ましくは、粘着層20と裏面保護フィルム24との25℃における粘着力を0.05~0.20N/25mmとする。これにより、加熱によって、ガスバリア支持体12と裏面保護フィルム24とが異なる変形を示した場合に、粘着層20と裏面保護フィルム24との間でも剥離および貼着の繰り返しが発生し、ガスバリア支持体12と裏面保護フィルム24との互いに異なる変形が吸収される。 Also preferably, the adhesive strength of the adhesive layer 20 and the back surface protective film 24 at 25 ° C. is 0.05 to 0.20 N / 25 mm. Thereby, when the gas barrier support 12 and the back surface protective film 24 show different deformations due to heating, peeling and sticking are repeatedly generated between the adhesive layer 20 and the back surface protective film 24, and the gas barrier support body. The mutually different deformations of 12 and the back surface protective film 24 are absorbed.
 本発明は、裏面保護フィルム24としてガスバリア支持体12と線膨張係数の差が所定範囲内のものを用い、かつ、ガスバリア支持体12および裏面保護フィルム24と粘着層20との貼着力を上記範囲としている。これにより、RtoRによるガスバリアフィルムの製造において、裏面保護フィルム24によって搬送の安定化を図ることができる。また、優れた光学特性を有するガスバリアフィルム10aを得るためにCOCフィルムのような高価な低リタデーションフィルムをガスバリア支持体12として用いた場合であっても、PETフィルムのような安価なものを裏面保護フィルム24として用いることを可能にしている。
 また、前述のように、ガスバリアフィルム10aは、最終的には、粘着層20および裏面保護フィルム24を剥離したガスバリアフィルム10bとされる。ここで、本発明においては、粘着層20とガスバリア支持体12との粘着力が弱いため、裏面保護フィルム24を剥離することで、粘着層20も容易に剥離でき、しかも、無機層14を損傷することなく剥離を行え、かつ、粘着層20がガスバリア支持体12に残存することも防止できる。
 特に、本発明によれば、ガスバリア支持体12への粘着層20の残存を防止できるため、低リタデーションフィルム等の光学特性に優れたフィルムをガスバリア支持体12として用いることにより、光学特性に優れたガスバリアフィルム10bを得ることができ、携帯電話やディスプレイなどに利用される、トップエミッション方式の有機ELデバイスに用いられるガスバリアフィルムとして、好適に利用可能となる。
In the present invention, the back surface protective film 24 has a difference in linear expansion coefficient from that of the gas barrier support 12 within a predetermined range, and the adhesive strength between the gas barrier support 12 and the back surface protective film 24 and the adhesive layer 20 is within the above range. It is said. Thereby, in manufacture of the gas barrier film by RtoR, conveyance can be stabilized by the back surface protective film 24. Further, even when an expensive low retardation film such as a COC film is used as the gas barrier support 12 in order to obtain a gas barrier film 10a having excellent optical properties, the back surface protection of an inexpensive one such as a PET film is possible. The film 24 can be used.
Further, as described above, the gas barrier film 10a is finally the gas barrier film 10b from which the adhesive layer 20 and the back surface protective film 24 have been peeled off. Here, in this invention, since the adhesive force of the adhesion layer 20 and the gas barrier support body 12 is weak, the adhesion layer 20 can also be easily peeled by peeling the back surface protective film 24, and also the inorganic layer 14 is damaged. It is possible to perform the peeling without performing, and to prevent the adhesive layer 20 from remaining on the gas barrier support 12.
In particular, according to the present invention, it is possible to prevent the adhesive layer 20 from remaining on the gas barrier support 12, and therefore, by using a film having excellent optical properties such as a low retardation film as the gas barrier support 12, the optical properties are excellent. The gas barrier film 10b can be obtained, and can be suitably used as a gas barrier film used for a top emission type organic EL device used for a mobile phone or a display.
 本発明のガスバリアフィルム10aにおいて、粘着層20とガスバリア支持体12との粘着力が0.01N/25mm未満では、十分な粘着層20とガスバリア支持体12の粘着力が得られなかったり、粘着層20とガスバリア支持体12とが不要に剥離してしまう等の不都合が生じる場合がある。
 粘着層20とガスバリア支持体12との粘着力が0.15N/25mmを超えると、裏面保護フィルム24等を剥離した際に無機層14を損傷する可能性がある。また、裏面保護フィルム24等を剥離した際にガスバリア支持体12に粘着層20が残ってしまう、すなわち、糊残りが生じたり、粘着層20とガスバリア支持体12との間で剥離および貼着の繰り返しが発生せず、ガスバリア支持体12と裏面保護フィルム24との互いに異なる変形を吸収できない場合がある。さらに、粘着層20とガスバリア支持体12との間に存在する気泡を開放できない等の不都合を生じる場合がある。
 以上の点を考慮すると、粘着層20とガスバリア支持体12との粘着力は、0.01~0.15N/25mmである。
In the gas barrier film 10a of the present invention, if the adhesive force between the adhesive layer 20 and the gas barrier support 12 is less than 0.01 N / 25 mm, sufficient adhesive force between the adhesive layer 20 and the gas barrier support 12 cannot be obtained, or the adhesive layer 20 and the gas barrier support 12 may unnecessarily peel off.
If the adhesive force between the adhesive layer 20 and the gas barrier support 12 exceeds 0.15 N / 25 mm, the inorganic layer 14 may be damaged when the back surface protective film 24 or the like is peeled off. Further, when the back surface protective film 24 or the like is peeled off, the adhesive layer 20 remains on the gas barrier support 12, that is, an adhesive residue is generated, or peeling and sticking between the adhesive layer 20 and the gas barrier support 12 are performed. In some cases, the repetition does not occur, and different deformations of the gas barrier support 12 and the back surface protective film 24 cannot be absorbed. Furthermore, inconveniences such as inability to open bubbles present between the adhesive layer 20 and the gas barrier support 12 may occur.
Considering the above points, the adhesive force between the adhesive layer 20 and the gas barrier support 12 is 0.01 to 0.15 N / 25 mm.
 また、本発明のガスバリアフィルム10aにおいて、粘着層20と裏面保護フィルム24との粘着力が0.05N/25mm未満では、十分な粘着層20と裏面保護フィルム24との粘着力が得られない、ガスバリア支持体側に糊残りが生じる等の不都合が生じるおそれがある。
 粘着層20と裏面保護フィルム24との粘着力が0.20N/25mmを超えると、裏面保護フィルム24等を剥離した際に無機層14を損傷する可能性がある。また、粘着層20と裏面保護フィルム24との間で剥離および貼着の繰り返しが発生せず、ガスバリア支持体12と裏面保護フィルム24との互いに異なる変形を吸収できない場合がある。さらに、粘着層20と裏面保護フィルム24との間に存在する気泡を開放できない等の不都合を生じる場合がある。
 以上の点を考慮すると、粘着層20と裏面保護フィルム24の粘着力は、0.05~0.20N/25mmが好ましい。
 なお、本発明において、裏面保護フィルム24を剥離することにより、併せて粘着層20も剥離するためには、粘着層20と裏面保護フィルム24との粘着力は、粘着層20とガスバリア支持体12との粘着力よりも大きいのが好ましい。
In the gas barrier film 10a of the present invention, if the adhesive force between the adhesive layer 20 and the back surface protective film 24 is less than 0.05 N / 25 mm, sufficient adhesive force between the adhesive layer 20 and the back surface protective film 24 cannot be obtained. There is a possibility that inconveniences such as adhesive residue on the gas barrier support side occur.
If the adhesive force between the adhesive layer 20 and the back surface protective film 24 exceeds 0.20 N / 25 mm, the inorganic layer 14 may be damaged when the back surface protective film 24 or the like is peeled off. Further, there is a case where peeling and sticking are not repeated between the pressure-sensitive adhesive layer 20 and the back surface protective film 24, and different deformations of the gas barrier support 12 and the back surface protective film 24 cannot be absorbed. Furthermore, inconveniences such as inability to open bubbles present between the adhesive layer 20 and the back surface protective film 24 may occur.
Considering the above points, the adhesive strength between the adhesive layer 20 and the back surface protective film 24 is preferably 0.05 to 0.20 N / 25 mm.
In addition, in this invention, in order to peel the adhesive layer 20 by peeling the back surface protective film 24 together, the adhesive force of the adhesive layer 20 and the back surface protective film 24 is the pressure sensitive adhesive layer 20 and the gas barrier support 12. It is preferable that it is larger than the adhesive strength.
 本発明のガスバリアフィルム10aにおいて、粘着層20とガスバリア支持体12との粘着力を0.01~0.15N/25mmとする方法、および、粘着層20と裏面保護フィルム24との粘着力を0.05~0.20N/25mmとする方法は、各種の接着剤や接着テープで行われている、公知の方法が利用可能である。
 以下、上記範囲の粘着力を微粘着ともいう。
In the gas barrier film 10a of the present invention, the pressure-sensitive adhesive force between the pressure-sensitive adhesive layer 20 and the gas-barrier support 12 is 0.01 to 0.15 N / 25 mm, and the pressure-sensitive adhesive strength between the pressure-sensitive adhesive layer 20 and the back surface protective film 24 is 0. As a method for adjusting the thickness to 0.05 to 0.20 N / 25 mm, known methods that are performed using various adhesives and adhesive tapes can be used.
Hereinafter, the adhesive strength in the above range is also referred to as slight adhesion.
 本発明において、粘着層20は、ガスバリア支持体12および裏面保護フィルム24に応じて、前述の粘着力が得られる各種の接着剤からなるものが利用可能である。
 粘着層20の材料としては、アクリル樹脂系の接着剤、エポキシ樹脂系の接着剤、ウレタン樹脂系の接着剤、ビニル樹脂系の接着剤、ゴム系の接着剤等が例示される。
In the present invention, the pressure-sensitive adhesive layer 20 may be made of various adhesives that can obtain the above-mentioned pressure-sensitive adhesive force depending on the gas barrier support 12 and the back surface protective film 24.
Examples of the material of the pressure-sensitive adhesive layer 20 include acrylic resin adhesives, epoxy resin adhesives, urethane resin adhesives, vinyl resin adhesives, rubber adhesives, and the like.
 具体的には、粘着層20の材料は、アクリル酸アルキルモノマーのアルキル基部分の炭素数が3~10のものが好ましい。あるいはさらに、メタクリル酸アルキルモノマーを含むことが好ましい。このように、粘着層20の材料として長鎖のアルキル基部分を有する材料を用いることにより、硬化した際の体積収縮が3%以下と低くなる、低粘着となる等の点で好ましい。 Specifically, the adhesive layer 20 is preferably made of a material having 3 to 10 carbon atoms in the alkyl group portion of the alkyl acrylate monomer. Alternatively, it is preferable to further contain an alkyl methacrylate monomer. Thus, the use of a material having a long-chain alkyl group moiety as the material of the adhesive layer 20 is preferable in that the volume shrinkage when cured is as low as 3% or less, and the adhesiveness is low.
 粘着層20の厚さは、15~250μmが好ましい。
 粘着層20の厚さを15μm以上とすることにより、前述の粘着層20とガスバリア支持体12との剥離および貼着の繰り返しによる、ガスバリア支持体12と裏面保護フィルム24との異なる変形を十分に吸収することができ、より好適に、ガスバリア支持体12と裏面保護フィルム24の剥離、ガスバリア支持体12のシワや折れ、これに起因する無機層14の損傷等を防止できる等の点で好ましい。
 他方、粘着層20の厚さを250μm以下とすることにより、後述する無機層14の形成の際の裏面からの冷却に対して熱伝導性が低下することを防止でき、これにより、形成する無機層14のガスバリア性を向上できる等の点で好ましい。
 以上の点を考慮すると、粘着層20の厚さは、25~150μmがより好ましい。
The thickness of the adhesive layer 20 is preferably 15 to 250 μm.
By setting the thickness of the pressure-sensitive adhesive layer 20 to 15 μm or more, different deformations of the gas barrier support 12 and the back surface protective film 24 due to repeated peeling and sticking of the pressure-sensitive adhesive layer 20 and the gas barrier support 12 described above are sufficiently obtained. More preferably, the gas barrier support 12 and the back surface protective film 24 can be peeled off, the gas barrier support 12 can be wrinkled or broken, and the inorganic layer 14 can be prevented from being damaged.
On the other hand, by setting the thickness of the pressure-sensitive adhesive layer 20 to 250 μm or less, it is possible to prevent the thermal conductivity from being lowered with respect to cooling from the back surface when the inorganic layer 14 described later is formed. This is preferable in that the gas barrier property of the layer 14 can be improved.
Considering the above points, the thickness of the adhesive layer 20 is more preferably 25 to 150 μm.
 このような粘着層20は、利用する接着剤等に応じた公知の方法で形成すればよい。
 一例として、接着剤の塗布によって形成する方法、粘着テープ(接着テープ)を利用して形成する方法が例示される。
 また、上記のアクリル酸アルキルモノマーを用いる場合には、粘着層20の材料となる塗布液を塗布した後、UV硬化により重合(架橋)して形成するのが好ましい。また、温度25℃~150℃、UV照射量100mJ/cm2~1000mJ/cm2の条件で、UV硬化した際の、重合(架橋)による体積収縮率が3%以下であるのが好ましい。
What is necessary is just to form such an adhesion layer 20 by the well-known method according to the adhesive agent etc. to utilize.
As an example, a method of forming by applying an adhesive and a method of forming using an adhesive tape (adhesive tape) are exemplified.
Moreover, when using said alkyl acrylate monomer, after apply | coating the coating liquid used as the material of the adhesion layer 20, it superposes | polymerizes (crosslinks) by UV hardening and forms. Further, it is preferable that the volumetric shrinkage due to polymerization (crosslinking) is 3% or less when UV-cured under conditions of a temperature of 25 ° C. to 150 ° C. and a UV irradiation amount of 100 mJ / cm 2 to 1000 mJ / cm 2 .
 一方、裏面保護フィルム24は、ガスバリア支持体12との線膨張係数の差が、0~80ppm/℃であれば、各種の材料からなるシート状物が利用可能であり、特に、各種のプラスチックフィルムが利用できる。
 本発明のガスバリアフィルム10aは、このように、ガスバリア支持体12と裏面保護フィルム24との線膨張係数の差をこのような範囲とすることにより、前述のように、裏面保護フィルム24によって、RtoRにおけるガスバリア支持体12の搬送の安定化を図ると共に、COCフィルムなどの低リタデーションフィルム等の高価な光学特性に優れたフィルムを用いた際にも、裏面保護フィルム24として安価なPETフィルムを用いることを可能にして、安価で、かつ、無機層14の損傷が無いガスバリアフィルム10aを実現している。
 また、上記のとおり、本発明においては、裏面保護フィルム24とガスバリア支持体12との線膨張係数に若干の差があっても、変形を十分に吸収することができるので、裏面保護フィルム24と、ガスバリア支持体12との線膨張係数の差が、10ppm~80ppm/℃である場合により好適に適用できる。線膨張係数の差が10ppm未満とするには、材料の選択幅が狭くなり、ガスバリア支持体12と同じ材料を選ばざるを得なくなるおそれがある。特に、高価な光学フィルムを裏面保護フィルムに用いると、コストが2倍以上となってしまう。また、線膨張係数の差が80ppm超の場合には、成膜工程の熱に起因する変形自体が大きくなり、高品質な無機膜が得られなくなる。また、作製したガスバリアフィルムを各種装置に組み込む際や使用する際の熱に伴う変形が大きくなり所望のガスバリア性を発現できないおそれがある。
On the other hand, if the difference in linear expansion coefficient from the gas barrier support 12 is 0 to 80 ppm / ° C., the back surface protective film 24 can be a sheet-like material made of various materials, particularly various plastic films. Is available.
As described above, the gas barrier film 10a of the present invention has the RtoR by the back surface protective film 24 as described above by setting the difference in the linear expansion coefficient between the gas barrier support 12 and the back surface protective film 24 in such a range. When using a film having excellent optical properties such as a low retardation film such as a COC film, an inexpensive PET film should be used as the back surface protective film 24 while stabilizing the transportation of the gas barrier support 12 in Therefore, the gas barrier film 10a which is inexpensive and does not damage the inorganic layer 14 is realized.
In addition, as described above, in the present invention, even if there is a slight difference in the linear expansion coefficient between the back surface protective film 24 and the gas barrier support 12, the back surface protective film 24 can be sufficiently absorbed. It can be more suitably applied when the difference in coefficient of linear expansion from the gas barrier support 12 is 10 ppm to 80 ppm / ° C. If the difference in linear expansion coefficient is less than 10 ppm, the selection range of the material is narrowed, and the same material as the gas barrier support 12 may have to be selected. In particular, when an expensive optical film is used for the back surface protective film, the cost becomes twice or more. Further, when the difference in linear expansion coefficient exceeds 80 ppm, deformation itself due to heat in the film forming process becomes large, and a high-quality inorganic film cannot be obtained. In addition, when the produced gas barrier film is incorporated into various devices or used, deformation due to heat increases, and a desired gas barrier property may not be exhibited.
 前述のように、裏面保護フィルム24は、最終的には剥離して廃棄されるものである。従って、低コストな材料を利用するのが好ましい。
 具体的には、PET、PP等からなるプラスチックフィルムが好適に例示される。
As described above, the back surface protective film 24 is finally peeled off and discarded. Therefore, it is preferable to use a low-cost material.
Specifically, a plastic film made of PET, PP or the like is preferably exemplified.
 本発明において、裏面保護フィルム24の厚さは、12~100μmが好ましい。
 裏面保護フィルム24の厚さを12μm以上とすることにより、裏面保護フィルム24を設けることの効果を十分に発揮して、RtoRによる無機層14等の形成の際にガスバリア支持体12(積層体26)の安定した搬送が可能になる等の点で好ましい。
 また、裏面保護フィルム24の厚さを100μm以下とすることにより、無機層14等の形成の際における裏面保護フィルム24の熱変形量を低減できる。また、後述する無機層14の形成の際の裏面からの冷却に対して熱伝導性が低下することを防止できる。さらに、軽量なガスバリアフィルム10aが得られる。
 以上の点を考慮すると、裏面保護フィルム24の厚さは、25~75μmがより好ましい。
In the present invention, the thickness of the back surface protective film 24 is preferably 12 to 100 μm.
By setting the thickness of the back surface protective film 24 to 12 μm or more, the effect of providing the back surface protective film 24 is sufficiently exerted, and the gas barrier support 12 (laminated body 26) is formed when forming the inorganic layer 14 or the like by RtoR. ) Is preferable in that stable conveyance is possible.
Moreover, the thermal deformation amount of the back surface protective film 24 in the case of formation of the inorganic layer 14 grade | etc., Can be reduced by making the thickness of the back surface protective film 24 into 100 micrometers or less. Moreover, it can prevent that thermal conductivity falls with respect to the cooling from the back surface in the case of formation of the inorganic layer 14 mentioned later. Furthermore, the lightweight gas barrier film 10a is obtained.
Considering the above points, the thickness of the back surface protective film 24 is more preferably 25 to 75 μm.
