WO2015198701A1 - Method for producing functional film - Google Patents

Method for producing functional film Download PDF

Info

Publication number
WO2015198701A1
WO2015198701A1 PCT/JP2015/062137 JP2015062137W WO2015198701A1 WO 2015198701 A1 WO2015198701 A1 WO 2015198701A1 JP 2015062137 W JP2015062137 W JP 2015062137W WO 2015198701 A1 WO2015198701 A1 WO 2015198701A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inorganic layer
layer
substrate
inorganic
Prior art date
Application number
PCT/JP2015/062137
Other languages
French (fr)
Japanese (ja)
Inventor
望月 佳彦
藤縄 淳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016529138A priority Critical patent/JPWO2015198701A1/en
Publication of WO2015198701A1 publication Critical patent/WO2015198701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a method for producing a functional film having an inorganic layer.
  • Gas barrier films such as optical elements, display devices such as liquid crystal displays and organic EL displays, various semiconductor devices, parts and components that require moisture resistance in various devices such as solar cells, and packaging materials for packaging food and electronic components
  • the gas barrier film generally has a configuration in which a plastic film such as a polyethylene terephthalate (PET) film is used as a support and a gas barrier layer that exhibits gas barrier properties is formed thereon.
  • PET polyethylene terephthalate
  • the layer which consists of various inorganic compounds, such as a silicon nitride, silicon oxide, aluminum oxide is known, for example.
  • a vacuum film forming method such as sputtering or plasma CVD (chemical vapor deposition) is used.
  • the support has a laminated structure in which an organic layer made of an organic compound and an inorganic layer made of an inorganic compound are alternately laminated.
  • Organic / inorganic laminated gas barrier films (hereinafter also referred to as laminated gas barrier films) are known.
  • laminated gas barrier films an inorganic layer is formed on an organic layer serving as a base, whereby the formation surface of the inorganic layer is smoothed by the organic layer, and the inorganic layer is formed on the organic layer having good smoothness. Form.
  • the uniform inorganic layer without a crack, a crack, etc. is formed, and the outstanding gas barrier performance is acquired.
  • more excellent gas barrier performance can be obtained by repeatedly including a plurality of laminated structures of the organic layer and the inorganic layer.
  • this substrate is sent out from a substrate roll formed by winding a long substrate into a roll shape and conveyed in the longitudinal direction.
  • An apparatus for forming a film by so-called roll-to-roll (hereinafter also referred to as RtoR) is known, in which an inorganic layer is formed while the formed substrate is wound into a roll.
  • RtoR roll-to-roll
  • an organic layer and an inorganic layer are continuously formed while transporting a long substrate. Therefore, a gas barrier film can be produced with very high productivity.
  • an inorganic layer formed on the surface of the substrate due to conveyance by a pair of conveyance rollers, contact with other members, etc. after forming the inorganic layer on the surface of the substrate If the film is damaged, there is a possibility that a functional film having the intended performance cannot be manufactured.
  • the inorganic layer formed on the substrate and the back surface of the substrate are in sliding contact with each other when the substrate is wound after the inorganic layer is formed.
  • a protective film is attached to the surface of the inorganic layer to protect the inorganic layer. That is, after film formation of the inorganic layer, a protective film is attached to the surface of the inorganic layer, and the substrate is transported to the site where the next treatment is performed with the substrate and protective film having the inorganic layer formed on the surface.
  • the substrate with the protective film attached is wound up into a roll once and loaded into a substrate processing apparatus such as a film forming apparatus or a surface processing apparatus for performing the next processing and immediately before performing the next processing.
  • the protective film is peeled off and the substrate surface is treated.
  • Patent Document 1 when a laminated gas barrier film is manufactured by RtoR, an inorganic layer on the surface is prevented from being damaged by contact with a guide roller or the like after the formation of the inorganic layer. It describes that a protective film is stuck on the surface of an inorganic layer immediately after forming a film, and this protective film is peeled off immediately before forming an organic layer to protect the inorganic layer.
  • a peelable protective film is attached to the inorganic layer. It is possible to provide.
  • the gas barrier film when used for a top emission type organic EL device, the gas barrier film is laminated on the passivation film having a gas barrier property covering the organic EL material as the light emitting element by using an adhesive. By doing so, deterioration of the organic EL material can be suitably prevented.
  • a material for forming the passivation film inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride that exhibit gas barrier properties are used. Therefore, from the viewpoint of adhesiveness, in a gas barrier film used for an organic EL device or the like, the inorganic layer and the passivation film are opposed to each other with the uppermost layer being an inorganic layer, and the inorganic materials are laminated via an adhesive.
  • the outermost layer of the gas barrier film is an inorganic layer, the inorganic layer is easily damaged, and the target barrier performance may not be obtained. Therefore, when supplying such a gas barrier film, in order to prevent damage to the inorganic layer, it is necessary to supply the protective film on the outermost inorganic layer.
  • the adhesion between the inorganic layer and the layer formed on the inorganic layer is reduced when another layer such as an organic layer or an adhesive layer is formed on the inorganic layer after the protective film on the inorganic layer is peeled off.
  • another layer such as an organic layer or an adhesive layer is formed on the inorganic layer after the protective film on the inorganic layer is peeled off.
  • the components of the protective film remain on the surface of the inorganic layer after the protective film is peeled off, and are formed on the inorganic layer and the inorganic layer due to the presence of the transferred component. It was found that the adhesion with the layer was inhibited. Further, it has been found that such a problem occurs when a denser inorganic layer is formed by plasma CVD, or when the conveyance speed is improved to improve manufacturing efficiency.
  • a general protective film is designed so that it can be easily peeled off by adhering with an intermolecular force acting between the adhesive layer of the protective film and the counterpart member.
  • a dense inorganic layer is formed in a vacuum by plasma CVD that can form a dense inorganic layer, and a protective film is applied immediately after that, It was found that the components of the protective film were transferred to the surface of the inorganic layer after peeling off the protective film.
  • the surface activity of the inorganic layer is very high, and there are many unbonded hands, so it is chemically bonded to the components of the protective film. It is estimated that the phenomenon will occur.
  • An object of the present invention is to solve such problems of the prior art, and it is possible to prevent a decrease in adhesion between the inorganic layer after the protective film is peeled off and the layer formed on the inorganic layer. It is providing the manufacturing method of a functional film.
  • the present inventor has obtained a substrate preparation step of preparing a substrate having a surface made of an organic material, and a carbon composition ratio of 5% on the substrate by plasma CVD in a vacuum.
  • a film forming step for forming the following inorganic layer, an inactivation step for deactivating the dangling bonds of the formed inorganic layer, and a protective film made of a plastic film after the deactivation step on the inorganic layer In addition, it has been found that by having a sticking step for sticking in a peelable manner, it is possible to prevent a decrease in adhesion between the inorganic layer after peeling the protective film and the layer formed on the inorganic layer, The present invention has been completed. That is, this invention provides the manufacturing method of the functional film of the following structures.
  • a substrate preparation step of preparing a substrate having a surface made of an organic material A film forming step of forming an inorganic layer having a carbon composition ratio of 5% or less on the substrate by plasma CVD in vacuum; An inactivation step for inactivating dangling bonds of the deposited inorganic layer;
  • the manufacturing method of a functional film which has the sticking process of sticking the protective film which consists of a plastic film on an inorganic layer so that peeling is possible after an inactivation process.
  • the substrate preparation step prepares a substrate roll formed by winding a long substrate, The function according to any one of (1) to (6), wherein a long substrate is fed from a substrate roll and conveyed in the longitudinal direction of the substrate while performing a film forming step, an inactivation step, and a pasting step For producing a conductive film.
  • the manufacturing method of the functional film which can prevent the fall of the adhesiveness of the inorganic layer after peeling a protective film and the layer formed on this inorganic layer can be provided. .
  • FIG. 1 (A) is a film-forming apparatus of an inorganic layer
  • FIG.1 (B) is film-forming of an organic layer.
  • Device It is a figure which shows notionally an example of the stepped roller of the film-forming apparatus shown to FIG. 1 (A).
  • FIG. 4 (A) to 4 (C) are cross-sectional views showing an enlarged part of the functional film for explaining the method for producing the functional film of the present invention.
  • FIG. 5A to FIG. 5C are cross-sectional views showing an enlarged part of the functional film for explaining the method for producing the functional film of the present invention.
  • the production method of the present invention includes: A substrate preparation step of preparing a substrate having a surface made of an organic material; A film forming process for forming an inorganic layer having a carbon composition ratio of 5% or less on a substrate by plasma CVD in a vacuum; An inactivation step of inactivating dangling bonds of the deposited inorganic layer, and After the inactivation step, there is a sticking step of sticking a protective film made of a plastic film on the inorganic layer in a peelable manner.
  • the production method of the present invention has, as a preferred aspect, After the sticking step, a peeling step for peeling the protective film, An organic layer forming step of forming an organic layer on the surface of the inorganic layer on the side where the protective film is peeled off.
  • a peeling step for peeling the protective film An organic layer forming step of forming an organic layer on the surface of the inorganic layer on the side where the protective film is peeled off.
  • FIG. 1 (A) and FIG. 1 (B) are diagrams conceptually showing an example of a production apparatus for carrying out the functional film production method of the present invention.
  • 4 (A) to 4 (C) and FIGS. 5 (A) to 5 (C) are enlarged views of a part of the functional film for explaining the method for producing the functional film of the present invention.
  • FIG. In the following description, an example in which the method for producing a functional film is used for the method for producing a gas barrier film will be described.
  • the manufacturing method of the functional film of this invention is not limited to the manufacturing method of a gas barrier film. That is, this invention can be utilized as a manufacturing method of well-known functional films, such as various optical films, such as a filter which permeate
  • the functional film having an inorganic layer produced by the method for producing a functional film of the present invention it is the inorganic layer that mainly exhibits the intended function. Therefore, what is necessary is just to comprise the manufacturing method of the functional film of this invention according to the inorganic layer which expresses the target functions, such as the light transmittance of a specific wavelength.
  • the gas barrier film greatly affects the barrier performance when the inorganic layer is in contact with other members and cracks. Therefore, in order to protect the formed inorganic layer, it is necessary to stick a protective film with the first guide roller after the film formation.
  • a protective film with the first guide roller after the film formation.
  • the present invention as will be described later, even when a high-density inorganic layer is formed in vacuum by plasma CVD capable of forming a dense film and then a protective film is adhered, It can prevent that the component of a protective film transfers to the surface of the inorganic layer after peeling a film. Therefore, the present invention is more suitably used for a gas barrier film that is formed at a high density and has a high gas barrier property.
  • 1A and 1B are respectively an inorganic film forming apparatus 32 that performs a film forming process, an inactivation process, and an attaching process, and an organic that performs a peeling process and an organic layer forming process.
  • This is a film forming apparatus 30.
  • Both the inorganic film forming apparatus 32 shown in FIG. 1A and the organic film forming apparatus 30 shown in FIG. 1B send out the forming material from a roll formed by winding a long forming material,
  • the above-mentioned RtoR Roll to Roll
  • Such RtoR can produce an efficient functional film with high productivity.
  • the manufacturing apparatus shown in FIG. 1 (A) and FIG. 1 (B) has an inorganic layer 14 and an organic layer 16 alternately on the surface of a long substrate 12 as shown in FIG. 4 (C).
  • the formed gas barrier film 10c and the like are manufactured.
  • the film forming material Za is the long substrate 12 and one or more layers formed on the surface of the substrate 12, and the surface is organic. It is the material of the layer 16.
  • the film forming material Zb is formed by forming one or more layers on the surface of the substrate 12, and the surface is the inorganic layer 14, and the inorganic layer on this surface.
  • 14 is a material in which a protective film 18 is attached to 14.
  • the production method of the present invention is not limited to the production of a functional film such as a gas barrier film by RtoR using a long substrate, but a so-called single wafer type composition using a cut sheet substrate.
  • a functional film may be produced using a membrane method.
  • a plurality of organic layers 16 and / or inorganic layers 14 may be alternately formed. In that case, the formation method may be the same or different in each layer.
  • the substrate 12 is not particularly limited as long as the surface is made of various organic materials such as a polymer material and a resin material. Various materials can be used for the substrate 12 as long as the surface is formed of an organic material and an inorganic layer can be formed by plasma CVD. Specifically, the substrate 12 made of a polymer material such as polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene, polypropylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, polymethacrylate, It is exemplified as a suitable example. In the present invention, the substrate 12 is a film-like object such as a long film or a cut sheet-like film.
  • PET polyethylene terephthalate
  • polyethylene naphthalate polyethylene
  • polypropylene polystyrene
  • polyamide polyvinyl chloride
  • polycarbonate polyacrylonitrile
  • polyimide polyacrylate
  • the substrate 12 has a plastic film, an article made of an organic material, a metal film or a glass plate, various metal articles as a main body, and a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, An organic layer made of an organic material for obtaining various functions, such as a light shielding layer, a planarizing layer, a buffer layer, and a stress relaxation layer, may be formed.
  • these functional layers are not limited to one layer, and a substrate in which a plurality of functional layers are formed may be used as the substrate 12.
  • An inorganic film forming apparatus 32 shown in FIG. 1A is an apparatus for forming the inorganic layer 14 by plasma CVD as an example of a manufacturing apparatus that performs the method for manufacturing a functional film of the present invention.
  • the inorganic film forming apparatus 32 is an apparatus for forming the inorganic layer 14 on the surface of the film formation material Za by a vapor deposition method.
  • the inorganic film forming apparatus 32 includes a vacuum chamber 52 and an unwinding chamber 54 formed in the vacuum chamber 52.
  • the film forming chamber 56 and the drum 80 are included.
  • the inorganic film forming apparatus 32 conveys a long material to be formed such as a conveying roller pair, a guide member that regulates the position of the film forming material Za in the width direction, and various sensors.
  • a guide member that regulates the position of the film forming material Za in the width direction
  • various sensors such as a laser scanner, a laser scanner, a laser scanner, a laser scanner, and various sensors.
  • various members provided in a known apparatus that performs film formation by a vapor deposition method may be included.
  • the inorganic film forming apparatus 32 that uses RtoR synchronizes the feeding of the film forming material Za from the material roll 61 and the winding of the film forming material Za with the inorganic layer formed on the winding shaft 92. Then, the inorganic layer 14 is formed in the film formation chamber 56 while the long film formation material Za is conveyed in the longitudinal direction while being wound around the drum 80. After a predetermined time has elapsed, in the unwinding chamber 54, a protective film is attached to the surface of the inorganic layer 14, wound around the winding shaft 92, and wound into a roll.
  • the drum 80 is a cylindrical member that rotates in the clockwise direction in the drawing around a rotation axis that passes through the center of the drum 80 and is parallel to a direction perpendicular to the paper surface.
  • the drum 80 conveys in a longitudinal direction a film forming material Za guided by a guide roller 84a of an unwinding chamber 54, which will be described later, around a predetermined area on the peripheral surface and held in a predetermined position. Then, after being transferred into the film forming chamber 56, it is sent to the stepped roller 84 b in the unwinding chamber 54.
  • the drum 80 also functions as a counter electrode of a film forming electrode 82 of the film forming chamber 56 described later, and is grounded. That is, the drum 80 and the film forming electrode 82 constitute an electrode pair.
  • the drum 80 may be connected to a bias power source for applying a bias voltage to the drum 80.
  • a bias power source for applying a bias voltage to the drum 80.
  • the ground and the bias power supply may be connected to be switchable.
  • the bias power source all known power sources such as a high frequency power source and a pulse power source for applying a bias voltage, which are used in various film forming apparatuses, can be used.
  • the drum 80 may include a temperature adjusting means, and the film forming material Za may be cooled, for example, during the film formation of the inorganic layer 14.
  • the unwinding chamber 54 is a region in the vacuum chamber 52 other than the film forming chamber 56 described later. That is, the unwind chamber 54 is formed by the inner wall surface of the vacuum chamber 52, the peripheral surface of the drum 80, and the partition walls 60a and 60b extending from the inner wall surface of the vacuum chamber 52 to the vicinity of the peripheral surface of the drum 80. Space.
  • the leading ends of the partition walls 60a and 60b on the drum 80 side are close to the peripheral surface of the drum 80 to a position where they do not come into contact with the film forming material Za to be conveyed, and the unwind chamber 54, the film forming chamber 56, Are separated in a substantially airtight manner.
  • Such an unwinding chamber 54 includes the winding shaft 92, the guide rollers 68, 84a, 90a and 90b, the stepped roller 84b, the rotating shaft 64, the rotating shaft 86, and the vacuum exhaust means 70. Have.
  • the rotating shaft 64 is loaded with a material roll 61 around which a long film-forming material Za is wound.
  • the guide rollers 68 and 84a are ordinary guide rollers that guide the film forming material Za on the upstream side of the drum 80 in the transport path of the film forming material Za.
  • the stepped roller 84 b is a normal stepped roller that guides the film forming material Za on the downstream side of the drum 80.
  • the guide rollers 90a and 90b are ordinary guide rollers that guide the film forming material Za on the downstream side of the stepped roller 84b.
  • the take-up shaft 92 is a known elongate take-up shaft for taking up the film-forming material Za having the inorganic layer formed thereon.
  • the guide roller 90b also functions as a sticking roller for sticking the protective film 18 on the deposited inorganic layer 14. In the following description, the guide roller 90b is also referred to as a sticking roller 90b. The sticking roller 90b will be described in detail later.
  • the stepped roller 84 b is a so-called stepped roller in which the diameter of the end portion is larger than the diameter of the other region.
  • the stepped roller 84b conveys the film forming material Za while guiding it without contacting the inorganic layer 14 formed on the film forming material Za.
  • a stepped roller 84b is disposed between the drum 80 and the adhering roller 90b, and the film forming material Za separated from the drum 80 is conveyed by using the stepped roller 84b, whereby the adhering from the film forming chamber 56 is performed.
  • the conveying distance to the landing roller 90b can be increased. That is, the time from the formation of the inorganic layer 14 to the attachment of the protective film 18 can be increased.
  • reducing the activity of the surface of the inorganic layer 14 when the protective film 18 is adhered by setting the time from the formation of the inorganic layer 14 to the adhesion of the protective film 18 to 15 seconds or more. Can do. Therefore, since the protective film 18 is attached to the inorganic layer 14 having a low surface activity, that is, the inorganic layer 14 having a reduced number of dangling bonds on the surface, the inorganic layer and the components of the protective film are chemically treated. Binding can be suppressed. Thus, the process of leaving a time interval of 15 seconds or more from the film formation to the attachment of the protective film is an inactivation process in the present invention.
  • the time from film formation to sticking in the inactivation step is preferably 25 seconds or more. Thereby, the activity of the inorganic layer 14 surface can be reduced more suitably.
  • one stepped roller 84b is disposed between the drum 80 and the adhering roller 90b.
  • the present invention is not limited to this. Accordingly, two or more stepped rollers may be arranged.
  • a stepped roller may be disposed as a guide roller that contacts the surface on which the inorganic layer 14 of the film formation material Za is formed, and the surface on the side on which the inorganic layer 14 of the film formation material Za is formed.
  • a normal guide roller may be used as the guide roller in contact with the opposite surface.
  • the time from the formation of the inorganic layer 14 to the attachment of the protective film 18 is set to 15 seconds or more, but is not limited thereto. As long as the time from non-deposition to sticking can be set to 15 seconds or more, a configuration without using a stepped roller may be used.
  • a material roll 61 formed by winding a long film-forming material Za in a roll shape is mounted on a rotating shaft 64.
  • the film forming material Za passes through the guide rollers 68 and 84a, the drum 80, the stepped roller 84b, the guide roller 90a, and the sticking roller 90b.
  • a predetermined path to the winding shaft 92 is passed.
  • the film forming material Za from the material roll 61 is sent out and the film forming material Za with the inorganic layer formed on the winding shaft 92 is synchronously wound.
  • the film forming material Za and the protective film 18 are continuously attached while the film forming material Za is transported in the longitudinal direction along a predetermined transport path.
  • the rotating shaft 86 is loaded with a film roll 87 formed by winding a protective film 18 for protecting the deposited inorganic layer 14 in a roll shape, and rotates in synchronization with the conveyance of the film forming material Za to protect it.
  • the film 18 is sent out.
  • the rotating shaft 86 is rotated by a driving source (not shown).
  • the protective film 18 sent out from the film roll 87 is brought into contact with the surface of the inorganic layer 14 by the adhering roller 90b, and is laminated / adhered to the film forming material Za.
  • the sticking roller 90b may have a heating means.
  • sticking of the protective film 18 is performed after an inactivation process.
  • the protective film 18 is stuck to the inorganic layer 14 in a state where the surface activity is low, that is, the inorganic layer 14 in a state where the number of dangling bonds on the surface is reduced, the inorganic layer and the components of the protective film are bonded. It is possible to suppress chemical bonding. This will be described in detail later.
  • the inorganic layer 14 can be protected by sticking the protective film 18 to the surface of the inorganic layer 14 in a peelable manner.
  • the inorganic layer 14 is hard and brittle because it is dense. Therefore, it is easily damaged when it receives an impact directly from the outside.
  • the gas barrier film produced by the production method of the present invention it is the inorganic layer 14 that mainly exhibits gas barrier properties. Therefore, when the inorganic layer 14 is damaged, the gas barrier property is lowered.
  • the protective film 18 is not particularly limited, and various known plastic films used for protecting the inorganic layer 14 formed by a vapor deposition method, such as a low density polyethylene film, can be used.
  • the thickness of the protective film 18 will not be specifically limited if it is the thickness which can prevent the crack of the inorganic layer 14, etc.
  • the thickness of the protective film 18 is preferably 20 ⁇ m or more.
  • 100 micrometers or less are preferable from viewpoints, such as flexibility of a gas barrier film, size reduction and weight reduction, and the ease of winding in a roll form.
  • the vacuum exhaust means 70 is a vacuum pump for reducing the pressure in the unwind chamber 54 to a predetermined degree of vacuum.
  • the vacuum evacuation means 70 makes the inside of the unwinding chamber 54 a pressure that does not affect the pressure in the film forming chamber 56.
  • the vacuum evacuation means 70 is not particularly limited, and various known vacuum evacuation means used in a vacuum film formation apparatus such as a vacuum pump such as a turbo pump, a mechanical booster pump, a dry pump, and a rotary pump, Is available. In this regard, the same applies to other vacuum exhaust means 74 described later.
  • a film forming chamber 56 is disposed downstream of the unwind chamber 54 in the transport direction of the film forming material Za.
  • the film forming chamber 56 is a part where a film forming process is performed by plasma CVD, and an inorganic layer is formed on the surface of the substrate 12 or the organic layer 16 which is the film forming material Za by a vapor deposition method.
  • the film forming chamber 56 is a space formed by an inner wall surface of the vacuum chamber 52, a peripheral surface of the drum 80, and partition walls 60 a and 60 b extending from the inner wall surface of the vacuum chamber 52 to the vicinity of the peripheral surface of the drum 80. It is.
  • the film forming chamber 56 forms a film on the surface of the film forming material Za by CCP (Capacitively Coupled Plasma) -CVD as an example. And a high-frequency power source 83 and a vacuum exhaust means 74.
  • the film forming material Za wound around a predetermined position of the drum 80 and transported to the film forming chamber 56 is transported in the longitudinal direction while being positioned at the predetermined position by the drum 80 to continuously form the inorganic layer 14.
  • the film forming electrode 82 constitutes an electrode pair together with the drum 80 when the inorganic film forming apparatus 32 forms a film by CCP-CVD.
  • the film forming electrode 82 is a known film forming electrode used in a vacuum film forming apparatus such as plasma CVD.
  • a so-called shower electrode is used as the film forming electrode 82.
  • the shower electrode has a hollow, substantially rectangular parallelepiped shape, and is disposed with the discharge surface, which is one maximum surface, facing the peripheral surface of the drum 80, and the discharge surface, which is the surface facing the drum 80, has many through holes. Is formed entirely.
  • the film formation electrode 82 generates plasma for film formation between the discharge surface and the peripheral surface of the drum 80 forming the electrode pair, thereby forming a film formation region.
  • a source gas is supplied to a film forming region between the film forming electrode 82 and the drum 80 by a source gas supply unit (not shown).
  • a source gas supply unit (not shown).
  • the source gas supply means supplies the source gas into the shower electrode.
  • a large number of through holes are formed on the surface of the shower electrode facing the drum 80. Therefore, the source gas supplied to the shower electrode is introduced between the film forming electrode 82 and the drum 80 from this through hole.
  • a known reaction gas corresponding to the inorganic layer 14 to be formed may be used.
  • silane gas and ammonia gas and / or nitrogen gas may be used.
  • a silicon oxide film is formed.
  • silane gas and oxygen gas may be used as the source gas.
  • various gases such as an inert gas such as helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas, hydrogen gas, and the like may be used in combination with the source gas.
  • the vacuum evacuation means 74 is for evacuating the inside of the film forming chamber 56 to obtain a degree of vacuum corresponding to the formation of the inorganic layer 14.
  • the film formation chamber 56 is configured to form an inorganic layer by CCP-CVD.
  • CCP-CVD inductively coupled plasma CVD
  • CVD is available.
  • the inside of the film forming chamber 56 is composed of various members according to the vapor deposition method to be performed.
  • the film forming chamber 56 forms the inorganic layer 14 by the ICP-CVD method, an induction coil for forming an induction magnetic field and a gas supply means for supplying a reaction gas to the film forming region And so on.
  • the formation conditions of the inorganic layer 14, such as temperature and pressure, may be appropriately set according to the film formation method, the target film thickness, film formation rate, and the like.
  • the pressure in the film formation chamber 56 is preferably 20 Pa to 200 Pa, and the temperature is preferably 0 ° C. to 80 ° C.
  • the pressure in the film formation chamber 56 is preferably 0.1 Pa to 10 Pa and the temperature is preferably 0 ° C. to 80 ° C.
  • the inorganic layer 14 formed in the film formation chamber 56 is a layer made of an inorganic compound not containing carbon.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; silicon such as silicon oxide and silicon oxynitride
  • ITO indium tin oxide
  • metal nitrides such as aluminum nitride
  • silicon such as silicon oxide and silicon oxynitride
  • Inorganic compounds such as oxides; silicon nitrides such as silicon nitride; hydrides thereof; mixtures of two or more of these; and hydrogen-containing substances thereof are preferably exemplified.
  • an inorganic compound composed of a combination of elements selected from the group consisting of Si, Al, O, N, and H is suitable.
  • silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are suitably used for the gas barrier film because they are highly transparent and can exhibit excellent gas barrier properties.
  • silicon nitride is particularly suitable for its excellent gas barrier properties and high transparency.
  • the inorganic layer 14 may contain 5% or less of carbon as an unavoidable impurity. Or in order to express a predetermined function, you may contain 5% or less of carbon. That is, the inorganic layer 14 may not contain carbon, but may contain carbon as an inevitable impurity derived from the material used as the raw material of the inorganic layer.
  • carbon can be contained in the inorganic layer derived from an organic silane such as Si (OCH 3 ) 4 as a raw material.
  • composition ratio of carbon in the inorganic layer was determined by measuring the number of atoms of Si, Al, O, N, and C in the inorganic layer 14 by XPS measurement (X-ray photoelectron spectroscopy measurement). And calculated as the ratio of C atoms.
  • the thickness of the inorganic layer 14 to be formed is not particularly limited, but is preferably 10 to 200 nm. By setting the thickness of the inorganic layer 14 to 10 nm or more, the inorganic layer 14 that stably expresses sufficient gas barrier performance can be formed. Further, the inorganic layer 14 is generally brittle, and if it is too thick, there is a possibility that cracks, cracks, peeling, etc. may occur. However, if the thickness of the inorganic layer 14 is 200 nm or less, cracks will occur. Can be prevented. In consideration of such points, the thickness of the inorganic layer 14 is preferably 15 to 100 nm, and more preferably 20 to 75 nm.
  • the present invention can be suitably used when the dense inorganic layer 14 is formed in order to develop a high gas barrier property.
  • the film density of the inorganic layer is preferably 1.8 to 2.2 g / cm 3.
  • the film of the inorganic layer is preferable.
  • the density is preferably 2.1 to 2.5 g / cm 3.
  • the film density of the inorganic layer is preferably 2.0 to 2.4 g / cm 3 .
  • the film density of the inorganic layer is preferably 2.7 to 3.2 g / cm 3 .
  • the protective film 18 is attached by the attaching roller 90b.
  • the inorganic layer immediately after being formed at a high density in a vacuum by plasma CVD has a high surface activity, and it is presumed that many dangling bonds exist.
  • a dense inorganic layer is formed by increasing the applied power or the like, the number of atoms constituting the inorganic layer increases, and it is considered that more dangling bonds are generated.
  • the atmosphere it is considered that the dangling bonds react with elements in the atmosphere and deactivate, but in vacuum, there is no bonding partner, so it is considered that more dangling bonds remain.
  • the protective film when the protective film is peeled off and another layer is formed on the inorganic layer, the protective film components remain on the surface of the inorganic layer, and the presence of the transferred components causes the inorganic layer and the inorganic layer to remain on the surface. There was a problem that the adhesion with the formed layer was hindered.
  • the present invention by performing an inactivation step with a time interval of 15 seconds or more from the formation of the inorganic layer 14 to the attachment of the protective film, the surface of the inorganic layer 14 is not present.
  • the bond is inactivated, and the surface activity of the inorganic layer 14 is reduced.
  • a protective film 18 for protecting the inorganic layer 14 is pasted even when the applied power is increased or the conveyance speed is increased to improve the production efficiency. When it does, it can suppress that the inorganic layer and the component of a protective film couple
  • the gas barrier film has a possibility that the barrier performance is greatly deteriorated when the inorganic layer is in contact with other members and cracks even a little, and the influence on the contact with the surface of the inorganic layer is great. Therefore, it is necessary to protect the inorganic layer formed by attaching a protective film with the first guide roller immediately after the film formation and before contacting the other members.
  • a gas barrier film requires high gas barrier performance, it is necessary to form a particularly dense inorganic layer. In order to form a dense inorganic layer, it is necessary to increase the applied power. Therefore, in the production of a gas barrier film, the surface of the inorganic layer after film formation is in a very high activity state.
  • the method for producing a functional film of the present invention is more suitably used for a method for producing a gas barrier film that is formed at a high density and has a high gas barrier property.
  • the protective film 18 is attached and the material roll 93 wound in a roll shape is supplied to the organic film forming apparatus 30, or the gas barrier film 10a shown in FIG.
  • the material roll 93 that is rotated is supplied to the next process.
  • the organic film forming apparatus 30 shown in FIG. 1 (B) applies a coating material to be the organic layer 16 while transporting a long film-forming material Zb in the longitudinal direction, and after drying, coats the coating film by light irradiation.
  • This is an apparatus for forming an organic layer 16 by crosslinking and curing an organic compound contained therein.
  • the organic film forming apparatus 30 includes, as an example, a coating unit 36, a drying unit 38, a light irradiation unit 40, a rotating shaft 42, a winding shaft 46, and a pair of conveying rollers 48 and 50. .
  • the organic film forming apparatus 30 also has a take-up shaft 44 that peels off and winds up the protective film 18 attached by the inorganic film forming apparatus 32 that forms the inorganic layer 14.
  • the organic film forming apparatus 30 performs film formation by coating while conveying a long material to be formed such as a pair of transport rollers, a guide member for the material to be deposited Zb, and various sensors. You may have the various members provided in a well-known apparatus.
  • a material roll 93 formed by winding a long film forming material Zb in which the inorganic layer 14 or the like is formed on the substrate 12 is loaded on the rotating shaft 42.
  • the film-forming material Zb is pulled out from the material roll 93, passes through the conveying roller pair 48, passes through the coating unit 36, the drying unit 38, and the light irradiation unit 40. Then, it passes through a predetermined conveying path that reaches the winding shaft 46 through the conveying roller pair 50.
  • the film forming material Zb is fed out from the material roll 93 and the film forming material Zb on which the organic layer is formed on the take-up shaft 46 is synchronously performed.
  • the coating material 36 is applied with the coating material that is an organic layer
  • the drying device 38 is used to dry the coating material
  • the light irradiation device 40 is used.
  • the organic layer is formed by curing.
  • the transport roller pair 48 also functions as a peeling roller for the protective film 18. That is, the organic film forming apparatus 30 performs an organic layer forming process after the peeling process.
  • the organic layer 16 formed in the organic layer forming step is a layer made of an organic compound, and is basically a cross-linked organic compound that becomes the organic layer 16.
  • the material for forming the organic layer 16 is not limited, and various known organic compounds can be used. Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc.
  • An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
  • the thickness of the organic layer 16 formed in the organic layer forming step is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
  • the thickness of the organic layer 16 is more preferably 0.15 to 5 ⁇ m.
  • the coating means 36 applies a paint for forming the organic layer 16 prepared in advance on the surface of the film forming material Zb.
  • This paint is obtained by dissolving an organic compound such as a monomer, a dimer, a trimer, or an oligomer, which becomes the organic layer 16 by crosslinking and polymerizing in an organic solvent, in the organic solvent.
  • the coating material contains a silane coupling agent in order to improve the adhesion of the organic layer 16.
  • necessary components such as a surfactant, a polymerization initiator, and an increasing viscosity agent may be appropriately added to this paint.
  • the application of the paint is all known coating methods such as die coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, etc. Is available. Above all, because the coating can be applied in a non-contact manner, the surface of the film-forming material Zb is not damaged, and the bead formation is excellent in the embedding of the surface of the film-forming material Zb, etc. Are preferably used.
  • the film forming material Zb is then transported to the drying unit 38, and the coating material applied by the coating unit 36 is dried.
  • the method of drying the paint by the drying means 38 is not limited, and before the film-forming material Zb reaches the light irradiation means 40, the paint is dried and the organic solvent is removed so that crosslinking is possible. Any known drying means can be used if possible. As an example, heat drying with a heater, heat drying with warm air, and the like are exemplified.
  • the temperature of the film formation material Zb at the time of drying in the drying means 38 is preferably 70 ° C. or higher.
  • the adhesion between the organic layer 16 and the inorganic layer 14 is further improved by drying the coating material with the film-forming material Zb at a temperature of 70 ° C. or higher. preferable.
  • the film formation material Zb is then transported to the light irradiation means 40.
  • the light irradiation means 40 irradiates the coating material applied by the application means 36 and dried by the drying means 38 with ultraviolet rays or visible light, or crosslinks an organic compound such as a monomer contained in the coating material by heating or the like.
  • the organic layer 16 is cured.
  • the protective film 18 is adhered after reducing the activity of the surface of the inorganic layer 14 with a time interval of 15 seconds or more. Therefore, when the protective film 18 is peeled off in order to form the organic layer 16 on the inorganic layer 14, the remaining components of the protective film 18 can be reduced. Therefore, the adhesion between the inorganic layer 14 and the organic layer 16 formed on the inorganic layer 14 can be improved.
  • the coating material that forms the organic layer 16 contains a silane coupling agent
  • the component of the protective film 18 such as carbon remains on the surface of the inorganic layer 14
  • the silane coupling agent The effect of improving the adhesion due to may not be obtained, and the adhesion between the inorganic layer 14 and the organic layer 16 may be reduced.
  • the effect of improving the adhesion by the silane coupling agent can be sufficiently expressed. And the adhesion between the inorganic layer 14 and the organic layer 16 can be improved.
  • the light irradiation area by the light irradiation means 40 in the film forming material Zb may be made an inert atmosphere by nitrogen substitution or the like, if necessary. Further, if necessary, a temperature of the film forming material Zb, that is, the coating film, may be adjusted at the time of curing by using a backup roller or the like that contacts the back surface.
  • the temperature of the film forming material Zb when the coating film is cured by the light irradiation means 40 is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and more preferably 60 ° C. or higher.
  • the crosslinking of the organic compound that becomes the organic layer is not limited to photopolymerization. That is, various methods according to the organic compound used as the organic layer 16 can be used for crosslinking of the organic compound, such as heat polymerization, electron beam polymerization, and plasma polymerization.
  • various methods according to the organic compound used as the organic layer 16 can be used for crosslinking of the organic compound, such as heat polymerization, electron beam polymerization, and plasma polymerization.
  • an acrylic resin such as an acrylic resin or a methacrylic resin is preferably used as the organic layer 16
  • photopolymerization is preferably used.
  • the film-forming material Zb on which the organic layer 16 has been formed in this manner is nipped and conveyed by the conveyance roller pair 50 to reach the take-up shaft 46, and is taken up again in a roll shape by the take-up shaft 46.
  • the material roll 61 is formed by winding the film forming material Zb on which the layer 16 is formed.
  • the material roll 61 is supplied to the inorganic film forming apparatus 32 as a material roll 61 formed by winding the film forming material Zb on which the organic layer 16 is formed, or is shipped or stored as a product, or the next process or the like. To be supplied.
  • a gas barrier film in which two inorganic layers 14 and one organic layer 16 shown in FIG. 5 (A) are formed and a protective film 18 is laminated The production method of the present invention will be described in more detail by explaining the action when producing 10d.
  • a gas barrier film having other layer configuration such as the gas barrier film 10a shown in FIG. 4A, depending on the number of inorganic layers 14 and the number of organic layers 16 to be formed, and the layer configuration, The formation of the similar inorganic layer 14 and organic layer 16 may be repeated.
  • a material roll 61 formed by winding the substrate 12 is prepared.
  • the inorganic film forming apparatus 32 when the material roll 61 formed by winding the substrate 12 is loaded on the rotating shaft 64, the substrate 12 as the film forming material Za is drawn out, and the film forming chamber 56 is extracted from the unwind chamber 54. Through a predetermined path to the take-up shaft 92 of the unwind chamber 54.
  • the film formation material Za sent out from the material roll 61 is guided by the guide rollers 68 and 84a, wound around the drum 80, supported by the drum 80, and conveyed to the film formation chamber 56 while being conveyed through a predetermined path. Is done.
  • the film forming material Za transferred to the film forming chamber 56 is supported by the drum 80 and transferred through a predetermined path as a film forming process, and the first inorganic layer 14 is formed by, for example, CCP-CVD. It is formed.
  • the film forming material Za on which the inorganic layer 14 is formed is conveyed to the unwinding chamber 54 as an inactivation step, separated from the drum 80, and guided to the stepped roller 84b and the guide roller 90a to be a sticking roller. Up to 90b. At this time, the time required for conveyance from the film forming chamber 56 to the sticking roller 90b is set to 15 seconds or more, and the dangling bonds on the surface of the inorganic layer 14 are inactivated.
  • the protective film 18 sent out from the film roll 87 is stuck to the film-forming material Za conveyed to the sticking roller 90b as the sticking step on the first inorganic layer 14 (FIG. 4 ( A)).
  • the film forming material Za to which the protective film 18 is attached that is, the film forming material Zb, is wound into a roll shape by the take-up shaft 92 to form a material roll 93.
  • a material roll 93 formed by winding the substrate 12 on which the first inorganic layer 14 is formed and the protective film 18 is laminated is loaded on the rotating shaft 42 of the organic film forming apparatus 30.
  • the material roll 93 is loaded on the rotating shaft 42, the substrate 12 on which the first inorganic layer 14 that is the film formation material Zb is formed is pulled out of the material roll 93 and applied through the conveying roller pair 48. It passes through the means 36, the drying means 38, and the light irradiation means 40, passes through a pair of transport rollers 50, and passes through a predetermined transport path to the winding shaft 46.
  • the film forming material Zb drawn from the material roll 93 is subjected to the organic layer forming step after the protective film 18 is peeled off by the transport roller pair 48 (see FIG. 4B) as a peeling step. That is, the film-forming material Zb from which the protective film 18 has been peeled is transported to the coating means 36, and the coating material to be the organic layer 16 is applied to the surface.
  • the paint to be the organic layer 16 is obtained by dissolving an organic compound such as a monomer, a silan coupling agent, a polymerization initiator, and the like in an organic solvent according to the organic layer 16 to be formed.
  • the film-forming material Zb to which the coating material to be the organic layer 16 is applied is then heated by the drying means 38 to remove the organic solvent and dry the coating material.
  • the film-forming material Zb from which the paint has been dried is then irradiated with ultraviolet rays or the like by the light irradiation unit, and the organic compound is polymerized and cured to form the first organic layer 16 (FIG. 4C). reference).
  • the organic compound that becomes the organic layer 16 may be cured in an inert atmosphere such as a nitrogen atmosphere. Further, the substrate 12 may be heated when the organic compound that becomes the organic layer 16 is cured.
  • the film-forming material Zb on which the first organic layer 16 is formed is conveyed by the conveying roller pair 50 and wound in a roll shape by the take-up shaft 46, and the inorganic layer 14 and the organic layer 16 are layered one by one.
  • a material roll 61 formed by winding the formed substrate 12 is supplied again to the inorganic film forming apparatus 32 shown in FIG.
  • the material roll 61 formed by winding the substrate 12 on which the inorganic layer 14 and the organic layer 16 are formed one by one is loaded on the rotating shaft 64 of the inorganic film forming apparatus 32 as described above.
  • the substrate 12 on which the inorganic layer 14 and the organic layer 16 are formed is drawn out as a film forming material Za and passed through the take-up shaft 92, and the second inorganic layer 14 is formed on the first organic layer 16.
  • the protective film 18 was further stuck, and the organic / inorganic laminate composed of the inorganic layer 14, the organic layer 16, and the inorganic layer 14 and the protective film 18 were laminated.
  • the gas barrier film 10d is wound around the winding shaft 92 in a roll shape, and is shipped or stored as a product as a material roll 93 around which the gas barrier film 10d is wound, or is supplied to the next step or the like.
  • the material roll 93 may be further supplied to the organic film forming apparatus 30, the protective film 18 may be peeled off (FIG. 5B), and the organic layer 16 may be formed (FIG. 5C).
  • the bonding roller 90b is used. Since the protective film 18 is adhered, the remaining of the components of the protective film 18 when the protective film 18 is peeled from the inorganic layer 14 can be reduced, and the organic layer formed on the inorganic layer 14 and the inorganic layer 14. Adhesion with 16 can be improved.
  • FIG. 3 is an example of an inorganic film forming apparatus for carrying out another example of the inactivation step in the present invention.
  • the inorganic film forming apparatus 110 shown in FIG. 3 has the same configuration as the inorganic film forming apparatus 32 shown in FIG. 1A except that it has a sticking roller 114 instead of the stepped roller 84b.
  • the same reference numerals are given to the components, and detailed description thereof is omitted.
  • the inorganic film forming apparatus 110 includes a vacuum chamber 52, an unwinding chamber 112 formed in the vacuum chamber 52, a film forming chamber 56, and a drum 80.
  • the unwinding chamber 112 is a region other than the film forming chamber 56 in the vacuum chamber 52.
  • the unwinding chamber 112 has a winding shaft 92, guide rollers 68, 84 a and 90, a sticking roller 114, a rotating shaft 64, a rotating shaft 86, and a vacuum exhaust means 70.
  • the adhering roller 114 is an adhering roller that is disposed downstream of the drum 80 and adheres the protective film 18 onto the inorganic layer 14 that has been formed.
  • the sticking roller 114 is cooled to 15 ° C. or less by a cooling means (not shown). By cooling the sticking roller 114 to 15 ° C. or lower, the substrate 12 is sufficiently cooled when the protective film 18 is stuck to the film forming material Za.
  • the bonding roller 114 is cooled to 10 ° C. or lower to sufficiently cool the substrate 12 when the protective film 18 is bonded to the film forming material Za, thereby inactivating the unbonded hands on the surface of the inorganic layer 14. can do. Thereby, when the protective film 18 is stuck, it can suppress that an inorganic layer and the component of a protective film couple
  • the temperature of the substrate 12 when the protective film 18 is stuck is preferably 15 ° C. or less, and more preferably 10 ° C. or less. Thereby, the activity of the inorganic layer 14 surface can be reduced more suitably.
  • the adhering roller 114 is cooled.
  • the present invention is not limited to this, and a guide roller is disposed between the drum 80 and the adhering roller 114, and this guide roller is used. It is good also as a structure which cools and the board
  • a known cooling means such as a device for blowing cold air is disposed between the drum 80 and the sticking roller 114 to cool the substrate 12 and inactivate the unbonded hands on the surface of the inorganic layer 14. Also good.
  • the deactivation step may be a combination of a configuration in which the time from the formation of the inorganic layer 14 to the attachment of the protective film 18 is 15 seconds or more and a configuration in which the substrate 12 is cooled.
  • the substrate 12 may be cooled by cooling the sticking roller 90b.
  • Example 1 (Board preparation process)
  • the substrate 12 was prepared by forming an organic layer made of acrylate on the surface of a long PET film having a width of 1000 mm and a thickness of 100 ⁇ m (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.).
  • This organic layer is formed on a long PET film by the same method as the method for forming the organic layer 16 by the organic film forming apparatus 30.
  • a material roll 61 formed by winding a substrate 12 to be a film forming material Za is loaded on the rotation shaft of the inorganic film forming apparatus 32 shown in FIG. 1A, and the film forming material Za is placed on a predetermined transport path.
  • the following film formation process, inactivation process, and sticking process were performed while being inserted and conveyed.
  • the inorganic layer 14 made of silicon nitride having a thickness of 50 nm was formed on the surface of the substrate 12 transferred to the film formation chamber 56.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), and hydrogen gas (H 2 ) were used as source gases supplied to the film forming chamber 56.
  • the flow rate converted to the volume at 0 ° C. and 0.1013 MPa was 100 mL / min for silane gas, 400 mL / min for ammonia gas, and 1000 mL / min for hydrogen gas.
  • the following description is the flow volume converted into the volume in 0 degreeC and 0.1013 MPa similarly.
  • the film forming pressure was 50 Pa.
  • a plasma excitation power of 2 kW at a frequency of 13.5 MHz was supplied from the high frequency power supply 83 to the film forming electrode 82.
  • the composition ratio of carbon in the deposited inorganic layer 14 was measured by XPS and found to be 1% or less.
  • the protective film 18 was stuck to the film forming material Za by the sticking roller 90b.
  • a long polyethylene film having a width of 1000 mm and a thickness of 50 ⁇ m (SUNYTECT PAC-2, manufactured by Sanei Kaken Co., Ltd.) was used.
  • the unwind chamber 54 and the film-forming chamber 56 are finished. Cleaned dry air was introduced to open the atmosphere.
  • a material roll 93 (see FIG. 4A) formed by winding the substrate 12 on which the inorganic layer 14 was formed and the protective film 18 was attached was taken out from the unwind chamber 54.
  • the organic layer 16 having a thickness of 3 ⁇ m is formed on the surface of the inorganic layer 14 by the coating unit 36, the drying unit 38, and the light irradiation unit 40, and the gas barrier film 10c shown in FIG. did.
  • the paint for forming the organic layer 16 is MEK (methyl ethyl ketone), TMPTA (manufactured by Daicel Cytec Co., Ltd.), photopolymerization initiator (Irg189 manufactured by Ciba Chemicals Co., Ltd.), silane coupling agent (Shin-Etsu Chemical Co., Ltd., Shin-Etsu). Silicone KBM5103) was added to prepare. That is, the organic layer 16 is a layer formed by polymerizing TMPTA.
  • the addition amount of the photopolymerization initiator was 2% by mass in a concentration excluding the organic solvent, and the addition amount of the silane coupling agent was 10% by mass in the concentration excluding the organic solvent. That is, TMPTA in solid content was 88 mass%.
  • the solid content concentration of the paint obtained by diluting the components blended in these ratios with MEK was 15% by mass. That is, MEK was 85 mass%.
  • the coating means 36 used a die coater.
  • the drying means 38 used the apparatus which blows off the drying wind from a nozzle, and drying was performed at 80 degreeC.
  • the light irradiation means 40 was irradiated with ultraviolet rays to carry out polymerization. The curing with ultraviolet rays was carried out while heating the substrate 12 to 80 ° C. from the back side so that the irradiation amount of the ultraviolet rays was about 500 mJ / cm 2 in terms of the integrated irradiation amount.
  • Example 2 A gas barrier film was produced in the same manner as in Example 1 except that the treatment conditions in the film formation step were changed as follows and the time of the inactivation step was changed to 16 seconds.
  • Two film formation chambers 56 are arranged in series in the transport direction, and the supply amount of the raw material gas in each film formation chamber is 250 mL / min for silane gas, 1000 mL / min for ammonia gas, and 2500 mL / min for hydrogen gas.
  • the plasma excitation power supplied to the film forming electrode 82 was 5 kW.
  • the composition ratio of carbon in the deposited inorganic layer 14 was measured by XPS and found to be 1% or less.
  • Example 3 Between the drum 80 and the adhering roller 90b, two stepped rollers 84b and two guide rollers 90a are arranged, and in the inactivation process, until the film is transferred from the film forming chamber 56 to the adhering roller 90b.
  • a gas barrier film was produced in the same manner as in Example 2 except that the time was set to 25 seconds.
  • Example 4 In the deactivation process, instead of the configuration in which the stepped roller 84b is arranged and the time from the film formation process to the bonding process is set to 15 seconds or more, the bonding roller is cooled to cool the substrate 12. Except for the above, a gas barrier film was produced in the same manner as in Example 1. That is, in Example 4, instead of the inorganic film forming apparatus 32 shown in FIG. 1 (A), the inorganic film forming apparatus 110 shown in FIG. It was. The cooling temperature of the sticking roller 114 was 10 ° C.
  • Example 5 A gas barrier film was produced in the same manner as in Example 4 except that the cooling temperature of the sticking roller 114 was 0 ° C.
  • Example 6 A gas barrier film was produced in the same manner as in Example 5 except that the processing conditions in the film forming step were changed as follows.
  • Two film formation chambers 56 are arranged in series in the transport direction, and the supply amount of the raw material gas in each film formation chamber is 250 mL / min for silane gas, 1000 mL / min for ammonia gas, and 2500 mL / min for hydrogen gas.
  • the plasma excitation power supplied to the film forming electrode 82 was 5 kW.
  • the composition ratio of carbon in the deposited inorganic layer 14 was measured by XPS and found to be 1% or less.
  • Example 7 A gas barrier film was produced in the same manner as in Example 6 except that the cooling temperature of the sticking roller 114 was ⁇ 15 ° C.
  • Example 4 A gas barrier film was produced in the same manner as in Example 2 except that the stepped roller was not disposed, the inactivation step was not performed, and the sticking step was not performed.
  • the gas barrier film 10 c having the organic layer 16 formed on the inorganic layer 14 was subjected to a cross-cut test to evaluate the adhesion between the inorganic layer 14 and the organic layer 16.
  • the cross-cut test is based on JIS-K5600, and the organic layer 16 is 1 mm wide, cut, and peeled off with an adhesive tape (Cello Tape (registered trademark) CT-24 manufactured by Nichiban Co., Ltd.). The residual mass was measured and the adhesion was evaluated.
  • Comparative Examples 1 to 3 in which the protective film was stuck without performing the inactivation step decreased the adhesion with the organic layer formed on the inorganic layer after the protective film was peeled off.
  • Comparative Example 4 in which the protective film is not attached cannot prevent the inorganic layer from being cracked, and thus the gas barrier property is lowered. From the above results, the effects of the present invention are clear.

