WO2021132030A1 - Optical layered body - Google Patents

Optical layered body Download PDF

Info

Publication number
WO2021132030A1
WO2021132030A1 PCT/JP2020/047235 JP2020047235W WO2021132030A1 WO 2021132030 A1 WO2021132030 A1 WO 2021132030A1 JP 2020047235 W JP2020047235 W JP 2020047235W WO 2021132030 A1 WO2021132030 A1 WO 2021132030A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin layer
gas barrier
film
protective film
Prior art date
Application number
PCT/JP2020/047235
Other languages
French (fr)
Japanese (ja)
Inventor
博貴 木下
拓己 古屋
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020227021296A priority Critical patent/KR20220121237A/en
Priority to JP2021567371A priority patent/JPWO2021132030A1/ja
Priority to CN202080089747.2A priority patent/CN114845873A/en
Publication of WO2021132030A1 publication Critical patent/WO2021132030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to an optical laminate having a release sheet, an optical film, and a protective film.
  • gas barrier films have been widely used as substrate materials and sealing materials.
  • the gas barrier film is required to have a high gas barrier property capable of suppressing the permeation of water vapor, oxygen and the like.
  • the lightness of the object to be attached can be increased by increasing the translucency so as not to impair the visibility of the object to be attached such as an electronic device to which the gas barrier film is attached. It is also required to prevent it from being damaged.
  • a curable composition containing a curable compound is applied onto a support, and the curable compound contained in the obtained coating layer is cured to form a thin resin layer, which is directly or directly on the resin layer.
  • Patent Document 1 the property of suppressing the permeation of water vapor and oxygen is referred to as "gas barrier property”, the film having gas barrier property is referred to as “gas barrier film”, and the laminate having gas barrier property is referred to as "gas barrier property laminate”.
  • a film used for optical applications is referred to as an "optical film”
  • a laminate containing an optical film is referred to as an "optical laminate”.
  • the above-mentioned translucent gas barrier film is also an optical film
  • the gas barrier laminate containing the translucent gas barrier film is also an optical laminate.
  • optical films such as gas barrier films are often manufactured as long films, then rolled into rolls, and stored and transported as wound bodies.
  • a protective film is provided as the outermost layer on one side, and the outermost layer on the other side is provided.
  • it may take the form of a gas barrier laminated body provided with a release sheet.
  • Patent Document 2 describes a gas barrier laminate having a base material layer, a gas barrier layer and a protective film, and in Examples, a base material layer / gas barrier layer / protective film made of a protective film 2 / resin.
  • a gas barrier laminate having the configuration of 1 is described.
  • a release sheet directly laminated on the resin layer In the case of a gas barrier film in which a resin layer made of a cured product of a curable resin composition is located on one outermost surface and a gas barrier layer is located on the other outermost surface, a release sheet directly laminated on the resin layer (the present inventor).
  • a protective film that is directly laminated on the gas barrier layer to form a gas barrier laminated body.
  • the protective film ( ⁇ ) is peeled off from the gas barrier layer, an adhesive layer is formed on the surface of the exposed gas barrier layer, and the gas barrier layer is adhesively fixed to the surface of the adherend by this adhesive layer. Then, by peeling the release sheet ( ⁇ ) from the resin layer, the gas barrier film is attached onto the adherend.
  • the optical film has a resin layer and another layer, and has a structure of a release sheet ( ⁇ ) / resin layer / other layer / protective film ( ⁇ ).
  • the protective film 1 is provided on the gas barrier layer as in the gas barrier laminate having the above configuration, and the protective film 1 can be peeled off before the protective film 2.
  • the base material layer of the gas barrier laminate described in Patent Document 2 is made of a thermoplastic resin, not a cured product of a curable composition, and the protective film has an adhesive. Therefore, there is no problem of preventing peeling at the interface between the resin layer and the release sheet ( ⁇ ), which is present in gas barrier laminates and optical laminates having the above configuration.
  • the present invention relates the protective film ( ⁇ ) to the resin layer or another layer located on the resin layer without causing floating or peeling at the interface between the resin layer and the release sheet ( ⁇ ).
  • An object of the present invention is to provide an optical laminate capable of appropriately forming a peeling starting point between them.
  • the resin includes a release sheet ( ⁇ ), an optical film containing a resin layer located on one of the outermost surfaces, and a protective film ( ⁇ ), and the release sheet ( ⁇ ) is directly laminated on the resin layer.
  • a protective film ( ⁇ ) is laminated on the layer directly or via another layer from the other outermost surface side of the optical film.
  • the resin layer is a cured product of a curable composition containing a curable compound.
  • An optical laminate in which the adhesive force A2 when peeling from another layer has a relationship of A1> A2.
  • the protective film ( ⁇ ) has a pressure-sensitive adhesive layer, and is detachably adhered to the resin layer or the other layer by the pressure-sensitive adhesive layer, as described in [1] or [2].
  • the optical laminate according to. [4] The optical laminate according to the above [3], wherein the pressure-sensitive adhesive layer contains at least one of a polyolefin-based polymer and a polyolefin-based copolymer.
  • the resin layer is made into any one of the above [1] to [4], which is a cured product of a curable resin composition containing a polymer component (A) and a curable monomer (B).
  • the polymer component (A) is the optical laminate according to the above [5], wherein the glass transition temperature (Tg) is 250 ° C. or higher.
  • the optical film includes, as the other layer, a functional layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the functional layer contains an inorganic film or a polymer compound.
  • the optical film includes, as the other layer, a gas barrier layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the protective film ( ⁇ ) is directly laminated on the gas barrier layer.
  • the optical film includes, as the other layer, a conductive layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the protective film ( ⁇ ) is directly laminated on the conductive layer.
  • the protective film ( ⁇ ) it is appropriate between the protective film ( ⁇ ) and the resin layer or another layer located on the resin layer without causing floating or peeling at the interface between the resin layer and the release sheet ( ⁇ ). It is possible to provide an optical laminate capable of forming a peeling starting point.
  • the present embodiment an optical laminate according to an embodiment of the present invention (hereinafter, may be referred to as “the present embodiment”) will be described.
  • the optical laminate according to the embodiment of the present invention includes a release sheet ( ⁇ ), an optical film containing a resin layer located on one of the outermost surfaces, and a protective film ( ⁇ ), and the resin.
  • the release sheet ( ⁇ ) is directly laminated on the layer, and the protective film ( ⁇ ) is laminated directly on the resin layer from the other outermost surface side of the optical film or via another layer, and the resin layer is curable.
  • It is a cured product of a curable composition containing a compound, and has a peeling force A1 when peeling a release sheet ( ⁇ ) from the resin layer under a low speed peeling condition of 0.3 m / min, and a protective film ( ⁇ ) of 0.
  • the adhesive force A2 when peeling from the resin layer or the other layer under the low speed peeling condition of 3 m / min has a relationship of A1> A2.
  • the peeling force A1 and the adhesive force A2 each have a width of 50 mm, and the protective film ( ⁇ ) or the peeling sheet ( ⁇ ) of the optical laminate is peeled at an angle of 180 ° by the method described in Examples described later.
  • the peeling force B1 and the adhesive force B2 which will be described later, are the peeling force and the adhesive force (mN / 50 mm) measured in the same manner as in the above procedure except that the peeling speed is set to 20 m / min, respectively.
  • the peeling speed of 0.3 m / min may be referred to as “low speed peeling condition”
  • the peeling speed of 20 m / min may be referred to as “high speed peeling condition”.
  • the release sheet ( ⁇ ) is directly laminated on the resin layer of the optical film in which the resin layer which is the cured product of the curable composition containing the curable compound is located on one of the outermost surfaces, and the protective film ( ⁇ ) is formed on the resin layer.
  • the protective film ( ⁇ ) is peeled off from the other outermost surface side of the optical film or the other layer above under low-speed peeling conditions.
  • a portion (peeling starting point) that becomes a starting point of peeling can be easily formed between the protective film ( ⁇ ) and the resin layer or the above-mentioned other layer without causing peeling or peeling, and the resin of the peeling sheet ( ⁇ ). It is possible to provide a gas barrier laminate capable of satisfactorily peeling off only the protective film ( ⁇ ) while maintaining the state of close contact with the layer.
  • the protective film for example, By peeling the release sheet ( ⁇ ) and the release sheet ( ⁇ ) under high-speed release conditions, both can be appropriately peeled off, and the optical film can be attached to the target adherend with high productivity.
  • FIG. 1 shows an example of a specific configuration of a gas barrier laminate, which is one of the optical laminates according to the embodiment of the present invention.
  • the gas barrier laminate 10 shown in the schematic cross-sectional view of FIG. 1 includes a gas barrier film 10a, a release sheet 1, and a protective film 4.
  • the gas barrier film 10a includes a resin layer 2 located on one outermost surface and a gas barrier layer 3 located on the other outermost surface.
  • the release sheet 1 is directly laminated on the surface of the resin layer 2 opposite to the gas barrier layer 3.
  • the protective film 4 is directly laminated on the surface of the gas barrier layer 3 opposite to the resin layer 2.
  • the protective film 4 is laminated on the resin layer located on one outermost surface of the gas barrier film 10a, which is one of the optical films, from the other outermost surface side of the gas barrier film 10a via the gas barrier layer 3. ing.
  • the release sheet 1 of FIG. 1 corresponds to the above-mentioned release sheet ( ⁇ )
  • the protective film 4 of FIG. 1 corresponds to the above-mentioned protective film ( ⁇ ).
  • a layer derived from the gas barrier film 10a is finally formed on the adherend in a state where the protective film 4 and the release sheet 1 are peeled off and removed.
  • the thickness of the optical laminate can be appropriately determined depending on the intended use of the electronic device and the like. From the viewpoint of handleability, the substantial thickness of the optical laminate according to the embodiment of the present invention is preferably 0.3 to 50 ⁇ m, more preferably 0.5 to 25 ⁇ m, and more preferably 0.7 to 12 ⁇ m. Is.
  • the "substantial thickness” means the thickness in the used state. That is, the above optical laminate has a release sheet ( ⁇ ) and a protective film ( ⁇ ), but the thickness of the partially release sheet ( ⁇ ) and the protective film ( ⁇ ) that are removed during use is “. It is not included in "substantial thickness”.
  • the resin layer can be thinly formed by using a coating method or the like as described later. As the thickness of the optical laminate is reduced, the bending resistance of the optical film after being attached to the adherend can be further improved.
  • the optical laminate according to the embodiment of the present invention has a resin layer located on one of the outermost surfaces, and the material and thickness of the resin layer and the other layers, the forming method of each layer, and the like are adjusted. Therefore, it is possible to obtain excellent heat resistance and interlayer adhesion, and also have a low birefringence and excellent optical isotropic properties.
  • a gas barrier layer is provided in addition to the resin layer as in the gas barrier laminate described above, heat resistance, interlayer adhesion, and gas barrier properties can be obtained by adjusting the material and thickness of each layer, the forming method of each layer, and the like. It is excellent, has a low birefringence, and has excellent optical isotropic properties.
  • A2 it is preferably A1 ⁇ 20 ⁇ A2, more preferably A1 ⁇ 10 ⁇ A2, and further preferably A1 ⁇ 5 ⁇ A2.
  • the relationship of A1> A2 in the optical laminate is, for example, to appropriately weaken the adhesive force of the pressure-sensitive adhesive layer formed on the other outermost surface side of the optical film of the protective film ( ⁇ ) described later, or In addition to this, by appropriately selecting the material and surface shape of the release sheet ( ⁇ ) and appropriately selecting the material and manufacturing method of the resin layer, the release force of the release sheet ( ⁇ ) with respect to the resin layer can be obtained. It can be realized by increasing it.
  • B1 ⁇ B2 ⁇ B1 preferably 10 ⁇ B1 ⁇ B2 ⁇ B1, more preferably 6.0 ⁇ B1 ⁇ B2 ⁇ B1, and even more preferably 4.5 ⁇ B1 ⁇ B1.
  • B2 ⁇ B1.
  • the protective film ( ⁇ ) has an adhesive layer, the value of B2 tends to be larger than that of A2, so that B1 ⁇ B2 tends to occur. Even in this case, if the relationship of A1> A2 is maintained as described above, the protective film ( ⁇ ) can be appropriately peeled off in both low-speed peeling at the peeling starting point and high-speed peeling thereafter. can do.
  • Adhesive strength of the protective film ( ⁇ ) to the resin layer or other layers When the protective film ( ⁇ ) is peeled from the resin layer of the optical film or other layers on the resin layer under low-speed peeling conditions of 0.3 m / min.
  • the adhesive strength A2 of A2 is preferably 100 mN / 50 mm or less, more preferably 85 mN / 50 mm or less, still more preferably 70 mN / 50 mm or less, from the viewpoint of making it easier to form a peeling starting point of the protective film ( ⁇ ).
  • the adhesive force B2 when peeling the protective film ( ⁇ ) from the resin layer or the other layer under high-speed peeling conditions of 20 m / min is preferable from the viewpoint of preventing tearing of the optical laminate during high-speed peeling. It is 50 to 2000 mN / 50 mm, more preferably 100 to 1000 mN / 50 mm.
  • the adhesive strength of the pressure-sensitive adhesive layer formed on the surface of the protective film ( ⁇ ) described later on the other outermost surface side of the optical film. can be achieved by moderately weakening.
  • peeling force of the peeling sheet ( ⁇ ) against the resin layer The peeling force A1 when the peeling sheet ( ⁇ ) is peeled from the resin layer under a low speed peeling condition of 0.3 m / min is applied to the resin layer when the peeling sheet ( ⁇ ) is peeled.
  • the other layers are preferably 500 mN / 50 mm or less, more preferably 300 mN / 50 mm or less, from the viewpoint of preventing cracks from occurring in the other layers.
  • the peeling force B1 when peeling the peeling sheet ( ⁇ ) from the resin layer under the high-speed peeling condition of 20 m / min ensures the adhesion of the peeling sheet ( ⁇ ) to the resin layer without excessively reducing the productivity.
  • it is preferably 40 to 500 mN / 50 mm, more preferably 60 to 300 mN / 50 mm, and further preferably 80 to 200 mN / 50 mm or less.
  • it can be realized by appropriately selecting the material and the surface shape of the peeling sheet ( ⁇ ).
  • the optical film contains at least a resin layer located on one of the outermost surfaces of the optical film.
  • the optical film may be composed of only a resin layer, or may be composed of a resin layer and another layer.
  • the other layer is located on the outermost surface of the optical film opposite to the outermost surface on which the resin layer is located, and the protective film ( ⁇ ) is directly laminated on the other layer.
  • the other layers include (i) a functional layer obtained by modifying a layer containing an inorganic film or a polymer compound, (ii) a gas barrier layer, and (iii) a conductive layer.
  • the optical film When the optical film is composed of a resin layer and a gas barrier layer, the optical film becomes a gas barrier film and the optical laminate becomes a gas barrier laminate.
  • the optical film When the optical film is composed of a resin layer and a transparent conductive layer, the optical film becomes a transparent conductive film, and the optical laminate becomes a transparent electrode forming laminate.
  • the other layer and the resin layer may be directly laminated, or may be further laminated between the two layers via another layer. A plurality of sets of the resin layer and the other layers may be laminated. In this case, another layer may be present between at least one set of the resin layer and the other layer.
  • the water vapor transmittance of the gas barrier film in an atmosphere of 40 ° C. and 90% relative humidity is usually 1.0 ⁇ 10 ⁇ 2 g / m 2 / day or less, preferably 1.0 ⁇ 10 ⁇ 2 g / m 2 / day or less. It is 8.0 ⁇ 10 -3 g / m 2 / day or less, more preferably 6.0 ⁇ 10 -3 g / m 2 / day or less.
  • Resin layer The resin layer of the optical film contained in the optical laminate according to the embodiment of the present invention comprises a cured product of a curable composition containing a curable compound, preferably the polymer component (A) and the polymer component (A). It comprises a cured product of a curable resin composition containing a curable monomer (B).
  • the resin layer may be a single layer, or may include a plurality of laminated layers.
  • the polymer component (A) is not particularly limited, but preferably has a glass transition temperature (Tg) of 250 ° C. or higher, more preferably 290 ° C. or higher, and even more preferably 320 ° C. or higher.
  • Tg glass transition temperature
  • Tg is the maximum point of tan ⁇ (loss elastic modulus / storage elastic modulus) obtained by viscoelasticity measurement (measurement in the tensile mode in the range of 0 to 250 ° C. at a frequency of 11 Hz and a heating rate of 3 ° C./min). Refers to temperature.
  • the resin layer of the optical laminate By forming the resin layer of the optical laminate according to the embodiment of the present invention with a cured product of a curable resin composition containing a polymer component (A) having a Tg of 250 ° C. or higher, the resin layer can be formed. Since it exhibits extremely excellent heat resistance, it can be used as an optical laminate having excellent heat resistance. When the heat resistance of the resin layer is high, the elastic modulus at a high temperature is increased, and the resin layer is less likely to shrink due to heat. As a result, when the optical film has another layer such as a gas barrier layer, it is possible to avoid causing fine cracks in the other layer. Therefore, for example, when the other layer is a gas barrier layer, it is possible to prevent the gas barrier property from being lowered.
  • a gas barrier layer it is possible to prevent the gas barrier property from being lowered.
  • the other layer is a conductive layer
  • the peeling force A1 when peeling the peeling sheet ( ⁇ ) from the resin layer or the other layer under the low speed peeling condition of 0.3 m / min is set to 500 mN / 50 mm or less, the heat resistance and the peeling sheet are obtained. From the viewpoint of both preventing the resin layer from being deformed when the ( ⁇ ) is peeled off, it is possible to prevent cracks in the other layers, which is preferable.
  • the other layer is a conductive layer
  • the heat resistance of the resin layer is high, so that when the conductive layer is formed, the resin layer is affected by heating such as annealing treatment and is deformed. It becomes easier to prevent.
  • the weight average molecular weight (Mw) of the polymer component (A) is usually 100,000 to 3,000,000, preferably 200,000 to 2,000,000, and more preferably 500,000 to 1,000. It is in the range of 000.
  • the molecular weight distribution (Mw / Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are polystyrene-equivalent values measured by a gel permeation chromatography (GPC) method. By setting Mw to 100,000 or more, it becomes easy to increase the elongation at break of the resin layer.
  • thermoplastic resin As the polymer component (A), a thermoplastic resin is preferable, and an amorphous thermoplastic resin is more preferable.
  • an amorphous thermoplastic resin By using an amorphous thermoplastic resin, it becomes easy to obtain a resin layer having excellent optical isotropic properties, and it becomes easy to obtain an optical laminate having excellent transparency. Further, since the amorphous thermoplastic resin is generally easily dissolved in an organic solvent, the resin layer can be efficiently formed by using the solution casting method as described later.
  • the amorphous thermoplastic resin means a thermoplastic resin whose melting point is not observed in the differential scanning calorimetry.
  • the polymer component (A) is particularly preferably one that is soluble in a general-purpose organic solvent having a low boiling point such as benzene or methyl ethyl ketone (MEK). If it is soluble in a general-purpose organic solvent, it becomes easy to form a resin layer by coating.
  • a general-purpose organic solvent having a low boiling point such as benzene or methyl ethyl ketone (MEK). If it is soluble in a general-purpose organic solvent, it becomes easy to form a resin layer by coating.
  • a particularly preferable polymer component (A) is an amorphous thermoplastic resin having a Tg of 250 ° C. or higher, which is soluble in a general-purpose organic solvent having a low boiling point such as benzene or MEK.
  • thermoplastic resin having a ring structure such as an aromatic ring structure or an alicyclic structure is preferable, and a thermoplastic resin having an aromatic ring structure is more preferable, from the viewpoint of heat resistance.
  • the polymer component (A) include a polyimide resin and a polyarylate resin having a Tg of 250 ° C. or higher. Since these resins are generally excellent in heat resistance and are amorphous thermoplastic resins, a coating film can be formed by a solution casting method. Among these, a polyimide resin is preferable because it has a high Tg and is excellent in heat resistance, and it is easy to obtain a resin which is soluble in a general-purpose organic solvent while exhibiting good heat resistance.
  • the polyimide resin is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, an aromatic polyimide resin, an aromatic (carboxylic acid component) -cyclic aliphatic (diamine component) polyimide resin, and a ring-type fat.
  • Group (carboxylic acid component) -aromatic (diamine component) polyimide resin, cyclic aliphatic polyimide resin, fluorinated aromatic polyimide resin and the like can be used.
  • a polyimide resin having a fluoro group in the molecule is preferable.
  • the polyimide resin is preferably soluble in a low boiling point organic solvent such as benzene or methyl ethyl ketone. In particular, it is preferably soluble in methyl ethyl ketone. When it is soluble in methyl ethyl ketone, a layer of a curable resin composition can be easily formed by coating and drying.
  • a polyimide resin containing a fluoro group is particularly preferable from the viewpoint that it is easily dissolved in a general-purpose organic solvent having a low boiling point such as methyl ethyl ketone, and a resin layer is easily formed by a coating method.
  • the polyimide resin containing a fluoro group is preferably an aromatic polyimide resin having a fluoro group.
  • the aromatic polyimide resin having a fluoro group preferably has a skeleton represented by the following chemical formula in the molecule.
  • the polyimide resin having a skeleton represented by the above chemical formula has an extremely high Tg exceeding 300 ° C. due to the high rigidity of the skeleton. Therefore, the heat resistance of the resin layer can be greatly improved. Further, the skeleton is linear and has relatively high flexibility, which makes it easy to increase the breaking elongation of the resin layer. Further, the polyimide resin having the above skeleton can be dissolved in a general-purpose organic solvent having a low boiling point such as methyl ethyl ketone by having a fluoro group. Therefore, the coating can be performed by using the solution casting method to form a resin layer as a coating film, and the solvent can be easily removed by drying.
  • the polyimide resins having the skeleton represented by the above chemical formula are 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl and 4,4'-(1,1,1,3,3,3). It can be obtained by the above-mentioned polymerization and imidization reaction of polyamic acid using -hexafluoropropane-2,2-diyl) diphthalic acid dianhydride.
  • the polymer component (A) can be used alone or in combination of two or more. Further, the polymer component (A) and the polymer component (A') having a glass transition temperature of less than 250 ° C. may be used in combination. Examples of the polymer component (A') include a polyamide resin and a polyarylate resin having a Tg of less than 250 ° C., and a polyamide resin is preferable.
  • the curable monomer (B) is a monomer having a polymerizable unsaturated bond, and is a monomer that can participate in a polymerization reaction, a polymerization reaction, and a cross-linking reaction.
  • curing means a broad concept including this "monomer polymerization reaction” or “monomer polymerization reaction and subsequent cross-linking reaction of a polymer”.
  • the resin layer By forming the resin layer into a layer made of a cured product of a curable resin composition containing the above-mentioned polymer component (A) and the above-mentioned curable monomer (B), a thin resin layer having excellent heat resistance is obtained. It becomes easy to form. Further, when such a material is used, optical problems caused by a material having an anisotropic molecular orientation such as a polyester film generally used as a base material of an optical laminate are less likely to occur. ..
  • the molecular weight of the curable monomer (B) is usually 3000 or less, preferably 200 to 2000, and more preferably 200 to 1000.
  • the number of polymerizable unsaturated bonds in the curable monomer (B) is not particularly limited.
  • the curable monomer (B) may be a monofunctional monomer having one polymerizable unsaturated bond, but may be a bifunctional type or a trifunctional type having at least a plurality of polymerizable unsaturated bonds. It is preferable to contain one or more of the polyfunctional monomers of the above.
  • Examples of the monofunctional monomer include a monofunctional (meth) acrylic acid derivative.
  • the monofunctional (meth) acrylic acid derivative is not particularly limited as long as it is a compound having one (meth) acryloyl group in the molecule, and a known compound can be used.
  • polyfunctional monomer examples include a polyfunctional (meth) acrylic acid derivative.
  • the polyfunctional (meth) acrylic acid derivative is not particularly limited as long as it is a compound having two or more (meth) acryloyl groups in the molecule, and known compounds can be used.
  • 2 to 6 functional (meth) acrylic acid derivatives can be mentioned.
  • the bifunctional (meth) acrylic acid derivative examples include compounds represented by the following formulas.
  • R 1 represents the same meaning as above, and R 2 represents a divalent organic group.
  • R 2 represents a divalent organic group. Examples of the divalent organic group represented by R 2 include a group represented by the following formula.
  • bifunctional (meth) acrylic acid derivative represented by the above formula examples include tricyclodecanedimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and propoxylated ethoxylated bisphenol A di (meth) acrylate.
  • Ethylated bisphenol A di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 9,9-bis [4- (2-acryloyloxyethoxy) Phenyl] Fluorene and the like can be mentioned.
  • those divalent organic group represented by R 7 has a tricyclodecane skeleton, propoxy ethoxylated bisphenol a di (meth) acrylate, such as ethoxylated bisphenol a di (meth) acrylate, in the above formula, those divalent organic group represented by R 7 has a bisphenol skeleton, 9,9-bis In the above formula, it is preferable that the divalent organic group represented by R 7 has a 9,9-bisphenylfluorene skeleton, such as [4- (2-acryloyloxyethoxy) phenyl] fluorene.
  • bifunctional (meth) acrylic acid derivatives include neopentyl glycol adipate di (meth) acrylate, neopentyl glycol di (meth) acrylate hydroxypivalate, and caprolactone-modified dicyclopentenyl di (meth) acrylate.
  • examples thereof include ethylene oxide-modified di (meth) acrylate phosphate, di (acryloxyethyl) isocyanurate, and allylated cyclohexyl di (meth) acrylate.
  • Examples of the trifunctional (meth) acrylic acid derivative include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propionic acid-modified dipentaerythritol tri (meth) acrylate, and propylene oxide-modified trimethylolpropane tri (meth) acrylate. ) Acrylate, tris (acrylicoxyethyl) isocyanurate and the like.
  • Examples of the tetrafunctional (meth) acrylic acid derivative include pentaerythritol tetra (meth) acrylate.
  • Examples of the pentafunctional (meth) acrylic acid derivative include propionic acid-modified dipentaerythritol penta (meth) acrylate.
  • Examples of the hexafunctional (meth) acrylic acid derivative include dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate.
  • a cyclized polymerizable monomer may be used as the curable monomer (B).
  • the cyclization polymerizable monomer is a monomer having a property of radical polymerization while cyclizing.
  • Examples of the cyclization polymerizable monomer include non-conjugated dienes.
  • an ⁇ -allyloxymethylacrylic acid-based monomer can be used, and an alkyl ester having 1 to 4 carbon atoms of 2-allyloxymethylacrylic acid can be used.
  • Cyclohexyl 2- (allyloxymethyl) acrylate is preferable, alkyl esters of 2-allyloxymethylacrylic acid having 1 to 4 carbon atoms are more preferable, and methyl 2- (allyloxymethyl) acrylate is even more preferable.
  • the curable monomer (B) can be used alone or in combination of two or more.
  • the curable monomer (B) is preferably a polyfunctional monomer because a resin layer having better heat resistance and solvent resistance can be obtained.
  • a bifunctional (meth) acrylic acid derivative is preferable from the viewpoint that it is easily mixed with the polymer component (A), curing shrinkage of the polymer is unlikely to occur, and curling of the cured product can be suppressed. ..
  • the curable monomer (B) contains a polyfunctional (meth) acrylate compound and a cyclizationally polymerizable monomer.
  • the curable monomer (B) contains a polyfunctional monomer
  • the content thereof is preferably 40% by mass or more, preferably 50 to 100% by mass, based on the total amount of the curable monomer (B). More preferable.
  • the curable resin composition used for forming the resin layer according to the embodiment of the present invention includes a polymer component (A), a curable monomer (B), and, if desired, a polymerization initiator and other components described below. It can be prepared by mixing the components and dissolving or dispersing them in a suitable solvent.
  • the total content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably 40 to 99 with respect to the total mass of the curable resin composition excluding the solvent. It is 5.5% by mass, more preferably 60 to 99% by mass, and even more preferably 80 to 98% by mass.
  • the content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably the mass ratio of the polymer component (A) and the curable monomer (B).
  • Polymer component (A): curable monomer (B) 30:70 to 90:10, more preferably 35:65 to 80:20.
  • the mass ratio of the polymer component (A): the curable monomer (B) is in such a range, the flexibility of the obtained resin layer is more likely to be improved, and the resin layer is easily improved. The solvent resistance of the resin tends to be maintained.
  • the content of the curable monomer (B) in the curable resin composition is within the above range, for example, when the resin layer is obtained by a solution casting method or the like, the solvent can be efficiently removed. , The problem of deformation such as curl and swell due to the lengthening of the drying process is solved.
  • the resin is added to a solvent suitable for each. After dissolving, it is preferable to add a solution in which another resin is dissolved to a low boiling point organic solvent in which the resin is dissolved.
  • the curable resin composition can contain a polymerization initiator, if desired.
  • the polymerization initiator can be used without particular limitation as long as it initiates the curing reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • thermal polymerization initiator examples include organic peroxides and azo compounds.
  • photopolymerization initiator examples include an alkylphenone-based photopolymerization initiator, a phosphorus-based photopolymerization initiator, a titanosen-based photopolymerization initiator, an oxime ester-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and a thioxanthone-based photopolymerization initiator. Etc., and a phosphorus-based photopolymerization initiator is preferable.
  • the curing reaction may not easily occur as a result of the polymer component (A) absorbing ultraviolet rays.
  • the curing reaction can be efficiently advanced by utilizing the light having a wavelength that is not absorbed by the polymer component (A).
  • the polymerization initiator may be used alone or in combination of two or more.
  • the content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and 0.05 to 5% by mass with respect to the total mass of the curable resin composition excluding the solvent. Mass% is more preferred.
  • the curable resin composition in addition to the polymer component (A), the curable monomer (B), and the polymerization initiator, photopolymerization of triisopropanolamine, 4,4'-diethylaminobenzophenone, etc. It may contain an initiator.
  • the solvent used for preparing the curable resin composition is not particularly limited, and for example, an aliphatic hydrocarbon solvent such as n-hexane and n-heptane; an aromatic hydrocarbon solvent such as toluene and xylene; dichloromethane, Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, 2- Ketone-based solvents such as pentanone, isophorone, and cyclohexanone; ester-based solvents such as ethyl acetate and butyl acetate; cellosolve-based solvents such as ethyl cellosolve; ether-based solvents such as 1,3-dioxolane; and the
  • the content of the solvent in the curable resin composition is not particularly limited, but is usually 0.1 to 1000 parts by mass, preferably 1 to 100 parts by mass with respect to 1 part by mass of the polymer component (A). is there.
  • the viscosity of the curable resin composition can be adjusted to an appropriate value.
  • the curable resin composition may further contain known additives such as a plasticizer, an antioxidant, and an ultraviolet absorber as long as the object and effect of the present invention are not impaired.
  • the method for curing the curable resin composition can be appropriately determined depending on the type of polymerization initiator and curable monomer used. Details will be described later in the section of the method for manufacturing the optical laminate.
  • the thickness of the resin layer is not particularly limited, and may be determined according to the purpose of the optical laminate.
  • the thickness of the resin layer is usually 0.1 to 300 ⁇ m, preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, still more preferably 0.1 to 10 ⁇ m, and particularly preferably 0.2 to 10 ⁇ m. Is.
  • the resin layer has a thickness of, for example, about 0.1 to 10 ⁇ m, it is possible to prevent the thickness of the optical laminate from increasing, and it is possible to obtain a thin optical laminate.
  • a thin optical laminate is preferable because the optical laminate does not increase the thickness of the entire applicable device in applications such as organic EL displays that are required to be thin. Further, if the thin optical laminate is used, the flexibility and bending resistance of the optical laminate after mounting can be improved.
  • the resin layer has excellent solvent resistance. Since it has excellent solvent resistance, for example, even when an organic solvent is used when forming another layer on the surface of the resin layer, the surface of the resin layer is hardly dissolved. Therefore, for example, even when another layer such as a gas barrier layer or a conductive layer is formed on the surface of the resin layer by using a resin solution containing an organic solvent, the components of the resin layer are unlikely to be mixed into these layers. , Gas barrier property and conductivity are hard to decrease.
  • the resin layer has excellent interlayer adhesion with other layers such as a gas barrier layer and a conductive layer. That is, the above-mentioned functional layer, gas barrier layer, or conductive layer can be formed without providing the anchor coat layer on the resin layer.
  • the resin layer is preferably colorless and transparent. Since the resin layer is colorless and transparent, the optical laminate according to the embodiment of the present invention can be preferably used for optical applications.
  • the resin layer can have heat resistance, solvent resistance, interlayer adhesion, and transparency, and further has a low birefringence and excellent optical isotropic properties. it can. Therefore, as will be described later, by forming a gas barrier layer, a conductive layer, or the like on the resin layer having such characteristics by, for example, a solution casting method, the functional layer has excellent gas barrier properties and excellent conductivity. Moreover, it is also possible to prevent the gas barrier property and the conductivity from being impaired by at least one of the heat and the solvent due to at least one of the heat resistance and the solvent resistance of the resin layer. Further, the obtained optical laminate is excellent in heat resistance, interlayer adhesion, and transparency. Further, it is possible to obtain an optical laminate having a low birefringence and excellent optical isotropic properties.
  • the material of the gas barrier layer of the gas barrier laminate according to the embodiment of the present invention is not particularly limited as long as it has gas barrier properties.
  • a gas barrier layer made of an inorganic film, a gas barrier layer containing a gas barrier resin, a gas barrier layer obtained by modifying a layer containing a polymer compound, and the like can be mentioned.
  • the gas barrier layer is a gas barrier layer made of an inorganic film and a gas barrier obtained by modifying a layer containing a polymer compound. Layers are preferred.
  • the gas barrier layer made of the above-mentioned inorganic film is a functional layer made of an inorganic film having a gas barrier property
  • the gas barrier layer obtained by subjecting the layer containing the above-mentioned polymer compound to a modification treatment is in other words, it is also a functional layer obtained by subjecting a layer containing a polymer compound having a gas barrier property to a modification treatment.
  • the functional layer made of the above-mentioned inorganic film or the layer containing a polymer compound is modified to obtain a functional layer. It may have a poor gas barrier property.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic thin-film film.
  • the inorganic vapor deposition film include a vapor deposition film of an inorganic compound or a metal.
  • Inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide
  • inorganic nitrides such as silicon nitride, aluminum nitride, and titanium nitride
  • inorganic carbides examples thereof include inorganic sulfides; inorganic oxidants such as silicon oxide nitrides; inorganic oxidative carbides; inorganic nitriding carbides; and inorganic oxynitride carbides.
  • the raw material of the metal vapor deposition film examples include aluminum, magnesium, zinc, tin and the like. These can be used alone or in combination of two or more.
  • an inorganic vapor deposition film made of an inorganic oxide, an inorganic nitride or a metal as a raw material is preferable from the viewpoint of gas barrier property, and further, an inorganic material made of an inorganic oxide or an inorganic nitride as a raw material is preferable from the viewpoint of transparency.
  • a vapor-deposited film is preferable. Further, the inorganic vapor deposition film may be a single layer or a multilayer.
  • the thickness of the inorganic thin-film film is preferably in the range of 10 to 2000 nm, more preferably 20 to 1000 nm, more preferably 30 to 500 nm, and further preferably 40 to 200 nm from the viewpoint of gas barrier properties and handleability.
  • Examples of the method for forming the inorganic vapor deposition film include a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, and an optical CVD method.
  • PVD physical vapor deposition
  • a thermal CVD chemical vapor deposition
  • a plasma CVD method a plasma CVD method
  • optical CVD method optical CVD method.