 本発明において、ガスバリア支持体12と裏面保護フィルム24との厚さの比は、『裏面保護フィルム24/ガスバリア支持体12』の比で0.1~5とするのが好ましい。
 ガスバリア支持体12と裏面保護フィルム24との厚さの比を、この範囲とすることにより、ガスバリア支持体12と裏面保護フィルム24との熱的特性の違いに起因して、無機層14や有機層16等の形成時に裏面保護フィルム24が無機層14等に与えるストレスを低減でき、より高いガスバリア性が得られる等の点で好ましい。
In the present invention, the thickness ratio between the gas barrier support 12 and the back surface protective film 24 is preferably 0.1 to 5 as the ratio of “back surface protective film 24 / gas barrier support 12”.
By setting the ratio of the thicknesses of the gas barrier support 12 and the back surface protective film 24 within this range, the inorganic layer 14 and the organic layer 14 are formed due to the difference in thermal characteristics between the gas barrier support 12 and the back surface protective film 24. It is preferable in that the stress that the back surface protective film 24 gives to the inorganic layer 14 or the like during formation of the layer 16 or the like can be reduced, and higher gas barrier properties can be obtained.
 また、裏面保護フィルム24は、ガラス転移温度(Tg)が70℃以上であるのが好ましく、80℃以上であるのがより好ましい。
 前述のように、ガスバリアフィルム10aは、前述のガスバリア支持体12と同様、裏面保護フィルム24のTgを70℃以上とすることにより、無機層14および有機層16の形成の際における加熱による裏面保護フィルム24の熱損傷や溶解を防止できる等の点で好ましい。
Moreover, it is preferable that the glass transition temperature (Tg) of the back surface protective film 24 is 70 degreeC or more, and it is more preferable that it is 80 degreeC or more.
As described above, the gas barrier film 10a is protected from the back surface by heating during the formation of the inorganic layer 14 and the organic layer 16 by setting the Tg of the back surface protective film 24 to 70 ° C. or higher, like the gas barrier support 12 described above. The film 24 is preferable in that heat damage and dissolution of the film 24 can be prevented.
 また、裏面保護フィルム24の水蒸気透過率(WVTR)は、0.1~10[g/(m2・day)]であるのが好ましい。
 前述のとおり、本発明においては、光学特性に優れた低レタデーション値を有するガスバリア支持体12を用いる。このようなガスバリア支持体12は水蒸気透過率が高い場合がある。また、前述のとおり、密着性の観点から、ガスバリア支持体12の上には直接、無機層14が形成される。
 そのため、ガスバリア支持体を透過した水蒸気や酸素等が、最下層の無機層に到達し、無機層の酸化等により、密着性が低下したり、ガスバリア性が低下するおそれがある。
The water vapor transmission rate (WVTR) of the back surface protective film 24 is preferably 0.1 to 10 [g / (m 2 · day)].
As described above, in the present invention, the gas barrier support 12 having a low retardation value with excellent optical characteristics is used. Such a gas barrier support 12 may have a high water vapor transmission rate. Further, as described above, the inorganic layer 14 is formed directly on the gas barrier support 12 from the viewpoint of adhesion.
For this reason, water vapor, oxygen or the like that has passed through the gas barrier support reaches the lowermost inorganic layer, and there is a possibility that adhesion may be reduced or gas barrier properties may be reduced due to oxidation of the inorganic layer.
 これに対して、裏面保護フィルム24の水蒸気透過率を、0.1~10[g/(m2・day)]とすることにより、最下層の無機層に水蒸気や酸素等が到達することを防止し、密着性やガスバリア性が低下するのを防止できる。
 なお、本発明において、水蒸気透過率(WVTR)は、JIS Z0208の防湿包装材料の透湿度試験方法(カップ法)に基づいて測定した値である。
In contrast, by setting the water vapor transmission rate of the back surface protective film 24 to 0.1 to 10 [g / (m 2 · day)], it is possible that water vapor, oxygen, or the like reaches the lowermost inorganic layer. It can prevent and it can prevent that adhesiveness and gas-barrier property fall.
In the present invention, the water vapor transmission rate (WVTR) is a value measured based on a moisture permeability test method (cup method) of moisture-proof packaging material of JIS Z0208.
 また、裏面保護フィルム24の露出する側の面の摩擦係数は0.6以下であることが好ましい。
 裏面保護フィルム24の摩擦係数を0.6以下とすることにより、RtoRによる搬送の際における裏面保護フィルム24とガイドローラ等との摩擦を低減して、低い搬送力で積層体26を搬送することができる。これにより、ガスバリア支持体12と裏面保護フィルム24の剥離や、ガスバリア支持体12のシワ等の発生をより好適に防止できる。
 なお、本発明において、裏面保護フィルム24の摩擦係数は、JIS K7125に基づいて測定される、裏面保護フィルム同士の摩擦係数とする。
Moreover, it is preferable that the friction coefficient of the surface by which the back surface protective film 24 is exposed is 0.6 or less.
By setting the coefficient of friction of the back surface protective film 24 to 0.6 or less, the friction between the back surface protective film 24 and the guide roller or the like during transport by RtoR is reduced, and the laminate 26 is transported with a low transport force. Can do. Thereby, generation | occurrence | production of peeling of the gas barrier support body 12 and the back surface protective film 24, wrinkles, etc. of the gas barrier support body 12 can be prevented more suitably.
In addition, in this invention, let the friction coefficient of the back surface protective film 24 be a friction coefficient of back surface protective films measured based on JISK7125.
 ここで、粘着層20とガスバリア支持体12との100℃における粘着力は、0.03~0.14N/25mmであるのが好ましく、200℃における粘着力は、0.04~0.13N/25mmであるのが好ましい。
 また、粘着層20と裏面保護フィルム24との100℃における粘着力は、0.07~0.19N/25mmであるのが好ましく、200℃における粘着力は、0.08~0.18N/25mmであるのが好ましい。
Here, the adhesive strength of the adhesive layer 20 and the gas barrier support 12 at 100 ° C. is preferably 0.03 to 0.14 N / 25 mm, and the adhesive strength at 200 ° C. is 0.04 to 0.13 N / 25 mm. It is preferably 25 mm.
The adhesive strength between the adhesive layer 20 and the back surface protective film 24 at 100 ° C. is preferably 0.07 to 0.19 N / 25 mm, and the adhesive strength at 200 ° C. is 0.08 to 0.18 N / 25 mm. Is preferred.
 粘着層20とガスバリア支持体12および裏面保護フィルム24との高温時の粘着力を上記範囲とすることにより、RtoRによる無機層14や有機層16の形成の際の加熱によって、粘着力が強くなりすぎることを防止して、ガスバリア支持体12と裏面保護フィルム24との熱による変形の差を、粘着層20とガスバリア支持体12および/または裏面保護フィルム24との剥離および貼着の繰り返しによって適正に吸収して、両者の異なる変形に起因するガスバリア支持体12と裏面保護フィルム24の剥離や、ガスバリア支持体12のシワ等をより好適に防止できる。 By setting the adhesive strength of the adhesive layer 20, the gas barrier support 12 and the back surface protective film 24 at a high temperature within the above range, the adhesive strength is increased by heating during the formation of the inorganic layer 14 and the organic layer 16 by RtoR. The difference in deformation due to heat between the gas barrier support 12 and the back surface protective film 24 is prevented by repeating peeling and sticking between the adhesive layer 20 and the gas barrier support 12 and / or the back surface protective film 24. It is possible to more suitably prevent the gas barrier support 12 and the back surface protective film 24 from peeling off, wrinkles of the gas barrier support 12 and the like due to the different deformations.
 本発明のガスバリアフィルム10aにおいて、ガスバリア支持体12の有機無機積層体28の表面には、表面保護フィルム18が貼着される。すなわち、表面保護フィルム18は、有機無機積層体28の最上層の無機層14の表面に貼着される。 In the gas barrier film 10a of the present invention, a surface protective film 18 is attached to the surface of the organic-inorganic laminate 28 of the gas barrier support 12. That is, the surface protective film 18 is stuck on the surface of the uppermost inorganic layer 14 of the organic-inorganic laminate 28.
 無機層14は、緻密であるが故に、固く、脆い。そのため、外部から直接的に衝撃等を受けると、容易に損傷してしまう。前述のように、本発明のガスバリアフィルム10aにおいて、主にガスバリア性を発現するのは、無機層14である。そのため、無機層14が損傷すると、ガスバリア性が低下する。
 これに対して、最上層の無機層14の上に表面保護フィルム18を貼着することにより、無機層14を保護して、無機層14の損傷を防止する。
The inorganic layer 14 is hard and brittle because it is dense. Therefore, it is easily damaged when it receives an impact directly from the outside. As described above, the inorganic layer 14 mainly exhibits gas barrier properties in the gas barrier film 10a of the present invention. Therefore, when the inorganic layer 14 is damaged, the gas barrier property is lowered.
On the other hand, by sticking the surface protective film 18 on the uppermost inorganic layer 14, the inorganic layer 14 is protected and damage to the inorganic layer 14 is prevented.
 ここで、本発明において、表面保護フィルム18と最上層の無機層14との25℃における粘着力は、0.02N/25mm~0.06N/25mmである。
 前述のとおり、ガスバリアフィルム10aを有機ELデバイス等の各種装置に利用する際には、表面保護フィルム18は無機層14から剥離される。そのため、表面保護フィルムと無機層との粘着力が強いと表面保護フィルムを剥離する際に無機層を損傷してしまうおそれがある。
 これに対して、表面保護フィルム18と最上層の無機層14との粘着力を上記範囲とすることにより、無機層14を損傷することなく表面保護フィルム18を剥離することができ、光学特性およびガスバリア性に優れたガスバリアフィルムを有機ELデバイス等の装置に利用することができる。
In the present invention, the adhesive strength between the surface protective film 18 and the uppermost inorganic layer 14 at 25 ° C. is 0.02 N / 25 mm to 0.06 N / 25 mm.
As described above, when the gas barrier film 10a is used in various apparatuses such as an organic EL device, the surface protective film 18 is peeled from the inorganic layer 14. Therefore, if the adhesive force between the surface protective film and the inorganic layer is strong, the inorganic layer may be damaged when the surface protective film is peeled off.
On the other hand, by making the adhesive force between the surface protective film 18 and the uppermost inorganic layer 14 in the above range, the surface protective film 18 can be peeled without damaging the inorganic layer 14, and optical characteristics and A gas barrier film excellent in gas barrier properties can be used in an apparatus such as an organic EL device.
 また、表面保護フィルム18の材料は、融点(メルティングポイント)が、80℃~170℃である。
 前述のとおり、ガスバリアフィルム10aを有機ELデバイス等の各種装置に利用する際には、ガスバリアフィルム10bのように表面保護フィルム18を剥離した状態で利用される。例えば、ガスバリアフィルムを有機ELデバイスに組み込む際には、ガスバリアフィルムの最上層の無機層と有機ELデバイスのパッシベーション膜との無機材料同士を接着剤にて接着する。
 ここで、無機材料同士を好適に接着するための接着剤と、表面保護フィルムを貼着するために好適に用いられるような接着剤とは、互いに異なる材料からなる。そのため、表面保護フィルムと最上層の無機層とを接着剤を介して接着した場合には、無機層上に接着剤が残ってしまい、無機層とパッシベーション膜とを接着する接着剤の機能を阻害してしまう等の不都合を生じる。
The material of the surface protective film 18 has a melting point (melting point) of 80 ° C. to 170 ° C.
As described above, when the gas barrier film 10a is used in various apparatuses such as an organic EL device, the surface protective film 18 is used in a peeled state like the gas barrier film 10b. For example, when a gas barrier film is incorporated into an organic EL device, the inorganic material of the uppermost inorganic layer of the gas barrier film and the passivation film of the organic EL device are bonded together with an adhesive.
Here, the adhesive for favorably bonding the inorganic materials and the adhesive suitably used for adhering the surface protective film are made of different materials. Therefore, when the surface protective film and the uppermost inorganic layer are bonded via an adhesive, the adhesive remains on the inorganic layer, and the function of the adhesive that bonds the inorganic layer and the passivation film is inhibited. This causes inconveniences such as
 そのため、本発明においては、最上層の無機層14上に、接着剤を用いずに直接、表面保護フィルム18が貼着される。
 ここで、接着剤を用いずに表面保護フィルムを貼り付ける方法としては、熱圧着が用いられる。そのため、熱圧着で表面保護フィルムを貼り付ける際の熱によっても、裏面保護フィルムとガスバリア支持体との熱的特性の違いに起因する剥離等の問題が発生するおそれがある。
 これに対して、本発明においては、表面保護フィルム18の材料の融点を、80℃~170℃とする。これにより、比較的低い温度で熱圧着を行うことができ、裏面保護フィルムとガスバリア支持体との熱的特性の違いに起因する問題を好適に低減できる。
Therefore, in the present invention, the surface protective film 18 is stuck directly on the uppermost inorganic layer 14 without using an adhesive.
Here, thermocompression bonding is used as a method of attaching the surface protective film without using an adhesive. Therefore, even when heat is applied to the surface protective film by thermocompression bonding, problems such as peeling due to a difference in thermal characteristics between the back surface protective film and the gas barrier support may occur.
On the other hand, in the present invention, the melting point of the material of the surface protective film 18 is set to 80 ° C. to 170 ° C. Thereby, thermocompression bonding can be performed at a relatively low temperature, and problems caused by a difference in thermal characteristics between the back surface protective film and the gas barrier support can be suitably reduced.
 また、表面保護フィルム18の材料の融点を、80℃~170℃とすることにより、無機層14を形成した直後に、無機層14を形成する際に生じる熱を利用して熱圧着により、表面保護フィルム18を貼着できる。 Further, by setting the melting point of the material of the surface protection film 18 to 80 ° C. to 170 ° C., immediately after forming the inorganic layer 14, the surface is formed by thermocompression using heat generated when the inorganic layer 14 is formed. The protective film 18 can be stuck.
 表面保護フィルム18の材料としては、ガラス転移温度が上記範囲を満たすものであれば、特に限定はない。具体的には、表面保護フィルム18の材料は、ポリエチレン(PE)、ポリプロピレン(PP)等が好適に利用可能である。特に、表面保護フィルム18の材料として低密度ポリエチレンが好適に用いられる。 The material of the surface protective film 18 is not particularly limited as long as the glass transition temperature satisfies the above range. Specifically, polyethylene (PE), polypropylene (PP), or the like can be suitably used as the material for the surface protective film 18. In particular, low-density polyethylene is suitably used as the material for the surface protective film 18.
 また、表面保護フィルム18の厚さは、20μm~100μmが好ましい。
 表面保護フィルム18の厚さを20μm以上とすることにより、最上層の無機層14を保護する効果を十分に発揮して、RtoRによるガスバリアフィルム10aの安定した搬送が可能になる等の点で好ましい。
 また、表面保護フィルム18の厚さを100μm以下とすることにより、軽量なガスバリアフィルム10aが得られる、RtoRで巻き取った際のロール径を小さくできる等の点で好ましい。
 また、無機層14の保護、軽量化等の観点から、表面保護フィルム18の厚さは、30μm~70μmが好ましい。
The thickness of the surface protection film 18 is preferably 20 μm to 100 μm.
By making the thickness of the surface protective film 18 20 μm or more, it is preferable in that the effect of protecting the uppermost inorganic layer 14 is sufficiently exhibited, and the gas barrier film 10a can be stably conveyed by RtoR. .
In addition, the thickness of the surface protective film 18 is preferably 100 μm or less, so that a lightweight gas barrier film 10a can be obtained, and the roll diameter when wound with RtoR can be reduced.
Further, from the viewpoint of protecting the inorganic layer 14 and reducing the weight, the thickness of the surface protective film 18 is preferably 30 μm to 70 μm.
 また、表面保護フィルム18のヤング率は、ガスバリア支持体12のヤング率、および、裏面保護フィルム24のヤング率の1/4以下であるのが好ましい。
 表面保護フィルム18のヤング率を小さくすることにより、表面保護フィルム18の剥離性を向上できる、巻き取った際のシワを低減できる、各層の形成幅の違いに起因する端部の段差の転写を減少できる等の点で好ましい。
The Young's modulus of the surface protective film 18 is preferably ¼ or less of the Young's modulus of the gas barrier support 12 and the Young's modulus of the back surface protective film 24.
By reducing the Young's modulus of the surface protective film 18, the peelability of the surface protective film 18 can be improved, the wrinkles at the time of winding can be reduced, and the step difference at the end due to the difference in the formation width of each layer can be transferred. This is preferable in that it can be reduced.
 また、表面保護フィルム18の水蒸気透過率は、0.5~25[g/(m2・day)]であるのが好ましい。
 表面保護フィルム18の水蒸気透過率を0.5~25[g/(m2・day)]とすることにより、最上層の無機層に水蒸気や酸素等が到達することを防止し、ガスバリア性が低下するのを防止できる。
The water vapor permeability of the surface protective film 18 is preferably 0.5 to 25 [g / (m 2 · day)].
By setting the water vapor transmission rate of the surface protective film 18 to 0.5 to 25 [g / (m 2 · day)], it is possible to prevent water vapor, oxygen, and the like from reaching the uppermost inorganic layer, and to have a gas barrier property. It can be prevented from lowering.
 次に、本発明の機能性フィルムの製造について説明する。
 図2(A)および図2(B)に、本発明のガスバリアフィルム10aを製造する製造装置の一例を、概念的に示す。
 この製造装置は、無機層14を形成する無機成膜装置32と、有機層16を形成する有機成膜装置30とを有して構成される。
 図2(A)は無機成膜装置32であり、図2(B)は有機成膜装置30である。
Next, production of the functional film of the present invention will be described.
2A and 2B conceptually show an example of a production apparatus for producing the gas barrier film 10a of the present invention.
This manufacturing apparatus includes an inorganic film forming apparatus 32 that forms the inorganic layer 14 and an organic film forming apparatus 30 that forms the organic layer 16.
FIG. 2A shows an inorganic film forming apparatus 32, and FIG. 2B shows an organic film forming apparatus 30.
 図2(A)に示す無機成膜装置32および図2(B)に示す有機成膜装置30は、共に、長尺な被形成材料を巻回してなるロールから、被形成材料を送り出し、被形成材料を長手方向に搬送しつつ各層の形成(成膜)を行い、各層を形成した被形成材料を、再度、ロール状に巻回する、前述のRtoR(ロール・ツー・ロール(Roll to Roll)を利用する装置である。
 このようなRtoRは、高い生産性で、効率の良いガスバリアフィルム10aの製造が可能である。
Both the inorganic film forming apparatus 32 shown in FIG. 2A and the organic film forming apparatus 30 shown in FIG. 2B send out the forming material from a roll formed by winding a long forming material. The above-mentioned RtoR (Roll to Roll) is performed in which each layer is formed (film formation) while the forming material is conveyed in the longitudinal direction, and the forming material on which each layer is formed is wound again in a roll shape. ).