Abstract

Provided is a method for producing a functional film, which is capable of preventing decrease of adhesion between an inorganic layer, from which a protective film has been separated, and a layer formed on the inorganic layer. This method for producing a functional film comprises: a substrate preparation step for preparing a substrate that has a surface formed of an organic material; a film formation step for forming an inorganic layer, which has a composition ratio of carbon of 5% or less, on the substrate by plasma CVD in a vacuum; an inactivation step for inactivating a dangling bond of the formed inorganic layer; and a bonding step for removably bonding a protective film, which is formed of a plastic film, onto the inorganic layer after the inactivation step.

Description

機能性フィルムの製造方法Method for producing functional film
 本発明は、無機層を有する機能性フィルムの製造方法に関する。 The present invention relates to a method for producing a functional film having an inorganic layer.
 光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、各種の半導体装置、太陽電池等の各種装置において防湿性が必要な部位や部品、食品や電子部品等を包装する包装材料などガスバリアフィルムが利用されている。
 ガスバリアフィルムは、一般的に、ポリエチレンテレフタレート(PET)フィルム等のプラスチックフィルムを支持体として、その上に、ガスバリア性を発現するガスバリア層を形成してなる構成を有する。また、ガスバリアフィルムに用いられるガスバリア層としては、例えば、窒化ケイ素、酸化珪素、酸化アルミニウム等の各種の無機化合物からなる層が知られている。
 これらの無機化合物からなる無機層の形成には、スパッタリングやプラズマCVD(chemical vapor deposition)等の真空成膜法による薄膜形成が利用されている。
Gas barrier films such as optical elements, display devices such as liquid crystal displays and organic EL displays, various semiconductor devices, parts and components that require moisture resistance in various devices such as solar cells, and packaging materials for packaging food and electronic components Has been.
The gas barrier film generally has a configuration in which a plastic film such as a polyethylene terephthalate (PET) film is used as a support and a gas barrier layer that exhibits gas barrier properties is formed thereon. Moreover, as a gas barrier layer used for a gas barrier film, the layer which consists of various inorganic compounds, such as a silicon nitride, silicon oxide, aluminum oxide, is known, for example.
In forming an inorganic layer made of these inorganic compounds, thin film formation by a vacuum film forming method such as sputtering or plasma CVD (chemical vapor deposition) is used.
 また、このようなガスバリアフィルムにおいて、より高いガスバリア性能が得られる構成として、支持体の上に、有機化合物からなる有機層と、無機化合物からなる無機層とを交互に積層した積層構造を有する、有機無機積層型のガスバリアフィルム(以下、積層型のガスバリアフィルムとも言う)が知られている。
 積層型のガスバリアフィルムでは、下地となる有機層の上に無機層を形成することにより、有機層によって無機層の形成面を平滑化して、良好な平滑性を有する有機層の上に無機層を形成する。これにより、ヒビや割れ等のない均一な無機層を形成して、優れたガスバリア性能を得ている。また、この有機層と無機層との積層構造を、複数、繰り返し有することにより、より優れたガスバリア性能を得ることができる。
Further, in such a gas barrier film, as a configuration that can obtain higher gas barrier performance, the support has a laminated structure in which an organic layer made of an organic compound and an inorganic layer made of an inorganic compound are alternately laminated. Organic / inorganic laminated gas barrier films (hereinafter also referred to as laminated gas barrier films) are known.
In a laminated gas barrier film, an inorganic layer is formed on an organic layer serving as a base, whereby the formation surface of the inorganic layer is smoothed by the organic layer, and the inorganic layer is formed on the organic layer having good smoothness. Form. Thereby, the uniform inorganic layer without a crack, a crack, etc. is formed, and the outstanding gas barrier performance is acquired. Moreover, more excellent gas barrier performance can be obtained by repeatedly including a plurality of laminated structures of the organic layer and the inorganic layer.
 ここで、機能性フィルムを、高い生産性や生産効率での製造を可能とする方法として、長尺な基板をロール状に巻回してなる基板ロールから、この基板を送り出し、長手方向に搬送しつつ無機層の成膜等を行って、成膜済みの基板をロール状に巻き取る、いわゆるロール・ツー・ロール(Roll to Roll 以下、RtoRともいう)による成膜を行なう装置が知られている。
 特に、上記のような複数の層を積層した積層型のガスバリアフィルムを製造する場合には、RtoRを利用することにより、長尺な基板を搬送しつつ、連続的に有機層や無機層を形成できるので、非常に高い生産性でガスバリアフィルムを製造できる。
Here, as a method for enabling the production of a functional film with high productivity and production efficiency, this substrate is sent out from a substrate roll formed by winding a long substrate into a roll shape and conveyed in the longitudinal direction. An apparatus for forming a film by so-called roll-to-roll (hereinafter also referred to as RtoR) is known, in which an inorganic layer is formed while the formed substrate is wound into a roll. .
In particular, when manufacturing a laminated gas barrier film in which a plurality of layers as described above are laminated, by using RtoR, an organic layer and an inorganic layer are continuously formed while transporting a long substrate. Therefore, a gas barrier film can be produced with very high productivity.
 このような機能性フィルムの製造において、基板の表面に無機層を形成した後の、搬送ローラ対による搬送や、他の部材との接触等に起因して、基板の表面に形成された無機層が損傷すると、目的とする性能を有する機能性フィルムが製造できなくなってしまう可能性が生じる。
 特に、前述のRtoRによる装置では、無機層の形成後の基板の巻回によって、基板に形成された無機層と基板の裏面とが摺接するので、無機層の損傷が生じ易い。
 また、高品質な製品を製造するためには、無機層の表面は、清浄に保つのが好ましい。
In the production of such a functional film, an inorganic layer formed on the surface of the substrate due to conveyance by a pair of conveyance rollers, contact with other members, etc. after forming the inorganic layer on the surface of the substrate If the film is damaged, there is a possibility that a functional film having the intended performance cannot be manufactured.
In particular, in the RtoR apparatus described above, the inorganic layer formed on the substrate and the back surface of the substrate are in sliding contact with each other when the substrate is wound after the inorganic layer is formed.
Moreover, in order to manufacture a high quality product, it is preferable to keep the surface of the inorganic layer clean.
 そのため、ガスバリアフィルム等の機能性フィルムの製造においては、無機層を保護するために、無機層の表面に保護フィルムを貼着して、無機層を保護することが行われている。
 すなわち、無機層の成膜後、無機層の表面に保護フィルムを貼着して、表面に無機層が形成された基板と保護フィルムとの積層体のまま、次の処理を行う部位まで搬送され、あるいは、保護フィルムを貼着した基板を、一旦、ロール状に巻き取って、次の処理を行う成膜装置や表面処理装置等の基板の処理装置に装填し、次の処理を行う直前に、保護フィルムを剥離して、基板表面に処理を施すことが行われている。
Therefore, in the production of a functional film such as a gas barrier film, in order to protect the inorganic layer, a protective film is attached to the surface of the inorganic layer to protect the inorganic layer.
That is, after film formation of the inorganic layer, a protective film is attached to the surface of the inorganic layer, and the substrate is transported to the site where the next treatment is performed with the substrate and protective film having the inorganic layer formed on the surface. Alternatively, the substrate with the protective film attached is wound up into a roll once and loaded into a substrate processing apparatus such as a film forming apparatus or a surface processing apparatus for performing the next processing and immediately before performing the next processing. The protective film is peeled off and the substrate surface is treated.
 例えば、特許文献1には、積層型のガスバリアフィルムをRtoRによって製造する際に、無機層の形成後、表面の無機層がガイドローラ等に接触して損傷することを防止するために、無機層を成膜した直後に無機層の表面に保護フィルムを貼着し、有機層を形成する直前にこの保護フィルムを剥離することで、無機層を保護することが記載されている。 For example, in Patent Document 1, when a laminated gas barrier film is manufactured by RtoR, an inorganic layer on the surface is prevented from being damaged by contact with a guide roller or the like after the formation of the inorganic layer. It describes that a protective film is stuck on the surface of an inorganic layer immediately after forming a film, and this protective film is peeled off immediately before forming an organic layer to protect the inorganic layer.
 また、保護フィルムを利用する形態として、最表層を無機層として用いられる機能性フィルムを供給する場合にも、無機層を保護するために、剥離可能な保護フィルムを無機層に貼着した形態で提供することが考えられる。 Moreover, as a form using a protective film, even when supplying a functional film that uses the outermost layer as an inorganic layer, in order to protect the inorganic layer, a peelable protective film is attached to the inorganic layer. It is possible to provide.
 例えば、ガスバリアフィルムを、トップエミッション方式の有機ELデバイス等に利用する場合には、発光素子である有機EL材料を覆うガスバリア性を有するパッシベーション膜の上に、接着剤を用いてこのガスバリアフィルムを積層することで有機EL材料の劣化を好適に防止できる。
 ここで、パッシベーション膜の形成材料としては、ガスバリア性を発現する窒化ケイ素、酸化ケイ素および酸化窒化ケイ素等の無機材料が用いられる。
 従って、接着性の観点から、有機ELデバイス等に利用するガスバリアフィルムにおいては、最上層を無機層として、この無機層とパッシベーション膜とを対面して、無機材料同士を接着剤を介して積層することが好ましい。
 しかしながら、ガスバリアフィルムの最表層を無機層とすると、無機層が損傷しやすくなり、目的とするバリア性能が得られないおそれがある。そのため、このようなガスバリアフィルムを供給する際には、無機層の損傷を防止するため、最表層の無機層の上に保護フィルムを貼着した形態で供給する必要がある。
For example, when the gas barrier film is used for a top emission type organic EL device, the gas barrier film is laminated on the passivation film having a gas barrier property covering the organic EL material as the light emitting element by using an adhesive. By doing so, deterioration of the organic EL material can be suitably prevented.
Here, as a material for forming the passivation film, inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride that exhibit gas barrier properties are used.
Therefore, from the viewpoint of adhesiveness, in a gas barrier film used for an organic EL device or the like, the inorganic layer and the passivation film are opposed to each other with the uppermost layer being an inorganic layer, and the inorganic materials are laminated via an adhesive. It is preferable.
However, if the outermost layer of the gas barrier film is an inorganic layer, the inorganic layer is easily damaged, and the target barrier performance may not be obtained. Therefore, when supplying such a gas barrier film, in order to prevent damage to the inorganic layer, it is necessary to supply the protective film on the outermost inorganic layer.
 このように最表層を無機層として用いられる機能性フィルムにおいても、無機層を保護するために、剥離可能な保護フィルムを無機層に貼着した形態で供給することが考えられる。 As described above, even in a functional film in which the outermost layer is used as an inorganic layer, in order to protect the inorganic layer, it is conceivable to supply a peelable protective film attached to the inorganic layer.
特開2012-192738号公報JP 2012-192738 A
 しかしながら、無機層上の保護フィルムを剥離した後に、無機層上に有機層や接着層等の他の層を形成した場合に、無機層と、無機層上に形成した層との密着性が低下するという問題があった。
 本発明者らの検討によれば、保護フィルムを剥離した後の無機層の表面に保護フィルムの成分が転写して残存し、この転写した成分の存在により、無機層と無機層上に形成した層との密着性が阻害されることがわかった。
 また、このような問題は、プラズマCVDにより、より緻密な無機層を形成した場合や、製造効率向上のため搬送速度を向上した場合に発生することがわかった。
However, the adhesion between the inorganic layer and the layer formed on the inorganic layer is reduced when another layer such as an organic layer or an adhesive layer is formed on the inorganic layer after the protective film on the inorganic layer is peeled off. There was a problem to do.
According to the study by the present inventors, the components of the protective film remain on the surface of the inorganic layer after the protective film is peeled off, and are formed on the inorganic layer and the inorganic layer due to the presence of the transferred component. It was found that the adhesion with the layer was inhibited.
Further, it has been found that such a problem occurs when a denser inorganic layer is formed by plasma CVD, or when the conveyance speed is improved to improve manufacturing efficiency.
 一般的な保護フィルムは、保護フィルムの粘着層と相手側の部材との間に働く分子間力により接着し、容易に剥離が可能であるように設計されている。
 しかしながら、本発明者らの検討によれば、緻密な無機層を成膜することができるプラズマCVDにより、真空中で高密度な無機層を形成し、その直後に保護フィルムを貼着した場合には、保護フィルムを剥離した後の無機層の表面に保護フィルムの成分が転写することがわかった。真空中でプラズマCVDにより、高密度な無機層を形成した直後は、無機層の表面の活性が非常に高い状態であり、未結合手が多数存在するため、保護フィルムの成分と化学的に結合してしまう現象が発生すると推定される。
 特に、印加電圧を上げるなどして緻密な無機層を成膜した場合には、より多くの未結合手が生じると考えられる。また、真空中では、生じた未結合手に結合する相手がほとんど存在しないため、保護フィルムの貼着まで多くの未結合手が残存すると考えられる。また、搬送速度が速いと無機層の形成から保護フィルムの貼着までの時間が短くなるため、保護フィルムの貼着時に、形成した無機層表面の活性が低下せず、より多くの未結合手が残存すると考えられる。そのため、保護フィルムの成分と無機層とが化学的に結合してしまう現象が発生しやすいと考えられる。
 このように、化学的に結合した無機層と保護フィルムとを剥離すると、保護フィルム中の化学結合を破壊しながら剥離することになる。そのため、保護フィルム剥離後の無機層の表面に保護フィルムの成分が転写、残存すると考えられる。
A general protective film is designed so that it can be easily peeled off by adhering with an intermolecular force acting between the adhesive layer of the protective film and the counterpart member.
However, according to the study by the present inventors, when a dense inorganic layer is formed in a vacuum by plasma CVD that can form a dense inorganic layer, and a protective film is applied immediately after that, It was found that the components of the protective film were transferred to the surface of the inorganic layer after peeling off the protective film. Immediately after forming a high density inorganic layer by plasma CVD in vacuum, the surface activity of the inorganic layer is very high, and there are many unbonded hands, so it is chemically bonded to the components of the protective film. It is estimated that the phenomenon will occur.
In particular, it is considered that more dangling bonds are generated when a dense inorganic layer is formed by increasing the applied voltage. In vacuum, since there is almost no partner binding to the generated unbonded hands, it is considered that many unbonded hands remain until the protective film is attached. Moreover, since the time from the formation of the inorganic layer to the attachment of the protective film is shortened when the conveyance speed is high, the activity of the surface of the formed inorganic layer does not decrease during the attachment of the protective film, and more unbonded hands. Is considered to remain. Therefore, it is considered that the phenomenon that the component of the protective film and the inorganic layer are chemically bonded easily occurs.
In this way, when the chemically bonded inorganic layer and the protective film are peeled off, they are peeled off while breaking the chemical bonds in the protective film. Therefore, it is considered that the components of the protective film are transferred and remain on the surface of the inorganic layer after the protective film is peeled off.
 本発明の目的は、このような従来技術の問題点を解決することにあり、保護フィルムを剥離した後の無機層と、この無機層上に形成される層との密着性の低下を防止できる機能性フィルムの製造方法を提供することにある。 An object of the present invention is to solve such problems of the prior art, and it is possible to prevent a decrease in adhesion between the inorganic layer after the protective film is peeled off and the layer formed on the inorganic layer. It is providing the manufacturing method of a functional film.
 本発明者は、上記課題を達成すべく鋭意研究した結果、有機材料からなる表面を有する基板を準備する基板準備工程と、真空中でプラズマCVDにより、基板上に、炭素の組成比が5%以下の無機層を成膜する成膜工程と、成膜した無機層の未結合手を失活させる不活性化工程と、不活性化工程の後に、プラスチックフィルムからなる保護フィルムを、無機層上に、剥離可能に貼着する貼着工程と、を有することにより、保護フィルムを剥離した後の無機層と、この無機層上に形成される層との密着性の低下を防止できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の構成の機能性フィルムの製造方法を提供する。
As a result of earnest research to achieve the above-mentioned problems, the present inventor has obtained a substrate preparation step of preparing a substrate having a surface made of an organic material, and a carbon composition ratio of 5% on the substrate by plasma CVD in a vacuum. A film forming step for forming the following inorganic layer, an inactivation step for deactivating the dangling bonds of the formed inorganic layer, and a protective film made of a plastic film after the deactivation step on the inorganic layer In addition, it has been found that by having a sticking step for sticking in a peelable manner, it is possible to prevent a decrease in adhesion between the inorganic layer after peeling the protective film and the layer formed on the inorganic layer, The present invention has been completed.
That is, this invention provides the manufacturing method of the functional film of the following structures.
 (1) 有機材料からなる表面を有する基板を準備する基板準備工程と、
 真空中でプラズマCVDにより、基板上に、炭素の組成比が5%以下の無機層を成膜する成膜工程と、
 成膜した無機層の未結合手を不活性化する不活性化工程と、
 不活性化工程の後に、プラスチックフィルムからなる保護フィルムを、無機層上に、剥離可能に貼着する貼着工程と、を有する機能性フィルムの製造方法。
 (2) 不活性化工程が、成膜工程から貼着工程までの間に、15秒以上の間隔を空けるものである(1)に記載の機能性フィルムの製造方法。
 (3) 不活性化工程が、基板を冷却するものである(1)に記載の機能性フィルムの製造方法。
 (4) 成膜工程において形成される無機層の材料が、Si、Al、O、N、Hからなる群から選択される元素の組み合わせからなる(1)~(3)のいずれかに記載の機能性フィルムの製造方法。
 (5) さらに、貼着工程の後に、保護フィルムを剥離する剥離工程と、
 剥離工程の後に、無機層の保護フィルムを剥離した側の面に有機層を形成する有機層形成工程と、を有する(1)~(4)のいずれかに記載の機能性フィルムの製造方法。
 (6) さらに、成膜工程から有機層形成工程を繰り返し行い、2以上の無機層と1以上の有機層とを形成する(5)に記載の機能性フィルムの製造方法。
 (7) 基板準備工程が、長尺な基板を巻回してなる基板ロールを準備するものであり、
 長尺な基板を基板ロールから送り出し、基板の長手方向に搬送しつつ、成膜工程、不活性化工程および貼着工程を行うものである(1)~(6)のいずれかに記載の機能性フィルムの製造方法。
(1) a substrate preparation step of preparing a substrate having a surface made of an organic material;
A film forming step of forming an inorganic layer having a carbon composition ratio of 5% or less on the substrate by plasma CVD in vacuum;
An inactivation step for inactivating dangling bonds of the deposited inorganic layer;
The manufacturing method of a functional film which has the sticking process of sticking the protective film which consists of a plastic film on an inorganic layer so that peeling is possible after an inactivation process.
(2) The method for producing a functional film according to (1), wherein the inactivation step leaves an interval of 15 seconds or more between the film formation step and the sticking step.
(3) The method for producing a functional film according to (1), wherein the inactivation step cools the substrate.
(4) The material according to any one of (1) to (3), wherein the material of the inorganic layer formed in the film forming step is a combination of elements selected from the group consisting of Si, Al, O, N, and H. A method for producing a functional film.
(5) Furthermore, after the sticking step, a peeling step for peeling the protective film,
The method for producing a functional film according to any one of (1) to (4), further comprising an organic layer forming step of forming an organic layer on the surface of the inorganic layer on the side where the protective film is peeled after the peeling step.
(6) The method for producing a functional film according to (5), wherein the organic layer forming step is further repeated from the film forming step to form two or more inorganic layers and one or more organic layers.
(7) The substrate preparation step prepares a substrate roll formed by winding a long substrate,
The function according to any one of (1) to (6), wherein a long substrate is fed from a substrate roll and conveyed in the longitudinal direction of the substrate while performing a film forming step, an inactivation step, and a pasting step For producing a conductive film.
 このような本発明によれば、保護フィルムを剥離した後の無機層と、この無機層上に形成される層との密着性の低下を防止できる機能性フィルムの製造方法を提供することができる。 According to such this invention, the manufacturing method of the functional film which can prevent the fall of the adhesiveness of the inorganic layer after peeling a protective film and the layer formed on this inorganic layer can be provided. .
本発明の機能性フィルムの製造方法を実施する製造装置の一例を概念的に示す図であって、図1(A)は無機層の成膜装置、図1(B)は有機層の成膜装置である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows notionally an example of the manufacturing apparatus which enforces the manufacturing method of the functional film of this invention, Comprising: FIG. 1 (A) is a film-forming apparatus of an inorganic layer, FIG.1 (B) is film-forming of an organic layer. Device. 図1(A)に示す成膜装置の段付きローラの一例を概念的に示す図である。It is a figure which shows notionally an example of the stepped roller of the film-forming apparatus shown to FIG. 1 (A). 本発明の機能性フィルムの製造方法を実施する無機層の成膜装置の他の一例を概念的に示す図である。It is a figure which shows notionally another example of the film-forming apparatus of the inorganic layer which enforces the manufacturing method of the functional film of this invention. 図4(A)~図4(C)は、本発明の機能性フィルムの製造方法を説明するための機能性フィルムの一部を拡大して示す断面図である。4 (A) to 4 (C) are cross-sectional views showing an enlarged part of the functional film for explaining the method for producing the functional film of the present invention. 図5(A)~図5(C)は、本発明の機能性フィルムの製造方法を説明するための機能性フィルムの一部を拡大して示す断面図である。FIG. 5A to FIG. 5C are cross-sectional views showing an enlarged part of the functional film for explaining the method for producing the functional film of the present invention.
 以下、本発明の機能性フィルムの製造方法の好適態様について詳細に説明する。 Hereinafter, preferred embodiments of the method for producing a functional film of the present invention will be described in detail.
 本発明の機能性フィルムの製造方法は、基板上に成膜した無機層の表面を不活性化した後に、無機層上に保護フィルムを貼着するものである。
 具体的には、本発明の製造方法は、
 有機材料からなる表面を有する基板を準備する基板準備工程、
 真空中でプラズマCVDにより、基板上に、炭素の組成比が5%以下の無機層を成膜する成膜工程、
 成膜した無機層の未結合手を不活性化する不活性化工程、および、
 不活性化工程の後に、プラスチックフィルムからなる保護フィルムを、無機層上に剥離可能に貼着する貼着工程と、を有する。
In the method for producing a functional film of the present invention, the surface of an inorganic layer formed on a substrate is inactivated, and then a protective film is attached on the inorganic layer.
Specifically, the production method of the present invention includes:
A substrate preparation step of preparing a substrate having a surface made of an organic material;
A film forming process for forming an inorganic layer having a carbon composition ratio of 5% or less on a substrate by plasma CVD in a vacuum;
An inactivation step of inactivating dangling bonds of the deposited inorganic layer, and
After the inactivation step, there is a sticking step of sticking a protective film made of a plastic film on the inorganic layer in a peelable manner.
 さらに、本発明の製造方法は、好ましい態様として、
 貼着工程の後に、保護フィルムを剥離する剥離工程と、
 剥離工程の後に、無機層の保護フィルムを剥離した側の面に有機層を形成する有機層形成工程と、を有する。
 以下、本発明の製造方法を実施する製造装置の一例を用いて、本発明の製造方法の各工程について詳述する。
Furthermore, the production method of the present invention has, as a preferred aspect,
After the sticking step, a peeling step for peeling the protective film,
An organic layer forming step of forming an organic layer on the surface of the inorganic layer on the side where the protective film is peeled off.
Hereafter, each process of the manufacturing method of this invention is explained in full detail using an example of the manufacturing apparatus which enforces the manufacturing method of this invention.