  • gas barrier resin used in the gas barrier layer containing the gas barrier resin examples include polyvinyl alcohol or a partially saponified product thereof, an ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene and the like. Examples thereof include resins that do not easily permeate oxygen and the like.
  • the thickness of the gas barrier layer containing the gas barrier resin is preferably in the range of 10 to 2000 nm, more preferably 20 to 1000 nm, more preferably 30 to 500 nm, and further preferably 40 to 200 nm.
  • Examples of the method of forming the gas barrier layer containing the gas barrier resin include a method of applying a solution containing the gas barrier resin on the resin layer and appropriately drying the obtained coating film.
  • the polymer compound used in the gas barrier layer obtained by modifying a layer containing a polymer compound includes silicon-containing polymer compound, polyimide, polyamide, and polyamide.
  • Examples thereof include imide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic polymer and the like. .. These polymer compounds can be used alone or in combination of two or more.
  • the polymer compound is preferably a silicon-containing polymer compound.
  • the silicon-containing polymer compound include polysilazane compounds (Japanese Patent Laid-Open No. 63-16325, JP-A-62-195024, JP-A-63-81122, JP-A-1-138108, JP-A-2-. 84437, Japanese Patent Application Laid-Open No. 2-175726, Japanese Patent Application Laid-Open No. 4-63833, Japanese Patent Application Laid-Open No. 5-238827, Japanese Patent Application Laid-Open No. 5-345926, Japanese Patent Application Laid-Open No. 2005-36089, Japanese Patent Application Laid-Open No.
  • polysilazane compounds are preferable from the viewpoint of being able to form a gas barrier layer having excellent gas barrier properties.
  • examples of polysilazane compounds include inorganic polysilazane and organic polysilazane.
  • examples of the inorganic polysilazane include perhydropolysilazane
  • examples of the organic polysilazane include compounds in which part or all of the hydrogen of the perhydropolysilazane is replaced with an organic group such as an alkyl group.
  • inorganic polysilazane is more preferable from the viewpoint of easy availability and the ability to form a gas barrier layer having excellent gas barrier properties.
  • the polysilazane compound a commercially available product commercially available as a glass coating material or the like can be used as it is.
  • the polysilazane compound can be used alone or in combination of two or more.
  • the polymer layer may contain other components in addition to the above-mentioned polymer compound as long as the object of the present invention is not impaired.
  • examples of other components include curing agents, other polymers, anti-aging agents, light stabilizers, flame retardants and the like.
  • the content of the polymer compound in the polymer layer is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of being able to form a gas barrier layer having excellent gas barrier properties.
  • a layer-forming solution containing at least one polymer compound, optionally other components, a solvent and the like is applied to the resin layer or preferably on the resin layer by a known method.
  • a method of applying the coating film on the primer layer formed in the above and appropriately drying the obtained coating film to form the coating film include a method of applying the coating film on the primer layer formed in the above and appropriately drying the obtained coating film to form the coating film.
  • a known device such as a spin coater, a knife coater, or a gravure coater can be used.
  • the heating and drying methods conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted.
  • the heating temperature is usually 80 to 150 ° C.
  • the heating time is usually several tens of seconds to several tens of minutes.
  • the above-mentioned polysilazane compound when forming the gas barrier layer of the gas barrier laminate, for example, the conversion reaction of polysilazane occurs by heating after coating, and the coating film has excellent gas barrier properties.
  • the resin layer when a resin layer having low heat resistance is used, the resin layer may be deformed by heating when forming such a coating film. Deformation of the resin layer may adversely affect the gas barrier property of the gas barrier layer of the gas barrier laminated body.
  • the resin layer according to the embodiment of the present invention has excellent heat resistance, it is unlikely to be deformed by heating during and after coating. Therefore, it is possible to avoid a decrease in the gas barrier property of the gas barrier laminated body due to the deformation of the resin layer.
  • the thickness of the polymer layer is usually 20 to 1000 nm, preferably 30 to 800 nm, and more preferably 40 to 400 nm. Even if the thickness of the polymer layer is on the nano-order, a gas-barrier laminate having sufficient gas-barrier performance can be obtained by performing a modification treatment as described later.
  • Examples of the reforming treatment include ion implantation and vacuum ultraviolet light irradiation.
  • ion implantation is preferable from the viewpoint of obtaining high gas barrier performance.
  • the amount of ions implanted into the polymer layer may be appropriately determined according to the purpose of use (required gas barrier property, transparency, etc.) of the gas barrier laminate to be formed.
  • the injected ions include rare gas ions such as argon, helium, neon, krypton, and xenon; ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; Ions of alkane gases such as methane, ethane, propane, butane, pentane, hexane; ions of alkene gases such as ethylene, propylene, butene, and penten; ions of alkaziene gases such as pentadiene and butadiene; acetylene, Ions of alkyne gases such as methylacetylene; ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, inden, naphthalene and phenanthrene; ions of cycloalkene gases such as cyclopropane and cyclohexane; cyclopentene, Ions of cycloalkene gases such as
  • organosilicon compound examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and tetrat-butoxysilane; Alkoxysilanes having substituents or substituents such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane; Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane; Disiloxane such as hexamethyldisiloxane (HMDSO); Aminosilanes such as bis (H
  • At least one selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton because it can be injected more easily and a gas barrier layer having particularly excellent gas barrier properties can be obtained. Seed ions are preferred.
  • the method of injecting ions is not particularly limited, and examples thereof include a method of irradiating ions (ion beams) accelerated by an electric field, a method of injecting ions in plasma, and the like. Above all, the latter method of injecting plasma ions is preferable because a gas barrier film can be easily obtained.
  • the plasma ion implantation method includes (I) a method of injecting ions existing in the plasma generated by using an external electric field into the polymer layer, or (II) applying the ions to the layer without using an external electric field.
  • a method of implanting ions existing in the plasma generated only by an electric field due to a negative high voltage pulse into the polymer layer is preferable.
  • the pressure at the time of ion implantation (pressure at the time of plasma ion implantation) is preferably 0.01 to 1 Pa.
  • the pressure at the time of plasma ion implantation is in such a range, the ions can be implanted easily and efficiently and uniformly, and the target gas barrier layer can be efficiently formed.
  • the method (II) described above does not require a high degree of decompression, the processing operation is simple, and the processing time can be significantly shortened.
  • the entire layer can be treated uniformly, and ions in the plasma can be continuously injected into the polymer layer with high energy when a negative high voltage pulse is applied.
  • RF radio frequency
  • high frequency power sources such as microwaves
  • the pulse width when a negative high voltage pulse is applied is preferably 1 to 15 ⁇ sec.
  • the pulse width is in such a range, ions can be injected more easily, efficiently, and uniformly.
  • the applied voltage when generating plasma is preferably -1 to -50 kV, more preferably -1 to -30 kV, and particularly preferably -5 to -20 kV. If ion implantation is performed when the applied voltage is greater than -1 kV, the ion implantation amount (dose amount) becomes insufficient and the desired performance cannot be obtained. On the other hand, if the ion implantation is performed at a value smaller than -50 kV, the film is charged at the time of ion implantation, and problems such as coloring of the film occur, which is not preferable.
  • Examples of the ion species to be implanted with plasma ions include the same as those exemplified as the ions to be implanted.
  • a plasma ion implanter is used to implant the ions in the plasma into the polymer layer.
  • the plasma ion implantation apparatus (i) superimposes high-frequency power on a feed-through that applies a negative high-voltage pulse to a polymer layer (hereinafter, may be referred to as “ion implantation layer”).
  • ion implantation layer A device that evenly surrounds the layer for ion implantation with plasma to attract, implant, collide, and deposit ions in the plasma (Japanese Patent Laid-Open No. 2001-26887),
  • An antenna is provided in the chamber, and high-frequency power is provided.
  • positive and negative pulses are alternately applied to the ion-implanted layer to attract and collide the electrons in the plasma with the positive pulse.
  • An apparatus Japanese Patent Laid-Open No. 2001-156013
  • (iii) which heats a layer to be ion-implanted, controls the pulse constant to control the temperature, and applies a negative pulse to attract and implant ions in the plasma.
  • a plasma ion implanter that generates plasma using an external electric field such as a high-frequency power source such as a microwave and applies a high voltage pulse to attract and implant ions in the plasma.
  • Iv High without using an external electric field. Examples thereof include a plasma ion implanter that implants ions in plasma generated only by an electric field generated by applying a voltage pulse.
  • the plasma ion implantation apparatus of (iii) or (iv) because the processing operation is simple, the processing time can be significantly shortened, and it is suitable for continuous use.
  • Examples of the method using the plasma ion implantation apparatus of (iii) and (iv) are those described in International Publication WO2010 / 021326.
  • the thickness of the portion where the ions are injected can be controlled by the injection conditions such as the type of ions, the applied voltage, and the processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the gas barrier laminate, and the like. However, it is usually 5 to 1000 nm.
  • ions can be confirmed by performing elemental analysis measurement near 10 nm from the surface of the polymer layer using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the gas barrier layer has a gas barrier property because the water vapor permeability of the gas barrier layer is small.
  • the water vapor transmittance of the gas barrier layer in an atmosphere of 40 ° C. and 90% relative humidity is usually 1.0 g / m 2 / day or less, preferably 0.8 g / m 2 / day or less, and more preferably 0. .5g / m is in 2 / day, more preferably not more than 0.1 g / m 2 / day.
  • the water vapor permeability can be measured by a known method.
  • Conductive layer The conductive layer provided in the optical laminate according to the embodiment of the present invention is not particularly limited in material as long as it has conductivity, but it is preferably a transparent conductive layer.
  • transparent means that the light transmittance at a wavelength of 450 nm is 80% or more.
  • the conductive material constituting the transparent conductive layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specifically, antimonated tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, germanium-doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide (ITO).
  • Semi-conductive metal oxides such as zinc indium oxide (IZO); metals such as gold, silver, chromium and nickel; mixtures of these metals with conductive metal oxides; inorganic conductivity such as copper iodide and copper sulfide Substances; organic conductive materials such as polyaniline, polythiophene, polypyrrole; and the like.
  • a metal such as silver may form a transparent conductive layer by aggregating particles such as nanofillers, nanorods, and nanofibers.
  • a transparent conductive layer may be obtained from the coating film by applying a coating material containing a particulate metal to the laminate for a transparent conductive film.
  • the thickness of the transparent conductive layer may be appropriately selected according to the application and the like. It is usually 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • Release sheet ( ⁇ ) The release sheet ( ⁇ ) has a role of protecting the resin layer when the optical laminate is stored, transported, etc., and is peeled off in a predetermined step.
  • the release sheet ( ⁇ ) is preferably in the form of a sheet or a film.
  • the sheet-like or film-like shape is not limited to a long one, but also includes a short flat plate-like one.
  • the release sheet ( ⁇ ) is a paper base material such as glassin paper, coated paper, or high-quality paper; a laminated paper obtained by laminating a thermoplastic resin such as polyethylene or polypropylene on these paper base materials; Those that have been sealed with starch, polyvinyl alcohol, acrylic-styrene resin, etc .; or polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and plastic films such as polyolefin films such as polyethylene and polypropylene; glass, etc. Can be mentioned.
  • the release sheet ( ⁇ ) may have a release agent layer provided on a paper base material or a plastic film from the viewpoint of ease of handling, but has a curable composition on the release sheet ( ⁇ ).
  • the curable composition does not spread on the release sheet ( ⁇ ), resulting in a non-uniform coating film or an unapplied portion.
  • the release agent layer does not exist. That is, it is preferable that the release sheet ( ⁇ ) does not have a release agent layer and the resin layer is directly formed on the release sheet ( ⁇ ).
  • the release layer can be formed by using a conventionally known release agent such as a silicone type release agent, a fluorine type release agent, an alkyd type release agent, and an olefin type release agent.
  • the thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 ⁇ m, more preferably 0.05 to 1.5 ⁇ m.
  • the resin layer is usually flexible, and when the release sheet ( ⁇ ) has the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer and the resin layer may adhere to each other. , It is preferable not to have an adhesive layer.
  • the thickness of the peeling sheet ( ⁇ ) is preferably 25 to 150 ⁇ m from the viewpoint of maintaining heat resistance, avoiding an increase in peeling force due to an increase in peeling area, and reducing strain generated in the optical laminate during winding. More preferably, it is 40 to 125 ⁇ m.
  • the surface roughness Ra (arithmetic mean roughness) of the release sheet ( ⁇ ) is preferably 10.0 nm or less, more preferably 8.0 nm or less.
  • the surface roughness Rt (maximum cross-sectional height) is preferably 100 nm or less, more preferably 50 nm or less.
  • the surface roughness Ra and Rt are 10.0 nm or less and 100 nm or less, respectively, it is possible to prevent the surface roughness of the layer in contact with the process film from becoming excessively large. Therefore, when the optical laminate has the above-mentioned functional layer, gas barrier layer, conductive layer, and the like, it becomes easy for those layers to exert the desired functions.
  • the surface roughness Ra and Rt are values obtained by the optical interferometry in a measurement area of 100 ⁇ m ⁇ 100 ⁇ m.
  • the protective film ( ⁇ ) has a role of protecting functional layers such as a gas barrier layer and a transparent conductive layer when the optical laminate is stored, transported, etc., and is peeled off in a predetermined step.
  • the protective film ( ⁇ ) is preferably in the form of a sheet or a film.
  • the sheet-like or film-like shape is not limited to a long one, but also includes a short flat plate-like one.
  • the protective film ( ⁇ ) is usually attached to the surface of the resin layer or the other layer after the resin layer contained in the optical film or the other layer on the resin layer is formed.
  • the adhesive layer is provided on the base material.
  • an adhesive layer is provided on the surface of the protective film ( ⁇ ) on the optical film side. Since the protective film ( ⁇ ) has an adhesive layer, the protective film ( ⁇ ) is detachably adhered to the resin layer or another layer.
  • the base material of the protective film ( ⁇ ) a material having the same material and thickness as the release sheet ( ⁇ ) can be used.
  • the adhesive strength of the pressure-sensitive adhesive layer can be determined by selecting the material, thickness, etc. of the protective film ( ⁇ ) under low-speed peeling conditions of 0.3 m / min to the resin layer of the optical film or another resin layer on the resin layer.
  • the adhesive force A2 when peeling from the layer has a relationship of A1> A2 with respect to the peeling force A1 when the peeling sheet ( ⁇ ) is peeled from the resin layer under a low speed peeling condition of 0.3 m / min. It has been adjusted.
  • an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a pressure-sensitive adhesive containing a polyolefin-based polymer, and a pressure-sensitive adhesive containing a polyolefin-based copolymer are used.
  • Examples thereof include adhesives and the like.
  • the pressure-sensitive adhesive layer contains at least one of a polyolefin-based polymer and a polyolefin-based copolymer from the viewpoint of facilitating the acquisition of the adhesive strength A2 that facilitates the relationship of A1> A2.
  • polystyrene-based polymer examples include polyethylene and polypropylene, and examples of the polyolefin-based copolymer include an ethylene-vinyl acetate copolymer and an ethylene- (meth) acrylic acid copolymer.
  • the protective film containing a commercially available polyolefin-based adhesive that can be used as the protective film ( ⁇ ) examples include San-A Kaken Co., Ltd. Sanitect PAC-3-50THK and Sanitect PAC-2-70.
  • optical laminates according to the embodiment of the present invention are not limited to those shown in FIG. 1, and a plurality of sets are laminated with the resin layer and the above other layers as one set. It may be a thing. Further, one layer or two or more layers may be contained between the resin layer and the other layer as long as the object of the present invention is not impaired.
  • at least one of the adjacent sets may include one layer or two or more other layers. Examples of the other layer include a conductor layer, a shock absorbing layer, an adhesive layer, a bonding layer, a process sheet, and the like. Further, the arrangement position of the other layer is not particularly limited.
  • Examples of the material constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof.
  • ATO antimonated tin oxide
  • FTO fluorine-doped tin oxide
  • GZO germanium-doped zinc oxide
  • ITO indium oxide
  • Semi-conductive metal oxides such as zinc indium oxide (IZO); metals such as gold, silver, chromium and nickel; mixtures of these metals with conductive metal oxides; inorganic conductivity such as copper iodide and copper sulfide Substances; organic conductive materials such as polyaniline, polythiophene, polypyrrole; and the like.
  • a vapor deposition method a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method and the like can be mentioned.
  • the thickness of the conductor layer may be appropriately selected according to the application and the like. It is usually 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • the shock absorbing layer is for protecting the above-mentioned functional layer, gas barrier layer, conductive layer, etc. when a shock is applied to these layers.
  • the material forming the shock absorbing layer is not particularly limited, and examples thereof include an acrylic resin, a urethane resin, a silicone resin, an olefin resin, and a rubber material.
  • the method for forming the shock absorbing layer is not particularly limited.
  • a material for forming the shock absorbing layer and, if desired, a shock absorbing layer forming solution containing other components such as a solvent are placed on the layer to be laminated.
  • examples thereof include a method of coating, drying the obtained coating film, and heating or the like as necessary to form the coating film.
  • a shock absorbing layer may be separately formed on the release base material, and the obtained film may be transferred onto the layer to be laminated and laminated.
  • the thickness of the shock absorbing layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the adhesive layer is a layer used when the optical laminate is attached to the adherend.
  • the material for forming the adhesive layer is not particularly limited, and known adhesives such as acrylic, silicone, and rubber, adhesives, heat sealants, and the like can also be used.
  • the bonding layer is a layer used when a resin layer and the above other layers are combined as one set and a plurality of sets are bonded together to manufacture an optical laminate.
  • the bonding layer is a layer for bonding the resin layer contained in each adjacent set and the other layer to maintain the laminated structure.
  • the bonding layer may be a single layer or a plurality of layers. Examples of the bonding layer include a layer having a single-layer structure formed by using an adhesive and a layer having a layer formed by using an adhesive on both sides of a support layer.
  • the material used for forming the bonding layer is not particularly limited as long as it can bond the resin layer and the other layers to each other and maintain the laminated structure, and a known adhesive can be used.
  • the adhesive is preferable because the resin layer and the other layers can be bonded to each other at room temperature.
  • the pressure-sensitive adhesive used for the bonding layer include an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive. Among these, acrylic adhesives and urethane adhesives are preferable from the viewpoint of adhesive strength, transparency and handleability. Further, an adhesive capable of forming a crosslinked structure as described later is preferable.
  • the pressure-sensitive adhesive may be in any form such as a solvent-type pressure-sensitive adhesive, an emulsion-type pressure-sensitive adhesive, and a hot-melt type pressure-sensitive adhesive.
  • FIG. 2 is a schematic cross-sectional view showing an example of a roll-shaped gas barrier laminate which is a roll-shaped optical laminate.
  • the roll-shaped gas barrier laminate 10A shown in FIG. 2 has a roll-shaped portion 10A 1 wound around a tubular or rod-shaped core material 11. Then, the drawer portion 10A 2 is formed by pulling out the tip portion of the roll-shaped portion 10A 1.
  • the roll-shaped portion 10A 1 is formed so that the protective film 4 is located outside the release sheet 1. Therefore, it is possible to make it difficult to apply stress to the protective film 4 in the roll-shaped portion 10A 1.
  • the optical laminate of the present invention can appropriately peel off the protective film ( ⁇ ) in both low-speed peeling at the peeling starting point and high-speed peeling thereafter. Therefore, when the protective film ( ⁇ ) is continuously peeled from the roll-shaped optical laminate, if the protective film ( ⁇ ) can be appropriately peeled off at a low speed at the peeling starting point, then roll-to-roll. The protective film ( ⁇ ) can be appropriately peeled off in the high-speed peeling in the above process.
  • FIG. 3 is a schematic cross-sectional view showing another example of the roll-shaped gas barrier laminate, which is a roll-shaped optical laminate.
  • the roll-shaped gas barrier laminate 10B shown in FIG. 3 has a roll-shaped portion 10B 1 wound around the core material 11. Then, the drawer portion 10B 2 is formed by pulling out the tip portion of the roll-shaped portion 10B 1.
  • the roll-shaped portion 10B 1 is formed so that the protective film 4 is located inside the release sheet 1. Therefore, it becomes easy to prevent the protective film 4 from being peeled off due to contact with an external object or the like during storage or transportation of the gas barrier laminate 10B.
  • FIG. 5 is a diagram showing an example of how to use the gas barrier laminate having the configuration shown in FIG.
  • the protective film 4 is peeled off from the gas barrier layer 3.
  • the peeling sheet 1 is required to be kept in close contact with the resin layer 2 without floating or peeling off from the resin layer 2. Since the release sheet 1 continues to adhere to the resin layer 2 even after the protective film 4 is peeled off, the protection of the gas barrier layer can be continued even in the subsequent steps.
  • an adhesive layer 5 is formed on the surface of the exposed gas barrier layer 3, and as shown in FIG. 5 (d), the protective film 4 is peeled off by the adhesive layer 5.
  • the gas barrier layer 3 of the gas barrier laminated body 10 after being formed is adhesively fixed to the surface of the adherend 20.
  • the material forming the adhesive layer 5 a material that can be used for the adhesive layer described above can be used.
  • the step of forming the adhesive layer 5 can be omitted.
  • the gas barrier film 10a is attached onto the adherend 20 by peeling the release sheet 1 from the resin layer 3.
  • the optical laminate according to the embodiment of the present invention is manufactured by using a release sheet ( ⁇ ). By using the release sheet ( ⁇ ), the optical laminate can be efficiently and easily manufactured. In particular, a method having the following steps 1 to 4 is preferable.
  • Step 1 Forming a curable resin layer on a release sheet ( ⁇ ) using a curable resin composition containing a polymer component (A) and a curable monomer (B)
  • Step 2 Step 1
  • Step 3 Forming a resin layer composed of a cured resin layer by curing the curable resin layer obtained in Step 3: Others such as a functional layer, a gas barrier layer, a conductive layer, etc. on the resin layer obtained in Step 2.
  • Step of forming a layer Step 4 A step of laminating a protective film ( ⁇ ) on other layers such as a functional layer, a gas barrier layer, and a conductive layer obtained in step 3.
  • FIG. 4 shows an example of a manufacturing process of a gas barrier laminate, which is one of the optical laminates according to the embodiment of the present invention.
  • 4 (a) to 4 (b) are in the above step 1
  • FIGS. 4 (c) to 4 (d) are in the above step 2
  • FIG. 4 (e) is in the above step 3
  • FIG. 4 (f) Corresponds to each of the above steps 4.
  • Step 1 First, a curable resin composition containing the polymer component (A) and the curable monomer (B) is cured on the release sheet ( ⁇ ) (corresponding to reference numeral 1 in FIG. 4 (a)). A curable resin layer (corresponding to reference numeral 2a in FIG. 4B), which is the previous resin layer, is formed.
  • the method of applying the curable resin composition onto the release sheet ( ⁇ ) is not particularly limited, and is a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, and a die coating method.
  • a known coating method such as a gravure coating method can be used.
  • the method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used. Even if the curable resin composition used for forming the resin layer contains the polymer component (A) having a very high Tg, the solution casting method is performed by containing the curable monomer (B). When the coating film obtained by using the above is dried, the solvent can be efficiently removed.
  • the drying temperature of the coating film is usually 30 to 150 ° C., preferably 50 to 120 ° C.
  • the drying time is usually 1 to 10 minutes, more preferably 2 to 7 minutes.
  • the thickness of the dry coating film (curable resin layer) is not particularly limited, but it may be the same as the thickness of the resin layer described above because there is almost no difference from the thickness after curing.
  • Step 2 the curable resin layer obtained in step 1 is cured to form a cured resin layer.
  • This cured resin layer becomes a resin layer (symbol 2 in FIG. 4C).
  • the method for curing the curable resin layer is not particularly limited, and a known method can be adopted.
  • the curable resin layer can be cured by heating the curable resin layer. ..
  • the heating temperature is usually 30 to 150 ° C, preferably 50 to 100 ° C.
  • the curable resin layer is formed by using a curable resin composition containing a photopolymerization initiator
  • the curable resin layer is irradiated with an electromagnetic wave as an active energy ray to obtain a curable resin.
  • the layer can be cured. Electromagnetic waves can be irradiated using a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, or the like.
  • the wavelength of the electromagnetic wave is preferably in the ultraviolet light region of 200 to 400 nm, more preferably 350 to 400 nm.
  • Irradiation dose is usually illuminance 50 ⁇ 1000mW / cm 2, light amount 50 ⁇ 5000mJ / cm 2, preferably in the range of 200 ⁇ 5000mJ / cm 2.
  • the irradiation time is usually 0.1 to 1000 seconds, preferably 1 to 500 seconds, and more preferably 10 to 100 seconds. In order to satisfy the above-mentioned amount of light in consideration of the heat load in the light irradiation step, irradiation may be performed a plurality of times.
  • the curable resin composition is irradiated with electromagnetic waves through a filter that absorbs light having a wavelength unnecessary for the curing reaction. You may. According to this method, light having a wavelength that is unnecessary for the curing reaction and deteriorates the polymer component (A) is absorbed by the filter, so that the deterioration of the polymer component (A) is suppressed and the colorless and transparent resin is used. Layers are easier to obtain.
  • a resin film such as a polyethylene terephthalate film can be used.
  • the curable resin layer can be cured by irradiating the curable resin layer with an electron beam as an active energy ray.
  • an electron beam accelerator or the like can be used.
  • the irradiation dose is usually in the range of 10 to 1000 grad.
  • the irradiation time is usually 0.1 to 1000 seconds, preferably 1 to 500 seconds, and more preferably 10 to 100 seconds.
  • the curable resin layer may be cured in an inert gas atmosphere such as nitrogen gas, if necessary.
  • an inert gas atmosphere such as nitrogen gas
  • the resin film formed by the procedures of coating, drying, and curing can be formed thin, so that it is highly flexible and can have optical isotropic properties. Further, since it is a curable resin, it can be made excellent in heat resistance and solvent resistance.
  • Step 3 a layer of a composition for forming a gas barrier layer by using the above-mentioned solution containing the gas barrier resin or the like, in other words, a gas barrier layer before curing (FIG. 4).
  • the gas barrier layer (reference numeral 3 in FIG. 4 (e)) is formed by forming the reference numeral 3a) of (d) and curing the layer of this composition.
  • the state shown in FIG. 4 (c) is directly transferred to the state shown in FIG. 4 (e).
  • the method described above can be appropriately adopted.
  • the gas barrier layer is a layer obtained by modifying a layer containing a silicon-containing polymer compound, a step of forming a layer containing the silicon-containing polymer compound on a resin layer and a silicon-containing high content thereof.
  • a gas barrier layer can be formed by a step of subjecting a layer containing a molecular compound to a modification treatment.
  • the gas barrier layer contained in the gas barrier laminate can be formed by various methods such as an extrusion molding method and a coating method, but the gas barrier performance of the gas barrier laminate may deteriorate depending on the method of forming the gas barrier layer.
  • a gas barrier layer is formed by a forming method involving heating, for example, coating / drying, the resin layer may be physically or chemically affected, and properties such as gas barrier properties may be deteriorated.
  • the methods described above can be adopted. Further, as a method of performing the modification treatment, the silicon is carried while transporting a long film in which a layer containing a silicon-containing polymer compound is formed on the resin layer obtained in step 2 in a certain direction. It is preferable that the layer containing the contained polymer compound is subjected to a modification treatment to produce a gas barrier laminate. According to this manufacturing method, for example, a long gas barrier laminate can be continuously manufactured.
  • Step 4 By attaching the protective film ( ⁇ ) on the gas barrier layer obtained in step 3, a gas barrier laminate can be obtained.
  • This step is performed, for example, by arranging the forming surface of the pressure-sensitive adhesive layer of the protective film ( ⁇ ) toward the gas barrier layer and sequentially pressing the protective film ( ⁇ ) so as not to take in bubbles.
  • the manufacturing method having the above steps 1 to 4 forms a curable resin layer by using the release sheet ( ⁇ ), and efficiently obtains the gas barrier laminate according to the embodiment of the present invention. , Can be manufactured continuously and easily.
  • the adhesive strength (mN / 50 mm) was measured.
  • the test environment is 23 ° C and 50% relative humidity, and a low-speed peeling tester (manufactured by A & D Co., Ltd., product name: Tensilon universal testing machine RTG) is used for peeling at a peeling speed of 0.3 m / min. -1225) was used, and a high-speed peeling tensile tester (manufactured by Tester Sangyo Co., Ltd., product name: high-speed peeling tester TE-701) was used for peeling at a peeling speed of 20 m / min.
  • a low-speed peeling tester manufactured by A & D Co., Ltd., product name: Tensilon universal testing machine RTG
  • a high-speed peeling tensile tester manufactured by Tester Sangyo Co., Ltd., product name: high-speed peeling tester TE-701
  • both sides of the gas barrier layer 3 are in the state of the gas barrier film before the protective film ( ⁇ ) is attached to the gas barrier layer 3.
  • a sample adhered to the glass plate 30 with the adhesive film 5 was prepared as a measurement sample.
  • a resin layer before the protective film ( ⁇ ) was attached to the glass plate with a double-sided adhesive film was prepared as a measurement sample.
  • the release sheet ( ⁇ ) was peeled off from these measurement samples, and the release force A1 was measured.
  • the gas barrier laminate was a polyethylene terephthalate (PET) film group having a thickness of 50 ⁇ m, as shown in FIG. 6B, instead of the gas barrier films of Examples and Comparative Examples.
  • PET polyethylene terephthalate
  • a gas barrier layer 3 was formed on the material 40 in the same procedure as in Examples and Comparative Examples, a protective film ( ⁇ ) was attached onto the gas barrier layer, and the material was stored in the above test environment for 24 hours. After that, a sample in which the surface of the PET film base material 40 opposite to the one provided with the gas barrier layer 3 was fixed to the glass plate 30 with the double-sided adhesive film 5 was prepared as a measurement sample. As for the optical laminate, a resin layer before the protective film ( ⁇ ) was attached to the glass plate with a double-sided adhesive film was prepared as a measurement sample. Then, the adhesive strength A2 was measured by peeling the protective film ( ⁇ ) from these measurement samples.
  • the calculation of the measured value was based on JIS Z0237: 2000, and the average value of the two measurements was taken as each peeling force and adhesive force.
  • the protective film ( ⁇ ) was removed when the peeling force A1 was measured, and the protective film ( ⁇ ) was removed when the adhesive force A2 was measured. Even if the surface opposite to the peeling sheet ( ⁇ ) or protective film ( ⁇ ) to be peeled off is fixed to the glass plate 30 after the sheet ( ⁇ ) is removed, the peeling force A1 measured in the above procedure, It has the same value as the adhesive strength A2.
  • Benzoyl) -phenylphosphine oxide (Omnirad TPO, manufactured by BASF) was added and mixed in an amount of 5 parts to prepare a curable composition 1.
  • the curable compound and the polymerization initiator used in this example and other experimental examples do not contain a solvent and are all raw materials having a solid content of 100%.
  • a polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., Cosmoshine PET100A4100, thickness 100 ⁇ m) was prepared as a release sheet ( ⁇ ), and a curable resin composition was prepared on the surface opposite to the easy-adhesion layer surface. was applied by hand coating, and the obtained coating film was heated at 100 ° C.
  • a PET film manufactured by Toyo Boseki Co., Ltd., Cosmo Shine PET50A4100, thickness 50 ⁇ m
  • a PET film manufactured by Toyo Boseki Co., Ltd., Cosmo Shine PET50A4100, thickness 50 ⁇ m
  • the gas flow rate is 100 sccm, Duty.
  • ions derived from argon gas were added to the polymer compound layer ( It was injected into the surface of the polysilazane layer) to form a gas barrier layer.
  • a gas barrier film was produced on the release sheet ( ⁇ ). The same treatment was repeated to obtain a gas barrier film with a release sheet having two gas barrier layers.
  • a polyolefin-based protective film (manufactured by Sanei Kaken Co., Ltd., Sanitect PAC-3-50THK) (low density polyethylene group) was used as a protective film ( ⁇ -1) on the gas barrier layer side of the obtained gas barrier film.
  • a gas barrier laminate was obtained by attaching a material, an olefin adhesive, and a thickness of 50 ⁇ m)).
  • Example 2 In Example 1, instead of the protective film ( ⁇ -1), an ethylene-vinyl acetate copolymer (EVA) -based protective film (manufactured by Sanei Kaken Co., Ltd., Sanitect PAC-2-70 (low density polyethylene base material, EVA) A gas barrier laminate was obtained in the same manner as in Example 1 except that the adhesive (thickness 70 ⁇ m)) was used as the protective film ( ⁇ -2).
  • EVA ethylene-vinyl acetate copolymer
  • ⁇ Comparative example 1 100 parts by mass of an acrylate resin (Cybinol LT-57 manufactured by Saiden Chemical Co., Ltd.) and 4 parts by mass of an isocyanate-based cross-linking agent (Kokazai K-315 manufactured by Saiden Chemical Co., Ltd.) are mixed to form an adhesive composition (1). ) was obtained.
  • a protective film ( ⁇ -3) is prepared by forming an adhesive layer having a thickness of 5 ⁇ m on a polyester film (PET38-600E, manufactured by Nissin Kasei Co., Ltd.) using the adhesive composition (1). did. Then, a gas barrier laminate was produced in the same procedure as in Example 1 except that the protective film ( ⁇ -3) was used instead of the protective film ( ⁇ -1).
  • a protective film ( ⁇ -4) is prepared by forming an adhesive layer having a thickness of 5 ⁇ m on a polyester film (PET38-T100G manufactured by Nissin Kasei Co., Ltd.) using the adhesive composition (2). did. Then, a gas barrier laminate was produced in the same procedure as in Example 1 except that the protective film ( ⁇ -4) was used instead of the protective film ( ⁇ -1).
  • Example 3 In Example 1, an optical laminate was obtained in the same procedure as in Example 1 except that the gas barrier layer was not laminated and the protective film was directly attached to the resin layer.
  • Example 4 In Example 2, an optical laminate was obtained in the same procedure as in Example 2 except that the gas barrier layer was not laminated and the protective film was directly attached to the resin layer.
  • Table 1 shows the measurement results of the gas barrier laminate and the optical laminate of each Example and Comparative Example.
  • the gas barrier laminates of Examples 1 and 2 and the optical laminates of Examples 3 and 4 both peel the release sheet ( ⁇ ) from the resin layer under low-speed release conditions.
  • the peeling force A1 and the adhesive force A2 when peeling the protective film ( ⁇ ) from the gas barrier layer under low-speed peeling conditions have a relationship of A1> A2, and the protective film ( ⁇ ) may be peeled off. It can be seen that it shows a nice appearance.
  • the gas barrier laminates of Examples 1 and 2 and the optical laminates of Examples 3 and 4 have a peeling force B1 when the high-speed peeling condition peeling sheet ( ⁇ ) is peeled from the resin layer under low-speed peeling conditions.
  • the adhesive force B2 when the protective film ( ⁇ ) is peeled from the gas barrier layer under low-speed peeling conditions has a relationship of B2> B1, but the gas barrier laminates of Examples 1 and 2 and Examples 3 and 4
  • the peeling starting point can be easily formed in the optical laminate by satisfying the relationship of A1> A2. Therefore, it can be seen that the protective film ( ⁇ ) can be peeled even under high-speed peeling conditions.
  • the protective film ( ⁇ ) is appropriately peeled between the resin layer or another layer without causing floating or peeling at the interface between the resin layer and the release sheet ( ⁇ ). Since the starting point can be formed, peeling can be performed satisfactorily under a wide range of peeling conditions from low speed to high speed. Therefore, the members for elements constituting various electronic devices such as organic EL elements and thermoelectric conversion elements can be made into an optical laminate capable of corresponding to various manufacturing conditions.