Such RtoR enables high-productivity and efficient production of the gas barrier film 10a.
 ここで、図2(A)および図2(B)に示す製造装置は、図1(A)に示すような、長尺なガスバリア支持体12の裏面に、粘着層20を貼着し、この粘着層20に裏面保護フィルム24を貼着してなる積層体26のガスバリア支持体12の表面、すなわち、粘着層20の形成面の逆面(反対側の面)に、無機層14と有機層16とを交互に形成して、ガスバリアフィルム10a等を製造するものである。
 従って、図2(A)に示す無機成膜装置32において被成膜材料Zaとなるのは、長尺な積層体26、および、積層体26の表面に1以上の層が形成された、表面が有機層16の材料である。
 他方、図2(B)に示す有機成膜装置において、被成膜材料Zbとなるのは、積層体26の表面に1以上の層が形成された、表面が無機層14の材料である。
Here, the manufacturing apparatus shown in FIG. 2 (A) and FIG. 2 (B) attaches the adhesive layer 20 to the back surface of the long gas barrier support 12 as shown in FIG. The inorganic layer 14 and the organic layer are formed on the surface of the gas barrier support 12 of the laminate 26 formed by sticking the back surface protective film 24 to the adhesive layer 20, that is, on the opposite surface (opposite surface) of the adhesive layer 20. 16 are alternately formed to manufacture the gas barrier film 10a and the like.
Therefore, in the inorganic film forming apparatus 32 shown in FIG. 2A, the film forming material Za is a long laminate 26 and a surface in which one or more layers are formed on the surface of the laminate 26. Is the material of the organic layer 16.
On the other hand, in the organic film forming apparatus shown in FIG. 2B, the film forming material Zb is the material of the inorganic layer 14 having one or more layers formed on the surface of the stacked body 26 and the surface thereof.
 無機成膜装置32は、被成膜材料Zaの表面に、気相成長法によって無機層14を形成する装置で、供給室56と、成膜室58と、巻取り室60とを有する。
 なお、無機成膜装置32は、図示した部材以外にも、搬送ローラ対や、被成膜材料Zaの幅方向の位置を規制するガイド部材、各種のセンサなど、長尺な被形成材料を搬送しつつ気相成長法による成膜を行なう公知の装置に設けられる各種の部材を有してもよい。
The inorganic film forming apparatus 32 is an apparatus for forming the inorganic layer 14 on the surface of the film forming material Za by a vapor phase growth method, and includes a supply chamber 56, a film forming chamber 58, and a winding chamber 60.
In addition to the illustrated members, the inorganic film forming apparatus 32 conveys a long material to be formed such as a conveying roller pair, a guide member that regulates the position of the film forming material Za in the width direction, and various sensors. However, various members provided in a known apparatus that performs film formation by a vapor deposition method may be included.
 供給室56は、回転軸64と、ガイドローラ68と、真空排気手段70とを有する。
 供給室56において、積層体26や有機層16等を形成された積層体26である、長尺な被成膜材料Zaを巻回した材料ロール61は、回転軸64に装填される。
 回転軸64に材料ロール61が装填されると、被成膜材料Zaは、供給室56から、成膜室58を通って、巻取り室60の巻取り軸92に至る、所定の搬送経路を通される。RtoRを利用する無機成膜装置32は、材料ロール61からの被成膜材料Zaの送り出しと、巻取り軸92での無機層形成済の被成膜材料Zaの巻き取りとを同期して行なって、被成膜材料Zaを長手方向に搬送しつつ、成膜室58において、被成膜材料Zaに連続的に無機層を形成する。
The supply chamber 56 includes a rotation shaft 64, a guide roller 68, and a vacuum exhaust unit 70.
In the supply chamber 56, a material roll 61, which is a laminated body 26 in which the laminated body 26, the organic layer 16, and the like are formed and wound with a long film-forming material Za, is loaded on a rotating shaft 64.
When the material roll 61 is loaded on the rotating shaft 64, the film forming material Za passes through a predetermined conveyance path from the supply chamber 56 to the winding shaft 92 of the winding chamber 60 through the film forming chamber 58. Passed. The inorganic film forming apparatus 32 that uses RtoR synchronizes the feeding of the film forming material Za from the material roll 61 and the winding of the film forming material Za with the inorganic layer formed on the winding shaft 92. Thus, an inorganic layer is continuously formed on the film forming material Za in the film forming chamber 58 while transporting the film forming material Za in the longitudinal direction.
 供給室56においては、図示しない駆動源によって回転軸64を図中時計方向に回転して、材料ロール61から被成膜材料Zaを送り出し、ガイドローラ68によって所定の経路を案内して、隔壁72に形成されたスリット72aから、成膜室58に送る。 In the supply chamber 56, the rotating shaft 64 is rotated clockwise in the drawing by a driving source (not shown), the film forming material Za is fed from the material roll 61, and a predetermined path is guided by the guide roller 68, so that the partition wall 72. From the slit 72 a formed in the step S, the film is sent to the film formation chamber 58.
 なお、図示例の無機成膜装置32には、好ましい態様として、供給室56に真空排気手段74を、巻取り室60に真空排気手段76を、それぞれ設けている。無機成膜装置32においては、成膜中は、それぞれの真空排気手段によって、供給室56および巻取り室60の圧力を、後述する成膜室58の圧力、すなわち、成膜圧力に応じた、所定の圧力に保つ。これにより、隣接する室の圧力が、成膜室58の圧力に影響を与えることを防止している。
 真空排気手段70には、特に限定はなく、ターボポンプ、メカニカルブースターポンプ、ドライポンプ、ロータリーポンプなどの真空ポンプ等、真空での成膜装置に用いられている公知の真空排気手段が、各種、利用可能である。この点に関しては、後述する他の真空排気手段74および76も同様である。
In the illustrated example, the inorganic film forming apparatus 32 is provided with a vacuum evacuation unit 74 in the supply chamber 56 and a vacuum evacuation unit 76 in the winding chamber 60, respectively, as a preferred embodiment. In the inorganic film forming apparatus 32, during the film formation, the pressure in the supply chamber 56 and the take-up chamber 60 is adjusted according to the pressure in the film forming chamber 58 described later, that is, the film forming pressure, by the respective vacuum exhaust means. Maintain a predetermined pressure. As a result, the pressure in the adjacent chamber is prevented from affecting the pressure in the film forming chamber 58.
The vacuum evacuation means 70 is not particularly limited, and various known vacuum evacuation means used in a vacuum film formation apparatus such as a vacuum pump such as a turbo pump, a mechanical booster pump, a dry pump, and a rotary pump, Is available. In this regard, the same applies to the other vacuum exhaust means 74 and 76 described later.
 成膜室58は、被成膜材料Zaである積層体26あるいは有機層16の表面に、気相成長法によって、無機層を形成するものである。図示例において、成膜室58は、ドラム80と、成膜手段82と、前述の真空排気手段74と、ガイドローラ84a、84bとを有する。
 また、成膜室58には、成膜した無機層14を保護するための表面保護フィルムFを供給するための、フィルムロール87も配置される。
The film forming chamber 58 is for forming an inorganic layer on the surface of the stacked body 26 or the organic layer 16 that is the film forming material Za by a vapor phase growth method. In the illustrated example, the film forming chamber 58 includes a drum 80, a film forming unit 82, the vacuum exhaust unit 74 described above, and guide rollers 84a and 84b.
In addition, a film roll 87 for supplying a surface protective film F for protecting the deposited inorganic layer 14 is also disposed in the film forming chamber 58.
 成膜室58に搬送された被成膜材料Zaは、ガイドローラ84aによって所定の経路に案内され、ドラム80の所定位置に巻き掛けられる。被成膜材料Zaは、ドラム80によって所定位置に位置されつつ長手方向に搬送されて、連続的に無機層14を形成される。 The film forming material Za conveyed to the film forming chamber 58 is guided to a predetermined path by the guide roller 84a and is wound around a predetermined position of the drum 80. The film forming material Za is transported in the longitudinal direction while being positioned at a predetermined position by the drum 80, and the inorganic layer 14 is continuously formed.
 真空排気手段74は、成膜室58内を真空排気して、無機層14の形成に応じた真空度とするものである。 The vacuum evacuation means 74 evacuates the inside of the film forming chamber 58 to obtain a degree of vacuum corresponding to the formation of the inorganic layer 14.
 ドラム80は、中心線を中心に図中反時計方向に回転する円筒状の部材である。
 供給室56から供給され、ガイドローラ84aによって所定の経路に案内され、ドラム80の所定位置に巻き掛けられた被成膜材料Zaは、ドラム80の周面の所定領域に掛け回されて、ドラム80に支持/案内されつつ、所定の搬送経路を搬送され、成膜手段82によって、表面に無機層14を形成される。
 なお、ドラム80に温度調節手段を内包して、無機層14の成膜中に積層体26を例えば冷却してもよい。
The drum 80 is a cylindrical member that rotates in the counterclockwise direction around the center line.
The film forming material Za supplied from the supply chamber 56 and guided to a predetermined path by the guide roller 84a and wound around a predetermined position of the drum 80 is wound around a predetermined area of the peripheral surface of the drum 80, and the drum The inorganic layer 14 is formed on the surface by the film forming means 82 while being transported along a predetermined transport path while being supported / guided by 80.
Note that the drum 80 may include temperature adjusting means, and the laminate 26 may be cooled, for example, during the formation of the inorganic layer 14.
 成膜手段82は、気相成長法によって、被成膜材料Zaの表面に無機層14を形成するものである。
 本発明の製造方法において、無機層14は、前述の特許文献に記載される形成方法等、公知の気相成長法で形成すればよい。従って、成膜手段82での成膜方法にも、特に限定は無く、CVD、プラズマCVD、スパッタリング、真空蒸着、イオンプレーティング等、公知の成膜方法が、全て、利用可能である。
The film forming means 82 forms the inorganic layer 14 on the surface of the film forming material Za by a vapor phase growth method.
In the production method of the present invention, the inorganic layer 14 may be formed by a known vapor deposition method such as the formation method described in the above-mentioned patent document. Therefore, the film forming method in the film forming means 82 is not particularly limited, and any known film forming method such as CVD, plasma CVD, sputtering, vacuum deposition, ion plating, etc. can be used.
 従って、成膜手段82は、実施する気相成長法に応じた、各種の部材で構成される。
 例えば、成膜室58がICP-CVD法(誘導結合型プラズマCVD)によって無機層14の成膜を行なうものであれば、成膜手段82は、誘導磁場を形成するための誘導コイルや、成膜領域に反応ガスを供給するためのガス供給手段等を有して構成される。
 成膜室58が、CCP-CVD法(容量結合型プラズマCVD)によって無機層14の成膜を行なうものであれば、成膜手段82は、中空状でドラム62に対向する面に多数の小孔を有し反応ガスの供給源に連結される、高周波電極および反応ガス供給手段として作用するシャワー電極等を有して構成される。
 成膜室58が真空蒸着によって無機層14の成膜を行なうものであれば、成膜手段82は、成膜材料を充填するルツボ、ルツボを遮蔽するシャッタ、ルツボ内の成膜材料を加熱する加熱手段等を有して構成される。
 さらに、成膜室58が、スパッタリングによって無機層14の成膜を行なうものであれば、成膜手段82は、ターゲットの保持手段や高周波電極、ガスの供給手段等を有して構成される。
Therefore, the film forming means 82 is composed of various members according to the vapor phase growth method to be performed.
For example, if the film forming chamber 58 is for depositing the inorganic layer 14 by ICP-CVD (inductively coupled plasma CVD), the film forming means 82 may include an induction coil for forming an induction magnetic field, It has gas supply means for supplying the reaction gas to the membrane region.
If the film forming chamber 58 is for depositing the inorganic layer 14 by the CCP-CVD method (capacitive coupling type plasma CVD), the film forming means 82 is hollow and has a large number of small surfaces on the surface facing the drum 62. A high-frequency electrode having a hole and connected to a reaction gas supply source, a shower electrode acting as a reaction gas supply means, and the like are configured.
If the film forming chamber 58 forms the inorganic layer 14 by vacuum deposition, the film forming means 82 heats the crucible filling the film forming material, the shutter for shielding the crucible, and the film forming material in the crucible. It has a heating means and the like.
Further, if the film forming chamber 58 is for depositing the inorganic layer 14 by sputtering, the film forming means 82 includes a target holding means, a high frequency electrode, a gas supply means, and the like.
 なお、無機層14の形成条件、例えば、温度、圧力等は、成膜手段82の種類、目的とする膜厚や成膜レート等に応じて、適宜、設定すればよい。
 例えば、CCP-CVD法によって無機層14を成膜する場合には、成膜室58内の圧力は20Pa~200Pa、温度は0℃~80℃とするのが好ましい。ICP-CVD法によって、無機層14を成膜する場合には、成膜室58内の圧力は0.1Pa~10Pa、温度は0℃~80℃とするのが好ましい。
The formation conditions of the inorganic layer 14, such as temperature and pressure, may be appropriately set according to the type of the film forming unit 82, the target film thickness, film forming rate, and the like.
For example, when the inorganic layer 14 is formed by the CCP-CVD method, the pressure in the film formation chamber 58 is preferably 20 Pa to 200 Pa, and the temperature is preferably 0 ° C. to 80 ° C. When the inorganic layer 14 is formed by ICP-CVD, the pressure in the film formation chamber 58 is preferably 0.1 Pa to 10 Pa and the temperature is preferably 0 ° C. to 80 ° C.
 ドラム80に支持/搬送されつつ、無機層14を形成され、表面保護フィルムFを貼着された被成膜材料Zaは、ガイドローラ84bによって所定経路に案内されて、隔壁75に形成されたスリット75aから、巻取り室60に搬送される。 The film forming material Za on which the inorganic layer 14 is formed and the surface protective film F is adhered while being supported / conveyed by the drum 80 is guided to a predetermined path by the guide roller 84b, and is formed in the partition 75. From 75a, it is conveyed to the winding chamber 60.
 ここで、前述のとおり、成膜室58には、成膜した無機層14を保護するための表面保護フィルムFを供給するフィルムロール87を有する。
 フィルムロール87は、表面保護フィルムFをロール状に巻回してなるものである。このフィルムロール87は、図示しない駆動源によって回転する回転軸86に軸支され、被成膜材料Zaの搬送に同期して回転して、表面保護フィルムFを送り出す。表面保護フィルムFは、ガイドローラ84bによって、無機層14の表面に当接して、被成膜材料Zaに積層/貼着される。すなわち、成膜室58において、ガイドローラ84bは、被成膜材料Zaへの表面保護フィルムFの貼着ローラとしても作用する。
Here, as described above, the film forming chamber 58 includes the film roll 87 for supplying the surface protective film F for protecting the formed inorganic layer 14.
The film roll 87 is formed by winding the surface protective film F in a roll shape. The film roll 87 is supported by a rotating shaft 86 that is rotated by a drive source (not shown), and rotates in synchronization with the transport of the film forming material Za to send out the surface protective film F. The surface protection film F is brought into contact with the surface of the inorganic layer 14 by the guide roller 84b and is laminated / adhered to the film forming material Za. That is, in the film forming chamber 58, the guide roller 84b also functions as a sticking roller for the surface protective film F to the film forming material Za.
 なお、成膜室58において形成した無機層14が最上層の無機層14となる場合には、この無機層14上に貼着された表面保護フィルムFは、図1(A)に示すガスバリアフィルム10aにおける表面保護フィルム18である。
 また、成膜室58において形成した無機層14が最上層の無機層14以外の無機層14である場合には、この無機層14上に貼着された表面保護フィルムFは、後述する有機成膜装置30における有機層16の形成の際に剥離される表面保護フィルムFである。
In addition, when the inorganic layer 14 formed in the film formation chamber 58 becomes the uppermost inorganic layer 14, the surface protective film F stuck on the inorganic layer 14 is a gas barrier film shown in FIG. It is the surface protection film 18 in 10a.
In addition, when the inorganic layer 14 formed in the film forming chamber 58 is an inorganic layer 14 other than the uppermost inorganic layer 14, the surface protective film F adhered on the inorganic layer 14 has an organic composition described later. The surface protective film F is peeled off when the organic layer 16 is formed in the membrane device 30.
 このように、本発明の機能性フィルムの製造方法においては、表面保護フィルムFの貼り付けは、無機層14の成膜直後に、成膜室58内で行われる。すなわち、無機層14を成膜する工程と、無機層14を保護する表面保護フィルムFを貼り付ける工程とは、同じ圧力、温度の環境下で連続的に行われる。
 成膜工程と表面保護フィルム貼り付け工程とを、同じ圧力、温度の環境下で連続的に行うことにより、成膜工程で加えられた熱を利用して表面保護フィルムFを熱圧着することができる。また、貼着工程では、成膜工程と同じ圧力、すなわち、真空下で、成膜工程と連続的に、表面保護フィルムFを貼着するので、表面保護フィルムFと無機層14との間に気泡が混入することを低減できる。
Thus, in the method for producing a functional film of the present invention, the surface protective film F is applied in the film forming chamber 58 immediately after the inorganic layer 14 is formed. That is, the step of forming the inorganic layer 14 and the step of attaching the surface protective film F that protects the inorganic layer 14 are continuously performed under the same pressure and temperature environment.
By performing the film forming step and the surface protective film attaching step continuously under the same pressure and temperature environment, the surface protective film F can be thermocompression bonded using the heat applied in the film forming step. it can. Further, in the attaching step, the surface protective film F is attached continuously under the same pressure as the film forming step, that is, under vacuum, and therefore, between the surface protective film F and the inorganic layer 14. It is possible to reduce the mixing of bubbles.
 なお、貼着工程における圧力および温度、すなわち、成膜室58内の圧力および温度は、成膜工程にて行われる成膜方法に応じて適宜、設定すればよい。
 また、貼着工程において、表面保護フィルムFおよび/または被成膜材料Zaを加熱する加熱手段を有していてもよい。例えば、表面保護フィルムFの貼着ローラとして作用するガイドローラ84bが、加熱手段を有していてもよい。
Note that the pressure and temperature in the attaching process, that is, the pressure and temperature in the film forming chamber 58 may be set as appropriate according to the film forming method performed in the film forming process.
Moreover, in the sticking process, you may have a heating means to heat the surface protection film F and / or the film-forming material Za. For example, the guide roller 84b that acts as a sticking roller for the surface protective film F may have a heating means.
 また、図示例においては、ドラム80および成膜手段82よりも下流側の、ドラム80に最も近い位置に配置されるガイドローラ84bを、表面保護フィルムFの貼着を行う貼着ローラとしたが、これに限定はされず、ドラム80から2つ目以降のガイドローラを貼着ローラとしてもよい。
 しかしながら、無機層14の保護の観点から、成膜手段82によって無機層14が成膜された被成膜材料Zaが他のガイドローラ等に接触する前に表面保護フィルムFを貼着することが好ましい。従って、ドラム80に最も近い位置に配置されるガイドローラ84bを、貼着ローラとするのが好ましい。
Further, in the illustrated example, the guide roller 84b disposed at the position closest to the drum 80 on the downstream side of the drum 80 and the film forming means 82 is an adhesive roller for attaching the surface protective film F. However, the present invention is not limited to this, and the second and subsequent guide rollers from the drum 80 may be used as the adhering rollers.