 図1(A)および図1(B)は、本発明の機能性フィルムの製造方法を実施する製造装置の一例を、概念的に示す図である。また、図4(A)~図4(C)および図5(A)~図5(C)は、本発明の機能性フィルムの製造方法を説明するための機能性フィルムの一部を拡大して示す断面図である。
 なお、以下の説明では、機能性フィルムの製造方法をガスバリアフィルムの製造方法に利用した一例について説明する。
FIG. 1 (A) and FIG. 1 (B) are diagrams conceptually showing an example of a production apparatus for carrying out the functional film production method of the present invention. 4 (A) to 4 (C) and FIGS. 5 (A) to 5 (C) are enlarged views of a part of the functional film for explaining the method for producing the functional film of the present invention. FIG.
In the following description, an example in which the method for producing a functional film is used for the method for producing a gas barrier film will be described.
 なお、本発明の機能性フィルムの製造方法は、ガスバリアフィルムの製造方法に限定はされない。すなわち、本発明は、特定の波長の光を透過するフィルタや光反射防止フィルムなどの各種の光学フィルム等、公知の機能性フィルムの製造方法として、利用可能である。
 本発明の機能性フィルムの製造方法にて作製される無機層を有する機能性フィルムにおいて、主に目的とする機能を発現するのは、無機層である。従って、特定波長の光透過性など、目的とする機能を発現する無機層に応じて、本発明の機能性フィルムの製造方法を構成すればよい。
In addition, the manufacturing method of the functional film of this invention is not limited to the manufacturing method of a gas barrier film. That is, this invention can be utilized as a manufacturing method of well-known functional films, such as various optical films, such as a filter which permeate | transmits the light of a specific wavelength, and an antireflection film.
In the functional film having an inorganic layer produced by the method for producing a functional film of the present invention, it is the inorganic layer that mainly exhibits the intended function. Therefore, what is necessary is just to comprise the manufacturing method of the functional film of this invention according to the inorganic layer which expresses the target functions, such as the light transmittance of a specific wavelength.
 なお、機能性フィルムのなかでも、ガスバリアフィルムは、無機層が他の部材に接触して割れるとバリア性能に大きく影響する。そのため、成膜した無機層を保護するため、成膜後の最初のガイドローラで保護フィルムを貼着する必要がある。しかしながら、バリア性能を高めるため高密度な無機層を形成した場合には、保護フィルム剥離の際の成分の転写が生じやすい。
 これに対して、本発明によれば、後述するように、緻密な膜を成膜できるプラズマCVDにより真空中で高密度な無機層を形成し、その後、保護フィルムを貼着した場合でも、保護フィルムを剥離した後の無機層の表面に保護フィルムの成分が転写することを防止できる。
 従って、本発明は、高密度に形成され高いガスバリア性を有するガスバリアフィルムに、より好適に利用される。
Of the functional films, the gas barrier film greatly affects the barrier performance when the inorganic layer is in contact with other members and cracks. Therefore, in order to protect the formed inorganic layer, it is necessary to stick a protective film with the first guide roller after the film formation. However, when a high-density inorganic layer is formed in order to improve the barrier performance, the transfer of components during peeling of the protective film is likely to occur.
On the other hand, according to the present invention, as will be described later, even when a high-density inorganic layer is formed in vacuum by plasma CVD capable of forming a dense film and then a protective film is adhered, It can prevent that the component of a protective film transfers to the surface of the inorganic layer after peeling a film.
Therefore, the present invention is more suitably used for a gas barrier film that is formed at a high density and has a high gas barrier property.
 図1(A)および図1(B)に示す製造装置はそれぞれ、成膜工程、不活性化工程および貼着工程を行う無機成膜装置32と、剥離工程と有機層形成工程とを行う有機成膜装置30である。 1A and 1B are respectively an inorganic film forming apparatus 32 that performs a film forming process, an inactivation process, and an attaching process, and an organic that performs a peeling process and an organic layer forming process. This is a film forming apparatus 30.
 図1(A)に示す無機成膜装置32および図1(B)に示す有機成膜装置30は、共に、長尺な被形成材料を巻回してなるロールから、被形成材料を送り出し、被形成材料を長手方向に搬送しつつ各層の形成(成膜)を行い、各層を形成した被形成材料を、再度、ロール状に巻回する、前述のRtoR(ロール・ツー・ロール(Roll to Roll))を利用する装置である。
 このようなRtoRは、高い生産性で、効率の良い機能性フィルムの製造が可能である。
Both the inorganic film forming apparatus 32 shown in FIG. 1A and the organic film forming apparatus 30 shown in FIG. 1B send out the forming material from a roll formed by winding a long forming material, The above-mentioned RtoR (Roll to Roll) is performed in which each layer is formed (film formation) while the forming material is conveyed in the longitudinal direction, and the forming material on which each layer is formed is wound again in a roll shape. )).
Such RtoR can produce an efficient functional film with high productivity.
 ここで、図1(A)および図1(B)に示す製造装置は、図4(C)に示すような、長尺な基板12の表面に、無機層14と有機層16とを交互に形成してなるガスバリアフィルム10c等を製造するものである。
 従って、図1(A)に示す無機成膜装置32において被成膜材料Zaとなるのは、長尺な基板12、および、基板12の表面に1以上の層が形成された、表面が有機層16の材料である。
 他方、図1(B)に示す有機成膜装置において、被成膜材料Zbとなるのは、基板12の表面に1以上の層が形成され、表面が無機層14で、この表面の無機層14に保護フィルム18が貼着された材料である。
Here, the manufacturing apparatus shown in FIG. 1 (A) and FIG. 1 (B) has an inorganic layer 14 and an organic layer 16 alternately on the surface of a long substrate 12 as shown in FIG. 4 (C). The formed gas barrier film 10c and the like are manufactured.
Accordingly, in the inorganic film forming apparatus 32 shown in FIG. 1A, the film forming material Za is the long substrate 12 and one or more layers formed on the surface of the substrate 12, and the surface is organic. It is the material of the layer 16.
On the other hand, in the organic film forming apparatus shown in FIG. 1B, the film forming material Zb is formed by forming one or more layers on the surface of the substrate 12, and the surface is the inorganic layer 14, and the inorganic layer on this surface. 14 is a material in which a protective film 18 is attached to 14.
 なお、本発明の製造方法は、長尺な基板を用いてRtoRによってガスバリアフィルム等の機能性フィルムを製造するのに限定はされず、カットシート状の基板を用いて、いわゆる枚葉式の成膜方法を用いて、機能性フィルムを製造するものであってもよい。
 また、本発明の製造方法において、有機層16および/または無機層14を、交互に複数、形成してもよく、その場合には、形成方法は、各層で同じでも異なってもよい。
The production method of the present invention is not limited to the production of a functional film such as a gas barrier film by RtoR using a long substrate, but a so-called single wafer type composition using a cut sheet substrate. A functional film may be produced using a membrane method.
In the production method of the present invention, a plurality of organic layers 16 and / or inorganic layers 14 may be alternately formed. In that case, the formation method may be the same or different in each layer.
 ここで、本発明において、基板12は、表面が高分子材料や樹脂材料などの各種の有機材料からなるものであれば特に限定はない。
 基板12は、表面が有機材料で形成され、プラズマCVDによる無機層の成膜が可能なものであれば、各種の物が利用可能である。具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレート、ポリメタクリレートなどの高分子材料からなる基板12が、好適な一例として例示される。
 また、本発明において、基板12は、長尺なフィルムやカットシート状のフィルムなどのフィルム状物である。
In the present invention, the substrate 12 is not particularly limited as long as the surface is made of various organic materials such as a polymer material and a resin material.
Various materials can be used for the substrate 12 as long as the surface is formed of an organic material and an inorganic layer can be formed by plasma CVD. Specifically, the substrate 12 made of a polymer material such as polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene, polypropylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, polymethacrylate, It is exemplified as a suitable example.
In the present invention, the substrate 12 is a film-like object such as a long film or a cut sheet-like film.
 さらに、基板12は、プラスチックフィルム、有機材料からなる物品、金属フィルムやガラス板、各種の金属製の物品などを本体として、その表面に、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、応力緩和層等の、各種の機能を得るための有機材料からなる有機層が形成されているものであってもよい。
 この際において、これらの機能層は、1層に限定はされず、複数層の機能層が形成されているものを、基板12として用いてもよい。
Furthermore, the substrate 12 has a plastic film, an article made of an organic material, a metal film or a glass plate, various metal articles as a main body, and a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, An organic layer made of an organic material for obtaining various functions, such as a light shielding layer, a planarizing layer, a buffer layer, and a stress relaxation layer, may be formed.
In this case, these functional layers are not limited to one layer, and a substrate in which a plurality of functional layers are formed may be used as the substrate 12.
 図1(A)に示す無機成膜装置32は、本発明の機能性フィルムの製造方法を実施する製造装置の一例として、プラズマCVDにより無機層14を成膜する装置である。
 無機成膜装置32は、被成膜材料Zaの表面に、気相堆積法によって無機層14を形成する装置で、真空チャンバ52と、この真空チャンバ52内に形成される、巻出し室54と、成膜室56と、ドラム80とを有して構成される。
 なお、無機成膜装置32は、図示した部材以外にも、搬送ローラ対や、被成膜材料Zaの幅方向の位置を規制するガイド部材、各種のセンサなど、長尺な被形成材料を搬送しつつ気相堆積法による成膜を行なう公知の装置に設けられる各種の部材を有してもよい。
An inorganic film forming apparatus 32 shown in FIG. 1A is an apparatus for forming the inorganic layer 14 by plasma CVD as an example of a manufacturing apparatus that performs the method for manufacturing a functional film of the present invention.
The inorganic film forming apparatus 32 is an apparatus for forming the inorganic layer 14 on the surface of the film formation material Za by a vapor deposition method. The inorganic film forming apparatus 32 includes a vacuum chamber 52 and an unwinding chamber 54 formed in the vacuum chamber 52. The film forming chamber 56 and the drum 80 are included.
In addition to the illustrated members, the inorganic film forming apparatus 32 conveys a long material to be formed such as a conveying roller pair, a guide member that regulates the position of the film forming material Za in the width direction, and various sensors. However, various members provided in a known apparatus that performs film formation by a vapor deposition method may be included.
 RtoRを利用する無機成膜装置32は、材料ロール61からの被成膜材料Zaの送り出しと、巻取り軸92での無機層形成済の被成膜材料Zaの巻き取りとを同期して行なって、長尺な被成膜材料Zaを、ドラム80に巻き掛けられた状態で長手方向に搬送しつつ、成膜室56において、無機層14を成膜して、無機層14の成膜から所定時間の経過後に、巻出し室54において、無機層14の表面に保護フィルムを貼着して、巻取り軸92に巻き取って、ロール状に巻回すものである。 The inorganic film forming apparatus 32 that uses RtoR synchronizes the feeding of the film forming material Za from the material roll 61 and the winding of the film forming material Za with the inorganic layer formed on the winding shaft 92. Then, the inorganic layer 14 is formed in the film formation chamber 56 while the long film formation material Za is conveyed in the longitudinal direction while being wound around the drum 80. After a predetermined time has elapsed, in the unwinding chamber 54, a protective film is attached to the surface of the inorganic layer 14, wound around the winding shaft 92, and wound into a roll.
 ドラム80は、ドラム80の中心を通り紙面に垂直な方向に平行な回転軸を中心に図中時計方向に回転する円筒状の部材である。
 ドラム80は、後述する巻出し室54のガイドローラ84aよって所定の経路で案内された被成膜材料Zaを、周面の所定領域に掛け回して、所定位置に保持しつつ長手方向に搬送して、成膜室56内に搬送した後、巻出し室54の段付きローラ84bに送る。
The drum 80 is a cylindrical member that rotates in the clockwise direction in the drawing around a rotation axis that passes through the center of the drum 80 and is parallel to a direction perpendicular to the paper surface.
The drum 80 conveys in a longitudinal direction a film forming material Za guided by a guide roller 84a of an unwinding chamber 54, which will be described later, around a predetermined area on the peripheral surface and held in a predetermined position. Then, after being transferred into the film forming chamber 56, it is sent to the stepped roller 84 b in the unwinding chamber 54.
 ここで、ドラム80は、後述する成膜室56の成膜電極82の対向電極としても作用するものであり、アース(接地)されている。すなわち、ドラム80と成膜電極82とで電極対を構成する。 Here, the drum 80 also functions as a counter electrode of a film forming electrode 82 of the film forming chamber 56 described later, and is grounded. That is, the drum 80 and the film forming electrode 82 constitute an electrode pair.
 なお、必要に応じて、ドラム80には、ドラム80にバイアス電圧を印加するためのバイアス電源を接続してもよい。あるいは、アースとバイアス電源とを切り替え可能に接続してもよい。
 バイアス電源は、各種の成膜装置で利用されている、バイアス電圧を印加するための高周波電源やパルス電源等の公知の電源が、全て利用可能である。
 また、ドラム80に温度調節手段を内包して、無機層14の成膜中に被成膜材料Zaを例えば冷却してもよい。
If necessary, the drum 80 may be connected to a bias power source for applying a bias voltage to the drum 80. Alternatively, the ground and the bias power supply may be connected to be switchable.
As the bias power source, all known power sources such as a high frequency power source and a pulse power source for applying a bias voltage, which are used in various film forming apparatuses, can be used.
Further, the drum 80 may include a temperature adjusting means, and the film forming material Za may be cooled, for example, during the film formation of the inorganic layer 14.
 巻出し室54は、真空チャンバ52内の、後述する成膜室56以外の領域である。すなわち、巻出し室54は、真空チャンバ52の内壁面と、ドラム80の周面と、真空チャンバ52の内壁面からドラム80の周面の近傍まで延在する隔壁60aおよび60bと、によって形成される空間である。
 ここで、隔壁60aおよび60bのドラム80側の先端は、搬送される被成膜材料Zaに接触しない可能な位置まで、ドラム80の周面に近接し、巻出し室54と成膜室56とを、略気密に分離する。
The unwinding chamber 54 is a region in the vacuum chamber 52 other than the film forming chamber 56 described later. That is, the unwind chamber 54 is formed by the inner wall surface of the vacuum chamber 52, the peripheral surface of the drum 80, and the partition walls 60a and 60b extending from the inner wall surface of the vacuum chamber 52 to the vicinity of the peripheral surface of the drum 80. Space.
Here, the leading ends of the partition walls 60a and 60b on the drum 80 side are close to the peripheral surface of the drum 80 to a position where they do not come into contact with the film forming material Za to be conveyed, and the unwind chamber 54, the film forming chamber 56, Are separated in a substantially airtight manner.
 このような巻出し室54は、前述の巻取り軸92と、ガイドローラ68、84a、90aおよび90bと、段付きローラ84bと、回転軸64と、回転軸86と、真空排気手段70とを有する。 Such an unwinding chamber 54 includes the winding shaft 92, the guide rollers 68, 84a, 90a and 90b, the stepped roller 84b, the rotating shaft 64, the rotating shaft 86, and the vacuum exhaust means 70. Have.
 回転軸64は、長尺な被成膜材料Zaを巻回した材料ロール61を装填するものである。また、ガイドローラ68および84aは、被成膜材料Zaの搬送経路において、ドラム80の上流側で、被成膜材料Zaを案内する通常のガイドローラである。また、段付きローラ84bは、ドラム80の下流側で、被成膜材料Zaを案内する通常の段付きローラである。また、ガイドローラ90aおよび90bは、段付きローラ84bの下流側で、被成膜材料Zaを案内する通常のガイドローラである。また、巻取り軸92は、無機層形成済の被成膜材料Zaを巻き取る、公知の長尺物の巻取り軸である。
 また、ガイドローラ90bは、成膜した無機層14上に、保護フィルム18を貼着する貼着ローラとしても作用する。以下の説明では、ガイドローラ90bを貼着ローラ90bともいう。貼着ローラ90bに関しては後に詳述する。
The rotating shaft 64 is loaded with a material roll 61 around which a long film-forming material Za is wound. The guide rollers 68 and 84a are ordinary guide rollers that guide the film forming material Za on the upstream side of the drum 80 in the transport path of the film forming material Za. Further, the stepped roller 84 b is a normal stepped roller that guides the film forming material Za on the downstream side of the drum 80. The guide rollers 90a and 90b are ordinary guide rollers that guide the film forming material Za on the downstream side of the stepped roller 84b. The take-up shaft 92 is a known elongate take-up shaft for taking up the film-forming material Za having the inorganic layer formed thereon.
The guide roller 90b also functions as a sticking roller for sticking the protective film 18 on the deposited inorganic layer 14. In the following description, the guide roller 90b is also referred to as a sticking roller 90b. The sticking roller 90b will be described in detail later.
 ここで、図2に示すように、段付きローラ84bは、端部の直径が、それ以外の領域の直径よりも大径である、いわゆる段付きローラである。段付きローラ84bは、被成膜材料Za上に成膜された無機層14に接触することなく、被成膜材料Zaをガイドしつつ搬送する。
 ドラム80と貼着ローラ90bとの間に段付きローラ84bを配置して、段付きローラ84bを用いてドラム80から離間した被成膜材料Zaの搬送を行うことで、成膜室56から貼着ローラ90bまでの搬送距離を長くすることができる。すなわち、無機層14の成膜から保護フィルム18の貼着までの間の時間を長くすることができる。
Here, as shown in FIG. 2, the stepped roller 84 b is a so-called stepped roller in which the diameter of the end portion is larger than the diameter of the other region. The stepped roller 84b conveys the film forming material Za while guiding it without contacting the inorganic layer 14 formed on the film forming material Za.
A stepped roller 84b is disposed between the drum 80 and the adhering roller 90b, and the film forming material Za separated from the drum 80 is conveyed by using the stepped roller 84b, whereby the adhering from the film forming chamber 56 is performed. The conveying distance to the landing roller 90b can be increased. That is, the time from the formation of the inorganic layer 14 to the attachment of the protective film 18 can be increased.
 本発明においては、無機層14の成膜から保護フィルム18の貼着までの時間を15秒以上とすることで、保護フィルム18が貼着される際の無機層14表面の活性を低減することができる。従って、保護フィルム18は、表面の活性が低い状態の無機層14、すなわち、表面の未結合手が低減した状態の無機層14に貼着されるので、無機層と保護フィルムの成分とが化学的に結合することを抑制できる。
 このように、成膜から保護フィルムの貼着までに15秒以上の時間間隔を空ける工程は、本発明における不活性化工程である。
In the present invention, reducing the activity of the surface of the inorganic layer 14 when the protective film 18 is adhered by setting the time from the formation of the inorganic layer 14 to the adhesion of the protective film 18 to 15 seconds or more. Can do. Therefore, since the protective film 18 is attached to the inorganic layer 14 having a low surface activity, that is, the inorganic layer 14 having a reduced number of dangling bonds on the surface, the inorganic layer and the components of the protective film are chemically treated. Binding can be suppressed.
Thus, the process of leaving a time interval of 15 seconds or more from the film formation to the attachment of the protective film is an inactivation process in the present invention.
 ここで、不活性化工程における、成膜から貼着までの時間は、25秒以上が好ましい。これにより、無機層14表面の活性をより好適に低減することができる。 Here, the time from film formation to sticking in the inactivation step is preferably 25 seconds or more. Thereby, the activity of the inorganic layer 14 surface can be reduced more suitably.
 また、図示例においては、ドラム80と貼着ローラ90bとの間に、1つの段付きローラ84bを配置する構成としたが、これに限定はされず、被成膜材料Zaの搬送速度等に応じて、2以上の段付きローラを配置してもよい。なお、被成膜材料Zaの無機層14を成膜した側の面に接触するガイドローラとして、段付きローラを配置すればよく、被成膜材料Zaの無機層14を成膜した側の面とは反対側の面に接触するガイドローラとしては通常のガイドローラを用いてもよい。
 また、図示例においては、段付きローラ84bを用いることで、無機層14の成膜から保護フィルム18の貼着までの時間を15秒以上とする構成としたが、これに限定はされず、無成膜から貼着までの時間を15秒以上とすることができれば、段付きローラを用いない構成であってもよい。
In the illustrated example, one stepped roller 84b is disposed between the drum 80 and the adhering roller 90b. However, the present invention is not limited to this. Accordingly, two or more stepped rollers may be arranged. Note that a stepped roller may be disposed as a guide roller that contacts the surface on which the inorganic layer 14 of the film formation material Za is formed, and the surface on the side on which the inorganic layer 14 of the film formation material Za is formed. A normal guide roller may be used as the guide roller in contact with the opposite surface.
Further, in the illustrated example, by using the stepped roller 84b, the time from the formation of the inorganic layer 14 to the attachment of the protective film 18 is set to 15 seconds or more, but is not limited thereto. As long as the time from non-deposition to sticking can be set to 15 seconds or more, a configuration without using a stepped roller may be used.
 図示例において、長尺な被成膜材料Zaをロール状に巻回してなるものである材料ロール61は、回転軸64に装着される。また、材料ロール61が、回転軸64に装着されると、被成膜材料Zaは、ガイドローラ68および84a、ドラム80、段付きローラ84b、ガイドローラ90a、および、貼着ローラ90bを経て、巻取り軸92に至る、所定の経路を通される。
 無機成膜装置32においては、材料ロール61からの被成膜材料Zaの送り出しと、巻取り軸92における無機層成膜済み被成膜材料Zaの巻き取りとを同期して行なって、長尺な被成膜材料Zaを所定の搬送経路で長手方向に搬送しつつ、成膜室56における成膜、および、保護フィルム18の貼着を連続的に行なう。
In the illustrated example, a material roll 61 formed by winding a long film-forming material Za in a roll shape is mounted on a rotating shaft 64. When the material roll 61 is mounted on the rotary shaft 64, the film forming material Za passes through the guide rollers 68 and 84a, the drum 80, the stepped roller 84b, the guide roller 90a, and the sticking roller 90b. A predetermined path to the winding shaft 92 is passed.
In the inorganic film forming apparatus 32, the film forming material Za from the material roll 61 is sent out and the film forming material Za with the inorganic layer formed on the winding shaft 92 is synchronously wound. The film forming material Za and the protective film 18 are continuously attached while the film forming material Za is transported in the longitudinal direction along a predetermined transport path.
 回転軸86は、成膜した無機層14を保護するための保護フィルム18をロール状に巻回してなるフィルムロール87を装填され、被成膜材料Zaの搬送に同期して回転して、保護フィルム18を送り出すものである。回転軸86は図示しない駆動源によって回転される。 The rotating shaft 86 is loaded with a film roll 87 formed by winding a protective film 18 for protecting the deposited inorganic layer 14 in a roll shape, and rotates in synchronization with the conveyance of the film forming material Za to protect it. The film 18 is sent out. The rotating shaft 86 is rotated by a driving source (not shown).
 フィルムロール87から送り出された保護フィルム18は、貼着ローラ90bによって、無機層14表面に当接して、被成膜材料Zaに積層/貼着される。
 なお、貼着ローラ90bは、加熱手段を有していてもよい。
 ここで、前述のとおり、保護フィルム18の貼着は、不活性化工程の後に行われる。これにより、保護フィルム18は、表面の活性が低い状態の無機層14、すなわち、表面の未結合手が低減した状態の無機層14に貼着されるので、無機層と保護フィルムの成分とが化学的に結合することを抑制できる。
 この点に関しては後に詳述する。
The protective film 18 sent out from the film roll 87 is brought into contact with the surface of the inorganic layer 14 by the adhering roller 90b, and is laminated / adhered to the film forming material Za.
The sticking roller 90b may have a heating means.
Here, as above-mentioned, sticking of the protective film 18 is performed after an inactivation process. Thereby, since the protective film 18 is stuck to the inorganic layer 14 in a state where the surface activity is low, that is, the inorganic layer 14 in a state where the number of dangling bonds on the surface is reduced, the inorganic layer and the components of the protective film are bonded. It is possible to suppress chemical bonding.
This will be described in detail later.
 貼着工程において、保護フィルム18を無機層14の表面に剥離可能に貼着することで、無機層14を保護することができる。
 無機層14は、緻密であるが故に、固く、脆い。そのため、外部から直接的に衝撃等を受けると、容易に損傷してしまう。前述のように、本発明の製造方法で製造されるガスバリアフィルムにおいて、主にガスバリア性を発現するのは、無機層14である。そのため、無機層14が損傷すると、ガスバリア性が低下する。
 これに対して、保護フィルム18を無機層14の表面に貼着することにより、無機層14形成後の無機成膜装置でのハンドリング、無機層14を成膜した被成膜材料の巻回、有機成膜装置までのハンドリング、有機成膜装置での搬送等の際、あるいは、最上層が無機層14のガスバリアフィルムとして供給される際等に、無機層14が損傷することを防止できる。また、無機層14を成膜した基板12の取り扱いも容易になり、すなわち、作業性も向上できる。
In the sticking step, the inorganic layer 14 can be protected by sticking the protective film 18 to the surface of the inorganic layer 14 in a peelable manner.
