WO2018016346A1 - Film for transfer of gas barrier multilayer film and organic el device - Google Patents

Film for transfer of gas barrier multilayer film and organic el device Download PDF

Info

Publication number
WO2018016346A1
WO2018016346A1 PCT/JP2017/024900 JP2017024900W WO2018016346A1 WO 2018016346 A1 WO2018016346 A1 WO 2018016346A1 JP 2017024900 W JP2017024900 W JP 2017024900W WO 2018016346 A1 WO2018016346 A1 WO 2018016346A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
layer
transfer
release
Prior art date
Application number
PCT/JP2017/024900
Other languages
French (fr)
Japanese (ja)
Inventor
佐竹光
田中正太郎
吉岡忠司
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to JP2017539389A priority Critical patent/JPWO2018016346A1/en
Publication of WO2018016346A1 publication Critical patent/WO2018016346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Definitions

  • the present invention is a transfer for transferring and depositing a gas barrier laminate film on a transfer member that requires gas barrier properties, for example, an electronic member such as an organic EL element, an organic EL device, a liquid crystal display element, and a solar cell element. It is related with film.
  • a gas barrier film in which a gas barrier layer is laminated on a base film made of a plastic film such as a polyethylene terephthalate film is generally known.
  • a gas barrier layer vapor deposition films of inorganic oxides such as aluminum oxide, silicon oxide, and magnesium oxide are generally known.
  • a gas barrier laminate film transfer film is proposed in which a gas barrier laminate film (meaning a gas barrier layer and a protective layer or a hard coat layer provided as necessary) is laminated on a release film (patent) References 1-3).
  • the transfer film of the gas barrier laminate film described above has a stable gas barrier property as compared with a general gas barrier film (meaning that a gas barrier layer is laminated on a base film). It turns out that there is a problem that it is difficult to obtain. Such a problem appears remarkably when the gas barrier property is good (for example, when the water vapor transmission rate is less than 0.1 g / m 2 / day, and further less than 0.01 g / m 2 / day).
  • an object of the present invention is to provide a transfer film of a gas barrier laminate film that can obtain a good gas barrier property in view of the above-mentioned problems.
  • a gas barrier laminate film including an undercoat layer and a gas barrier layer in this order on the release film, and the peel force between the release film and the undercoat layer is in the range of 15 to 700 mN / 18 mm.
  • a film for transferring a gas barrier laminate film which is characterized.
  • the Zn atom concentration is 10 to 40 atom%
  • the Si atom concentration is 5 to 20 atom%
  • the Al atom concentration is 0.5 to 5 atom%
  • the O atom concentration is 35 to 70 atom%.
  • the sealing resin layer has, as a sealing resin, polyisobutylene, butyl rubber, polyisoprene, styrene-isobutylene modified resin, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene.
  • the transfer film for a gas barrier laminate film of the present invention is suitable for transferring and depositing a gas barrier laminate film on an organic EL element of an organic EL device in which an organic EL element is disposed on a substrate. That is, the organic EL device to which the gas barrier laminate film of the gas barrier laminate film of the present invention is applied has good gas barrier properties.
  • a gas barrier laminate film transfer film having a high degree of flexibility that can withstand bending and bending. Therefore, a preferable embodiment of the transfer film of the gas barrier laminate film of the present invention is suitable for an organic EL element or an organic EL device having a high degree of flexibility.
  • the transfer film for a gas barrier laminate film of the present invention has a gas barrier laminate film including an undercoat layer and a gas barrier layer in this order on a release film.
  • the transfer film of the gas barrier laminate film of the present invention may be simply abbreviated as “transfer film”.
  • the gas barrier laminate film is peeled off from the release film, and a transferred member requiring gas barrier properties, such as an organic EL element, an organic EL device, a liquid crystal display element, and a solar cell element.
  • a transferred member requiring gas barrier properties such as an organic EL element, an organic EL device, a liquid crystal display element, and a solar cell element.
  • a gas barrier laminate film is transferred and deposited on an electronic member such as a polarizing plate, a retardation plate, and an optical film such as a transparent conductive film. Peeling of the release film and the gas barrier laminate film is performed between the release film and the undercoat layer.
  • the peeling force between the release film and the undercoat layer constituting the gas barrier laminate film affects the gas barrier properties of the gas barrier laminate film, and has led to the present invention. That is, it has been found that the gas barrier property is stabilized at a high level by controlling the peeling force between the release film and the undercoat layer in the range of 15 to 700 mN / 18 mm.
  • the release film This high level of gas barrier property can be stably obtained by controlling the peeling force between the undercoat layer and the undercoat layer in the range of 15 to 700 mN / 18 mm.
  • the peeling force between the release film and the undercoat layer is less than 15 mN / 18 mm and the adhesion force between the release film and the undercoat layer is reduced, the undercoat layer applied and laminated on the release film It is estimated that the uniformity is deteriorated and the gas barrier layer formed on the gas barrier layer is not even, and as a result, the gas barrier property is lowered.
  • the adhesive force between the release film and the undercoat layer is reduced, the release film and the undercoat can be used in a high temperature atmosphere (about 100 to 200 ° C.) when the gas barrier layer is formed on the undercoat layer. It is presumed that the undercoat layer is distorted due to the difference in thermal shrinkage with the layer, and the gas barrier properties are lowered due to the distortion.
  • the peeling force between the release film and the undercoat layer is greater than 700 mN / 18 mm, the gas barrier laminate film cannot be smoothly peeled from the release film, and cracks and the like are generated in the gas barrier layer. It is thought that the nature is lowered.
  • the peeling force between the release film and the undercoat layer is preferably 20 mN / 18 mm or more, more preferably 30 mN / 18 mm or more, and particularly preferably 40 mN / 18 mm or more.
  • the peeling force is preferably 600 mN / 18 mm or less, more preferably 400 mN / 18 mm or less, and particularly preferably 250 mN / 18 mm or less.
  • release film The kind of release film used in the present invention is not particularly limited, and can be appropriately selected from known or commercially available release films. That is, the release film can be appropriately selected and used so that the peeling force between the release film and the undercoat layer is in the range of 15 to 700 mN / 18 mm.
  • a release film for example, a release film having a release property such as a polyolefin resin film, a fluororesin film, a silicone resin film, or a base film such as a polyester film is laminated with a release layer.
  • a release film having a release property such as a polyolefin resin film, a fluororesin film, a silicone resin film, or a base film such as a polyester film is laminated with a release layer.
  • Examples include release films.
  • the release film is a release film having a release layer on the base film.
  • a mold film is preferably used.
  • the release film is peeled between the release layer and the undercoat layer.
  • a release film preferably used in the present invention that is, a release film having a release layer on a base film will be described in detail.
  • the material constituting the base film is not particularly limited, but for example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefin resins such as polypropylene and polyethylene, cellulose resins such as diacetyl cellulose and triacetyl cellulose, polysulfone resins, Various resins such as polyether ether ketone resin, polyether sulfone resin, polyphenylene sulfide resin, polyether imide resin, polyimide resin, polyamide resin, and acrylic resin can be used. Among these, from the viewpoint of ease of processing, durability, heat resistance, cost, and the like, a polyester resin is preferable, and a polyethylene terephthalate resin is more preferable.
  • the base film may be an unstretched film, but is preferably a uniaxially stretched or biaxially stretched film.
  • the thickness of the base film is generally in the range of 10 to 100 ⁇ m, preferably in the range of 15 to 75 ⁇ m, particularly preferably in the range of 20 to 50 ⁇ m.
  • Examples of the release agent constituting the release layer include silicone resins, modified silicone resins, long chain alkyl group-containing resins, fluororesins, polyolefin resins, alkyd resins, melamine resins, rubber elastomers, and the like.
  • a mold release agent can be used individually or in combination.
  • a silicone resin, a modified silicone resin, and a long-chain alkyl group-containing resin are preferable from the viewpoint of controlling the peeling force between the release film and the undercoat layer in the range of 15 to 700 mN / 18 mm.
  • the silicone resin is preferably a curable silicone resin, and examples of the curable silicone resin include a condensation reaction type, an addition reaction type, an ultraviolet ray or an electron beam curable type, and the like.
  • curable silicone resin examples include the following.
  • peeling force can be adjusted by using together with said silicone resin a peeling force regulator (it is also called a heavy peeling agent or a peeling control agent).
  • the peel strength adjusting agent include (1) a silica structure having SiO 2 units, (2) a resin structure having SiO 2 units and (CH 3 ) 3 SiO 1/2 units, and (3) SiO 2 units. And those having a resin structure having CH 2 ⁇ CH (CH 3 ) 2 SiO 1/2 units.
  • Commercially available products of such a peel strength adjusting agent include, for example, KS-3800, X-92-183 of Shin-Etsu Chemical Co., Ltd., SDY7292, BY24-843, BY24-4980 of Toray Dow Corning Co., Ltd. Can be mentioned.
  • the addition amount of the peeling force adjusting agent is preferably in the range of 1 to 150 parts by weight, more preferably in the range of 5 to 100 parts by weight, and particularly preferably in the range of 10 to 75 parts by weight with respect to 100 parts by weight of the silicone resin.
  • a catalyst for curing the silicone resin in the release layer it is preferable to add a catalyst for curing the silicone resin in the release layer.
  • a platinum-based catalyst is preferable.
  • the addition amount of the catalyst is preferably in the range of 0.3 to 15 parts by mass, more preferably in the range of 1 to 12 parts by mass with respect to 100 parts by mass of the silicone resin.
  • modified silicone resin examples include modified silicone resins obtained by graft polymerization with organic resins such as polyester resins, acrylic resins, urethane resins, epoxy resins, and alkyd resins.
  • modified silicone resin examples include X-62-9027 and X-62-900B manufactured by Shin-Etsu Chemical Co., Ltd., SR2114 and SR2107 manufactured by Toray Dow Corning Co., Ltd., Toshiba Silicone Co., Ltd. TSR180 (above alkyd-modified silicone resin), TSR187 (polyester-modified silicone resin) manufactured by Toshiba Silicone Co., Ltd., TSR171 (acryl-modified silicone resin) manufactured by Toshiba Silicone Co., Ltd., and the like.
  • an acid catalyst In order to accelerate the curing of the modified silicone resin, it is preferable to add an acid catalyst.
  • the acid catalyst include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid and the like. Of these, p-toluenesulfonic acid is preferably used.
  • the addition amount of the acid catalyst is suitably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the modified silicone resin.
  • the long chain alkyl group-containing resin refers to a resin having a linear or branched alkyl group having 8 or more carbon atoms.
  • the long chain alkyl group-containing polyvinyl resin, the long chain alkyl group-containing acrylic resin examples include a chain alkyl group-containing polyester resin, a long chain alkyl group-containing ether compound, a long chain alkyl group-containing amine compound, and a long chain alkyl group-containing alkyd resin.
  • the carbon number of the long chain alkyl group is preferably 8 or more, more preferably 10 or more, and particularly preferably 12 or more.
  • the upper limit of carbon number is preferably 30 or less, more preferably 28 or less, and particularly preferably 25 or less.
  • resins can be used for the long chain alkyl group-containing resin.
  • crosslinking agent When using a long-chain alkyl group-containing resin as a release agent, it is preferable to use a crosslinking agent in combination.
  • crosslinking agents include epoxy crosslinking agents, isocyanate crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, melamine crosslinking agents, and the like.
  • a melamine type crosslinking agent is preferably used.
  • the melamine-based crosslinking agent has various modifications on the amino group of so-called melamine [1,3,5-triazine-2,4,6-triamine] in which an amino group is bonded to each of three carbon atoms of the triazine ring. It is a generic name for compounds and includes those in which a plurality of triazine rings are condensed. As the type of modification, one in which at least one hydrogen atom of three amino groups is alkylated or methylolated is preferably used. In particular, a methylolated melamine compound in which at least one amino group is methylol-substituted is preferably used.
  • an acid catalyst in order to accelerate the curing of the long-chain alkyl group-containing resin and the crosslinking agent.
  • the acid catalyst include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid and the like. Of these, p-toluenesulfonic acid is preferably used.
  • the addition amount of the acid catalyst is suitably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the long-chain alkyl group-containing resin.
  • the thickness of the release layer is generally in the range of 10 to 1000 nm, preferably in the range of 20 to 500 nm, particularly preferably in the range of 50 to 200 nm.
  • the release layer is preferably formed on the base film by applying it by wet coating, drying, and heat-curing.
  • wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, a spin coating method, and an extrusion coating method.
  • heat curing conditions it is preferable to heat at 80 to 200 ° C., preferably 100 to 180 ° C. for 10 to 200 seconds.
  • the release layer can be coated in-line in the base film forming process.
  • a release layer is applied and further stretched (totally biaxially stretched).
  • an anchor layer can be provided between the base film and the release layer in order to improve adhesion, prevent oligomer precipitation, or provide antistatic properties.
  • an oligomer precipitation preventing layer or an antistatic layer can be provided on the opposite surface of the base film from the release layer.
  • the gas barrier laminated film according to the present invention includes an undercoat layer and a gas barrier layer. Furthermore, the gas barrier laminate film according to the present invention can include layers other than the undercoat layer and the gas barrier layer, for example, functional layers such as a sealing resin layer and a protective layer. Specifically, a configuration including an undercoat layer, a gas barrier layer, and a sealing resin layer in this order, a configuration including an undercoat layer, a gas barrier layer, and a protective layer in this order, an undercoat layer, a gas barrier layer, a protective layer, and a sealing resin A configuration including layers in this order can be employed.
  • the water vapor permeability of the gas barrier laminate film according to the present invention is preferably less than 0.1 g / m 2 / day, more preferably less than 0.01 g / m 2 / day, and 0.001 g / m. Particularly preferred is less than 2 / day.
  • the lower limit water vapor transmission rate is not particularly limited, but is practically about 1 ⁇ 10 ⁇ 6 g / m 2 / day.
  • the undercoat layer is preferably a resin layer, and more preferably a cured resin layer.
  • the curable resin layer is preferably a thermosetting resin layer or an active energy ray curable resin layer, and more preferably an active energy ray curable resin layer. Since the active energy ray curable resin layer has a relatively high hardness, the gas barrier property of the gas barrier layer laminated thereon is good.
  • the undercoat layer may be a single layer or a laminated structure of 2 to 4 layers. In the case of the above laminated structure, at least one layer is preferably a cured resin layer.
  • the undercoat layer is particularly preferably a single layer of a cured resin layer from the viewpoints of productivity, gas barrier properties, and peelability.
  • the thermosetting resin layer is a cured resin layer cured by heating at least a film containing the thermosetting resin.
  • thermosetting resins include acrylic resins, polyvinyl resins, polyester resins, polyether resins, polyurethane resins, polycarbonate resins, polystyrene resins, polyolefin resins, fluorine resins, polyimide resins, and the like. .
  • a polyurethane resin is preferably used.
  • the thermosetting resin layer also contains a crosslinking agent (for example, a melamine crosslinking agent, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, an isocyanate crosslinking agent, an aziridine crosslinking agent, or an epoxy crosslinking agent) that crosslinks the resin. can do.
  • a crosslinking agent for example, a melamine crosslinking agent, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, an isocyanate crosslinking agent, an aziridine crosslinking agent, or an epoxy crosslinking agent
  • the undercoat layer in the present invention is preferably an active energy ray curable resin layer.
  • an undercoat layer is an active energy ray hardening resin layer.
  • the active energy ray-curable resin layer is a cured resin layer that is cured by irradiating the coating film containing at least the active energy ray-curable resin with ultraviolet rays or an electron beam.
  • the active energy ray-curable resin means a resin that is polymerized and cured by active energy rays.
  • Examples of the active energy ray-curable resin include compounds (monomers and oligomers) having at least one ethylenically unsaturated group in the molecule.
  • examples of the ethylenically unsaturated group include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, an allyl group, and a vinyl group.
  • examples of such compounds include urethane compounds, acrylic compounds, epoxy compounds, polyether compounds, silicone compounds, and the like. Among these, urethane compounds are preferable.
  • urethane compound urethane (meth) acrylate or urethane (meth) acrylate oligomer is preferably used.
  • ... (Meth) acrylate includes two compounds “... acrylate” and “... methacrylate”.
  • urethane compounds include the following compounds.
  • polyisocyanate examples include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, and aromatics such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate
  • aromatics such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • Aliphatic diisocyanates having a ring methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, etc., cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, isopropylidene diisocyanate B alicyclic diisocyanates such as hexyl diisocyanate.
  • a composition containing a urethane compound (urethane (meth) acrylate or urethane (meth) acrylate oligomer) or a urethane compound is commercially available and can be used.
  • a urethane compound urethane (meth) acrylate or urethane (meth) acrylate oligomer
  • a urethane compound urethane (meth) acrylate or urethane (meth) acrylate oligomer
  • a urethane compound urethane (meth) acrylate or urethane (meth) acrylate oligomer
  • a urethane compound urethane (meth) acrylate or urethane (meth) acrylate oligomer
  • a urethane compound for example, AT-600, UA-101l, UA-306H, UA-306T, UA-306l, UF-8001, UF-8003 etc. manufactured
  • the number of functional groups (ethylenically unsaturated groups) in one molecule is 5 or less is preferable, 4 or less is more preferable, and 3 or less is particularly preferable.
  • the number of functional groups is preferably 1 or more, and more preferably 2 or more.
  • the active energy ray-curable resin layer can further contain a compound other than the urethane compound (compound having 2 to 8 ethylenically unsaturated groups (monomer)) in addition to the urethane compound.
  • a compound other than the urethane compound compound having 2 to 8 ethylenically unsaturated groups (monomer)
  • the content of the compound (monomer) other than the urethane compound is preferably in the range of 1 to 100 parts by mass, preferably in the range of 3 to 50 parts by mass, with respect to 100 parts by mass of the urethane compound. Is particularly preferred.
  • Examples of compounds (monomers) other than urethane compounds include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and neopentyl glycol di (meth) acrylate.
  • 1,6-hexanediol di (meth) acrylate diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (Meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dito Methylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate,
  • the active energy ray-curable resin layer preferably further contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl- ⁇ -hydroxyisobutylphenone, ⁇ -hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram mono
  • photopolymerization initiators are generally commercially available and can be used.
  • the content of the photopolymerization initiator is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 8% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable resin layer. .
  • Examples of active energy rays for curing the active energy ray-curable resin layer include ultraviolet rays, visible rays, infrared rays, electron beams, rays, ⁇ rays, ⁇ rays, and the like. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are particularly preferably used.
  • an ultraviolet fluorescent lamp for example, an ultraviolet fluorescent lamp, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp etc.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be preferably used.
  • it is preferable to perform irradiation in an atmosphere having a low oxygen concentration for example, an atmosphere having an oxygen concentration of 500 ppm or less because it can be cured efficiently.
  • Irradiation light amount of the ultraviolet rays is preferably from 50 mJ / cm 2 or more, 100 mJ / cm 2 or more, and particularly 150 mJ / cm 2 or more.
  • the irradiation light amount is preferably 2000 mJ / cm 2 or less, and more preferably 1000 mJ / cm 2 or less.
  • the undercoat layer is preferably applied on the release film by a wet coating method.
  • the wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, a spin coating method, and an extrusion coating method.
  • the thickness of the undercoat layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more from the viewpoint of maintaining the peelability when the gas barrier laminate film is peeled from the release film and the strength of the gas barrier laminate film after peeling. It is preferably 2 ⁇ m or more. If the thickness of the undercoat layer becomes too thick, the peelability may deteriorate. Therefore, the thickness of the undercoat layer is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less.
  • the surface of the undercoat layer is preferably smooth.
  • the surface of the undercoat layer is preferably smooth.
  • the surface smoothness of the undercoat layer can be represented by, for example, the surface roughness (Ra) measured with an atomic force microscope.
  • the surface roughness (Ra) measured with an atomic force microscope on the surface of the undercoat layer, that is, the gas barrier layer side of the undercoat layer is preferably less than 2.0 nm, more preferably 1.5 nm or less. 0 nm or less is particularly preferable.
  • the lower limit is not particularly limited, but is about 0.1 nm.
  • the peeling force between the release film and the undercoat layer is less than 15 mN / 18 mm, the applicability of the undercoat layer to the release film is lowered, and the surface smoothness of the undercoat layer is lowered. There is. Therefore, also from the above viewpoint, the peeling force between the release film and the undercoat layer needs to be 15 mN / 18 mm or more, preferably 20 mN / 18 mm or more, more preferably 30 mN / 18 mm or more, and particularly preferably 40 mN / 18 mm or more. .
  • the undercoat layer in the present invention may be a layer having various functions.
  • a hard coat layer, an antireflection layer, a retardation layer, an adhesion reinforcing layer, a smoothing layer and the like can be mentioned.
  • the undercoat layer is particularly preferably a hard coat layer.
  • the function as a hard-coat layer can be provided by making an undercoat layer into the above-mentioned thermosetting resin layer or active energy ray hardening resin layer.
  • the gas barrier layer can be laminated using a known material.
  • the gas barrier layer may be a single film or a laminated structure of a plurality of films.
  • the gas barrier layer for example, (I) oxides, nitrides, sulfides or mixtures of elements such as Si, Zn, Al, Ti, Zr, Sn, In, Nb, Mo, Ta, etc. (Ii) an organosilicon compound, (Iii) gas barrier resin, (Iv) a polymer compound in which ions are implanted, Etc.
  • oxides are preferable, and among oxides, oxides of Si, Zn, and Al are preferable, and it is preferable to contain at least zinc oxide or zinc sulfide.
  • the film quality can be formed amorphous and dense, and excellent gas barrier properties can be obtained.
  • the gas barrier layer preferably contains zinc oxide and silicon oxide because excellent gas barrier properties can be stably obtained and the color tone is almost achromatic.
  • gas barrier layers containing zinc oxide and silicon oxide (a) a layer containing zinc oxide, silicon dioxide and aluminum oxide is preferably used. In this gas barrier layer, it is preferable that zinc oxide, silicon dioxide and aluminum oxide coexist in one gas barrier layer.