However, from the viewpoint of protecting the inorganic layer 14, the surface protection film F may be attached before the film forming material Za on which the inorganic layer 14 is formed by the film forming unit 82 comes into contact with another guide roller or the like. preferable. Therefore, it is preferable that the guide roller 84b disposed at a position closest to the drum 80 is a sticking roller.
 また、図示例においては、貼着工程が、成膜工程と同じ室である成膜室58で行われる構成としたが、これに限定はされず、貼着工程が、成膜室58とは異なる室で行われる構成としてもよい。例えば、巻取り室60で貼着工程が行われる構成としてもよく、あるいは、成膜室58と巻取り室60との間に貼着工程を行う室を設けてもよい。なお、成膜室58以外の室で貼着工程を行う場合には、この室の温度、圧力を成膜室内の温度、圧力と同様にすればよい。 In the illustrated example, the adhering step is performed in the film forming chamber 58 which is the same chamber as the film forming step. However, the present invention is not limited to this, and the adhering step is the film forming chamber 58. It is good also as a structure performed in a different chamber. For example, a configuration in which the sticking process is performed in the winding chamber 60 may be adopted, or a chamber for performing the sticking process may be provided between the film forming chamber 58 and the winding chamber 60. Note that in the case where the attaching step is performed in a chamber other than the film formation chamber 58, the temperature and pressure in this chamber may be set to be the same as the temperature and pressure in the film formation chamber.
 また、図示例の無機成膜装置32においては、最上層の無機層14以外の無機層14にも表面保護フィルムFを貼着する構成としたが、これに限定はされず、最上層となる無機層14のみに表面保護フィルムFを貼着する構成としてもよい。 Moreover, in the inorganic film-forming apparatus 32 of the example of illustration, although it was set as the structure which sticks the surface protection film F also to inorganic layers 14 other than the uppermost inorganic layer 14, it is not limited to this, It becomes the uppermost layer. The surface protective film F may be attached only to the inorganic layer 14.
 また、最上層の無機層14以外の無機層14に貼着される表面保護フィルムFとしては、表面保護フィルム18と同様のプラスチックフィルムが利用可能であり、表面保護フィルム18と同じ材料であっても異なる材料であってもよい。 Moreover, as the surface protective film F stuck to inorganic layers 14 other than the uppermost inorganic layer 14, the same plastic film as the surface protective film 18 can be used, and it is the same material as the surface protective film 18. May be different materials.
 図示例において、巻取り室60は、ガイドローラ90と、巻取り軸92と、前述の真空排気手段76とを有する。
 巻取り室60に搬送された成膜済の被成膜材料Zaは、巻取り軸92によってロール状に巻回され、無機層14を形成され、表面保護フィルムFを貼着された被成膜材料Zaを巻回してなる材料ロール93とされる。この材料ロール93は、有機成膜装置30に供給され、あるいは、本発明の機能性フィルムであるガスバリアフィルム10a等を巻回してなる材料ロール93として次工程に供給される。
In the illustrated example, the winding chamber 60 includes a guide roller 90, a winding shaft 92, and the above-described vacuum exhaust means 76.
The film-formed film forming material Za that has been transported to the winding chamber 60 is wound into a roll shape by a winding shaft 92 to form the inorganic layer 14 and the surface protective film F is adhered thereto. The material roll 93 is formed by winding the material Za. This material roll 93 is supplied to the organic film forming apparatus 30, or is supplied to the next step as a material roll 93 formed by winding the gas barrier film 10a, which is a functional film of the present invention.
 図2(B)に示す有機成膜装置30は、長尺な被成膜材料Zbを長手方向に搬送しつつ、有機層16となる塗料を塗布し、乾燥した後、光照射によって塗膜に含まれる有機化合物を架橋(重合)して硬化し、有機層16を形成する装置である。
 図示例において、有機成膜装置30は、一例として、塗布手段36と、乾燥手段38と、光照射手段40と、回転軸42と、巻取り軸46と、搬送ローラ対48および50とを有する。また、有機成膜装置30は、無機層14を成膜する無機成膜装置32で貼着された表面保護フィルムFを剥離して巻き取る、巻取り軸44も有する。
 なお、有機成膜装置30は、図示した部材以外にも、搬送ローラ対、被成膜材料Zbのガイド部材、各種のセンサなど、長尺な被形成材料を搬送しつつ塗布による成膜を行なう公知の装置に設けられる各種の部材を有してもよい。
The organic film forming apparatus 30 shown in FIG. 2 (B) applies a coating material to be the organic layer 16 while transporting a long film-forming material Zb in the longitudinal direction, and after drying, coats the coating film by light irradiation. This is an apparatus for forming an organic layer 16 by crosslinking (polymerizing) the contained organic compound and curing it.
In the illustrated example, the organic film forming apparatus 30 includes, as an example, a coating unit 36, a drying unit 38, a light irradiation unit 40, a rotating shaft 42, a winding shaft 46, and a pair of conveying rollers 48 and 50. . The organic film forming apparatus 30 also includes a winding shaft 44 that peels off and winds up the surface protective film F attached by the inorganic film forming apparatus 32 that forms the inorganic layer 14.
In addition to the illustrated members, the organic film forming apparatus 30 performs film formation by coating while conveying a long material to be formed such as a pair of transport rollers, a guide member for the material to be deposited Zb, and various sensors. You may have the various members provided in a well-known apparatus.
 有機成膜装置30において、積層体26や無機層14等を形成された積層体26である長尺な被成膜材料Zbを巻回してなる材料ロール93は、回転軸42に装填される。
 回転軸42に材料ロール93が装填されると、被成膜材料Zbは、材料ロール61から引き出され、搬送ローラ対48を経て、塗布手段36、乾燥手段38および光照射手段40の下部を通過して、搬送ローラ対50を経て、巻取り軸46に至る、所定の搬送経路を通される。
In the organic film forming apparatus 30, a material roll 93 formed by winding a long film-forming material Zb that is the stacked body 26 on which the stacked body 26, the inorganic layer 14, and the like are formed is loaded on the rotating shaft 42.
When the material roll 93 is loaded on the rotating shaft 42, the film forming material Zb is pulled out from the material roll 61, passes through the conveying roller pair 48, and passes under the coating unit 36, the drying unit 38, and the light irradiation unit 40. Then, it passes through a predetermined conveying path that reaches the winding shaft 46 through the conveying roller pair 50.
 RtoRを利用する有機成膜装置30では、材料ロール61からの被成膜材料Zaの送り出しと、巻取り軸46における有機層を形成した被成膜材料Zbの巻き取りとを同期して行なう。これにより、長尺な被成膜材料Zbを所定の搬送経路で長手方向に搬送しつつ、塗布手段36によって有機層となる塗料を塗布し、乾燥手段38によって塗料を乾燥し、光照射手段40によって硬化することによって、有機層を形成する。 In the organic film forming apparatus 30 using RtoR, the film forming material Za from the material roll 61 is fed out and the film forming material Zb on which the organic layer is formed on the winding shaft 46 is synchronously performed. Thus, while the long film-forming material Zb is transported in the longitudinal direction along a predetermined transport path, the coating material 36 is applied with the coating material that is an organic layer, the drying device 38 is used to dry the coating material, and the light irradiation device 40 is used. The organic layer is formed by curing.
 なお、被成膜材料Zbが、無機層14を成膜された後の材料である場合には、無機層14の表面に表面保護フィルムFが貼着されているので、搬送ローラ対48による搬送、および、この搬送と同期して回転する巻取り軸44による巻取りによって、被成膜材料Zbから表面保護フィルムFを剥離する。すなわち、有機成膜装置30において、搬送ローラ対48は、表面保護フィルムFの剥離ローラとしても作用する。 In addition, when the film-forming material Zb is a material after the inorganic layer 14 is formed, the surface protection film F is adhered to the surface of the inorganic layer 14, so that the transport by the transport roller pair 48 is performed. And the surface protection film F is peeled from the film-forming material Zb by winding by the winding shaft 44 that rotates in synchronization with this conveyance. That is, in the organic film forming apparatus 30, the transport roller pair 48 also functions as a peeling roller for the surface protective film F.
 塗布手段36は、被成膜材料Zbの表面に、予め調製した、有機層16を形成する塗料を塗布するものである。
 この塗料は、有機溶剤に、架橋して重合することによって有機層16となる、モノマーなどの有機化合物を、有機溶剤に溶解してなるものである。また、好ましくは、この塗料は、有機層16の密着性を向上するために、シランカップリング剤を含有する。さらに、この塗料には、界面活性剤、重合開始剤、増加粘剤等の必要な成分を、適宜、添加してもよい。
The coating means 36 applies a paint for forming the organic layer 16 prepared in advance on the surface of the film forming material Zb.
This paint is obtained by dissolving an organic compound such as a monomer, which becomes the organic layer 16 by crosslinking and polymerizing in an organic solvent, in the organic solvent. Further, preferably, the coating material contains a silane coupling agent in order to improve the adhesion of the organic layer 16. Furthermore, necessary components such as a surfactant, a polymerization initiator, and an increasing viscosity agent may be appropriately added to this paint.
 塗布手段36において、被成膜材料Zbへの塗料の塗布方法には、特に限定は無い。
 従って、塗料の塗布は、ダイコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法等の公知の塗料の塗布方法が、全て利用可能である。
 中でも、非接触で塗料を塗布できるので被成膜材料Zbの表面を損傷しない、ビードの形成により被成膜材料Zbの表面の凹凸等の包埋性に優れる、等の理由で、ダイコート法は、好適に利用される。
There is no particular limitation on the method of applying the coating material to the film forming material Zb in the applying means 36.
Therefore, the application of the paint is all known coating methods such as die coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, etc. Is available.
Above all, because the coating can be applied in a non-contact manner, the surface of the film-forming material Zb is not damaged, and the bead formation is excellent in the embedding of the surface of the film-forming material Zb, etc. Are preferably used.
 前述のように、被成膜材料Zbは、次いで、乾燥手段38に搬送され、塗布手段36が塗布した塗料を乾燥される。
 乾燥手段38により塗料の乾燥方法には、限定はなく、被成膜材料Zbが光照射手段40に至る前に、塗料を乾燥して有機溶剤の除去等を行って、架橋(重合)が可能な状態にできるものであれば、公知の乾燥手段が全て利用可能である。公知の方法が、各種利用可能である。一例として、ヒータによる加熱乾燥、温風による加熱乾燥等が例示される。
As described above, the film forming material Zb is then transported to the drying unit 38 and the coating applied by the coating unit 36 is dried.
The method of drying the paint by the drying means 38 is not limited, and before the film-forming material Zb reaches the light irradiation means 40, the paint is dried and the organic solvent is removed to allow crosslinking (polymerization). Any known drying means can be used as long as it can be brought into a stable state. Various known methods can be used. As an example, heat drying with a heater, heat drying with warm air, and the like are exemplified.
 なお、乾燥手段38における乾燥の際の被成膜材料Zbの温度が70℃以上となるように、乾燥温度を70℃以上とするのが好ましい。
 シランカップリング剤を含有する塗料を用いた場合に、被成膜材料Zbを70℃以上の温度として塗料を乾燥することにより、有機層16と無機層14との密着性がより向上する点で好ましい。
The drying temperature is preferably set to 70 ° C. or higher so that the temperature of the film forming material Zb at the time of drying in the drying means 38 is 70 ° C. or higher.
When the coating material containing the silane coupling agent is used, the adhesion between the organic layer 16 and the inorganic layer 14 is further improved by drying the coating material with the film-forming material Zb at a temperature of 70 ° C. or higher. preferable.
 被成膜材料Zbは、次いで、光照射手段40に搬送される。光照射手段40は、塗布手段36が塗布し乾燥手段38が乾燥した塗料に、紫外線や可視光などを照射して、塗料に含まれるモノマーなどの有機化合物を架橋(重合)して硬化し、有機層16とするものである。
 光照射手段40による塗膜の硬化時には、必要に応じて、被成膜材料Zbにおける光照射手段40による光照射領域を、窒素置換等による不活性雰囲気とするようにしてもよい。また、必要に応じて、裏面に当接するバックアップローラ等を用いて、硬化時に被成膜材料Zbすなわち塗膜の温度を調節するようにしてもよい。
Next, the film forming material Zb is transported to the light irradiation means 40. The light irradiation means 40 irradiates the coating material applied by the application means 36 and dried by the drying means 38 with ultraviolet rays or visible light, and crosslinks (polymerizes) an organic compound such as a monomer contained in the coating material to cure it. The organic layer 16 is used.
At the time of curing of the coating film by the light irradiation means 40, the light irradiation area by the light irradiation means 40 in the film forming material Zb may be made an inert atmosphere by nitrogen substitution or the like, if necessary. Further, if necessary, a temperature of the film forming material Zb, that is, the coating film, may be adjusted at the time of curing by using a backup roller or the like that contacts the back surface.
 光照射手段40による塗膜の硬化時における被成膜材料Zbの温度が、好ましくは30℃以上(より好ましくは50℃以上、さらに好ましくは60℃以上)となるように、硬化時の被成膜材料Zbの加熱温度を、30℃以上(より好ましくは50℃以上、さらに好ましくは60℃以上)にするのが好ましい。
 硬化工程における被成膜材料Zbの温度を上記範囲とすることにより、架橋(重合)密度を上げることができ、有機層の硬度および耐擦傷性を向上できる等の点で好ましい。
Deposition during curing so that the temperature of the film-forming material Zb when the coating film is cured by the light irradiation means 40 is preferably 30 ° C. or higher (more preferably 50 ° C. or higher, more preferably 60 ° C. or higher). The heating temperature of the film material Zb is preferably 30 ° C. or higher (more preferably 50 ° C. or higher, more preferably 60 ° C. or higher).
By setting the temperature of the film-forming material Zb in the curing step within the above range, it is preferable in that the crosslinking (polymerization) density can be increased and the hardness and scratch resistance of the organic layer can be improved.
 なお、本発明において、有機層となる有機化合物の架橋(重合)は、光重合に限定はされない。すなわち、有機化合物の架橋は、加熱重合、電子ビーム重合、プラズマ重合等、有機層16となる有機化合物に応じた、各種の方法が利用可能である。
 本発明においては、前述のように、有機層16としてアクリル樹脂やメタクリル樹脂などのアクリル系樹脂が好適に利用されるので、光重合が好適に利用される。
In the present invention, the crosslinking (polymerization) of the organic compound that becomes the organic layer is not limited to photopolymerization. That is, various methods according to the organic compound used as the organic layer 16 can be used for crosslinking of the organic compound, such as heat polymerization, electron beam polymerization, and plasma polymerization.
In the present invention, as described above, since an acrylic resin such as an acrylic resin or a methacrylic resin is preferably used as the organic layer 16, photopolymerization is preferably used.
 このようにして有機層16を形成された被成膜材料Zbは、搬送ローラ対50に挟持搬送されて巻取り軸46に至り、巻取り軸46によって、再度、ロール状に巻き取られ、有機層16を形成された被成膜材料Zbを巻回してなる材料ロール61とされる。
 この材料ロール61は、有機層16を形成した被成膜材料Zbを巻回してなる材料ロール61として無機成膜装置32に供給される。
The film-forming material Zb on which the organic layer 16 has been formed in this manner is nipped and conveyed by the conveyance roller pair 50 to reach the take-up shaft 46, and is taken up again in a roll shape by the take-up shaft 46. The material roll 61 is formed by winding the film forming material Zb on which the layer 16 is formed.
The material roll 61 is supplied to the inorganic film forming apparatus 32 as a material roll 61 formed by winding the film forming material Zb on which the organic layer 16 is formed.
 以下、図2(A)および図2(B)に示す製造装置において、図1(A)に示す無機層14を2層、有機層16を1層形成したガスバリアフィルム10aを作製する際の作用を説明することにより、本発明の製造方法について、より詳細に説明する。
 なお、図1(B)に示すガスバリアフィルム100や、その他の層構成を有するガスバリアフィルムを作製する際にも、形成する無機層14の数および有機層16の数や、層構成に応じて、同様の無機層14および有機層16の形成を繰り返し行えばよい。
Hereinafter, in the manufacturing apparatus shown in FIGS. 2 (A) and 2 (B), the action in producing the gas barrier film 10a in which two inorganic layers 14 and one organic layer 16 shown in FIG. 1 (A) are formed. By explaining the above, the production method of the present invention will be described in more detail.
In addition, when producing the gas barrier film 100 shown in FIG. 1 (B) and the gas barrier film having other layer configurations, depending on the number of inorganic layers 14 and the number of organic layers 16 to be formed, and the layer configuration, The formation of the similar inorganic layer 14 and organic layer 16 may be repeated.
 まず、長尺なガスバリア支持体12に粘着層20を形成し、この粘着層20に裏面保護フィルム24を貼着してなる、長尺な積層体26を作製する。
 この積層体26は、例えば、図2(B)に示す公知の有機層の成膜装置に、材料ロールからの長尺なシート状物の送りだし手段や積層ローラ等の長尺なシート状物に長尺なシート状物を積層する手段を組み込んだ装置を用いる方法など、2つのシート状物を粘着層で貼着してなる長尺な積層体シートを作製する、RtoRによる公知の方法で製造すればよい。なお、積層体26の作製において、粘着層20の乾燥および硬化が不要な場合には、粘着層20(塗料)の乾燥部および硬化部は不要である。
First, the adhesive layer 20 is formed on the long gas barrier support 12, and the long laminate 26 is produced by attaching the back surface protective film 24 to the adhesive layer 20.
For example, the laminate 26 may be applied to a long sheet-like material such as a feeding means for a long sheet-like material from a material roll or a laminating roller in a known organic layer deposition apparatus shown in FIG. Manufactured by a known method using RtoR, such as a method using an apparatus incorporating a means for laminating a long sheet-like material, to produce a long laminate sheet obtained by sticking two sheet-like materials with an adhesive layer do it. In addition, in the production of the laminate 26, when drying and curing of the adhesive layer 20 are not necessary, a drying part and a curing part of the adhesive layer 20 (paint) are unnecessary.
 なお、積層体26は、裏面保護フィルム24に粘着層20を貼着した積層体を形成し、この積層体の粘着層20にガスバリア支持体12を貼着して形成してもよい。あるいは、積層体26は、ガスバリア支持体12に粘着層20を貼着した積層体を形成し、この積層体の粘着層20に裏面保護フィルム24を貼着して形成してもよい。ここで、本発明においては、ガスバリア支持体12として低リタデーションフィルムを用いるので、裏面保護フィルム24に粘着層20を貼着した積層体を形成し、これにガスバリア支持体12を積層する方法が、好適に利用される。 The laminated body 26 may be formed by forming a laminated body in which the adhesive layer 20 is attached to the back surface protective film 24 and attaching the gas barrier support 12 to the adhesive layer 20 of the laminated body. Or the laminated body 26 may form the laminated body which affixed the adhesion layer 20 on the gas barrier support body 12, and may affix the back surface protective film 24 on the adhesion layer 20 of this laminated body. Here, in the present invention, since a low retardation film is used as the gas barrier support 12, a method of forming a laminate in which the adhesive layer 20 is adhered to the back surface protective film 24 and laminating the gas barrier support 12 thereon is provided. It is preferably used.