The inorganic layer 14 is hard and brittle because it is dense. Therefore, it is easily damaged when it receives an impact directly from the outside. As described above, in the gas barrier film produced by the production method of the present invention, it is the inorganic layer 14 that mainly exhibits gas barrier properties. Therefore, when the inorganic layer 14 is damaged, the gas barrier property is lowered.
On the other hand, by sticking the protective film 18 to the surface of the inorganic layer 14, handling in the inorganic film forming apparatus after the inorganic layer 14 is formed, winding of the film forming material on which the inorganic layer 14 is formed, It is possible to prevent the inorganic layer 14 from being damaged when handling to the organic film forming apparatus, transporting with the organic film forming apparatus, or when the uppermost layer is supplied as a gas barrier film of the inorganic layer 14. Moreover, handling of the substrate 12 on which the inorganic layer 14 is formed becomes easy, that is, workability can be improved.
 保護フィルム18としては、特に限定はなく、低密度ポリエチレンフィルム等、気相堆積法で形成された無機層14の保護に用いられる公知のプラスチックフィルムが、各種、利用可能である。 The protective film 18 is not particularly limited, and various known plastic films used for protecting the inorganic layer 14 formed by a vapor deposition method, such as a low density polyethylene film, can be used.
 また、保護フィルム18の厚さは、無機層14の割れ等を防止できる厚さであれば特に限定はない。
 なお、無機層14の割れ防止の観点から、保護フィルム18の厚さは、20μm以上が好ましい。また、ガスバリアフィルムの可撓性、小型軽量化、ロール形態での巻取りやすさ等の観点から、100μm以下が好ましい。
Moreover, the thickness of the protective film 18 will not be specifically limited if it is the thickness which can prevent the crack of the inorganic layer 14, etc.
In addition, from the viewpoint of preventing cracking of the inorganic layer 14, the thickness of the protective film 18 is preferably 20 μm or more. Moreover, 100 micrometers or less are preferable from viewpoints, such as flexibility of a gas barrier film, size reduction and weight reduction, and the ease of winding in a roll form.
 真空排気手段70は、巻出し室54内を所定の真空度に減圧するための真空ポンプである。真空排気手段70は、巻出し室54内を、成膜室56の圧力に影響を与えない圧力にする。
 真空排気手段70には、特に限定はなく、ターボポンプ、メカニカルブースターポンプ、ドライポンプ、ロータリーポンプなどの真空ポンプ等、真空での成膜装置に用いられている公知の真空排気手段が、各種、利用可能である。この点に関しては、後述する他の真空排気手段74も同様である。
The vacuum exhaust means 70 is a vacuum pump for reducing the pressure in the unwind chamber 54 to a predetermined degree of vacuum. The vacuum evacuation means 70 makes the inside of the unwinding chamber 54 a pressure that does not affect the pressure in the film forming chamber 56.
The vacuum evacuation means 70 is not particularly limited, and various known vacuum evacuation means used in a vacuum film formation apparatus such as a vacuum pump such as a turbo pump, a mechanical booster pump, a dry pump, and a rotary pump, Is available. In this regard, the same applies to other vacuum exhaust means 74 described later.
 被成膜材料Zaの搬送方向において、巻出し室54の下流には、成膜室56が配置される。
 成膜室56は、プラズマCVDにより成膜工程を行う部位であり、被成膜材料Zaである基板12あるいは有機層16の表面に、気相堆積法によって、無機層を形成するものである。
 成膜室56は、真空チャンバ52の内壁面と、ドラム80の周面と、真空チャンバ52の内壁面からドラム80の周面の近傍まで延在する隔壁60aおよび60bと、によって形成される空間である。
A film forming chamber 56 is disposed downstream of the unwind chamber 54 in the transport direction of the film forming material Za.
The film forming chamber 56 is a part where a film forming process is performed by plasma CVD, and an inorganic layer is formed on the surface of the substrate 12 or the organic layer 16 which is the film forming material Za by a vapor deposition method.
The film forming chamber 56 is a space formed by an inner wall surface of the vacuum chamber 52, a peripheral surface of the drum 80, and partition walls 60 a and 60 b extending from the inner wall surface of the vacuum chamber 52 to the vicinity of the peripheral surface of the drum 80. It is.
 無機成膜装置32において、成膜室56は、一例として、CCP(Capacitively Coupled Plasma 容量結合型プラズマ)-CVDによって、被成膜材料Zaの表面に成膜を行なうものであり、成膜電極82と、高周波電源83と、真空排気手段74とを有する。
 ドラム80の所定位置に巻き掛けられ、成膜室56に搬送された被成膜材料Zaは、ドラム80によって所定位置に位置されつつ長手方向に搬送されて、連続的に無機層14を形成される。
In the inorganic film forming apparatus 32, the film forming chamber 56 forms a film on the surface of the film forming material Za by CCP (Capacitively Coupled Plasma) -CVD as an example. And a high-frequency power source 83 and a vacuum exhaust means 74.
The film forming material Za wound around a predetermined position of the drum 80 and transported to the film forming chamber 56 is transported in the longitudinal direction while being positioned at the predetermined position by the drum 80 to continuously form the inorganic layer 14. The
 成膜電極82は、無機成膜装置32において、CCP-CVDによる成膜の際に、ドラム80と共に電極対を構成するものである。成膜電極82は、プラズマCVD等の真空成膜装置に用いられる公知の成膜電極である。例えば、成膜電極82として、いわゆる、シャワー電極が用いられる。シャワー電極は、中空の略直方体状であり、1つの最大面である放電面をドラム80の周面に対面して配置され、ドラム80との対向面である放電面には、多数の貫通穴が全面的に形成されるものである。
 成膜電極82は、その放電面と、電極対を形成するドラム80の周面との間で、成膜のためのプラズマを生成し、成膜領域を形成する。
The film forming electrode 82 constitutes an electrode pair together with the drum 80 when the inorganic film forming apparatus 32 forms a film by CCP-CVD. The film forming electrode 82 is a known film forming electrode used in a vacuum film forming apparatus such as plasma CVD. For example, a so-called shower electrode is used as the film forming electrode 82. The shower electrode has a hollow, substantially rectangular parallelepiped shape, and is disposed with the discharge surface, which is one maximum surface, facing the peripheral surface of the drum 80, and the discharge surface, which is the surface facing the drum 80, has many through holes. Is formed entirely.
The film formation electrode 82 generates plasma for film formation between the discharge surface and the peripheral surface of the drum 80 forming the electrode pair, thereby forming a film formation region.
 成膜電極82とドラム80との間の成膜領域には、図示しない原料ガス供給手段により、原料ガスが供給される。
 例えば、成膜電極82がシャワー電極の場合には、原料ガス供給手段がシャワー電極の内部に原料ガスを供給する。シャワー電極のドラム80との対向面には、多数の貫通穴が形成されている。従って、シャワー電極に供給された原料ガスは、この貫通穴から、成膜電極82とドラム80との間に導入される。
A source gas is supplied to a film forming region between the film forming electrode 82 and the drum 80 by a source gas supply unit (not shown).
For example, when the film-forming electrode 82 is a shower electrode, the source gas supply means supplies the source gas into the shower electrode. A large number of through holes are formed on the surface of the shower electrode facing the drum 80. Therefore, the source gas supplied to the shower electrode is introduced between the film forming electrode 82 and the drum 80 from this through hole.
 原料ガスは、形成する無機層14に応じた公知の反応ガスを用いればよい。例えば、無機層14としてガスバリア膜等として利用される窒化珪素膜を成膜する場合であれば、シランガスと、アンモニアガスおよび/または窒素ガスとを用いればよく、同じく酸化珪素膜を形成する場合であれば、原料ガスとして、シランガスと酸素ガスとを用いればよい。
 なお、必要に応じて、原料ガスに加え、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスなどの不活性ガス等の各種のガス、水素ガス等を併用してもよい。
As the source gas, a known reaction gas corresponding to the inorganic layer 14 to be formed may be used. For example, when a silicon nitride film used as a gas barrier film or the like is formed as the inorganic layer 14, silane gas and ammonia gas and / or nitrogen gas may be used. Similarly, a silicon oxide film is formed. If present, silane gas and oxygen gas may be used as the source gas.
If necessary, various gases such as an inert gas such as helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas, hydrogen gas, and the like may be used in combination with the source gas.
 真空排気手段74は、成膜室56内を真空排気して、無機層14の形成に応じた真空度とするものである。 The vacuum evacuation means 74 is for evacuating the inside of the film forming chamber 56 to obtain a degree of vacuum corresponding to the formation of the inorganic layer 14.
 なお、図示例においては、成膜室56は、CCP-CVDにより無機層を成膜する構成としたが、これに限定はされず、ICP-CVD(誘導結合型プラズマCVD)等の公知のプラズマCVDが利用可能である。 In the illustrated example, the film formation chamber 56 is configured to form an inorganic layer by CCP-CVD. However, the present invention is not limited to this, and a known plasma such as ICP-CVD (inductively coupled plasma CVD) is used. CVD is available.
 従って、成膜室56内は、実施する気相堆積法に応じた、各種の部材で構成される。
 例えば、成膜室56がICP-CVD法によって無機層14の成膜を行なうものであれば、誘導磁場を形成するための誘導コイルや、成膜領域に反応ガスを供給するためのガス供給手段等を有して構成される。
Therefore, the inside of the film forming chamber 56 is composed of various members according to the vapor deposition method to be performed.
For example, if the film forming chamber 56 forms the inorganic layer 14 by the ICP-CVD method, an induction coil for forming an induction magnetic field and a gas supply means for supplying a reaction gas to the film forming region And so on.
 なお、無機層14の形成条件、例えば、温度、圧力等は、成膜方法、目的とする膜厚や成膜レート等に応じて、適宜、設定すればよい。
 例えば、CCP-CVD法によって無機層14を成膜する場合には、成膜室56内の圧力は20Pa~200Pa、温度は0℃~80℃とするのが好ましい。ICP-CVD法によって、無機層14を成膜する場合には、成膜室56内の圧力は0.1Pa~10Pa、温度は0℃~80℃とするのが好ましい。
Note that the formation conditions of the inorganic layer 14, such as temperature and pressure, may be appropriately set according to the film formation method, the target film thickness, film formation rate, and the like.
For example, when the inorganic layer 14 is formed by the CCP-CVD method, the pressure in the film formation chamber 56 is preferably 20 Pa to 200 Pa, and the temperature is preferably 0 ° C. to 80 ° C. When the inorganic layer 14 is formed by ICP-CVD, the pressure in the film formation chamber 56 is preferably 0.1 Pa to 10 Pa and the temperature is preferably 0 ° C. to 80 ° C.
 成膜室56において成膜される無機層14は、炭素を含まない無機化合物からなる層である。 The inorganic layer 14 formed in the film formation chamber 56 is a layer made of an inorganic compound not containing carbon.
 無機層14の形成材料には、限定はなく、炭素の組成比が5%以下の、ガスバリア性を発現する無機化合物からなる層が、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 酸化珪素、酸化窒化珪素、などの珪素酸化物; 窒化珪素などの珪素窒化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物が、好適に例示される。
 特に、Si、Al、O、N、Hからなる群から選択される元素の組み合わせからなる無機化合物が好適である。中でも、窒化珪素、酸化珪素、酸窒化珪素、酸化アルミニウムは、透明性が高く、かつ、優れたガスバリア性を発現できる点で、ガスバリアフィルムには、好適に利用される。中でも特に、窒化珪素は、優れたガスバリア性に加え、透明性も高く、好適に利用される。
There are no limitations on the material for forming the inorganic layer 14, and various layers made of an inorganic compound exhibiting gas barrier properties with a carbon composition ratio of 5% or less can be used.
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; silicon such as silicon oxide and silicon oxynitride Inorganic compounds such as oxides; silicon nitrides such as silicon nitride; hydrides thereof; mixtures of two or more of these; and hydrogen-containing substances thereof are preferably exemplified.
In particular, an inorganic compound composed of a combination of elements selected from the group consisting of Si, Al, O, N, and H is suitable. Among these, silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are suitably used for the gas barrier film because they are highly transparent and can exhibit excellent gas barrier properties. Of these, silicon nitride is particularly suitable for its excellent gas barrier properties and high transparency.
 ここで、本発明において、無機層14は、不可避的不純物として炭素を5%以下含んでいてもよい。あるいは、所定の機能を発現するために、5%以下の炭素を含有させてもよい。
 すなわち、無機層14は炭素を含まなくてもよいが、無機層の原料として用いられる材料に由来する不可避的不純物として炭素を含む場合がある。例えば、無機層として珪素化合物を用いる場合には、原料であるSi(OCH34等の有機シランに由来して無機層に炭素が含有されうる。
 なお、無機層中の炭素の組成比は、XPS測定(X線光電子分光測定)により、無機層14におけるSi、Al、O、N、Cの原子数を測定し、これらの合計を100%としたときのC原子の比率として算出した。
Here, in the present invention, the inorganic layer 14 may contain 5% or less of carbon as an unavoidable impurity. Or in order to express a predetermined function, you may contain 5% or less of carbon.
That is, the inorganic layer 14 may not contain carbon, but may contain carbon as an inevitable impurity derived from the material used as the raw material of the inorganic layer. For example, when a silicon compound is used as the inorganic layer, carbon can be contained in the inorganic layer derived from an organic silane such as Si (OCH 3 ) 4 as a raw material.
The composition ratio of carbon in the inorganic layer was determined by measuring the number of atoms of Si, Al, O, N, and C in the inorganic layer 14 by XPS measurement (X-ray photoelectron spectroscopy measurement). And calculated as the ratio of C atoms.
 また、成膜する無機層14の厚さには特に限定はないが、好ましくは10~200nmである。
 無機層14の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層14が形成できる。また、無機層14は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層14の厚さを200nm以下とすることにより、割れが発生することを防止できる。
 また、このような点を考慮すると、無機層14の厚さは、15~100nmにするのが好ましく、特に、20~75nmとするのが好ましい。
The thickness of the inorganic layer 14 to be formed is not particularly limited, but is preferably 10 to 200 nm.
By setting the thickness of the inorganic layer 14 to 10 nm or more, the inorganic layer 14 that stably expresses sufficient gas barrier performance can be formed. Further, the inorganic layer 14 is generally brittle, and if it is too thick, there is a possibility that cracks, cracks, peeling, etc. may occur. However, if the thickness of the inorganic layer 14 is 200 nm or less, cracks will occur. Can be prevented.
In consideration of such points, the thickness of the inorganic layer 14 is preferably 15 to 100 nm, and more preferably 20 to 75 nm.
 また、本発明は、高いガスバリア性を発現するために緻密な無機層14を形成する場合に好適に用いることができる。
 具体的には、無機層14の形成材料が酸化珪素の場合には無機層の膜密度は1.8~2.2g/cm3であるのが好ましく、窒化珪素の場合には無機層の膜密度は2.1~2.5g/cm3であるのが好ましく、酸窒化珪素の場合には無機層の膜密度は2.0~2.4g/cm3であるのが好ましく、酸化アルミニウムの場合には無機層の膜密度は2.7~3.2g/cm3であるのが好ましい。
In addition, the present invention can be suitably used when the dense inorganic layer 14 is formed in order to develop a high gas barrier property.
Specifically, when the material for forming the inorganic layer 14 is silicon oxide, the film density of the inorganic layer is preferably 1.8 to 2.2 g / cm 3. In the case of silicon nitride, the film of the inorganic layer is preferable. The density is preferably 2.1 to 2.5 g / cm 3. In the case of silicon oxynitride, the film density of the inorganic layer is preferably 2.0 to 2.4 g / cm 3 . In this case, the film density of the inorganic layer is preferably 2.7 to 3.2 g / cm 3 .
 前述のとおり、成膜室56での無機層14の成膜後、15秒以上の時間間隔を空けた後に、貼着ローラ90bによる保護フィルム18の貼着を行う。 As described above, after the inorganic layer 14 is formed in the film forming chamber 56, after a time interval of 15 seconds or more, the protective film 18 is attached by the attaching roller 90b.
 ここで、前述のとおり、プラズマCVDにより真空中で高密度に形成した直後の無機層は、表面の活性が高い状態であり、未結合手が多数存在すると推定される。特に、印加電力を上げるなどして緻密な無機層を形成した場合には、無機層を構成する原子の数が増えるので、より多くの未結合手が生じると考えられる。このとき、大気中であれば、未結合手は大気中の元素と反応して失活すると考えられるが、真空中では結合する相手がいないため、より多くの未結合手が残存すると考えられる。また、製造効率向上のため搬送速度を速くした場合にも、無機層の形成から保護フィルムの貼着までの時間が短くなるため、保護フィルムの貼着時の、無機層の表面の活性が低下せず、より多くの未結合手が残存すると考えられる。
 そのため、活性が高い状態の無機層に保護フィルムを貼着すると、この未結合手と保護フィルムの成分とが化学的に結合してしまうと推定される。
 化学的に結合した無機層と保護フィルムとを剥離すると、保護フィルム中の化学結合を破壊しながら剥離することになり、保護フィルム剥離後の無機層の表面に保護フィルムの成分が転写、残存すると考えられる。
 そのため、保護フィルムを剥離して、無機層上に他の層を形成する際に、保護フィルムの成分が無機層の表面に残存し、この転写した成分の存在により、無機層と無機層上に形成した層との密着性が阻害されるという問題があった。
Here, as described above, the inorganic layer immediately after being formed at a high density in a vacuum by plasma CVD has a high surface activity, and it is presumed that many dangling bonds exist. In particular, when a dense inorganic layer is formed by increasing the applied power or the like, the number of atoms constituting the inorganic layer increases, and it is considered that more dangling bonds are generated. At this time, in the atmosphere, it is considered that the dangling bonds react with elements in the atmosphere and deactivate, but in vacuum, there is no bonding partner, so it is considered that more dangling bonds remain. In addition, even when the conveyance speed is increased to improve production efficiency, the time from the formation of the inorganic layer to the attachment of the protective film is shortened, so the surface activity of the inorganic layer is reduced when the protective film is attached. It is thought that more unbonded hands remain.
Therefore, when a protective film is stuck on the highly active inorganic layer, it is estimated that this unbonded hand and the component of a protective film will couple | bond chemically.
When the chemically bonded inorganic layer and the protective film are peeled off, the chemical bond in the protective film is peeled off, and the protective film components are transferred and remain on the surface of the inorganic layer after the protective film is peeled off. Conceivable.
Therefore, when the protective film is peeled off and another layer is formed on the inorganic layer, the protective film components remain on the surface of the inorganic layer, and the presence of the transferred components causes the inorganic layer and the inorganic layer to remain on the surface. There was a problem that the adhesion with the formed layer was hindered.
 これに対して、本発明においては、無機層14の成膜から保護フィルムの貼着までに15秒以上の時間間隔を空ける不活性化工程を行うことにより、無機層14の表面に存在する未結合手を不活性化させて、無機層14の表面の活性を低減する。これにより、緻密な無機層を形成するため、印加電力を上げた場合や、製造効率向上のため搬送速度を速くした場合であっても、無機層14を保護するための保護フィルム18を貼着した際に、無機層と保護フィルムの成分とが化学的に結合することを抑制することができる。
 従って、保護フィルムを剥離して無機層上に他の層を形成する際に、無機層の表面に保護フィルムの成分が残存することを防止でき、無機層と無機層上に形成した層との密着性を向上できる。
On the other hand, in the present invention, by performing an inactivation step with a time interval of 15 seconds or more from the formation of the inorganic layer 14 to the attachment of the protective film, the surface of the inorganic layer 14 is not present. The bond is inactivated, and the surface activity of the inorganic layer 14 is reduced. Thereby, in order to form a dense inorganic layer, a protective film 18 for protecting the inorganic layer 14 is pasted even when the applied power is increased or the conveyance speed is increased to improve the production efficiency. When it does, it can suppress that the inorganic layer and the component of a protective film couple | bond together chemically.
Therefore, when the protective film is peeled off to form another layer on the inorganic layer, it is possible to prevent the components of the protective film from remaining on the surface of the inorganic layer, and between the inorganic layer and the layer formed on the inorganic layer. Adhesion can be improved.
 なお、機能性フィルムのなかでも、ガスバリアフィルムは、無機層が他の部材に接触して少しでも割れるとバリア性能が大きく低下してしまうおそれがあり、無機層表面への接触に対する影響が大きい。そのため、成膜直後に、他の部材に接触する前に、最初のガイドローラで保護フィルムを貼着して成膜した無機層を保護する必要がある。
 一方で、ガスバリアフィルムには、高いガスバリア性能が求められるため、特に緻密な無機層を形成する必要がある。緻密な無機層を形成するためには印加電力を上げる必要があるため、ガスバリアフィルムの製造において、成膜後の無機層の表面は活性が非常に高い状態となる。
 そのため、ガスバリアフィルムの製造において、無機層表面の未結合手と保護フィルムの成分との化学的結合が生じやすく、保護フィルム剥離の際の成分の転写が生じやすい。
 従って、本発明の機能性フィルムの製造方法は、高密度に形成され高いガスバリア性を有するガスバリアフィルムの製造方法に、より好適に利用される。
Among the functional films, the gas barrier film has a possibility that the barrier performance is greatly deteriorated when the inorganic layer is in contact with other members and cracks even a little, and the influence on the contact with the surface of the inorganic layer is great. Therefore, it is necessary to protect the inorganic layer formed by attaching a protective film with the first guide roller immediately after the film formation and before contacting the other members.
On the other hand, since a gas barrier film requires high gas barrier performance, it is necessary to form a particularly dense inorganic layer. In order to form a dense inorganic layer, it is necessary to increase the applied power. Therefore, in the production of a gas barrier film, the surface of the inorganic layer after film formation is in a very high activity state.
Therefore, in the production of the gas barrier film, chemical bonds between the unbonded hands on the surface of the inorganic layer and the components of the protective film are likely to occur, and the components are easily transferred when the protective film is peeled.
Therefore, the method for producing a functional film of the present invention is more suitably used for a method for producing a gas barrier film that is formed at a high density and has a high gas barrier property.
 巻出し室54にて、保護フィルム18を貼着され、ロール状に巻回された材料ロール93は、有機成膜装置30に供給され、あるいは、図4(A)に示すガスバリアフィルム10aを巻回してなる材料ロール93として次工程に供給される。 In the unwinding chamber 54, the protective film 18 is attached and the material roll 93 wound in a roll shape is supplied to the organic film forming apparatus 30, or the gas barrier film 10a shown in FIG. The material roll 93 that is rotated is supplied to the next process.
 図1(B)に示す有機成膜装置30は、長尺な被成膜材料Zbを長手方向に搬送しつつ、有機層16となる塗料を塗布し、乾燥した後、光照射によって塗膜に含まれる有機化合物を架橋して硬化し、有機層16を形成する装置である。
 図示例において、有機成膜装置30は、一例として、塗布手段36と、乾燥手段38と、光照射手段40と、回転軸42と、巻取り軸46と、搬送ローラ対48および50とを有する。また、有機成膜装置30は、無機層14を成膜する無機成膜装置32で貼着された保護フィルム18を剥離して巻き取る、巻取り軸44も有する。
 なお、有機成膜装置30は、図示した部材以外にも、搬送ローラ対、被成膜材料Zbのガイド部材、各種のセンサなど、長尺な被形成材料を搬送しつつ塗布による成膜を行なう公知の装置に設けられる各種の部材を有してもよい。
The organic film forming apparatus 30 shown in FIG. 1 (B) applies a coating material to be the organic layer 16 while transporting a long film-forming material Zb in the longitudinal direction, and after drying, coats the coating film by light irradiation. This is an apparatus for forming an organic layer 16 by crosslinking and curing an organic compound contained therein.
In the illustrated example, the organic film forming apparatus 30 includes, as an example, a coating unit 36, a drying unit 38, a light irradiation unit 40, a rotating shaft 42, a winding shaft 46, and a pair of conveying rollers 48 and 50. . The organic film forming apparatus 30 also has a take-up shaft 44 that peels off and winds up the protective film 18 attached by the inorganic film forming apparatus 32 that forms the inorganic layer 14.