  • the Zn atom concentration measured by X-ray photoelectron spectroscopy (XPS method) is 10 to 40 atom%
  • the Si atom concentration is 5 to 20 atom%
  • the Al atom concentration is 0.5 to 5 atom%
  • the O atom concentration is preferably 35 to 70 atom%.
  • the oxide that suppresses the crystal growth of zinc oxide is insufficient, so that voids and defects increase, and sufficient gas barrier properties are obtained. It may not be obtained.
  • the Zn atom concentration is lower than 10 atom% or the Si atom concentration is higher than 20 atom%, the amorphous component of silicon dioxide inside the gas barrier layer may increase and the flexibility of the layer may be lowered.
  • the affinity between zinc oxide and silicon dioxide becomes excessively high, so that the hardness of the film increases, and cracks are likely to occur due to heat and external stress.
  • the Al atom concentration is less than 0.5 atom%, the affinity between zinc oxide and silicon dioxide becomes insufficient, and the bonding force between the particles forming the layer cannot be improved, so the flexibility may decrease.
  • the O atom concentration is higher than 70 atom%, the amount of defects in the gas barrier layer increases, so that high gas barrier properties may not be obtained.
  • the O atom concentration is less than 35 atom%, the oxidation state of zinc, silicon, and aluminum becomes insufficient, crystal growth cannot be suppressed, and the particle diameter becomes large, so that the gas barrier property may be deteriorated.
  • the Zn atom concentration is 20 to 35 atom%
  • the Si atom concentration is 10 to 15 atom%
  • the Al atom concentration is 1 to 3 atom%
  • the O atom concentration is 50 to 64 atom%.
  • the above composition is formed with the same composition as the mixed sintered material used when forming the gas barrier layer, it can be adjusted by using a mixed sintered material having a composition that matches the composition of the target gas barrier layer. it can.
  • the method for forming the gas barrier layer is not particularly limited, and can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like using a mixed sintered material of zinc oxide, silicon dioxide, and aluminum oxide. .
  • a vacuum deposition method a sputtering method, an ion plating method, or the like using a mixed sintered material of zinc oxide, silicon dioxide, and aluminum oxide.
  • a single material of zinc oxide, silicon dioxide, and aluminum oxide form a film of zinc oxide, silicon dioxide, and aluminum oxide simultaneously from separate vapor deposition sources or sputter electrodes, and mix them to the desired composition.
  • a sputtering method using a mixed sintered material is more preferable from the viewpoint of composition reproducibility of the gas barrier layer.
  • silicon-containing organic compounds include silane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane, triethylsilane, tetraethylsilane, propoxysilane, dipropoxysilane, tripropoxysilane, tetrapropoxysilane, dimethyl Disiloxane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetramethyldisiloxane, hexamethyldisiloxane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, deca Methylcyclopentasi
  • An inorganic film such as a silicon oxide film, a silicon oxynitride film, or a silicon nitride film can be formed by forming a film by the plasma CVD method using the organosilicon compound as a raw material.
  • organosilicon compound by a known wet coating method (coating method using a slit die coater, gravure coater, etc.), irradiation with vacuum ultraviolet rays (excimer light) results in a silicon oxide film or a silicon oxynitride film.
  • An inorganic film such as a silicon nitride film can be formed.
  • gas barrier resin examples include polyvinyl alcohol or a partially saponified product thereof, ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene, and the like.
  • a gas barrier layer can be formed by applying these resins by a known wet coating method (coating method using a slit die coater or a gravure coater).
  • the gas barrier layer can be formed by ion implantation into a layer containing a polymer compound.
  • polymer compounds include silicon-containing polymer compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, Examples thereof include acrylic resins, cycloolefin polymers, and aromatic polymers. These polymer compounds can be used alone or in combination of two or more.
  • silicon-containing polymer compounds are preferable, and among the silicon-containing polymer compounds, polysilazane compounds are preferable.
  • the layer containing the polymer compound can be formed using a known wet coating method (coating method using a slit die coater or a gravure coater).
  • ions implanted into the layer containing the polymer compound for example, a gas such as hydrogen, oxygen, nitrogen, argon, helium, neon, krypton, or xenon is preferably used.
  • the gas barrier layer may contain at least zinc oxide and silicon oxide from the viewpoint of reducing the water vapor transmission rate and suppressing the occurrence of cracks in the flexibility test by the mandrel method described later. Further, the layer (a) containing zinc oxide, silicon dioxide and aluminum oxide is particularly preferable.
  • the thickness of the gas barrier layer is suitably in the range of 10 to 800 nm, preferably in the range of 20 to 500 nm, more preferably in the range of 30 to 300 nm, and particularly preferably in the range of 50 to 200 nm.
  • the sealing resin layer has a function of transferring the gas barrier laminate film to a transfer target member (for example, an organic EL element, an organic EL display element, a liquid crystal display element, a solar cell element, etc.) that requires a gas barrier property. It is preferable.
  • a transfer target member for example, an organic EL element, an organic EL display element, a liquid crystal display element, a solar cell element, etc.
  • the sealing resin layer includes, as a sealing resin, polyisobutylene, butyl rubber, polyisoprene, styrene-isobutylene modified resin, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene rubber, It is preferable to contain at least one resin selected from the group consisting of polybutadiene rubber, styrene-butadiene rubber, and polybutene. Among these, it is more preferable that polyisobutylene and butyl rubber are included.
  • the sealing resin layer preferably further contains a tackifying resin.
  • tackifying resins include alicyclic petroleum resins, alicyclic hydrogenated petroleum resins, aromatic petroleum resins, and rosin resins.
  • alicyclic petroleum resins are preferable, and among alicyclic hydrogenated petroleum resins, hydrogenated terpene resins, hydrogenated ester resins, hydrogenated resins of C5 petroleum resins, C9 A hydrogenated resin of a petroleum petroleum resin is preferred.
  • the mass ratio of the sealing resin to the tackifier resin is preferably 10/90 to 100/0, and more preferably 20/80 to 90/10.
  • the sealing resin layer can further contain an ultraviolet absorber, an antioxidant, an antistatic agent, a plasticizer, a filler, a flame retardant, a crosslinking agent, a rust inhibitor, and the like.
  • the thickness of the sealing resin layer is preferably in the range of 5 to 150 ⁇ m, more preferably in the range of 10 to 100 ⁇ m, and particularly preferably in the range of 20 to 80 nm.
  • the sealing resin layer preferably has a water vapor permeability of 40 g / m 2 / day or less, more preferably 30 g / m 2 / day or less, and 20 g / m 2 / day or less. Is particularly preferred.
  • the sealing resin layer may be formed by applying on the gas barrier layer, or after the sealing resin layer is once applied to another release film, only the sealing resin layer is transferred onto the gas barrier layer. Alternatively, the sealing resin layer may be applied to another release film and attached to the gas barrier layer together with the release film.
  • the protective layer has a function of protecting the gas barrier layer.
  • the protective layer is preferably a cured resin layer.
  • the cured resin layer as the protective layer is preferably a thermosetting resin layer or an active energy ray curable resin layer, and more preferably an active energy ray curable resin layer.
  • thermosetting resin layer or the active energy ray curable resin layer as the protective layer can have the same configuration as the above-described undercoat layer.
  • the thickness of the protective layer is preferably in the range of 0.3 to 5 ⁇ m, more preferably in the range of 0.5 to 3 ⁇ m, and particularly preferably in the range of 0.7 to 2 ⁇ m.
  • the peeling force between the protective film and the gas barrier layer is The peel strength between the release film and the undercoat layer is preferably smaller.
  • the difference (A ⁇ B) between the peel force (A) between the release film and the undercoat layer and the peel force (B) between the protective film and the gas barrier layer is preferably 3 mN / 18 mm or more, 5 mN / 18 mm or more is more preferable, and 10 mN / 18 mm or more is preferable.
  • a base film preferably a polyester film, a polyolefin film, etc. laminated with a slightly adhesive layer or a self-adhesive film is used.
  • the peeling force between the second release film and the sealing resin layer is the same as that of the release film. It is preferably smaller than the peel strength with the undercoat layer.
  • the difference (AC) between the peel force (A) between the release film and the undercoat layer and the peel force (C) between the second release film and the sealing resin layer is 3 mN / 18 mm or more is preferable, 5 mN / 18 mm or more is more preferable, and 10 mN / 18 mm or more is preferable.
  • the second release film can adopt the same configuration as the above-described release film, but in order to reduce the peeling force from the sealing resin layer, the second release film is a release mold.
  • a material in which a release layer containing a silicone resin as an agent is laminated on a base film is preferably used.
  • a commercially available light release film can be used.
  • the transfer film of the present invention is preferably applied to an organic EL element or an organic EL device, and further to an organic EL element or an organic EL device having a high degree of flexibility that can withstand bending and bending.
  • the transfer film preferably has a high degree of flexibility that can withstand bending and bending.
  • the transfer film of the present invention preferably has a minimum mandrel diameter of 4 mm at which cracks do not occur in a flexibility test in accordance with the cylindrical mandrel method (JIS K5600-5-1: 1999). 3 mm is more preferable, and 2 mm is particularly preferable.
  • the present invention relates to a member to be transferred that requires gas barrier properties, such as an organic EL element, an organic EL device, a liquid crystal display element, an electronic member such as a solar cell element, a polarizing plate, a retardation plate, a transparent conductive film, etc. Since the gas barrier laminate film is transferred to an optical film or the like, it is suitable as a transfer film. In particular, it is suitable for organic EL elements and organic EL devices (in which an organic EL element is disposed on a substrate).
  • 1 and 2 are schematic cross-sectional views showing a process of transferring and depositing the gas barrier laminate film of the transfer film of the present invention to an organic EL element.
  • FIG. 1 shows an application example of a transfer film having the configuration 1) (release film / undercoat layer / gas barrier layer).
  • a transfer film 10 release film 1 / undercoat layer 2 / gas barrier layer 3
  • Is applied FIG. 1a).
  • the sealing resin layer 13 and the gas barrier layer 3 of the transfer film 10 are laminated so as to face each other (FIG. 1b).
  • the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer 2 / gas barrier layer 3) is transferred and deposited from the transfer film 10 (FIG. 1c).
  • a transfer film comprising the configuration of 2) (release film / undercoat layer / gas barrier layer / protective layer) is the same as in FIG. 1, and first, the sealing resin layer 13 and the transfer film. 10 is laminated so that the protective layer 10 (not shown) faces, and then the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer / gas barrier layer / protection) is transferred from the transfer film 10. Layer) is transferred and deposited.
  • FIG. 2 shows an application example of a transfer film having the configuration 4) (release film / undercoat layer / gas barrier layer / sealing resin layer / second release film).
  • an organic EL element 12 is arranged on a substrate 11, and a transfer film 10 (release film 1 / undercoat layer 2 / gas barrier layer 3 / sealing resin layer 4 / second mold release) In this mode, the film 5) is applied (FIG. 2a).
  • the second release film 5 is peeled from the transfer film 10 (FIG. 2b).
  • the organic EL element 12 disposed on the substrate 11 and the sealing resin layer 4 of the transfer film 10 are laminated so as to face each other (FIG. 2c).
  • the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer 2 / gas barrier layer 3 / sealing resin layer 4) is transferred and deposited from the transfer film 10 (FIG. 2d).
  • the case of applying a transfer film composed of the above 5) (release film / undercoat layer / gas barrier layer / protective layer / sealing resin layer / second release film) is also the same as in FIG.
  • the second release film 5 is peeled from the transfer film 10, and then laminated so that the organic EL element 12 disposed on the substrate 11 and the sealing resin layer of the transfer film 10 face each other.
  • the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer / gas barrier layer / protective layer / sealing resin layer) is transferred and adhered from the transfer film 10.
  • the peel force between the second release film and the sealing resin layer is smaller than the peel force between the release film and the undercoat layer.
  • the second release film needs to be peeled off.
  • an adhesive tape 31B of Nitto Denko Corporation; width 18 mm ⁇ length 100 mm
  • the adhesive tape was peeled off at a rate of 200 mm / min in the direction of 180 ° using a tensile tester, and the peeling force (mN / 18 mm) was measured.
  • the water vapor permeability of the biaxially stretched polyethylene terephthalate film used above (“Lumirror (registered trademark)""U48" of Toray Industries, Inc .; thickness 100 [mu] m) is about 20 g / m ⁇ 2 > / day and has a gas barrier property. It does not affect the measurement of the water vapor transmission rate of the laminated film. The same applies to the adhesive used for bonding.
  • composition analysis of the gas barrier layer is performed by X-ray photoelectron spectroscopy (XPS method). It was. That is, after removing the outermost layer by etching about 5 nm by sputter etching using argon ions, the content ratio of each element was measured.
  • the measurement conditions of the XPS method are as follows.
  • the transfer film has a gas barrier layer side on the outside of a cylindrical mandrel with a diameter of 2 mm to 5 mm. (Make the release film come into contact with the cylindrical mandrel) and visually observe whether or not there are cracks in the wound part, check the minimum diameter of the mandrel where cracks do not occur, and evaluate according to the following criteria did.
  • A Minimum diameter of 2 mm (diameter of 2 mm and no cracks are generated).
  • release film 1 On the smooth surface side of a biaxially stretched polyethylene terephthalate film having a thickness of 38 ⁇ m (“Lumirror (registered trademark)” “R80” manufactured by Toray Industries, Inc.), the following release layer coating solution p1 was applied with a gravure coater, and 100 After preliminary drying at 0 ° C., the product was dried by heating at 160 ° C. to laminate a release layer. The thickness of the release layer was 100 nm.
  • a release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” from Co., Ltd. and 100 parts by mass of a toluene / MEK (50/50) mixture.
  • release film 2 In the production of the release film 1, it was produced in the same manner as the release film 1 except that the release layer coating liquid p2 was changed to the following.
  • a release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” from Co., Ltd. and 100 parts by mass of a toluene / MEK (50/50) mixture.
  • release film 3 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p3.
  • a release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” from Co., Ltd. and 100 parts by mass of a toluene / MEK (50/50) mixture.
  • release film 4 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating solution p4.
  • ⁇ Release film 5> The following anchor layer coating solution was applied with a gravure coater to the smooth surface side of a biaxially stretched polyethylene terephthalate film having a thickness of 38 ⁇ m (“Lumirror (registered trademark)” “R80” manufactured by Toray Industries, Inc.) After drying and heating, the following release layer coating solution p5 was applied with a gravure coater, preliminarily dried at 100 ° C., and then heated and dried at 160 ° C. to laminate a release layer. The anchor layer had a thickness of 50 nm, and the release layer had a thickness of 100 nm.
  • ⁇ Anchor layer coating solution 5 parts by mass of BY24-846B (Toray Dow Corning Co., Ltd.) which is an epoxy group-containing organosilicon compound, BY24-846C (Toray Dow Corning Co., Ltd.) which is a methacryl group-containing organosilicon compound, aluminum chelate
  • An anchor layer coating solution was prepared by mixing 1 part by mass of BY24-846D (Toray Dow Corning Co., Ltd.) and 100 parts by mass of a toluene / MEK (50/50) mixture.
  • X-62-900B alkyd-modified silicone resin
  • CAT-PS-80 para-toluenesulfonic acid
  • release film 6 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p6.
  • release film 7 In the production of the release film 1, it was produced in the same manner as the release film 1 except that the release layer coating liquid p7 was changed to the following.
  • ⁇ Releasing layer coating solution p7> A long-chain alkyl group-containing resin (“Asioresin” RA-95H from Ashio Sangyo Co., Ltd.) was dissolved in toluene to prepare a coating solution having a solid concentration of 2.0% by mass.
  • release film 8 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p8.
  • a release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” (Co., Ltd.) and 400 parts by mass of a toluene / MEK (50/50) mixture.
  • release film 9 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p9.
  • a release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” (Co., Ltd.) and 400 parts by mass of a toluene / MEK (50/50) mixture.
  • release film 10 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p10.
  • a release layer coating solution in which 100 parts by mass of the mixed solution was mixed was prepared.
  • release film 11 In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p11.
  • solid chain equivalent resin (“Pyroyl” HT from Lion Specialty Chemicals Co., Ltd.) as a release agent and a melamine-based crosslinking agent (Mitsui Chemicals Co., Ltd. 28-60) is 2.5 parts by mass in terms of solid content
  • p-toluenesulfonic acid (“TAYCA
  • Example 1 On the release layer of release film 1, the following undercoat layer coating solution a1 is applied with a gravure coater, dried at 90 ° C., and then irradiated with UV light at 400 mJ / cm 2 to form an undercoat layer. did. The thickness of this undercoat layer was 1 ⁇ m.
  • ⁇ Coating liquid a1 for undercoat layer> Dilute UV curable resin coating solution containing trifunctional urethane acrylate oligomer (“UV-7550B” from Nippon Synthetic Chemical Co., Ltd.) with organic solvent (MEK) so that the solid content is 20% by mass. did.
  • UV-7550B trifunctional urethane acrylate oligomer
  • MEK organic solvent
  • a transfer film was produced by laminating a gas barrier layer to a thickness of 150 nm in the following manner.
  • a sputter target which is a mixed sintered material formed of zinc oxide, silicon dioxide, and aluminum oxide, is placed on the sputter electrode 32 using the winding type sputtering / CVD apparatus 21 having the structure shown in FIG. Sputtering with gas was performed, and a gas barrier layer (not shown) was laminated on the surface of the undercoat layer (not shown) of the release film 24 on which the undercoat layer was laminated.
  • the specific operation is as follows. First, in a winding chamber 26 of a winding type sputtering / CVD apparatus 21 in which a sputtering target sintered with a composition ratio of zinc oxide / silicon dioxide / aluminum oxide of 77/20/3 is installed on the sputtering electrode 32.
  • the undercoat layer (not shown) of the release film 24 in which the undercoat layer is laminated on the unwinding shaft 27 is set so that the surface of the release film 24 faces the sputter electrode 32, and unwinding and unwinding side guide rolls 28, 29 are set. , 30 and passed through the cooling drum 31.
  • Argon gas and oxygen gas were introduced at an oxygen gas partial pressure of 10% so that the degree of decompression was 2 ⁇ 10 ⁇ 1 Pa, and an argon / oxygen gas plasma was generated by applying an input power of 4000 W from a DC power source, thereby producing a gas barrier. A layer was formed. The thickness was adjusted by the film transport speed. Then, it wound around the winding shaft 36 via the winding side guide rolls 33, 34, 35.
  • composition of this gas barrier layer was such that the Zn atom concentration was 27.5 atom%, the Si atom concentration was 13.1 atom%, the Al atom concentration was 2.3 atom%, and the O atom concentration was 57.1 atom%.
  • Example 2 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 2 in Example 1.
  • Example 3 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 3 in Example 1.
  • Example 4 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 4 in Example 1.
  • Example 5 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 5 in Example 1.
  • Example 6 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 6 in Example 1.
  • Example 7 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 7 in Example 1.
  • Example 8 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 8 in Example 1.
  • Example 9 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 9 in Example 1.
  • Example 1 A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 10 in Example 1.
  • Examples 11 to 19 and Comparative Examples 11 to 12 In Examples 1 to 9 and Comparative Examples 1 and 2, except that the undercoat layer coating solution was changed to the following coating solution a2 and the thickness of the undercoat layer was changed by 3 ⁇ m, Examples 1 to 9 and In the same manner as in Comparative Examples 1 and 2, an undercoat layer was laminated on the release film.
  • ⁇ Coating liquid a2 for undercoat layer An ultraviolet curable resin “Seika Beam IL-PC2” manufactured by Dainichi Seika Kogyo Co., Ltd. was diluted with an organic solvent (MEK) to a solid content concentration of 20% by mass.
  • MEK organic solvent
  • the sputtering target was made of aluminum oxide (the ratio of the number of oxygen atoms to aluminum atoms (O / Al ratio) was 1.5) using the same manufacturing apparatus as in Example 1 (FIG. 3).
  • the film for transfer was prepared by laminating the gas barrier layer in the same manner as in Example 1 except that the thickness was changed to 200 nm and the thickness of the gas barrier layer was changed to 200 nm.
  • Examples 21 to 29 and Comparative Examples 21 to 22 In Examples 1 to 9 and Comparative Examples 1 and 2, the undercoat layer coating solution was changed to the following coating solution a3, and the thickness of the undercoat layer was changed to 5 ⁇ m. A transfer film was prepared in the same manner as in Comparative Examples 1 and 2.
  • ⁇ Coating liquid a3 for undercoat layer 140 parts by mass of the following urethane (meth) acrylate oligomer (UA), 20 parts by mass of dipentaerythritol hexaacrylate, 5 parts by mass of a photopolymerization initiator (“Irgacure (registered trademark) 907” manufactured by Ciba Specialty Chemicals) Then, it was diluted with an organic solvent (MEK) to prepare a solid content concentration of 20% by mass.
  • the temperature was raised to 95 ° C., and the reaction was continued for 14 hours while maintaining the temperature at 95 ° C.
  • the acid value became 1 mgKOH / g or less, it was cooled until the internal temperature reached 60 ° C. to obtain an epoxy (meth) acrylate.
  • the reaction was continued for 2 hours after completion of the dropping, and then 27.3 parts by mass of diethylene glycol (a reagent manufactured by Wako Pure Chemical Industries, Ltd., trade name: diethylene glycol, molecular weight 106), pentaerythritol tetraacrylate (manufactured by Toagosei Co., Ltd.) (Product name: Aronix M-306)
  • a mixture of 187 parts by mass was added dropwise over 1 hour. Reaction was continued for 5 hours after dripping, and the urethane (meth) acrylate oligomer (UA) with a mass average molecular weight of 19800 was obtained.
  • Example 30 In Example 21, a transfer film was produced in the same manner as in Example 21 except that the undercoat layer coating solution was changed to the following coating solution a4.
  • ⁇ Coating liquid a4 for undercoat layer 95 parts by mass of dipentaerythritol hexaacrylate (“A-DPH” from Shin-Nakamura Chemical Co., Ltd.), 5 parts by mass of photopolymerization initiator (“Irgacure (registered trademark) 907” manufactured by Ciba Specialty Chemicals) was diluted with an organic solvent (MEK) to prepare a solid concentration of 20% by mass.