 このような積層体26を巻回してなるロールを作製したら、このロールを材料ロール61として、無機成膜装置32の供給室56の回転軸64に装填する。
 材料ロール61が回転軸64に装填されると、被成膜材料Zaが引き出され、供給室56から、成膜室58を経て巻取り室60の巻取り軸92に至る所定の経路を通される。
When a roll formed by winding such a laminated body 26 is produced, this roll is loaded as a material roll 61 onto the rotation shaft 64 of the supply chamber 56 of the inorganic film forming apparatus 32.
When the material roll 61 is loaded on the rotating shaft 64, the film forming material Za is drawn out and passed through a predetermined path from the supply chamber 56 through the film forming chamber 58 to the winding shaft 92 of the winding chamber 60. The
 材料ロール61から送り出された被成膜材料Zaは、ガイドローラ68によって案内されて成膜室58に搬送される。
 成膜室58に搬送された、被成膜材料Zaは、ガイドローラ84aに案内されてドラム80に巻き掛けられ、ドラム80に支持されて所定の経路を搬送されつつ、成膜手段82によって、例えば、CCP-CVDによって、1層目の無機層14を形成される。その後、この1層目の無機層14上に、フィルムロール87から送り出された表面保護フィルムFが貼着される。
 なお、無機層14の形成は、形成する無機層14に応じて、公知の気相成長法による成膜方法で行えばよい。従って、使用するプロセスガスや成膜条件等は、形成する無機層14や膜厚等に応じて、適宜、設定/選択すればよい。
The film formation material Za sent out from the material roll 61 is guided by the guide roller 68 and conveyed to the film formation chamber 58.
The film forming material Za transferred to the film forming chamber 58 is guided by the guide roller 84a, wound around the drum 80, supported by the drum 80, and transferred through a predetermined path by the film forming means 82. For example, the first inorganic layer 14 is formed by CCP-CVD. Then, the surface protection film F sent out from the film roll 87 is stuck on the first inorganic layer 14.
Note that the inorganic layer 14 may be formed by a known vapor deposition method according to the inorganic layer 14 to be formed. Therefore, the process gas to be used, the film formation conditions, and the like may be set / selected as appropriate according to the inorganic layer 14 to be formed, the film thickness, and the like.
 無機層14を形成された被成膜材料Zbは、ガイドローラ84bに案内されて、巻取り室60に搬送される。
 巻取り室60に搬送された被成膜材料Zbは、ガイドローラ90によって巻取り軸92に案内され、巻取り軸92によってロール状に巻回され、材料ロール93とされる。
The film forming material Zb on which the inorganic layer 14 is formed is guided by the guide roller 84b and conveyed to the winding chamber 60.
The film forming material Zb transported to the winding chamber 60 is guided to the winding shaft 92 by the guide roller 90, wound in a roll shape by the winding shaft 92, and used as a material roll 93.
 1層目の無機層14を形成された積層体26を巻回してなる材料ロール93は、有機成膜装置30の回転軸42に装填される。
 回転軸42に材料ロール93が装填されると、被成膜材料Zbである1層目の無機層14を形成された積層体26は、材料ロール93から引き出され、搬送ローラ対48を経て、塗布手段36、乾燥手段38および光照射手段40を通過して、搬送ローラ対50を経て、巻取り軸46に至る、所定の搬送経路を通される。
A material roll 93 formed by winding the laminated body 26 on which the first inorganic layer 14 is formed is loaded on the rotating shaft 42 of the organic film forming apparatus 30.
When the material roll 93 is loaded on the rotating shaft 42, the laminate 26 formed with the first inorganic layer 14 that is the film-forming material Zb is pulled out of the material roll 93, passes through the conveying roller pair 48, It passes through the coating means 36, the drying means 38, and the light irradiation means 40, passes through a pair of transport rollers 50, and reaches a take-up shaft 46.
 材料ロール93から引き出された被成膜材料Zbは、搬送ローラ対48によって表面保護フィルムFを剥離された後、塗布手段36に搬送され、表面に、有機層16となる塗料が塗布される。前述のように、有機層16となる塗料は、形成する有機層16に応じたモノマー等の有機化合物、シランッカップリング剤、重合開始剤等を有機溶剤に溶解してなるものである。
 有機層16となる塗料が塗布された被成膜材料Zbは、次いで、乾燥手段38によって加熱されて、有機溶剤を除去され塗料が乾燥される。
The film-forming material Zb drawn from the material roll 93 is peeled off from the surface protection film F by the transport roller pair 48 and then transported to the coating means 36, and the coating material to be the organic layer 16 is applied to the surface. As described above, the paint to be the organic layer 16 is obtained by dissolving an organic compound such as a monomer, a silan coupling agent, a polymerization initiator, and the like in an organic solvent according to the organic layer 16 to be formed.
The film-forming material Zb to which the coating material to be the organic layer 16 is applied is then heated by the drying means 38 to remove the organic solvent and dry the coating material.
 塗料が乾燥された被成膜材料Zbは、次いで、光照射部によって紫外線等を照射され、有機化合物が重合されて硬化され、1層目の有機層16が形成される。なお、必要に応じて、有機層16となる有機化合物の硬化は、窒素雰囲気等の不活性雰囲気で行うようにしてもよい。また、有機層16となる有機化合物の硬化の際に、積層体26を加熱してもよい。 The film-forming material Zb from which the coating material has been dried is then irradiated with ultraviolet rays or the like by the light irradiation unit, and the organic compound is polymerized and cured to form the first organic layer 16. If necessary, the organic compound that becomes the organic layer 16 may be cured in an inert atmosphere such as a nitrogen atmosphere. Further, the laminated body 26 may be heated when the organic compound to be the organic layer 16 is cured.
 1層目の有機層16が形成された被成膜材料Zbは、搬送ローラ対50によって搬送されて、巻取り軸46によってロール状に巻回され、無機層14および有機層16が1層ずつ形成された積層体26を巻回してなる材料ロール61として、再度、図2(A)に示す無機成膜装置32に供給される。 The film-forming material Zb on which the first organic layer 16 is formed is conveyed by the conveying roller pair 50 and wound in a roll shape by the take-up shaft 46, and the inorganic layer 14 and the organic layer 16 are layered one by one. The material roll 61 formed by winding the formed laminate 26 is supplied again to the inorganic film forming apparatus 32 shown in FIG.
 無機層14および有機層16が1層ずつ形成された積層体26を巻回してなる材料ロール61は、先と同様、無機成膜装置32の回転軸64に装填され、材料ロール61から、1層の無機層14および有機層16が形成された積層体26が被成膜材料Zaとしてが引き出されて巻取り軸92まで通紙され、1層目の有機層16の上に2層目の無機層14が形成されて、さらに、表面保護フィルム18が貼着されて、無機層14、有機層16および無機層14からなる有機無機積層体28と表面保護フィルム18とが形成された、図1(A)に示されるガスバリアフィルム10aとされる。
 このガスバリアフィルム10aは、巻取り軸92にロール状に巻回され、ガスバリアフィルム10aが巻回された材料ロール93として、製品として出荷あるいは保管され、もしくは、次の工程等に供給される。
The material roll 61 formed by winding the laminated body 26 in which the inorganic layer 14 and the organic layer 16 are formed one by one is loaded on the rotating shaft 64 of the inorganic film forming apparatus 32 in the same manner as described above. The layered body 26 in which the inorganic layer 14 and the organic layer 16 are formed is pulled out as a film forming material Za and passed through the take-up shaft 92, and the second layer is formed on the first organic layer 16. The inorganic layer 14 is formed, and further, the surface protective film 18 is adhered, and the organic / inorganic laminate 28 and the surface protective film 18 including the inorganic layer 14, the organic layer 16, and the inorganic layer 14 are formed. The gas barrier film 10a shown in FIG.
The gas barrier film 10a is wound around a winding shaft 92 in a roll shape, and is shipped or stored as a product as a material roll 93 around which the gas barrier film 10a is wound, or is supplied to the next step or the like.
 ここで、本発明においては、前述のように、裏面保護フィルム24を有するので、ガスバリア支持体12が薄手でコシが弱くても、RtoRによる無機層14や有機層16の形成において、安定した被成膜材料ZaおよびZbの搬送が可能である。
 また、前述のように、積層体26は、粘着層20とガスバリア支持体12とが微粘着であり、さらに、ガスバリア支持体12の線膨張係数と裏面保護フィルム24の線膨張係数との差が、0~80ppm/℃である。そのため、無機層14の形成によって加熱され、また、有機層16の形成において塗料を乾燥するために加熱され、ガスバリア支持体12と裏面保護フィルム24とが異なる変形をしたり、層間に存在する気泡が膨張しても、粘着層20と裏面保護フィルム24とが剥離および貼着を繰り返すので、ガスバリアフィルム10aは、ガスバリア支持体12と裏面保護フィルム24の剥離やガスバリア支持体12のシワ等が生じることがなく、これに起因する無機層14の損傷を防止できる。
Here, in the present invention, as described above, since the rear surface protective film 24 is provided, even when the gas barrier support 12 is thin and weak, the formation of the inorganic layer 14 and the organic layer 16 by RtoR is stable. The film forming materials Za and Zb can be conveyed.
Further, as described above, in the laminate 26, the adhesive layer 20 and the gas barrier support 12 are slightly adhered, and further, the difference between the linear expansion coefficient of the gas barrier support 12 and the linear expansion coefficient of the back surface protective film 24 is different. 0 to 80 ppm / ° C. Therefore, it is heated by the formation of the inorganic layer 14 and also heated to dry the paint in the formation of the organic layer 16, and the gas barrier support 12 and the back surface protective film 24 are deformed differently, or bubbles existing between the layers Since the adhesive layer 20 and the back surface protective film 24 repeat peeling and sticking even if the gas expands, the gas barrier film 10a causes peeling of the gas barrier support 12 and back surface protective film 24, wrinkles of the gas barrier support 12 and the like. This prevents damage to the inorganic layer 14 due to this.
 また、本発明においては、前述のように、表面保護フィルム18を有するので、無機層14の損傷を防止することができる。また、表面保護フィルム18と無機層14とは微粘着であるので、表面保護フィルム18を剥離する際の無機層14の損傷を防止できる。また、表面保護フィルム18の融点は80~170℃であるので、低い温度で熱圧着することができ、接着剤の残留に起因する不具合を防止できる。 Further, in the present invention, as described above, since the surface protective film 18 is provided, the inorganic layer 14 can be prevented from being damaged. Further, since the surface protective film 18 and the inorganic layer 14 are slightly adhesive, damage to the inorganic layer 14 when the surface protective film 18 is peeled can be prevented. Further, since the melting point of the surface protective film 18 is 80 to 170 ° C., it can be thermocompression bonded at a low temperature, and problems caused by the adhesive remaining can be prevented.
 以上、本発明の機能性フィルムおよび機能性フィルムの製造方法について詳細に説明したが、本発明は、上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 As mentioned above, although the functional film of this invention and the manufacturing method of a functional film were demonstrated in detail, this invention is not limited to the said Example, In the range which does not deviate from the summary of this invention, various improvement and change Of course, you may do.
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。
 [実施例1]
 ガスバリア支持体12として、幅1000mmで厚さが50μmの長尺なCOCフィルム(グンゼ社製、F1フィルム)を用意した。このガスバリア支持体12の線膨張係数(CTE)は65ppm/℃であり、リタデーション値(Re)は5nmである。また、ヤング率は3GPaである。また、水蒸気透過率(WVTR)は1[g/(m2・day)]である。
 また、裏面保護フィルム24として、幅が1000mmで厚さが50μmの長尺なPETフィルム(東レ社製、ルミラー)を用意した。この裏面保護フィルム24の線膨張係数(CTE)は15ppm/℃であり、摩擦係数(μ)は0.6である。また、ヤング率は4.5GPaである。また、水蒸気透過率(WVTR)は3[g/(m2・day)]である。
 また、表面保護フィルム18または表面保護フィルムFとして、幅が1000mmで厚さが50μmの長尺な低密度ポリエチレンフィルム(LDPE)(サンエー化研社製、SUNYTECT PAC-2)を用意した。この表面保護フィルムの融点Tmは108℃である。また、ヤング率は0.3GPaである。また、水蒸気透過率(WVTR)は20[g/(m2・day)]
である。
Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.
[Example 1]
As the gas barrier support 12, a long COC film (F1 film, manufactured by Gunze Co., Ltd.) having a width of 1000 mm and a thickness of 50 μm was prepared. The gas barrier support 12 has a linear expansion coefficient (CTE) of 65 ppm / ° C. and a retardation value (Re) of 5 nm. The Young's modulus is 3 GPa. Furthermore, water vapor transmission rate (WVTR) is 1 [g / (m 2 · day)].
Moreover, as the back surface protective film 24, a long PET film (Lumirror, manufactured by Toray Industries, Inc.) having a width of 1000 mm and a thickness of 50 μm was prepared. The back surface protective film 24 has a linear expansion coefficient (CTE) of 15 ppm / ° C. and a friction coefficient (μ) of 0.6. The Young's modulus is 4.5 GPa. The water vapor transmission rate (WVTR) is 3 [g / (m 2 · day)].
Further, as the surface protective film 18 or the surface protective film F, a long low density polyethylene film (LDPE) (SUNYTECT PAC-2, manufactured by Sanei Kaken Co., Ltd.) having a width of 1000 mm and a thickness of 50 μm was prepared. The surface protective film has a melting point Tm of 108 ° C. The Young's modulus is 0.3 GPa. The water vapor transmission rate (WVTR) is 20 [g / (m 2 · day)].
It is.
 裏面保護フィルム24の一面に、粘着層20として、アルキル基部分の炭素数が3~10のアクリル酸アルキルモノマーを含むアクリル樹脂系接着剤(粘着材料)を塗布した。この接着剤は、特開2008-38103号公報の実施例1に記載された粘着剤塗布溶液と同様に調製して得られたものである。
 なお、接着剤は、硬化後の粘着層20の厚さが50μmとなるように塗布した。
An acrylic resin adhesive (adhesive material) containing an alkyl acrylate monomer having 3 to 10 carbon atoms in the alkyl group portion was applied to one surface of the back surface protective film 24 as the adhesive layer 20. This adhesive was obtained by preparing in the same manner as the pressure-sensitive adhesive coating solution described in Example 1 of JP-A-2008-38103.
The adhesive was applied so that the cured adhesive layer 20 had a thickness of 50 μm.
 次いで、接着剤に紫外線を照射して半硬化状態とした。半硬化状態の接着剤にガスバリア支持体12(COCフィルム)を貼着して、ガスバリア支持体12、粘着層20および裏面保護フィルム24からなる積層体26を作製した。
 なお、以上の処理は、接着剤の塗布手段および硬化手段、ならびに、長尺なシート状物の積層手段を有する、RtoRによる公知の装置を用いて行った。
 この積層体26のガスバリア支持体12および裏面保護フィルム24と粘着層20との粘着力を、剥離試験機を用いてJIS Z0237に準拠して測定したところ、ガスバリア支持体12と粘着層20との粘着力(25℃)が0.025N/25mm、裏面保護フィルム24と粘着層20との粘着力(25℃)が0.1N/25mmであった。
Next, the adhesive was irradiated with ultraviolet rays to be in a semi-cured state. A gas barrier support 12 (COC film) was adhered to the semi-cured adhesive to produce a laminate 26 composed of the gas barrier support 12, the adhesive layer 20, and the back surface protective film 24.
In addition, the above process was performed using the well-known apparatus by RtoR which has an application | coating means and hardening | curing means of an adhesive agent, and the lamination | stacking means of a elongate sheet-like material.
When the adhesive strength between the gas barrier support 12 and the back surface protective film 24 and the adhesive layer 20 of the laminate 26 was measured according to JIS Z0237 using a peeling tester, the gas barrier support 12 and the adhesive layer 20 The adhesive force (25 ° C.) was 0.025 N / 25 mm, and the adhesive force (25 ° C.) between the back surface protective film 24 and the adhesive layer 20 was 0.1 N / 25 mm.
 この積層体26(被成膜材料Za)を巻回してなる材料ロール61を、図2(A)に示す無機成膜装置32の回転軸64に装填して、気相成長法にて、ガスバリア支持体12の表面(粘着層20の形成面と反対側の面)に、厚さ25nmの無機層14を形成して、表面保護フィルムFを熱圧着で貼着した。 A material roll 61 formed by winding the laminated body 26 (film formation material Za) is loaded on the rotating shaft 64 of the inorganic film forming apparatus 32 shown in FIG. An inorganic layer 14 having a thickness of 25 nm was formed on the surface of the support 12 (the surface opposite to the surface on which the pressure-sensitive adhesive layer 20 was formed), and the surface protective film F was attached by thermocompression bonding.
 成膜ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。供給量は、シランガスが100sccm、アンモニアガスが200sccm、窒素ガスが500sccm、水素ガスが500sccmとした。また、成膜圧力は50Paとした。
 シャワー成膜電極には、高周波電源から、周波数13.5MHzで3000Wのプラズマ励起電力を供給した。さらに、ドラム80には、バイアス電源から、500Wのバイアス電力を供給した。また、成膜中は、ドラム80の温度を20℃に調整した。
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas. The supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas. The film forming pressure was 50 Pa.
The shower film-forming electrode was supplied with 3000 W of plasma excitation power at a frequency of 13.5 MHz from a high-frequency power source. Further, 500 W bias power was supplied to the drum 80 from a bias power source. During the film formation, the temperature of the drum 80 was adjusted to 20 ° C.
 無機層14の形成を終了したら、供給室56、成膜室58および巻取り室60に清浄化した乾燥空気を導入して大気開放した。
 次いで、無機層14を形成した積層体26を巻回してなる材料ロール93を、巻取り室60から取り出した。
 無機層14を形成した積層体26の断面をSEMにて測定したところ、ガスバリア支持体12の形成成分と無機層14の形成成分とが混合して形成された混合層の厚みは5nmであった
When the formation of the inorganic layer 14 was completed, purified air was introduced into the supply chamber 56, the film formation chamber 58, and the winding chamber 60 to release the atmosphere.
Next, the material roll 93 formed by winding the laminated body 26 on which the inorganic layer 14 was formed was taken out from the winding chamber 60.
When the cross-section of the laminate 26 on which the inorganic layer 14 was formed was measured by SEM, the thickness of the mixed layer formed by mixing the forming component of the gas barrier support 12 and the forming component of the inorganic layer 14 was 5 nm.