Abstract

Provided is an optical layered body in which it is possible to appropriately form a detachment starting point between a protective film (β) and a resin layer or another layer on the resin layer, without causing any lifting or detachment in the interface between the resin layer and a release sheet (α). This optical layered body includes a release sheet (α), an optical film having a resin layer disposed on one of the outermost surfaces, and a protective film (β). The resin layer has the release sheet (α) stacked directly thereon. The protective film (β) is stacked on the resin layer, directly or via another layer, from the other outermost surface side of the optical film. The resin layer is made of a cured product of a curable composition containing a curable compound. The relation of A1>A2 is satisfied between a detachment force A1 that is required to detach the release sheet (α) from the resin layer at a low-speed detachment condition of 0.3 m/min and an adhesive force A2 that is generated when detaching the protective film (β) from the resin layer, or the other layer, at the low-speed detachment condition of 0.3 m/min.

Description

光学用積層体Optical laminate
 本発明は、剥離シート、光学用フィルム、及び、保護フィルムを有する光学用積層体に関する。 The present invention relates to an optical laminate having a release sheet, an optical film, and a protective film.
 近年、ガスバリアフィルムは、基板材料や封止材料として広く用いられている。ガスバリアフィルムには、水蒸気や酸素等の透過を抑制できる高いガスバリア性が求められる。加えて、例えば、ガスバリアフィルムが貼付される電子デバイス等の貼付対象物の視認性を損なわないように透光性を高くして光学用フィルムとして利用できるようにしたり、貼付対象物の軽量性が損なわれないようにしたりすることも求められる。
 上記観点から、硬化性化合物を含む硬化性組成物を支持体上に塗布し、得られた塗布層に含まれる硬化性化合物を硬化して薄い樹脂層を形成し、この樹脂層上に直接又は他の層を介して無機膜等からなるガスバリア層を形成することが知られている。このような製造方法により、一方の表面に樹脂層が位置し、他方の表面にガスバリア層が位置するガスバリアフィルムが得られる(特許文献1)。
 以下、水蒸気や酸素の透過を抑制する特性を「ガスバリア性」、ガスバリア性を有するフィルムを「ガスバリアフィルム」、ガスバリア性を有する積層体を「ガスバリア性積層体」という。また、光学用途に用いられるフィルムを「光学用フィルム」、光学用フィルムを含む積層体を「光学用積層体」という。上述した透光性を有するガスバリアフィルムは光学用フィルムでもあり、透光性を有するガスバリアフィルムを含むガスバリア性積層体は光学用積層体でもある。
In recent years, gas barrier films have been widely used as substrate materials and sealing materials. The gas barrier film is required to have a high gas barrier property capable of suppressing the permeation of water vapor, oxygen and the like. In addition, for example, the lightness of the object to be attached can be increased by increasing the translucency so as not to impair the visibility of the object to be attached such as an electronic device to which the gas barrier film is attached. It is also required to prevent it from being damaged.
From the above viewpoint, a curable composition containing a curable compound is applied onto a support, and the curable compound contained in the obtained coating layer is cured to form a thin resin layer, which is directly or directly on the resin layer. It is known to form a gas barrier layer made of an inorganic film or the like via another layer. By such a manufacturing method, a gas barrier film in which a resin layer is located on one surface and a gas barrier layer is located on the other surface can be obtained (Patent Document 1).
Hereinafter, the property of suppressing the permeation of water vapor and oxygen is referred to as "gas barrier property", the film having gas barrier property is referred to as "gas barrier film", and the laminate having gas barrier property is referred to as "gas barrier property laminate". Further, a film used for optical applications is referred to as an "optical film", and a laminate containing an optical film is referred to as an "optical laminate". The above-mentioned translucent gas barrier film is also an optical film, and the gas barrier laminate containing the translucent gas barrier film is also an optical laminate.
 ガスバリアフィルムなどの光学用フィルムは、工業的には、長尺なものとして製造された後ロール状に巻かれ、巻回体として保管、輸送されることが多い。例えば、このようなロール状のガスバリアフィルムにおいては、ガスバリア層を保護したり、ガスバリアフィルムのハンドリング性を高めたりするために、一方の側の最外層として保護フィルムを設け、他方の側の最外層として剥離シートを設けたガスバリア性積層体の態様をとることがある。 Industrially, optical films such as gas barrier films are often manufactured as long films, then rolled into rolls, and stored and transported as wound bodies. For example, in such a roll-shaped gas barrier film, in order to protect the gas barrier layer and improve the handleability of the gas barrier film, a protective film is provided as the outermost layer on one side, and the outermost layer on the other side is provided. As a result, it may take the form of a gas barrier laminated body provided with a release sheet.
 例えば、特許文献2には、基材層、ガスバリア層及び保護フィルムを有するガスバリア性積層体が記載されており、実施例には、保護フィルム2/樹脂からなる基材層/ガスバリア層/保護フィルム1という構成を備えるガスバリア性積層体が記載されている。 For example, Patent Document 2 describes a gas barrier laminate having a base material layer, a gas barrier layer and a protective film, and in Examples, a base material layer / gas barrier layer / protective film made of a protective film 2 / resin. A gas barrier laminate having the configuration of 1 is described.
国際公開第2013/018602号International Publication No. 2013/018602 国際公開第2018/181004号International Publication No. 2018/181004
 本発明者は、一方の最表面に硬化性樹脂組成物の硬化物からなる樹脂層が位置し、他方の最表面にガスバリア層が位置するガスバリアフィルムにおいては、樹脂層に直接積層する剥離シート(α)を設けるとともに、ガスバリア層に直接積層する保護フィルム(β)を設けて、ガスバリア性積層体とすることに思い至った。
 上記構成を備えるガスバリア性積層体の使用形態として、例えば、次のものが想定される。まず、保護フィルム(β)をガスバリア層から剥離し、露出したガスバリア層の表面に接着剤層を形成し、この接着剤層によってガスバリア層を被着体の表面に接着固定する。その後、剥離シート(α)を樹脂層から剥離することにより、被着体上にガスバリアフィルムが貼付される。
In the case of a gas barrier film in which a resin layer made of a cured product of a curable resin composition is located on one outermost surface and a gas barrier layer is located on the other outermost surface, a release sheet directly laminated on the resin layer (the present inventor). In addition to providing α), we came up with the idea of providing a protective film (β) that is directly laminated on the gas barrier layer to form a gas barrier laminated body.
As a usage pattern of the gas barrier laminate having the above configuration, for example, the following is assumed. First, the protective film (β) is peeled off from the gas barrier layer, an adhesive layer is formed on the surface of the exposed gas barrier layer, and the gas barrier layer is adhesively fixed to the surface of the adherend by this adhesive layer. Then, by peeling the release sheet (α) from the resin layer, the gas barrier film is attached onto the adherend.
 しかしながら、上記構成を有するガスバリア性積層体では、保護フィルム(β)をガスバリア層から剥離する際に、保護フィルム(β)とガスバリア層との間にうまく剥離起点を形成することができず、樹脂層と剥離シート(α)との界面に、浮きや剥がれが生じる恐れがあった。このような課題は、ガスバリア性積層体に限らず、光学用フィルムが樹脂層と他の層とを備え、剥離シート(α)/樹脂層/他の層/保護フィルム(β)の構成を持つ光学用積層体や、光学用フィルムが樹脂層のみから構成され、剥離シート(α)/樹脂層/保護フィルム(β)の構成を持つ光学用積層体にも共通の課題である。
 なお、特許文献2のガスバリア性積層体は、上記構成のガスバリア性積層体と同様、ガスバリア層上に保護フィルム1が設けられており、保護フィルム1を保護フィルム2よりも先に剥離することが記載されている。しかしながら、特許文献2に記載されるガスバリア性積層体が有する基材層は、熱可塑性樹脂からなるものであり、硬化性組成物の硬化物ではなく、しかも、保護フィルムは粘着剤を有するものであるため、樹脂層と剥離シート(α)との界面における剥離を防止するという、上記構成を有するガスバリア性積層体や光学用積層体に存在するような課題は存在しなかった。
However, in the gas barrier laminate having the above structure, when the protective film (β) is peeled from the gas barrier layer, a peeling starting point cannot be formed well between the protective film (β) and the gas barrier layer, and the resin There was a risk of floating or peeling at the interface between the layer and the release sheet (α). Such a problem is not limited to the gas barrier laminate, and the optical film has a resin layer and another layer, and has a structure of a release sheet (α) / resin layer / other layer / protective film (β). This is a common problem for optical laminates and optical laminates in which the optical film is composed of only a resin layer and has a structure of a release sheet (α) / resin layer / protective film (β).
In the gas barrier laminate of Patent Document 2, the protective film 1 is provided on the gas barrier layer as in the gas barrier laminate having the above configuration, and the protective film 1 can be peeled off before the protective film 2. Are listed. However, the base material layer of the gas barrier laminate described in Patent Document 2 is made of a thermoplastic resin, not a cured product of a curable composition, and the protective film has an adhesive. Therefore, there is no problem of preventing peeling at the interface between the resin layer and the release sheet (α), which is present in gas barrier laminates and optical laminates having the above configuration.
 本発明は、上記問題を鑑み、樹脂層と剥離シート(α)との界面に浮きや剥がれを生じることなく、保護フィルム(β)と樹脂層又は当該樹脂層上に位置する他の層との間に適切に剥離起点を形成できる光学用積層体を提供することを課題とする。 In view of the above problems, the present invention relates the protective film (β) to the resin layer or another layer located on the resin layer without causing floating or peeling at the interface between the resin layer and the release sheet (α). An object of the present invention is to provide an optical laminate capable of appropriately forming a peeling starting point between them.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、剥離シート(α)と保護フィルム(β)とを所定条件で剥離するときの剥離力及び粘着力を所定の関係とすることにより、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[9]を提供するものである。
[1]剥離シート(α)、一方の最表面に位置する樹脂層を含む光学用フィルム、及び、保護フィルム(β)を含み、前記樹脂層に剥離シート(α)が直接積層され、前記樹脂層に光学用フィルムの他方の最表面側から保護フィルム(β)が直接又は他の層を介して積層され、
 前記樹脂層は、硬化性化合物を含む硬化性組成物の硬化物であり、
 剥離シート(α)を0.3m/minの低速剥離条件で前記樹脂層から剥離する際の剥離力A1と、保護フィルム(β)を0.3m/minの低速剥離条件で前記樹脂層又は前記他の層から剥離する際の粘着力A2とが、A1>A2の関係にある、光学用積層体。
[2]前記剥離力A1が、500mN/50mm以下である、上記[1]に記載の光学用積層体。
[3]保護フィルム(β)は粘着剤層を有しており、該粘着剤層によって前記樹脂層又は前記他の層に対して剥離可能に付着している、上記[1]又は[2]に記載の光学用積層体。
[4]前記粘着剤層が、ポリオレフィン系重合体及びポリオレフィン系共重合体のうち少なくとも一方を含む、上記[3]に記載の光学用積層体。
[5]前記樹脂層は、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物の硬化物である上記[1]~[4]のいずれか1つに記載の光学用積層体。
[6]重合体成分(A)は、ガラス転移温度(Tg)が250℃以上である上記[5]に記載の光学用積層体。
[7]前記光学用フィルムが、前記他の層として、前記樹脂層が位置する最表面とは逆側の最表面に位置する機能層を含み、前記機能層が無機膜又は高分子化合物を含む層に改質処理を施して得られる層であり、前記機能層に保護フィルム(β)が直接積層されている、上記[1]~[6]のいずれか1つに記載の光学用積層体。
[8]前記光学用フィルムが、前記他の層として、前記樹脂層が位置する最表面とは逆側の最表面に位置するガスバリア層を含み、前記ガスバリア層に保護フィルム(β)が直接積層される、上記[1]~[6]のいずれか1つに記載の光学用積層体。
[9]前記光学用フィルムが、前記他の層として、前記樹脂層が位置する最表面とは逆側の最表面に位置する導電層を含み、前記導電層に保護フィルム(β)が直接積層される、上記[1]~[6]のいずれか1つに記載の光学用積層体。
As a result of diligent studies to solve the above problems, the present inventors have a predetermined relationship between the peeling force and the adhesive force when the peeling sheet (α) and the protective film (β) are peeled under predetermined conditions. As a result, it was found that the above problems could be solved, and the present invention was completed.
That is, the present invention provides the following [1] to [9].
[1] The resin includes a release sheet (α), an optical film containing a resin layer located on one of the outermost surfaces, and a protective film (β), and the release sheet (α) is directly laminated on the resin layer. A protective film (β) is laminated on the layer directly or via another layer from the other outermost surface side of the optical film.
The resin layer is a cured product of a curable composition containing a curable compound.
The peeling force A1 when the release sheet (α) is peeled from the resin layer under the low speed peeling condition of 0.3 m / min, and the protective film (β) is the resin layer or the said under the low speed peeling condition of 0.3 m / min. An optical laminate in which the adhesive force A2 when peeling from another layer has a relationship of A1> A2.
[2] The optical laminate according to the above [1], wherein the peeling force A1 is 500 mN / 50 mm or less.
[3] The protective film (β) has a pressure-sensitive adhesive layer, and is detachably adhered to the resin layer or the other layer by the pressure-sensitive adhesive layer, as described in [1] or [2]. The optical laminate according to.
[4] The optical laminate according to the above [3], wherein the pressure-sensitive adhesive layer contains at least one of a polyolefin-based polymer and a polyolefin-based copolymer.
[5] The resin layer is made into any one of the above [1] to [4], which is a cured product of a curable resin composition containing a polymer component (A) and a curable monomer (B). The optical laminate according to the description.
[6] The polymer component (A) is the optical laminate according to the above [5], wherein the glass transition temperature (Tg) is 250 ° C. or higher.
[7] The optical film includes, as the other layer, a functional layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the functional layer contains an inorganic film or a polymer compound. The optical laminate according to any one of the above [1] to [6], which is a layer obtained by subjecting the layer to a modification treatment and in which a protective film (β) is directly laminated on the functional layer. ..
[8] The optical film includes, as the other layer, a gas barrier layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the protective film (β) is directly laminated on the gas barrier layer. The optical laminate according to any one of the above [1] to [6].
[9] The optical film includes, as the other layer, a conductive layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the protective film (β) is directly laminated on the conductive layer. The optical laminate according to any one of the above [1] to [6].
 本発明によれば、樹脂層と剥離シート(α)との界面に浮きや剥がれを生じることなく、保護フィルム(β)と樹脂層又は当該樹脂層上に位置する他の層との間に適切に剥離起点を形成できる光学用積層体を提供することができる。 According to the present invention, it is appropriate between the protective film (β) and the resin layer or another layer located on the resin layer without causing floating or peeling at the interface between the resin layer and the release sheet (α). It is possible to provide an optical laminate capable of forming a peeling starting point.
ガスバリア性積層体の一例を示す断面模式図である。It is sectional drawing which shows an example of the gas barrier laminated body. ロール状のガスバリア性積層体の一例を示す断面模式図である。It is sectional drawing which shows an example of the roll-shaped gas barrier laminated body. ロール状のガスバリア性積層体の他の例を示す断面模式図である。It is sectional drawing which shows the other example of the roll-shaped gas barrier laminated body. ガスバリア性積層体の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the gas barrier laminated body. ガスバリア性積層体の使用方法の一例を示す説明図である。It is explanatory drawing which shows an example of the use method of the gas barrier laminated body. ガスバリア性積層体及び光学用積層体の剥離力の測定及び外観検査の方法を説明する図である。It is a figure explaining the method of measuring the peeling force of a gas barrier laminated body and an optical laminated body, and visual inspection.
 以下、本発明の実施形態(以下、「本実施形態」と称することがある)係る光学用積層体について説明する。 Hereinafter, an optical laminate according to an embodiment of the present invention (hereinafter, may be referred to as “the present embodiment”) will be described.
1.光学用積層体
 本発明の実施形態に係る光学用積層体は、剥離シート(α)、一方の最表面に位置する樹脂層を含む光学用フィルム、及び、保護フィルム(β)を含み、前記樹脂層に剥離シート(α)が直接積層され、前記樹脂層に光学用フィルムの他方の最表面側から保護フィルム(β)が直接又は他の層を介して積層され、前記樹脂層は、硬化性化合物を含む硬化性組成物の硬化物であり、剥離シート(α)を0.3m/minの低速剥離条件で前記樹脂層から剥離する際の剥離力A1と、保護フィルム(β)を0.3m/minの低速剥離条件で前記樹脂層又は前記他の層から剥離する際の粘着力A2とが、A1>A2の関係にある。
 なお、剥離力A1、及び、粘着力A2は、それぞれ幅50mmの、光学用積層体の保護フィルム(β)又は剥離シート(α)を、後述する実施例に記載の方法により、剥離角度180°、剥離速度0.3m/minの条件で剥離したときの剥離力、及び、粘着力(mN/50mm)である。また、後述する剥離力B1、及び、粘着力B2は、それぞれ剥離速度を20m/minとした以外は上記手順と同様にして測定した剥離力、及び、粘着力(mN/50mm)である。
 以下、剥離速度0.3m/minを「低速剥離条件」、剥離速度20m/minを「高速剥離条件」ということがある。
1. 1. Optical Laminate The optical laminate according to the embodiment of the present invention includes a release sheet (α), an optical film containing a resin layer located on one of the outermost surfaces, and a protective film (β), and the resin. The release sheet (α) is directly laminated on the layer, and the protective film (β) is laminated directly on the resin layer from the other outermost surface side of the optical film or via another layer, and the resin layer is curable. It is a cured product of a curable composition containing a compound, and has a peeling force A1 when peeling a release sheet (α) from the resin layer under a low speed peeling condition of 0.3 m / min, and a protective film (β) of 0. The adhesive force A2 when peeling from the resin layer or the other layer under the low speed peeling condition of 3 m / min has a relationship of A1> A2.
The peeling force A1 and the adhesive force A2 each have a width of 50 mm, and the protective film (β) or the peeling sheet (α) of the optical laminate is peeled at an angle of 180 ° by the method described in Examples described later. , The peeling force and the adhesive force (mN / 50 mm) when peeled under the condition of the peeling speed of 0.3 m / min. Further, the peeling force B1 and the adhesive force B2, which will be described later, are the peeling force and the adhesive force (mN / 50 mm) measured in the same manner as in the above procedure except that the peeling speed is set to 20 m / min, respectively.
Hereinafter, the peeling speed of 0.3 m / min may be referred to as “low speed peeling condition”, and the peeling speed of 20 m / min may be referred to as “high speed peeling condition”.
 硬化性化合物を含む硬化性組成物の硬化物である樹脂層が一方の最表面に位置する光学用フィルムの樹脂層に剥離シート(α)を直接積層し、保護フィルム(β)を上記樹脂層に光学用フィルムの他方の最表面側から直接又は他の層を介して積層した積層体において、保護フィルム(β)を低速剥離条件で光学用フィルムの他方の最表面又は上記他の層から剥離する際の粘着力A2と、剥離シート(α)を低速剥離条件で樹脂層から剥離する際の剥離力A1とが上記関係を満たすことで、樹脂層と剥離シート(α)との界面に浮きや剥がれを生じることなく、保護フィルム(β)と樹脂層又は上記他の層との間に剥離の起点となる部分(剥離起点)を容易に形成することができ、剥離シート(α)の樹脂層への密着状態を保ったまま保護フィルム(β)のみを良好に剥離できるガスバリア性積層体を提供することができる。 The release sheet (α) is directly laminated on the resin layer of the optical film in which the resin layer which is the cured product of the curable composition containing the curable compound is located on one of the outermost surfaces, and the protective film (β) is formed on the resin layer. In a laminate laminated directly from the other outermost surface side of the optical film or via another layer, the protective film (β) is peeled off from the other outermost surface side of the optical film or the other layer above under low-speed peeling conditions. When the adhesive force A2 at the time of peeling and the peeling force A1 at the time of peeling the release sheet (α) from the resin layer under low speed peeling conditions satisfy the above relationship, the release sheet (α) floats at the interface between the resin layer and the release sheet (α). A portion (peeling starting point) that becomes a starting point of peeling can be easily formed between the protective film (β) and the resin layer or the above-mentioned other layer without causing peeling or peeling, and the resin of the peeling sheet (α). It is possible to provide a gas barrier laminate capable of satisfactorily peeling off only the protective film (β) while maintaining the state of close contact with the layer.
 低速剥離条件において上記の関係を満たしていれば、保護フィルム(β)を低速剥離条件で樹脂層又は他の層から剥離する限り、樹脂層と剥離シート(α)との界面に浮きや剥がれを生じることなく、保護フィルム(β)と樹脂層又は上記他の層との間に適切に剥離起点を形成することができる。したがって、剥離シート(α)の樹脂層からの剥離、及び、保護フィルム(β)の、光学用フィルムの他方の最表面又は上記他の層からの剥離を高速剥離条件で行ったときの両者の剥離力の関係に関わらず(例えば、高速剥離条件では両者の剥離力の関係が逆転する場合であっても)、低速剥離条件で保護フィルム(β)の剥離起点を形成した後、保護フィルム(β)及び剥離シート(α)を高速剥離条件で剥離することにより、両者の剥離が適切に行われ、かつ、高い生産性で光学用フィルムを目的被着物に貼付することができる。 If the above relationship is satisfied under the low-speed peeling condition, as long as the protective film (β) is peeled from the resin layer or another layer under the low-speed peeling condition, floating or peeling occurs at the interface between the resin layer and the peeling sheet (α). A peeling starting point can be appropriately formed between the protective film (β) and the resin layer or the above-mentioned other layer without occurring. Therefore, both when the release sheet (α) is peeled from the resin layer and the protective film (β) is peeled from the other outermost surface of the optical film or the above other layer under high-speed peeling conditions. Regardless of the relationship of the peeling force (for example, even if the relationship between the two peeling forces is reversed under the high-speed peeling condition), after forming the peeling starting point of the protective film (β) under the low-speed peeling condition, the protective film (for example) By peeling the release sheet (β) and the release sheet (α) under high-speed release conditions, both can be appropriately peeled off, and the optical film can be attached to the target adherend with high productivity.
 本発明の実施形態に係る光学用積層体の一つであるガスバリア性積層体の具体的な構成の一例を図1に示す。
 図1の模式的な断面図に示されるガスバリア性積層体10は、ガスバリアフィルム10aと、剥離シート1と、保護フィルム4とを備えている。
 ガスバリアフィルム10aは、一方の最表面に位置する樹脂層2と、他方の最表面に位置するガスバリア層3とを含む。樹脂層2のガスバリア層3とは反対側の面には剥離シート1が直接積層されている。また、ガスバリア層3の樹脂層2とは反対側の面には保護フィルム4が直接積層されている。換言すれば、光学用フィルムの一つであるガスバリアフィルム10aの一方の最表面に位置する樹脂層に、当該ガスバリアフィルム10aの他方の最表面側からガスバリア層3を介して保護フィルム4が積層されている。
 図1の剥離シート1が上述した剥離シート(α)に相当し、図1の保護フィルム4が上述した保護フィルム(β)に相当する。
 後述するように、最終的に、保護フィルム4及び剥離シート1が剥離除去された状態で、ガスバリアフィルム10aに由来する層が被着体に形成される。
FIG. 1 shows an example of a specific configuration of a gas barrier laminate, which is one of the optical laminates according to the embodiment of the present invention.
The gas barrier laminate 10 shown in the schematic cross-sectional view of FIG. 1 includes a gas barrier film 10a, a release sheet 1, and a protective film 4.
The gas barrier film 10a includes a resin layer 2 located on one outermost surface and a gas barrier layer 3 located on the other outermost surface. The release sheet 1 is directly laminated on the surface of the resin layer 2 opposite to the gas barrier layer 3. Further, the protective film 4 is directly laminated on the surface of the gas barrier layer 3 opposite to the resin layer 2. In other words, the protective film 4 is laminated on the resin layer located on one outermost surface of the gas barrier film 10a, which is one of the optical films, from the other outermost surface side of the gas barrier film 10a via the gas barrier layer 3. ing.
The release sheet 1 of FIG. 1 corresponds to the above-mentioned release sheet (α), and the protective film 4 of FIG. 1 corresponds to the above-mentioned protective film (β).
As will be described later, a layer derived from the gas barrier film 10a is finally formed on the adherend in a state where the protective film 4 and the release sheet 1 are peeled off and removed.
 光学用積層体の厚さは、目的とする電子デバイスの用途等によって適宜決定することができる。本発明の実施形態に係る光学用積層体の実質的な厚さは、取り扱い性の観点から、好ましくは0.3~50μm、より好ましくは0.5~25μm、より好ましくは0.7~12μmである。
 なお、「実質的な厚さ」とは、使用状態における厚さをいう。すなわち、上記光学用積層体は、剥離シート(α)及び保護フィルム(β)を有しているが、使用時に除去される部分剥離シート(α)及び保護フィルム(β)の厚さは、「実質的な厚さ」には含まれない。
The thickness of the optical laminate can be appropriately determined depending on the intended use of the electronic device and the like. From the viewpoint of handleability, the substantial thickness of the optical laminate according to the embodiment of the present invention is preferably 0.3 to 50 μm, more preferably 0.5 to 25 μm, and more preferably 0.7 to 12 μm. Is.
The "substantial thickness" means the thickness in the used state. That is, the above optical laminate has a release sheet (α) and a protective film (β), but the thickness of the partially release sheet (α) and the protective film (β) that are removed during use is “. It is not included in "substantial thickness".
 樹脂層は、後述するように塗布法等を用いて薄く形成することができる。光学用積層体の厚さを小さくするに従って、被着体に貼付した後の光学用フィルムの屈曲耐性をより向上させることができる。 The resin layer can be thinly formed by using a coating method or the like as described later. As the thickness of the optical laminate is reduced, the bending resistance of the optical film after being attached to the adherend can be further improved.
 本発明の実施形態に係る光学用積層体は、一方の最表面に位置する樹脂層を有しており、当該樹脂層や他の層の材質や厚さ、各層の形成方法等を調整することにより、耐熱性及び層間密着性に優れ、しかも、複屈折率が低く光学等方性に優れたものとすることができる。上述したガスバリア性積層体のように上記樹脂層に加えてガスバリア層を有する場合は、各層の材質や厚さ、各層の形成方法等を調整することにより、耐熱性、層間密着性及びガスバリア性に優れ、しかも、複屈折率が低く光学等方性に優れたものとすることができる。 The optical laminate according to the embodiment of the present invention has a resin layer located on one of the outermost surfaces, and the material and thickness of the resin layer and the other layers, the forming method of each layer, and the like are adjusted. Therefore, it is possible to obtain excellent heat resistance and interlayer adhesion, and also have a low birefringence and excellent optical isotropic properties. When a gas barrier layer is provided in addition to the resin layer as in the gas barrier laminate described above, heat resistance, interlayer adhesion, and gas barrier properties can be obtained by adjusting the material and thickness of each layer, the forming method of each layer, and the like. It is excellent, has a low birefringence, and has excellent optical isotropic properties.
1-1.保護フィルム(β)の粘着力及び剥離シート(α)の剥離力の関係
 上述したように、保護フィルム(β)を0.3m/minの低速剥離条件で光学用フィルムの樹脂層又は当該樹脂層上に位置する他の層から剥離する際の粘着力A2と、剥離シート(α)を0.3m/minの低速剥離条件で樹脂層から剥離する際の剥離力A1とは、A1>A2の関係にある。保護フィルム(β)の剥離起点をより容易に形成できるようにする観点から、好ましくはA1≧1.2×A2、より好ましくはA1≧1.5×A2、更に好ましくはA1≧2.0×A2であり、また、生産性が低下しすぎないようにする観点から、好ましくはA1≦20×A2、より好ましくはA1≦10×A2、更に好ましくはA1≦5×A2である。
 光学用積層体におけるA1>A2の関係は、例えば、後述する保護フィルム(β)の、光学用フィルムの他方の最表面側の表面に形成する粘着剤層の粘着力を適度に弱めること、あるいは、これに加えて、剥離シート(α)の材質や表面形状を適宜選択したり、樹脂層の材質や製造方法を適宜選択したりすることによって、剥離シート(α)の樹脂層に対する剥離力を高めることにより、実現することができる。
1-1. Relationship between the adhesive force of the protective film (β) and the peeling force of the release sheet (α) As described above, the resin layer of the optical film or the resin layer of the protective film (β) under the low speed release condition of 0.3 m / min. The adhesive force A2 when peeling from the other layer located above and the peeling force A1 when peeling the release sheet (α) from the resin layer under the low speed peeling condition of 0.3 m / min are A1> A2. There is a relationship. From the viewpoint of making it easier to form the peeling starting point of the protective film (β), A1 ≧ 1.2 × A2 is preferable, A1 ≧ 1.5 × A2 is more preferable, and A1 ≧ 2.0 × is more preferable. It is A2, and from the viewpoint of preventing the productivity from being lowered too much, it is preferably A1 ≦ 20 × A2, more preferably A1 ≦ 10 × A2, and further preferably A1 ≦ 5 × A2.
The relationship of A1> A2 in the optical laminate is, for example, to appropriately weaken the adhesive force of the pressure-sensitive adhesive layer formed on the other outermost surface side of the optical film of the protective film (β) described later, or In addition to this, by appropriately selecting the material and surface shape of the release sheet (α) and appropriately selecting the material and manufacturing method of the resin layer, the release force of the release sheet (α) with respect to the resin layer can be obtained. It can be realized by increasing it.
 保護フィルム(β)を20m/minの高速剥離条件で上記樹脂層又は上記他の層から剥離する際の粘着力B2と、剥離シート(α)を20m/minの高速剥離条件で樹脂層から剥離する際の剥離力B1との関係に特に制限はなく、B1>B2でもよいし、B1=B2でもよいし、B1<B2でもよい。
 本発明の実施形態に係る光学用積層体は、低速剥離条件で保護フィルム(β)を適切に剥離することができるので、生産性を高めるために高速剥離条件を採用した場合に、必ずしもB1>B2の関係でなくても構わない。つまり、B1≦B2であっても構わない。但し、高速剥離時の光学用積層体の断裂を防止する観点から、好ましくは10×B1≧B2≧B1、より好ましくは6.0×B1≧B2≧B1、更に好ましくは4.5×B1≧B2≧B1である。保護フィルム(β)が粘着剤層を有する場合に、B2の値は、A2に比べて大きくなる傾向があるため、B1≦B2となりやすい傾向がある。この場合であっても、上述したようにA1>A2の関係が保たれていれば、保護フィルム(β)を、剥離起点における低速剥離と、それ以降の高速剥離のいずれにおいても、適切に剥離することができる。
The adhesive force B2 when the protective film (β) is peeled from the resin layer or the other layer under the high speed peeling condition of 20 m / min, and the peeling sheet (α) is peeled from the resin layer under the high speed peeling condition of 20 m / min. The relationship with the peeling force B1 is not particularly limited, and B1> B2, B1 = B2, or B1 <B2 may be used.
Since the protective film (β) can be appropriately peeled off from the optical laminate according to the embodiment of the present invention under low-speed peeling conditions, B1> is not always required when the high-speed peeling conditions are adopted in order to increase productivity. It does not have to be related to B2. That is, B1 ≦ B2 may be satisfied. However, from the viewpoint of preventing tearing of the optical laminate during high-speed peeling, preferably 10 × B1 ≧ B2 ≧ B1, more preferably 6.0 × B1 ≧ B2 ≧ B1, and even more preferably 4.5 × B1 ≧ B1. B2 ≧ B1. When the protective film (β) has an adhesive layer, the value of B2 tends to be larger than that of A2, so that B1 ≦ B2 tends to occur. Even in this case, if the relationship of A1> A2 is maintained as described above, the protective film (β) can be appropriately peeled off in both low-speed peeling at the peeling starting point and high-speed peeling thereafter. can do.
1-2.保護フィルム(β)の樹脂層又は他の層に対する粘着力
 保護フィルム(β)を0.3m/minの低速剥離条件で光学用フィルムの樹脂層又は当該樹脂層上の他の層から剥離する際の粘着力A2は、保護フィルム(β)の剥離起点をより形成しやすくする観点から、好ましくは100mN/50mm以下、より好ましくは85mN/50mm以下、更に好ましくは70mN/50mm以下であり、また、光学用積層体の保管中や輸送中においても保護フィルム(β)を安定して上記樹脂層又は上記他の層に密着させやすくする観点から、好ましくは15mN/50mm以上、より好ましくは30mN/50mm以上である。
 保護フィルム(β)を20m/minの高速剥離条件で上記樹脂層又は上記他の層から剥離する際の粘着力B2は、高速剥離時の光学用積層体の断裂を防止する観点から、好ましくは50~2000mN/50mm、より好ましくは100~1000mN/50mmである。
 粘着力A2、B2の値を上記の数値範囲内にするためには、例えば、後述する保護フィルム(β)の、光学用フィルムの他方の最表面側の表面に形成する粘着剤層の粘着力を適度に弱めることで実現することができる。