In addition to the illustrated members, the organic film forming apparatus 30 performs film formation by coating while conveying a long material to be formed such as a pair of transport rollers, a guide member for the material to be deposited Zb, and various sensors. You may have the various members provided in a well-known apparatus.
 有機成膜装置30において、基板12上に無機層14等を形成された長尺な被成膜材料Zbを巻回してなる材料ロール93は、回転軸42に装填される。
 回転軸42に材料ロール93が装填されると、被成膜材料Zbは、材料ロール93から引き出され、搬送ローラ対48を経て、塗布手段36、乾燥手段38および光照射手段40を通過して、搬送ローラ対50を経て、巻取り軸46に至る、所定の搬送経路を通される。
In the organic film forming apparatus 30, a material roll 93 formed by winding a long film forming material Zb in which the inorganic layer 14 or the like is formed on the substrate 12 is loaded on the rotating shaft 42.
When the material roll 93 is loaded on the rotating shaft 42, the film-forming material Zb is pulled out from the material roll 93, passes through the conveying roller pair 48, passes through the coating unit 36, the drying unit 38, and the light irradiation unit 40. Then, it passes through a predetermined conveying path that reaches the winding shaft 46 through the conveying roller pair 50.
 RtoRを利用する有機成膜装置30では、材料ロール93からの被成膜材料Zbの送り出しと、巻取り軸46における有機層を形成した被成膜材料Zbの巻き取りとを同期して行なう。これにより、長尺な被成膜材料Zbを所定の搬送経路で長手方向に搬送しつつ、塗布手段36によって有機層となる塗料を塗布し、乾燥手段38によって塗料を乾燥し、光照射手段40によって硬化することによって、有機層を形成する。 In the organic film forming apparatus 30 using RtoR, the film forming material Zb is fed out from the material roll 93 and the film forming material Zb on which the organic layer is formed on the take-up shaft 46 is synchronously performed. Thus, while the long film-forming material Zb is transported in the longitudinal direction along a predetermined transport path, the coating material 36 is applied with the coating material that is an organic layer, the drying device 38 is used to dry the coating material, and the light irradiation device 40 is used. The organic layer is formed by curing.
 なお、被成膜材料Zbが、無機層14を成膜された後の材料である場合には、無機層14の表面に保護フィルム18が貼着されているので、搬送ローラ対48による搬送、および、この搬送と同期して回転する巻取り軸44による巻取りによって、被成膜材料Zbから保護フィルム18を剥離する。すなわち、有機成膜装置30において、搬送ローラ対48は、保護フィルム18の剥離ローラとしても作用する。
 すなわち、有機成膜装置30は、剥離工程の後、有機層形成工程を行うものである。
In addition, when the film-forming material Zb is a material after the inorganic layer 14 is formed, since the protective film 18 is attached to the surface of the inorganic layer 14, the conveyance by the conveyance roller pair 48, And the protective film 18 is peeled from the film-forming material Zb by winding by the winding shaft 44 that rotates in synchronization with this conveyance. That is, in the organic film forming apparatus 30, the transport roller pair 48 also functions as a peeling roller for the protective film 18.
That is, the organic film forming apparatus 30 performs an organic layer forming process after the peeling process.
 有機層形成工程において形成する有機層16は、有機化合物からなる層で、基本的に、有機層16となる有機化合物を、架橋したものである。 The organic layer 16 formed in the organic layer forming step is a layer made of an organic compound, and is basically a cross-linked organic compound that becomes the organic layer 16.
 本発明の製造方法において、有機層16の形成材料には、限定はなく、公知の有機化合物が、各種、利用可能である。
 具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機珪素化合物の膜が好適に例示される。これらは、複数を併用してもよい。
In the production method of the present invention, the material for forming the organic layer 16 is not limited, and various known organic compounds can be used.
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc. An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
 また、有機層形成工程で形成する有機層16の厚さには特に限定はないが、0.1~50μmが好ましい。
 有機層16の厚さを0.1μm以上とすることにより、無機層14の全面を確実に有機層16で覆い、かつ、有機層16の表面すなわち無機層14の形成面を平坦化できる。
 また、有機層16の厚さを50μm以下とすることにより、有機層16が厚すぎることに起因する、有機層16のクラックや、ガスバリアフィルム10aのカール等の問題の発生を、好適に抑制することができる。
 以上の点を考慮すると、有機層16の厚さは、0.15~5μmとするのが、より好ましい。
The thickness of the organic layer 16 formed in the organic layer forming step is not particularly limited, but is preferably 0.1 to 50 μm.
By setting the thickness of the organic layer 16 to 0.1 μm or more, the entire surface of the inorganic layer 14 can be reliably covered with the organic layer 16, and the surface of the organic layer 16, that is, the formation surface of the inorganic layer 14 can be planarized.
In addition, by setting the thickness of the organic layer 16 to 50 μm or less, it is possible to suitably suppress the occurrence of problems such as cracks in the organic layer 16 and curling of the gas barrier film 10a due to the organic layer 16 being too thick. be able to.
Considering the above points, the thickness of the organic layer 16 is more preferably 0.15 to 5 μm.
 塗布手段36は、被成膜材料Zbの表面に、予め調製した、有機層16を形成する塗料を塗布するものである。
 この塗料は、有機溶剤に、架橋して重合することによって有機層16となる、モノマー、ダイマー、トリマー、オリゴマーなどの有機化合物を、有機溶剤に溶解してなるものである。また、好ましくは、この塗料は、有機層16の密着性を向上するために、シランカップリング剤を含有する。さらに、この塗料には、界面活性剤、重合開始剤、増加粘剤等の必要な成分を、適宜、添加してもよい。
The coating means 36 applies a paint for forming the organic layer 16 prepared in advance on the surface of the film forming material Zb.
This paint is obtained by dissolving an organic compound such as a monomer, a dimer, a trimer, or an oligomer, which becomes the organic layer 16 by crosslinking and polymerizing in an organic solvent, in the organic solvent. Further, preferably, the coating material contains a silane coupling agent in order to improve the adhesion of the organic layer 16. Furthermore, necessary components such as a surfactant, a polymerization initiator, and an increasing viscosity agent may be appropriately added to this paint.
 塗布手段36において、被成膜材料Zbへの塗料の塗布方法には、特に限定は無い。
 従って、塗料の塗布は、ダイコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法等の公知の塗料の塗布方法が、全て利用可能である。
 中でも、非接触で塗料を塗布できるので被成膜材料Zbの表面を損傷しない、ビードの形成により被成膜材料Zbの表面の凹凸等の包埋性に優れる、等の理由で、ダイコート法は、好適に利用される。
There is no particular limitation on the method of applying the coating material to the film forming material Zb in the applying means 36.
Therefore, the application of the paint is all known coating methods such as die coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, etc. Is available.
Above all, because the coating can be applied in a non-contact manner, the surface of the film-forming material Zb is not damaged, and the bead formation is excellent in the embedding of the surface of the film-forming material Zb, etc. Are preferably used.
 前述のように、被成膜材料Zbは、次いで、乾燥手段38に搬送され、塗布手段36が塗布した塗料を乾燥させる。
 乾燥手段38による塗料の乾燥方法には、限定はなく、被成膜材料Zbが光照射手段40に至る前に、塗料を乾燥して有機溶剤の除去等を行って、架橋が可能な状態にできるものであれば、公知の乾燥手段が全て利用可能である。一例として、ヒータによる加熱乾燥、温風による加熱乾燥等が例示される。
As described above, the film forming material Zb is then transported to the drying unit 38, and the coating material applied by the coating unit 36 is dried.
The method of drying the paint by the drying means 38 is not limited, and before the film-forming material Zb reaches the light irradiation means 40, the paint is dried and the organic solvent is removed so that crosslinking is possible. Any known drying means can be used if possible. As an example, heat drying with a heater, heat drying with warm air, and the like are exemplified.
 なお、乾燥手段38における乾燥の際の被成膜材料Zbの温度は、70℃以上となるのが好ましい。
 シランカップリング剤を含有する塗料を用いた場合に、被成膜材料Zbを70℃以上の温度として塗料を乾燥することにより、有機層16と無機層14との密着性がより向上する点で好ましい。
The temperature of the film formation material Zb at the time of drying in the drying means 38 is preferably 70 ° C. or higher.
When the coating material containing the silane coupling agent is used, the adhesion between the organic layer 16 and the inorganic layer 14 is further improved by drying the coating material with the film-forming material Zb at a temperature of 70 ° C. or higher. preferable.
 被成膜材料Zbは、次いで、光照射手段40に搬送される。光照射手段40は、塗布手段36が塗布し乾燥手段38が乾燥した塗料に、紫外線や可視光などを照射して、あるいは、加熱等によって、塗料に含まれるモノマーなどの有機化合物を架橋して硬化し、有機層16とするものである。 The film formation material Zb is then transported to the light irradiation means 40. The light irradiation means 40 irradiates the coating material applied by the application means 36 and dried by the drying means 38 with ultraviolet rays or visible light, or crosslinks an organic compound such as a monomer contained in the coating material by heating or the like. The organic layer 16 is cured.
 ここで、前述のとおり、本発明においては、無機層14の形成後、15秒以上の時間間隔を空けて、無機層14表面の活性を低減した後に、保護フィルム18の貼着を行っているので、無機層14上に有機層16を形成するために保護フィルム18を剥離した際に、保護フィルム18の成分の残存を低減できる。従って、無機層14と無機層14上に形成される有機層16との密着性を向上できる。
 特に、有機層16の形成材料となる塗料がシランカップリング剤を含有している場合には、無機層14の表面に炭素等の保護フィルム18の成分が残存していると、シランカップリング剤による密着性向上の効果が得られず、無機層14と有機層16との密着性が低下するおそれがある。
 これに対して、本発明では、保護フィルム18剥離した際の無機層14表面への保護フィルム18の成分の残存を低減できるので、シランカップリング剤による密着性向上の効果を十分に発現させることができ、無機層14と有機層16との密着性を向上することができる。
Here, as described above, in the present invention, after the inorganic layer 14 is formed, the protective film 18 is adhered after reducing the activity of the surface of the inorganic layer 14 with a time interval of 15 seconds or more. Therefore, when the protective film 18 is peeled off in order to form the organic layer 16 on the inorganic layer 14, the remaining components of the protective film 18 can be reduced. Therefore, the adhesion between the inorganic layer 14 and the organic layer 16 formed on the inorganic layer 14 can be improved.
In particular, when the coating material that forms the organic layer 16 contains a silane coupling agent, if the component of the protective film 18 such as carbon remains on the surface of the inorganic layer 14, the silane coupling agent The effect of improving the adhesion due to may not be obtained, and the adhesion between the inorganic layer 14 and the organic layer 16 may be reduced.
On the other hand, in this invention, since the residual of the component of the protective film 18 to the inorganic layer 14 surface at the time of peeling off the protective film 18 can be reduced, the effect of improving the adhesion by the silane coupling agent can be sufficiently expressed. And the adhesion between the inorganic layer 14 and the organic layer 16 can be improved.
 なお、光照射手段40による塗膜の硬化時には、必要に応じて、被成膜材料Zbにおける光照射手段40による光照射領域を、窒素置換等による不活性雰囲気とするようにしてもよい。また、必要に応じて、裏面に当接するバックアップローラ等を用いて、硬化時に被成膜材料Zbすなわち塗膜の温度を調節するようにしてもよい。 When the coating film is cured by the light irradiation means 40, the light irradiation area by the light irradiation means 40 in the film forming material Zb may be made an inert atmosphere by nitrogen substitution or the like, if necessary. Further, if necessary, a temperature of the film forming material Zb, that is, the coating film, may be adjusted at the time of curing by using a backup roller or the like that contacts the back surface.
 光照射手段40による塗膜の硬化時における被成膜材料Zbの温度は、30℃以上が好ましく、50℃以上がより好ましく、60℃以上がより好ましい。
 硬化工程における被成膜材料Zbの温度を上記範囲とすることにより、架橋密度を上げることができ、有機層の硬度および耐擦傷性を向上できる等の点で好ましい。
The temperature of the film forming material Zb when the coating film is cured by the light irradiation means 40 is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and more preferably 60 ° C. or higher.
By setting the temperature of the film-forming material Zb in the curing step within the above range, it is preferable in that the crosslinking density can be increased and the hardness and scratch resistance of the organic layer can be improved.
 なお、本発明において、有機層となる有機化合物の架橋は、光重合に限定はされない。すなわち、有機化合物の架橋は、加熱重合、電子ビーム重合、プラズマ重合等、有機層16となる有機化合物に応じた、各種の方法が利用可能である。
 本発明においては、前述のように、有機層16としてアクリル樹脂やメタクリル樹脂などのアクリル系樹脂が好適に利用されるので、光重合が好適に利用される。
In the present invention, the crosslinking of the organic compound that becomes the organic layer is not limited to photopolymerization. That is, various methods according to the organic compound used as the organic layer 16 can be used for crosslinking of the organic compound, such as heat polymerization, electron beam polymerization, and plasma polymerization.
In the present invention, as described above, since an acrylic resin such as an acrylic resin or a methacrylic resin is preferably used as the organic layer 16, photopolymerization is preferably used.
 このようにして有機層16を形成された被成膜材料Zbは、搬送ローラ対50に挟持搬送されて巻取り軸46に至り、巻取り軸46によって、再度、ロール状に巻き取られ、有機層16を形成された被成膜材料Zbを巻回してなる材料ロール61とされる。
 この材料ロール61は、有機層16を形成した被成膜材料Zbを巻回してなる材料ロール61として無機成膜装置32に供給され、または、製品として出荷あるいは保管され、もしくは、次の工程等に供給される。
The film-forming material Zb on which the organic layer 16 has been formed in this manner is nipped and conveyed by the conveyance roller pair 50 to reach the take-up shaft 46, and is taken up again in a roll shape by the take-up shaft 46. The material roll 61 is formed by winding the film forming material Zb on which the layer 16 is formed.
The material roll 61 is supplied to the inorganic film forming apparatus 32 as a material roll 61 formed by winding the film forming material Zb on which the organic layer 16 is formed, or is shipped or stored as a product, or the next process or the like. To be supplied.
 以下、図1(A)および図1(B)に示す製造装置において、図5(A)に示す無機層14を2層、有機層16を1層形成し、保護フィルム18を積層したガスバリアフィルム10dを作製する際の作用を説明することにより、本発明の製造方法について、より詳細に説明する。
 なお、図4(A)に示すガスバリアフィルム10aなど、その他の層構成を有するガスバリアフィルムを作製する際にも、形成する無機層14の数および有機層16の数や、層構成に応じて、同様の無機層14および有機層16の形成を繰り返し行えばよい。
Hereinafter, in the manufacturing apparatus shown in FIGS. 1 (A) and 1 (B), a gas barrier film in which two inorganic layers 14 and one organic layer 16 shown in FIG. 5 (A) are formed and a protective film 18 is laminated. The production method of the present invention will be described in more detail by explaining the action when producing 10d.
In addition, when producing a gas barrier film having other layer configuration such as the gas barrier film 10a shown in FIG. 4A, depending on the number of inorganic layers 14 and the number of organic layers 16 to be formed, and the layer configuration, The formation of the similar inorganic layer 14 and organic layer 16 may be repeated.
 まず、準備工程として、基板12を巻回してなる材料ロール61を準備する。
 無機成膜装置32において、基板12を巻回してなる材料ロール61が回転軸64に装填されると、被成膜材料Zaである基板12が引き出され、巻出し室54から、成膜室56を経て巻出し室54の巻取り軸92に至る所定の経路を通される。
First, as a preparation process, a material roll 61 formed by winding the substrate 12 is prepared.
In the inorganic film forming apparatus 32, when the material roll 61 formed by winding the substrate 12 is loaded on the rotating shaft 64, the substrate 12 as the film forming material Za is drawn out, and the film forming chamber 56 is extracted from the unwind chamber 54. Through a predetermined path to the take-up shaft 92 of the unwind chamber 54.
 材料ロール61から送り出された被成膜材料Zaは、ガイドローラ68、84aによって案内されてドラム80に巻き掛けられ、ドラム80に支持されて所定の経路を搬送されつつ、成膜室56に搬送される。
 成膜室56に搬送された、被成膜材料Zaは、成膜工程として、ドラム80に支持されて所定の経路を搬送されつつ、例えば、CCP-CVDによって、1層目の無機層14を形成される。
The film formation material Za sent out from the material roll 61 is guided by the guide rollers 68 and 84a, wound around the drum 80, supported by the drum 80, and conveyed to the film formation chamber 56 while being conveyed through a predetermined path. Is done.
The film forming material Za transferred to the film forming chamber 56 is supported by the drum 80 and transferred through a predetermined path as a film forming process, and the first inorganic layer 14 is formed by, for example, CCP-CVD. It is formed.
 無機層14を形成された被成膜材料Zaは、不活性化工程として、巻出し室54に搬送され、ドラム80から離間して、段付きローラ84bおよびガイドローラ90aに案内されて貼着ローラ90bに至る。このとき、成膜室56から貼着ローラ90bへの搬送にかかる時間を、15秒以上として、無機層14表面の未結合手を不活性化する。 The film forming material Za on which the inorganic layer 14 is formed is conveyed to the unwinding chamber 54 as an inactivation step, separated from the drum 80, and guided to the stepped roller 84b and the guide roller 90a to be a sticking roller. Up to 90b. At this time, the time required for conveyance from the film forming chamber 56 to the sticking roller 90b is set to 15 seconds or more, and the dangling bonds on the surface of the inorganic layer 14 are inactivated.
 貼着ローラ90bに搬送された被成膜材料Zaには、貼着工程として、1層目の無機層14上に、フィルムロール87から送り出された保護フィルム18が貼着される(図4(A)参照)。 The protective film 18 sent out from the film roll 87 is stuck to the film-forming material Za conveyed to the sticking roller 90b as the sticking step on the first inorganic layer 14 (FIG. 4 ( A)).
 保護フィルム18が貼着された被成膜材料Za、すなわち、被成膜材料Zbは、巻取り軸92によってロール状に巻回され、材料ロール93とされる。 The film forming material Za to which the protective film 18 is attached, that is, the film forming material Zb, is wound into a roll shape by the take-up shaft 92 to form a material roll 93.
 次に、1層目の無機層14を形成され保護フィルム18が積層された基板12を巻回してなる材料ロール93は、有機成膜装置30の回転軸42に装填される。
 回転軸42に材料ロール93が装填されると、被成膜材料Zbである1層目の無機層14を形成された基板12は、材料ロール93から引き出され、搬送ローラ対48を経て、塗布手段36、乾燥手段38および光照射手段40を通過して、搬送ローラ対50を経て、巻取り軸46に至る、所定の搬送経路を通される。
Next, a material roll 93 formed by winding the substrate 12 on which the first inorganic layer 14 is formed and the protective film 18 is laminated is loaded on the rotating shaft 42 of the organic film forming apparatus 30.
When the material roll 93 is loaded on the rotating shaft 42, the substrate 12 on which the first inorganic layer 14 that is the film formation material Zb is formed is pulled out of the material roll 93 and applied through the conveying roller pair 48. It passes through the means 36, the drying means 38, and the light irradiation means 40, passes through a pair of transport rollers 50, and passes through a predetermined transport path to the winding shaft 46.
 材料ロール93から引き出された被成膜材料Zbは、剥離工程として、搬送ローラ対48によって保護フィルム18を剥離されて(図4(B)参照)、有機層形成工程に供される。すなわち、保護フィルム18を剥離された被成膜材料Zbは、塗布手段36に搬送され、表面に、有機層16となる塗料が塗布される。前述のように、有機層16となる塗料は、形成する有機層16に応じたモノマー等の有機化合物、シランッカップリング剤、重合開始剤等を有機溶剤に溶解してなるものである。
 有機層16となる塗料が塗布された被成膜材料Zbは、次いで、乾燥手段38によって加熱されて、有機溶剤を除去され塗料が乾燥される。
The film forming material Zb drawn from the material roll 93 is subjected to the organic layer forming step after the protective film 18 is peeled off by the transport roller pair 48 (see FIG. 4B) as a peeling step. That is, the film-forming material Zb from which the protective film 18 has been peeled is transported to the coating means 36, and the coating material to be the organic layer 16 is applied to the surface. As described above, the paint to be the organic layer 16 is obtained by dissolving an organic compound such as a monomer, a silan coupling agent, a polymerization initiator, and the like in an organic solvent according to the organic layer 16 to be formed.
The film-forming material Zb to which the coating material to be the organic layer 16 is applied is then heated by the drying means 38 to remove the organic solvent and dry the coating material.
 塗料が乾燥された被成膜材料Zbは、次いで、光照射部によって紫外線等を照射され、有機化合物が重合されて硬化され、1層目の有機層16が形成される(図4(C)参照)。なお、必要に応じて、有機層16となる有機化合物の硬化は、窒素雰囲気等の不活性雰囲気で行うようにしてもよい。また、有機層16となる有機化合物の硬化の際に、基板12を加熱してもよい。 The film-forming material Zb from which the paint has been dried is then irradiated with ultraviolet rays or the like by the light irradiation unit, and the organic compound is polymerized and cured to form the first organic layer 16 (FIG. 4C). reference). If necessary, the organic compound that becomes the organic layer 16 may be cured in an inert atmosphere such as a nitrogen atmosphere. Further, the substrate 12 may be heated when the organic compound that becomes the organic layer 16 is cured.
 1層目の有機層16が形成された被成膜材料Zbは、搬送ローラ対50によって搬送されて、巻取り軸46によってロール状に巻回され、無機層14および有機層16が1層ずつ形成された基板12を巻回してなる材料ロール61として、再度、図1(A)に示す無機成膜装置32に供給される。 The film-forming material Zb on which the first organic layer 16 is formed is conveyed by the conveying roller pair 50 and wound in a roll shape by the take-up shaft 46, and the inorganic layer 14 and the organic layer 16 are layered one by one. A material roll 61 formed by winding the formed substrate 12 is supplied again to the inorganic film forming apparatus 32 shown in FIG.
 無機層14および有機層16が1層ずつ形成された基板12を巻回してなる材料ロール61は、先と同様、無機成膜装置32の回転軸64に装填され、材料ロール61から、1層の無機層14および有機層16が形成された基板12が被成膜材料Zaとして引き出されて巻取り軸92まで通紙され、1層目の有機層16の上に2層目の無機層14が形成されて、不活性化工程を経た後、さらに、保護フィルム18が貼着されて、無機層14、有機層16および無機層14からなる有機無機積層体と保護フィルム18とが積層された、図5(A)に示されるガスバリアフィルム10dとされる。
 このガスバリアフィルム10dは、巻取り軸92にロール状に巻回され、ガスバリアフィルム10dが巻回された材料ロール93として、製品として出荷あるいは保管され、もしくは、次の工程等に供給される。例えば、さらに、材料ロール93を有機成膜装置30に供給して、保護フィルム18を剥離して(図5(B))、有機層16を形成して(図5(C))もよい。
The material roll 61 formed by winding the substrate 12 on which the inorganic layer 14 and the organic layer 16 are formed one by one is loaded on the rotating shaft 64 of the inorganic film forming apparatus 32 as described above. The substrate 12 on which the inorganic layer 14 and the organic layer 16 are formed is drawn out as a film forming material Za and passed through the take-up shaft 92, and the second inorganic layer 14 is formed on the first organic layer 16. After the inactivation step, the protective film 18 was further stuck, and the organic / inorganic laminate composed of the inorganic layer 14, the organic layer 16, and the inorganic layer 14 and the protective film 18 were laminated. The gas barrier film 10d shown in FIG.
The gas barrier film 10d is wound around the winding shaft 92 in a roll shape, and is shipped or stored as a product as a material roll 93 around which the gas barrier film 10d is wound, or is supplied to the next step or the like. For example, the material roll 93 may be further supplied to the organic film forming apparatus 30, the protective film 18 may be peeled off (FIG. 5B), and the organic layer 16 may be formed (FIG. 5C).
 ここで、本発明においては、前述のように、無機層14の成膜後、15秒以上の時間間隔を空けて無機層14表面の未結合手を不活性化した後に、貼着ローラ90bによる保護フィルム18の貼着を行っているので、無機層14から保護フィルム18を剥離した際の、保護フィルム18の成分の残存を低減でき、無機層14と無機層14上に形成される有機層16との密着性を向上できる。 Here, in the present invention, as described above, after the inorganic layer 14 is formed, after the dangling bonds on the surface of the inorganic layer 14 are inactivated by a time interval of 15 seconds or longer, the bonding roller 90b is used. Since the protective film 18 is adhered, the remaining of the components of the protective film 18 when the protective film 18 is peeled from the inorganic layer 14 can be reduced, and the organic layer formed on the inorganic layer 14 and the inorganic layer 14. Adhesion with 16 can be improved.