 無機層14を形成した積層体26(被成膜材料Zb)を巻回してなる材料ロール93を、図2(B)に示す有機成膜装置30の回転軸42に装填して、無機層14の表面に、厚さ3μmの有機層16を形成した。
 有機層16を形成する塗料は、MEK(メチルエチルケトン)に、TMPTA(ダイセル・サイテック社製)、光重合開始剤(チバケミカルズ社製 Irg189)、シランカップリング剤(信越シリコーン社製 KBM5103)を添加して、調製した。すなわち、有機層16は、TMPTAを重合してなる層である。
 光重合開始剤の添加量は、有機溶剤を除いた濃度で2質量%、シランカップリング剤の添加量は、有機溶剤を除いた濃度で10質量%、とした(すなわち固形分におけるTMPTAは88質量%)。また、これらの比率で配合した成分をMEKに希釈した塗料の固形分濃度は、15質量%(すなわちMEKは85質量%)とした。
A material roll 93 formed by winding the laminate 26 (film formation material Zb) on which the inorganic layer 14 is formed is loaded on the rotating shaft 42 of the organic film forming apparatus 30 shown in FIG. An organic layer 16 having a thickness of 3 μm was formed on the surface.
The coating material for forming the organic layer 16 is MEK (methyl ethyl ketone) added with TMPTA (manufactured by Daicel Cytec), photopolymerization initiator (Irg189 manufactured by Ciba Chemicals), and silane coupling agent (KBM5103 manufactured by Shin-Etsu Silicone). And prepared. That is, the organic layer 16 is a layer formed by polymerizing TMPTA.
The addition amount of the photopolymerization initiator was 2% by mass in the concentration excluding the organic solvent, and the addition amount of the silane coupling agent was 10% by mass in the concentration excluding the organic solvent (that is, TMPTA in the solid content was 88%). mass%). Moreover, the solid content concentration of the paint obtained by diluting the components blended in these ratios with MEK was 15% by mass (that is, MEK was 85% by mass).
 塗布手段36はダイコータを用いた。乾燥手段38は、ノズルからの乾燥風を吹き出す装置を用い、乾燥は80℃で行った。さらに、光照射手段40からは紫外線を照射して、重合を行った。なお、紫外線による硬化は、紫外線の照射量が積算照射量で約500mJ/cm2となるようにして、ガスバリア支持体12を裏面側から80℃に加熱しながら行った。 The coating means 36 used a die coater. The drying means 38 used the apparatus which blows off the drying wind from a nozzle, and drying was performed at 80 degreeC. Further, the light irradiation means 40 was irradiated with ultraviolet rays to carry out polymerization. The curing with ultraviolet rays was performed while heating the gas barrier support 12 to 80 ° C. from the back side so that the irradiation amount of the ultraviolet rays was about 500 mJ / cm 2 in terms of the integrated irradiation amount.
 次いで、無機層14の上に有機層16を形成した積層体26を巻回してなる材料ロール61を、再度、図2(A)に示す無機成膜装置32に装填し、先と同様にして、厚さ50nmの無機層14を形成し、表面保護フィルム18を熱圧着で貼着して、ガスバリア支持体12、粘着層20および裏面保護フィルム24からなる積層体26の表面に、無機層14、有機層16および無機層14からなる有機無機積層体28と、表面保護フィルム18を形成してなる、図1(A)に示すガスバリアフィルム10aを作製した。
 このガスバリアフィルム10aの表面保護フィルム18と最上層の無機層14との粘着力(25℃)を、剥離試験機を用いてJIS Z0237に準拠して測定したところ、粘着力は0.04N/25mmであった。また、ガスバリアフィルム10aの断面をSEMにて測定したところ、有機層16とこの有機層16上に形成した無機層14の間に存在する、有機層16の形成成分と無機層14の形成成分とが混合して形成された混合層の厚みは5nmであった
Next, a material roll 61 formed by winding the laminate 26 in which the organic layer 16 is formed on the inorganic layer 14 is loaded again into the inorganic film forming apparatus 32 shown in FIG. The inorganic layer 14 having a thickness of 50 nm is formed, and the surface protective film 18 is attached by thermocompression bonding, and the inorganic layer 14 is formed on the surface of the laminate 26 composed of the gas barrier support 12, the adhesive layer 20, and the back protective film 24. A gas barrier film 10a shown in FIG. 1 (A) formed by forming an organic / inorganic laminate 28 composed of the organic layer 16 and the inorganic layer 14 and the surface protective film 18 was produced.
When the adhesive strength (25 ° C.) between the surface protective film 18 and the uppermost inorganic layer 14 of the gas barrier film 10a was measured according to JIS Z0237 using a peel tester, the adhesive strength was 0.04 N / 25 mm. Met. Moreover, when the cross section of the gas barrier film 10a was measured by SEM, the formation component of the organic layer 16 and the formation component of the inorganic layer 14 existing between the organic layer 16 and the inorganic layer 14 formed on the organic layer 16 The thickness of the mixed layer formed by mixing was 5 nm.
 [実施例2~4]
 裏面保護フィルム24の厚さを38μmにした以外(実施例2);
 裏面保護フィルム24の厚さを75μmにした以外(実施例3);
 裏面保護フィルム24の厚さを20μmにした以外(実施例4);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 2 to 4]
Example 2 except that the thickness of the back surface protective film 24 was 38 μm;
Except for the thickness of the back surface protective film 24 being 75 μm (Example 3);
A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that the thickness of the back surface protective film 24 was changed to 20 μm (Example 4).
 [実施例5~8]
 ガスバリア支持体12の厚さを25μmとした以外(実施例5);
 ガスバリア支持体12の厚さを25μmとし、裏面保護フィルム24の厚さを75μmとした以外(実施例6);
 ガスバリア支持体12の厚さを100μmとした以外(実施例7);
 ガスバリア支持体12の厚さを100μmとし、裏面保護フィルム24の厚さを38μmとした以外(実施例8);は、実施例1と同様にして図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 5 to 8]
Except for the thickness of the gas barrier support 12 being 25 μm (Example 5);
Example 6 except that the thickness of the gas barrier support 12 is 25 μm and the thickness of the back surface protective film 24 is 75 μm;
Except for the thickness of the gas barrier support 12 being 100 μm (Example 7);
A gas barrier film 10a shown in FIG. 1A is produced in the same manner as in Example 1 except that the thickness of the gas barrier support 12 is 100 μm and the thickness of the back surface protective film 24 is 38 μm (Example 8). did.
 [実施例9~10]
 表面保護フィルム18の厚さを25μmに変更した以外(実施例9);
 表面保護フィルム18の厚さを75μmに変更した以外(実施例10);は、実施例1と同様にして図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 9 to 10]
Except for changing the thickness of the surface protective film 18 to 25 μm (Example 9);
A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that the thickness of the surface protective film 18 was changed to 75 μm (Example 10).
 [実施例11~15]
 粘着層20の厚さを25μmに変更した以外(実施例11);
 粘着層20の厚さを75μmに変更した以外(実施例12);
 粘着層20の厚さを100μmに変更した以外(実施例13);
 粘着層20の厚さを150μmに変更した以外(実施例14);
 粘着層20の厚さを200μmに変更した以外(実施例15);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 11 to 15]
Except for changing the thickness of the adhesive layer 20 to 25 μm (Example 11);
Except for changing the thickness of the adhesive layer 20 to 75 μm (Example 12);
Except for changing the thickness of the adhesive layer 20 to 100 μm (Example 13);
Except for changing the thickness of the adhesive layer 20 to 150 μm (Example 14);
A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that the thickness of the adhesive layer 20 was changed to 200 μm (Example 15).
 [実施例16~18]
 裏面保護フィルム24を厚さ50μm、線膨張係数13ppm/℃のPENフィルム(帝人デュポンフィルム社製 テオネックス)に変更した以外(実施例16);
 裏面保護フィルム24を厚さ50μm、線膨張係数27ppm/℃のPIフィルム(東レ・デュポン社製 カプトン)に変更した以外(実施例17);
 裏面保護フィルム24を厚さ50μm、線膨張係数27ppm/℃のPIフィルム(東レ・デュポン社製 カプトン)に変更し、ガスバリア支持体12を厚さ50μm、線膨張係数77ppm/℃、リタデーション値148nmのPCフィルム(帝人社製 S148)に変更した以外(実施例18);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 16 to 18]
Except for changing the back surface protective film 24 to a PEN film having a thickness of 50 μm and a linear expansion coefficient of 13 ppm / ° C. (Teonex manufactured by Teijin DuPont Films) (Example 16);
Except for changing the back surface protective film 24 to a PI film having a thickness of 50 μm and a linear expansion coefficient of 27 ppm / ° C. (Kapton manufactured by Toray DuPont) (Example 17);
The back protective film 24 is changed to a PI film (Kapton manufactured by Toray DuPont) with a thickness of 50 μm and a linear expansion coefficient of 27 ppm / ° C., and the gas barrier support 12 has a thickness of 50 μm, a linear expansion coefficient of 77 ppm / ° C., and a retardation value of 148 nm. A gas barrier film 10a shown in FIG. 1 (A) was produced in the same manner as in Example 1 except that the PC film was changed to S148 (manufactured by Teijin Limited) (Example 18).
 [実施例19~23]
 粘着層20を形成する際の条件を変更して、ガスバリア支持体12との粘着力を0.01とした以外(実施例19);
 粘着層20を形成する際の条件を変更して、ガスバリア支持体12との粘着力を0.05とした以外(実施例20);
 粘着層20を形成する際の条件を変更して、ガスバリア支持体12との粘着力を0.15とした以外(実施例21);
 粘着層20を形成する際の条件を変更して、裏面保護フィルム24との粘着力を0.05とした以外(実施例22);
 粘着層20を形成する際の条件を変更して、裏面保護フィルム24との粘着力を0.20とした以外(実施例23);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 19 to 23]
Except for changing the conditions for forming the adhesive layer 20 so that the adhesive strength with the gas barrier support 12 is 0.01 (Example 19);
Except for changing the conditions for forming the adhesive layer 20 so that the adhesive strength with the gas barrier support 12 is 0.05 (Example 20);
The conditions for forming the adhesive layer 20 were changed, and the adhesive strength with the gas barrier support 12 was changed to 0.15 (Example 21);
Except for changing the conditions at the time of forming the adhesive layer 20 so that the adhesive strength with the back surface protective film 24 is 0.05 (Example 22);
Except for changing the conditions for forming the adhesive layer 20 and setting the adhesive strength with the back surface protective film 24 to 0.20 (Example 23); The gas barrier film 10a shown in FIG.
 [実施例24~25]
 表面保護フィルム18を熱圧着する際の条件を変更して、無機層14との粘着力を0.02とした以外(実施例24);
 表面保護フィルム18を熱圧着する際の条件を変更して、無機層14との粘着力を0.06とした以外(実施例25);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 24 to 25]
Except for changing the conditions at the time of thermocompression bonding the surface protective film 18 to make the adhesive strength with the inorganic layer 14 0.02 (Example 24);
Except for changing the conditions for thermocompression bonding of the surface protective film 18 and setting the adhesive strength with the inorganic layer 14 to 0.06 (Example 25); The gas barrier film 10a shown in FIG.
 [実施例26]
 裏面保護フィルム24の粘着層20が形成されている面とは反対側の面にコロナ処理を施して表面粗さを粗くして、摩擦係数を0.4とした以外(実施例26)は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Example 26]
Except that the surface of the back surface protective film 24 opposite to the surface on which the adhesive layer 20 is formed is subjected to corona treatment to roughen the surface roughness and the friction coefficient is 0.4 (Example 26). In the same manner as in Example 1, a gas barrier film 10a shown in FIG.
 [実施例27]
 表面保護フィルム18を厚さ50μm、融点Tm165℃、ヤング率0.6のPPフィルム(サンエー化研社製 SUNYTECT PAC-3)に変更した以外(実施例27)は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Example 27]
Example 27 is the same as Example 1 except that the surface protective film 18 is changed to a PP film (SUNYTECT PAC-3 manufactured by Sanei Kaken Co., Ltd.) having a thickness of 50 μm, a melting point Tm of 165 ° C., and a Young's modulus of 0.6. A gas barrier film 10a shown in FIG.
 [実施例28~31]
 ドラム80の温度を5℃に変更して、ガスバリア支持体12と無機層14の間の混合層の厚みを1nmとした以外(実施例28);
 ドラム80の温度を60℃に変更して、ガスバリア支持体12と無機層14の間の混合層の厚みを20nmとした以外(実施例29);
 ドラム80の温度を5℃に変更して、有機層16と無機層14の間の混合層の厚みを1nmとした以外(実施例30);
 ドラム80の温度を60℃に変更して、有機層16と無機層14の間の混合層を20nmとした以外(実施例31);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 28 to 31]
The temperature of the drum 80 was changed to 5 ° C., and the thickness of the mixed layer between the gas barrier support 12 and the inorganic layer 14 was changed to 1 nm (Example 28);
The temperature of the drum 80 was changed to 60 ° C., and the thickness of the mixed layer between the gas barrier support 12 and the inorganic layer 14 was 20 nm (Example 29);
The temperature of the drum 80 was changed to 5 ° C., and the thickness of the mixed layer between the organic layer 16 and the inorganic layer 14 was changed to 1 nm (Example 30);
The temperature of the drum 80 was changed to 60 ° C., and the mixed layer between the organic layer 16 and the inorganic layer 14 was changed to 20 nm (Example 31); The gas barrier film 10a shown in FIG.
 [実施例32~35]
 粘着層20を形成する際の条件を変更して、
ガスバリア支持体と粘着層との100℃における粘着力が0.03N/25mm
粘着層と裏面保護フィルムとの100℃における粘着力が0.07N/25mmとなるようにした以外(実施例32);
 粘着層20を形成する際の条件を変更して、
ガスバリア支持体と粘着層との100℃における粘着力が0.14N/25mm
粘着層と裏面保護フィルムとの100℃における粘着力が0.19N/25mmとなるようにした以外(実施例33);
 粘着層20を形成する際の条件を変更して、
ガスバリア支持体と粘着層との200℃における粘着力が0.04N/25mm
粘着層と裏面保護フィルムとの200℃における粘着力が0.08N/25mmとなるようにした以外(実施例34);
 粘着層20を形成する際の条件を変更して、
ガスバリア支持体と粘着層との200℃における粘着力が0.13N/25mm
粘着層と裏面保護フィルムとの200℃における粘着力が0.18N/25mmとなるようにした以外(実施例35);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 32 to 35]
Change the conditions when forming the adhesive layer 20,
The adhesive strength between the gas barrier support and the adhesive layer at 100 ° C. is 0.03 N / 25 mm.
Except for the adhesive force of the adhesive layer and the back surface protective film at 100 ° C. being 0.07 N / 25 mm (Example 32);
Change the conditions when forming the adhesive layer 20,
Adhesive strength of the gas barrier support and adhesive layer at 100 ° C. is 0.14 N / 25 mm
Except for the adhesive force of the adhesive layer and the back surface protective film at 100 ° C. being 0.19 N / 25 mm (Example 33);
Change the conditions when forming the adhesive layer 20,
The adhesive strength between the gas barrier support and the adhesive layer at 200 ° C. is 0.04 N / 25 mm.
Except that the adhesive force between the adhesive layer and the back surface protective film at 200 ° C. was 0.08 N / 25 mm (Example 34);
Change the conditions when forming the adhesive layer 20,
The adhesive strength between the gas barrier support and the adhesive layer at 200 ° C. is 0.13 N / 25 mm.
The gas barrier film shown in FIG. 1 (A) was the same as Example 1 except that the adhesive force between the adhesive layer and the back surface protective film at 200 ° C. was 0.18 N / 25 mm (Example 35). 10a was produced.
 [比較例1]
 裏面保護フィルムおよび粘着層を有さない以外は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 1]
A gas barrier film was produced in the same manner as in Example 1 except that the back surface protective film and the adhesive layer were not provided.
 [比較例2]
 表面保護フィルムを有さない以外は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 2]
A gas barrier film was produced in the same manner as in Example 1 except that the surface protective film was not provided.
 [比較例3~4]
 粘着層を形成する際の条件を変更して、ガスバリア支持体との粘着力を2とした以外(比較例3);
 粘着層を形成する際の条件を変更して、ガスバリア支持体との粘着力を0.005とした以外(比較例4);は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Examples 3 to 4]
Other than changing the conditions for forming the adhesive layer to set the adhesive strength with the gas barrier support to 2 (Comparative Example 3);
A gas barrier film was produced in the same manner as in Example 1, except that the conditions for forming the adhesive layer were changed so that the adhesive strength with the gas barrier support was 0.005 (Comparative Example 4).
 [比較例5~6]
 表面保護フィルムを熱圧着する際の条件を変更して、無機層との粘着力を0.2とした以外(比較例5);
 表面保護フィルムを熱圧着する際の条件を変更して、無機層との粘着力を0.001とした以外(比較例6);は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Examples 5 to 6]
Other than changing the conditions at the time of thermocompression bonding the surface protective film, the adhesive strength with the inorganic layer was 0.2 (Comparative Example 5);
A gas barrier film was produced in the same manner as in Example 1, except that the conditions for thermocompression bonding of the surface protective film were changed so that the adhesive strength with the inorganic layer was 0.001 (Comparative Example 6).
 [比較例7]
 有機無機積層体の層構成を、ガスバリア支持体側から有機層、無機層、有機層の順に形成した構成とした以外(比較例7)は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 7]
A gas barrier film was produced in the same manner as in Example 1 except that the organic / inorganic laminate was configured in the order of an organic layer, an inorganic layer, and an organic layer from the gas barrier support side (Comparative Example 7).
 [比較例8]
 裏面保護フィルムを厚さ50μm、線膨張係数160ppm/℃のPEフィルム(サンエー化研社製 SUNYTECT PAC-2)に変更した以外(比較例8)は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 8]
A gas barrier film was prepared in the same manner as in Example 1 except that the back protective film was changed to a PE film (SUNYTECT PAC-2 manufactured by Sanei Kaken Co., Ltd.) having a thickness of 50 μm and a linear expansion coefficient of 160 ppm / ° C. Produced.
 [比較例9]
 表面保護フィルムを厚さ50μm、融点260℃、ヤング率5.5のPETフィルム(東レ社製 ルミラー)に変更した以外(比較例9)は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Comparative Example 9]
1A except that the surface protective film was changed to a PET film (Lumirror manufactured by Toray Industries, Inc.) having a thickness of 50 μm, a melting point of 260 ° C. and a Young's modulus of 5.5 (Comparative Example 9). The gas barrier film 10a shown in FIG.