1-2. Adhesive strength of the protective film (β) to the resin layer or other layers When the protective film (β) is peeled from the resin layer of the optical film or other layers on the resin layer under low-speed peeling conditions of 0.3 m / min. The adhesive strength A2 of A2 is preferably 100 mN / 50 mm or less, more preferably 85 mN / 50 mm or less, still more preferably 70 mN / 50 mm or less, from the viewpoint of making it easier to form a peeling starting point of the protective film (β). From the viewpoint of making the protective film (β) stable and easily adhere to the resin layer or the other layer even during storage or transportation of the optical laminate, it is preferably 15 mN / 50 mm or more, more preferably 30 mN / 50 mm. That is all.
The adhesive force B2 when peeling the protective film (β) from the resin layer or the other layer under high-speed peeling conditions of 20 m / min is preferable from the viewpoint of preventing tearing of the optical laminate during high-speed peeling. It is 50 to 2000 mN / 50 mm, more preferably 100 to 1000 mN / 50 mm.
In order to keep the values of the adhesive strengths A2 and B2 within the above numerical ranges, for example, the adhesive strength of the pressure-sensitive adhesive layer formed on the surface of the protective film (β) described later on the other outermost surface side of the optical film. Can be achieved by moderately weakening.
1-3.剥離シート(α)の樹脂層に対する剥離力
 剥離シート(α)を0.3m/minの低速剥離条件で樹脂層から剥離する際の剥離力A1は、剥離シート(α)の剥離時に樹脂層に過度の応力がかかることを回避し、ガスバリア層等の他の層が存在する場合、この他の層にクラックが生じにくくする観点から、好ましくは500mN/50mm以下、より好ましくは300mN/50mm以下、更に好ましくは200mN/50mm以下であり、また、剥離シート(α)を安定して樹脂層に密着させやすくする観点から、好ましくは40mN/50mm以上、より好ましくは60mN/50mm以上、更に好ましくは80mN/50mm以上である。
 また、剥離シート(α)を20m/minの高速剥離条件で樹脂層から剥離する際の剥離力B1は、生産性を低下させすぎず剥離シート(α)の樹脂層への密着性を確保しやすくする観点から、好ましくは40~500mN/50mm、より好ましくは60~300mN/50mm、更に好ましくは80~200mN/50mm以下である。
 剥離力A1、B1の値を上記の数値範囲内にするためには、例えば、剥離シート(α)の材質や表面形状を適宜選択することで実現することができる。
1-3. Peeling force of the peeling sheet (α) against the resin layer The peeling force A1 when the peeling sheet (α) is peeled from the resin layer under a low speed peeling condition of 0.3 m / min is applied to the resin layer when the peeling sheet (α) is peeled. When other layers such as a gas barrier layer are present to avoid excessive stress, the other layers are preferably 500 mN / 50 mm or less, more preferably 300 mN / 50 mm or less, from the viewpoint of preventing cracks from occurring in the other layers. It is more preferably 200 mN / 50 mm or less, and from the viewpoint of making the release sheet (α) stable and easily adhere to the resin layer, it is preferably 40 mN / 50 mm or more, more preferably 60 mN / 50 mm or more, still more preferably 80 mN. / 50 mm or more.
Further, the peeling force B1 when peeling the peeling sheet (α) from the resin layer under the high-speed peeling condition of 20 m / min ensures the adhesion of the peeling sheet (α) to the resin layer without excessively reducing the productivity. From the viewpoint of facilitation, it is preferably 40 to 500 mN / 50 mm, more preferably 60 to 300 mN / 50 mm, and further preferably 80 to 200 mN / 50 mm or less.
In order to keep the values of the peeling forces A1 and B1 within the above numerical range, for example, it can be realized by appropriately selecting the material and the surface shape of the peeling sheet (α).
1-4.光学用フィルム
 光学用フィルムは、光学用フィルムの一方の最表面に位置している樹脂層を少なくとも含む。光学用フィルムは、樹脂層のみで構成されていてもよいし、樹脂層と他の層とで構成されていてもよい。
 上記他の層は、光学用フィルムにおいて、上記樹脂層が位置する最表面とは逆側の最表面に位置し、当該他の層に保護フィルム(β)が直接積層される。
 上記他の層としては、例えば、(i)無機膜又は高分子化合物を含む層に改質処理を施して得られる機能層、(ii)ガスバリア層、(iii)導電層が挙げられる。光学用フィルムが樹脂層とガスバリア層とで構成される場合、光学用フィルムはガスバリアフィルムとなり、光学用積層体はガスバリア性積層体となる。また、光学用フィルムが樹脂層と透明導電層とで構成される場合、光学用フィルムは透明導電フィルムとなり、光学用積層体は透明電極形成用積層体となる。
 上記他の層と樹脂層とは直接積層していてもよいし、両者の間に更に他の層を介して積層されていてもよい。
 樹脂層と上記他の層とが複数組積層されていてもよい。この場合の複数組の少なくともいずれか一組の樹脂層と上記他の層との間に更に別の層が存在していてもよい。
1-4. Optical film The optical film contains at least a resin layer located on one of the outermost surfaces of the optical film. The optical film may be composed of only a resin layer, or may be composed of a resin layer and another layer.
The other layer is located on the outermost surface of the optical film opposite to the outermost surface on which the resin layer is located, and the protective film (β) is directly laminated on the other layer.
Examples of the other layers include (i) a functional layer obtained by modifying a layer containing an inorganic film or a polymer compound, (ii) a gas barrier layer, and (iii) a conductive layer. When the optical film is composed of a resin layer and a gas barrier layer, the optical film becomes a gas barrier film and the optical laminate becomes a gas barrier laminate. When the optical film is composed of a resin layer and a transparent conductive layer, the optical film becomes a transparent conductive film, and the optical laminate becomes a transparent electrode forming laminate.
The other layer and the resin layer may be directly laminated, or may be further laminated between the two layers via another layer.
A plurality of sets of the resin layer and the other layers may be laminated. In this case, another layer may be present between at least one set of the resin layer and the other layer.
 光学用フィルムがガスバリアフィルムである場合、当該ガスバリアフィルムの、40℃、相対湿度90%雰囲気下での水蒸気透過率は、通常、1.0×10-2g/m/day以下、好ましくは8.0×10-3g/m/day以下、より好ましくは6.0×10-3g/m/day以下である。 When the optical film is a gas barrier film, the water vapor transmittance of the gas barrier film in an atmosphere of 40 ° C. and 90% relative humidity is usually 1.0 × 10 −2 g / m 2 / day or less, preferably 1.0 × 10 −2 g / m 2 / day or less. It is 8.0 × 10 -3 g / m 2 / day or less, more preferably 6.0 × 10 -3 g / m 2 / day or less.
1-5.樹脂層
 本発明の実施形態に係る光学用積層体に含まれる光学用フィルムが有する樹脂層は、硬化性化合物を含む硬化性組成物の硬化物からなり、好ましくは、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物の硬化物からなる。樹脂層は単層であってもよく、積層された複数の層を含んでいてもよい。
1-5. Resin layer The resin layer of the optical film contained in the optical laminate according to the embodiment of the present invention comprises a cured product of a curable composition containing a curable compound, preferably the polymer component (A) and the polymer component (A). It comprises a cured product of a curable resin composition containing a curable monomer (B). The resin layer may be a single layer, or may include a plurality of laminated layers.
〔重合体成分(A)〕
 重合体成分(A)は、特に限定されないが、好ましくはガラス転移温度(Tg)が250℃以上、より好ましくは290℃以上、更に好ましくは320℃以上である。Tgが250℃以上の重合体成分(A)を用いることで、耐熱性に十分優れる光学用積層体を得やすくなる。
 ここでTgは、粘弾性測定(周波数11Hz、昇温速度3℃/分で0~250℃の範囲で引張モードによる測定)により得られたtanδ(損失弾性率/貯蔵弾性率)の最大点の温度をいう。
[Polymer component (A)]
The polymer component (A) is not particularly limited, but preferably has a glass transition temperature (Tg) of 250 ° C. or higher, more preferably 290 ° C. or higher, and even more preferably 320 ° C. or higher. By using the polymer component (A) having a Tg of 250 ° C. or higher, it becomes easy to obtain an optical laminate having sufficiently excellent heat resistance.
Here, Tg is the maximum point of tan δ (loss elastic modulus / storage elastic modulus) obtained by viscoelasticity measurement (measurement in the tensile mode in the range of 0 to 250 ° C. at a frequency of 11 Hz and a heating rate of 3 ° C./min). Refers to temperature.
 本発明の実施形態に係る光学用積層体が有する樹脂層を、Tgが250℃以上の重合体成分(A)を含有する硬化性樹脂組成物の硬化物によって構成することで、樹脂層は、非常に優れた耐熱性を示すため、耐熱性に優れた光学用積層体とすることができる。
 樹脂層の耐熱性が高い場合、高温時における弾性率が上昇したり、樹脂層が熱収縮しにくくなったりする作用を生じる。その結果、光学用フィルムがガスバリア層等の他の層を有する場合は、当該他の層に微細なクラックを生じることが回避される。したがって、例えば、上記他の層がガスバリア層である場合はそのガスバリア性が低下することを防止し得る。また、上記他の層が導電層である場合はその導電性が低下することを防止し得る。さらに、剥離シート(α)を0.3m/minの低速剥離条件で上記樹脂層又は上記他の層から剥離する際の剥離力A1を500mN/50mm以下とした場合には、耐熱性と剥離シート(α)の剥離時における樹脂層の変形防止の両方の観点から、上記他の層のクラックを防止することができ、好ましい。そのほか、上記他の層が導電層である場合は、樹脂層の耐熱性が高いことにより、導電層を形成する際に、アニール処理等の加熱によって樹脂層が影響を受けて変形等を生じることを防止しやすくなる。
By forming the resin layer of the optical laminate according to the embodiment of the present invention with a cured product of a curable resin composition containing a polymer component (A) having a Tg of 250 ° C. or higher, the resin layer can be formed. Since it exhibits extremely excellent heat resistance, it can be used as an optical laminate having excellent heat resistance.
When the heat resistance of the resin layer is high, the elastic modulus at a high temperature is increased, and the resin layer is less likely to shrink due to heat. As a result, when the optical film has another layer such as a gas barrier layer, it is possible to avoid causing fine cracks in the other layer. Therefore, for example, when the other layer is a gas barrier layer, it is possible to prevent the gas barrier property from being lowered. Further, when the other layer is a conductive layer, it is possible to prevent the conductivity from being lowered. Further, when the peeling force A1 when peeling the peeling sheet (α) from the resin layer or the other layer under the low speed peeling condition of 0.3 m / min is set to 500 mN / 50 mm or less, the heat resistance and the peeling sheet are obtained. From the viewpoint of both preventing the resin layer from being deformed when the (α) is peeled off, it is possible to prevent cracks in the other layers, which is preferable. In addition, when the other layer is a conductive layer, the heat resistance of the resin layer is high, so that when the conductive layer is formed, the resin layer is affected by heating such as annealing treatment and is deformed. It becomes easier to prevent.
 重合体成分(A)の重量平均分子量(Mw)は、通常、100,000~3,000,000、好ましくは200,000~2,000,000、より好ましくは500,000~1,000,000の範囲である。また、分子量分布(Mw/Mn)は、好ましくは、1.0~5.0、より好ましくは、2.0~4.5の範囲である。重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。Mwを100,000以上とすることで、樹脂層の破断伸度を大きくさせやすくなる。 The weight average molecular weight (Mw) of the polymer component (A) is usually 100,000 to 3,000,000, preferably 200,000 to 2,000,000, and more preferably 500,000 to 1,000. It is in the range of 000. The molecular weight distribution (Mw / Mn) is preferably in the range of 1.0 to 5.0, more preferably 2.0 to 4.5. The weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are polystyrene-equivalent values measured by a gel permeation chromatography (GPC) method. By setting Mw to 100,000 or more, it becomes easy to increase the elongation at break of the resin layer.
 重合体成分(A)としては、熱可塑性樹脂が好ましく、非晶性熱可塑性樹脂がより好ましい。非晶性熱可塑性樹脂を用いることで、光学等方性に優れた樹脂層を得やすくなり、また、透明性に優れる光学用積層体が得られ易くなる。また、非晶性熱可塑性樹脂は概して有機溶剤に溶け易いため、後述するように、溶液キャスト法を利用して、効率よく樹脂層を形成することができる。
 ここで、非晶性熱可塑性樹脂とは、示差走査熱量測定において、融点が観測されない熱可塑性樹脂をいう。
As the polymer component (A), a thermoplastic resin is preferable, and an amorphous thermoplastic resin is more preferable. By using an amorphous thermoplastic resin, it becomes easy to obtain a resin layer having excellent optical isotropic properties, and it becomes easy to obtain an optical laminate having excellent transparency. Further, since the amorphous thermoplastic resin is generally easily dissolved in an organic solvent, the resin layer can be efficiently formed by using the solution casting method as described later.
Here, the amorphous thermoplastic resin means a thermoplastic resin whose melting point is not observed in the differential scanning calorimetry.
 重合体成分(A)は、特に、ベンゼンやメチルエチルケトン(MEK)等の低沸点の汎用の有機溶剤に可溶なものが好ましい。汎用の有機溶媒に可溶であれば、塗工によって樹脂層を形成することが容易になる。 The polymer component (A) is particularly preferably one that is soluble in a general-purpose organic solvent having a low boiling point such as benzene or methyl ethyl ketone (MEK). If it is soluble in a general-purpose organic solvent, it becomes easy to form a resin layer by coating.
 重合体成分(A)として、特に好ましいものは、Tgが250℃以上の非晶質熱可塑性樹脂であって、ベンゼンやMEK等の低沸点の汎用の有機溶剤に可溶なものである。 A particularly preferable polymer component (A) is an amorphous thermoplastic resin having a Tg of 250 ° C. or higher, which is soluble in a general-purpose organic solvent having a low boiling point such as benzene or MEK.
 また重合体成分(A)としては、耐熱性の観点から、芳香族環構造又は脂環式構造等の環構造を有する熱可塑性樹脂が好ましく、芳香族環構造を有する熱可塑性樹脂がより好ましい。 As the polymer component (A), a thermoplastic resin having a ring structure such as an aromatic ring structure or an alicyclic structure is preferable, and a thermoplastic resin having an aromatic ring structure is more preferable, from the viewpoint of heat resistance.
 重合体成分(A)の具体例としては、ポリイミド樹脂、及び、Tgが250℃以上であるポリアリレート樹脂等が挙げられる。これらの樹脂は概して耐熱性に優れており、また、非晶質熱可塑性樹脂であるため、溶液キャスト法による塗膜形成が可能である。これらの中でも、Tgが高く耐熱性に優れており、また、良好な耐熱性を示しつつも汎用の有機溶媒に可溶なものを得やすいという点からポリイミド樹脂が好ましい。 Specific examples of the polymer component (A) include a polyimide resin and a polyarylate resin having a Tg of 250 ° C. or higher. Since these resins are generally excellent in heat resistance and are amorphous thermoplastic resins, a coating film can be formed by a solution casting method. Among these, a polyimide resin is preferable because it has a high Tg and is excellent in heat resistance, and it is easy to obtain a resin which is soluble in a general-purpose organic solvent while exhibiting good heat resistance.
 ポリイミド樹脂としては、本発明の効果を損なわない範囲であれば特に制限されないが、例えば、芳香族ポリイミド樹脂、芳香族(カルボン酸成分)-環式脂肪族(ジアミン成分)ポリイミド樹脂、環式脂肪族(カルボン酸成分)-芳香族(ジアミン成分)ポリイミド樹脂、環式脂肪族ポリイミド樹脂、及び、フッ素化芳香族ポリイミド樹脂等を使用することができる。特に、分子内にフルオロ基を有するポリイミド樹脂が好ましい。 The polyimide resin is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, an aromatic polyimide resin, an aromatic (carboxylic acid component) -cyclic aliphatic (diamine component) polyimide resin, and a ring-type fat. Group (carboxylic acid component) -aromatic (diamine component) polyimide resin, cyclic aliphatic polyimide resin, fluorinated aromatic polyimide resin and the like can be used. In particular, a polyimide resin having a fluoro group in the molecule is preferable.
 ポリイミド樹脂としては、ベンゼンやメチルエチルケトンなどの低沸点の有機溶剤に可溶であることが好ましい。特に、メチルエチルケトンに可溶であることが好ましい。メチルエチルケトンに可溶であると、塗布・乾燥によって容易に硬化性樹脂組成物の層を形成することができる。 The polyimide resin is preferably soluble in a low boiling point organic solvent such as benzene or methyl ethyl ketone. In particular, it is preferably soluble in methyl ethyl ketone. When it is soluble in methyl ethyl ketone, a layer of a curable resin composition can be easily formed by coating and drying.
 フルオロ基を含むポリイミド樹脂は、メチルエチルケトン等の沸点の低い汎用の有機溶剤に溶解しやすくなり、塗布法で樹脂層を形成しやすくなるという観点から、特に好ましい。フルオロ基を含むポリイミド樹脂は、フルオロ基を有する芳香族ポリイミド樹脂であることが好ましい。
 フルオロ基を有する芳香族ポリイミド樹脂としては、分子内に以下の化学式で示す骨格を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000001
A polyimide resin containing a fluoro group is particularly preferable from the viewpoint that it is easily dissolved in a general-purpose organic solvent having a low boiling point such as methyl ethyl ketone, and a resin layer is easily formed by a coating method. The polyimide resin containing a fluoro group is preferably an aromatic polyimide resin having a fluoro group.
The aromatic polyimide resin having a fluoro group preferably has a skeleton represented by the following chemical formula in the molecule.
Figure JPOXMLDOC01-appb-C000001
 上記化学式で示される骨格を有するポリイミド樹脂は、上記骨格の剛直性が高いことにより、300℃を超える極めて高いTgを有している。このため、樹脂層の耐熱性を大きく向上させ得る。また、上記骨格は直線的であり比較的柔軟性が高く、樹脂層の破断伸度を高くさせやすくなる。更に、上記骨格を有するポリイミド樹脂は、フルオロ基を有することにより、メチルエチルケトン等の低沸点の汎用有機溶剤に溶解し得る。したがって、溶液キャスト法を用いて塗工を行い、塗膜として樹脂層を形成することができ、また、乾燥による溶剤除去も容易である。上記化学式で示される骨格を有するポリイミド樹脂は、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルと、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物とを用いて、上述のポリアミド酸の重合及びイミド化反応により得ることができる。 The polyimide resin having a skeleton represented by the above chemical formula has an extremely high Tg exceeding 300 ° C. due to the high rigidity of the skeleton. Therefore, the heat resistance of the resin layer can be greatly improved. Further, the skeleton is linear and has relatively high flexibility, which makes it easy to increase the breaking elongation of the resin layer. Further, the polyimide resin having the above skeleton can be dissolved in a general-purpose organic solvent having a low boiling point such as methyl ethyl ketone by having a fluoro group. Therefore, the coating can be performed by using the solution casting method to form a resin layer as a coating film, and the solvent can be easily removed by drying. The polyimide resins having the skeleton represented by the above chemical formula are 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl and 4,4'-(1,1,1,3,3,3). It can be obtained by the above-mentioned polymerization and imidization reaction of polyamic acid using -hexafluoropropane-2,2-diyl) diphthalic acid dianhydride.
 重合体成分(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。また、重合体成分(A)と、ガラス転移温度が250℃未満である重合体成分(A’)とを組み合わせて用いてもよい。重合体成分(A’)としては、例えば、ポリアミド樹脂、Tgが250℃未満であるポリアリレート樹脂が挙げられ、ポリアミド樹脂が好ましい。 The polymer component (A) can be used alone or in combination of two or more. Further, the polymer component (A) and the polymer component (A') having a glass transition temperature of less than 250 ° C. may be used in combination. Examples of the polymer component (A') include a polyamide resin and a polyarylate resin having a Tg of less than 250 ° C., and a polyamide resin is preferable.
〔硬化性単量体(B)〕
 硬化性単量体(B)は、重合性不飽和結合を有する単量体であって、重合反応、又は、重合反応及び架橋反応に関与し得る単量体である。なお、本明細書において、「硬化」とは、この「単量体の重合反応」、又は、「単量体の重合反応及び引き続く重合体の架橋反応」を含めた広い概念を意味する。硬化性単量体(B)を用いることで、耐溶剤性に優れる光学用積層体を得ることができる。
 樹脂層を、上述した重合体成分(A)と上記硬化性単量体(B)とを含有する硬化性樹脂組成物の硬化物からなる層とすることで、耐熱性に優れ、薄い樹脂層を形成することが容易になる。また、このような材料を用いれば、光学用積層体の基材として一般的に用いられるポリエステル系フィルムのような、異方性の分子配向を有する材料に起因した光学上の問題が生じづらくなる。
[Curable monomer (B)]
The curable monomer (B) is a monomer having a polymerizable unsaturated bond, and is a monomer that can participate in a polymerization reaction, a polymerization reaction, and a cross-linking reaction. In addition, in this specification, "curing" means a broad concept including this "monomer polymerization reaction" or "monomer polymerization reaction and subsequent cross-linking reaction of a polymer". By using the curable monomer (B), an optical laminate having excellent solvent resistance can be obtained.
By forming the resin layer into a layer made of a cured product of a curable resin composition containing the above-mentioned polymer component (A) and the above-mentioned curable monomer (B), a thin resin layer having excellent heat resistance is obtained. It becomes easy to form. Further, when such a material is used, optical problems caused by a material having an anisotropic molecular orientation such as a polyester film generally used as a base material of an optical laminate are less likely to occur. ..
 硬化性単量体(B)の分子量は、通常、3000以下、好ましくは200~2000、より好ましくは200~1000である。
 硬化性単量体(B)中の重合性不飽和結合の数は特に制限されない。硬化性単量体(B)は、重合性不飽和結合を1つ有する単官能型の単量体であってもよいが、少なくとも重合性不飽和結合を複数有する2官能型や3官能型等の多官能型の単量体の一種以上を含むことが好ましい。
The molecular weight of the curable monomer (B) is usually 3000 or less, preferably 200 to 2000, and more preferably 200 to 1000.
The number of polymerizable unsaturated bonds in the curable monomer (B) is not particularly limited. The curable monomer (B) may be a monofunctional monomer having one polymerizable unsaturated bond, but may be a bifunctional type or a trifunctional type having at least a plurality of polymerizable unsaturated bonds. It is preferable to contain one or more of the polyfunctional monomers of the above.
 前記単官能型の単量体としては、単官能の(メタ)アクリル酸誘導体が挙げられる。
 単官能の(メタ)アクリル酸誘導体は、分子内に(メタ)アクリロイル基を一つ有する化合物であれば、特に限定されず、公知の化合物を用いることができる。
Examples of the monofunctional monomer include a monofunctional (meth) acrylic acid derivative.
The monofunctional (meth) acrylic acid derivative is not particularly limited as long as it is a compound having one (meth) acryloyl group in the molecule, and a known compound can be used.
 前記多官能型の単量体としては、多官能の(メタ)アクリル酸誘導体が挙げられる。
 多官能の(メタ)アクリル酸誘導体としては、分子内に(メタ)アクリロイル基を2つ以上有する化合物であれば、特に限定されず、公知の化合物を用いることができる。例えば、2~6官能の(メタ)アクリル酸誘導体が挙げられる。
 2官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。
Examples of the polyfunctional monomer include a polyfunctional (meth) acrylic acid derivative.
The polyfunctional (meth) acrylic acid derivative is not particularly limited as long as it is a compound having two or more (meth) acryloyl groups in the molecule, and known compounds can be used. For example, 2 to 6 functional (meth) acrylic acid derivatives can be mentioned.
Examples of the bifunctional (meth) acrylic acid derivative include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、Rは、上記のものと同じ意味を表し、Rは、2価の有機基を表す。Rで表される2価の有機基としては、下記式で示される基が挙げられる。 In the formula, R 1 represents the same meaning as above, and R 2 represents a divalent organic group. Examples of the divalent organic group represented by R 2 include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、sは1~20の整数を表し、tは、1~30の整数を表し、uとvは、それぞれ独立に、1~30の整数を表し、両末端の「-」は、結合手を表す。) (In the formula, s represents an integer of 1 to 20, t represents an integer of 1 to 30, u and v each independently represent an integer of 1 to 30, and "-" at both ends is. Represents a joiner.)
 前記式で示される2官能の(メタ)アクリル酸誘導体の具体例としては、トリシクロデカンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等が挙げられる。これらの中でも、耐熱性及び靭性の観点から、トリシクロデカンジメタノールジ(メタ)アクリレート等の、上記式において、Rで表される2価の有機基がトリシクロデカン骨格を有するもの、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート等の、上記式において、Rで表される2価の有機基がビスフェノール骨格を有するもの、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等の、上記式において、Rで表される2価の有機基が9,9-ビスフェニルフルオレン骨格を有するものが好ましい。 Specific examples of the bifunctional (meth) acrylic acid derivative represented by the above formula include tricyclodecanedimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and propoxylated ethoxylated bisphenol A di (meth) acrylate. , Ethylated bisphenol A di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 9,9-bis [4- (2-acryloyloxyethoxy) Phenyl] Fluorene and the like can be mentioned. Among these, from the viewpoint of heat resistance and toughness, such as tricyclodecane dimethanol (meth) acrylate, in the above formula, those divalent organic group represented by R 7 has a tricyclodecane skeleton, propoxy ethoxylated bisphenol a di (meth) acrylate, such as ethoxylated bisphenol a di (meth) acrylate, in the above formula, those divalent organic group represented by R 7 has a bisphenol skeleton, 9,9-bis In the above formula, it is preferable that the divalent organic group represented by R 7 has a 9,9-bisphenylfluorene skeleton, such as [4- (2-acryloyloxyethoxy) phenyl] fluorene.
 また、これら以外の2官能の(メタ)アクリル酸誘導体としては、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート等が挙げられる。 Other bifunctional (meth) acrylic acid derivatives include neopentyl glycol adipate di (meth) acrylate, neopentyl glycol di (meth) acrylate hydroxypivalate, and caprolactone-modified dicyclopentenyl di (meth) acrylate. Examples thereof include ethylene oxide-modified di (meth) acrylate phosphate, di (acryloxyethyl) isocyanurate, and allylated cyclohexyl di (meth) acrylate.
 3官能の(メタ)アクリル酸誘導体としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
 4官能の(メタ)アクリル酸誘導体としては、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能の(メタ)アクリル酸誘導体としては、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能の(メタ)アクリル酸誘導体としては、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Examples of the trifunctional (meth) acrylic acid derivative include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propionic acid-modified dipentaerythritol tri (meth) acrylate, and propylene oxide-modified trimethylolpropane tri (meth) acrylate. ) Acrylate, tris (acrylicoxyethyl) isocyanurate and the like.
Examples of the tetrafunctional (meth) acrylic acid derivative include pentaerythritol tetra (meth) acrylate.
Examples of the pentafunctional (meth) acrylic acid derivative include propionic acid-modified dipentaerythritol penta (meth) acrylate.
Examples of the hexafunctional (meth) acrylic acid derivative include dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate.
 硬化性単量体(B)として、環化重合性モノマーを用いてもよい。環化重合性モノマーとは、環化しながらラジカル重合する性質をもつモノマーである。環化重合性モノマーとしては、非共役ジエン類が挙げられ、例えば、α-アリルオキシメチルアクリル酸系モノマーを用いることができ、2-アリロキシメチルアクリル酸の炭素数1~4のアルキルエステル、2-(アリルオキシメチル)アクリル酸シクロヘキシルが好ましく、2-アリロキシメチルアクリル酸の炭素数1~4のアルキルエステルがより好ましく、2-(アリルオキシメチル)アクリル酸メチルが更に好ましい。
 また、ジメチル -2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(i-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ブチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ヘキシル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート等の環化重合性モノマーを用いることもできる。
A cyclized polymerizable monomer may be used as the curable monomer (B). The cyclization polymerizable monomer is a monomer having a property of radical polymerization while cyclizing. Examples of the cyclization polymerizable monomer include non-conjugated dienes. For example, an α-allyloxymethylacrylic acid-based monomer can be used, and an alkyl ester having 1 to 4 carbon atoms of 2-allyloxymethylacrylic acid can be used. Cyclohexyl 2- (allyloxymethyl) acrylate is preferable, alkyl esters of 2-allyloxymethylacrylic acid having 1 to 4 carbon atoms are more preferable, and methyl 2- (allyloxymethyl) acrylate is even more preferable.
In addition, dimethyl-2,2'-[oxybis (methylene)] bis-2-propenoate, diethyl-2,2'-[oxybis (methylene)] bis-2-propenoate, di (n-propyl) -2,2 '-[Oxybis (methylene)] bis-2-propenoate, di (i-propyl) -2,2'-[oxybis (methylene)] bis-2-propenoate, di (n-butyl) -2,2'- [Oxybis (methylene)] bis-2-propenoate, di (n-hexyl) -2,2'-[oxybis (methylene)] bis-2-propenoate, dicyclohexyl-2,2'-[oxybis (methylene)] bis A cyclized polymerizable monomer such as -2-propenoate can also be used.
 硬化性単量体(B)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、硬化性単量体(B)は、耐熱性及び耐溶剤性により優れる樹脂層が得られることから、多官能型の単量体が好ましい。多官能の単量体としては、重合体成分(A)と混ざりやすく、かつ、重合物の硬化収縮が起こりにくく硬化物のカールが抑制できるという観点から、2官能(メタ)アクリル酸誘導体が好ましい。
 硬化性単量体(B)として、多官能(メタ)アクリレート化合物と、環化重合性モノマーとが含まれることがより好ましい。これらを併用することで、樹脂層の耐熱性を適度に調整しつつ、樹脂層の破断伸度を上述の範囲に調整しやすくとなる。
 硬化性単量体(B)が多官能型の単量体を含む場合、その含有量は、硬化性単量体(B)の全量中、40質量%以上が好ましく、50~100質量%がより好ましい。
The curable monomer (B) can be used alone or in combination of two or more.
Among these, the curable monomer (B) is preferably a polyfunctional monomer because a resin layer having better heat resistance and solvent resistance can be obtained. As the polyfunctional monomer, a bifunctional (meth) acrylic acid derivative is preferable from the viewpoint that it is easily mixed with the polymer component (A), curing shrinkage of the polymer is unlikely to occur, and curling of the cured product can be suppressed. ..
It is more preferable that the curable monomer (B) contains a polyfunctional (meth) acrylate compound and a cyclizationally polymerizable monomer. By using these in combination, it becomes easy to adjust the breaking elongation of the resin layer within the above range while appropriately adjusting the heat resistance of the resin layer.
When the curable monomer (B) contains a polyfunctional monomer, the content thereof is preferably 40% by mass or more, preferably 50 to 100% by mass, based on the total amount of the curable monomer (B). More preferable.
〔硬化性樹脂組成物〕
 本発明の実施形態に係る樹脂層を形成するのに用いる硬化性樹脂組成物は、重合体成分(A)、硬化性単量体(B)、及び所望により、後述する重合開始剤やその他の成分を混合し、適当な溶媒に溶解又は分散させることにより調製することができる。
[Curable resin composition]
The curable resin composition used for forming the resin layer according to the embodiment of the present invention includes a polymer component (A), a curable monomer (B), and, if desired, a polymerization initiator and other components described below. It can be prepared by mixing the components and dissolving or dispersing them in a suitable solvent.
 硬化性樹脂組成物中の、重合体成分(A)と硬化性単量体(B)の合計含有量は、溶媒を除いた硬化性樹脂組成物全体の質量に対して、好ましくは40~99.5質量%、より好ましくは60~99質量%、更に好ましくは80~98質量%である。 The total content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably 40 to 99 with respect to the total mass of the curable resin composition excluding the solvent. It is 5.5% by mass, more preferably 60 to 99% by mass, and even more preferably 80 to 98% by mass.
 硬化性樹脂組成物中の、重合体成分(A)と硬化性単量体(B)の含有量は、重合体成分(A)と硬化性単量体(B)の質量比で、好ましくは、重合体成分(A):硬化性単量体(B)=30:70~90:10、より好ましくは35:65~80:20である。
 硬化性樹脂組成物において、重合体成分(A):硬化性単量体(B)の質量比がこのような範囲にあることで、得られる樹脂層の柔軟性がより向上しやすく、樹脂層の耐溶剤性も保たれやすい傾向がある。
The content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably the mass ratio of the polymer component (A) and the curable monomer (B). , Polymer component (A): curable monomer (B) = 30:70 to 90:10, more preferably 35:65 to 80:20.
In the curable resin composition, when the mass ratio of the polymer component (A): the curable monomer (B) is in such a range, the flexibility of the obtained resin layer is more likely to be improved, and the resin layer is easily improved. The solvent resistance of the resin tends to be maintained.
 また、硬化性樹脂組成物中の硬化性単量体(B)の含有量が上記範囲であれば、例えば、樹脂層を溶液キャスト法等によって得る場合、効率よく溶媒を除去することができるため、乾燥工程の長時間化によるカールやうねり等の変形の問題が解消される。 Further, if the content of the curable monomer (B) in the curable resin composition is within the above range, for example, when the resin layer is obtained by a solution casting method or the like, the solvent can be efficiently removed. , The problem of deformation such as curl and swell due to the lengthening of the drying process is solved.
 重合体成分(A)として、上述したポリイミド樹脂と、ポリアミド樹脂あるいはポリアリレート樹脂との組合せ等の、溶剤可溶性の異なる複数の樹脂を組み合わせて用いる場合は、まず、それぞれに適した溶剤に樹脂を溶解した上で、樹脂を溶解した低沸点の有機溶剤に、他の樹脂を溶解した溶液を添加することが好ましい。 When a plurality of resins having different solvent solubility, such as a combination of the above-mentioned polyimide resin and a polyamide resin or a polyarylate resin, are used in combination as the polymer component (A), first, the resin is added to a solvent suitable for each. After dissolving, it is preferable to add a solution in which another resin is dissolved to a low boiling point organic solvent in which the resin is dissolved.