 なお、上記実施形態では、無機層14の成膜後、15秒以上の時間間隔を空けて無機層14表面の未結合手を不活性化する構成としたが、本発明はこれに限定はされない。
 図3は、本発明における不活性化工程の他の一例を実施する無機成膜装置の一例である。
 なお、図3に示す無機成膜装置110は、段付きローラ84bに代えて、貼着ローラ114を有する以外は、図1(A)に示す無機成膜装置32と同じ構成を有するので、同一の構成要素には、同一の符号を付し、その詳細な説明は省略する。
In the above-described embodiment, after the inorganic layer 14 is formed, the dangling bonds on the surface of the inorganic layer 14 are deactivated with a time interval of 15 seconds or more. However, the present invention is not limited to this. .
FIG. 3 is an example of an inorganic film forming apparatus for carrying out another example of the inactivation step in the present invention.
The inorganic film forming apparatus 110 shown in FIG. 3 has the same configuration as the inorganic film forming apparatus 32 shown in FIG. 1A except that it has a sticking roller 114 instead of the stepped roller 84b. The same reference numerals are given to the components, and detailed description thereof is omitted.
 無機成膜装置110は、真空チャンバ52と、この真空チャンバ52内に形成される、巻出し室112と、成膜室56と、ドラム80とを有して構成される。
 巻出し室112は、真空チャンバ52内の成膜室56以外の領域である。巻出し室112は、巻取り軸92と、ガイドローラ68、84aおよび90と、貼着ローラ114と、回転軸64と、回転軸86と、真空排気手段70とを有する。
The inorganic film forming apparatus 110 includes a vacuum chamber 52, an unwinding chamber 112 formed in the vacuum chamber 52, a film forming chamber 56, and a drum 80.
The unwinding chamber 112 is a region other than the film forming chamber 56 in the vacuum chamber 52. The unwinding chamber 112 has a winding shaft 92, guide rollers 68, 84 a and 90, a sticking roller 114, a rotating shaft 64, a rotating shaft 86, and a vacuum exhaust means 70.
 貼着ローラ114は、ドラム80の下流に配置され、成膜した無機層14上に、保護フィルム18を貼着する貼着ローラである。ここで、貼着ローラ114は、図示しない冷却手段によって15℃以下に冷却されている。
 貼着ローラ114を15℃以下に冷却することにより、被成膜材料Zaに保護フィルム18を貼着する際の、基板12を十分に冷却する。
The adhering roller 114 is an adhering roller that is disposed downstream of the drum 80 and adheres the protective film 18 onto the inorganic layer 14 that has been formed. Here, the sticking roller 114 is cooled to 15 ° C. or less by a cooling means (not shown).
By cooling the sticking roller 114 to 15 ° C. or lower, the substrate 12 is sufficiently cooled when the protective film 18 is stuck to the film forming material Za.
 貼着ローラ114を10℃以下に冷却して、被成膜材料Zaに保護フィルム18を貼着する際の基板12を十分に冷却することで、無機層14表面の未結合手を不活性化することができる。これにより、保護フィルム18を貼着した際に、無機層と保護フィルムの成分とが化学的に結合することを抑制することができる。
 従って、保護フィルムを剥離して無機層上に他の層を形成する際に、無機層の表面に保護フィルムの成分が残存することを防止でき、無機層と無機層上に形成した層との密着性を向上できる。
The bonding roller 114 is cooled to 10 ° C. or lower to sufficiently cool the substrate 12 when the protective film 18 is bonded to the film forming material Za, thereby inactivating the unbonded hands on the surface of the inorganic layer 14. can do. Thereby, when the protective film 18 is stuck, it can suppress that an inorganic layer and the component of a protective film couple | bond together chemically.
Therefore, when the protective film is peeled off to form another layer on the inorganic layer, it is possible to prevent the components of the protective film from remaining on the surface of the inorganic layer, and between the inorganic layer and the layer formed on the inorganic layer. Adhesion can be improved.
 ここで、保護フィルム18貼着の際の基板12の温度は、15℃以下が好ましく、10℃以下がより好ましい。これにより、無機層14表面の活性をより好適に低減することができる。 Here, the temperature of the substrate 12 when the protective film 18 is stuck is preferably 15 ° C. or less, and more preferably 10 ° C. or less. Thereby, the activity of the inorganic layer 14 surface can be reduced more suitably.
 なお、図3に示す例では、貼着ローラ114を冷却する構成としたが、これに限定はされず、ドラム80と貼着ローラ114との間にガイドローラを配置して、このガイドローラを冷却して基板12を冷却する構成としてもよい。あるいは、ドラム80と貼着ローラ114との間に、冷風を吹き付ける装置等の公知の冷却手段を配置して、基板12を冷却して無機層14表面の未結合手を不活性化する構成としてもよい。 In the example shown in FIG. 3, the adhering roller 114 is cooled. However, the present invention is not limited to this, and a guide roller is disposed between the drum 80 and the adhering roller 114, and this guide roller is used. It is good also as a structure which cools and the board | substrate 12 is cooled. Alternatively, a known cooling means such as a device for blowing cold air is disposed between the drum 80 and the sticking roller 114 to cool the substrate 12 and inactivate the unbonded hands on the surface of the inorganic layer 14. Also good.
 また、不活性化工程は、無機層14の成膜から保護フィルム18の貼着までの時間を15秒以上とする構成と、基板12の冷却を行う構成とを組み合わせた構成としてもよい。すなわち、図1(A)に示す無機成膜装置32において、貼着ローラ90bを冷却して、基板12を冷却する構成としてもよい。 Further, the deactivation step may be a combination of a configuration in which the time from the formation of the inorganic layer 14 to the attachment of the protective film 18 is 15 seconds or more and a configuration in which the substrate 12 is cooled. In other words, in the inorganic film forming apparatus 32 shown in FIG. 1A, the substrate 12 may be cooled by cooling the sticking roller 90b.
 以上、本発明の機能性フィルムの製造方法について詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 As mentioned above, although the manufacturing method of the functional film of this invention was demonstrated in detail, this invention is not limited to the said embodiment, Even if various improvements and changes are performed in the range which does not deviate from the summary of this invention. Of course it is good.
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。
 [実施例1]
 (基板準備工程)
 基板12として、幅1000mmで厚さが100μmの長尺なPETフィルム(東洋紡株式会社製 コスモシャインA4300)の表面に、アクリレートからなる有機層が形成されたものを用意した。なお、この有機層は、有機成膜装置30による有機層16の形成方法と同様の方法で、長尺なPETフィルム上に形成したものである。
 被成膜材料Zaとなる基板12を巻回してなる材料ロール61を、図1(A)に示す無機成膜装置32の回転軸に装填して、被成膜材料Zaを所定の搬送経路に挿通し、搬送しつつ、以下の成膜工程、不活性化工程および貼着工程を行った。
Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.
[Example 1]
(Board preparation process)
The substrate 12 was prepared by forming an organic layer made of acrylate on the surface of a long PET film having a width of 1000 mm and a thickness of 100 μm (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.). This organic layer is formed on a long PET film by the same method as the method for forming the organic layer 16 by the organic film forming apparatus 30.
A material roll 61 formed by winding a substrate 12 to be a film forming material Za is loaded on the rotation shaft of the inorganic film forming apparatus 32 shown in FIG. 1A, and the film forming material Za is placed on a predetermined transport path. The following film formation process, inactivation process, and sticking process were performed while being inserted and conveyed.
 (成膜工程)
 まず、成膜室56に搬送された基板12の表面に、厚さ50nmの窒化ケイ素からなる無機層14を形成した。
(Film formation process)
First, the inorganic layer 14 made of silicon nitride having a thickness of 50 nm was formed on the surface of the substrate 12 transferred to the film formation chamber 56.
 成膜室56に供給される原料ガスは、シランガス(SiH4)、アンモニアガス(NH3)および水素ガス(H2)を用いた。供給量は、0℃、0.1013MPaにおける体積に換算した流量が、シランガスが100mL/min、アンモニアガスが400mL/min、水素ガスが1000mL/minとした。なお、流量については、以下の説明も同様に、0℃、0.1013MPaにおける体積に換算した流量である。
 また、成膜圧力は50Paとした。
 成膜電極82には、高周波電源83から、周波数13.5MHzで2kWのプラズマ励起電力を供給した。
 成膜した無機層14中の炭素の組成比をXPS測定で測定したところ、1%以下であった。
Silane gas (SiH 4 ), ammonia gas (NH 3 ), and hydrogen gas (H 2 ) were used as source gases supplied to the film forming chamber 56. As for the supply amount, the flow rate converted to the volume at 0 ° C. and 0.1013 MPa was 100 mL / min for silane gas, 400 mL / min for ammonia gas, and 1000 mL / min for hydrogen gas. In addition, about the flow volume, the following description is the flow volume converted into the volume in 0 degreeC and 0.1013 MPa similarly.
The film forming pressure was 50 Pa.
A plasma excitation power of 2 kW at a frequency of 13.5 MHz was supplied from the high frequency power supply 83 to the film forming electrode 82.
The composition ratio of carbon in the deposited inorganic layer 14 was measured by XPS and found to be 1% or less.
 (不活性化工程)
 ドラム80と貼着ローラ90bとの間には、1つの段付きローラ84bおよび1つのガイドローラ90aとを配置して、成膜室56から貼着ローラ90bに搬送されるまでの時間、すなわち、無機層の成膜から保護フィルム貼着までの時間を60秒とした。
(Inactivation process)
Between the drum 80 and the adhering roller 90b, one stepped roller 84b and one guide roller 90a are arranged, and the time until the film is transferred from the film forming chamber 56 to the adhering roller 90b, that is, The time from the formation of the inorganic layer to the attachment of the protective film was 60 seconds.
 (貼着工程)
 次に、貼着ローラ90bにより、被成膜材料Zaに保護フィルム18を貼着した。
 なお、保護フィルム18として、幅が1000mmで厚さが50μmの長尺なポリエチレンフィルム(株式会社サンエー化研社製、SUNYTECT PAC-2)を用いた。
(Attaching process)
Next, the protective film 18 was stuck to the film forming material Za by the sticking roller 90b.
As the protective film 18, a long polyethylene film having a width of 1000 mm and a thickness of 50 μm (SUNYTECT PAC-2, manufactured by Sanei Kaken Co., Ltd.) was used.
 所定の長さの被成膜材料Zaについて、成膜工程、不活性化工程、貼着工程を施した後、巻取り軸92への巻回しが終了したら、巻出し室54および成膜室56に清浄化した乾燥空気を導入して大気開放した。
 次いで、無機層14を形成し保護フィルム18を貼着した基板12を巻回してなる材料ロール93(図4(A)参照)を、巻出し室54から取り出した。
After the film-forming material Za having a predetermined length is subjected to a film-forming process, an inactivation process, and a sticking process, when the winding around the winding shaft 92 is completed, the unwind chamber 54 and the film-forming chamber 56 are finished. Cleaned dry air was introduced to open the atmosphere.
Next, a material roll 93 (see FIG. 4A) formed by winding the substrate 12 on which the inorganic layer 14 was formed and the protective film 18 was attached was taken out from the unwind chamber 54.
 (剥離工程)
 無機層14を形成し、保護フィルム18を貼着した基板12、すなわち、被成膜材料Zbを巻回してなる材料ロール93を、図1(B)に示す有機成膜装置30の回転軸42に装填して、所定の搬送経路に挿通し、搬送しつつ各工程を行った。
 まず、搬送ローラ対48および巻取り軸44により、被成膜材料Zbの保護フィルム18を剥離した。
(Peeling process)
The substrate 12 on which the inorganic layer 14 is formed and the protective film 18 is adhered, that is, the material roll 93 formed by winding the film forming material Zb, is rotated on the rotating shaft 42 of the organic film forming apparatus 30 shown in FIG. Each process was carried out while being transported through a predetermined transport path.
First, the protective film 18 of the film forming material Zb was peeled off by the conveying roller pair 48 and the winding shaft 44.
 (有機層形成工程)
 剥離工程の後、塗布手段36、乾燥手段38、光照射手段40により、無機層14の表面に、厚さ3μmの有機層16を形成して、図4(C)に示すガスバリアフィルム10cを作製した。
(Organic layer formation process)
After the peeling step, the organic layer 16 having a thickness of 3 μm is formed on the surface of the inorganic layer 14 by the coating unit 36, the drying unit 38, and the light irradiation unit 40, and the gas barrier film 10c shown in FIG. did.
 有機層16を形成する塗料は、MEK(メチルエチルケトン)に、TMPTA(ダイセル・サイテック株式会社製)、光重合開始剤(チバケミカルズ株式会社製 Irg189)、シランカップリング剤(信越化学工業株式会社製 信越シリコーンKBM5103)を添加して、調製した。すなわち、有機層16は、TMPTAを重合してなる層である。
 光重合開始剤の添加量は、有機溶剤を除いた濃度で2質量%、シランカップリング剤の添加量は、有機溶剤を除いた濃度で10質量%、とした。すなわち固形分におけるTMPTAは88質量%とした。また、これらの比率で配合した成分をMEKに希釈した塗料の固形分濃度は、15質量%とした。すなわちMEKは85質量%とした。
The paint for forming the organic layer 16 is MEK (methyl ethyl ketone), TMPTA (manufactured by Daicel Cytec Co., Ltd.), photopolymerization initiator (Irg189 manufactured by Ciba Chemicals Co., Ltd.), silane coupling agent (Shin-Etsu Chemical Co., Ltd., Shin-Etsu). Silicone KBM5103) was added to prepare. That is, the organic layer 16 is a layer formed by polymerizing TMPTA.
The addition amount of the photopolymerization initiator was 2% by mass in a concentration excluding the organic solvent, and the addition amount of the silane coupling agent was 10% by mass in the concentration excluding the organic solvent. That is, TMPTA in solid content was 88 mass%. Moreover, the solid content concentration of the paint obtained by diluting the components blended in these ratios with MEK was 15% by mass. That is, MEK was 85 mass%.
 塗布手段36はダイコータを用いた。乾燥手段38は、ノズルからの乾燥風を吹き出す装置を用い、乾燥は80℃で行った。さらに、光照射手段40からは紫外線を照射して、重合を行った。なお、紫外線による硬化は、紫外線の照射量が積算照射量で約500mJ/cm2となるようにして、基板12を裏面側から80℃に加熱しながら行った。 The coating means 36 used a die coater. The drying means 38 used the apparatus which blows off the drying wind from a nozzle, and drying was performed at 80 degreeC. Further, the light irradiation means 40 was irradiated with ultraviolet rays to carry out polymerization. The curing with ultraviolet rays was carried out while heating the substrate 12 to 80 ° C. from the back side so that the irradiation amount of the ultraviolet rays was about 500 mJ / cm 2 in terms of the integrated irradiation amount.
 [実施例2]
 成膜工程における処理条件を以下のとおりに変更し、不活性化工程の時間を16秒とした以外は実施例1と同様にして、ガスバリアフィルムを作製した。
[Example 2]
A gas barrier film was produced in the same manner as in Example 1 except that the treatment conditions in the film formation step were changed as follows and the time of the inactivation step was changed to 16 seconds.
 搬送方向に直列に成膜室56を2つ配置し、各成膜室における原料ガスの供給量は、シランガスが250mL/min、アンモニアガスが1000mL/min、水素ガスが2500mL/minとした。
 また、成膜電極82に供給するプラズマ励起電力は、5kWとした。
 成膜した無機層14中の炭素の組成比をXPS測定で測定したところ、1%以下であった。
Two film formation chambers 56 are arranged in series in the transport direction, and the supply amount of the raw material gas in each film formation chamber is 250 mL / min for silane gas, 1000 mL / min for ammonia gas, and 2500 mL / min for hydrogen gas.
The plasma excitation power supplied to the film forming electrode 82 was 5 kW.
The composition ratio of carbon in the deposited inorganic layer 14 was measured by XPS and found to be 1% or less.
 [実施例3]
 ドラム80と貼着ローラ90bとの間に、2つの段付きローラ84bおよび2つのガイドローラ90aとを配置して、不活性化工程において、成膜室56から貼着ローラ90bに搬送されるまでの時間を25秒とした以外は、実施例2と同様にして、ガスバリアフィルムを作製した。
[Example 3]
Between the drum 80 and the adhering roller 90b, two stepped rollers 84b and two guide rollers 90a are arranged, and in the inactivation process, until the film is transferred from the film forming chamber 56 to the adhering roller 90b. A gas barrier film was produced in the same manner as in Example 2 except that the time was set to 25 seconds.
 [実施例4]
 不活性化工程において、段付きローラ84bを配置して成膜工程から貼着工程までの時間を15秒以上とする構成に代えて、貼着ローラを冷却して基板12を冷却する構成とした以外は、実施例1と同様にして、ガスバリアフィルムを作製した。
 すなわち、実施例4においては、図1(A)に示す無機成膜装置32に代えて、図3に示す無機成膜装置110を用いて成膜工程、不活性化工程および貼着工程を行った。
 なお、貼着ローラ114の冷却温度は10℃とした。
[Example 4]
In the deactivation process, instead of the configuration in which the stepped roller 84b is arranged and the time from the film formation process to the bonding process is set to 15 seconds or more, the bonding roller is cooled to cool the substrate 12. Except for the above, a gas barrier film was produced in the same manner as in Example 1.
That is, in Example 4, instead of the inorganic film forming apparatus 32 shown in FIG. 1 (A), the inorganic film forming apparatus 110 shown in FIG. It was.
The cooling temperature of the sticking roller 114 was 10 ° C.
 [実施例5]
 貼着ローラ114の冷却温度を0℃とした以外は、実施例4と同様にして、ガスバリアフィルムを作製した。
[Example 5]
A gas barrier film was produced in the same manner as in Example 4 except that the cooling temperature of the sticking roller 114 was 0 ° C.
 [実施例6]
 成膜工程における処理条件を以下のとおりに変更した以外は実施例5と同様にして、ガスバリアフィルムを作製した。
[Example 6]
A gas barrier film was produced in the same manner as in Example 5 except that the processing conditions in the film forming step were changed as follows.
 搬送方向に直列に成膜室56を2つ配置し、各成膜室における原料ガスの供給量は、シランガスが250mL/min、アンモニアガスが1000mL/min、水素ガスが2500mL/minとした。
 また、成膜電極82に供給するプラズマ励起電力は、5kWとした。
 成膜した無機層14中の炭素の組成比をXPS測定で測定したところ、1%以下であった。
Two film formation chambers 56 are arranged in series in the transport direction, and the supply amount of the raw material gas in each film formation chamber is 250 mL / min for silane gas, 1000 mL / min for ammonia gas, and 2500 mL / min for hydrogen gas.
The plasma excitation power supplied to the film forming electrode 82 was 5 kW.
The composition ratio of carbon in the deposited inorganic layer 14 was measured by XPS and found to be 1% or less.
 [実施例7]
 貼着ローラ114の冷却温度を-15℃とした以外は、実施例6と同様にして、ガスバリアフィルムを作製した。
[Example 7]
A gas barrier film was produced in the same manner as in Example 6 except that the cooling temperature of the sticking roller 114 was −15 ° C.
 [比較例1]
 段付きローラを配置せず、不活性化工程を行わない以外は、すなわち、成膜室から貼着ローラに搬送されるまでの時間を12秒とした以外は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 1]
Except that the stepped roller is not arranged and the inactivation step is not performed, that is, except that the time from the film formation chamber to the sticking roller is 12 seconds, the same as in Example 1, A gas barrier film was prepared.
 [比較例2]
 搬送方向に直列に成膜室56を2つ配置し、段付きローラを配置せず、不活性化工程を行わない、すなわち、成膜室から貼着ローラに搬送されるまでの時間を6秒とした以外は、実施例1と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 2]
Two film forming chambers 56 are arranged in series in the conveying direction, no stepped roller is arranged, and the inactivation process is not performed, that is, the time from the film forming chamber to the adhering roller is 6 seconds. A gas barrier film was produced in the same manner as in Example 1 except that.
 [比較例3]
 段付きローラを配置せず、不活性化工程を行わない以外は、すなわち、成膜室から貼着ローラに搬送されるまでの時間を2秒とした以外は、実施例2と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 3]
Except that the stepped roller is not arranged and the inactivation step is not performed, that is, except that the time from the film formation chamber to the sticking roller is 2 seconds, the same as in Example 2, A gas barrier film was prepared.
 [比較例4]
 段付きローラを配置せず、不活性化工程を行わず、また、貼着工程を行わない以外は、実施例2と同様にして、ガスバリアフィルムを作製した。
[Comparative Example 4]
A gas barrier film was produced in the same manner as in Example 2 except that the stepped roller was not disposed, the inactivation step was not performed, and the sticking step was not performed.
 [評価]
 作製した実施例1~7および比較例1~4のガスバリアフィルムについて、無機層上に形成した有機層の密着性を評価した。また、ガスバリアフィルムの水蒸気透過率を測定しバリア性を評価した。
[Evaluation]
With respect to the produced gas barrier films of Examples 1 to 7 and Comparative Examples 1 to 4, the adhesion of the organic layer formed on the inorganic layer was evaluated. Further, the water vapor permeability of the gas barrier film was measured to evaluate the barrier property.
 <密着性>
 保護フィルム18の剥離後、無機層14上に有機層16を形成したガスバリアフィルム10cについて、クロスカット試験を行い、無機層14と有機層16との密着性を評価した。なお、クロスカット試験は、JIS-K5600に準拠し、有機層16に、1mm幅で、切り込みを入れて粘着テープ(ニチバン株式会社製 セロテープ(登録商標)CT-24)で剥がして、100マス中の残存マスを測定し、密着性を評価した。
<Adhesion>
After peeling off the protective film 18, the gas barrier film 10 c having the organic layer 16 formed on the inorganic layer 14 was subjected to a cross-cut test to evaluate the adhesion between the inorganic layer 14 and the organic layer 16. The cross-cut test is based on JIS-K5600, and the organic layer 16 is 1 mm wide, cut, and peeled off with an adhesive tape (Cello Tape (registered trademark) CT-24 manufactured by Nichiban Co., Ltd.). The residual mass was measured and the adhesion was evaluated.
 <ガスバリア性>
 作製したガスバリアフィルムの水蒸気透過率[g/(m2・day)]を、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。なお、恒温恒湿処理の条件は、温度40℃、湿度90%RHとした。
 各実施例、比較例の構成および評価結果を下記の表1に示す。
<Gas barrier properties>
The water vapor permeability [g / (m 2 · day)] of the produced gas barrier film was measured by a calcium corrosion method (a method described in JP-A-2005-283561). The conditions for the constant temperature and humidity treatment were a temperature of 40 ° C. and a humidity of 90% RH.
The configuration and evaluation results of each example and comparative example are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、本発明の機能性フィルムの製造方法により作製した実施例1~7のガスバリアフィルムは、いずれも、良好な密着性を示すことがわかる。また、無機層の成膜直後に保護フィルムを貼着し、無機層上に有機層を形成する直前まで、保護フィルムにより無機層を保護するので、無機層の割れ等を好適に防止できる。従って、高いガスバリア性を有することがわかる。 As shown in Table 1 above, it can be seen that all of the gas barrier films of Examples 1 to 7 produced by the method for producing a functional film of the present invention exhibit good adhesion. Moreover, since a protective film is stuck immediately after film-forming of an inorganic layer and an inorganic layer is protected with a protective film until just before forming an organic layer on an inorganic layer, a crack etc. of an inorganic layer can be prevented suitably. Therefore, it turns out that it has a high gas barrier property.
 これに対して、不活性化工程を行わずに保護フィルムを貼着した比較例1~3は、保護フィルム剥離後に無機層上に形成した有機層との密着性が低下することがわかる。
 一方、保護フィルムの貼着を行わない比較例4は、無機層の割れ等を防止できないため、ガスバリア性が低下することがわかる。
 以上の結果より、本発明の効果は明らかである。
On the other hand, it can be seen that Comparative Examples 1 to 3 in which the protective film was stuck without performing the inactivation step decreased the adhesion with the organic layer formed on the inorganic layer after the protective film was peeled off.
On the other hand, it can be seen that Comparative Example 4 in which the protective film is not attached cannot prevent the inorganic layer from being cracked, and thus the gas barrier property is lowered.
From the above results, the effects of the present invention are clear.
 有機ELデバイスの保護フィルム等として、好適に利用可能である。 It can be suitably used as a protective film for organic EL devices.
 10a~10f ガスバリアフィルム
 12 基板
 14 無機層
 16 有機層
 18 保護フィルム
 30 有機成膜装置
 32、110 無機成膜装置
 36 塗布手段
 38 乾燥手段
 40 光照射手段
 42、64、86 回転軸
 44、46、92 巻取り軸
 48、50 搬送ローラ対
 52 真空チャンバ
 54、112 巻出し室
 56 成膜室
 60a、60b 隔壁
 61、93 材料ロール
 68、84a、90、90a ガイドローラ
 70、74 真空排気手段
 80 ドラム
 82 成膜電極
 83 高周波電源
 84b 段付きローラ
 87 フィルムロール
 90b、114 貼着ローラ
10a to 10f Gas barrier film 12 Substrate 14 Inorganic layer 16 Organic layer 18 Protective film 30 Organic film forming apparatus 32, 110 Inorganic film forming apparatus 36 Application means 38 Drying means 40 Light irradiation means 42, 64, 86 Rotating shafts 44, 46, 92 Winding shaft 48, 50 Conveying roller pair 52 Vacuum chamber 54, 112 Unwinding chamber 56 Film forming chamber 60a, 60b Partition wall 61, 93 Material roll 68, 84a, 90, 90a Guide roller 70, 74 Vacuum exhaust means 80 Drum 82 Composition Membrane electrode 83 High frequency power supply 84b Stepped roller 87 Film roll 90b, 114 Adhesive roller