 [評価]
 このようにして作製した実施例1~35および比較例1~9のガスバリアフィルムについて、表面保護フィルムおよび裏面保護フィルムを剥離する前のガスバリアフィルムの変形性(以下、「剥離前の変形性」ともいう)、表面保護フィルムを剥離し裏面保護フィルムを剥離する前のガスバリアフィルムのガスバリア性(以下、「剥離前のバリア性」ともいう)、裏面保護フィルムおよび表面保護フィルムを剥離した後のガスバリアフィルムの変形性(以下、「剥離後の変形性」ともいう)、裏面保護フィルムおよび表面保護フィルムを剥離した後のガスバリアフィルムのガスバリア性(以下、「剥離後のバリア性」ともいう)を評価した。
[Evaluation]
Regarding the gas barrier films of Examples 1 to 35 and Comparative Examples 1 to 9 produced in this way, the deformability of the gas barrier film before peeling the surface protective film and the back surface protective film (hereinafter referred to as “deformability before peeling”). Gas barrier property of the gas barrier film before peeling the surface protective film and peeling the back surface protective film (hereinafter also referred to as “barrier property before peeling”), the gas barrier film after peeling the back surface protective film and the surface protective film The gas barrier property of the gas barrier film after peeling the back surface protective film and the surface protective film (hereinafter also referred to as “barrier property after peeling”) was evaluated. .
 <ガスバリアフィルムの変形性(剥離前の変形性)>
 任意に選択した1m2の領域において、目視による確認によって、作製したガスバリアフィルムの変形性を、評価した。
 全く変形が認められない場合を『AAA』;
 僅かな変形が1箇所確認できる場合を『AA』;
 僅かな変形が2~3箇所確認できる場合を『A』;
 僅かな変形が4~5箇所確認できる場合を『B』;
 変形は見られるが、実用上問題にならない場合を『C』;
 大きな変形が有り、実用上も使用できない場合を『D』;
 全面的に大きな変形が有り、実用上も使用できない場合を『E』; と評価した。
<Deformability of gas barrier film (deformability before peeling)>
In an arbitrarily selected 1 m 2 region, the deformability of the produced gas barrier film was evaluated by visual confirmation.
“AAA” when no deformation is observed;
When a slight deformation can be confirmed at one place, “AA”;
“A” when slight deformation can be confirmed in 2 to 3 places;
“B” when slight deformation can be confirmed in 4 to 5 places;
"C" when the deformation is seen but not a problem in practice;
“D” when there is a large deformation and cannot be used in practice.
The case where there was a large deformation on the entire surface and it could not be used practically was evaluated as “E”;
 <剥離前のガスバリア性(剥離前のバリア性)>
 作製したガスバリアフィルムから表面保護フィルムを剥離し、水蒸気透過率[g/(m2・day)]を、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。なお、恒温恒湿処理の条件は、温度40℃、湿度90%RHとした。
 7×10-6[g/(m2・day)]未満のものを『AAA』;
 7×10-6[g/(m2・day)]以上、9×10-6[g/(m2・day)]未満のものを『AA』;
 9×10-6[g/(m2・day)]以上、3×10-5[g/(m2・day)]未満のものを『A』;
 3×10-5[g/(m2・day)]以上、5×10-5[g/(m2・day)]未満のものを『B』;
 5×10-5[g/(m2・day)]以上、9×10-5[g/(m2・day)]未満のものを『C』;
 9×10-5[g/(m2・day)]以上、3×10-4[g/(m2・day)]未満のものを『D』;
 3×10-4[g/(m2・day)]以上のものを『E』; と、評価した。
<Gas barrier property before peeling (barrier property before peeling)>
The surface protective film was peeled from the produced gas barrier film, and the water vapor transmission rate [g / (m 2 · day)] was measured by the calcium corrosion method (method described in JP-A-2005-283561). The conditions for the constant temperature and humidity treatment were a temperature of 40 ° C. and a humidity of 90% RH.
Anything less than 7 × 10 -6 [g / (m 2 · day)] is “AAA”;
AA above 7 × 10 -6 [g / (m 2 · day)] and less than 9 × 10 -6 [g / (m 2 · day)];
9 × 10 −6 [g / (m 2 · day)] or more and less than 3 × 10 −5 [g / (m 2 · day)] “A”;
3 x 10 -5 [g / (m 2 · day)] or more and less than 5 x 10 -5 [g / (m 2 · day)] "B";
“C” for items of 5 × 10 −5 [g / (m 2 · day)] or more and less than 9 × 10 −5 [g / (m 2 · day)];
9 × 10 −5 [g / (m 2 · day)] or more and less than 3 × 10 −4 [g / (m 2 · day)] “D”;
3 × 10 −4 [g / (m 2 · day)] or more was evaluated as “E”;
 <剥離後の変形性>
 ガスバリアフィルムから表面保護フィルムを剥離した後、さらに、裏面保護フィルム(および粘着層)を剥離して、ガスバリア支持体および有機無機積層体からなるガスバリアフィルムとした。
 このガスバリアフィルムについて、目視によって、ガスバリア支持体の変形およびガスバリア支持体への粘着層の残存を確認することで、裏面保護フィルムおよび表面保護フィルムの剥離後の変形性を評価した。剥離性が悪い方が、ガスバリア支持体の変形や、ガスバリア支持体への粘着層の残存が発生し易くなる。
 剥離しても、ガスバリア支持体の変形が発生せず、かつ、ガスバリア支持体への粘着層の残存が全く無い場合を『A』;
 剥離によって、ガスバリア支持体の変形、および、ガスバリア支持体への粘着層の残存の少なくとも一方が、僅かに発生する場合を『B』;
 剥離によって、ガスバリア支持体の変形、および、ガスバリア支持体への粘着層の残存の少なくとも一方が、剥離方向に断続的に発生する場合を『C』;
 剥離によって、ガスバリア支持体の変形、および、ガスバリア支持体への粘着層の残存の少なくとも一方が、剥離方向に連続的に発生し、実用上も使用できない場合を『D』;
 剥離できない、ガスバリア支持体の破断、および、全面的な粘着層の残存が認められる、のいずれか1つでも発生した場合を『E』; と評価した。
<Deformability after peeling>
After peeling off the surface protective film from the gas barrier film, the back protective film (and the adhesive layer) was further peeled off to obtain a gas barrier film comprising a gas barrier support and an organic / inorganic laminate.
About this gas barrier film, the deformation | transformation property after peeling of a back surface protective film and a surface protective film was evaluated by confirming the deformation | transformation of a gas barrier support body, and the residual of the adhesion layer to a gas barrier support body visually. When the peelability is poor, the gas barrier support is easily deformed and the adhesive layer remains on the gas barrier support.
“A” when the gas barrier support is not deformed even if it is peeled, and there is no residual adhesive layer on the gas barrier support;
“B” when the gas barrier support is deformed and / or at least one of the adhesive layer remaining on the gas barrier support is slightly generated by peeling;
A case where at least one of deformation of the gas barrier support and remaining of the adhesive layer on the gas barrier support is intermittently generated in the peeling direction due to peeling, “C”;
A case where at least one of deformation of the gas barrier support and remaining of the adhesive layer on the gas barrier support is continuously generated in the peeling direction due to peeling and cannot be used practically;
The case where any one of the cases where the gas barrier support could not be peeled, the gas barrier support was broken, and the entire adhesive layer remained was evaluated as “E”.
 <剥離後のガスバリア性(剥離後のバリア性)>
 剥離前のガスバリア性と同様にして、裏面保護フィルムと表面保護フィルムを剥離したガスバリアフィルムの水蒸気透過率[g/(m2・day)]を測定し、同様に評価した。
 実施例1~27、比較例1~9の構成を下記の表1に示し、結果を下記の表2~表4に示す。
<Gas barrier properties after peeling (barrier properties after peeling)>
Similarly to the gas barrier property before peeling, the water vapor permeability [g / (m 2 · day)] of the gas barrier film from which the back surface protective film and the surface protective film were peeled was measured and evaluated in the same manner.
The configurations of Examples 1 to 27 and Comparative Examples 1 to 9 are shown in Table 1 below, and the results are shown in Tables 2 to 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表1から表4に示されるように、本発明のガスバリアフィルムは、いずれも、裏面保護フィルム24および表面保護フィルム18の剥離前後で、9×10-5[g/(m2・day)]未満という優れたガスバリア性を有する。
 なお、実施例21は、ガスバリア支持体12と粘着層20との粘着力が、他の例よりも、若干、高いため、ガスバリア支持体12と粘着層20との間で剥離と貼着の繰り返しが起きにくくなり、これに起因して、無機層14が、若干、損傷して、ガスバリア性が若干低下したと考えられる。
 また、実施例22は、裏面保護フィルム24と粘着層20との粘着力が他の例よりも、若干、低いため、裏面保護フィルム24を剥離した後に、ガスバリア支持体12側に粘着層の残存が断続的に発生した。
As shown in Tables 1 to 4 above, the gas barrier film of the present invention is 9 × 10 −5 [g / (m 2 · day) before and after peeling of the back surface protective film 24 and the surface protective film 18. It has an excellent gas barrier property of less than
In Example 21, since the adhesive force between the gas barrier support 12 and the adhesive layer 20 is slightly higher than that of the other examples, repeated peeling and sticking between the gas barrier support 12 and the adhesive layer 20 are performed. It is considered that the inorganic layer 14 is slightly damaged due to this, and the gas barrier property is slightly decreased.
In Example 22, the adhesive strength between the back surface protective film 24 and the adhesive layer 20 is slightly lower than in the other examples. Therefore, after the back surface protective film 24 is peeled off, the adhesive layer remains on the gas barrier support 12 side. Occurred intermittently.
 これに対して、裏面保護フィルムおよび粘着層を設けない比較例1は、裏面保護フィルムが無いため、自己支持性が無く、すべり性も悪い。そのため、RtoRの搬送によって、クニックやシワが発生し、ガスバリア支持体の割れも発生した。その結果、ガスバリア性が低下した。
 また、表面保護フィルム18を有さない比較例2は、RtoRでの搬送の際に、無機層が直接、ガイドローラに触れてしまう。その結果、無機層が割れてガスバリア性が低下した。
 また、ガスバリア支持体と粘着層との粘着力が2N/25mmである比較例3は、粘着力が高すぎるため、ガスバリア支持体12と粘着層20との間で剥離と貼着の繰り返しが起きず、変形を抑制できない。その結果、シワが発生し、ガスバリア性が低下した。
 また、ガスバリア支持体と粘着層との粘着力が0.005N/25mmである比較例4は、粘着力が弱すぎるため、RtoRの搬送の際に剥離してしまい、これに起因して無機層に割れやヒビ等が生じて、ガスバリア性が低下した。
 また、表面保護フィルムと無機層との粘着力が0.2N/25mmである比較例5は、表面保護フィルムの粘着力が高すぎるため、表面保護フィルムを剥離した際に、表面保護フィルムの一部が無機層上に残存するのが観察された。また、粘着力が高すぎるため、剥離時に表面の無機膜が損傷した。そのため、ガスバリア性が低下した。
 また、表面保護フィルムと無機層との粘着力が0.001N/25mmである比較例6は、表面保護フィルムの粘着力が低すぎるため、RtoRの搬送の際に剥離してしまい、これに起因して無機層に割れやヒビ等が生じて、ガスバリア性が低下した。
 また、最下層および最上層を有機層とした比較例7は、最下層の有機層とガスバリア支持体との密着性が低く、適正な有機無機積層体を形成することができなかった。
 また、ガスバリア支持体の線膨張係数と裏面保護フィルムの線膨張係数との差が、95ppmである比較例8は、搬送中に裏面保護フィルムが熱で溶けて破断してしまい、これに起因して無機層に割れやヒビ等が生じて、ガスバリア性が低下した。
 また、表面保護フィルムの融点が260℃である比較例9は、表面保護フィルムと無機層との密着性が低く、搬送中に剥がれてしまい、無機層がガイドローラ等に接触して損傷して、ガスバリア性が低下した。
On the other hand, Comparative Example 1 in which the back surface protective film and the adhesive layer are not provided does not have the back surface protective film, and thus has no self-supporting property and poor sliding property. Therefore, nicks and wrinkles were generated by the transport of RtoR, and cracks in the gas barrier support occurred. As a result, the gas barrier property was lowered.
Further, in Comparative Example 2 that does not have the surface protective film 18, the inorganic layer directly touches the guide roller during conveyance with RtoR. As a result, the inorganic layer was cracked and the gas barrier property was lowered.
Further, in Comparative Example 3 in which the adhesive strength between the gas barrier support and the adhesive layer is 2 N / 25 mm, the adhesive strength is too high, so that peeling and sticking are repeated between the gas barrier support 12 and the adhesive layer 20. Therefore, deformation cannot be suppressed. As a result, wrinkles were generated and gas barrier properties were lowered.
Further, in Comparative Example 4 in which the adhesive strength between the gas barrier support and the adhesive layer is 0.005 N / 25 mm, the adhesive strength is too weak, so that it peels off during the transport of RtoR, resulting in the inorganic layer. Cracks, cracks, etc. occurred in the gas and the gas barrier properties were lowered.
In Comparative Example 5 in which the adhesive strength between the surface protective film and the inorganic layer is 0.2 N / 25 mm, the adhesive strength of the surface protective film is too high. Part was observed to remain on the inorganic layer. Moreover, since the adhesive force was too high, the surface inorganic film was damaged at the time of peeling. As a result, the gas barrier properties were lowered.
Further, in Comparative Example 6 in which the adhesive strength between the surface protective film and the inorganic layer is 0.001 N / 25 mm, the adhesive strength of the surface protective film is too low, so that it peels off during the transport of RtoR. As a result, cracks and cracks were generated in the inorganic layer, and the gas barrier properties were lowered.
Further, in Comparative Example 7 in which the lowermost layer and the uppermost layer were organic layers, the adhesion between the lowermost organic layer and the gas barrier support was low, and an appropriate organic / inorganic laminate could not be formed.
Further, in Comparative Example 8 in which the difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 95 ppm, the back surface protective film melts with heat and breaks during transportation. As a result, cracks and cracks were generated in the inorganic layer, and the gas barrier properties were lowered.
Further, in Comparative Example 9 where the melting point of the surface protective film is 260 ° C., the adhesion between the surface protective film and the inorganic layer is low, and the surface is peeled off during transportation, and the inorganic layer is damaged by contact with the guide roller or the like. , Gas barrier properties decreased.
 次に、実施例において、作製した直後のガスバリア性と所定の時間経過後のガスバリア性とを測定して、耐久性の評価を行った。 Next, in the examples, the gas barrier properties immediately after the production and the gas barrier properties after a lapse of a predetermined time were measured, and durability was evaluated.
 [実施例36~37]
 ガスバリア支持体12を厚さ50μm、水蒸気透過率100[g/(m2・day)]のCOPフィルム(JSR社製 ARTON)に変更した以外(実施例36);
 ガスバリア支持体12を厚さ50μm、水蒸気透過率600[g/(m2・day)]のTACフィルム(富士フイルム社製 富士タック)に変更した以外(実施例37);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 36 to 37]
Except for changing the gas barrier support 12 to a COP film (ARTON manufactured by JSR) having a thickness of 50 μm and a water vapor transmission rate of 100 [g / (m 2 · day)] (Example 36);
Except for changing the gas barrier support 12 to a TAC film having a thickness of 50 μm and a water vapor transmission rate of 600 [g / (m 2 · day)] (Fuji Film, Fuji Tac) (Example 37); Similarly, a gas barrier film 10a shown in FIG.
 [実施例38~39]
 裏面保護フィルム24を厚さ50μm、水蒸気透過率2[g/(m2・day)]のPENフィルム(帝人デュポンフィルム社製 テオネックス)に変更した以外(実施例38);
 裏面保護フィルム24を厚さ50μm、水蒸気透過率100[g/(m2・day)]のPCフィルム(帝人社製 S148)に変更した以外(実施例39);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 38 to 39]
Except for changing the back surface protective film 24 to a PEN film having a thickness of 50 μm and a water vapor transmission rate of 2 [g / (m 2 · day)] (Teonex manufactured by Teijin DuPont Films) (Example 38);
Except that the back surface protective film 24 was changed to a PC film (S148, manufactured by Teijin Limited) having a thickness of 50 μm and a water vapor transmission rate of 100 [g / (m 2 · day)] (Example 39); Thus, a gas barrier film 10a shown in FIG.
 [実施例40~41]
 表面保護フィルム18を厚さ50μm、水蒸気透過率10[g/(m2・day)]のPPフィルム(サンエー化研社製 SUNYTECT PAC-3)に変更した以外(実施例40);
 表面保護フィルム18を厚さ50μm、水蒸気透過率3[g/(m2・day)]のPET+PE複合フィルム(パナック社製 パナブリッド)に変更した以外(実施例41);は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Examples 40 to 41]
Except for changing the surface protective film 18 to a PP film (SUNYTECT PAC-3 manufactured by Sanei Kaken Co., Ltd.) having a thickness of 50 μm and a water vapor transmission rate of 10 [g / (m 2 · day)] (Example 40);
Example 41 is the same as Example 1 except that the surface protection film 18 is changed to a PET + PE composite film (Panabrid, manufactured by Panac) having a thickness of 50 μm and a water vapor transmission rate of 3 [g / (m 2 · day)]. Thus, a gas barrier film 10a shown in FIG.
 [実施例42]
 ガスバリア支持体12を厚さ50μm、水蒸気透過率100[g/(m2・day)]のCOPフィルム(JSR社製 ARTON)に変更し、裏面保護フィルム24を厚さ50μm、水蒸気透過率100[g/(m2・day)]のPCフィルム(帝人社製 S148)に変更した以外(実施例42)は、実施例1と同様にして、図1(A)に示すガスバリアフィルム10aを作製した。
[Example 42]
The gas barrier support 12 is changed to a COP film (ARTON manufactured by JSR) having a thickness of 50 μm and a water vapor transmission rate of 100 [g / (m 2 · day)], and the back protective film 24 is changed to a thickness of 50 μm and a water vapor transmission rate of 100 [ g / (m 2 · day)] A gas barrier film 10a shown in FIG. 1A was produced in the same manner as in Example 1 except that it was changed to a PC film (S148 manufactured by Teijin Ltd.) (Example 42). .
 [評価]
 <耐久性>
 このようにして作製した実施例1、36~42のガスバリアフィルムについて、作製直後の水蒸気透過率[g/(m2・day)]、および、温度85℃、湿度85%の環境下に1000時間放置後の水蒸気透過率[g/(m2・day)]を測定して耐久性を評価した。
 なお、いずれの場合も測定の直前に表面保護フィルム18および裏面保護フィルム24を剥離して、水蒸気透過率を測定した。すなわち、表面保護フィルム18および裏面保護フィルム24を剥離しない状態で温度85℃、湿度85%の環境下に1000時間放置した後に、表面保護フィルム18および裏面保護フィルム24を剥離して水蒸気透過率を測定した。
[Evaluation]
<Durability>
For the gas barrier films of Examples 1 and 36 to 42 produced in this manner, the water vapor transmission rate [g / (m 2 · day)] immediately after production, and the environment of 85 ° C. and 85% humidity for 1000 hours. Durability was evaluated by measuring water vapor permeability [g / (m 2 · day)] after standing.
In any case, the water vapor permeability was measured by peeling off the surface protective film 18 and the back surface protective film 24 immediately before the measurement. That is, after leaving the surface protective film 18 and the back surface protective film 24 in an environment of a temperature of 85 ° C. and a humidity of 85% for 1000 hours without peeling, the surface protective film 18 and the back surface protective film 24 are peeled to increase the water vapor transmission rate. It was measured.