 硬化性樹脂組成物には、所望により重合開始剤を含有させることができる。重合開始剤は、硬化反応を開始させるものであれば、特に制限なく用いることができ、例えば、熱重合開始剤や光重合開始剤が挙げられる。 The curable resin composition can contain a polymerization initiator, if desired. The polymerization initiator can be used without particular limitation as long as it initiates the curing reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
 熱重合開始剤としては、有機過酸化物やアゾ系化合物が挙げられる。光重合開始剤としては、アルキルフェノン系光重合開始剤、リン系光重合開始剤、チタノセン系光重合開始剤、オキシムエステル系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤等が挙げられ、リン系光重合開始剤が好ましい。
 重合体成分(A)が芳香族環を有する熱可塑性樹脂である場合、重合体成分(A)が紫外線を吸収する結果、硬化反応が起こりにくいことがある。しかしながら、上記のリン系光重合開始剤を用いることで、上記重合体成分(A)に吸収されない波長の光を利用して硬化反応を効率よく進行させることができる。
 重合開始剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the thermal polymerization initiator include organic peroxides and azo compounds. Examples of the photopolymerization initiator include an alkylphenone-based photopolymerization initiator, a phosphorus-based photopolymerization initiator, a titanosen-based photopolymerization initiator, an oxime ester-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and a thioxanthone-based photopolymerization initiator. Etc., and a phosphorus-based photopolymerization initiator is preferable.
When the polymer component (A) is a thermoplastic resin having an aromatic ring, the curing reaction may not easily occur as a result of the polymer component (A) absorbing ultraviolet rays. However, by using the phosphorus-based photopolymerization initiator, the curing reaction can be efficiently advanced by utilizing the light having a wavelength that is not absorbed by the polymer component (A).
The polymerization initiator may be used alone or in combination of two or more.
 重合開始剤の含有量は、溶媒を除いた硬化性樹脂組成物全体の質量に対して、0.05~15質量%が好ましく、0.05~10質量%がより好ましく、0.05~5質量%が更に好ましい。 The content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and 0.05 to 5% by mass with respect to the total mass of the curable resin composition excluding the solvent. Mass% is more preferred.
 また、前記硬化性樹脂組成物は、重合体成分(A)、硬化性単量体(B)、及び重合開始剤に加えて、トリイソプロパノールアミンや、4,4’-ジエチルアミノベンゾフェノン等の光重合開始助剤を含有していても良い。 Further, in the curable resin composition, in addition to the polymer component (A), the curable monomer (B), and the polymerization initiator, photopolymerization of triisopropanolamine, 4,4'-diethylaminobenzophenone, etc. It may contain an initiator.
 硬化性樹脂組成物の調製に用いる溶媒としては、特に制限されず、例えば、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、塩化エチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、プロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;エチルセロソルブ等のセロソルブ系溶剤;1,3-ジオキソラン等のエーテル系溶媒;等が挙げられる。 The solvent used for preparing the curable resin composition is not particularly limited, and for example, an aliphatic hydrocarbon solvent such as n-hexane and n-heptane; an aromatic hydrocarbon solvent such as toluene and xylene; dichloromethane, Halogenated hydrocarbon solvents such as ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, 2- Ketone-based solvents such as pentanone, isophorone, and cyclohexanone; ester-based solvents such as ethyl acetate and butyl acetate; cellosolve-based solvents such as ethyl cellosolve; ether-based solvents such as 1,3-dioxolane; and the like.
 硬化性樹脂組成物中の溶媒の含有量は、特に限定されないが、重合体成分(A)1質量部に対して、通常、0.1~1000質量部、好ましくは、1~100質量部である。溶媒の量を適宜調節することによって、硬化性樹脂組成物の粘度を適宜な値に調節することができる。 The content of the solvent in the curable resin composition is not particularly limited, but is usually 0.1 to 1000 parts by mass, preferably 1 to 100 parts by mass with respect to 1 part by mass of the polymer component (A). is there. By appropriately adjusting the amount of the solvent, the viscosity of the curable resin composition can be adjusted to an appropriate value.
 また、硬化性樹脂組成物は、本発明の目的、効果を損なわない範囲内で、可塑剤、酸化防止剤、紫外線吸収剤等の、公知の添加剤を更に含んでいてもよい。 Further, the curable resin composition may further contain known additives such as a plasticizer, an antioxidant, and an ultraviolet absorber as long as the object and effect of the present invention are not impaired.
 硬化性樹脂組成物を硬化させる方法は、用いる重合開始剤や硬化性単量体の種類に応じて適宜決定することができる。詳細は、後述する光学用積層体の製造方法の項で説明する。 The method for curing the curable resin composition can be appropriately determined depending on the type of polymerization initiator and curable monomer used. Details will be described later in the section of the method for manufacturing the optical laminate.
〔樹脂層の性状等〕
 樹脂層の厚さは特に限定されず、光学用積層体の目的に合わせて決定すればよい。樹脂層の厚さは、通常、0.1~300μm、好ましくは0.1~100μm、より好ましくは、0.1~50μm、更に好ましくは0.1~10μm、特に好ましくは0.2~10μmである。
[Properties of resin layer, etc.]
The thickness of the resin layer is not particularly limited, and may be determined according to the purpose of the optical laminate. The thickness of the resin layer is usually 0.1 to 300 μm, preferably 0.1 to 100 μm, more preferably 0.1 to 50 μm, still more preferably 0.1 to 10 μm, and particularly preferably 0.2 to 10 μm. Is.
 樹脂層を例えば、0.1~10μm程度の厚さにすると、光学用積層体の厚さが大きくなることを防止でき、薄型の光学用積層体とすることができる。薄型の光学用積層体であれば、薄型化が求められる有機ELディスプレイ等の用途において、光学用積層体が適用デバイス全体の厚さの増大要因とならないため好ましい。また、薄型の光学用積層体であれば、光学用積層体の実装後のフレキシブル性及び屈曲耐性を向上させることができる。 When the resin layer has a thickness of, for example, about 0.1 to 10 μm, it is possible to prevent the thickness of the optical laminate from increasing, and it is possible to obtain a thin optical laminate. A thin optical laminate is preferable because the optical laminate does not increase the thickness of the entire applicable device in applications such as organic EL displays that are required to be thin. Further, if the thin optical laminate is used, the flexibility and bending resistance of the optical laminate after mounting can be improved.
 前記樹脂層は耐溶剤性に優れている。耐溶剤性に優れていることから、例えば、樹脂層表面に他の層を形成する際に有機溶剤を用いる場合であっても、樹脂層表面がほとんど溶解しない。したがって、例えば、樹脂層表面に、有機溶剤を含む樹脂溶液を用いてガスバリア層や導電層等の他の層を形成する場合であっても、樹脂層の成分がこれらの層に混入しにくいため、ガスバリア性や導電性が低下しにくい。 The resin layer has excellent solvent resistance. Since it has excellent solvent resistance, for example, even when an organic solvent is used when forming another layer on the surface of the resin layer, the surface of the resin layer is hardly dissolved. Therefore, for example, even when another layer such as a gas barrier layer or a conductive layer is formed on the surface of the resin layer by using a resin solution containing an organic solvent, the components of the resin layer are unlikely to be mixed into these layers. , Gas barrier property and conductivity are hard to decrease.
 樹脂層は、ガスバリア層や導電層等の他の層との層間密着性に優れる。すなわち、前記樹脂層上にアンカーコート層を設けずに、上述した機能層、ガスバリア層、又は、導電層を形成することができる。 The resin layer has excellent interlayer adhesion with other layers such as a gas barrier layer and a conductive layer. That is, the above-mentioned functional layer, gas barrier layer, or conductive layer can be formed without providing the anchor coat layer on the resin layer.
 樹脂層は、無色透明であることが好ましい。樹脂層が無色透明であることで、本発明の実施形態に係る光学用積層体を光学用途に好ましく用いることができる。 The resin layer is preferably colorless and transparent. Since the resin layer is colorless and transparent, the optical laminate according to the embodiment of the present invention can be preferably used for optical applications.
 樹脂層は、上述のように、耐熱性、耐溶剤性、層間密着性、透明性を有するものとすることができ、更に、複屈折率が低く光学等方性に優れたものとすることができる。したがって、後述するように、このような特性を有する樹脂層上に、例えば、溶液キャスト法によりガスバリア層や導電層等を形成することで、当該機能層は、優れたガスバリア性や優れた導電性を発現し、しかも、樹脂層の耐熱性及び耐溶剤性の少なくとも一方に起因して、熱及び溶媒の少なくとも一方によりガスバリア性や導電性が損なわれることも防止される。また、得られる光学用積層体の耐熱性、層間密着性、透明性に優れたものとなる。更に、複屈折率が低く光学等方性に優れる光学用積層体を得ることができる。 As described above, the resin layer can have heat resistance, solvent resistance, interlayer adhesion, and transparency, and further has a low birefringence and excellent optical isotropic properties. it can. Therefore, as will be described later, by forming a gas barrier layer, a conductive layer, or the like on the resin layer having such characteristics by, for example, a solution casting method, the functional layer has excellent gas barrier properties and excellent conductivity. Moreover, it is also possible to prevent the gas barrier property and the conductivity from being impaired by at least one of the heat and the solvent due to at least one of the heat resistance and the solvent resistance of the resin layer. Further, the obtained optical laminate is excellent in heat resistance, interlayer adhesion, and transparency. Further, it is possible to obtain an optical laminate having a low birefringence and excellent optical isotropic properties.
1-6.ガスバリア層
 本発明の実施形態に係るガスバリア性積層体のガスバリア層は、ガスバリア性を有している限り、材質等は特に限定されない。例えば、無機膜からなるガスバリア層、ガスバリア性樹脂を含むガスバリア層、高分子化合物を含む層に改質処理を施して得られるガスバリア層等が挙げられる。
 これらの中でも、薄く、ガスバリア性及び耐溶剤性に優れる層を効率よく形成できることから、ガスバリア層は、無機膜からなるガスバリア層、及び高分子化合物を含む層に改質処理を施して得られるガスバリア層が好ましい。
 なお、上記の無機膜からなるガスバリア層は、換言すれば、ガスバリア性を有する無機膜からなる機能層であり、上記の高分子化合物を含む層に改質処理を施して得られるガスバリア層は、換言すれば、ガスバリア性を有する、高分子化合物を含む層に改質処理を施して得られる機能層でもある。光学用積層体がガスバリア性を必要としない又は必要性の低い用途に用いられる場合、上記の無機膜からなる機能層や高分子化合物を含む層に改質処理を施して得られる機能層は、ガスバリア性の乏しいものであってもよい。
1-6. Gas Barrier Layer The material of the gas barrier layer of the gas barrier laminate according to the embodiment of the present invention is not particularly limited as long as it has gas barrier properties. For example, a gas barrier layer made of an inorganic film, a gas barrier layer containing a gas barrier resin, a gas barrier layer obtained by modifying a layer containing a polymer compound, and the like can be mentioned.
Among these, since a thin layer having excellent gas barrier properties and solvent resistance can be efficiently formed, the gas barrier layer is a gas barrier layer made of an inorganic film and a gas barrier obtained by modifying a layer containing a polymer compound. Layers are preferred.
In other words, the gas barrier layer made of the above-mentioned inorganic film is a functional layer made of an inorganic film having a gas barrier property, and the gas barrier layer obtained by subjecting the layer containing the above-mentioned polymer compound to a modification treatment is In other words, it is also a functional layer obtained by subjecting a layer containing a polymer compound having a gas barrier property to a modification treatment. When the optical laminate is used for applications that do not require or have little need for gas barrier properties, the functional layer made of the above-mentioned inorganic film or the layer containing a polymer compound is modified to obtain a functional layer. It may have a poor gas barrier property.
 無機膜としては、特に制限されず、例えば、無機蒸着膜が挙げられる。
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、更に、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。また、無機蒸着膜は、単層でもよく、多層でもよい。
The inorganic film is not particularly limited, and examples thereof include an inorganic thin-film film.
Examples of the inorganic vapor deposition film include a vapor deposition film of an inorganic compound or a metal.
Inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide; inorganic nitrides such as silicon nitride, aluminum nitride, and titanium nitride; inorganic carbides; Examples thereof include inorganic sulfides; inorganic oxidants such as silicon oxide nitrides; inorganic oxidative carbides; inorganic nitriding carbides; and inorganic oxynitride carbides.
Examples of the raw material of the metal vapor deposition film include aluminum, magnesium, zinc, tin and the like.
These can be used alone or in combination of two or more.
Among these, an inorganic vapor deposition film made of an inorganic oxide, an inorganic nitride or a metal as a raw material is preferable from the viewpoint of gas barrier property, and further, an inorganic material made of an inorganic oxide or an inorganic nitride as a raw material is preferable from the viewpoint of transparency. A vapor-deposited film is preferable. Further, the inorganic vapor deposition film may be a single layer or a multilayer.
 無機蒸着膜の厚さは、ガスバリア性と取り扱い性の観点から、好ましくは10~2000nm、より好ましくは20~1000nm、より好ましくは30~500nm、更に好ましくは40~200nmの範囲である。 The thickness of the inorganic thin-film film is preferably in the range of 10 to 2000 nm, more preferably 20 to 1000 nm, more preferably 30 to 500 nm, and further preferably 40 to 200 nm from the viewpoint of gas barrier properties and handleability.
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。 Examples of the method for forming the inorganic vapor deposition film include a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, and an optical CVD method. The CVD method can be mentioned.
 ガスバリア性樹脂を含むガスバリア層において、用いるガスバリア性樹脂としては、ポリビニルアルコール、又はその部分ケン化物、エチレン-ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリクロロトリフルオロエチレン等の酸素等を透過しにくい樹脂が挙げられる。 Examples of the gas barrier resin used in the gas barrier layer containing the gas barrier resin include polyvinyl alcohol or a partially saponified product thereof, an ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene and the like. Examples thereof include resins that do not easily permeate oxygen and the like.
 ガスバリア性樹脂を含むガスバリア層の厚さは、ガスバリア性の観点から、好ましくは10~2000nm、より好ましくは20~1000nm、より好ましくは30~500nm、更に好ましくは40~200nmの範囲である。 From the viewpoint of gas barrier properties, the thickness of the gas barrier layer containing the gas barrier resin is preferably in the range of 10 to 2000 nm, more preferably 20 to 1000 nm, more preferably 30 to 500 nm, and further preferably 40 to 200 nm.
 ガスバリア性樹脂を含むガスバリア層を形成する方法としては、ガスバリア性樹脂を含む溶液を、樹脂層上に塗布し、得られた塗膜を適宜乾燥する方法が挙げられる。 Examples of the method of forming the gas barrier layer containing the gas barrier resin include a method of applying a solution containing the gas barrier resin on the resin layer and appropriately drying the obtained coating film.
 高分子化合物を含む層(以下、「高分子層」ということがある)に改質処理を施して得られるガスバリア層において、用いる高分子化合物としては、ケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。 The polymer compound used in the gas barrier layer obtained by modifying a layer containing a polymer compound (hereinafter, may be referred to as “polymer layer”) includes silicon-containing polymer compound, polyimide, polyamide, and polyamide. Examples thereof include imide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic polymer and the like. .. These polymer compounds can be used alone or in combination of two or more.
 これらの中でも、高分子化合物はケイ素含有高分子化合物が好ましい。ケイ素含有高分子化合物としては、ポリシラザン系化合物(特公昭63-16325号公報、特開昭62-195024号公報、特開昭63-81122号公報、特開平1-138108号公報、特開平2-84437号公報、特開平2-175726号公報、特開平4-63833号公報、特開平5-238827号公報、特開平5-345826号公報、特開2005-36089号公報、特開平6-122852号公報、特開平6-299118号公報、特開平6-306329号公報、特開平9-31333号公報、特開平10-245436号公報、特表2003-514822号公報、国際公開WO2011/107018号等参照)、ポリカルボシラン系化合物(Journal of Materials Science,2569-2576,Vol.13,1978、Organometallics,1336-1344,Vol.10,1991、Journal of Organometallic Chemistry,1-10,Vol.521,1996、特開昭51-126300号公報、特開2001-328991号公報、特開2006-117917号公報、特開2009-286891号公報、特開2010-106100号公報等参照)、ポリシラン系化合物(R.D.Miller、J.Michl;Chemical Review、第89巻、1359頁(1989)、N.Matsumoto;Japanese Journal of Physics、第37巻、5425頁(1998)、特開2008-63586号公報、特開2009-235358号公報等参照)、及びポリオルガノシロキサン系化合物(特開2010-229445号公報、特開2010-232569号公報、特開2010-238736号公報等参照)等が挙げられる。 Among these, the polymer compound is preferably a silicon-containing polymer compound. Examples of the silicon-containing polymer compound include polysilazane compounds (Japanese Patent Laid-Open No. 63-16325, JP-A-62-195024, JP-A-63-81122, JP-A-1-138108, JP-A-2-. 84437, Japanese Patent Application Laid-Open No. 2-175726, Japanese Patent Application Laid-Open No. 4-63833, Japanese Patent Application Laid-Open No. 5-238827, Japanese Patent Application Laid-Open No. 5-345926, Japanese Patent Application Laid-Open No. 2005-36089, Japanese Patent Application Laid-Open No. 6-122852 See JP-A-6-299118, JP-A-6-306329, JP-A-9-313333, JP-A-10-245436, JP-A-2003-514822, International Publication WO2011 / 107018, etc. ), Polycarbosilane compound (Journal of Materials Science, 2569-2576, Vol. 13, 1978, Organometallics, 1336-1344, Vol. 10, 1991, Journal of Organometallic Chemistry, 1-196 See JP-A-51-126300, JP-A-2001-328991, JP-A-2006-117917, JP-A-2009-286891, JP-A-2010-106100, etc.), Polysilane compounds (R. D. Miller, J. Michel; Chemical Review, Vol. 89, p. 1359 (1989), N. Matsumoto; Japanese Journal of Physics, Vol. 37, p. 5425 (1998), JP-A-2008-63586, JP-A. 2009-235358, etc.), polyorganosiloxane-based compounds (see JP-A-2010-229445, JP-A-2010-232569, JP-A-2010-238736, etc.) and the like.
 これらの中でも、優れたガスバリア性を有するガスバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。ポリシラザン系化合物としては、無機ポリシラザンや有機ポリシラザンが挙げられる。無機ポリシラザンとしてはペルヒドロポリシラザン等が挙げられ、有機ポリシラザンとしてはペルヒドロポリシラザンの水素の一部又は全部がアルキル基等の有機基で置換された化合物等が挙げられる。これらの中でも、入手容易性、及び優れたガスバリア性を有するガスバリア層を形成できる観点から、無機ポリシラザンがより好ましい。
 また、ポリシラザン系化合物は、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Among these, polysilazane compounds are preferable from the viewpoint of being able to form a gas barrier layer having excellent gas barrier properties. Examples of polysilazane compounds include inorganic polysilazane and organic polysilazane. Examples of the inorganic polysilazane include perhydropolysilazane, and examples of the organic polysilazane include compounds in which part or all of the hydrogen of the perhydropolysilazane is replaced with an organic group such as an alkyl group. Among these, inorganic polysilazane is more preferable from the viewpoint of easy availability and the ability to form a gas barrier layer having excellent gas barrier properties.
Further, as the polysilazane compound, a commercially available product commercially available as a glass coating material or the like can be used as it is.
The polysilazane compound can be used alone or in combination of two or more.
 高分子層は、上述した高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、硬化剤、他の高分子、老化防止剤、光安定剤、難燃剤等が挙げられる。 The polymer layer may contain other components in addition to the above-mentioned polymer compound as long as the object of the present invention is not impaired. Examples of other components include curing agents, other polymers, anti-aging agents, light stabilizers, flame retardants and the like.
 高分子層中の、高分子化合物の含有量は、優れたガスバリア性を有するガスバリア層を形成できる観点から、50質量%以上であるのが好ましく、70質量%以上であるのがより好ましい。 The content of the polymer compound in the polymer layer is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of being able to form a gas barrier layer having excellent gas barrier properties.
 高分子層を形成する方法としては、例えば、高分子化合物の少なくとも1種、所望により他の成分、及び溶剤等を含有する層形成用溶液を、公知の方法によって樹脂層または所望により樹脂層上に形成されたプライマー層上に塗布し、得られた塗膜を適度に乾燥して形成する方法が挙げられる。 As a method for forming the polymer layer, for example, a layer-forming solution containing at least one polymer compound, optionally other components, a solvent and the like is applied to the resin layer or preferably on the resin layer by a known method. Examples thereof include a method of applying the coating film on the primer layer formed in the above and appropriately drying the obtained coating film to form the coating film.
 層形成用溶液を塗布する際は、スピンコーター、ナイフコーター、グラビアコーター等の公知の装置を使用することができる。 When applying the layer forming solution, a known device such as a spin coater, a knife coater, or a gravure coater can be used.
 得られた塗膜を乾燥させたり、ガスバリア性積層体のガスバリア性を向上させるため、塗膜を加熱したりすることが好ましい。加熱、乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、通常、数十秒から数十分である。 It is preferable to dry the obtained coating film or heat the coating film in order to improve the gas barrier property of the gas barrier laminate. As the heating and drying methods, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted. The heating temperature is usually 80 to 150 ° C., and the heating time is usually several tens of seconds to several tens of minutes.
 ガスバリア性積層体のガスバリア層を形成する際に、例えば、上述したようなポリシラザン系化合物を用いる場合は、塗工後の加熱によってポリシラザンの転化反応が生じ、ガスバリア性に優れた塗膜となる。
 その一方、このような塗膜を形成する際の加熱によって、耐熱性の低い樹脂層を用いている場合は、樹脂層に変形を生じる恐れがある。樹脂層の変形は、ガスバリア性積層体のガスバリア層のガスバリア性に悪影響を与える可能性がある。しかしながら、本発明の実施形態に係る樹脂層においては、耐熱性に優れているため、塗工時及び塗工後の加熱によっても変形を生じ難い。したがって、樹脂層の変形に起因するガスバリア性積層体のガスバリア性の低下も回避することができる。
When the above-mentioned polysilazane compound is used when forming the gas barrier layer of the gas barrier laminate, for example, the conversion reaction of polysilazane occurs by heating after coating, and the coating film has excellent gas barrier properties.
On the other hand, when a resin layer having low heat resistance is used, the resin layer may be deformed by heating when forming such a coating film. Deformation of the resin layer may adversely affect the gas barrier property of the gas barrier layer of the gas barrier laminated body. However, since the resin layer according to the embodiment of the present invention has excellent heat resistance, it is unlikely to be deformed by heating during and after coating. Therefore, it is possible to avoid a decrease in the gas barrier property of the gas barrier laminated body due to the deformation of the resin layer.
 高分子層の厚さは、通常、20~1000nm、好ましくは30~800nm、より好ましくは40~400nmである。
 高分子層の厚さがナノオーダーであっても、後述するように改質処理を施すことで、充分なガスバリア性能を有するガスバリア性積層体を得ることができる。
The thickness of the polymer layer is usually 20 to 1000 nm, preferably 30 to 800 nm, and more preferably 40 to 400 nm.
Even if the thickness of the polymer layer is on the nano-order, a gas-barrier laminate having sufficient gas-barrier performance can be obtained by performing a modification treatment as described later.
 改質処理としては、イオン注入、真空紫外光照射等が挙げられる。これらの中でも、高いガスバリア性能が得られる点から、イオン注入が好ましい。イオン注入において、高分子層に注入されるイオンの注入量は、形成するガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定すればよい。 Examples of the reforming treatment include ion implantation and vacuum ultraviolet light irradiation. Among these, ion implantation is preferable from the viewpoint of obtaining high gas barrier performance. In ion implantation, the amount of ions implanted into the polymer layer may be appropriately determined according to the purpose of use (required gas barrier property, transparency, etc.) of the gas barrier laminate to be formed.
 注入されるイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;
メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類のイオン;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;
金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;
シラン(SiH)又は有機ケイ素化合物のイオン;等が挙げられる。
The injected ions include rare gas ions such as argon, helium, neon, krypton, and xenon; ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur;
Ions of alkane gases such as methane, ethane, propane, butane, pentane, hexane; ions of alkene gases such as ethylene, propylene, butene, and penten; ions of alkaziene gases such as pentadiene and butadiene; acetylene, Ions of alkyne gases such as methylacetylene; ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, inden, naphthalene and phenanthrene; ions of cycloalkene gases such as cyclopropane and cyclohexane; cyclopentene, Ions of cycloalkene gases such as cyclohexene;
Ions of conductive metals such as gold, silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten and aluminum;
Ions of silane (SiH 4 ) or organosilicon compounds; and the like.
 有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン等のテトラアルコキシシラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン等の無置換若しくは置換基を有するアルキルアルコキシシラン;
ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアリールアルコキシシラン;
ヘキサメチルジシロキサン(HMDSO)等のジシロキサン;
ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、テトラキスジメチルアミノシラン、トリス(ジメチルアミノ)シラン等のアミノシラン;
ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラメチルジシラザン等のシラザン;
テトライソシアナートシラン等のシアナートシラン;
トリエトキシフルオロシラン等のハロゲノシラン;
ジアリルジメチルシラン、アリルトリメチルシラン等のアルケニルシラン;
ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、テトラメチルシラン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ベンジルトリメチルシラン等の無置換若しくは置換基を有するアルキルシラン;
ビス(トリメチルシリル)アセチレン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン等のシリルアルキン;
1,4-ビストリメチルシリル-1,3-ブタジイン、シクロペンタジエニルトリメチルシラン等のシリルアルケン;
フェニルジメチルシラン、フェニルトリメチルシラン等のアリールアルキルシラン;
プロパルギルトリメチルシラン等のアルキニルアルキルシラン;
ビニルトリメチルシラン等のアルケニルアルキルシラン;
ヘキサメチルジシラン等のジシラン;
オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン等のシロキサン;
N,O-ビス(トリメチルシリル)アセトアミド;
ビス(トリメチルシリル)カルボジイミド;
等が挙げられる。
 これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いてもよい。
Examples of the organosilicon compound include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and tetrat-butoxysilane;
Alkoxysilanes having substituents or substituents such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane;
Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane;
Disiloxane such as hexamethyldisiloxane (HMDSO);
Aminosilanes such as bis (dimethylamino) dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, diethylaminotrimethylsilane, dimethylaminodimethylsilane, tetrakisdimethylaminosilane, and tris (dimethylamino) silane;
Hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetramethyldisilazane and other silazans;
Cyanatosilanes such as tetraisocyanatesilanes;
Halogenosilanes such as triethoxyfluorosilane;
Alkenylsilanes such as diallyldimethylsilane and allyltrimethylsilane;
Alkylsilane having an unsubstituted or substituent such as di-t-butylsilane, 1,3-disilabtan, bis (trimethylsilyl) methane, tetramethylsilane, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, benzyltrimethylsilane;
Cyril alkynes such as bis (trimethylsilyl) acetylene, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propine;
Cyrilalkenes such as 1,4-bistrimethylsilyl-1,3-butadiyne, cyclopentadienyltrimethylsilane;
Arylalkylsilanes such as phenyldimethylsilane and phenyltrimethylsilane;
Alkynylalkylsilanes such as propargyltrimethylsilane;
Alkenylalkylsilanes such as vinyltrimethylsilane;
Disilane such as hexamethyldisilane;
Siloxanes such as octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, hexamethylcyclotetrasiloxane;
N, O-bis (trimethylsilyl) acetamide;
Bis (trimethylsilyl) carbodiimide;
And so on.
These ions may be used alone or in combination of two or more.
 中でも、より簡便に注入することができ、特に優れたガスバリア性を有するガスバリア層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトンからなる群から選ばれる少なくとも1種のイオンが好ましい。 Among them, at least one selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton because it can be injected more easily and a gas barrier layer having particularly excellent gas barrier properties can be obtained. Seed ions are preferred.
 イオンを注入する方法としては、特に限定されないが、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。中でも、簡便にガスバリア性のフィルムが得られることから、後者のプラズマイオンを注入する方法が好ましい。 The method of injecting ions is not particularly limited, and examples thereof include a method of irradiating ions (ion beams) accelerated by an electric field, a method of injecting ions in plasma, and the like. Above all, the latter method of injecting plasma ions is preferable because a gas barrier film can be easily obtained.
 プラズマイオン注入法としては、(I)外部電界を用いて発生させたプラズマ中に存在するイオンを、高分子層に注入する方法、又は(II)外部電界を用いることなく、前記層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、高分子層に注入する方法が好ましい。 The plasma ion implantation method includes (I) a method of injecting ions existing in the plasma generated by using an external electric field into the polymer layer, or (II) applying the ions to the layer without using an external electric field. A method of implanting ions existing in the plasma generated only by an electric field due to a negative high voltage pulse into the polymer layer is preferable.
 前記(I)の方法においては、イオン注入する際の圧力(プラズマイオン注入時の圧力)を0.01~1Paとすることが好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一にイオンを注入することができ、目的のガスバリア層を効率よく形成することができる。 In the method (I) above, the pressure at the time of ion implantation (pressure at the time of plasma ion implantation) is preferably 0.01 to 1 Pa. When the pressure at the time of plasma ion implantation is in such a range, the ions can be implanted easily and efficiently and uniformly, and the target gas barrier layer can be efficiently formed.
 前記(II)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、前記層全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーで高分子層に連続的に注入することができる。更に、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、層に負の高電圧パルスを印加するだけで、高分子層に良質のイオンを均一に注入することができる。 The method (II) described above does not require a high degree of decompression, the processing operation is simple, and the processing time can be significantly shortened. In addition, the entire layer can be treated uniformly, and ions in the plasma can be continuously injected into the polymer layer with high energy when a negative high voltage pulse is applied. Furthermore, without the need for special other means such as radio frequency (high frequency, hereinafter abbreviated as "RF") or high frequency power sources such as microwaves, simply applying a negative high voltage pulse to the layer Good quality ions can be uniformly injected into the polymer layer.
 前記(I)及び(II)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオン注入するときのパルス幅は、1~15μsecであるのが好ましい。パルス幅がこのような範囲にあるときに、より簡便にかつ効率よく、均一にイオンを注入することができる。 In any of the methods (I) and (II), the pulse width when a negative high voltage pulse is applied, that is, when ion is implanted, is preferably 1 to 15 μsec. When the pulse width is in such a range, ions can be injected more easily, efficiently, and uniformly.