  • A-DPH dipentaerythritol hexaacrylate
  • photopolymerization initiator Irgacure (registered trademark) 907” manufactured by Ciba Specialty Chemicals
  • Examples 31 to 40 and Comparative Examples 31 to 32 In Examples 21 to 30 and Comparative Examples 21 to 22, transfer films were produced in the same manner as in Examples 21 to 30 and Comparative Examples 21 to 22, except that the gas barrier layer was changed to the following.
  • Example 41 On the gas barrier layer of the transfer film obtained in Example 3, the following sealing resin layer coating solution was applied with a bar coater to a dry thickness of 40 ⁇ m, and dried at 110 ° C. to form a sealing resin layer. Laminated. Subsequently, a second release film (silicone release film “PET38 ⁇ 1-A3” from Nipper Co., Ltd.) was laminated on the sealing resin layer to produce a transfer film.
  • ⁇ Sealing resin layer 60 parts by mass of polyisobutylene (“OPanol B100” manufactured by BASF) as a sealing resin and 40 parts by mass of an alicyclic hydrogenated petroleum resin (“Escollets 5340” manufactured by Exxon Mobil) as a tackifier resin
  • Oscollets 5340 an alicyclic hydrogenated petroleum resin manufactured by Exxon Mobil
  • Example 42 On the gas barrier layer of the transfer film obtained in Example 5, a sealing resin layer and a second release film were laminated in the same manner as in Example 41 to produce a transfer film.
  • Example 43 On the gas barrier layer of the transfer film obtained in Example 23, a sealing resin layer and a second release film were laminated in the same manner as in Example 41 to produce a transfer film.
  • Example 44 On the gas barrier layer of the transfer film obtained in Example 25, a sealing resin layer and a second release film were laminated in the same manner as in Example 41 to produce a transfer film.

Landscapes

  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a film for transfer of a gas barrier multilayer film that achieves good gas barrier properties. In order to achieve the above-described purpose, the present invention has the following configuration. Namely, a film for transfer of a gas barrier multilayer film, which is characterized by having, on a release film, a gas barrier multilayer film that sequentially comprises an undercoat layer and a gas barrier layer in this order, and which is also characterized in that the release strength between the release film and the undercoat layer is within the range of 15-700 mN/18 mm.

Description

ガスバリア性積層膜の転写用フィルムおよび有機ELデバイスGas barrier laminate film transfer film and organic EL device
 本発明は、ガスバリア性が必要とされる被転写部材、例えば、有機EL素子、有機ELデバイス、液晶ディスプレイ素子、太陽電池素子などの電子部材にガスバリア性積層膜を転写、被着するための転写用フィルムに関する。 The present invention is a transfer for transferring and depositing a gas barrier laminate film on a transfer member that requires gas barrier properties, for example, an electronic member such as an organic EL element, an organic EL device, a liquid crystal display element, and a solar cell element. It is related with film.
 ポリエチレンテレフタレートフィルムなどのプラスチックフィルムからなる基材フィルム上にガスバリア層が積層されたガスバリア性フィルムが一般に知られている。ガスバリア層としては、無機酸化物、例えば、酸化アルミニウム、酸化ケイ素、酸化マグネシウム等の蒸着膜が一般的に知られている。 A gas barrier film in which a gas barrier layer is laminated on a base film made of a plastic film such as a polyethylene terephthalate film is generally known. As the gas barrier layer, vapor deposition films of inorganic oxides such as aluminum oxide, silicon oxide, and magnesium oxide are generally known.
 一方、有機エレクトロルミネッセンス(EL)や液晶を用いたディスプレイは、軽量化、薄膜化やフレキシブル性が求められており、それに伴って、これらのディスプレイに使用されるガスバリア性フィルムも薄膜化やフレキシブル性が要求されている。 On the other hand, displays using organic electroluminescence (EL) and liquid crystals are required to be lightweight, thin and flexible, and accordingly, gas barrier films used in these displays are also thin and flexible. Is required.
 そこで、離型フィルムにガスバリア性積層膜(ガスバリア層および必要に応じて設けられる保護層やハードコート層を意味する。)を積層した、ガスバリア性積層膜の転写用フィルムが提案されている(特許文献1~3)。 Therefore, a gas barrier laminate film transfer film is proposed in which a gas barrier laminate film (meaning a gas barrier layer and a protective layer or a hard coat layer provided as necessary) is laminated on a release film (patent) References 1-3).
特開平8-179291号公報JP-A-8-179291 特開平8-234181号公報JP-A-8-234181 国際公開第2013/018602号International Publication No. 2013/018602
 しかし、上記したガスバリア性積層膜の転写用フィルムは、一般的なガスバリア性フィルム(基材フィルム上にガスバリア層が積層されたものを意味する。)に比べて、良好なガスバリア性を安定的に得ることが難しいという問題があることが分かった。かかる問題は、ガスバリア性が良好な場合(例えば、水蒸気透過率が0.1g/m/day未満の場合、さらに0.01g/m/day未満の場合)に顕著に表れる。 However, the transfer film of the gas barrier laminate film described above has a stable gas barrier property as compared with a general gas barrier film (meaning that a gas barrier layer is laminated on a base film). It turns out that there is a problem that it is difficult to obtain. Such a problem appears remarkably when the gas barrier property is good (for example, when the water vapor transmission rate is less than 0.1 g / m 2 / day, and further less than 0.01 g / m 2 / day).
 そこで、本発明の目的は、上述の課題に鑑み、良好なガスバリア性が得られるガスバリア性積層膜の転写用フィルムを提供することにある。 Accordingly, an object of the present invention is to provide a transfer film of a gas barrier laminate film that can obtain a good gas barrier property in view of the above-mentioned problems.
 本発明の上記目的は、以下の本発明によって達成される。
[1]離型フィルム上に、アンダーコート層およびガスバリア層をこの順に含むガスバリア性積層膜を有し、離型フィルムとアンダーコート層との剥離力が15~700mN/18mmの範囲であることを特徴とする、ガスバリア性積層膜の転写用フィルム。
[2]ガスバリア性積層膜の水蒸気透過率が0.1g/m/day未満である、[1]に記載のガスバリア性積層膜の転写用フィルム。
[3]前記アンダーコート層が熱硬化樹脂層もしくは活性エネルギー線硬化樹脂層である、[1]または[2]に記載のガスバリア性積層膜の転写用フィルム。
[4]前記アンダーコート層のガスバリア層側の面の原子間力顕微鏡で測定される表面粗さ(Ra)が2.0nm未満である、[1]~[3]のいずれかに記載のガスバリア性積層膜の転写用フィルム。
[5]前記ガスバリア層が少なくとも酸化亜鉛とケイ素酸化物を含有する、[1]~[4]のいずれかに記載のガスバリア性積層膜の転写用フィルム。
[6]前記ガスバリア層が、酸化亜鉛、二酸化ケイ素および酸化アルミニウムを含有する層である、[1]~[5]のいずれかに記載のガスバリア性積層膜の転写用フィルム。
[7]前記ガスバリア層における、Zn原子濃度が10~40atom%、Si原子濃度が5~20atom%、Al原子濃度が0.5~5atom%、O原子濃度が35~70atom%である、[6]に記載のガスバリア性積層膜の転写用フィルム。
[8]前記ガスバリア性積層膜が、アンダーコート層、ガスバリア層および封止樹脂層をこの順に含む、[1]~[7]のいずれかに記載のガスバリア性積層膜の転写用フィルム。
[9]前記封止樹脂層が、封止樹脂として、ポリイソブチレン、ブチルゴム、ポリイソプレン、スチレン-イソブチレン変性樹脂、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、およびポリブテンからなる群から選択される少なくとも1種の樹脂と、粘着付与樹脂を含有する、[8]に記載のガスバリア性積層膜の転写用フィルム。
[10]前記封止樹脂層のガスバリア層側ではない面に第2離型フィルムを有する、[8]または[9]に記載のガスバリア性積層膜の転写用フィルム。
[11]円筒形マンドレル法(JIS K5600-5-1:1999)に準拠した屈曲性試験において、クラックが発生しない最小のマンドレル直径が4mmである、[1]~[10]のいずれかに記載のガスバリア性積層膜の転写用フィルム。
[12][1]~[11]のいずれかに記載のガスバリア性積層膜の転写用フィルムのガスバリア性積層膜が有機EL素子上に被着された、有機ELデバイス。
The above object of the present invention is achieved by the following present invention.
[1] A gas barrier laminate film including an undercoat layer and a gas barrier layer in this order on the release film, and the peel force between the release film and the undercoat layer is in the range of 15 to 700 mN / 18 mm. A film for transferring a gas barrier laminate film, which is characterized.
[2] The transfer film for a gas barrier laminate film according to [1], wherein the water vapor permeability of the gas barrier laminate film is less than 0.1 g / m 2 / day.
[3] The gas barrier laminate film transfer film according to [1] or [2], wherein the undercoat layer is a thermosetting resin layer or an active energy ray curable resin layer.
[4] The gas barrier according to any one of [1] to [3], wherein the surface roughness (Ra) of the surface of the undercoat layer on the gas barrier layer side measured by an atomic force microscope is less than 2.0 nm. Film for conductive laminated film.
[5] The transfer film for a gas barrier laminate film according to any one of [1] to [4], wherein the gas barrier layer contains at least zinc oxide and silicon oxide.
[6] The transfer film for a gas barrier laminate film according to any one of [1] to [5], wherein the gas barrier layer is a layer containing zinc oxide, silicon dioxide, and aluminum oxide.
[7] In the gas barrier layer, the Zn atom concentration is 10 to 40 atom%, the Si atom concentration is 5 to 20 atom%, the Al atom concentration is 0.5 to 5 atom%, and the O atom concentration is 35 to 70 atom%. ] Transfer film of gas barrier laminate film according to any one of the above.
[8] The transfer film for a gas barrier laminate film according to any one of [1] to [7], wherein the gas barrier laminate film includes an undercoat layer, a gas barrier layer, and a sealing resin layer in this order.
[9] The sealing resin layer has, as a sealing resin, polyisobutylene, butyl rubber, polyisoprene, styrene-isobutylene modified resin, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene. The transfer film for a gas barrier laminate film according to [8], comprising at least one resin selected from the group consisting of isoprene rubber, polybutadiene rubber, styrene-butadiene rubber, and polybutene, and a tackifying resin.
[10] The transfer film for a gas barrier laminate film according to [8] or [9], having a second release film on a surface that is not on the gas barrier layer side of the sealing resin layer.
[11] In any one of [1] to [10], the minimum mandrel diameter at which cracks do not occur is 4 mm in a bendability test according to the cylindrical mandrel method (JIS K5600-5-1: 1999). A film for transferring a gas barrier laminate film.
[12] An organic EL device in which the gas barrier laminate film of the gas barrier laminate film according to any one of [1] to [11] is deposited on an organic EL element.
 本発明によれば、良好なガスバリア性を得ることができるガスバリア性積層膜の転写用フィルムを提供することができる。 According to the present invention, it is possible to provide a transfer film of a gas barrier laminate film capable of obtaining good gas barrier properties.
 また、本発明のガスバリア性積層膜の転写用フィルムは、基板上に有機EL素子が配置された有機ELデバイスの有機EL素子上にガスバリア性積層膜を転写・被着させる場合に好適である。つまり、本発明のガスバリア性積層膜の転写用フィルムのガスバリア性積層膜が被着された有機ELデバイスは、良好なガスバリア性を有する。 The transfer film for a gas barrier laminate film of the present invention is suitable for transferring and depositing a gas barrier laminate film on an organic EL element of an organic EL device in which an organic EL element is disposed on a substrate. That is, the organic EL device to which the gas barrier laminate film of the gas barrier laminate film of the present invention is applied has good gas barrier properties.
 また、本発明の好ましい態様によれば、湾曲や屈曲に耐え得る高度なフレキシブル性を有するガスバリア性積層膜の転写用フィルムを提供することができる。従って、本発明のガスバリア性積層膜の転写用フィルムの好ましい態様は高度なフレキシブル性を有する有機EL素子や有機ELデバイスに好適である。 Also, according to a preferred aspect of the present invention, it is possible to provide a gas barrier laminate film transfer film having a high degree of flexibility that can withstand bending and bending. Therefore, a preferable embodiment of the transfer film of the gas barrier laminate film of the present invention is suitable for an organic EL element or an organic EL device having a high degree of flexibility.
本発明のガスバリア性積層膜の転写用フィルムのガスバリア性積層膜を有機EL素子に転写・被着する工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the process of transferring and adhering the gas barrier laminated film of the transfer film of the gas barrier laminated film of this invention to an organic EL element. 本発明のガスバリア性積層膜の転写用フィルムのガスバリア性積層膜を有機EL素子に転写・被着する工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the process of transferring and adhering the gas barrier laminated film of the transfer film of the gas barrier laminated film of this invention to an organic EL element. 本発明のガスバリア性積層膜の転写用フィルムを製造するための巻き取り式スパッタリング装置を模式的に示す概略図である。It is the schematic which shows typically the winding-type sputtering apparatus for manufacturing the film for transfer of the gas-barrier laminated film of this invention.
 本発明のガスバリア性積層膜の転写用フィルムは、離型フィルム上に、アンダーコート層およびガスバリア層をこの順に含むガスバリア性積層膜を有する。以下の説明において、本発明のガスバリア性積層膜の転写用フィルムを単に「転写用フィルム」と略記することがある。 The transfer film for a gas barrier laminate film of the present invention has a gas barrier laminate film including an undercoat layer and a gas barrier layer in this order on a release film. In the following description, the transfer film of the gas barrier laminate film of the present invention may be simply abbreviated as “transfer film”.
 本発明の転写用フィルムは、使用に際し、離型フィルムからガスバリア性積層膜が剥離されて、ガスバリア性が必要な被転写部材、例えば、有機EL素子、有機ELデバイス、液晶ディスプレイ素子、太陽電池素子などの電子部材、偏光板、位相差板、透明導電性フィルムなどの光学フィルムなどに、ガスバリア性積層膜が転写・被着される。離型フィルムとガスバリア性積層膜との剥離は、離型フィルムとアンダーコート層との間で行われる。 When the transfer film of the present invention is used, the gas barrier laminate film is peeled off from the release film, and a transferred member requiring gas barrier properties, such as an organic EL element, an organic EL device, a liquid crystal display element, and a solar cell element. A gas barrier laminate film is transferred and deposited on an electronic member such as a polarizing plate, a retardation plate, and an optical film such as a transparent conductive film. Peeling of the release film and the gas barrier laminate film is performed between the release film and the undercoat layer.
 ここで、離型フィルムとガスバリア性積層膜を構成するアンダーコート層との剥離力が、ガスバリア性積層膜のガスバリア性に影響することを見出し、本発明を成すに至った。つまり、離型フィルムとアンダーコート層との剥離力を、15~700mN/18mmの範囲に制御することにより、ガスバリア性が高いレベルで安定化することを見出した。 Here, it has been found that the peeling force between the release film and the undercoat layer constituting the gas barrier laminate film affects the gas barrier properties of the gas barrier laminate film, and has led to the present invention. That is, it has been found that the gas barrier property is stabilized at a high level by controlling the peeling force between the release film and the undercoat layer in the range of 15 to 700 mN / 18 mm.
 特に、ガスバリア性積層膜の水蒸気透過率(ガスバリア性)が、0.1g/m/day未満が求められる場合、さらには0.01g/m/day未満が求められる場合に、離型フィルムとアンダーコート層との剥離力を15~700mN/18mmの範囲に制御することにより、この高いレベルのガスバリア性が安定的に得られる。 In particular, when the water vapor permeability (gas barrier property) of the gas barrier laminate film is required to be less than 0.1 g / m 2 / day, and more preferably less than 0.01 g / m 2 / day, the release film This high level of gas barrier property can be stably obtained by controlling the peeling force between the undercoat layer and the undercoat layer in the range of 15 to 700 mN / 18 mm.
 離型フィルムとアンダーコート層との剥離力が15mN/18mmより小さくなると、ガスバリア性が低下する。これは、離型フィルムとアンダーコート層との密着性が低下することが起因していると推測される。 When the peeling force between the release film and the undercoat layer is smaller than 15 mN / 18 mm, the gas barrier property is lowered. This is presumed to be due to a decrease in adhesion between the release film and the undercoat layer.
 つまり、離型フィルムとアンダーコート層との剥離力が15mN/18mmより小さくなり、離型フィルムとアンダーコート層との密着力が小さくなると、離型フィルム上に塗布され積層されたアンダーコート層の均一性が悪化し、その上に製膜されるガスバリア層も均一膜が得られず、その結果ガスバリア性が低下すると推測される。また、同様に離型フィルムとアンダーコート層との密着力が小さくなると、アンダーコート層上にガスバリア層を製膜するときの高温雰囲気(100~200℃程度)下で、離型フィルムとアンダーコート層との熱収縮率差によってアンダーコート層に歪が生じ、その影響により、ガスバリア性が低下すると推測される。 That is, when the peeling force between the release film and the undercoat layer is less than 15 mN / 18 mm and the adhesion force between the release film and the undercoat layer is reduced, the undercoat layer applied and laminated on the release film It is estimated that the uniformity is deteriorated and the gas barrier layer formed on the gas barrier layer is not even, and as a result, the gas barrier property is lowered. Similarly, if the adhesive force between the release film and the undercoat layer is reduced, the release film and the undercoat can be used in a high temperature atmosphere (about 100 to 200 ° C.) when the gas barrier layer is formed on the undercoat layer. It is presumed that the undercoat layer is distorted due to the difference in thermal shrinkage with the layer, and the gas barrier properties are lowered due to the distortion.
 一方、離型フィルムとアンダーコート層との剥離力が700mN/18mmより大きくなると、離型フィルムからガスバリア性積層膜がスムーズに剥離することができず、ガスバリア層にクラック等が発生して、ガスバリア性が低下すると考えられる。 On the other hand, if the peeling force between the release film and the undercoat layer is greater than 700 mN / 18 mm, the gas barrier laminate film cannot be smoothly peeled from the release film, and cracks and the like are generated in the gas barrier layer. It is thought that the nature is lowered.
 上記観点から、離型フィルムとアンダーコート層との剥離力は、20mN/18mm以上が好ましく、30mN/18mm以上がより好ましく、40mN/18mm以上が特に好ましい。また、前記剥離力は、600mN/18mm以下が好ましく、400mN/18mm以下がより好ましく、250mN/18mm以下が特に好ましい。 From the above viewpoint, the peeling force between the release film and the undercoat layer is preferably 20 mN / 18 mm or more, more preferably 30 mN / 18 mm or more, and particularly preferably 40 mN / 18 mm or more. The peeling force is preferably 600 mN / 18 mm or less, more preferably 400 mN / 18 mm or less, and particularly preferably 250 mN / 18 mm or less.
 [離型フィルム]
 本発明に用いられる離型フィルムの種類は特に限定されず、既知あるいは市販の離型フィルムの中から適宜選択して用いることができる。つまり、離型フィルムとアンダーコート層との剥離力が15~700mN/18mmの範囲となるように、適宜、離型フィルムを選択して用いることができる。
[Release film]
The kind of release film used in the present invention is not particularly limited, and can be appropriately selected from known or commercially available release films. That is, the release film can be appropriately selected and used so that the peeling force between the release film and the undercoat layer is in the range of 15 to 700 mN / 18 mm.
 離型フィルムとしては、例えば、ポリオレフィン樹脂フィルム、フッ素樹脂フィルム、シリコーン樹脂フィルムなどの樹脂フィルム自体が離型性を有する離型フィルム、あるいはポリエステルフィルム等の基材フィルムに離型層が積層された離型フィルムなどが挙げられる。 As a release film, for example, a release film having a release property such as a polyolefin resin film, a fluororesin film, a silicone resin film, or a base film such as a polyester film is laminated with a release layer. Examples include release films.
 本発明において、離型フィルムとアンダーコート層との剥離力を15~700mN/18mmの範囲に安定的に制御するという観点から、離型フィルムとしては、基材フィルム上に離型層を有する離型フィルムが好ましく用いられる。基材フィルム上に離型層を有する離型フィルムを用いた場合は、離型層とアンダーコート層との間で剥離される。 In the present invention, from the viewpoint of stably controlling the peeling force between the release film and the undercoat layer in the range of 15 to 700 mN / 18 mm, the release film is a release film having a release layer on the base film. A mold film is preferably used. When a release film having a release layer on the base film is used, the release film is peeled between the release layer and the undercoat layer.
 以下、本発明に好ましく用いられる離型フィルム、すなわち、基材フィルム上に離型層を有する離型フィルムについて、詳細に説明する。 Hereinafter, a release film preferably used in the present invention, that is, a release film having a release layer on a base film will be described in detail.
 基材フィルムを構成する材料としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂等の各種樹脂が使用できる。これらの中でも、加工のしやすさ、耐久性、耐熱性、コスト等の観点から、ポリエステル樹脂が好ましく、さらにポリエチレンテレフタレート樹脂が好ましい。また、基材フィルムは、無延伸フィルムでもよいが一軸延伸または二軸延伸されたフィルムであることが好ましい。 The material constituting the base film is not particularly limited, but for example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefin resins such as polypropylene and polyethylene, cellulose resins such as diacetyl cellulose and triacetyl cellulose, polysulfone resins, Various resins such as polyether ether ketone resin, polyether sulfone resin, polyphenylene sulfide resin, polyether imide resin, polyimide resin, polyamide resin, and acrylic resin can be used. Among these, from the viewpoint of ease of processing, durability, heat resistance, cost, and the like, a polyester resin is preferable, and a polyethylene terephthalate resin is more preferable. The base film may be an unstretched film, but is preferably a uniaxially stretched or biaxially stretched film.
 基材フィルムの厚みは、10~100μmの範囲が一般的であり、15~75μmの範囲が好ましく、20~50μmの範囲が特に好ましい。 The thickness of the base film is generally in the range of 10 to 100 μm, preferably in the range of 15 to 75 μm, particularly preferably in the range of 20 to 50 μm.