 上記と同様に、作製したガスバリアフィルムの水蒸気透過率[g/(m2・day)]を、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって、測定した。なお、恒温恒湿処理の条件は、温度40℃、湿度90%RHとした。
 評価は、作製直後の水蒸気透過率[g/(m2・day)]に対し、1000時間放置後の水蒸気透過率[g/(m2・day)]の比が、
 85%以上のものを『A』;
 55%以上85%未満のものを『B』;
 30%以上55%未満のものを『C』;
 30%未満のものを『D』; と、評価した。
 結果を下記の表5に示す。
In the same manner as described above, the water vapor permeability [g / (m 2 · day)] of the produced gas barrier film was measured by a calcium corrosion method (a method described in JP-A-2005-283561). The conditions for the constant temperature and humidity treatment were a temperature of 40 ° C. and a humidity of 90% RH.
Evaluation is the ratio of water vapor permeability [g / (m 2 · day)] after leaving for 1000 hours to water vapor permeability [g / (m 2 · day)] immediately after production,
More than 85% "A";
“B” for 55% or more and less than 85%;
30% or more and less than 55% "C";
Those less than 30% were evaluated as “D”.
The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表5に示されるように、裏面保護フィルムの水蒸気透過率が0.1~10[g/(m2・day)]であり、表面保護フィルムの水蒸気透過率が0.5~25[g/(m2・day)]である実施例1、36~38、40、41は、1000時間放置後のガスバリア性が高く、耐久性に優れることがわかる。
 また、実施例1と実施例39との対比、ならびに、実施例36と実施例42との対比から、裏面保護フィルムの水蒸気透過率が25[g/(m2・day)]超の場合には、1000時間放置後のガスバリア性が、若干、低下し、耐久性が、若干、低下することがわかる。
 以上の結果より、本発明の効果は明らかである。
As shown in Table 5 above, the water vapor transmission rate of the back protective film is 0.1 to 10 [g / (m 2 · day)], and the water vapor transmission rate of the surface protective film is 0.5 to 25 [g. It can be seen that Examples 1, 36 to 38, 40, and 41, which are / (m 2 · day)], have high gas barrier properties after being left for 1000 hours and are excellent in durability.
Further, from the comparison between Example 1 and Example 39 and the comparison between Example 36 and Example 42, when the water vapor transmission rate of the back surface protective film exceeds 25 [g / (m 2 · day)]. It can be seen that the gas barrier property after leaving for 1000 hours is slightly lowered and the durability is slightly lowered.
From the above results, the effects of the present invention are clear.
 有機ELデバイスの保護フィルム等として、好適に利用可能である。 It can be suitably used as a protective film for organic EL devices.
 10a、10b、100 ガスバリアフィルム
 12 ガスバリア支持体
 14 無機層
 16 有機層
 18 表面保護フィルム
 20 粘着層
 24 裏面保護フィルム
 26 積層体
 28 有機無機積層体
 30 有機成膜装置
 32 無機成膜装置
 36 塗布手段
 38 乾燥手段
 40 光照射手段
 42、64、86 回転軸
 44、46、92 巻取り軸
 48、50 搬送ローラ対
 56 供給室
 58 成膜室
 60 巻取り室
 61、93 材料ロール
 68、84a、84b、90 ガイドローラ
 70、74、76 真空排気手段
 72、75 隔壁
 72a、75a スリット
 80 ドラム
 82 成膜手段
 87 フィルムロール
10a, 10b, 100 Gas barrier film 12 Gas barrier support 14 Inorganic layer 16 Organic layer 18 Surface protective film 20 Adhesive layer 24 Back surface protective film 26 Laminated body 28 Organic / inorganic laminated body 30 Organic film forming apparatus 32 Inorganic film forming apparatus 36 Coating means 38 Drying means 40 Light irradiation means 42, 64, 86 Rotating shaft 44, 46, 92 Winding shaft 48, 50 Conveying roller pair 56 Supply chamber 58 Film forming chamber 60 Winding chamber 61, 93 Material roll 68, 84a, 84b, 90 Guide rollers 70, 74, 76 Vacuum exhaust means 72, 75 Partitions 72a, 75a Slit 80 Drum 82 Film forming means 87 Film roll

Claims (13)

  1.  ガスバリア支持体と、無機層および有機層が交互に積層されてなり前記ガスバリア支持体上に形成される有機無機積層体と、前記ガスバリア支持体の前記有機無機積層体の形成面とは逆面に貼着される粘着層と、前記粘着層に貼着される裏面保護フィルムと、前記有機無機積層体上に積層される表面保護フィルムとを有し、
     前記ガスバリア支持体のリタデーション値が、300nm以下であり、
     前記有機無機積層体は、1以上の有機層と2以上の無機層とを有し、前記ガスバリア支持体側である最下層および表面保護フィルム側である最上層は、無機層であり、
     前記ガスバリア支持体の線膨張係数と前記裏面保護フィルムの線膨張係数との差が、0~80ppm/℃であり、
     前記表面保護フィルムの融点が、80~170℃であり、
     前記ガスバリア支持体と前記粘着層との25℃における粘着力が、0.01N/25mm~0.15N/25mmであり、
     前記表面保護フィルムと前記有機無機積層体の最上層の無機層との25℃における粘着力が、0.02N/25mm~0.06N/25mmであることを特徴とする機能性フィルム。
    A gas barrier support, an organic / inorganic laminate formed by alternately laminating inorganic layers and organic layers and formed on the gas barrier support, and a surface of the gas barrier support on which the organic / inorganic laminate is formed are opposite to each other. Having an adhesive layer to be attached, a back surface protective film to be attached to the adhesive layer, and a surface protective film to be laminated on the organic-inorganic laminate;
    The retardation value of the gas barrier support is 300 nm or less,
    The organic-inorganic laminate has one or more organic layers and two or more inorganic layers, and the bottom layer on the gas barrier support side and the top layer on the surface protective film side are inorganic layers,
    The difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 0 to 80 ppm / ° C.
    The melting point of the surface protective film is 80 to 170 ° C .;
    The adhesive strength of the gas barrier support and the adhesive layer at 25 ° C. is 0.01 N / 25 mm to 0.15 N / 25 mm,
    A functional film, wherein an adhesive force at 25 ° C. between the surface protective film and the inorganic layer of the uppermost layer of the organic-inorganic laminate is 0.02 N / 25 mm to 0.06 N / 25 mm.
  2.  前記ガスバリア支持体と前記有機無機積層体の最下層の無機層との間に第1の混合層を有し、
     前記第1の混合層の厚みが1nm~20nmである請求項1に記載の機能性フィルム。
    Having a first mixed layer between the gas barrier support and the lowermost inorganic layer of the organic-inorganic laminate,
    The functional film according to claim 1, wherein the thickness of the first mixed layer is 1 nm to 20 nm.
  3.  前記有機無機積層体において、前記有機層とこの有機層上に積層される無機層との間に第2の混合層を有し、
     前記第2の混合層の厚みが1nm~20nmである請求項1または2に記載の機能性フィルム。
    In the organic-inorganic laminate, a second mixed layer is provided between the organic layer and the inorganic layer laminated on the organic layer,
    The functional film according to claim 1, wherein the thickness of the second mixed layer is 1 nm to 20 nm.
  4.  前記粘着層と前記裏面保護フィルムとの25℃における粘着力が、0.05N/25mm~0.20N/25mmである請求項1~3のいずれか1項に記載の機能性フィルム。 The functional film according to any one of claims 1 to 3, wherein an adhesive force of the adhesive layer and the back surface protective film at 25 ° C is 0.05 N / 25 mm to 0.20 N / 25 mm.
  5.  前記ガスバリア支持体の厚みが、20μm~120μmであり、
     前記有機無機積層体の1つの前記有機層の厚みが、0.5μm~5μmであり、1つの前記無機層の厚みが、10nm~200nmであり、
     前記粘着層の厚みが、15μm~250μmであり、
     前記裏面保護フィルムの厚みが、12μm~100μmであり、
     前記表面保護フィルムの厚みが、20μm~100μmである請求項1~4のいずれか1項に記載の機能性フィルム。
    The gas barrier support has a thickness of 20 μm to 120 μm,
    The thickness of one organic layer of the organic-inorganic laminate is 0.5 μm to 5 μm, and the thickness of one inorganic layer is 10 nm to 200 nm,
    The adhesive layer has a thickness of 15 μm to 250 μm;
    The back protective film has a thickness of 12 μm to 100 μm;
    The functional film according to any one of claims 1 to 4, wherein the surface protective film has a thickness of 20 袖 m to 100 袖 m.
  6.  前記ガスバリア支持体のガラス転移温度が、130℃以上であり、
     前記裏面保護フィルムのガラス転移温度が、70℃以上である請求項1~5のいずれか1項に記載の機能性フィルム。
    The glass transition temperature of the gas barrier support is 130 ° C. or higher,
    The functional film according to any one of claims 1 to 5, wherein the back surface protective film has a glass transition temperature of 70 ° C or higher.
  7.  前記ガスバリア支持体と前記粘着層との100℃における粘着力が、0.03N/25mm~0.14N/25mm、200℃における粘着力が、0.04N/25mm~0.13N/25mmであり、
     前記粘着層と前記裏面保護フィルムとの100℃における粘着力が、0.07N/25mm~0.19N/25mm、200℃における粘着力が、0.08N/25mm~0.18N/25mmである請求項1~6のいずれか1項に記載の機能性フィルム。
    The gas barrier support and the adhesive layer have an adhesive strength at 100 ° C. of 0.03 N / 25 mm to 0.14 N / 25 mm, and an adhesive strength at 200 ° C. of 0.04 N / 25 mm to 0.13 N / 25 mm,
    The adhesive strength between the adhesive layer and the back surface protective film at 100 ° C. is 0.07 N / 25 mm to 0.19 N / 25 mm, and the adhesive strength at 200 ° C. is 0.08 N / 25 mm to 0.18 N / 25 mm. Item 7. The functional film according to any one of Items 1 to 6.
  8.  前記裏面保護フィルムの摩擦係数が、0.6以下である請求項1~7のいずれか1項に記載の機能性フィルム。 The functional film according to any one of claims 1 to 7, wherein a friction coefficient of the back surface protective film is 0.6 or less.
  9.  前記表面保護フィルムのヤング率は、前記ガスバリア支持体のヤング率、および、前記裏面保護フィルムのヤング率の1/4以下である請求項1~8のいずれか1項に記載の機能性フィルム。 The functional film according to any one of claims 1 to 8, wherein the Young's modulus of the surface protective film is ¼ or less of the Young's modulus of the gas barrier support and the Young's modulus of the back surface protective film.
  10.  前記粘着層は、アクリル酸アルキルモノマーのアルキル基部分の炭素数が3~10のものを含む粘着材料からなり、温度25℃~150℃、UV照射量100mJ/cm2~1000mJ/cm2の条件で架橋した際の、架橋による体積収縮率が3%以下である請求項1~9のいずれか1項に記載の機能性フィルム。 The pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive material containing an alkyl group part of an alkyl acrylate monomer having 3 to 10 carbon atoms, and has a temperature of 25 ° C. to 150 ° C. and a UV irradiation amount of 100 mJ / cm 2 to 1000 mJ / cm 2 . The functional film according to any one of Claims 1 to 9, wherein the volume shrinkage due to crosslinking is 3% or less when crosslinked with.
  11.  ガスバリア支持体と、前記ガスバリア支持体に貼着される粘着層と、前記粘着層に貼着される裏面保護フィルムとを有する長尺な積層体、ならびに、前記長尺な積層体のガスバリア支持体上に交互に積層される無機層および有機層を有し、前記裏面保護フィルムとは反対側の表面が有機層である複合体を作製する工程と、
     前記複合体を長手方向に搬送しつつ、前記表面の有機層上に気相成長法により最上層の無機層を形成する成膜工程と、
     前記成膜工程で形成された前記最上層の無機層上に、表面保護フィルムを貼り付ける表面保護フィルム貼付工程とを有し、
     前記成膜工程と前記表面保護フィルム貼付工程とを、同じ圧力、温度の環境下で連続的に行うものであり、
     前記ガスバリア支持体のリタデーション値が、300nm以下であり、
     前記ガスバリア支持体の線膨張係数と前記裏面保護フィルムの線膨張係数との差が、0~80ppm/℃であり、
     前記表面保護フィルムの融点が、80~170℃であり、
     前記ガスバリア支持体と前記粘着層との25℃における粘着力が、0.01N/25mm~0.15N/25mmであることを特徴とする機能性フィルムの製造方法。
    A long laminate having a gas barrier support, an adhesive layer attached to the gas barrier support, a back surface protective film attached to the adhesive layer, and a gas barrier support of the elongated laminate A step of producing a composite having an inorganic layer and an organic layer alternately laminated on the surface, and the surface opposite to the back surface protective film is an organic layer;
    A film forming step of forming an uppermost inorganic layer by vapor phase growth on the organic layer on the surface while transporting the composite in the longitudinal direction;
    A surface protective film attaching step for attaching a surface protective film on the uppermost inorganic layer formed in the film forming step;
    The film forming step and the surface protective film attaching step are continuously performed under the same pressure and temperature environment,
    The retardation value of the gas barrier support is 300 nm or less,
    The difference between the coefficient of linear expansion of the gas barrier support and the coefficient of linear expansion of the back surface protective film is 0 to 80 ppm / ° C.
    The melting point of the surface protective film is 80 to 170 ° C .;
    A method for producing a functional film, wherein an adhesive force of the gas barrier support and the adhesive layer at 25 ° C. is 0.01 N / 25 mm to 0.15 N / 25 mm.
  12.  前記複合体を作製する工程は、前記無機層が積層された前記長尺な積層体の、前記無機層上に有機層となる組成物を塗布する塗布工程と、
     塗布した前記組成物を乾燥させる乾燥工程とを有し、
     前記乾燥工程において、前記複合体の温度が、70℃以上となる請求項11に記載の機能性フィルムの製造方法。
    The step of producing the composite includes an application step of applying a composition to be an organic layer on the inorganic layer of the long laminate in which the inorganic layer is laminated,
    A drying step of drying the applied composition,
    The method for producing a functional film according to claim 11, wherein the temperature of the composite is 70 ° C. or higher in the drying step.
  13.  前記複合体を作製する工程は、前記無機層が積層された前記長尺な積層体の、前記無機層上に有機層となる組成物を塗布する塗布工程と、
     塗布した前記組成物を乾燥させる乾燥工程と、
     乾燥した前記組成物に紫外線の照射を行って硬化させて前記有機層を形成する硬化工程とを有し、
     前記硬化工程において、前記複合体を温度30℃以上となるように前記裏面保護フィルム側から加熱しつつ、紫外線の照射を行う請求項11または12に記載の機能性フィルムの製造方法。
    The step of producing the composite includes an application step of applying a composition to be an organic layer on the inorganic layer of the long laminate in which the inorganic layer is laminated,
    A drying step of drying the applied composition;
    A curing step of curing the dried composition by irradiation with ultraviolet rays to form the organic layer,
    The method for producing a functional film according to claim 11 or 12, wherein in the curing step, the composite is irradiated with ultraviolet rays while being heated from the back surface protective film side so that the temperature becomes 30 ° C or higher.
PCT/JP2015/053618 2014-03-27 2015-02-10 Functional film and method for producing functional film WO2015146323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014066991A JP6042840B2 (en) 2014-03-27 2014-03-27 Functional film and method for producing functional film
JP2014-066991 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146323A1 true WO2015146323A1 (en) 2015-10-01

Family

ID=54194862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053618 WO2015146323A1 (en) 2014-03-27 2015-02-10 Functional film and method for producing functional film

Country Status (2)

Country Link
JP (1) JP6042840B2 (en)
WO (1) WO2015146323A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181004A1 (en) * 2017-03-28 2018-10-04 リンテック株式会社 Gas barrier laminate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469606B2 (en) * 2016-03-17 2019-02-13 富士フイルム株式会社 Gas barrier film
EP3551450B1 (en) * 2016-12-09 2021-11-10 Bemis Company, Inc. Packaging films with alternating individual layers of glass and plastic
WO2018110272A1 (en) * 2016-12-15 2018-06-21 東レフィルム加工株式会社 Gas barrier film and organic el device
JP2020121408A (en) * 2017-05-12 2020-08-13 富士フイルム株式会社 Gas barrier film, and method for producing gas barrier film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297319A (en) * 2001-03-29 2002-10-11 Gunze Ltd Touch panel and display device
JP2006001156A (en) * 2004-06-18 2006-01-05 Keiwa Inc High barrier laminated sheet
JP2011084776A (en) * 2009-10-15 2011-04-28 Fujifilm Corp Functional film and method for producing the same
JP2013203050A (en) * 2012-03-29 2013-10-07 Fujifilm Corp Gas barrier film and forming method of gas barrier film
WO2014027521A1 (en) * 2012-08-17 2014-02-20 富士フイルム株式会社 Functional film and organic el device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297319A (en) * 2001-03-29 2002-10-11 Gunze Ltd Touch panel and display device
JP2006001156A (en) * 2004-06-18 2006-01-05 Keiwa Inc High barrier laminated sheet
JP2011084776A (en) * 2009-10-15 2011-04-28 Fujifilm Corp Functional film and method for producing the same
JP2013203050A (en) * 2012-03-29 2013-10-07 Fujifilm Corp Gas barrier film and forming method of gas barrier film
WO2014027521A1 (en) * 2012-08-17 2014-02-20 富士フイルム株式会社 Functional film and organic el device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181004A1 (en) * 2017-03-28 2018-10-04 リンテック株式会社 Gas barrier laminate
US11512231B2 (en) 2017-03-28 2022-11-29 Lintec Corporation Gas barrier laminate

Also Published As

Publication number Publication date
JP2015189047A (en) 2015-11-02
JP6042840B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6527053B2 (en) Gas barrier film and transfer method of gas barrier film
JP5795825B2 (en) Functional film and organic EL device
US10164210B2 (en) Functional film
WO2015146323A1 (en) Functional film and method for producing functional film
JP5713936B2 (en) Method for producing functional film
JP6401680B2 (en) Method for producing gas barrier film and method for transferring gas barrier film
JP5943893B2 (en) Functional film and method for producing functional film
JP6427459B2 (en) Functional film and method for producing functional film
JPWO2019151495A1 (en) Gas barrier film and its manufacturing method
JP5944875B2 (en) Functional film and method for producing functional film
JP2016010889A (en) Gas barrier film and production method of functional film
WO2015198701A1 (en) Method for producing functional film
JP6683836B2 (en) Gas barrier film and method for producing gas barrier film
JP6262108B2 (en) Method for producing functional film
JP6924893B2 (en) Manufacturing method of gas barrier film, optical element and gas barrier film
JP6603811B2 (en) Gas barrier film and method for producing gas barrier film
JP7132431B2 (en) Functional film and method for producing functional film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768653

Country of ref document: EP

Kind code of ref document: A1