 また、プラズマを発生させるときの印加電圧は、好ましくは-1~-50kV、より好ましくは-1~-30kV、特に好ましくは-5~-20kVである。印加電圧が-1kVより大きい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となり、所望の性能が得られない。一方、-50kVより小さい値でイオン注入を行うと、イオン注入時にフィルムが帯電し、またフィルムへの着色等の不具合が生じ、好ましくない。 The applied voltage when generating plasma is preferably -1 to -50 kV, more preferably -1 to -30 kV, and particularly preferably -5 to -20 kV. If ion implantation is performed when the applied voltage is greater than -1 kV, the ion implantation amount (dose amount) becomes insufficient and the desired performance cannot be obtained. On the other hand, if the ion implantation is performed at a value smaller than -50 kV, the film is charged at the time of ion implantation, and problems such as coloring of the film occur, which is not preferable.
 プラズマイオン注入するイオン種としては、前記注入されるイオンとして例示したのと同様のものが挙げられる。 Examples of the ion species to be implanted with plasma ions include the same as those exemplified as the ions to be implanted.
 高分子層にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。
 プラズマイオン注入装置としては、具体的には、(i)高分子層(以下、「イオン注入する層」ということがある。)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(ii)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001-156013号公報)、(iii)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(iv)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
A plasma ion implanter is used to implant the ions in the plasma into the polymer layer.
Specifically, the plasma ion implantation apparatus (i) superimposes high-frequency power on a feed-through that applies a negative high-voltage pulse to a polymer layer (hereinafter, may be referred to as “ion implantation layer”). A device that evenly surrounds the layer for ion implantation with plasma to attract, implant, collide, and deposit ions in the plasma (Japanese Patent Laid-Open No. 2001-26887), (ii) An antenna is provided in the chamber, and high-frequency power is provided. After the plasma reaches the periphery of the ion-implanted layer, positive and negative pulses are alternately applied to the ion-implanted layer to attract and collide the electrons in the plasma with the positive pulse. An apparatus (Japanese Patent Laid-Open No. 2001-156013), (iii), which heats a layer to be ion-implanted, controls the pulse constant to control the temperature, and applies a negative pulse to attract and implant ions in the plasma. A plasma ion implanter that generates plasma using an external electric field such as a high-frequency power source such as a microwave and applies a high voltage pulse to attract and implant ions in the plasma. (Iv) High without using an external electric field. Examples thereof include a plasma ion implanter that implants ions in plasma generated only by an electric field generated by applying a voltage pulse.
 これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(iii)又は(iv)のプラズマイオン注入装置を用いるのが好ましい。
 前記(iii)及び(iv)のプラズマイオン注入装置を用いる方法については、国際公開WO2010/021326号公報に記載のものが挙げられる。
Among these, it is preferable to use the plasma ion implantation apparatus of (iii) or (iv) because the processing operation is simple, the processing time can be significantly shortened, and it is suitable for continuous use.
Examples of the method using the plasma ion implantation apparatus of (iii) and (iv) are those described in International Publication WO2010 / 021326.
 前記(iii)及び(iv)のプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、高分子層に連続的にプラズマ中のイオンを注入し、表面部にイオン注入により改質された部分を有する高分子層、すなわちガスバリア層が形成されたガスバリア性積層体を量産することができる。 In the plasma ion injection devices of (iii) and (iv), since the plasma generating means for generating plasma is also used by the high voltage pulse power supply, special other means such as a high frequency power source such as RF or microwave is used. By simply applying a negative high voltage pulse, plasma is generated, the ions in the plasma are continuously injected into the polymer layer, and the surface portion has a portion modified by ion injection. A gas barrier laminate having a molecular layer, that is, a gas barrier layer formed can be mass-produced.
 イオンが注入される部分の厚さは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、高分子層の厚さ、ガスバリア性積層体の使用目的等に応じて決定すればよいが、通常、5~1000nmである。 The thickness of the portion where the ions are injected can be controlled by the injection conditions such as the type of ions, the applied voltage, and the processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the gas barrier laminate, and the like. However, it is usually 5 to 1000 nm.
 イオンが注入されたことは、X線光電子分光分析(XPS)を用いて高分子層の表面から10nm付近の元素分析測定を行うことによって確認することができる。 The injection of ions can be confirmed by performing elemental analysis measurement near 10 nm from the surface of the polymer layer using X-ray photoelectron spectroscopy (XPS).
 ガスバリア層がガスバリア性を有していることは、ガスバリア層の水蒸気透過率が小さいことから確認することができる。
 ガスバリア層の、40℃、相対湿度90%雰囲気下における水蒸気透過率は、通常1.0g/m/day以下であり、好ましくは0.8g/m/day以下であり、より好ましくは0.5g/m/day以下であり、更に好ましくは0.1g/m/day以下である。水蒸気透過率は、公知の方法で測定することができる。
It can be confirmed that the gas barrier layer has a gas barrier property because the water vapor permeability of the gas barrier layer is small.
The water vapor transmittance of the gas barrier layer in an atmosphere of 40 ° C. and 90% relative humidity is usually 1.0 g / m 2 / day or less, preferably 0.8 g / m 2 / day or less, and more preferably 0. .5g / m is in 2 / day, more preferably not more than 0.1 g / m 2 / day. The water vapor permeability can be measured by a known method.
1-7.導電層
 本発明の実施形態に係る光学用積層体に設けられる導電層は、導電性を有している限り、材質等は特に限定されないが、透明導電層であることが好ましい。ここで、「透明」とは、450nmの波長における光線透過率が80%以上であることをいう。
 透明導電層を構成する導電性材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、ゲルマニウムをドープした酸化亜鉛(GZO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の半導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。銀等の金属は、ナノフィラー、ナノロッド、ナノファイバー等の粒子状の状態のものが集合することにより、透明導電層を構成していてもよい。
1-7. Conductive layer The conductive layer provided in the optical laminate according to the embodiment of the present invention is not particularly limited in material as long as it has conductivity, but it is preferably a transparent conductive layer. Here, "transparent" means that the light transmittance at a wavelength of 450 nm is 80% or more.
Examples of the conductive material constituting the transparent conductive layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specifically, antimonated tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, germanium-doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide (ITO). , Semi-conductive metal oxides such as zinc indium oxide (IZO); metals such as gold, silver, chromium and nickel; mixtures of these metals with conductive metal oxides; inorganic conductivity such as copper iodide and copper sulfide Substances; organic conductive materials such as polyaniline, polythiophene, polypyrrole; and the like. A metal such as silver may form a transparent conductive layer by aggregating particles such as nanofillers, nanorods, and nanofibers.
 透明導電層の形成方法には特に制限はない。例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。また、例えば、粒子状の金属を含む塗布材料を透明導電フィルム用積層体に塗布することにより、塗膜より透明導電層を得てもよい。 There are no particular restrictions on the method of forming the transparent conductive layer. For example, a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method and the like can be mentioned. Further, for example, a transparent conductive layer may be obtained from the coating film by applying a coating material containing a particulate metal to the laminate for a transparent conductive film.
 透明導電層の厚さはその用途等に応じて適宜選択すればよい。通常10nmから50μm、好ましくは20nmから20μmである。 The thickness of the transparent conductive layer may be appropriately selected according to the application and the like. It is usually 10 nm to 50 μm, preferably 20 nm to 20 μm.
1-8.剥離シート(α)
 剥離シート(α)は、光学用積層体を保存、運搬等する際に、樹脂層を保護する役割を有し、所定の工程において剥離されるものである。
1-8. Release sheet (α)
The release sheet (α) has a role of protecting the resin layer when the optical laminate is stored, transported, etc., and is peeled off in a predetermined step.
 剥離シート(α)は、シート状又はフィルム状のものが好ましい。シート状又はフィルム状とは、長尺のものに限らず、短尺の平板状のものも含まれる。 The release sheet (α) is preferably in the form of a sheet or a film. The sheet-like or film-like shape is not limited to a long one, but also includes a short flat plate-like one.
 剥離シート(α)としては、グラシン紙、コート紙、上質紙等の紙基材;これらの紙基材にポリエチレンやポリプロピレン等の熱可塑性樹脂をラミネートしたラミネート紙;上記紙基材に、セルロース、デンプン、ポリビニルアルコール、アクリル-スチレン樹脂等で目止め処理を行ったもの;あるいはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルムやポリエチレンやポリプロピレン等のポリオレフィンフィルム等のプラスチックフィルム;ガラス等が挙げられる。 The release sheet (α) is a paper base material such as glassin paper, coated paper, or high-quality paper; a laminated paper obtained by laminating a thermoplastic resin such as polyethylene or polypropylene on these paper base materials; Those that have been sealed with starch, polyvinyl alcohol, acrylic-styrene resin, etc .; or polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and plastic films such as polyolefin films such as polyethylene and polypropylene; glass, etc. Can be mentioned.
 また、剥離シート(α)としては、取り扱い易さの点から、紙基材や、プラスチックフィルム上に剥離剤層を設けたものであってもよいが、剥離シート(α)上に硬化性組成物を塗布して樹脂層を形成する場合には、硬化性組成物が剥離シート(α)上に濡れ広がらず、不均一な塗膜となったり、未塗布部が発生したりすることを回避する観点から、剥離剤層が存在しないことが好ましい。すなわち、剥離シート(α)が剥離剤層を有さず、剥離シート(α)上に直接に樹脂層が形成されていることが好ましい。
 剥離剤層を設ける場合には、剥離層は、シリコーン系剥離剤、フッ素系剥離剤、アルキッド系剥離剤、オレフィン系剥離剤等、従来公知の剥離剤を用いて形成することができる。
 剥離剤層の厚さは、特に制限されないが、通常、0.02~2.0μm、より好ましくは0.05~1.5μmである。
 また、樹脂層は通常、柔軟性を有するものであり、剥離シート(α)が粘着剤層を有する場合には、粘着剤層と樹脂層が固着するおそれがあるため、剥離シート(α)は、粘着剤層も有しないことが好ましい。
Further, the release sheet (α) may have a release agent layer provided on a paper base material or a plastic film from the viewpoint of ease of handling, but has a curable composition on the release sheet (α). When an object is applied to form a resin layer, the curable composition does not spread on the release sheet (α), resulting in a non-uniform coating film or an unapplied portion. From the viewpoint of this, it is preferable that the release agent layer does not exist. That is, it is preferable that the release sheet (α) does not have a release agent layer and the resin layer is directly formed on the release sheet (α).
When the release agent layer is provided, the release layer can be formed by using a conventionally known release agent such as a silicone type release agent, a fluorine type release agent, an alkyd type release agent, and an olefin type release agent.
The thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 μm, more preferably 0.05 to 1.5 μm.
Further, the resin layer is usually flexible, and when the release sheet (α) has the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer and the resin layer may adhere to each other. , It is preferable not to have an adhesive layer.
 耐熱性の維持、剥離面積の増大による剥離力上昇の回避、及び、巻き取り時に光学用積層体に生じるひずみを小さくする観点から、剥離シート(α)の厚さは、25~150μmが好ましく、40~125μmがより好ましい。 The thickness of the peeling sheet (α) is preferably 25 to 150 μm from the viewpoint of maintaining heat resistance, avoiding an increase in peeling force due to an increase in peeling area, and reducing strain generated in the optical laminate during winding. More preferably, it is 40 to 125 μm.
 剥離シート(α)の表面粗さRa(算術平均粗さ)は、10.0nm以下が好ましく、8.0nm以下がより好ましい。また、表面粗さRt(最大断面高さ)は、100nm以下が好ましく、50nm以下がより好ましい。
 表面粗さRa及びRtが、それぞれ、10.0nm以下、100nm以下であれば、工程フィルムと接する層の表面粗さが過度に大きくなることが回避される。このため、光学用積層体が、上述した機能層、ガスバリア層、導電層等を有する場合、それらの層に所期の機能を発揮させやすくなる。
 なお、表面粗さRa及びRtは、100μm×100μmの測定面積で、光干渉法により得られた値である。
The surface roughness Ra (arithmetic mean roughness) of the release sheet (α) is preferably 10.0 nm or less, more preferably 8.0 nm or less. The surface roughness Rt (maximum cross-sectional height) is preferably 100 nm or less, more preferably 50 nm or less.
When the surface roughness Ra and Rt are 10.0 nm or less and 100 nm or less, respectively, it is possible to prevent the surface roughness of the layer in contact with the process film from becoming excessively large. Therefore, when the optical laminate has the above-mentioned functional layer, gas barrier layer, conductive layer, and the like, it becomes easy for those layers to exert the desired functions.
The surface roughness Ra and Rt are values obtained by the optical interferometry in a measurement area of 100 μm × 100 μm.
1-9.保護フィルム(β)
 保護フィルム(β)は、光学用積層体を保存、運搬等する際に、ガスバリア層や透明導電層等の機能層を保護する役割を有し、所定の工程において剥離されるものである。
 保護フィルム(β)は、シート状またはフィルム状のものが好ましい。シート状またはフィルム状とは、長尺のものに限らず、短尺の平板状のものも含まれる。
 保護フィルム(β)は、通常、光学用フィルムに含まれる樹脂層又は樹脂層上の上記他の層が形成された後に、当該樹脂層又は他の層の表面に貼付されるので、上記樹脂層又は他の層から保護フィルム(β)が意図せず脱落したりしないようにする観点から、基材上に粘着剤層を設けた構成であることが好ましい。この場合、保護フィルム(β)の光学用フィルム側の表面に粘着剤層を設ける。保護フィルム(β)が粘着剤層を有するものであることによって、保護フィルム(β)が上記樹脂層又は他の層に対して剥離可能に付着することになる。保護フィルム(β)の基材としては、剥離シート(α)と同じ材質・厚さのものを用いることができる。
1-9. Protective film (β)
The protective film (β) has a role of protecting functional layers such as a gas barrier layer and a transparent conductive layer when the optical laminate is stored, transported, etc., and is peeled off in a predetermined step.
The protective film (β) is preferably in the form of a sheet or a film. The sheet-like or film-like shape is not limited to a long one, but also includes a short flat plate-like one.
The protective film (β) is usually attached to the surface of the resin layer or the other layer after the resin layer contained in the optical film or the other layer on the resin layer is formed. Alternatively, from the viewpoint of preventing the protective film (β) from unintentionally falling off from another layer, it is preferable that the adhesive layer is provided on the base material. In this case, an adhesive layer is provided on the surface of the protective film (β) on the optical film side. Since the protective film (β) has an adhesive layer, the protective film (β) is detachably adhered to the resin layer or another layer. As the base material of the protective film (β), a material having the same material and thickness as the release sheet (α) can be used.
 粘着剤層の粘着力は、その材料や厚さなどを選択することにより、保護フィルム(β)を0.3m/minの低速剥離条件で光学用フィルムの樹脂層又は当該樹脂層上の他の層から剥離する際の粘着力A2が、剥離シート(α)を0.3m/minの低速剥離条件で樹脂層から剥離する際の剥離力A1に対して、A1>A2の関係になるように調整されている。
 粘着剤層を構成する粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ポリオレフィン系重合体を含む粘着剤、ポリオレフィン系共重合体を含む粘着剤を含む粘着剤等が挙げられる。これらのうち、A1>A2の関係を実現しやすい粘着力A2を得やすくする観点から、粘着剤層が、ポリオレフィン系重合体及びポリオレフィン系共重合体の少なくとも一方を含むことがより好ましい。ポリオレフィン系重合体としては、ポリエチレン、ポリプロピレン等が挙げられ、ポリオレフィン系共重合体としては、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体等が挙げられる。
 また、保護フィルム(β)として利用可能な、市販のポリオレフィン系粘着剤を含む保護フィルムとしては、株式会社サンエー化研製サニテクトPAC-3-50THK、サニテクトPAC-2-70等が挙げられる。
The adhesive strength of the pressure-sensitive adhesive layer can be determined by selecting the material, thickness, etc. of the protective film (β) under low-speed peeling conditions of 0.3 m / min to the resin layer of the optical film or another resin layer on the resin layer. The adhesive force A2 when peeling from the layer has a relationship of A1> A2 with respect to the peeling force A1 when the peeling sheet (α) is peeled from the resin layer under a low speed peeling condition of 0.3 m / min. It has been adjusted.
As the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a pressure-sensitive adhesive containing a polyolefin-based polymer, and a pressure-sensitive adhesive containing a polyolefin-based copolymer are used. Examples thereof include adhesives and the like. Of these, it is more preferable that the pressure-sensitive adhesive layer contains at least one of a polyolefin-based polymer and a polyolefin-based copolymer from the viewpoint of facilitating the acquisition of the adhesive strength A2 that facilitates the relationship of A1> A2. Examples of the polyolefin-based polymer include polyethylene and polypropylene, and examples of the polyolefin-based copolymer include an ethylene-vinyl acetate copolymer and an ethylene- (meth) acrylic acid copolymer.
Examples of the protective film containing a commercially available polyolefin-based adhesive that can be used as the protective film (β) include San-A Kaken Co., Ltd. Sanitect PAC-3-50THK and Sanitect PAC-2-70.
1-10.光学用積層体の他の構成例
 本発明の実施形態に係る光学用積層体は、図1に示すものに限定されず、樹脂層及び上記他の層を一組として、複数組が積層されたものであってもよい。また、本発明の目的を損ねない範囲で、樹脂層と上記他の層との間に更に別の層を1層又は2層以上含むものであってもよい。上記の樹脂層及びガスバリア層が複数組積層されている場合、隣り合う各組の間の少なくとも一つに、別の層が1層又は2層以上含まれるものであってもよい。
 上記別の層としては、例えば、導電体層、衝撃吸収層、接着剤層、接合層、工程シート等が挙げられる。また、上記別の層の配置位置は特に限定されない。
1-10. Other Configuration Examples of Optical Laminates The optical laminates according to the embodiment of the present invention are not limited to those shown in FIG. 1, and a plurality of sets are laminated with the resin layer and the above other layers as one set. It may be a thing. Further, one layer or two or more layers may be contained between the resin layer and the other layer as long as the object of the present invention is not impaired. When a plurality of sets of the resin layer and the gas barrier layer are laminated, at least one of the adjacent sets may include one layer or two or more other layers.
Examples of the other layer include a conductor layer, a shock absorbing layer, an adhesive layer, a bonding layer, a process sheet, and the like. Further, the arrangement position of the other layer is not particularly limited.
 導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、ゲルマニウムをドープした酸化亜鉛(GZO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の半導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。 Examples of the material constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specifically, antimonated tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, germanium-doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide (ITO). , Semi-conductive metal oxides such as zinc indium oxide (IZO); metals such as gold, silver, chromium and nickel; mixtures of these metals with conductive metal oxides; inorganic conductivity such as copper iodide and copper sulfide Substances; organic conductive materials such as polyaniline, polythiophene, polypyrrole; and the like.
 導電体層の形成方法としては特に制限はない。例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。 There are no particular restrictions on the method of forming the conductor layer. For example, a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method and the like can be mentioned.
 導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nmから50μm、好ましくは20nmから20μmである。 The thickness of the conductor layer may be appropriately selected according to the application and the like. It is usually 10 nm to 50 μm, preferably 20 nm to 20 μm.
 衝撃吸収層は、上述した機能層、ガスバリア層、導電層等に衝撃が加わった時に、これらの層を保護するためのものである。衝撃吸収層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等が挙げられる。 The shock absorbing layer is for protecting the above-mentioned functional layer, gas barrier layer, conductive layer, etc. when a shock is applied to these layers. The material forming the shock absorbing layer is not particularly limited, and examples thereof include an acrylic resin, a urethane resin, a silicone resin, an olefin resin, and a rubber material.
 衝撃吸収層の形成方法としては特に制限はなく、例えば、前記衝撃吸収層を形成する素材、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
 また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
 衝撃吸収層の厚さは、通常1~100μm、好ましくは5~50μmである。
The method for forming the shock absorbing layer is not particularly limited. For example, a material for forming the shock absorbing layer and, if desired, a shock absorbing layer forming solution containing other components such as a solvent are placed on the layer to be laminated. Examples thereof include a method of coating, drying the obtained coating film, and heating or the like as necessary to form the coating film.
Alternatively, a shock absorbing layer may be separately formed on the release base material, and the obtained film may be transferred onto the layer to be laminated and laminated.
The thickness of the shock absorbing layer is usually 1 to 100 μm, preferably 5 to 50 μm.
 接着剤層は、光学用積層体を被着体に貼付する場合に用いられる層である。接着剤層を形成する材料としては、特に限定されず、アクリル系、シリコーン系、ゴム系等の公知の接着剤または粘着剤、ヒートシール材等を使用することもできる。 The adhesive layer is a layer used when the optical laminate is attached to the adherend. The material for forming the adhesive layer is not particularly limited, and known adhesives such as acrylic, silicone, and rubber, adhesives, heat sealants, and the like can also be used.
 接合層は、樹脂層及び上記他の層を一組として、複数の組を貼り合せて光学用積層体を製造する場合等に用いられる層である。接合層は、隣り合う各組に含まれる樹脂層と上記他の層とを接合して積層構造を保持するための層である。接合層は、単層であっても、複数層であってもよい。接合層としては、接着剤を用いて形成された単層構造の層からなるものや、支持層の両面に接着剤を用いて形成された層が形成されてなるものが挙げられる。 The bonding layer is a layer used when a resin layer and the above other layers are combined as one set and a plurality of sets are bonded together to manufacture an optical laminate. The bonding layer is a layer for bonding the resin layer contained in each adjacent set and the other layer to maintain the laminated structure. The bonding layer may be a single layer or a plurality of layers. Examples of the bonding layer include a layer having a single-layer structure formed by using an adhesive and a layer having a layer formed by using an adhesive on both sides of a support layer.
 接合層を形成する際に用いる材料は、樹脂層及び上記他の層の組同士を接合し、積層構造を保持できるものである限り、特に制限されず、公知の接着剤を用いることができるが、常温で樹脂層及び上記他の層の組同士を接合することができるという点から、粘着剤であることが好ましい。
 接合層に用いる粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられる。これらの中でも、粘着力、透明性および取り扱い性の点から、アクリル系粘着剤、ウレタン系粘着剤が好ましい。また、後述するような架橋構造を形成し得る粘着剤が好ましい。
 また、粘着剤は、溶剤型粘着剤、エマルジョン型粘着剤、ホットメルト型粘着剤等のいずれの形態のものであってもよい。
The material used for forming the bonding layer is not particularly limited as long as it can bond the resin layer and the other layers to each other and maintain the laminated structure, and a known adhesive can be used. The adhesive is preferable because the resin layer and the other layers can be bonded to each other at room temperature.
Examples of the pressure-sensitive adhesive used for the bonding layer include an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive. Among these, acrylic adhesives and urethane adhesives are preferable from the viewpoint of adhesive strength, transparency and handleability. Further, an adhesive capable of forming a crosslinked structure as described later is preferable.
The pressure-sensitive adhesive may be in any form such as a solvent-type pressure-sensitive adhesive, an emulsion-type pressure-sensitive adhesive, and a hot-melt type pressure-sensitive adhesive.
1-11.ロール状の光学用積層体
 図2は、ロール状の光学用積層体であるロール状のガスバリア性積層体の一例を示す断面模式図である。
 図2に示すロール状のガスバリア性積層体10Aは、筒状又は棒状の芯材11に巻き取られたロール状部分10Aを有する。そして、ロール状部分10Aの先端部を引き出すことにより、引き出し部分10Aが形成される。
 図2に示すロール状のガスバリア性積層体10Aにおいては、保護フィルム4が剥離シート1よりも外側に位置するように、ロール状部分10Aが形成されている。このため、ロール状部分10Aにおいて、保護フィルム4にストレスをかけにくくすることができる。
 本発明の光学用積層体は、保護フィルム(β)を、剥離起点における低速剥離と、それ以降の高速剥離のいずれにおいても、適切に剥離することができる。そのため、ロール状の光学用積層体から連続的に保護フィルム(β)を剥離する場合に、剥離起点において適切に保護フィルム(β)を低速で剥離することができれば、その後のロール・ツー・ロールのプロセスにおける高速剥離において、適切に保護フィルム(β)を剥離することができる。
1-11. Roll-shaped optical laminate FIG. 2 is a schematic cross-sectional view showing an example of a roll-shaped gas barrier laminate which is a roll-shaped optical laminate.
The roll-shaped gas barrier laminate 10A shown in FIG. 2 has a roll-shaped portion 10A 1 wound around a tubular or rod-shaped core material 11. Then, the drawer portion 10A 2 is formed by pulling out the tip portion of the roll-shaped portion 10A 1.
In the roll-shaped gas barrier laminate 10A shown in FIG. 2, the roll-shaped portion 10A 1 is formed so that the protective film 4 is located outside the release sheet 1. Therefore, it is possible to make it difficult to apply stress to the protective film 4 in the roll-shaped portion 10A 1.
The optical laminate of the present invention can appropriately peel off the protective film (β) in both low-speed peeling at the peeling starting point and high-speed peeling thereafter. Therefore, when the protective film (β) is continuously peeled from the roll-shaped optical laminate, if the protective film (β) can be appropriately peeled off at a low speed at the peeling starting point, then roll-to-roll. The protective film (β) can be appropriately peeled off in the high-speed peeling in the above process.
 図3は、ロール状の光学用積層体であるロール状のガスバリア性積層体の他の例を示す断面模式図である。
 図3に示すロール状のガスバリア性積層体10Bは、芯材11に巻き取られたロール状部分10Bを有する。そして、ロール状部分10Bの先端部を引き出すことにより、引き出し部分10Bが形成される。
 図3に示すロール状のガスバリア性積層体10Bにおいては、保護フィルム4が剥離シート1よりも内側に位置するように、ロール状部分10Bが形成されている。このため、ガスバリア性積層体10Bの保管中や輸送中に、保護フィルム4が外部の物体の接触等によって剥がれたりすること防止しやすくなる。
FIG. 3 is a schematic cross-sectional view showing another example of the roll-shaped gas barrier laminate, which is a roll-shaped optical laminate.
The roll-shaped gas barrier laminate 10B shown in FIG. 3 has a roll-shaped portion 10B 1 wound around the core material 11. Then, the drawer portion 10B 2 is formed by pulling out the tip portion of the roll-shaped portion 10B 1.
In the roll-shaped gas barrier laminate 10B shown in FIG. 3, the roll-shaped portion 10B 1 is formed so that the protective film 4 is located inside the release sheet 1. Therefore, it becomes easy to prevent the protective film 4 from being peeled off due to contact with an external object or the like during storage or transportation of the gas barrier laminate 10B.
1-12.光学用積層体の使用方法
 光学用積層体を使用する際には、光学用積層体から保護フィルム(β)及び剥離シート(α)を剥離する。そして、ディスプレイや電子デバイス等の目的とする被着物に貼付された状態で使用する。
 図5は、図1に示す構成を備えるガスバリア性積層体の使用方法の一例を示す図である。
 本例の使用方法においては、まず、図5(a)~図5(b)に示すように、保護フィルム4をガスバリア層3から剥離する。ここで、保護フィルム4を剥離する際には、剥離シート1が、樹脂層2から浮いたり剥がれたりせず、樹脂層2に密着した状態に保たれることが求められる。保護フィルム4の剥離後も剥離シート1が樹脂層2に密着し続けることにより、この後の工程においても、ガスバリア層の保護を継続することができる。
1-12. How to use the optical laminate When using the optical laminate, the protective film (β) and release sheet (α) are peeled from the optical laminate. Then, it is used in a state of being attached to a target adherend such as a display or an electronic device.
FIG. 5 is a diagram showing an example of how to use the gas barrier laminate having the configuration shown in FIG.
In the usage method of this example, first, as shown in FIGS. 5A to 5B, the protective film 4 is peeled off from the gas barrier layer 3. Here, when the protective film 4 is peeled off, the peeling sheet 1 is required to be kept in close contact with the resin layer 2 without floating or peeling off from the resin layer 2. Since the release sheet 1 continues to adhere to the resin layer 2 even after the protective film 4 is peeled off, the protection of the gas barrier layer can be continued even in the subsequent steps.
 次に、図5(c)に示すように、露出したガスバリア層3の表面に接着剤層5を形成し、図5(d)に示すように、接着剤層5によって、保護フィルム4が剥離された後のガスバリア性積層体10のガスバリア層3を、被着体20の表面に接着固定する。接着剤層5を形成する材料は、上述した接着剤層に用い得る材料を使用することができる。なお、被着物が接着剤層を有する場合は、接着剤層5を形成する工程を省略することができる。 Next, as shown in FIG. 5 (c), an adhesive layer 5 is formed on the surface of the exposed gas barrier layer 3, and as shown in FIG. 5 (d), the protective film 4 is peeled off by the adhesive layer 5. The gas barrier layer 3 of the gas barrier laminated body 10 after being formed is adhesively fixed to the surface of the adherend 20. As the material forming the adhesive layer 5, a material that can be used for the adhesive layer described above can be used. When the adherend has an adhesive layer, the step of forming the adhesive layer 5 can be omitted.
 その後、図5(e)に示すように、剥離シート1を樹脂層3から剥離することにより、被着体20上にガスバリアフィルム10aが貼付される。 After that, as shown in FIG. 5 (e), the gas barrier film 10a is attached onto the adherend 20 by peeling the release sheet 1 from the resin layer 3.
1-13.光学用積層体の製造方法
 本発明の実施形態に係る光学用積層体は剥離シート(α)を用いて製造される。剥離シート(α)を用いることで、光学用積層体を効率よく、かつ、容易に製造することができる。特に、以下の工程1~4を有する方法が好ましい。
1-13. Method for Manufacturing Optical Laminate The optical laminate according to the embodiment of the present invention is manufactured by using a release sheet (α). By using the release sheet (α), the optical laminate can be efficiently and easily manufactured. In particular, a method having the following steps 1 to 4 is preferable.
工程1:剥離シート(α)上に、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物を用いて硬化性樹脂層を形成する工程
工程2:工程1で得られた硬化性樹脂層を硬化させて、硬化樹脂層からなる樹脂層を形成する工程
工程3:工程2で得られた樹脂層上に、機能層、ガスバリア層、導電層等の他の層を形成する工程
工程4:工程3で得られた機能層、ガスバリア層、導電層等の他の層上に、保護フィルム(β)を積層する工程
Step 1: Forming a curable resin layer on a release sheet (α) using a curable resin composition containing a polymer component (A) and a curable monomer (B) Step 2: Step 1 Step 3: Forming a resin layer composed of a cured resin layer by curing the curable resin layer obtained in Step 3: Others such as a functional layer, a gas barrier layer, a conductive layer, etc. on the resin layer obtained in Step 2. Step of forming a layer Step 4: A step of laminating a protective film (β) on other layers such as a functional layer, a gas barrier layer, and a conductive layer obtained in step 3.
 図4に、本発明の実施形態に係る光学用積層体の一つであるガスバリア性積層体の製造工程の一例を示す。図4(a)~図4(b)が上記工程1に、図4(c)~図4(d)が上記工程2に、図4(e)が上記工程3に、図4(f)が上記工程4にそれぞれ対応する。 FIG. 4 shows an example of a manufacturing process of a gas barrier laminate, which is one of the optical laminates according to the embodiment of the present invention. 4 (a) to 4 (b) are in the above step 1, FIGS. 4 (c) to 4 (d) are in the above step 2, and FIG. 4 (e) is in the above step 3, FIG. 4 (f). Corresponds to each of the above steps 4.