Claims (7)

  1.  有機材料からなる表面を有する基板を準備する基板準備工程と、
     真空中でプラズマCVDにより、前記基板上に、炭素の組成比が5%以下の無機層を成膜する成膜工程と、
     成膜した前記無機層の未結合手を不活性化する不活性化工程と、
     前記不活性化工程の後に、プラスチックフィルムからなる保護フィルムを、前記無機層上に、剥離可能に貼着する貼着工程と、を有する機能性フィルムの製造方法。
    A substrate preparation step of preparing a substrate having a surface made of an organic material;
    A film forming step of forming an inorganic layer having a carbon composition ratio of 5% or less on the substrate by plasma CVD in vacuum;
    An inactivation step of inactivating dangling bonds of the inorganic layer formed;
    The manufacturing method of a functional film which has the sticking process of sticking the protective film which consists of a plastic film on the said inorganic layer so that peeling is possible after the said inactivation process.
  2.  前記不活性化工程が、前記成膜工程から前記貼着工程までの間に、15秒以上の間隔を空けるものである請求項1に記載の機能性フィルムの製造方法。 The method for producing a functional film according to claim 1, wherein the inactivation step is an interval of 15 seconds or more between the film formation step and the sticking step.
  3.  前記不活性化工程が、前記基板を冷却するものである請求項1に記載の機能性フィルムの製造方法。 The method for producing a functional film according to claim 1, wherein the inactivation step cools the substrate.
  4.  前記成膜工程において形成される前記無機層の材料が、Si、Al、O、N、Hからなる群から選択される元素の組み合わせからなる請求項1~3のいずれか1項に記載の機能性フィルムの製造方法。 The function according to any one of claims 1 to 3, wherein a material of the inorganic layer formed in the film forming step is a combination of elements selected from the group consisting of Si, Al, O, N, and H. For producing a conductive film.
  5.  さらに、前記貼着工程の後に、前記保護フィルムを剥離する剥離工程と、
     前記剥離工程の後に、前記無機層の前記保護フィルムを剥離した側の面に有機層を形成する有機層形成工程と、を有する請求項1~4のいずれか1項に記載の機能性フィルムの製造方法。
    Furthermore, after the sticking step, a peeling step for peeling the protective film,
    The functional film according to any one of claims 1 to 4, further comprising an organic layer forming step of forming an organic layer on a surface of the inorganic layer on the side where the protective film is peeled off, after the peeling step. Production method.
  6.  さらに、前記成膜工程から前記有機層形成工程を繰り返し行い、2以上の前記無機層と1以上の前記有機層とを形成する請求項5に記載の機能性フィルムの製造方法。 Furthermore, the said organic layer formation process is repeated from the said film-forming process, The manufacturing method of the functional film of Claim 5 which forms two or more said inorganic layers and one or more said organic layers.
  7.  前記基板準備工程が、長尺な前記基板を巻回してなる基板ロールを準備するものであり、
     長尺な前記基板を前記基板ロールから送り出し、前記基板の長手方向に搬送しつつ、前記成膜工程、前記不活性化工程および前記貼着工程を行うものである請求項1~6のいずれか1項に記載の機能性フィルムの製造方法。
    The substrate preparation step is to prepare a substrate roll formed by winding the long substrate.
    7. The film forming step, the deactivation step, and the adhering step are performed while the long substrate is sent out from the substrate roll and conveyed in the longitudinal direction of the substrate. 2. A method for producing a functional film according to item 1.
PCT/JP2015/062137 2014-06-27 2015-04-21 Method for producing functional film WO2015198701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529138A JPWO2015198701A1 (en) 2014-06-27 2015-04-21 Method for producing functional film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-133020 2014-06-27
JP2014133020 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198701A1 true WO2015198701A1 (en) 2015-12-30