 離型層を構成する離型剤としては、例えば、シリコーン樹脂、変性シリコーン樹脂、長鎖アルキル基含有樹脂、フッ素樹脂、ポリオレフィン樹脂、アルキド樹脂、メラミン樹脂、ゴム系エラストマーなどが挙げられ、これらの離型剤を単独あるいは複数を組み合わせて使用することができる。これらの離型剤の中でも、離型フィルムとアンダーコート層との剥離力を15~700mN/18mmの範囲に制御するという観点から、シリコーン樹脂、変性シリコーン樹脂、長鎖アルキル基含有樹脂が好ましい。 Examples of the release agent constituting the release layer include silicone resins, modified silicone resins, long chain alkyl group-containing resins, fluororesins, polyolefin resins, alkyd resins, melamine resins, rubber elastomers, and the like. A mold release agent can be used individually or in combination. Among these release agents, a silicone resin, a modified silicone resin, and a long-chain alkyl group-containing resin are preferable from the viewpoint of controlling the peeling force between the release film and the undercoat layer in the range of 15 to 700 mN / 18 mm.
 シリコーン樹脂としては、硬化型シリコーン樹脂が好ましく、硬化型シリコーン樹脂としては、例えば縮合反応型、付加反応型、紫外線もしくは電子線硬化型等が挙げられる。 The silicone resin is preferably a curable silicone resin, and examples of the curable silicone resin include a condensation reaction type, an addition reaction type, an ultraviolet ray or an electron beam curable type, and the like.
 硬化型シリコーン樹脂としては、具体的には、以下のものが例示される。 Specific examples of the curable silicone resin include the following.
 信越化学工業(株)のKS-774、KS-775、KS-778、KS-779H、KS-847H、KS-856、KS-723A、KS-723B、KS-3703、X-62-2422、X-62-2461、X-62-1387、KNS-3051、X-62-1496、KNS320A、KNS316、X-62-1574A/B、X-62-7052、X-62-7028A/B、X-62-7619、X-62-7213など、
 東芝シリコーン(株)のTPR-6701、-6702、-6703、-3704、-6705、-6722、-6721、-6700、XSR-7029、YSR-3022、YR-3286など、
 ダウコーニング(株)のDKQ3-202、DKQ3-203、DKQ3-204、DKQ3-205、DKQ3-210、DKQ3-3061など、
 東レ・ダウコーニング(株)のSRX357、SRX211、SRX67、SD7220、LTC750A、LTC760A、SP7259、BY24-468C、SP7248S、BY24-452など、
 モメンティブ・パフォーマンス・マテリアルズのYSR-3022、TPR-6700、TPR-6720、TPR-6721、TPR6500、TPR6501、UV9300、UV9425、XS56-A2775、XS56-A2982、UV9430、TPR6600、TPR6604、TPR6605など。
KS-774, KS-775, KS-778, KS-779H, KS-847H, KS-856, KS-723A, KS-723B, KS-3703, X-62-2422, X of Shin-Etsu Chemical Co., Ltd. -62-2461, X-62-1387, KNS-3051, X-62-1496, KNS320A, KNS316, X-62-1574A / B, X-62-7052, X-62-7028A / B, X-62 -7619, X-62-7213, etc.
TPR-6701, -6702, -6703, -3704, -6705, -6722, -6721, -6700, XSR-7029, YSR-3022, YR-3286, etc.
DKQ3-202, DKQ3-203, DKQ3-204, DKQ3-205, DKQ3-210, DKQ3-33061, etc. of Dow Corning Co., Ltd.
Toray Dow Corning SRX357, SRX211, SRX67, SD7220, LTC750A, LTC760A, SP7259, BY24-468C, SP7248S, BY24-452, etc.
Momentive Performance Materials YSR-3022, TPR-6700, TPR-6720, TPR-6721, TPR6500, TPR6501, UV9300, UV9425, XS56-A2775, XS56-A2982, UV9430, TPR6600, TPR6604, TPR6605, etc.
 また、上記のシリコーン樹脂に剥離力調整剤(重剥離剤や剥離コントロール剤とも言う)を併用することによって、剥離力を調整することができる。剥離力調整剤としては、(1)SiO単位を有するシリカ構造のもの、(2)SiO単位と(CHSiO1/2単位を有するレジン構造のもの、(3)SiO単位とCH=CH(CHSiO1/2単位を有するレジン構造のもの等が挙げられる。このような剥離力調整剤の市販品としては、例えば、信越化学工業(株)のKS-3800、X-92-183、東レ・ダウコーニング(株)のSDY7292、BY24-843、BY24-4980等を挙げることができる。 Moreover, peeling force can be adjusted by using together with said silicone resin a peeling force regulator (it is also called a heavy peeling agent or a peeling control agent). Examples of the peel strength adjusting agent include (1) a silica structure having SiO 2 units, (2) a resin structure having SiO 2 units and (CH 3 ) 3 SiO 1/2 units, and (3) SiO 2 units. And those having a resin structure having CH 2 ═CH (CH 3 ) 2 SiO 1/2 units. Commercially available products of such a peel strength adjusting agent include, for example, KS-3800, X-92-183 of Shin-Etsu Chemical Co., Ltd., SDY7292, BY24-843, BY24-4980 of Toray Dow Corning Co., Ltd. Can be mentioned.
 剥離力調整剤の添加量は、シリコーン樹脂100質量部に対して、1~150質量部の範囲が好ましく、5~100質量部の範囲がより好ましく、10~75質量部の範囲が特に好ましい。 The addition amount of the peeling force adjusting agent is preferably in the range of 1 to 150 parts by weight, more preferably in the range of 5 to 100 parts by weight, and particularly preferably in the range of 10 to 75 parts by weight with respect to 100 parts by weight of the silicone resin.
 さらに、離型層中にはシリコーン樹脂を硬化させる触媒を添加することが好ましい。かかる触媒としては、白金系触媒が好ましく、具体的には、東レ・ダウコーニング(株)製のLTC-856、LTC-761、SRX-212、信越化学工業(株)製のKS-3800、X-62-183、X-62-2829、X-62-2853、X-62-2856、X-62-2857、PL-5000、PL-50T等が挙げられる。触媒の添加量は、シリコーン樹脂100質量部に対して0.3~15質量部の範囲が好ましく、1~12質量部の範囲がより好ましい。 Furthermore, it is preferable to add a catalyst for curing the silicone resin in the release layer. As such a catalyst, a platinum-based catalyst is preferable. Specifically, LTC-856, LTC-761, SRX-212 manufactured by Toray Dow Corning Co., Ltd., KS-3800, X manufactured by Shin-Etsu Chemical Co., Ltd., X -62-183, X-62-2829, X-62-2853, X-62-2856, X-62-2857, PL-5000, PL-50T and the like. The addition amount of the catalyst is preferably in the range of 0.3 to 15 parts by mass, more preferably in the range of 1 to 12 parts by mass with respect to 100 parts by mass of the silicone resin.
 変性シリコーン樹脂としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、アルキド樹脂等の有機樹脂とのグラフト重合等による変性シリコーン樹脂が挙げられる。変性シリコーン樹脂としては、具体的には、例えば、信越化学工業(株)製のX-62-9027、X-62-900B、東レ・ダウコーニング(株)のSR2114、SR2107、東芝シリコーン(株)のTSR180(以上アルキド変性シリコーン樹脂)、東芝シリコーン(株)のTSR187(ポリエステル変性シリコーン樹脂)、東芝シリコーン(株)のTSR171(アクリル変性シリコーン樹脂)などが挙げられる。 Examples of the modified silicone resin include modified silicone resins obtained by graft polymerization with organic resins such as polyester resins, acrylic resins, urethane resins, epoxy resins, and alkyd resins. Specific examples of the modified silicone resin include X-62-9027 and X-62-900B manufactured by Shin-Etsu Chemical Co., Ltd., SR2114 and SR2107 manufactured by Toray Dow Corning Co., Ltd., Toshiba Silicone Co., Ltd. TSR180 (above alkyd-modified silicone resin), TSR187 (polyester-modified silicone resin) manufactured by Toshiba Silicone Co., Ltd., TSR171 (acryl-modified silicone resin) manufactured by Toshiba Silicone Co., Ltd., and the like.
 変性シリコーン樹脂の硬化を促進するために、酸触媒を添加することが好ましい。かかる酸触媒としては、硫酸、塩酸、硝酸、リン酸、p-トルエンスルホン酸等が挙げられる。これらの中でも、p-トルエンスルホン酸が好ましく用いられる。酸触媒の添加量は、変性シリコーン樹脂100質量部に対して0.1~10質量部の範囲が適当である。 In order to accelerate the curing of the modified silicone resin, it is preferable to add an acid catalyst. Examples of the acid catalyst include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid and the like. Of these, p-toluenesulfonic acid is preferably used. The addition amount of the acid catalyst is suitably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the modified silicone resin.
 長鎖アルキル基含有樹脂とは、炭素数が8以上の直鎖あるいは分岐のアルキル基を有する樹脂を指し、具体的には、長鎖アルキル基含有ポリビニル樹脂、長鎖アルキル基含有アクリル樹脂、長鎖アルキル基含有ポリエステル樹脂、長鎖アルキル基含有エーテル化合物、長鎖アルキル基含有アミン化合物、長鎖アルキル基含有アルキド樹脂等が挙げられる。 The long chain alkyl group-containing resin refers to a resin having a linear or branched alkyl group having 8 or more carbon atoms. Specifically, the long chain alkyl group-containing polyvinyl resin, the long chain alkyl group-containing acrylic resin, Examples include a chain alkyl group-containing polyester resin, a long chain alkyl group-containing ether compound, a long chain alkyl group-containing amine compound, and a long chain alkyl group-containing alkyd resin.
 長鎖アルキル基の炭素数は、8以上が好ましく、10以上がより好ましく、12以上が特に好ましい。上限の炭素数は30以下が好ましく、28以下がより好ましく、25以下が特に好ましい。 The carbon number of the long chain alkyl group is preferably 8 or more, more preferably 10 or more, and particularly preferably 12 or more. The upper limit of carbon number is preferably 30 or less, more preferably 28 or less, and particularly preferably 25 or less.
 長鎖アルキル基含有樹脂は市販されているものを使用することができる。具体的には、中京油脂社製のレゼムシリーズの「K-256」、「N-137」、「P-677」、「Q-472」、アシオ産業社製のアシオレジンシリーズの「RA-95H」、「RA-585S」、一方社油脂社製のピーロイルシリーズの「HT」、「1050」、「1010」、「1070」、「406」、日本酢ビ・ポバール社製の「ZF-15」、「ZF-15H」、日本触媒社製のエポミン「RP-20」などが挙げられる。 Commercially available resins can be used for the long chain alkyl group-containing resin. Specifically, Rekyo series “K-256”, “N-137”, “P-677”, “Q-472” manufactured by Chukyo Yushi Co., Ltd., “RA-95H” manufactured by Asio Sangyo Co., Ltd. , “RA-585S”, “HT”, “1050”, “1010”, “1070”, “406” of Pyroyl series manufactured by Yushi Co., Ltd., “ZF-15” manufactured by Nihon Ventures-Poval “ZF-15H”, Epomin “RP-20” manufactured by Nippon Shokubai Co., Ltd., and the like.
 離型剤として長鎖アルキル基含有樹脂を用いる場合は、架橋剤を併用することが好ましい。かかる架橋剤としては、例えば、エポキシ系架橋剤、イソシアネート系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、メラミン系架橋剤等が挙げられる。これらの中でも、メラミン系架橋剤が好ましく用いられる。 When using a long-chain alkyl group-containing resin as a release agent, it is preferable to use a crosslinking agent in combination. Examples of such crosslinking agents include epoxy crosslinking agents, isocyanate crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, melamine crosslinking agents, and the like. Among these, a melamine type crosslinking agent is preferably used.
 メラミン系架橋剤は、トリアジン環の3つの炭素原子にアミノ基がそれぞれ結合した、いわゆるメラミン[1,3,5-トリアジン-2,4,6-トリアミン]のアミノ基に種々の変性を施した化合物の総称であり、トリアジン環が複数縮合したものも含む。変性の種類としては、3つのアミノ基の水素原子の少なくとも1つがアルキル化もしくはメチロール化されたものが好ましく用いられる。特に、少なくとも1つ以上のアミノ基がメチロール置換された、メチロール化メラミン化合物が好ましく用いられる。 The melamine-based crosslinking agent has various modifications on the amino group of so-called melamine [1,3,5-triazine-2,4,6-triamine] in which an amino group is bonded to each of three carbon atoms of the triazine ring. It is a generic name for compounds and includes those in which a plurality of triazine rings are condensed. As the type of modification, one in which at least one hydrogen atom of three amino groups is alkylated or methylolated is preferably used. In particular, a methylolated melamine compound in which at least one amino group is methylol-substituted is preferably used.
 また、長鎖アルキル基含有樹脂および架橋剤の硬化を促進させるために酸触媒を添加することが好ましい。酸触媒としては、硫酸、塩酸、硝酸、リン酸、p-トルエンスルホン酸等が挙げられる。これらの中でも、p-トルエンスルホン酸が好ましく用いられる。酸触媒の添加量は、長鎖アルキル基含有樹脂100質量部に対して0.1~10質量部の範囲が適当である。 In addition, it is preferable to add an acid catalyst in order to accelerate the curing of the long-chain alkyl group-containing resin and the crosslinking agent. Examples of the acid catalyst include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid and the like. Of these, p-toluenesulfonic acid is preferably used. The addition amount of the acid catalyst is suitably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the long-chain alkyl group-containing resin.
 離型層の厚みは、10~1000nmの範囲が一般的であり、20~500nmの範囲が好ましく、50~200nmの範囲が特に好ましい。 The thickness of the release layer is generally in the range of 10 to 1000 nm, preferably in the range of 20 to 500 nm, particularly preferably in the range of 50 to 200 nm.
 離型層は、基材フィルム上にウェットコーティング法により塗布され、乾燥、加熱硬化されて形成されることが好ましい。かかるウェットコーティング法としては、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法、スピンコート法、エクストルージョンコート法等が挙げられる。加熱硬化条件としては、80~200℃、好ましくは100~180℃で、10~200秒加熱することが好ましい。 The release layer is preferably formed on the base film by applying it by wet coating, drying, and heat-curing. Examples of the wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, a spin coating method, and an extrusion coating method. As heat curing conditions, it is preferable to heat at 80 to 200 ° C., preferably 100 to 180 ° C. for 10 to 200 seconds.
 また、離型層は、基材フィルムの製膜工程でインラインコーティングすることができる。例えば、ポリエステルフィルムの製造工程内で、ポリエステルフィルムを一軸延伸した後、離型層を塗布し、さらに延伸する(トータルで二軸延伸する)方法が挙げられる。 Also, the release layer can be coated in-line in the base film forming process. For example, within the production process of the polyester film, after the polyester film is uniaxially stretched, a release layer is applied and further stretched (totally biaxially stretched).
 離型フィルムは、基材フィルムと離型層との間に、密着性向上、オリゴマー析出防止性、あるいは帯電防止性などのためにアンカー層を設けることができる。また、基材フィルムの離型層とは反対面にもオリゴマー析出防止層や帯電防止層を設けることができる。 In the release film, an anchor layer can be provided between the base film and the release layer in order to improve adhesion, prevent oligomer precipitation, or provide antistatic properties. Moreover, an oligomer precipitation preventing layer or an antistatic layer can be provided on the opposite surface of the base film from the release layer.
 [ガスバリア性積層膜]
 本発明にかかるガスバリア性積層膜は、アンダーコート層およびガスバリア層を含む。さらに、本発明にかかるガスバリア性積層膜は、アンダーコート層およびガスバリア層以外の層、例えば封止樹脂層や保護層などの機能層を含むことができる。具体的には、アンダーコート層、ガスバリア層および封止樹脂層をこの順に含む構成、アンダーコート層、ガスバリア層および保護層をこの順に含む構成、アンダーコート層、ガスバリア層、保護層および封止樹脂層をこの順に含む構成など、を採用することができる。
[Gas barrier laminate film]
The gas barrier laminated film according to the present invention includes an undercoat layer and a gas barrier layer. Furthermore, the gas barrier laminate film according to the present invention can include layers other than the undercoat layer and the gas barrier layer, for example, functional layers such as a sealing resin layer and a protective layer. Specifically, a configuration including an undercoat layer, a gas barrier layer, and a sealing resin layer in this order, a configuration including an undercoat layer, a gas barrier layer, and a protective layer in this order, an undercoat layer, a gas barrier layer, a protective layer, and a sealing resin A configuration including layers in this order can be employed.
 本発明にかかるガスバリア性積層膜の水蒸気透過率は、0.1g/m/day未満であることが好ましく、0.01g/m/day未満であることがより好ましく、0.001g/m/day未満であることが特に好ましい。下限の水蒸気透過率は特に限定されないが、現実的には1×10-6g/m/day程度である。 The water vapor permeability of the gas barrier laminate film according to the present invention is preferably less than 0.1 g / m 2 / day, more preferably less than 0.01 g / m 2 / day, and 0.001 g / m. Particularly preferred is less than 2 / day. The lower limit water vapor transmission rate is not particularly limited, but is practically about 1 × 10 −6 g / m 2 / day.
 [アンダーコート層]
 アンダーコート層は、樹脂層であることが好ましく、さらに硬化樹脂層であることがより好ましい。アンダーコート層が硬化樹脂層であることにより、離型フィルムとの剥離力を制御しやすくなる。硬化樹脂層は、熱硬化樹脂層あるいは活性エネルギー線硬化樹脂層であることが好ましく、特に活性エネルギー線硬化樹脂層であることがより好ましい。活性エネルギー線硬化樹脂層は比較的硬度が高いので、その上に積層されるガスバリア層のガスバリア性が良好となる。
[Undercoat layer]
The undercoat layer is preferably a resin layer, and more preferably a cured resin layer. When the undercoat layer is a cured resin layer, it becomes easy to control the peeling force with the release film. The curable resin layer is preferably a thermosetting resin layer or an active energy ray curable resin layer, and more preferably an active energy ray curable resin layer. Since the active energy ray curable resin layer has a relatively high hardness, the gas barrier property of the gas barrier layer laminated thereon is good.
 アンダーコート層は、単一層であってもよいし、2~4層の積層構成であってもよい。上記積層構成の場合は、少なくとも1層は硬化樹脂層であることが好ましい。アンダーコート層は、生産性、ガスバリア性および剥離性の観点から、硬化樹脂層の単一層であることが特に好ましい。 The undercoat layer may be a single layer or a laminated structure of 2 to 4 layers. In the case of the above laminated structure, at least one layer is preferably a cured resin layer. The undercoat layer is particularly preferably a single layer of a cured resin layer from the viewpoints of productivity, gas barrier properties, and peelability.
 熱硬化樹脂層は、少なくとも熱硬化樹脂を含有する被膜を加熱することによって硬化せしめられた硬化樹脂層である。かかる熱硬化樹脂としては、例えばアクリル系樹脂、ポリビニル樹脂、ポリエステル系樹脂、ポリエーテル樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、ポリイミド系樹脂等があげられる。これらの樹脂の中でも、ポリウレタン樹脂が好ましく用いられる。 The thermosetting resin layer is a cured resin layer cured by heating at least a film containing the thermosetting resin. Examples of such thermosetting resins include acrylic resins, polyvinyl resins, polyester resins, polyether resins, polyurethane resins, polycarbonate resins, polystyrene resins, polyolefin resins, fluorine resins, polyimide resins, and the like. . Among these resins, a polyurethane resin is preferably used.
 また、熱硬化樹脂層は、上記樹脂を架橋する架橋剤(例えば、メラミン系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤)を含有することができる。 The thermosetting resin layer also contains a crosslinking agent (for example, a melamine crosslinking agent, an oxazoline crosslinking agent, a carbodiimide crosslinking agent, an isocyanate crosslinking agent, an aziridine crosslinking agent, or an epoxy crosslinking agent) that crosslinks the resin. can do.
 本発明におけるアンダーコート層は、活性エネルギー線硬化樹脂層であることが好ましい。以下、アンダーコート層が活性エネルギー線硬化樹脂層である態様について詳細に説明する。 The undercoat layer in the present invention is preferably an active energy ray curable resin layer. Hereinafter, the aspect in which an undercoat layer is an active energy ray hardening resin layer is demonstrated in detail.
 活性エネルギー線硬化樹脂層は、少なくとも活性エネルギー線硬化樹脂を含有する塗布膜に紫外線や電子線を照射することによって硬化せしめられた硬化樹脂層である。活性エネルギー線硬化樹脂は、活性エネルギー線によって重合されて硬化する樹脂を意味する。かかる活性エネルギー線硬化樹脂としては、分子中に少なくとも1個のエチレン性不飽和基を有する化合物(モノマーやオリゴマー)が挙げられる。ここで、エチレン性不飽和基としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アリル基、ビニル基等が挙げられる。かかる化合物としては、例えば、ウレタン系化合物、アクリル系化合物、エポキシ系化合物、ポリエーテル系化合物、シリコーン系化合物などが挙げられる。これらの中でも、ウレタン系化合物が好ましい。さらに、ウレタン系化合物としては、ウレタン(メタ)アクリレートあるいはウレタン(メタ)アクリレートオリゴマーが好ましく用いられる。 The active energy ray-curable resin layer is a cured resin layer that is cured by irradiating the coating film containing at least the active energy ray-curable resin with ultraviolet rays or an electron beam. The active energy ray-curable resin means a resin that is polymerized and cured by active energy rays. Examples of the active energy ray-curable resin include compounds (monomers and oligomers) having at least one ethylenically unsaturated group in the molecule. Here, examples of the ethylenically unsaturated group include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, an allyl group, and a vinyl group. Examples of such compounds include urethane compounds, acrylic compounds, epoxy compounds, polyether compounds, silicone compounds, and the like. Among these, urethane compounds are preferable. Furthermore, as the urethane compound, urethane (meth) acrylate or urethane (meth) acrylate oligomer is preferably used.