(工程1)
 先ず、剥離シート(α)(図4(a)の符号1に相当)上に、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物を用いて、硬化前の樹脂層である硬化性樹脂層(図4(b)の符号2aに相当)を形成する。
(Step 1)
First, a curable resin composition containing the polymer component (A) and the curable monomer (B) is cured on the release sheet (α) (corresponding to reference numeral 1 in FIG. 4 (a)). A curable resin layer (corresponding to reference numeral 2a in FIG. 4B), which is the previous resin layer, is formed.
 硬化性樹脂組成物を剥離シート(α)上に塗工する方法は、特に制限されず、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法を利用することができる。 The method of applying the curable resin composition onto the release sheet (α) is not particularly limited, and is a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, and a die coating method. , A known coating method such as a gravure coating method can be used.
 得られた塗膜を乾燥する方法は特に制限されず、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を利用することができる。樹脂層を形成するために用いる硬化性樹脂組成物が非常に高いTgを有する重合体成分(A)を含有していても、硬化性単量体(B)を含有することで、溶液キャスト法を用いて得られた塗膜を乾燥する場合、溶剤を効率よく除去することができる。 The method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used. Even if the curable resin composition used for forming the resin layer contains the polymer component (A) having a very high Tg, the solution casting method is performed by containing the curable monomer (B). When the coating film obtained by using the above is dried, the solvent can be efficiently removed.
 塗膜の乾燥温度は、通常、30~150℃、好ましくは、50~120℃である。乾燥時間は、通常、1~10分、より好ましくは、2~7分である。
 乾燥塗膜(硬化性樹脂層)の厚さは、特に制限されないが、硬化させた後の厚さとほとんど差はないことから、上述した樹脂層の厚さと同様にすればよい。
The drying temperature of the coating film is usually 30 to 150 ° C., preferably 50 to 120 ° C. The drying time is usually 1 to 10 minutes, more preferably 2 to 7 minutes.
The thickness of the dry coating film (curable resin layer) is not particularly limited, but it may be the same as the thickness of the resin layer described above because there is almost no difference from the thickness after curing.
(工程2)
 次いで、工程1で得られた硬化性樹脂層を硬化させて硬化樹脂層を形成する。この硬化樹脂層が樹脂層(図4(c)の符合2)となる。
 硬化性樹脂層を硬化する方法としては、特に限定されず、公知の方法が採用できる。例えば、硬化性樹脂層が、熱重合開始剤を含有する硬化性樹脂組成物を用いて形成されたものである場合、硬化性樹脂層を加熱することで硬化性樹脂層を硬化させることができる。加熱温度は、通常、30~150℃、好ましくは、50~100℃である。
(Step 2)
Next, the curable resin layer obtained in step 1 is cured to form a cured resin layer. This cured resin layer becomes a resin layer (symbol 2 in FIG. 4C).
The method for curing the curable resin layer is not particularly limited, and a known method can be adopted. For example, when the curable resin layer is formed by using a curable resin composition containing a thermosetting initiator, the curable resin layer can be cured by heating the curable resin layer. .. The heating temperature is usually 30 to 150 ° C, preferably 50 to 100 ° C.
 また、硬化性樹脂層が、光重合開始剤を含有する硬化性樹脂組成物を用いて形成されたものである場合、硬化性樹脂層に活性エネルギー線としての電磁波を照射することで硬化性樹脂層を硬化させることができる。電磁波は、高圧水銀ランプ、無電極ランプ、キセノンランプ等を用いて照射することができる。 When the curable resin layer is formed by using a curable resin composition containing a photopolymerization initiator, the curable resin layer is irradiated with an electromagnetic wave as an active energy ray to obtain a curable resin. The layer can be cured. Electromagnetic waves can be irradiated using a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, or the like.
 電磁波の波長は、200~400nmの紫外光領域が好ましく、350~400nmがより好ましい。照射量は、通常、照度50~1000mW/cm、光量50~5000mJ/cm、好ましくは200~5000mJ/cmの範囲である。照射時間は、通常、0.1~1000秒、好ましくは1~500秒、更に好ましくは10~100秒である。光照射工程の熱負荷を考慮して前述の光量を満たすために、複数回照射しても構わない。 The wavelength of the electromagnetic wave is preferably in the ultraviolet light region of 200 to 400 nm, more preferably 350 to 400 nm. Irradiation dose is usually illuminance 50 ~ 1000mW / cm 2, light amount 50 ~ 5000mJ / cm 2, preferably in the range of 200 ~ 5000mJ / cm 2. The irradiation time is usually 0.1 to 1000 seconds, preferably 1 to 500 seconds, and more preferably 10 to 100 seconds. In order to satisfy the above-mentioned amount of light in consideration of the heat load in the light irradiation step, irradiation may be performed a plurality of times.
 この場合、電磁波による重合体成分(A)の劣化や、樹脂層の着色を防止するために、硬化反応に不要な波長の光を吸収するフィルタを介して、電磁波を硬化性樹脂組成物に照射してもよい。この方法によれば、硬化反応に不要で、かつ、重合体成分(A)を劣化させる波長の光がフィルタに吸収されるため、重合体成分(A)の劣化が抑制され、無色透明の樹脂層が得られやすくなる。
 フィルタとしては、ポリエチレンテレフタレートフィルム等の樹脂フィルムを利用することができる。樹脂フィルムを用いる場合、工程1と工程2の間に、硬化性樹脂層上にポリエチレンテレフタレートフィルム等の樹脂フィルムを積層させる工程を設けることが好ましい。なお、樹脂フィルムは、通常は、工程2の後に剥離される。
In this case, in order to prevent deterioration of the polymer component (A) due to electromagnetic waves and coloring of the resin layer, the curable resin composition is irradiated with electromagnetic waves through a filter that absorbs light having a wavelength unnecessary for the curing reaction. You may. According to this method, light having a wavelength that is unnecessary for the curing reaction and deteriorates the polymer component (A) is absorbed by the filter, so that the deterioration of the polymer component (A) is suppressed and the colorless and transparent resin is used. Layers are easier to obtain.
As the filter, a resin film such as a polyethylene terephthalate film can be used. When a resin film is used, it is preferable to provide a step of laminating a resin film such as a polyethylene terephthalate film on the curable resin layer between steps 1 and 2. The resin film is usually peeled off after the step 2.
 また、硬化性樹脂層に活性エネルギー線としての電子線を照射することで、硬化性樹脂層を硬化させることもできる。電子線を照射する場合は、電子線加速器等を用いることができる。照射量は、通常10~1000kradの範囲である。照射時間は、通常、0.1~1000秒、好ましくは1~500秒、更に好ましくは10~100秒である。 Further, the curable resin layer can be cured by irradiating the curable resin layer with an electron beam as an active energy ray. When irradiating an electron beam, an electron beam accelerator or the like can be used. The irradiation dose is usually in the range of 10 to 1000 grad. The irradiation time is usually 0.1 to 1000 seconds, preferably 1 to 500 seconds, and more preferably 10 to 100 seconds.
 硬化性樹脂層の硬化は、必要に応じて窒素ガスなどの不活性ガス雰囲気下で行ってもよい。不活性ガス雰囲気下で硬化を行うことにより、酸素や水分等が硬化を妨げることを回避しやすくなる。 The curable resin layer may be cured in an inert gas atmosphere such as nitrogen gas, if necessary. By performing curing in an inert gas atmosphere, it becomes easier to prevent oxygen, moisture, and the like from interfering with curing.
 上述したように、塗布、乾燥、硬化の手順で形成される樹脂膜は、薄く形成することができるため柔軟性に富み、また、光学的等方性を有するものとすることができる。また、硬化性樹脂であるため、耐熱性や耐溶剤性に優れたものとすることができる。 As described above, the resin film formed by the procedures of coating, drying, and curing can be formed thin, so that it is highly flexible and can have optical isotropic properties. Further, since it is a curable resin, it can be made excellent in heat resistance and solvent resistance.
(工程3)
 その後、工程2で得られた樹脂層上に、上述したガスバリア性樹脂を含む溶液等を用いて、ガスバリア層を形成するための組成物の層、換言すれば、硬化前のガスバリア層(図4(d)の符号3a)を形成し、この組成物の層を硬化させる等して、ガスバリア層(図4(e)の符号3)を形成する。蒸着等によって無機膜からなるガスバリア層を形成する場合は、図4(c)の状態から、直接、図4(e)の状態に移行することになる。
 ガスバリア層を形成する方法としては、先に説明した方法を適宜採用することができる。
 例えば、ガスバリア層が、ケイ素含有高分子化合物を含む層に改質処理を施して得られる層である場合、ケイ素含有高分子化合物を含む層を樹脂層上に形成する工程と、該ケイ素含有高分子化合物を含む層に、改質処理を施す工程によってガスバリア層を形成することができる。
(Step 3)
Then, on the resin layer obtained in step 2, a layer of a composition for forming a gas barrier layer by using the above-mentioned solution containing the gas barrier resin or the like, in other words, a gas barrier layer before curing (FIG. 4). The gas barrier layer (reference numeral 3 in FIG. 4 (e)) is formed by forming the reference numeral 3a) of (d) and curing the layer of this composition. When the gas barrier layer made of an inorganic film is formed by vapor deposition or the like, the state shown in FIG. 4 (c) is directly transferred to the state shown in FIG. 4 (e).
As a method for forming the gas barrier layer, the method described above can be appropriately adopted.
For example, when the gas barrier layer is a layer obtained by modifying a layer containing a silicon-containing polymer compound, a step of forming a layer containing the silicon-containing polymer compound on a resin layer and a silicon-containing high content thereof. A gas barrier layer can be formed by a step of subjecting a layer containing a molecular compound to a modification treatment.
 ガスバリア性積層体に含まれるガスバリア層は、押出成形法や塗布法など様々な方法で形成され得るが、ガスバリア層の形成方法によっては、ガスバリア性積層体のガスバリア性能が低下する場合がある。特に、加熱を伴う形成方法、例えば、塗布・乾燥によってガスバリア層を形成する場合、樹脂層が物理的又は化学的に影響を受けて、ガスバリア性などの特性が低下してしまう恐れがある。 The gas barrier layer contained in the gas barrier laminate can be formed by various methods such as an extrusion molding method and a coating method, but the gas barrier performance of the gas barrier laminate may deteriorate depending on the method of forming the gas barrier layer. In particular, when a gas barrier layer is formed by a forming method involving heating, for example, coating / drying, the resin layer may be physically or chemically affected, and properties such as gas barrier properties may be deteriorated.
 ケイ素含有高分子化合物を含む層を形成する方法や改質処理を施す方法としては、先に説明したものを採用することができる。
 また、改質処理を施す方法としては、工程2で得られた樹脂層上に、ケイ素含有高分子化合物を含む層が形成された長尺状のフィルムを、一定方向に搬送しながら、前記ケイ素含有高分子化合物を含む層に、改質処理を施してガスバリア性積層体を製造するのが好ましい。
 この製造方法によれば、例えば、長尺状のガスバリア性積層体を連続的に製造することができる。
As a method for forming a layer containing a silicon-containing polymer compound and a method for performing a modification treatment, the methods described above can be adopted.
Further, as a method of performing the modification treatment, the silicon is carried while transporting a long film in which a layer containing a silicon-containing polymer compound is formed on the resin layer obtained in step 2 in a certain direction. It is preferable that the layer containing the contained polymer compound is subjected to a modification treatment to produce a gas barrier laminate.
According to this manufacturing method, for example, a long gas barrier laminate can be continuously manufactured.
(工程4)
 工程3で得られたガスバリア層上に、保護フィルム(β)を貼付することにより、ガスバリア性積層体が得られる。この工程は、例えば、保護フィルム(β)の粘着剤層の形成面をガスバリア層に向けて配置し、気泡を取り込まないように順次押圧することで行われる。
(Step 4)
By attaching the protective film (β) on the gas barrier layer obtained in step 3, a gas barrier laminate can be obtained. This step is performed, for example, by arranging the forming surface of the pressure-sensitive adhesive layer of the protective film (β) toward the gas barrier layer and sequentially pressing the protective film (β) so as not to take in bubbles.
 このように、上記の工程1~4を有する製造方法は、剥離シート(α)を利用して硬化性樹脂層を形成するものであり、本発明の実施形態に係るガスバリア性積層体を効率よく、連続的に、かつ容易に製造することができる。 As described above, the manufacturing method having the above steps 1 to 4 forms a curable resin layer by using the release sheet (α), and efficiently obtains the gas barrier laminate according to the embodiment of the present invention. , Can be manufactured continuously and easily.
 次に、本発明の具体的な実施例を説明するが、本発明は、これらの例によってなんら限定されるものではない。後述する実施例及び比較例で作製したガスバリア性積層体及び光学用積層体における剥離力A1、B1、及び、粘着力A2、B2の測定、保護フィルム(β)を剥離したときの外観評価、及び、各ガスバリア性積層体に用いられるガスバリアフィルムの水蒸気透過率は、以下の手順で、測定・算出した。
[剥離力及び粘着力の測定]
 ガスバリア性積層体及び光学用積層体(いずれも幅50mm)の保護フィルム又は剥離シートを、剥離角度180°、剥離速度0.3m/min又は20m/minの条件で剥離し、その際の剥離力及び粘着力(mN/50mm)を測定した。試験環境は、いずれも23℃相対湿度50%であり、剥離速度0.3m/minでの引き剥がしには低速剥離試験機(株式会社エー・アンド・デイ製、製品名:テンシロン万能試験機RTG-1225)を用い、剥離速度20m/minでの引き剥がしには高速剥離引張試験機(テスター産業株式会社製、製品名:高速剥離試験機TE-701)を用いた。
 剥離力A1の測定に当たっては、ガスバリア性積層体については、図6(a)に示すように、ガスバリア層3に保護フィルム(β)を貼付する前のガスバリアフィルムの状態で、ガスバリア層3を両面粘着フィルム5によりガラス板30に接着したものを測定用サンプルとして準備した。光学用積層体については、保護フィルム(β)を貼付する前の樹脂層を両面粘着フィルムによりガラス板に接着したものを測定用サンプルとして準備した。そして、これらの測定用サンプルから、剥離シート(α)を剥離して剥離力A1を測定した。
 また、粘着力A2の測定に当たっては、ガスバリア性積層体については、実施例及び比較例のガスバリアフィルムの代わりに、図6(b)に示すように、厚さ50μmのポリエチレンテレフタレート(PET)フィルム基材40上に、実施例及び比較例と同様の手順でガスバリア層3を形成し、そのガスバリア層上に保護フィルム(β)を貼付し、上記の試験環境に24時間保管した。その後、PETフィルム基材40のガスバリア層3が設けられているのとは逆側の面を両面粘着フィルム5によりガラス板30に固定したものを測定用サンプルとして準備した。光学用積層体については、保護フィルム(β)を貼付する前の樹脂層を両面粘着フィルムによりガラス板に接着したものを測定用サンプルとして準備した。そして、これらの測定用サンプルから保護フィルム(β)を剥離することにより粘着力A2を測定した。測定値の算出は、JIS Z0237:2000に準拠し、2回の測定の平均値を各剥離力、粘着力とした。
 なお、実施例及び比較例で得た最終的なガスバリア性積層体及び光学用積層体について、剥離力A1を測定する場合は保護フィルム(β)を除去し、粘着力A2を測定する場合は剥離シート(α)を除去した上で、剥離する剥離シート(α)又は保護フィルム(β)と逆側の面をガラス板30に固定して測定しても、上記手順で測定した剥離力A1、粘着力A2と同じ値となる。
[外観評価]
 実施例及び比較例で作製したガスバリア性積層体の剥離シート1の露出した表面を、両面粘着フィルム5によりガラス板30に固定し、評価用サンプルとした。そして、保護フィルム4を、剥離速度0.3m/min又は20m/minの条件で剥離したときの、残りの積層体の外観を目視で観察した。外観に異常がなく樹脂層に浮きや剥がれも生じていない場合は「G」、樹脂層に浮き及び剥がれのうち少なくとも一方が発生した場合は「F」と評価した。実施例で作製した光学用積層体についても上記手順と同様にして外観評価を行った。
Next, specific examples of the present invention will be described, but the present invention is not limited to these examples. Measurement of peeling forces A1, B1 and adhesive strengths A2 and B2 in the gas barrier laminates and optical laminates produced in Examples and Comparative Examples described later, appearance evaluation when the protective film (β) is peeled off, and , The water vapor permeability of the gas barrier film used for each gas barrier laminate was measured and calculated by the following procedure.
[Measurement of peeling force and adhesive force]
The protective film or release sheet of the gas barrier laminate and the optical laminate (both 50 mm wide) is peeled under the conditions of a peel angle of 180 ° and a peel speed of 0.3 m / min or 20 m / min, and the peeling force at that time. And the adhesive strength (mN / 50 mm) was measured. The test environment is 23 ° C and 50% relative humidity, and a low-speed peeling tester (manufactured by A & D Co., Ltd., product name: Tensilon universal testing machine RTG) is used for peeling at a peeling speed of 0.3 m / min. -1225) was used, and a high-speed peeling tensile tester (manufactured by Tester Sangyo Co., Ltd., product name: high-speed peeling tester TE-701) was used for peeling at a peeling speed of 20 m / min.
In measuring the peeling force A1, for the gas barrier laminate, as shown in FIG. 6A, both sides of the gas barrier layer 3 are in the state of the gas barrier film before the protective film (β) is attached to the gas barrier layer 3. A sample adhered to the glass plate 30 with the adhesive film 5 was prepared as a measurement sample. As for the optical laminate, a resin layer before the protective film (β) was attached to the glass plate with a double-sided adhesive film was prepared as a measurement sample. Then, the release sheet (α) was peeled off from these measurement samples, and the release force A1 was measured.
In measuring the adhesive strength A2, the gas barrier laminate was a polyethylene terephthalate (PET) film group having a thickness of 50 μm, as shown in FIG. 6B, instead of the gas barrier films of Examples and Comparative Examples. A gas barrier layer 3 was formed on the material 40 in the same procedure as in Examples and Comparative Examples, a protective film (β) was attached onto the gas barrier layer, and the material was stored in the above test environment for 24 hours. After that, a sample in which the surface of the PET film base material 40 opposite to the one provided with the gas barrier layer 3 was fixed to the glass plate 30 with the double-sided adhesive film 5 was prepared as a measurement sample. As for the optical laminate, a resin layer before the protective film (β) was attached to the glass plate with a double-sided adhesive film was prepared as a measurement sample. Then, the adhesive strength A2 was measured by peeling the protective film (β) from these measurement samples. The calculation of the measured value was based on JIS Z0237: 2000, and the average value of the two measurements was taken as each peeling force and adhesive force.
Regarding the final gas barrier laminates and optical laminates obtained in Examples and Comparative Examples, the protective film (β) was removed when the peeling force A1 was measured, and the protective film (β) was removed when the adhesive force A2 was measured. Even if the surface opposite to the peeling sheet (α) or protective film (β) to be peeled off is fixed to the glass plate 30 after the sheet (α) is removed, the peeling force A1 measured in the above procedure, It has the same value as the adhesive strength A2.
[Appearance evaluation]
The exposed surface of the release sheet 1 of the gas barrier laminate produced in Examples and Comparative Examples was fixed to the glass plate 30 with the double-sided adhesive film 5 to prepare a sample for evaluation. Then, when the protective film 4 was peeled off under the condition of a peeling speed of 0.3 m / min or 20 m / min, the appearance of the remaining laminated body was visually observed. When there was no abnormality in the appearance and no floating or peeling occurred in the resin layer, it was evaluated as "G", and when at least one of the floating and peeling occurred in the resin layer, it was evaluated as "F". The appearance of the optical laminate produced in the examples was also evaluated in the same manner as in the above procedure.
<実施例1>
 (1)樹脂層の作製
 重合体成分として、ポリイミド樹脂(PI)のペレット(河村産業株式会社製、KPI-MX300F、Tg=354℃、重量平均分子量28万)100質量部を、メチルエチルケトンを含有する溶媒に溶解して、PIの15質量%溶液を調製した。次いで、この溶液に、硬化性化合物として、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製、A-DCP)122質量部、及び重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製、Omnirad TPO)5質量部を添加、混合して、硬化性組成物1を調製した。なお、本実施例及び他の実験例において使用した硬化性化合物および重合開始剤は溶媒を含まず、全て固形分100%の原料である。
 次に、剥離シート(α)としてポリエチレンテレフテレート(PET)フィルム(東洋紡株式会社製、コスモシャインPET100A4100、厚さ100μm)を用意し、易接着層面とは反対の面に、硬化性樹脂組成物をハンドコートにて塗布し、得られた塗膜を100℃で3分間加熱することで塗膜を乾燥させた。
 更に、この乾燥した塗膜上に、上記と同じ片面に易接着層を有するPETフィルム(東洋紡株式会社製、コスモシャインPET50A4100、厚さ50μm)を、易接着面とは反対の面が対向するように積層し、ベルトコンベア式紫外線照射装置(アイグラフィクス株式会社製、製品名:ECS-401GX)を使用し、高圧水銀ランプ(アイグラフィクス株式会社製、製品名:H04-L41)にて、紫外線ランプ高さ100mm、紫外線ランプ出力3kw、光線波長365nmの照度が150mW/cm、光量が400mJ/cm(株式会社オーク製作所製、紫外線光量計UV-351にて測定)となる条件で硬化反応を行い、厚さ5μmの樹脂層を形成した。
<Example 1>
(1) Preparation of Resin Layer As a polymer component, 100 parts by mass of a polyimide resin (PI) pellet (KPI-MX300F manufactured by Kawamura Sangyo Co., Ltd., Tg = 354 ° C., weight average molecular weight 280,000) contains methyl ethyl ketone. A 15% by weight solution of PI was prepared by dissolving in a solvent. Next, in this solution, 122 parts by mass of tricyclodecanedimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-DCP) as a curable compound, and bis (2,4,6-trimethyl) as a polymerization initiator. Benzoyl) -phenylphosphine oxide (Omnirad TPO, manufactured by BASF) was added and mixed in an amount of 5 parts to prepare a curable composition 1. The curable compound and the polymerization initiator used in this example and other experimental examples do not contain a solvent and are all raw materials having a solid content of 100%.
Next, a polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., Cosmoshine PET100A4100, thickness 100 μm) was prepared as a release sheet (α), and a curable resin composition was prepared on the surface opposite to the easy-adhesion layer surface. Was applied by hand coating, and the obtained coating film was heated at 100 ° C. for 3 minutes to dry the coating film.
Further, on this dried coating film, a PET film (manufactured by Toyo Boseki Co., Ltd., Cosmo Shine PET50A4100, thickness 50 μm) having the same easy-adhesive layer on one side as described above is placed so that the surface opposite to the easy-adhesive surface faces. Using a belt conveyor type ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., product name: ECS-401GX), and using a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name: H04-L41) The curing reaction was carried out under the conditions of a height of 100 mm, an ultraviolet lamp output of 3 kW, an illuminance of a light wavelength of 365 nm of 150 mW / cm 2 , and a light amount of 400 mJ / cm 2 (measured by an ultraviolet photometer UV-351 manufactured by ORC Manufacturing Co., Ltd.). A resin layer having a thickness of 5 μm was formed.
(2)ガスバリア層の積層
 次いで、後から塗膜に積層したPETフィルムを剥離して樹脂層を露出させ、樹脂層上にポリシラザン化合物(ペルヒドロポリシラザン(PHPS))を主成分とするコーティング剤(メルクパフォーマンスマテリアルズ株式会社製、アミアクカNL-110-20、溶媒:キシレン)をスピンコート法により塗布し、100℃で2分間加熱乾燥させることで、ペルヒドロポリシラザンを含む、厚さ200nmの高分子化合物層(ポリシラザン層)を形成した。
 次に、プラズマイオン注入装置(日本電子株式会社製、RF電源:「RF」56000;株式会社栗田製作所製、高電圧パルス電源:PV-3-HSHV-0835)を用いて、ガス流量100sccm、Duty比0.5%、印加DC電圧-6kV、周波数1000Hz、印加RF電力1000W、チャンバー内圧0.2Pa、DCパルス幅5μsec、処理時間200秒の条件で、アルゴンガス由来のイオンを高分子化合物層(ポリシラザン層)の表面に注入し、ガスバリア層を形成した。このように、樹脂層上にガスバリア層を積層することにより、剥離シート(α)上にガスバリアフィルムを作製した。同様の処理を繰り返し、ガスバリア層2層の、剥離シート付きガスバリアフィルムを得た。
(2) Lamination of Gas Barrier Layer Next, the PET film laminated on the coating film is peeled off to expose the resin layer, and a coating agent containing a polysilazane compound (perhydropolysilazane (PHPS)) as a main component on the resin layer () A 200 nm thick polymer containing perhydropolysilazane by applying Amiacca NL-110-20, solvent: xylene) manufactured by Merck Performance Materials Co., Ltd. by the spin coating method and heating and drying at 100 ° C. for 2 minutes. A compound layer (polysilazane layer) was formed.
Next, using a plasma ion injection device (manufactured by Nippon Denshi Co., Ltd., RF power supply: "RF"56000; manufactured by Kurita Seisakusho Co., Ltd., high voltage pulse power supply: PV-3-HSHV-0835), the gas flow rate is 100 sccm, Duty. Under the conditions of ratio 0.5%, applied DC voltage -6 kV, frequency 1000 Hz, applied RF power 1000 W, chamber internal pressure 0.2 Pa, DC pulse width 5 μsec, and processing time 200 seconds, ions derived from argon gas were added to the polymer compound layer ( It was injected into the surface of the polysilazane layer) to form a gas barrier layer. By laminating the gas barrier layer on the resin layer in this way, a gas barrier film was produced on the release sheet (α). The same treatment was repeated to obtain a gas barrier film with a release sheet having two gas barrier layers.
(3)保護フィルムの貼合
 得られたガスバリアフィルムのガスバリア層側に、保護フィルム(β-1)としてポリオレフィン系保護フィルム(株式会社サンエー化研製、サニテクトPAC-3-50THK、(低密度ポリエチレン基材、オレフィン系粘着剤、厚さ50μm))を貼付することで、ガスバリア性積層体を得た。
(3) Adhesion of protective film A polyolefin-based protective film (manufactured by Sanei Kaken Co., Ltd., Sanitect PAC-3-50THK) (low density polyethylene group) was used as a protective film (β-1) on the gas barrier layer side of the obtained gas barrier film. A gas barrier laminate was obtained by attaching a material, an olefin adhesive, and a thickness of 50 μm)).
<実施例2>
 実施例1において、保護フィルム(β-1)に代えて、エチレン-酢酸ビニル共重合体(EVA)系保護フィルム(株式会社サンエー化研製、サニテクトPAC-2-70(低密度ポリエチレン基材、EVA系粘着剤、厚さ70μm))を保護フィルム(β-2)として使用したこと以外は、実施例1と同様にしてガスバリア性積層体を得た。
<Example 2>
In Example 1, instead of the protective film (β-1), an ethylene-vinyl acetate copolymer (EVA) -based protective film (manufactured by Sanei Kaken Co., Ltd., Sanitect PAC-2-70 (low density polyethylene base material, EVA) A gas barrier laminate was obtained in the same manner as in Example 1 except that the adhesive (thickness 70 μm)) was used as the protective film (β-2).
<比較例1>
 アクリレート系樹脂(サイデン化学株式会社製、サイビノールLT-57)100質量部、及び、イソシアネート系架橋剤(サイデン化学株式会社製、コウカザイK-315)質量4部を混合し、粘着剤組成物(1)を得た。ポリエステル系フィルム(日新化成株式会社製、PET38-600E)上に、粘着剤組成物(1)を用いて、厚さが5μmの粘着剤層を形成し、保護フィルム(β-3)を作製した。そして、保護フィルム(β-1)に代えて保護フィルム(β-3)を用いたこと以外は、実施例1と同様の手順でガスバリア性積層体を作製した。
<Comparative example 1>
100 parts by mass of an acrylate resin (Cybinol LT-57 manufactured by Saiden Chemical Co., Ltd.) and 4 parts by mass of an isocyanate-based cross-linking agent (Kokazai K-315 manufactured by Saiden Chemical Co., Ltd.) are mixed to form an adhesive composition (1). ) Was obtained. A protective film (β-3) is prepared by forming an adhesive layer having a thickness of 5 μm on a polyester film (PET38-600E, manufactured by Nissin Kasei Co., Ltd.) using the adhesive composition (1). did. Then, a gas barrier laminate was produced in the same procedure as in Example 1 except that the protective film (β-3) was used instead of the protective film (β-1).
<比較例2>
 アクリレート系樹脂(サイデン化学株式会社製、サイビノールLT-55)100質量部、イソシアネート系架橋剤(サイデン化学株式会社製、コウカザイK-200)1.6質量部、及び、イソシアネート系架橋剤(サイデン化学株式会社製、コウカザイM-2)2質量部を混合し、粘着剤組成物(2)を得た。ポリエステル系フィルム(日新化成株式会社製、PET38-T100G)上に、粘着剤組成物(2)を用いて、厚さが5μmの粘着剤層を形成し、保護フィルム(β-4)を作製した。そして、保護フィルム(β-1)に代えて保護フィルム(β-4)を用いたこと以外は、実施例1と同様の手順でガスバリア性積層体を作製した。
<Comparative example 2>
100 parts by mass of acrylate resin (Cyvinol LT-55 manufactured by Saiden Chemical Co., Ltd.), 1.6 parts by mass of isocyanate-based cross-linking agent (Kokazai K-200 manufactured by Saiden Chemical Co., Ltd.), and isocyanate-based cross-linking agent (Saiden Chemical Co., Ltd.) 2 parts by mass of Koukazai M-2) manufactured by Koukazai Co., Ltd. was mixed to obtain a pressure-sensitive adhesive composition (2). A protective film (β-4) is prepared by forming an adhesive layer having a thickness of 5 μm on a polyester film (PET38-T100G manufactured by Nissin Kasei Co., Ltd.) using the adhesive composition (2). did. Then, a gas barrier laminate was produced in the same procedure as in Example 1 except that the protective film (β-4) was used instead of the protective film (β-1).
<実施例3>
 実施例1において、ガスバリア層の積層を行わず、樹脂層に直接保護フィルムを貼付した以外は、実施例1と同様の手順で光学用積層体を得た。
<Example 3>
In Example 1, an optical laminate was obtained in the same procedure as in Example 1 except that the gas barrier layer was not laminated and the protective film was directly attached to the resin layer.
<実施例4>
 実施例2において、ガスバリア層の積層を行わず、樹脂層に直接保護フィルムを貼付した以外は、実施例2と同様の手順で光学用積層体を得た。
<Example 4>
In Example 2, an optical laminate was obtained in the same procedure as in Example 2 except that the gas barrier layer was not laminated and the protective film was directly attached to the resin layer.
 各実施例及び比較例のガスバリア性積層体及び光学用積層体の測定結果を表1に示す。 Table 1 shows the measurement results of the gas barrier laminate and the optical laminate of each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から明らかなように、実施例1、2のガスバリア性積層体及び実施例3、4の光学用積層体は、いずれも剥離シート(α)を低速剥離条件で樹脂層から剥離する際の剥離力A1と、保護フィルム(β)を低速剥離条件で前記ガスバリア層から剥離する際の粘着力A2とが、A1>A2の関係にあり、保護フィルム(β)を剥離しても良好な外観を示していることが判る。なお、実施例1、2のガスバリア性積層体及び実施例3、4の光学用積層体は、高速剥離条件剥離シート(α)を低速剥離条件で樹脂層から剥離する際の剥離力B1と、保護フィルム(β)を低速剥離条件で前記ガスバリア層から剥離する際の粘着力B2とが、B2>B1の関係にあるが、実施例1、2のガスバリア性積層体及び実施例3、4の光学用積層体は、A1>A2の関係を満たしていることで剥離起点を容易に形成できる。したがって、高速剥離条件でも保護フィルム(β)の剥離を行うことができることが判る。 As is clear from the results in Table 1, the gas barrier laminates of Examples 1 and 2 and the optical laminates of Examples 3 and 4 both peel the release sheet (α) from the resin layer under low-speed release conditions. The peeling force A1 and the adhesive force A2 when peeling the protective film (β) from the gas barrier layer under low-speed peeling conditions have a relationship of A1> A2, and the protective film (β) may be peeled off. It can be seen that it shows a nice appearance. The gas barrier laminates of Examples 1 and 2 and the optical laminates of Examples 3 and 4 have a peeling force B1 when the high-speed peeling condition peeling sheet (α) is peeled from the resin layer under low-speed peeling conditions. The adhesive force B2 when the protective film (β) is peeled from the gas barrier layer under low-speed peeling conditions has a relationship of B2> B1, but the gas barrier laminates of Examples 1 and 2 and Examples 3 and 4 The peeling starting point can be easily formed in the optical laminate by satisfying the relationship of A1> A2. Therefore, it can be seen that the protective film (β) can be peeled even under high-speed peeling conditions.
 これに対して、比較例1、2のガスバリア性積層体は、剥離シート(α)と保護フィルム(β)とがA1<A2の関係にあるため、低速剥離条件において剥離起点を容易に形成することができず、結果として、保護フィルム(β)を剥離すると、剥離シート(α)上に形成されている樹脂層に浮きや剥がれが発生することが理解できる。 On the other hand, in the gas barrier laminates of Comparative Examples 1 and 2, since the release sheet (α) and the protective film (β) have an A1 <A2 relationship, the release starting point is easily formed under low speed release conditions. As a result, it can be understood that when the protective film (β) is peeled off, the resin layer formed on the peeling sheet (α) is lifted or peeled off.
 本発明の光学用積層体によれば、樹脂層と剥離シート(α)との界面に浮きや剥がれを生じることなく、保護フィルム(β)と樹脂層又は他の層との間に適切に剥離起点を形成できることから、剥離速度が低速から高速までの幅広い剥離条件において、良好に剥離を行うことができる。このため、有機EL素子や熱電変換素子等の各種電子デバイスを構成する素子用の部材に対して、様々な製造条件に対応し得る光学用積層体とすることができる。 According to the optical laminate of the present invention, the protective film (β) is appropriately peeled between the resin layer or another layer without causing floating or peeling at the interface between the resin layer and the release sheet (α). Since the starting point can be formed, peeling can be performed satisfactorily under a wide range of peeling conditions from low speed to high speed. Therefore, the members for elements constituting various electronic devices such as organic EL elements and thermoelectric conversion elements can be made into an optical laminate capable of corresponding to various manufacturing conditions.
1:剥離シート(α)
2:樹脂層
2a:硬化性樹脂層
3:ガスバリア層(他の層)
3a:硬化前のガスバリア層
4:保護フィルム(β)
5:接着剤層
10、10A、10B:ガスバリア性積層体(光学用積層体)
10A、10B:ロール状部分
10A、10B:引き出し部分
10a:ガスバリアフィルム
11:芯材
20:被着体
30:ガラス板
40:PETフィルム基材
1: Release sheet (α)
2: Resin layer 2a: Curable resin layer 3: Gas barrier layer (other layers)
3a: Gas barrier layer before curing 4: Protective film (β)
5: Adhesive layers 10, 10A, 10B: Gas barrier laminate (optical laminate)
10A 1 , 10B 1 : Roll-shaped part 10A 2 , 10B 2 : Drawer part 10a: Gas barrier film 11: Core material 20: Adhesive body 30: Glass plate 40: PET film base material