Family

ID=54937800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062137 WO2015198701A1 (en) 2014-06-27 2015-04-21 Method for producing functional film

Country Status (2)

Country Link
JP (1) JPWO2015198701A1 (en)
WO (1) WO2015198701A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211989A1 (en) * 2016-06-10 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for coating a flexible substrate provided with a protective film
JP2018144283A (en) * 2017-03-02 2018-09-20 コニカミノルタ株式会社 Method for producing functional film laminate
CN114211850A (en) * 2021-12-29 2022-03-22 深圳双十科技股份有限公司 Multi-film-layer full-automatic synchronous continuous production film laminating equipment and processing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118037A1 (en) * 2011-02-28 2012-09-07 富士フイルム株式会社 Method and apparatus for manufacturing functional film
JP2012192738A (en) * 2011-03-02 2012-10-11 Fujifilm Corp Method for producing functional film
JP2014074221A (en) * 2012-09-13 2014-04-24 Oji Holdings Corp Vacuum film deposition device and vacuum film deposition method
JP2014116224A (en) * 2012-12-11 2014-06-26 Konica Minolta Inc Manufacturing method of organic electroluminescent element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089791A (en) * 2003-09-12 2005-04-07 Sekisui Chem Co Ltd Method for forming silicon nitride film
JP2012131194A (en) * 2010-12-24 2012-07-12 Konica Minolta Holdings Inc Gas barrier film
JP2013044015A (en) * 2011-08-24 2013-03-04 Fujifilm Corp Film deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118037A1 (en) * 2011-02-28 2012-09-07 富士フイルム株式会社 Method and apparatus for manufacturing functional film
JP2012192738A (en) * 2011-03-02 2012-10-11 Fujifilm Corp Method for producing functional film
JP2014074221A (en) * 2012-09-13 2014-04-24 Oji Holdings Corp Vacuum film deposition device and vacuum film deposition method
JP2014116224A (en) * 2012-12-11 2014-06-26 Konica Minolta Inc Manufacturing method of organic electroluminescent element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211989A1 (en) * 2016-06-10 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for coating a flexible substrate provided with a protective film
US10907249B2 (en) 2016-06-10 2021-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for coating a flexible substrate provided with a protective film
JP2018144283A (en) * 2017-03-02 2018-09-20 コニカミノルタ株式会社 Method for producing functional film laminate
CN114211850A (en) * 2021-12-29 2022-03-22 深圳双十科技股份有限公司 Multi-film-layer full-automatic synchronous continuous production film laminating equipment and processing method thereof
CN114211850B (en) * 2021-12-29 2024-02-09 深圳双十科技股份有限公司 Multi-film full-automatic synchronous continuous production laminating equipment and processing method thereof

Also Published As

Publication number Publication date
JPWO2015198701A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
KR101622816B1 (en) Method for producing functional film
JP5795825B2 (en) Functional film and organic EL device
JP5281606B2 (en) Method for producing functional film
JP2013031794A (en) Functional film manufacturing method and functional film
JP5730235B2 (en) Gas barrier film and method for producing gas barrier film
WO2013121666A1 (en) Functional film production method and functional film
KR101819402B1 (en) Functional film and method for producing functional film
WO2015146323A1 (en) Functional film and method for producing functional film
WO2015198701A1 (en) Method for producing functional film
JP2016010889A (en) Gas barrier film and production method of functional film
JP5318020B2 (en) Method for producing functional film
KR101730780B1 (en) Functional film and process for manufacturing functional film
WO2014050918A1 (en) Functional film
JP5331740B2 (en) Functional film
JP6683836B2 (en) Gas barrier film and method for producing gas barrier film
JP2011149057A (en) Method for producing functional film
JP6924893B2 (en) Manufacturing method of gas barrier film, optical element and gas barrier film
JP2013049019A (en) Functional film manufacturing method and functional film
JP6317681B2 (en) Functional film and method for producing functional film
WO2020196607A1 (en) Functional film and production method for functional film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812769

Country of ref document: EP

Kind code of ref document: A1