 尚、本発明において、「・・・(メタ)アクリレート」なる表現は、「・・・アクリレート」と「・・・メタクリレート」との2つの化合物を含む。 In the present invention, the expression “... (Meth) acrylate” includes two compounds “... acrylate” and “... methacrylate”.
 ウレタン系化合物(ウレタン(メタ)アクリレートあるいはウレタン(メタ)アクリレートオリゴマー)としては、例えば、以下の化合物が挙げられる。 Examples of urethane compounds (urethane (meth) acrylate or urethane (meth) acrylate oligomer) include the following compounds.
 a)1分子中に2個以上のイソシアネート基を有するポリイソシアネートと、1~5官能のポリカプロラクトン変性アルキル(メタ)アクリレートとを反応させて得られる化合物、
 b)1分子中に2個以上のイソシアネート基を有するポリイソシアネートと、1~5官能のポリアルキレングリコール(メタ)アクリレートとを反応させて得られる化合物、
 c)1分子中に2個以上のイソシアネート基を有するポリイソシアネートと、ポリカーボネートジオールおよび1~5官能のヒドロキシ変性(メタ)アクリレートとを反応させて得られる化合物、
 d)1分子中に2個以上のイソシアネート基を有するポリイソシアネートと、1~5官能のヒドロキシ変性エポキシ(メタ)アクリレートとを反応させて得られる化合物。
a) a compound obtained by reacting a polyisocyanate having two or more isocyanate groups in one molecule with a 1 to 5 functional polycaprolactone-modified alkyl (meth) acrylate,
b) a compound obtained by reacting a polyisocyanate having two or more isocyanate groups in one molecule with a 1 to 5 functional polyalkylene glycol (meth) acrylate,
c) a compound obtained by reacting a polyisocyanate having two or more isocyanate groups in one molecule with a polycarbonate diol and a 1 to 5 functional hydroxy-modified (meth) acrylate,
d) A compound obtained by reacting a polyisocyanate having two or more isocyanate groups in one molecule with a 1 to 5 functional hydroxy-modified epoxy (meth) acrylate.
 e)ペンタエリスリトールトリ(メタ)アクリレートヘキサメチレンジイソシアネートウレタンオリゴマー、
 f)ペンタエリスリトールトリ(メタ)アクリレートトルエンジイソシアネートウレタンオリゴマー、
 g)ペンタエリスリトールトリ(メタ)アクリレートイソホロンジイソシアネートウレタンオリゴマー、
 などが挙げられる。
e) pentaerythritol tri (meth) acrylate hexamethylene diisocyanate urethane oligomer,
f) pentaerythritol tri (meth) acrylate toluene diisocyanate urethane oligomer,
g) pentaerythritol tri (meth) acrylate isophorone diisocyanate urethane oligomer,
Etc.
 上記ポリイソシアネートとしては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が挙げられる。 Examples of the polyisocyanate include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, and aromatics such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic diisocyanates having a ring, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, etc., cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, isopropylidene diisocyanate B alicyclic diisocyanates such as hexyl diisocyanate.
 また、ウレタン系化合物(ウレタン(メタ)アクリレートあるいはウレタン(メタ)アクリレートオリゴマー)またはウレタン系化合物を含む組成物は、市販されており用いることができる。例えば、共栄社化学社製のAT-600、UA-101l、UA-306H、UA-306T、UA-306l、UF-8001、UF-8003等、日本合成化学社製のUV7550B、UV-7650B、UV-6300B等、新中村化学社製のU-4HA、U-6HA、UA-100H、U-6LPA、U-15HA、UA-32P、U-324A、U-2PPA、UA-NDP等、ダイセルユーシービー社製のEbecryl-270、Ebecryl-284、Ebecryl-264、Ebecryl-9260、Ebecryl-1290、Ebecryl-1290K、Ebecryl-5129等、根上工業社製のUN-3220HA、UN-3220HB、UN-3220HC、UN-3220HS等、三菱レイヨン製のRQシリーズ、荒川化学工業製のビームセットシリーズ、大日精化工業(株)製のセイカビームシリーズ、アイカ工業(株)製のアイカアイトロンシリーズ、DIC(株)製のユニディックシリーズ、大成ファインケミカル(株)の8KXシリーズ等が挙げられる。 In addition, a composition containing a urethane compound (urethane (meth) acrylate or urethane (meth) acrylate oligomer) or a urethane compound is commercially available and can be used. For example, AT-600, UA-101l, UA-306H, UA-306T, UA-306l, UF-8001, UF-8003 etc. manufactured by Kyoeisha Chemical Co., Ltd., UV7550B, UV-7650B, UV- 6300B, etc., manufactured by Shin-Nakamura Chemical Co., Ltd. U-4HA, U-6HA, UA-100H, U-6LPA, U-15HA, UA-32P, U-324A, U-2PPA, UA-NDP, etc. Ebecryl-270, Ebecryl-284, Ebecryl-264, Ebecryl-9260, Ebecryl-1290, Ebecryl-1290K, Ebecryl-5129, manufactured by Negami Kogyo Co., Ltd., UN-3220HA, UN-3220B, UN-3220B, 3220HS, etc. Made by Mitsubishi Rayon RQ Series, Arakawa Chemical Industries Beam Set Series, Dainichi Seika Industry Co., Ltd. Seika Beam Series, Aika Industry Co., Ltd. Aika Eyetron Series, DIC Corporation Unidic Series, Taisei Fine Chemical ( 8KX series, etc.).
 上記したウレタン(メタ)アクリレートあるいはウレタン(メタ)アクリレートオリゴマーの中でも、アンダーコート層のフレキシブル性や剥離性を向上させるという観点から、一分子中における官能基(エチレン性不飽和基)の数は、5個以下が好ましく、4個以下がより好ましく、3個以下が特に好ましい。また、前記官能基の数は1個以上が好ましく、2個以上がより好ましい。ウレタン(メタ)アクリレートあるいはウレタン(メタ)アクリレートオリゴマーの、一分子中における官能基(エチレン性不飽和基)の数を上記範囲とすることにより、後述する円筒形マンドレル法による屈曲性試験においてクラックの発生が抑制されやすくなる。 Among the above urethane (meth) acrylate or urethane (meth) acrylate oligomer, from the viewpoint of improving the flexibility and peelability of the undercoat layer, the number of functional groups (ethylenically unsaturated groups) in one molecule is 5 or less is preferable, 4 or less is more preferable, and 3 or less is particularly preferable. The number of functional groups is preferably 1 or more, and more preferably 2 or more. By setting the number of functional groups (ethylenically unsaturated groups) in one molecule of the urethane (meth) acrylate or urethane (meth) acrylate oligomer within the above range, cracks in the flexibility test by the cylindrical mandrel method described later Occurrence is easily suppressed.
 ウレタン(メタ)アクリレートあるいはウレタン(メタ)アクリレートオリゴマーの官能基数が5個を超えるとフレキシブル性が低下することがある。 When the number of functional groups of urethane (meth) acrylate or urethane (meth) acrylate oligomer exceeds 5, the flexibility may be lowered.
 活性エネルギー線硬化樹脂層は、上記したウレタン系化合物に加えて、さらにウレタン系化合物以外の化合物(分子中にエチレン性不飽和基を2~8個有する化合物(モノマー))を含有することができる。ウレタン系化合物以外の化合物(モノマー)の含有量は、ウレタン系化合物100質量部に対して1~100質量部の範囲が好ましく、3~50質量部の範囲が好ましく、5~30質量部の範囲が特に好ましい。 The active energy ray-curable resin layer can further contain a compound other than the urethane compound (compound having 2 to 8 ethylenically unsaturated groups (monomer)) in addition to the urethane compound. . The content of the compound (monomer) other than the urethane compound is preferably in the range of 1 to 100 parts by mass, preferably in the range of 3 to 50 parts by mass, with respect to 100 parts by mass of the urethane compound. Is particularly preferred.
 ウレタン系化合物以外の化合物(モノマー)としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。 Examples of compounds (monomers) other than urethane compounds include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and neopentyl glycol di (meth) acrylate. 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (Meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dito Methylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Examples include dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol tri (meth) acrylate, and tripentaerythritol hexa (meth) acrylate.
 活性エネルギー線硬化樹脂層は、さらに光重合開始剤を含むことが好ましい。かかる光重合開始剤の具体例としては、例えばアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォルメート、p-イソプロピル-α-ヒドロキシイソブチルフェノン、α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントンなどの硫黄化合物などを用いることができる。これらの光重合開始剤は単独で使用してもよいし、2種以上組み合せて用いてもよい。 The active energy ray-curable resin layer preferably further contains a photopolymerization initiator. Specific examples of the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl-α-hydroxyisobutylphenone, α-hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, teto Sulfur compounds such as lamethylthiuram disulfide, thioxanthone, 2-chlorothioxanthone, and 2-methylthioxanthone can be used. These photopolymerization initiators may be used alone or in combination of two or more.
 また、光重合開始剤は一般に市販されており、それらを使用することができる。例えば、チバ・スペシャリティ・ケミカルズ(株)製のイルガキュア184、イルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR TPO、DAROCUR1173等、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure ONE、Esacure KIP150、Esacure KTO46等、日本化薬(株)製のKAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI等が挙げられる。 In addition, photopolymerization initiators are generally commercially available and can be used. For example, Irgacure 184, Irgacure 907, Irgacure 379, Irgacure 127, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870, Irgacure OXE01, DAROCURO SPEEDCUREMBB, SPEEDCURE PBZ, SPEEDCURE ITX, SPEEDCURE CTX, SPEEDCURE EDB, ESACURE ONE, ESCURE KIP150, Esacure KTO 150 , KAYACURE DMBI, and the like.
 上記光重合開始剤の含有量は、活性エネルギー線硬化樹脂層の固形分総量100質量%に対して0.1~10質量%の範囲が好ましく、0.5~8質量%の範囲がより好ましい。 The content of the photopolymerization initiator is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 8% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable resin layer. .
 活性エネルギー線硬化樹脂層を硬化させるための活性エネルギー線としては、紫外線、可視光線、赤外線、電子線、線、β線、γ線などが挙げられる。これらの活性エネルギー線の中でも、紫外線および電子線が好ましく、特に紫外線が好ましく用いられる。 Examples of active energy rays for curing the active energy ray-curable resin layer include ultraviolet rays, visible rays, infrared rays, electron beams, rays, β rays, γ rays, and the like. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are particularly preferably used.
 紫外線を照射するための光源としては、特に限定されないが、例えば、紫外線蛍光灯、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。このうち、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプを好ましく用いることができる。また、紫外線を照射するときに、低酸素濃度下の雰囲気下、例えば、酸素濃度が500ppm以下の雰囲気下で照射を行なうと、効率よく硬化させることができるので好ましい。 Although it does not specifically limit as a light source for irradiating an ultraviolet-ray, For example, an ultraviolet fluorescent lamp, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp etc. can be used. . An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be preferably used. In addition, when irradiating with ultraviolet rays, it is preferable to perform irradiation in an atmosphere having a low oxygen concentration, for example, an atmosphere having an oxygen concentration of 500 ppm or less because it can be cured efficiently.
 紫外線の照射光量は、50mJ/cm以上が好ましく、100mJ/cm以上がより好ましく、特に150mJ/cm以上が好ましい。前記照射光量は2000mJ/cm以下が好ましく、1000mJ/cm以下がより好ましい。 Irradiation light amount of the ultraviolet rays is preferably from 50 mJ / cm 2 or more, 100 mJ / cm 2 or more, and particularly 150 mJ / cm 2 or more. The irradiation light amount is preferably 2000 mJ / cm 2 or less, and more preferably 1000 mJ / cm 2 or less.
 アンダーコート層は、離型フィルム上に、ウェットコーティング法により塗布されることが好ましい。かかるウェットコーティング法としては、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法、スピンコート法、エクストルージョンコート法等が挙げられる。 The undercoat layer is preferably applied on the release film by a wet coating method. Examples of the wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, a spin coating method, and an extrusion coating method.
 アンダーコート層の厚みは、ガスバリア性積層膜を離型フィルムから剥離するときの剥離性や剥離後のガスバリア性積層膜の強度を保持するという観点から、0.5μm以上が好ましく、1μm以上がより好ましく、2μm以上が特に好ましい。アンダーコート層の厚みが厚くなり過ぎると剥離性が悪化することがあるので、アンダーコート層の厚みは15μm以下が好ましく、10μm以下がより好ましく、8μm以下が特に好ましい。 The thickness of the undercoat layer is preferably 0.5 μm or more, more preferably 1 μm or more from the viewpoint of maintaining the peelability when the gas barrier laminate film is peeled from the release film and the strength of the gas barrier laminate film after peeling. It is preferably 2 μm or more. If the thickness of the undercoat layer becomes too thick, the peelability may deteriorate. Therefore, the thickness of the undercoat layer is preferably 15 μm or less, more preferably 10 μm or less, and particularly preferably 8 μm or less.
 アンダーコート層の表面は平滑であることが好ましい。アンダーコート層上にガスバリア層を積層するとき、アンダーコート層の表面平滑性が低いと、ガスバリア層にピンホールやクラックが発生し、ガスバリア性が悪化することがある。 The surface of the undercoat layer is preferably smooth. When laminating a gas barrier layer on the undercoat layer, if the surface smoothness of the undercoat layer is low, pinholes and cracks may occur in the gas barrier layer, and the gas barrier property may be deteriorated.
 アンダーコート層の表面平滑性は、例えば、原子間力顕微鏡で測定される表面粗さ(Ra)で表すことができる。アンダーコート層表面、すなわち、アンダーコート層のガスバリア層側の面の原子間力顕微鏡で測定される表面粗さ(Ra)は、2.0nm未満が好ましく、1.5nm以下がより好ましく、1.0nm以下が特に好ましい。下限は特に限定されないが、0.1nm程度である。 The surface smoothness of the undercoat layer can be represented by, for example, the surface roughness (Ra) measured with an atomic force microscope. The surface roughness (Ra) measured with an atomic force microscope on the surface of the undercoat layer, that is, the gas barrier layer side of the undercoat layer is preferably less than 2.0 nm, more preferably 1.5 nm or less. 0 nm or less is particularly preferable. The lower limit is not particularly limited, but is about 0.1 nm.
 前述したように、離型フィルムとアンダーコート層との剥離力が15mN/18mmより小さくなると、離型フィルムに対するアンダーコート層の塗布性が低下して、アンダーコート層の表面平滑性が低下することがある。従って、上記観点からも、離型フィルムとアンダーコート層との剥離力は15mN/18mm以上が必要であり、20mN/18mm以上が好ましく、30mN/18mm以上がより好ましく、40mN/18mm以上が特に好ましい。 As described above, when the peeling force between the release film and the undercoat layer is less than 15 mN / 18 mm, the applicability of the undercoat layer to the release film is lowered, and the surface smoothness of the undercoat layer is lowered. There is. Therefore, also from the above viewpoint, the peeling force between the release film and the undercoat layer needs to be 15 mN / 18 mm or more, preferably 20 mN / 18 mm or more, more preferably 30 mN / 18 mm or more, and particularly preferably 40 mN / 18 mm or more. .
 本発明におけるアンダーコート層は、各種の機能を有する層であってもよい。例えば、ハードコート層、反射防止層、位相差層、密着強化層、平滑化層などが挙げられる。アンダーコート層は、特にハードコート層であることが好ましい。アンダーコート層を上述の熱硬化樹脂層や活性エネルギー線硬化樹脂層とすることにより、ハードコート層としての機能を付与することができる。 The undercoat layer in the present invention may be a layer having various functions. For example, a hard coat layer, an antireflection layer, a retardation layer, an adhesion reinforcing layer, a smoothing layer and the like can be mentioned. The undercoat layer is particularly preferably a hard coat layer. The function as a hard-coat layer can be provided by making an undercoat layer into the above-mentioned thermosetting resin layer or active energy ray hardening resin layer.
 [ガスバリア層]
 ガスバリア層は、公知の材料を用いて積層することができる。ガスバリア層は単一膜であってもよいし、複数膜の積層構成であってもよい。
[Gas barrier layer]
The gas barrier layer can be laminated using a known material. The gas barrier layer may be a single film or a laminated structure of a plurality of films.
 ガスバリア層を形成する材料としては、例えば、
 (i)Si,Zn、Al、Ti、Zr、Sn、In、Nb、Mo、Ta等の元素の酸化物、窒化物、硫化物またはこれらの混合物、
 (ii)有機ケイ素化合物、
 (iii)ガスバリア性樹脂、
 (iv)高分子化合物にイオンを注入したもの、
 などが挙げられる。
As a material for forming the gas barrier layer, for example,
(I) oxides, nitrides, sulfides or mixtures of elements such as Si, Zn, Al, Ti, Zr, Sn, In, Nb, Mo, Ta, etc.
(Ii) an organosilicon compound,
(Iii) gas barrier resin,
(Iv) a polymer compound in which ions are implanted,
Etc.
 以下、これらの材料について詳細に説明する。 Hereinafter, these materials will be described in detail.
 [(i)の材料について]
 上記した(i)の材料の中でも酸化物が好ましく、酸化物の中でもSi,Zn、Alの酸化物が好ましく、さらに、少なくとも酸化亜鉛もしくは硫化亜鉛を含有することが好ましい。
[Material (i)]
Among the materials (i) described above, oxides are preferable, and among oxides, oxides of Si, Zn, and Al are preferable, and it is preferable to contain at least zinc oxide or zinc sulfide.
 また、酸化亜鉛もしくは硫化亜鉛とケイ素酸化物を含むことにより、膜質が非晶質かつ緻密に形成でき、優れたガスバリア性が得られる。特に、優れたガスバリア性が安定的に得られ、かつ色調が無彩色に近いことから、ガスバリア層は酸化亜鉛とケイ素酸化物を含むことが好ましい。 Further, by containing zinc oxide or zinc sulfide and silicon oxide, the film quality can be formed amorphous and dense, and excellent gas barrier properties can be obtained. In particular, the gas barrier layer preferably contains zinc oxide and silicon oxide because excellent gas barrier properties can be stably obtained and the color tone is almost achromatic.
 上記の酸化亜鉛とケイ素酸化物を含むガスバリア層の中でも、さらに、(a)酸化亜鉛、二酸化ケイ素および酸化アルミニウムを含有する層が好ましく用いられる。このガスバリア層は、1つのガスバリア層の中に、酸化亜鉛、二酸化ケイ素および酸化アルミニウムが共存することが好ましい。 Among the gas barrier layers containing zinc oxide and silicon oxide, (a) a layer containing zinc oxide, silicon dioxide and aluminum oxide is preferably used. In this gas barrier layer, it is preferable that zinc oxide, silicon dioxide and aluminum oxide coexist in one gas barrier layer.
 <(a)酸化亜鉛、二酸化ケイ素および酸化アルミニウムを含有する層>
 このガスバリア層の組成としては、X線光電子分光法(XPS法)により測定されるZn原子濃度は10~40atom%、Si原子濃度は5~20atom%、Al原子濃度は0.5~5atom%、O原子濃度は35~70atom%であることが好ましい。
<(A) Layer containing zinc oxide, silicon dioxide and aluminum oxide>
As the composition of this gas barrier layer, the Zn atom concentration measured by X-ray photoelectron spectroscopy (XPS method) is 10 to 40 atom%, the Si atom concentration is 5 to 20 atom%, the Al atom concentration is 0.5 to 5 atom%, The O atom concentration is preferably 35 to 70 atom%.
 Zn原子濃度が40atom%より大きくなる、もしくはSi原子濃度が5atom%より小さくなると、酸化亜鉛の結晶成長を抑制する酸化物が不足するため、空隙部分や欠陥部分が増加し、十分なガスバリア性が得られない場合がある。Zn原子濃度が10atom%より小さくなる、またはSi原子濃度が20atom%より大きくなると、ガスバリア層内部の二酸化ケイ素の非晶質成分が増加して層の柔軟性が低下する場合がある。 When the Zn atom concentration is higher than 40 atom% or the Si atom concentration is lower than 5 atom%, the oxide that suppresses the crystal growth of zinc oxide is insufficient, so that voids and defects increase, and sufficient gas barrier properties are obtained. It may not be obtained. When the Zn atom concentration is lower than 10 atom% or the Si atom concentration is higher than 20 atom%, the amorphous component of silicon dioxide inside the gas barrier layer may increase and the flexibility of the layer may be lowered.
 Al原子濃度が5atom%より大きくなると、酸化亜鉛と二酸化ケイ素の親和性が過剰に高くなるため膜の硬度が上昇し、熱や外部からの応力に対してクラックが生じやすくなる場合がある。Al原子濃度が0.5atom%より小さくなると、酸化亜鉛と二酸化ケイ素の親和性が不十分となり、層を形成する粒子間の結合力が向上できないため、柔軟性が低下する場合がある。 When the Al atom concentration is higher than 5 atom%, the affinity between zinc oxide and silicon dioxide becomes excessively high, so that the hardness of the film increases, and cracks are likely to occur due to heat and external stress. When the Al atom concentration is less than 0.5 atom%, the affinity between zinc oxide and silicon dioxide becomes insufficient, and the bonding force between the particles forming the layer cannot be improved, so the flexibility may decrease.
 O原子濃度が70atom%より大きくなると、ガスバリア層内の欠陥量が増加するため、高いガスバリア性が得られない場合がある。O原子濃度が35atom%より小さくなると、亜鉛、ケイ素、アルミニウムの酸化状態が不十分となり、結晶成長が抑制できず粒子径が大きくなるため、ガスバリア性が悪化する場合がある。 When the O atom concentration is higher than 70 atom%, the amount of defects in the gas barrier layer increases, so that high gas barrier properties may not be obtained. When the O atom concentration is less than 35 atom%, the oxidation state of zinc, silicon, and aluminum becomes insufficient, crystal growth cannot be suppressed, and the particle diameter becomes large, so that the gas barrier property may be deteriorated.