Claims (9)

  1.  剥離シート(α)、一方の最表面に位置する樹脂層を含む光学用フィルム、及び、保護フィルム(β)を含み、前記樹脂層に剥離シート(α)が直接積層され、前記樹脂層に光学用フィルムの他方の最表面側から保護フィルム(β)が直接又は他の層を介して積層され、
     前記樹脂層は、硬化性化合物を含む硬化性組成物の硬化物であり、
     剥離シート(α)を0.3m/minの低速剥離条件で前記樹脂層から剥離する際の剥離力A1と、保護フィルム(β)を0.3m/minの低速剥離条件で前記樹脂層又は前記他の層から剥離する際の粘着力A2とが、A1>A2の関係にある、光学用積層体。
    An optical film containing a release sheet (α), a resin layer located on one of the outermost surfaces, and a protective film (β) are included, and the release sheet (α) is directly laminated on the resin layer, and optical is applied to the resin layer. A protective film (β) is laminated directly or via another layer from the other outermost surface side of the film.
    The resin layer is a cured product of a curable composition containing a curable compound.
    The peeling force A1 when the release sheet (α) is peeled from the resin layer under the low speed peeling condition of 0.3 m / min, and the protective film (β) is the resin layer or the said under the low speed peeling condition of 0.3 m / min. An optical laminate in which the adhesive force A2 when peeling from another layer has a relationship of A1> A2.
  2.  前記剥離力A1が、500mN/50mm以下である、請求項1に記載の光学用積層体。 The optical laminate according to claim 1, wherein the peeling force A1 is 500 mN / 50 mm or less.
  3.  保護フィルム(β)は粘着剤層を有しており、該粘着剤層によって前記樹脂層又は前記他の層に対して剥離可能に付着している、請求項1又は2に記載の光学用積層体。 The optical laminate according to claim 1 or 2, wherein the protective film (β) has an adhesive layer and is detachably adhered to the resin layer or the other layer by the adhesive layer. body.
  4.  前記粘着剤層が、ポリオレフィン系重合体及びポリオレフィン系共重合体のうち少なくとも一方を含む、請求項3に記載の光学用積層体。 The optical laminate according to claim 3, wherein the pressure-sensitive adhesive layer contains at least one of a polyolefin-based polymer and a polyolefin-based copolymer.
  5.  前記樹脂層は、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物の硬化物である請求項1~4のいずれか1項に記載の光学用積層体。 The optical laminate according to any one of claims 1 to 4, wherein the resin layer is a cured product of a curable resin composition containing a polymer component (A) and a curable monomer (B). ..
  6.  重合体成分(A)は、ガラス転移温度(Tg)が250℃以上である請求項5に記載の光学用積層体。 The optical laminate according to claim 5, wherein the polymer component (A) has a glass transition temperature (Tg) of 250 ° C. or higher.
  7.  前記光学用フィルムが、前記他の層として、前記樹脂層が位置する最表面とは逆側の最表面に位置する機能層を含み、前記機能層が無機膜又は高分子化合物を含む層に改質処理を施して得られる層であり、前記機能層に保護フィルム(β)が直接積層されている、請求項1~6のいずれか1項に記載の光学用積層体。 The optical film includes, as the other layer, a functional layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the functional layer is changed to a layer containing an inorganic film or a polymer compound. The optical laminate according to any one of claims 1 to 6, which is a layer obtained by performing a quality treatment and in which a protective film (β) is directly laminated on the functional layer.
  8.  前記光学用フィルムが、前記他の層として、前記樹脂層が位置する最表面とは逆側の最表面に位置するガスバリア層を含み、前記ガスバリア層に保護フィルム(β)が直接積層される、請求項1~6のいずれか1項に記載の光学用積層体。 The optical film includes, as the other layer, a gas barrier layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the protective film (β) is directly laminated on the gas barrier layer. The optical laminate according to any one of claims 1 to 6.
  9.  前記光学用フィルムが、前記他の層として、前記樹脂層が位置する最表面とは逆側の最表面に位置する導電層を含み、前記導電層に保護フィルム(β)が直接積層される、請求項1~6のいずれか1項に記載の光学用積層体。 The optical film includes, as the other layer, a conductive layer located on the outermost surface opposite to the outermost surface on which the resin layer is located, and the protective film (β) is directly laminated on the conductive layer. The optical laminate according to any one of claims 1 to 6.
PCT/JP2020/047235 2019-12-26 2020-12-17 Optical layered body WO2021132030A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227021296A KR20220121237A (en) 2019-12-26 2020-12-17 Optical laminate
JP2021567371A JPWO2021132030A1 (en) 2019-12-26 2020-12-17
CN202080089747.2A CN114845873A (en) 2019-12-26 2020-12-17 Optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237324 2019-12-26
JP2019-237324 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132030A1 true WO2021132030A1 (en) 2021-07-01

Family

ID=76574486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047235 WO2021132030A1 (en) 2019-12-26 2020-12-17 Optical layered body

Country Status (5)

Country Link
JP (1) JPWO2021132030A1 (en)
KR (1) KR20220121237A (en)
CN (1) CN114845873A (en)
TW (1) TW202132105A (en)
WO (1) WO2021132030A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010599A1 (en) * 2009-07-22 2011-01-27 日立化成工業株式会社 Photocurable resin composition and cured product of same; resin sheet and production method for same; and display device
JP2017043058A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Production method of gas barrier film and transfer method of gas barrier film
WO2018016346A1 (en) * 2016-07-20 2018-01-25 東レフィルム加工株式会社 Film for transfer of gas barrier multilayer film and organic el device
WO2018181004A1 (en) * 2017-03-28 2018-10-04 リンテック株式会社 Gas barrier laminate
JP2019048426A (en) * 2017-09-11 2019-03-28 大日本印刷株式会社 Transfer sheet and method of manufacturing decorative sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092531B1 (en) 2011-08-03 2020-03-24 린텍 가부시키가이샤 Gas barrier adhesive sheet, method for producing same, electronic member, and optical member
WO2013065812A1 (en) * 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
KR102641791B1 (en) * 2015-08-24 2024-03-04 닛토덴코 가부시키가이샤 Optical member with surface protection film
JPWO2018179458A1 (en) * 2017-03-30 2020-02-06 リンテック株式会社 Gas barrier laminate and sealed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010599A1 (en) * 2009-07-22 2011-01-27 日立化成工業株式会社 Photocurable resin composition and cured product of same; resin sheet and production method for same; and display device
JP2017043058A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Production method of gas barrier film and transfer method of gas barrier film
WO2018016346A1 (en) * 2016-07-20 2018-01-25 東レフィルム加工株式会社 Film for transfer of gas barrier multilayer film and organic el device
WO2018181004A1 (en) * 2017-03-28 2018-10-04 リンテック株式会社 Gas barrier laminate
JP2019048426A (en) * 2017-09-11 2019-03-28 大日本印刷株式会社 Transfer sheet and method of manufacturing decorative sheet

Also Published As

Publication number Publication date
CN114845873A (en) 2022-08-02
KR20220121237A (en) 2022-08-31
TW202132105A (en) 2021-09-01
JPWO2021132030A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
EP2774755B1 (en) Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
EP2832539B1 (en) Gas barrier film laminate, member for electronic device, and electronic device
EP2823961B1 (en) Gas barrier film laminate, adhesive film, and electronic component
EP3904079A1 (en) Gas barrier laminate
KR20160138447A (en) Elongated gas barrier laminate and method for producing same
JP6485455B2 (en) Gas barrier film and method for producing gas barrier film
JP7398394B2 (en) Gas barrier laminate
TW201801918A (en) Long gas barrier laminate
JPWO2015119109A1 (en) Method for producing gas barrier film and gas barrier film
WO2021132030A1 (en) Optical layered body
US9556513B2 (en) Molding, production method therefor, part for electronic devices and electronic device
WO2013175910A1 (en) Gas barrier layered product, and production method for gas barrier layered product
WO2022196636A1 (en) Gas barrier film and manufacturing method for gas barrier film
JP2020121408A (en) Gas barrier film, and method for producing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907622

Country of ref document: EP

Kind code of ref document: A1