 上記観点から、さらに、Zn原子濃度が20~35atom%、Si原子濃度が10~15atom%、Al原子濃度が1~3atom%、O原子濃度が50~64atom%であることが好ましい。 From the above viewpoint, it is further preferable that the Zn atom concentration is 20 to 35 atom%, the Si atom concentration is 10 to 15 atom%, the Al atom concentration is 1 to 3 atom%, and the O atom concentration is 50 to 64 atom%.
 上記組成は、ガスバリア層の形成時に使用した混合焼結材料と同等の組成で形成されるため、目的とするガスバリア層の組成に合わせた組成の混合焼結材料を使用することで調整することができる。 Since the above composition is formed with the same composition as the mixed sintered material used when forming the gas barrier layer, it can be adjusted by using a mixed sintered material having a composition that matches the composition of the target gas barrier layer. it can.
 上記のガスバリア層を形成する方法は特に限定されず、酸化亜鉛と二酸化ケイ素と酸化アルミニウムの混合焼結材料を使用して、真空蒸着法、スパッタリング法、イオンプレーティング法等によって形成することができる。酸化亜鉛と二酸化ケイ素と酸化アルミニウムの単体材料を使用する場合は、酸化亜鉛と二酸化ケイ素と酸化アルミニウムをそれぞれ別の蒸着源またはスパッタ電極から同時に成膜し、所望の組成となるように混合させて形成することができる。これらの方法の中でも、ガスバリア層の組成再現性の観点から、混合焼結材料を使用したスパッタリング法がより好ましい。 The method for forming the gas barrier layer is not particularly limited, and can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like using a mixed sintered material of zinc oxide, silicon dioxide, and aluminum oxide. . When using a single material of zinc oxide, silicon dioxide, and aluminum oxide, form a film of zinc oxide, silicon dioxide, and aluminum oxide simultaneously from separate vapor deposition sources or sputter electrodes, and mix them to the desired composition. Can be formed. Among these methods, a sputtering method using a mixed sintered material is more preferable from the viewpoint of composition reproducibility of the gas barrier layer.
 [(ii)有機ケイ素化合物]
 ケイ素含有有機化合物としては、例えば、シラン、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、エチルシラン、ジエチルシラン、トリエチルシラン、テトラエチルシラン、プロポキシシラン、ジプロポキシシラン、トリプロポキシシラン、テトラプロポキシシラン、ジメチルジシロキサン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラメチルジシロキサン、ヘキサメチルジシロキサン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ウンデカメチルシクロヘキサシロキサン、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、デカメチルシクロペンタシラザン、ウンデカメチルシクロヘキサシラザンなどが挙げられる。中でも取り扱い上の観点からヘキサメチルジシロキサン、テトラエトキシシランが好ましい。
[(Ii) Organosilicon compound]
Examples of silicon-containing organic compounds include silane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane, triethylsilane, tetraethylsilane, propoxysilane, dipropoxysilane, tripropoxysilane, tetrapropoxysilane, dimethyl Disiloxane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetramethyldisiloxane, hexamethyldisiloxane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, deca Methylcyclopentasiloxane, undecamethylcyclohexasiloxane, dimethyldisilazane, trimethyldisilazane, tetra Chirujishirazan, hexamethyldisilazane, hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, decamethylcyclopentasiloxane silazane, such undecapeptide methyl cyclohexasilane La disilazane and the like. Among these, hexamethyldisiloxane and tetraethoxysilane are preferable from the viewpoint of handling.
 上記有機ケイ素化合物を原料としてプラズマCVD法などで製膜することにより、酸化ケイ素膜、酸窒化ケイ素膜、窒化ケイ素膜などの無機膜を形成することができる。 An inorganic film such as a silicon oxide film, a silicon oxynitride film, or a silicon nitride film can be formed by forming a film by the plasma CVD method using the organosilicon compound as a raw material.
 また、上記有機ケイ素化合物を公知の湿式塗布方式(スリットダイコーターやグラビアコーターなどを用いた塗布方式)により塗布後、真空紫外線(エキシマ光)を照射することにより、酸化ケイ素膜、酸窒化ケイ素膜、窒化ケイ素膜などの無機膜を形成することができる。 In addition, after applying the organosilicon compound by a known wet coating method (coating method using a slit die coater, gravure coater, etc.), irradiation with vacuum ultraviolet rays (excimer light) results in a silicon oxide film or a silicon oxynitride film. An inorganic film such as a silicon nitride film can be formed.
 [(iii)ガスバリア性樹脂]
 ガスバリア性樹脂としては、例えば、ポリビニルアルコール、又はその部分ケン化物、エチレン-ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリクロロトリフルオロエチレン等が挙げられる。これらの樹脂を公知の湿式塗布方式(スリットダイコーターやグラビアコーターなどを用いた塗布方式)で塗布することによりガスバリア層を形成することができる。
[(Iii) Gas barrier resin]
Examples of the gas barrier resin include polyvinyl alcohol or a partially saponified product thereof, ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polychlorotrifluoroethylene, and the like. A gas barrier layer can be formed by applying these resins by a known wet coating method (coating method using a slit die coater or a gravure coater).
 [(iv)高分子化合物にイオンを注入したもの]
 ガスバリア層は、高分子化合物を含む層にイオン注入して形成することができる。かかる高分子化合物としては、ケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
[(Iv) Ions implanted into polymer compound]
The gas barrier layer can be formed by ion implantation into a layer containing a polymer compound. Examples of such polymer compounds include silicon-containing polymer compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, Examples thereof include acrylic resins, cycloolefin polymers, and aromatic polymers. These polymer compounds can be used alone or in combination of two or more.
 これらの高分子化合物の中でもケイ素含有高分子化合物が好ましく、さらにケイ素含有高分子化合物の中でもポリシラザン系化合物が好ましい。 Among these polymer compounds, silicon-containing polymer compounds are preferable, and among the silicon-containing polymer compounds, polysilazane compounds are preferable.
 高分子化合物を含有する層は、公知の湿式塗布方法(スリットダイコーターやグラビアコーターなどを用いた塗布方式)を用いて形成することができる。 The layer containing the polymer compound can be formed using a known wet coating method (coating method using a slit die coater or a gravure coater).
 高分子化合物を含む層に注入されるイオンとしては、例えば、水素、酸素、窒素、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等のガスが好ましく用いられる。 As ions implanted into the layer containing the polymer compound, for example, a gas such as hydrogen, oxygen, nitrogen, argon, helium, neon, krypton, or xenon is preferably used.
 上述したガスバリア層の中でも、水蒸気透過率を小さくするという観点、および後述するマンドレル法による屈曲性試験におけるクラックの発生を抑制するという観点から、ガスバリア層が少なくとも酸化亜鉛とケイ素酸化物を含むことが好ましく、さらに、前述した(a)酸化亜鉛、二酸化ケイ素および酸化アルミニウムを含有する層であることが特に好ましい。 Among the gas barrier layers described above, the gas barrier layer may contain at least zinc oxide and silicon oxide from the viewpoint of reducing the water vapor transmission rate and suppressing the occurrence of cracks in the flexibility test by the mandrel method described later. Further, the layer (a) containing zinc oxide, silicon dioxide and aluminum oxide is particularly preferable.
 ガスバリア層の厚みは、10~800nmの範囲が適当であり、20~500nmの範囲が好ましく、30~300nmの範囲がより好ましく、50~200nmの範囲が特に好ましい。 The thickness of the gas barrier layer is suitably in the range of 10 to 800 nm, preferably in the range of 20 to 500 nm, more preferably in the range of 30 to 300 nm, and particularly preferably in the range of 50 to 200 nm.
 [封止樹脂層]
 封止樹脂層は、ガスバリア性積層膜をガスバリア性が必要な被転写部材(例えば、有機EL素子、有機ELディスプレイ素子、液晶ディスプレイ素子、太陽電池素子など)に転着する機能を有していることが好ましい。
[Sealing resin layer]
The sealing resin layer has a function of transferring the gas barrier laminate film to a transfer target member (for example, an organic EL element, an organic EL display element, a liquid crystal display element, a solar cell element, etc.) that requires a gas barrier property. It is preferable.
 封止樹脂層は、封止樹脂として、ポリイソブチレン、ブチルゴム、ポリイソプレン、スチレン-イソブチレン変性樹脂、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、およびポリブテンからなる群から選択される少なくとも1種の樹脂を含有することが好ましい。これらの中でもポリイソブチレンやブチルゴムを含むことがより好ましい。 The sealing resin layer includes, as a sealing resin, polyisobutylene, butyl rubber, polyisoprene, styrene-isobutylene modified resin, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene rubber, It is preferable to contain at least one resin selected from the group consisting of polybutadiene rubber, styrene-butadiene rubber, and polybutene. Among these, it is more preferable that polyisobutylene and butyl rubber are included.
 また、封止樹脂層は、さらに粘着付与樹脂を含有することが好ましい。かかる粘着付与樹脂としては、例えば、脂環族系石油樹脂、脂環族系水添石油樹脂、芳香族系石油樹脂、およびロジン系樹脂が挙げられる。これらの粘着付与樹脂の中でも脂環族系石油樹脂が好ましく、さらに脂環族系水添石油樹脂の中でも、水素添加テルペン系樹脂、水素添加エステル系樹脂、C5系石油樹脂の水素添加樹脂、C9系石油樹脂の水素添加樹脂が好ましい。 The sealing resin layer preferably further contains a tackifying resin. Examples of such tackifying resins include alicyclic petroleum resins, alicyclic hydrogenated petroleum resins, aromatic petroleum resins, and rosin resins. Among these tackifying resins, alicyclic petroleum resins are preferable, and among alicyclic hydrogenated petroleum resins, hydrogenated terpene resins, hydrogenated ester resins, hydrogenated resins of C5 petroleum resins, C9 A hydrogenated resin of a petroleum petroleum resin is preferred.
 封止樹脂と粘着付与樹脂との質量比(封止樹脂/粘着付与樹脂)は、10/90~100/0であることが好ましく、20/80~90/10であることがより好ましい。 The mass ratio of the sealing resin to the tackifier resin (sealing resin / tackifier resin) is preferably 10/90 to 100/0, and more preferably 20/80 to 90/10.
 また、封止樹脂層は、さらに、紫外線吸収剤、酸化防止剤、帯電防止剤、可塑剤、充填剤、難燃剤、架橋剤、および防錆剤等を含有することができる。 The sealing resin layer can further contain an ultraviolet absorber, an antioxidant, an antistatic agent, a plasticizer, a filler, a flame retardant, a crosslinking agent, a rust inhibitor, and the like.
 封止樹脂層の厚みは、5~150μmの範囲が好ましく、10~100μmの範囲がより好ましく、20~80nmの範囲が特に好ましい。また、封止樹脂層は、水蒸気透過率が、40g/m/day以下であることが好ましく、30g/m/day以下であることがより好ましく、20g/m/day以下であることが特に好ましい。 The thickness of the sealing resin layer is preferably in the range of 5 to 150 μm, more preferably in the range of 10 to 100 μm, and particularly preferably in the range of 20 to 80 nm. In addition, the sealing resin layer preferably has a water vapor permeability of 40 g / m 2 / day or less, more preferably 30 g / m 2 / day or less, and 20 g / m 2 / day or less. Is particularly preferred.
 封止樹脂層は、ガスバリア層の上に塗布して形成してもよいし、一旦別の離型フィルムに封止樹脂層を塗布した後、封止樹脂層のみをガスバリア層上に転写してもよいし、または別の離型フィルムに封止樹脂層を塗布し、離型フィルムと一緒にガスバリア層上に貼り付けてもよい。 The sealing resin layer may be formed by applying on the gas barrier layer, or after the sealing resin layer is once applied to another release film, only the sealing resin layer is transferred onto the gas barrier layer. Alternatively, the sealing resin layer may be applied to another release film and attached to the gas barrier layer together with the release film.
 [保護層]
 保護層は、ガスバリア層を保護する機能を有する。保護層は、硬化樹脂層であることが好ましい。保護層としての硬化樹脂層は、熱硬化樹脂層あるいは活性エネルギー線硬化樹脂層であることが好ましく、特に活性エネルギー線硬化樹脂層であることがより好ましい。
[Protective layer]
The protective layer has a function of protecting the gas barrier layer. The protective layer is preferably a cured resin layer. The cured resin layer as the protective layer is preferably a thermosetting resin layer or an active energy ray curable resin layer, and more preferably an active energy ray curable resin layer.
 保護層としての熱硬化樹脂層あるいは活性エネルギー線硬化樹脂層は、前述のアンダーコート層と同様の構成とすることができる。保護層の厚みは、0.3~5μmの範囲が好ましく、0.5~3μmの範囲がより好ましく、0.7~2μmの範囲が特に好ましい。 The thermosetting resin layer or the active energy ray curable resin layer as the protective layer can have the same configuration as the above-described undercoat layer. The thickness of the protective layer is preferably in the range of 0.3 to 5 μm, more preferably in the range of 0.5 to 3 μm, and particularly preferably in the range of 0.7 to 2 μm.
 [ガスバリア性積層膜の転写用フィルム]
 本発明の転写用フィルムについて、いくつかの構成例を以下に挙げるが、これらの構成例には限定されない。
1)離型フィルム/アンダーコート層/ガスバリア層
2)離型フィルム/アンダーコート層/ガスバリア層/保護層
3)離型フィルム/アンダーコート層/ガスバリア層/保護フィルム
4)離型フィルム/アンダーコート層/ガスバリア層/封止樹脂層/第2離型フィルム
5)離型フィルム/アンダーコート層/ガスバリア層/保護層/封止樹脂層/第2離型フィルム
 上記構成例3)において、転写用フィルムからガスバリア性積層膜(アンダーコート層/ガスバリア層)を被転写部材に転写・被着するときは、先ず保護フィルムを剥離することが好ましく、そのためには保護フィルムとガスバリア層との剥離力は、離型フィルムとアンダーコート層との剥離力より小さいことが好ましい。具体的には、離型フィルムとアンダーコート層との剥離力(A)と、保護フィルムとガスバリア層との剥離力(B)との差(A-B)は、3mN/18mm以上が好ましく、5mN/18mm以上がより好ましく、10mN/18mm以上が好ましい。
[Transfer film for gas barrier laminate film]
Although some structural examples are given below about the transfer film of the present invention, it is not limited to these structural examples.
1) Release film / undercoat layer / gas barrier layer 2) Release film / undercoat layer / gas barrier layer / protective layer 3) Release film / undercoat layer / gas barrier layer / protective film 4) Release film / undercoat Layer / gas barrier layer / sealing resin layer / second release film 5) release film / undercoat layer / gas barrier layer / protective layer / sealing resin layer / second release film In the above configuration example 3), for transfer When a gas barrier laminate film (undercoat layer / gas barrier layer) is transferred and adhered from a film to a member to be transferred, it is preferable to first peel off the protective film. For this purpose, the peeling force between the protective film and the gas barrier layer is The peel strength between the release film and the undercoat layer is preferably smaller. Specifically, the difference (A−B) between the peel force (A) between the release film and the undercoat layer and the peel force (B) between the protective film and the gas barrier layer is preferably 3 mN / 18 mm or more, 5 mN / 18 mm or more is more preferable, and 10 mN / 18 mm or more is preferable.
 ここで、保護フィルムは、基材フィルム(好ましくはポリエステルフィルムやポリオレフィンフィルムなど)に微粘着性の粘着剤層が積層されたもの、あるいは自己粘着性フィルムが用いられる。 Here, as the protective film, a base film (preferably a polyester film, a polyolefin film, etc.) laminated with a slightly adhesive layer or a self-adhesive film is used.
 同様に、構成例4)および5)の場合も、先ず第2離型フィルムを剥離することが好ましく、そのためには第2離型フィルムと封止樹脂層との剥離力は、離型フィルムとアンダーコート層との剥離力より小さいことが好ましい。具体的には、離型フィルムとアンダーコート層との剥離力(A)と、第2離型フィルムと封止樹脂層との剥離力(C)との差(A-C)は、3mN/18mm以上が好ましく、5mN/18mm以上がより好ましく、10mN/18mm以上が好ましい。 Similarly, in the case of structural examples 4) and 5), it is preferable to first peel off the second release film. For this purpose, the peeling force between the second release film and the sealing resin layer is the same as that of the release film. It is preferably smaller than the peel strength with the undercoat layer. Specifically, the difference (AC) between the peel force (A) between the release film and the undercoat layer and the peel force (C) between the second release film and the sealing resin layer is 3 mN / 18 mm or more is preferable, 5 mN / 18 mm or more is more preferable, and 10 mN / 18 mm or more is preferable.
 ここで、第2離型フィルムは、前述の離型フィルムと同様の構成を採用することができるが、封止樹脂層との剥離力を小さくするために、第2離型フィルムは、離型剤としてシリコーン樹脂を含む離型層が基材フィルム上に積層されたものが好ましく用いられる。また、市販の軽剥離性の離型フィルムを用いることができる。 Here, the second release film can adopt the same configuration as the above-described release film, but in order to reduce the peeling force from the sealing resin layer, the second release film is a release mold. A material in which a release layer containing a silicone resin as an agent is laminated on a base film is preferably used. Moreover, a commercially available light release film can be used.
 本発明の転写用フィルムは、後述するように、有機EL素子や有機ELデバイスに適用されることが好ましく、さらに、湾曲や屈曲に耐え得る高度なフレキシブル性を有する有機EL素子や有機ELデバイスに適用されることが好ましい。転写用フィルムを高度なフレキシブル性を有する有機EL素子や有機ELデバイスに適用するには、転写用フィルムは湾曲や屈曲に耐え得る高度なフレキシブル性を有することが好ましい。 As will be described later, the transfer film of the present invention is preferably applied to an organic EL element or an organic EL device, and further to an organic EL element or an organic EL device having a high degree of flexibility that can withstand bending and bending. Preferably applied. In order to apply the transfer film to an organic EL element or organic EL device having a high degree of flexibility, the transfer film preferably has a high degree of flexibility that can withstand bending and bending.
 上記観点から、本発明の転写用フィルムは、円筒形マンドレル法(JIS K5600-5-1:1999)に準拠した屈曲性試験において、クラックが発生しない最小のマンドレル直径が4mmであることが好ましく、3mmであることがより好ましく、2mmであることが特に好ましい。 From the above viewpoint, the transfer film of the present invention preferably has a minimum mandrel diameter of 4 mm at which cracks do not occur in a flexibility test in accordance with the cylindrical mandrel method (JIS K5600-5-1: 1999). 3 mm is more preferable, and 2 mm is particularly preferable.
 [ガスバリ性積層膜の転写用フィルムの適用例]
 本発明は、ガスバリア性が必要とされる被転写部材、例えば、有機EL素子、有機ELデバイス、液晶ディスプレイ素子、太陽電池素子などの電子部材、偏光板、位相差板、透明導電性フィルムなどの光学フィルムなどに、ガスバリア性積層膜を転写するため転写用フィルムとして好適である。特に、有機EL素子および有機ELデバイス(基板上に有機EL素子を配置したもの)に好適である。
[Application example of transfer film for gas-burr laminate film]
The present invention relates to a member to be transferred that requires gas barrier properties, such as an organic EL element, an organic EL device, a liquid crystal display element, an electronic member such as a solar cell element, a polarizing plate, a retardation plate, a transparent conductive film, etc. Since the gas barrier laminate film is transferred to an optical film or the like, it is suitable as a transfer film. In particular, it is suitable for organic EL elements and organic EL devices (in which an organic EL element is disposed on a substrate).
 本発明の転写用フィルムを有機EL素子および有機ELデバイスに適用するときの態様を説明する。図1および図2は、本発明の転写用フィルムのガスバリア性積層膜を有機EL素子に転写・被着する工程を示す模式断面図である。 A mode when the transfer film of the present invention is applied to an organic EL element and an organic EL device will be described. 1 and 2 are schematic cross-sectional views showing a process of transferring and depositing the gas barrier laminate film of the transfer film of the present invention to an organic EL element.
 図1は、上記1)の構成(離型フィルム/アンダーコート層/ガスバリア層)からなる転写用フィルムの適用例を示す。図1は、基板11上に配置された有機EL素子12には予め封止樹脂層13が被覆されており、これに、転写用フィルム10(離型フィルム1/アンダーコート層2/ガスバリア層3)を適用する態様である(図1a)。 FIG. 1 shows an application example of a transfer film having the configuration 1) (release film / undercoat layer / gas barrier layer). In FIG. 1, an organic EL element 12 disposed on a substrate 11 is coated with a sealing resin layer 13 in advance, and a transfer film 10 (release film 1 / undercoat layer 2 / gas barrier layer 3). ) Is applied (FIG. 1a).
 先ず、封止樹脂層13と、転写用フィルム10のガスバリア層3とが向き合うようにラミネートされる(図1b)。次いで、転写用フィルム10の離型フィルム1が剥離されて、転写用フィルム10からガスバリア性積層膜(アンダーコート層2/ガスバリア層3)が転写・被着される(図1c)。 First, the sealing resin layer 13 and the gas barrier layer 3 of the transfer film 10 are laminated so as to face each other (FIG. 1b). Next, the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer 2 / gas barrier layer 3) is transferred and deposited from the transfer film 10 (FIG. 1c).
 上記2)の構成(離型フィルム/アンダーコート層/ガスバリア層/保護層)からなる転写用フィルムを適用する場合も、図1と同様であり、先ず、封止樹脂層13と、転写用フィルム10の保護層(不図示)とが向き合うようにラミネートされ、次いで、転写用フィルム10の離型フィルム1が剥離されて、転写用フィルム10からガスバリア性積層膜(アンダーコート層/ガスバリア層/保護層)が転写・被着される。 The case of applying a transfer film comprising the configuration of 2) (release film / undercoat layer / gas barrier layer / protective layer) is the same as in FIG. 1, and first, the sealing resin layer 13 and the transfer film. 10 is laminated so that the protective layer 10 (not shown) faces, and then the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer / gas barrier layer / protection) is transferred from the transfer film 10. Layer) is transferred and deposited.
 図2は、上記4)の構成(離型フィルム/アンダーコート層/ガスバリア層/封止樹脂層/第2離型フィルム)からなる転写用フィルムの適用例を示す。図2は、基板11上に有機EL素子12が配置されており、これに、転写用フィルム10(離型フィルム1/アンダーコート層2/ガスバリア層3/封止樹脂層4/第2離型フィルム5)を適用する態様である(図2a)。 FIG. 2 shows an application example of a transfer film having the configuration 4) (release film / undercoat layer / gas barrier layer / sealing resin layer / second release film). In FIG. 2, an organic EL element 12 is arranged on a substrate 11, and a transfer film 10 (release film 1 / undercoat layer 2 / gas barrier layer 3 / sealing resin layer 4 / second mold release) In this mode, the film 5) is applied (FIG. 2a).
 先ず、転写用フィルム10から第2離型フィルム5が剥離される(図2b)。次いで、基板11上に配置された有機EL素子12と、転写用フィルム10の封止樹脂層4とが向き合うようにラミネートされる(図2c)。次いで、転写用フィルム10の離型フィルム1が剥離されて、転写用フィルム10からガスバリア性積層膜(アンダーコート層2/ガスバリア層3/封止樹脂層4)が転写・被着される(図2d)。 First, the second release film 5 is peeled from the transfer film 10 (FIG. 2b). Next, the organic EL element 12 disposed on the substrate 11 and the sealing resin layer 4 of the transfer film 10 are laminated so as to face each other (FIG. 2c). Next, the release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer 2 / gas barrier layer 3 / sealing resin layer 4) is transferred and deposited from the transfer film 10 (FIG. 2d).
 上記3)の構成(離型フィルム/アンダーコート層/ガスバリア層/保護フィルム)からなる転写用フィルムを適用する場合も、図2と同様であり、先ず、転写用フィルム10から保護フィルム(不図示)が剥離され、次いで、基板11上に配置された有機EL素子と、転写用フィルム10のガスバリア層とが向き合うようにラミネートされ、次いで、転写用フィルム10の離型フィルム1が剥離されて、転写用フィルム10からガスバリア性積層膜(アンダーコート層/ガスバリア層)が転写・被着される。 The case of applying a transfer film composed of the above 3) (release film / undercoat layer / gas barrier layer / protective film) is the same as in FIG. Is then laminated so that the organic EL element disposed on the substrate 11 and the gas barrier layer of the transfer film 10 face each other, and then the release film 1 of the transfer film 10 is peeled off, A gas barrier laminate film (undercoat layer / gas barrier layer) is transferred and deposited from the transfer film 10.
 上記5)の構成(離型フィルム/アンダーコート層/ガスバリア層/保護層/封止樹脂層/第2離型フィルム)からなる転写用フィルムを適用する場合も、図2と同様であり、先ず、転写用フィルム10から第2離型フィルム5が剥離され、次いで、基板11上に配置された有機EL素子12と、転写用フィルム10の封止樹脂層とが向き合うようにラミネートされ、次いで、転写用フィルム10の離型フィルム1が剥離されて、転写用フィルム10からガスバリア性積層膜(アンダーコート層/ガスバリア層/保護層/封止樹脂層)が転写・被着される。 The case of applying a transfer film composed of the above 5) (release film / undercoat layer / gas barrier layer / protective layer / sealing resin layer / second release film) is also the same as in FIG. The second release film 5 is peeled from the transfer film 10, and then laminated so that the organic EL element 12 disposed on the substrate 11 and the sealing resin layer of the transfer film 10 face each other. The release film 1 of the transfer film 10 is peeled off, and the gas barrier laminate film (undercoat layer / gas barrier layer / protective layer / sealing resin layer) is transferred and adhered from the transfer film 10.
 以下、本発明を実施例に基づき、具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。
[評価方法]
 まず、各実施例および比較例における評価方法を説明する。評価n数は、特に断らない限り、n=5とし平均値を求めた。
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.
[Evaluation methods]
First, an evaluation method in each example and comparative example will be described. The number of evaluation n was n = 5 and the average value was obtained unless otherwise specified.
 (1)離型フィルムとアンダーコート層との剥離力の測定
 実施例および比較例で作製した転写用フィルムを幅20mm×長さ100mmに切断して試験用サンプルを作製した。この試験用サンプルのガスバリア層の面に、粘着テープ(日東電工(株)の31B;幅18mm×長さ100mm)を貼り合せ、自重400gのゴムローラで圧着した後、23℃、相対湿度55%の雰囲気下で24時間放置した後、引っ張り試験機を用いて、上記粘着テープを180°方向に200mm/分の速度で剥離し、剥離力(mN/18mm)を測定した。
(1) Measurement of peeling force between release film and undercoat layer The transfer films prepared in Examples and Comparative Examples were cut into a width of 20 mm and a length of 100 mm to prepare test samples. An adhesive tape (31B of Nitto Denko Corporation; width 18 mm × length 100 mm) was bonded to the surface of the gas barrier layer of this test sample, and after pressure bonding with a rubber roller having a weight of 400 g, the temperature was 23 ° C. and the relative humidity was 55%. After leaving in an atmosphere for 24 hours, the adhesive tape was peeled off at a rate of 200 mm / min in the 180 ° direction using a tensile tester, and the peeling force (mN / 18 mm) was measured.
 実施例41~44で作製した転写用フィルムについては、離型フィルムとアンダーコート層との剥離力より第2離型フィルムと封止樹脂層との剥離力が小さいため、先ず、封止樹脂層から第2離型フィルムを剥離する必要がある。次に、第2離型フィルムが剥離されて露出した封止樹脂層の面に粘着テープ(日東電工(株)の31B;幅18mm×長さ100mm)を貼り合せ、自重400gのゴムローラで圧着した後、23℃、相対湿度55%の雰囲気下で24時間放置した後、引っ張り試験機を用いて、上記粘着テープを180°方向に200mm/分の速度で剥離し、剥離力(mN/18mm)を測定した。 For the transfer films produced in Examples 41 to 44, the peel force between the second release film and the sealing resin layer is smaller than the peel force between the release film and the undercoat layer. The second release film needs to be peeled off. Next, an adhesive tape (31B of Nitto Denko Corporation; width 18 mm × length 100 mm) was bonded to the surface of the sealing resin layer exposed by peeling off the second release film, and pressure-bonded with a rubber roller having a weight of 400 g. Then, after leaving for 24 hours in an atmosphere of 23 ° C. and 55% relative humidity, the adhesive tape was peeled off at a rate of 200 mm / min in the direction of 180 ° using a tensile tester, and the peeling force (mN / 18 mm) Was measured.
 (2)封止樹脂層と第2離型フィルムとの剥離力の測定
 実施例41~44で作製した転写用フィルムを幅20mm×長さ100mmに切断して試験用サンプルを作製した。引っ張り試験機を用いて、試験用サンプルの第2離型フィルムを180°方向に200mm/分の速度で剥離し、剥離力(mN/18mm)を測定した。
(2) Measurement of peel force between sealing resin layer and second release film The transfer films prepared in Examples 41 to 44 were cut into a width of 20 mm and a length of 100 mm to prepare test samples. Using a tensile tester, the second release film of the test sample was peeled in the 180 ° direction at a speed of 200 mm / min, and the peel force (mN / 18 mm) was measured.
 (3)ガスバリア性積層膜の水蒸気透過率の測定その1
 実施例1~40および比較例1~32で作製した転写用フィルムを幅100mm×長さ100mmに切断し、この転写用フィルムのガスバリア層の面を、上記と同サイズの二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)の“ルミラー(登録商標)”「U48」;厚み100μm)の一方の面に、アクリル系粘着剤(スリーエム(株)の「8146-1」;厚み25μm)を介して貼り合せ、自重400gのゴムローラで圧着して測定用サンプルを作製した。このサンプルを23℃、相対湿度55%の雰囲気下で24時間放置した後、下記測定装置の測定サイズにカットし、転写用フィルムの離型フィルムを剥離した後、水蒸気透過率を測定し、以下の基準で評価した。
(3) Measurement of water vapor permeability of gas barrier laminate film 1
The transfer films prepared in Examples 1 to 40 and Comparative Examples 1 to 32 were cut into a width of 100 mm and a length of 100 mm, and the gas barrier layer surface of the transfer film was formed into a biaxially stretched polyethylene terephthalate film having the same size as described above. (Toray Industries, Inc. “Lumilar (registered trademark)” “U48”; 100 μm thickness) is bonded via an acrylic adhesive (“836-1” from 3M Corporation; 25 μm thickness) The sample for measurement was produced by pressure bonding with a rubber roller having a weight of 400 g. This sample was allowed to stand for 24 hours in an atmosphere of 23 ° C. and relative humidity 55%, then cut to the measurement size of the following measuring device, peeled off the release film of the transfer film, and then measured the water vapor transmission rate. Evaluation based on the criteria.
 なお、上記で使用した二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)の“ルミラー(登録商標)”「U48」;厚み100μm)の水蒸気透過率は、20g/m/day程度であり、ガスバリア性積層膜の水蒸気透過率の測定には影響は与えない。貼り合わせに用いた粘着剤も同様である。 In addition, the water vapor permeability of the biaxially stretched polyethylene terephthalate film used above ("Lumirror (registered trademark)""U48" of Toray Industries, Inc .; thickness 100 [mu] m) is about 20 g / m < 2 > / day and has a gas barrier property. It does not affect the measurement of the water vapor transmission rate of the laminated film. The same applies to the adhesive used for bonding.
 <測定装置および測定条件>
 英国のテクノロックス(Technolox)社製の水蒸気透過率測定装置(機種名:DELTAPERM(登録商標))を使用し、温度40℃、湿度90%RH、測定面積50cmの条件で測定した。
<Measurement equipment and measurement conditions>
Using a water vapor transmission rate measuring device (model name: DELTAPERRM (registered trademark)) manufactured by Technolox, UK, measurement was performed under conditions of a temperature of 40 ° C., a humidity of 90% RH, and a measurement area of 50 cm 2 .
 <評価基準>
A;水蒸気透過率が0.001g/m/day未満
B;水蒸気透過率が0.001g/m/day以上、0.005g/m/day未満
C;水蒸気透過率が0.005g/m/day以上、0.01g/m/day未満
D;水蒸気透過率が0.01g/m/day以上、0.05g/m/day未満
E;水蒸気透過率が0.05g/m/day以上、0.1g/m/day未満
F;水蒸気透過率が0.1g/m/day以上。
<Evaluation criteria>
A; water vapor transmission rate of 0.001g / m 2 / day below B; water vapor transmission rate of 0.001g / m 2 / day or more, 0.005g / m 2 / day below C; water vapor transmission rate of 0.005 g / m 2 / day or more, 0.01 g / m 2 / day below D; water vapor transmission rate of 0.01 g / m 2 / day or more, 0.05 g / m 2 / day below E; water vapor transmission rate of 0.05 g / m 2 / day or more, less than 0.1 g / m 2 / day F; water vapor transmission rate is 0.1 g / m 2 / day or more.
 (4)ガスバリア性積層膜の水蒸気透過率の測定その2
 実施例41~44で作製した転写用フィルムを幅100mm×長さ100mmに切断し、第2離型フィルムを剥離した後、上記と同サイズの二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)の“ルミラー(登録商標)”「U48」;厚み100μm)の一方の面に、転写用フィルムの封止樹脂層の面を貼り合せ、自重400gのゴムローラで圧着し、測定用サンプルを作製した。このサンプルを、23℃、相対湿度55%の雰囲気下で24時間放置した後、上記測定装置の測定サイズにカットし、転写用フィルムの離型フィルムを剥離した後、水蒸気透過率を測定し、上記基準で評価した。測定装置および測定条件は、上記と同じである。
(4) Measurement of water vapor permeability of gas barrier laminate film 2
The transfer films prepared in Examples 41 to 44 were cut into a width of 100 mm and a length of 100 mm, the second release film was peeled off, and then a biaxially stretched polyethylene terephthalate film having the same size as above ("Toray Industries, Inc." The surface of the sealing resin layer of the transfer film was bonded to one surface of Lumirror (registered trademark) “U48” (thickness: 100 μm) and pressure-bonded with a rubber roller having a weight of 400 g to prepare a measurement sample. This sample was allowed to stand for 24 hours in an atmosphere of 23 ° C. and a relative humidity of 55%, then cut to the measurement size of the measuring device, and after peeling the release film of the transfer film, the water vapor transmission rate was measured. Evaluation was made according to the above criteria. The measurement apparatus and measurement conditions are the same as described above.
 (5)ガスバリア層の組成分析
 ガスバリア層の組成分析(ガスバリア層が酸化亜鉛、二酸化ケイ素、酸化アルミニウムを含むかどうか、および各元素の含有比率)は、X線光電子分光法(XPS法)により行った。すなわち、アルゴンイオンを用いたスパッタエッチングにより、最表層を5nm程度エッチングして除去した後、各元素の含有比率を測定した。XPS法の測定条件は下記の通りである。
・装置           :ESCA 5800(アルバックファイ社製)
・励起X線         :monochromatic AlKα
・X線出力         :300W
・X線径          :800μm
・光電子脱出角度      :45°
・Arイオンエッチング   :2.0kV、10mPa。
(5) Composition analysis of the gas barrier layer The composition analysis of the gas barrier layer (whether the gas barrier layer contains zinc oxide, silicon dioxide, aluminum oxide and the content ratio of each element) is performed by X-ray photoelectron spectroscopy (XPS method). It was. That is, after removing the outermost layer by etching about 5 nm by sputter etching using argon ions, the content ratio of each element was measured. The measurement conditions of the XPS method are as follows.
・ Equipment: ESCA 5800 (manufactured by ULVAC-PHI)
Excitation X-ray: monochromic AlKα
・ X-ray output: 300W
-X-ray diameter: 800 μm
-Photoelectron escape angle: 45 °
Ar ion etching: 2.0 kV, 10 mPa.
 (6)各層の厚み
 転写用フィルムの断面観察用サンプルをマイクロサンプリングシステム(日立製FB-2000A)を使用してFIB法により(具体的には「高分子表面加工学」(岩森暁著)p.118~119に記載の方法に基づいて)作製した。透過型電子顕微鏡(日立製H-9000UHRII)により、加速電圧300kVとして、断面観察用サンプルの断面を観察し、アンダーコート層、ガスバリア層、離型フィルムの離型層、封止樹脂層等の各層の厚みを測定した。
(6) Thickness of each layer Using a microsampling system (Hitachi FB-2000A) for the sample for observing the cross section of the transfer film by the FIB method (specifically, “Polymer Surface Processing” (by Atsushi Iwamori) p 119-119)). Using a transmission electron microscope (Hitachi H-9000UHRII), the cross section of the sample for cross section observation was observed at an acceleration voltage of 300 kV, and each layer such as an undercoat layer, a gas barrier layer, a release film release layer, and a sealing resin layer The thickness of was measured.
 (7)アンダーコート層の原子間力顕微鏡で測定される表面粗さ(Ra)の測定
 アンダーコート層の表面粗さ(Ra)を、日立ハイテクサイエンス製の原子間力顕微鏡「AFM5100N」を用い、下記条件による測定した。
・走査モード:DFM
・走査範囲:5μm×5μm
・データ数:256×256
・測定環境:25℃、大気中。
(7) Measurement of surface roughness (Ra) measured by atomic force microscope of undercoat layer The surface roughness (Ra) of the undercoat layer was measured using an atomic force microscope “AFM5100N” manufactured by Hitachi High-Tech Science, Measurement was performed under the following conditions.
・ Scanning mode: DFM
・ Scanning range: 5μm × 5μm
-Number of data: 256 x 256
Measurement environment: 25 ° C. in the atmosphere.
 (8)円筒形マンドレル法による屈曲性試験
 円筒形マンドレル法(JIS K5600-5-1:1999)に準拠して、直径2mm~5mmの円筒形マンドレルに転写用フィルムのガスバリア層側が外側になるように(離型フィルムが円筒形マンドレルに接触するように)巻き付け、その巻き付け部分にクラックが生じるか否かを目視で観察し、クラックが発生しないマンドレルの最小直径を確認し、以下の基準で評価した。
(8) Flexibility test by cylindrical mandrel method In accordance with the cylindrical mandrel method (JIS K5600-5-1: 1999), the transfer film has a gas barrier layer side on the outside of a cylindrical mandrel with a diameter of 2 mm to 5 mm. (Make the release film come into contact with the cylindrical mandrel) and visually observe whether or not there are cracks in the wound part, check the minimum diameter of the mandrel where cracks do not occur, and evaluate according to the following criteria did.
 A:最小直径2mm(直径2mmでクラックは発生しない)。 A: Minimum diameter of 2 mm (diameter of 2 mm and no cracks are generated).
 B:最小直径3mm(直径2mmでクラックが発生するが、直径3mmではクラックは発生しない)。 B: Minimum diameter 3 mm (cracks occur at a diameter of 2 mm, but no crack occurs at a diameter of 3 mm).
 C:最小直径4mm(直径3mmでクラックが発生するが、直径4mmではクラックは発生しない)。 C: Minimum diameter of 4 mm (crack occurs at a diameter of 3 mm, but no crack occurs at a diameter of 4 mm).
 D:最小直径5mm(直径4mmでクラックが発生するが、直径5mmではクラックは発生しない)。 D: Minimum diameter 5 mm (cracks occur at a diameter of 4 mm, but no cracks occur at a diameter of 5 mm).
 E:最小直径が5mmを超える(直径5mmでクラックが発生する)。 E: Minimum diameter exceeds 5 mm (cracks occur at a diameter of 5 mm).
 [離型フィルムの作製]
 <離型フィルム1>
 厚みが38μmの二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)の“ルミラー(登録商標)”「R80」)の平滑面側に、下記の離型層塗工液p1をグラビアコーターで塗布し、100℃で予備乾燥後、160℃で加熱乾燥して、離型層を積層した。離型層の厚みは100nmであった。
[Production of release film]
<Release film 1>
On the smooth surface side of a biaxially stretched polyethylene terephthalate film having a thickness of 38 μm (“Lumirror (registered trademark)” “R80” manufactured by Toray Industries, Inc.), the following release layer coating solution p1 was applied with a gravure coater, and 100 After preliminary drying at 0 ° C., the product was dried by heating at 160 ° C. to laminate a release layer. The thickness of the release layer was 100 nm.
 <離型層塗工液p1>
 硬化型シリコーン樹脂(信越化学工業(株)の「KS-3703」)45質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)5質量部、硬化剤(信越化学工業(株)の白金触媒「PL-50T」)1質量部、トルエン/MEK(50/50)混合液100質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p1>
45 parts by mass of a curable silicone resin (“KS-3703” from Shin-Etsu Chemical Co., Ltd.), 5 parts by mass of a release force modifier (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), a curing agent (Shin-Etsu Chemical Co., Ltd.) A release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” from Co., Ltd. and 100 parts by mass of a toluene / MEK (50/50) mixture.
 <離型フィルム2>
 離型フィルム1の作製において、下記の離型層塗工液p2に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 2>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that the release layer coating liquid p2 was changed to the following.
 <離型層塗工液p2>
 硬化型シリコーン樹脂(信越化学工業(株)の「KS-3703」)40質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)10質量部、硬化剤(信越化学工業(株)の白金触媒「PL-50T」)1質量部、トルエン/MEK(50/50)混合液100質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p2>
40 parts by mass of a curable silicone resin (“KS-3703” from Shin-Etsu Chemical Co., Ltd.), 10 parts by mass of a release force regulator (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), a curing agent (Shin-Etsu Chemical Co., Ltd.) A release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” from Co., Ltd. and 100 parts by mass of a toluene / MEK (50/50) mixture.
 <離型フィルム3>
 離型フィルム1の作製において、下記の離型層塗工液p3に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 3>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p3.
 <離型層塗工液p3>
 硬化型シリコーン樹脂(信越化学工業(株)の「KS-3703」)35質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)25質量部、硬化剤(信越化学工業(株)の白金触媒「PL-50T」)1質量部、トルエン/MEK(50/50)混合液100質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p3>
35 parts by mass of a curable silicone resin (“KS-3703” from Shin-Etsu Chemical Co., Ltd.), 25 parts by mass of a release force modifier (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), a curing agent (Shin-Etsu Chemical Co., Ltd.) A release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” from Co., Ltd. and 100 parts by mass of a toluene / MEK (50/50) mixture.
 <離型フィルム4>
 離型フィルム1の作製において、下記の離型層塗工液p4に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 4>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating solution p4.
 <離型層塗工液p4>
 硬化型シリコーン樹脂(信越化学工業(株)の「X-62-5039」)10質量部、硬化型シリコーン樹脂(信越化学工業(株)の「X-92-185」)0.4質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)10重量部、硬化剤(信越化学工業(株)の白金触媒「PL-5000」)1質量部、トルエン/MEK(50/50)混合液200質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p4>
10 parts by mass of curable silicone resin (“X-62-5039” from Shin-Etsu Chemical Co., Ltd.), 0.4 parts by mass of curable silicone resin (“X-92-185” from Shin-Etsu Chemical Co., Ltd.) 10 parts by weight of a peeling force adjusting agent (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), 1 part by weight of a curing agent (platinum catalyst “PL-5000” from Shin-Etsu Chemical Co., Ltd.), toluene / MEK (50 / 50) A release layer coating solution in which 200 parts by mass of the mixed solution was mixed was prepared.
 <離型フィルム5>
 厚みが38μmの二軸延伸ポリエチレンテレフタレートフィルム(東レ(株)の“ルミラー(登録商標)”「R80」)の平滑面側に、下記のアンカー層塗工液をグラビアコーターで塗布し、120℃で乾燥加熱後、下記の離型層塗工液p5をグラビアコーターで塗布し、100℃で予備乾燥後、160℃で加熱乾燥して、離型層を積層した。アンカー層の厚みは50nm、離型層の厚みは100nmであった。
<Release film 5>
The following anchor layer coating solution was applied with a gravure coater to the smooth surface side of a biaxially stretched polyethylene terephthalate film having a thickness of 38 μm (“Lumirror (registered trademark)” “R80” manufactured by Toray Industries, Inc.) After drying and heating, the following release layer coating solution p5 was applied with a gravure coater, preliminarily dried at 100 ° C., and then heated and dried at 160 ° C. to laminate a release layer. The anchor layer had a thickness of 50 nm, and the release layer had a thickness of 100 nm.
 <アンカー層塗工液>
 エポキシ基含有有機ケイ素化合物であるBY24-846B(東レ・ダウコーニング(株))5質量部、メタクリル基含有有機ケイ素化合物であるBY24-846C(東レ・ダウコーニング(株))質量部、アルミニウムキレートであるBY24-846D(東レ・ダウコーニング(株))1質量部、トルエン/MEK(50/50)混合液100質量部を混合してアンカー層塗工液を調製した。
<Anchor layer coating solution>
5 parts by mass of BY24-846B (Toray Dow Corning Co., Ltd.) which is an epoxy group-containing organosilicon compound, BY24-846C (Toray Dow Corning Co., Ltd.) which is a methacryl group-containing organosilicon compound, aluminum chelate An anchor layer coating solution was prepared by mixing 1 part by mass of BY24-846D (Toray Dow Corning Co., Ltd.) and 100 parts by mass of a toluene / MEK (50/50) mixture.
 <離型層塗工液p5>
 アルキド変性シリコーン樹脂(信越化学工業(株)の「X-62-900B)20質量部、酸触媒としてパラトルエンスルホン酸(信越化学工業(株)の「CAT-PS-80」)0.25質量部、希釈溶媒としてMEK30質量部、トルエン50質量部を混合し離型層塗工液を調製した。
<Release layer coating solution p5>
20 parts by mass of an alkyd-modified silicone resin (“X-62-900B” from Shin-Etsu Chemical Co., Ltd.), 0.25 mass by para-toluenesulfonic acid (“CAT-PS-80” from Shin-Etsu Chemical Co., Ltd.) as an acid catalyst As a diluent solvent, 30 parts by mass of MEK and 50 parts by mass of toluene were mixed to prepare a release layer coating solution.
 <離型フィルム6>
 離型フィルム1の作製において、下記の離型層塗工液p6に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 6>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p6.
 <離型層塗工液p6>
 硬化型シリコーン樹脂(信越化学工業(株)の「X-62-5039」)10質量部、硬化型シリコーン樹脂(信越化学工業(株)の「X-92-185」)0.4質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)15重量部、硬化剤(信越化学工業(株)の白金触媒「PL-5000」)1質量部、トルエン/MEK(50/50)混合液200質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p6>
10 parts by mass of curable silicone resin (“X-62-5039” from Shin-Etsu Chemical Co., Ltd.), 0.4 parts by mass of curable silicone resin (“X-92-185” from Shin-Etsu Chemical Co., Ltd.) 15 parts by weight of a peel strength adjusting agent (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), 1 part by weight of a curing agent (platinum catalyst “PL-5000” from Shin-Etsu Chemical Co., Ltd.), toluene / MEK (50 / 50) A release layer coating solution in which 200 parts by mass of the mixed solution was mixed was prepared.
 <離型フィルム7>
 離型フィルム1の作製において、下記の離型層塗工液p7に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 7>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that the release layer coating liquid p7 was changed to the following.
 <離型層塗工液p7>
 長鎖アルキル基含有樹脂(アシオ産業(株)の「アシオレジン」RA-95H)をトルエンで溶解して、固形分濃度2.0質量%の塗工液を調製した。
<Releasing layer coating solution p7>
A long-chain alkyl group-containing resin (“Asioresin” RA-95H from Ashio Sangyo Co., Ltd.) was dissolved in toluene to prepare a coating solution having a solid concentration of 2.0% by mass.
 <離型フィルム8>
 離型フィルム1の作製において、下記の離型層塗工液p8に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 8>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p8.
 <離型層塗工液p8>
 硬化型シリコーン樹脂(信越化学工業(株)の「KS-3703」)23質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)76質量部、硬化剤(信越化学工業(株)の白金触媒「PL-50T」)1質量部、トルエン/MEK(50/50)混合液400質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p8>
23 parts by mass of a curable silicone resin (“KS-3703” from Shin-Etsu Chemical Co., Ltd.), 76 parts by mass of a release force regulator (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), a curing agent (Shin-Etsu Chemical Co., Ltd.) A release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” (Co., Ltd.) and 400 parts by mass of a toluene / MEK (50/50) mixture.
 <離型フィルム9>
 離型フィルム1の作製において、下記の離型層塗工液p9に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 9>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p9.
 <離型層塗工液p9>
 硬化型シリコーン樹脂(信越化学工業(株)の「KS-3703」)17質量部、剥離力調整剤(信越化学工業(株)の「KS-3800」)82質量部、硬化剤(信越化学工業(株)の白金触媒「PL-50T」)1質量部、トルエン/MEK(50/50)混合液400質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p9>
17 parts by mass of a curable silicone resin (“KS-3703” from Shin-Etsu Chemical Co., Ltd.), 82 parts by mass of a release force modifier (“KS-3800” from Shin-Etsu Chemical Co., Ltd.), a curing agent (Shin-Etsu Chemical Co., Ltd.) A release layer coating solution was prepared by mixing 1 part by mass of a platinum catalyst “PL-50T” (Co., Ltd.) and 400 parts by mass of a toluene / MEK (50/50) mixture.
 <離型フィルム10>
 離型フィルム1の作製において、下記の離型層塗工液p10に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 10>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p10.
 <離型層塗工液p10>
 硬化型シリコーン樹脂(信越化学工業(株)の「KS847H」)10質量部、硬化剤(信越化学工業(株)の白金触媒「PL-50T」)0.05質量部、トルエン/MEK(50/50)混合液100質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p10>
10 parts by mass of a curable silicone resin (“KS847H” from Shin-Etsu Chemical Co., Ltd.), 0.05 parts by mass of a curing agent (platinum catalyst “PL-50T” from Shin-Etsu Chemical Co., Ltd.), toluene / MEK (50 / 50) A release layer coating solution in which 100 parts by mass of the mixed solution was mixed was prepared.
 <離型フィルム11>
 離型フィルム1の作製において、下記の離型層塗工液p11に変更する以外は、離型フィルム1と同様にして作製した。
<Release film 11>
In the production of the release film 1, it was produced in the same manner as the release film 1 except that it was changed to the following release layer coating liquid p11.
 <離型層塗工液p11>
 離型剤として長鎖アルキル基含有樹脂(ライオン・スペシャリティ・ケミカルズ(株)の「ピーロイル」HT)を固形分換算で10質量部、架橋剤としてメラミン系架橋剤(三井化学(株)の「ユーバン」28-60)を固形分換算で2.5質量部、酸触媒としてp-トルエンスルホン酸(テイカ(株)の「TAYCACURE」AC-700)を固形分換算で1.8質量部、トルエン/TEK(40/10)混合液500質量部を混合した離型層塗工液を調製した。
<Release layer coating solution p11>
10 parts by weight of solid chain equivalent resin (“Pyroyl” HT from Lion Specialty Chemicals Co., Ltd.) as a release agent and a melamine-based crosslinking agent (Mitsui Chemicals Co., Ltd. 28-60) is 2.5 parts by mass in terms of solid content, p-toluenesulfonic acid (“TAYCACURE” AC-700 from Teika Co., Ltd.) as an acid catalyst is 1.8 parts by mass in terms of solid content, toluene / A release layer coating solution in which 500 parts by mass of a TEK (40/10) mixture was mixed was prepared.
 [実施例1]
 離型フィルム1の離型層上に、下記のアンダーコート層用塗工液a1をグラビアコーターで塗布し、90℃で乾燥後、紫外線を400mJ/cm照射し硬化させてアンダーコート層を形成した。このアンダーコート層の厚みは1μmであった。
[Example 1]
On the release layer of release film 1, the following undercoat layer coating solution a1 is applied with a gravure coater, dried at 90 ° C., and then irradiated with UV light at 400 mJ / cm 2 to form an undercoat layer. did. The thickness of this undercoat layer was 1 μm.
 <アンダーコート層用塗工液a1>
 3官能のウレタンアクリレートオリゴマーを含有する紫外線硬化性樹脂塗工液(日本合成化学(株)の「UV-7550B」)を、有機溶剤(MEK)で固形分濃度が20質量%となるように希釈した。
<Coating liquid a1 for undercoat layer>
Dilute UV curable resin coating solution containing trifunctional urethane acrylate oligomer (“UV-7550B” from Nippon Synthetic Chemical Co., Ltd.) with organic solvent (MEK) so that the solid content is 20% by mass. did.
 <ガスバリア層の積層> 
 上記で形成されたアンダーコート層の上に、下記要領にてガスバリア層を厚みが150nmとなるように積層して転写用フィルムを作製した。
<Lamination of gas barrier layer>
On the undercoat layer formed as described above, a transfer film was produced by laminating a gas barrier layer to a thickness of 150 nm in the following manner.
 図3に示す構造の巻き取り式スパッタリング・CVD装置21を使用し、酸化亜鉛と二酸化ケイ素と酸化アルミニウムで形成された混合焼結材であるスパッタターゲットをスパッタ電極32に設置してアルゴンガスおよび酸素ガスによるスパッタリングを実施し、アンダーコート層が積層された離型フィルム24のアンダーコート層(不図示)の面上にガスバリア層(不図示)を積層した。 A sputter target, which is a mixed sintered material formed of zinc oxide, silicon dioxide, and aluminum oxide, is placed on the sputter electrode 32 using the winding type sputtering / CVD apparatus 21 having the structure shown in FIG. Sputtering with gas was performed, and a gas barrier layer (not shown) was laminated on the surface of the undercoat layer (not shown) of the release film 24 on which the undercoat layer was laminated.
 具体的な操作は以下の通りである。まず、スパッタ電極32に酸化亜鉛/二酸化ケイ素/酸化アルミニウムの組成質量比が77/20/3で焼結されたスパッタターゲットを設置した巻き取り式スパッタリング・CVD装置21の巻き取り室26の中で、巻き出し軸27にアンダーコート層が積層された離型フィルム24のアンダーコート層(不図示)の面がスパッタ電極32に対向するようにセットし、巻き出し、巻き出し側ガイドロール28、29、30を介して、クーリングドラム31に通した。減圧度2×10-1Paとなるように酸素ガス分圧10%としてアルゴンガスおよび酸素ガスを導入し、直流電源により投入電力4000Wを印加することにより、アルゴン・酸素ガスプラズマを発生させ、ガスバリア層を形成した。厚みは、フィルム搬送速度により調整した。その後、巻き取り側ガイドロール33,34,35を介して巻き取り軸36に巻き取った。 The specific operation is as follows. First, in a winding chamber 26 of a winding type sputtering / CVD apparatus 21 in which a sputtering target sintered with a composition ratio of zinc oxide / silicon dioxide / aluminum oxide of 77/20/3 is installed on the sputtering electrode 32. The undercoat layer (not shown) of the release film 24 in which the undercoat layer is laminated on the unwinding shaft 27 is set so that the surface of the release film 24 faces the sputter electrode 32, and unwinding and unwinding side guide rolls 28, 29 are set. , 30 and passed through the cooling drum 31. Argon gas and oxygen gas were introduced at an oxygen gas partial pressure of 10% so that the degree of decompression was 2 × 10 −1 Pa, and an argon / oxygen gas plasma was generated by applying an input power of 4000 W from a DC power source, thereby producing a gas barrier. A layer was formed. The thickness was adjusted by the film transport speed. Then, it wound around the winding shaft 36 via the winding side guide rolls 33, 34, 35.
 このガスバリア層の組成は、Zn原子濃度が27.5atom%、Si原子濃度が13.1atom%、Al原子濃度が2.3atom%、O原子濃度が57.1atom%であった。 The composition of this gas barrier layer was such that the Zn atom concentration was 27.5 atom%, the Si atom concentration was 13.1 atom%, the Al atom concentration was 2.3 atom%, and the O atom concentration was 57.1 atom%.
 [実施例2]
 実施例1において、離型フィルム1を離型フィルム2に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 2]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 2 in Example 1.
 [実施例3]
 実施例1において、離型フィルム1を離型フィルム3に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 3]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 3 in Example 1.
 [実施例4]
 実施例1において、離型フィルム1を離型フィルム4に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 4]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 4 in Example 1.
 [実施例5]
 実施例1において、離型フィルム1を離型フィルム5に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 5]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 5 in Example 1.
 [実施例6]
 実施例1において、離型フィルム1を離型フィルム6に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 6]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 6 in Example 1.
 [実施例7]
 実施例1において、離型フィルム1を離型フィルム7に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 7]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 7 in Example 1.
 [実施例8]
 実施例1において、離型フィルム1を離型フィルム8に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 8]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 8 in Example 1.
 [実施例9]
 実施例1において、離型フィルム1を離型フィルム9に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Example 9]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 9 in Example 1.
 [比較例1]
 実施例1において、離型フィルム1を離型フィルム10に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Comparative Example 1]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 10 in Example 1.
 [比較例2]
 実施例1において、離型フィルム1を離型フィルム11に変更する以外は実施例1と同様にして、転写用フィルムを作製した。
[Comparative Example 2]
A transfer film was produced in the same manner as in Example 1 except that the release film 1 was changed to the release film 11 in Example 1.
 [評価]
 上記の実施例1~9および比較例1~2で得られた転写用フィルムについて、前述の測定および評価を行った。その結果を表1に示す。
[Evaluation]
The transfer films obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were measured and evaluated as described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例11~19および比較例11~12]
 実施例1~9および比較例1~2において、アンダーコート層用塗工液を下記の塗工液a2に変更し、かつアンダーコート層の厚みを3μm変更する以外は、実施例1~9および比較例1~2と同様にして、離型フィルム上にアンダーコート層を積層した。
[Examples 11 to 19 and Comparative Examples 11 to 12]
In Examples 1 to 9 and Comparative Examples 1 and 2, except that the undercoat layer coating solution was changed to the following coating solution a2 and the thickness of the undercoat layer was changed by 3 μm, Examples 1 to 9 and In the same manner as in Comparative Examples 1 and 2, an undercoat layer was laminated on the release film.
 <アンダーコート層用塗工液a2>
 大日精化工業(株)製の紫外線硬化性樹脂「セイカビーム IL-PC2」を、有機溶剤(MEK)で固形分濃度が20質量%となるように希釈した。
<Coating liquid a2 for undercoat layer>
An ultraviolet curable resin “Seika Beam IL-PC2” manufactured by Dainichi Seika Kogyo Co., Ltd. was diluted with an organic solvent (MEK) to a solid content concentration of 20% by mass.
 <ガスバリア層の積層>
 上記で形成されたアンダーコート層上に、実施例1と同様の製造装置(図3)を用いて、スパッタターゲットを酸化アルミニウム(アルミニウム原子に対する酸素原子数比(O/Al比率)が1.5で焼結されたスパッタターゲット)に変更し、かつガスバリア層の厚みを200nmに変更する以外は、実施例1と同様にしてガスバリア層を積層して転写用フィルムを作製した。
<Lamination of gas barrier layer>
On the undercoat layer formed as described above, the sputtering target was made of aluminum oxide (the ratio of the number of oxygen atoms to aluminum atoms (O / Al ratio) was 1.5) using the same manufacturing apparatus as in Example 1 (FIG. 3). The film for transfer was prepared by laminating the gas barrier layer in the same manner as in Example 1 except that the thickness was changed to 200 nm and the thickness of the gas barrier layer was changed to 200 nm.
 [評価]
 上記の実施例11~19および比較例11~12で得られた転写用フィルムについて、前述の測定および評価を行った。その結果を表2に示す。
[Evaluation]
The transfer films obtained in Examples 11 to 19 and Comparative Examples 11 to 12 were measured and evaluated as described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例21~29および比較例21~22]
 実施例1~9および比較例1~2において、アンダーコート層用塗工液を下記の塗工液a3に変更し、かつアンダーコート層の厚みを5μmに変更する以外は、実施例1~9および比較例1~2と同様にして転写用フィルムを作製した。
[Examples 21 to 29 and Comparative Examples 21 to 22]
In Examples 1 to 9 and Comparative Examples 1 and 2, the undercoat layer coating solution was changed to the following coating solution a3, and the thickness of the undercoat layer was changed to 5 μm. A transfer film was prepared in the same manner as in Comparative Examples 1 and 2.
 <アンダーコート層用塗工液a3>
 下記のウレタン(メタ)アクリレートオリゴマー(UA)140質量部、ジペンタエリスリトールヘキサアクリレート20質量部、光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)907」)5質量部、有機溶剤(MEK)で希釈して、固形分濃度が20質量%に調製した。
<Coating liquid a3 for undercoat layer>
140 parts by mass of the following urethane (meth) acrylate oligomer (UA), 20 parts by mass of dipentaerythritol hexaacrylate, 5 parts by mass of a photopolymerization initiator (“Irgacure (registered trademark) 907” manufactured by Ciba Specialty Chemicals) Then, it was diluted with an organic solvent (MEK) to prepare a solid content concentration of 20% by mass.
 <ウレタン(メタ)アクリレートオリゴマー(UA)の合成>
 4つ口フラスコに、ビスフェノールF型ジエポキシ樹脂(東都化成(株)製、商品名:エポトートYDF-8170C、エポキシ当量:159)を3180質量部、アクリル酸(三菱化学(株)製、商品名:アクリル酸)1440質量部、重合禁止剤としてヒドロキノンモノメチルエーテル4.6質量部、合成触媒としてジメチルアミノエチルメタアクリレート(三菱レイヨン(株)製、商品名:アクリエステルDM)23質量部を入れ、攪拌しながら95℃まで昇温させ、95℃に保持した状態で14時間反応を続けた。酸価が1mgKOH/g以下になったところで内温が60℃になるまで冷却してエポキシ(メタ)アクリレートを得た。
<Synthesis of urethane (meth) acrylate oligomer (UA)>
In a four-necked flask, 3180 parts by mass of bisphenol F type diepoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: Epototo YDF-8170C, epoxy equivalent: 159), acrylic acid (manufactured by Mitsubishi Chemical Corporation, trade name: (Acrylic acid) 1440 parts by mass, 4.6 parts by mass of hydroquinone monomethyl ether as a polymerization inhibitor, and 23 parts by mass of dimethylaminoethyl methacrylate (trade name: Acryester DM, manufactured by Mitsubishi Rayon Co., Ltd.) as a synthesis catalyst were stirred. The temperature was raised to 95 ° C., and the reaction was continued for 14 hours while maintaining the temperature at 95 ° C. When the acid value became 1 mgKOH / g or less, it was cooled until the internal temperature reached 60 ° C. to obtain an epoxy (meth) acrylate.
 次に、4つ口フラスコに、上記エポキシ(メタ)アクリレート298質量部、酢酸エチル711.3質量部を入れ、内温60℃になるように加温した。合成触媒としてジラウリン酸ジ-n-ブチル錫0.21質量部を添加し、攪拌しながら、メチルシクロヘキシレンジイソシアネート(三井化学ポリウレタン(株)製、商品名:タケネート600)199質量部を1時間かけて滴下した。滴下終了後2時間反応を続行し、続いてジエチレングリコール(和光純薬工業(株)製試薬、商品名:ジエチレングリコール、分子量106)27.3質量部、ペンタエリスリトールテトラアクリレート(東亜合成(株)製、商品名:アロニックスM-306)187質量部の混合物を1時間かけて滴下した。滴下後5時間反応を続行し、質量平均分子量19800のウレタン(メタ)アクリレートオリゴマー(UA)を得た。 Next, 298 parts by mass of the epoxy (meth) acrylate and 711.3 parts by mass of ethyl acetate were placed in a four-necked flask and heated to an internal temperature of 60 ° C. 0.21 part by mass of di-n-butyltin dilaurate was added as a synthesis catalyst, and 199 parts by mass of methylcyclohexylene diisocyanate (manufactured by Mitsui Chemicals Polyurethanes Co., Ltd., trade name: Takenate 600) was stirred for 1 hour with stirring. And dripped. The reaction was continued for 2 hours after completion of the dropping, and then 27.3 parts by mass of diethylene glycol (a reagent manufactured by Wako Pure Chemical Industries, Ltd., trade name: diethylene glycol, molecular weight 106), pentaerythritol tetraacrylate (manufactured by Toagosei Co., Ltd.) (Product name: Aronix M-306) A mixture of 187 parts by mass was added dropwise over 1 hour. Reaction was continued for 5 hours after dripping, and the urethane (meth) acrylate oligomer (UA) with a mass average molecular weight of 19800 was obtained.
 [実施例30]
 実施例21において、アンダーコート層用塗工液を下記の塗工液a4に変更する以外は実施例21と同様にして、転写用フィルムを作製した。
[Example 30]
In Example 21, a transfer film was produced in the same manner as in Example 21 except that the undercoat layer coating solution was changed to the following coating solution a4.
 <アンダーコート層用塗工液a4>
 ジペンタエリスリトールヘキサアクリレート(新中村化学工業(株)の「A-DPH」)95質量部、光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)907」)5質量部を有機溶剤(MEK)で希釈して、固形分濃度が20質量%に調製した。
<Coating liquid a4 for undercoat layer>
95 parts by mass of dipentaerythritol hexaacrylate (“A-DPH” from Shin-Nakamura Chemical Co., Ltd.), 5 parts by mass of photopolymerization initiator (“Irgacure (registered trademark) 907” manufactured by Ciba Specialty Chemicals) Was diluted with an organic solvent (MEK) to prepare a solid concentration of 20% by mass.
 [評価]
 上記の実施例21~30および比較例21~22で得られた転写用フィルムについて、前述の測定および評価を行った。その結果を表3に示す。
[Evaluation]
The transfer films obtained in Examples 21 to 30 and Comparative Examples 21 to 22 were measured and evaluated as described above. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例31~40および比較例31~32]
 実施例21~30および比較例21~22において、下記のガスバリア層に変更する以外は、実施例21~30および比較例21~22と同様にして転写用フィルムを作製した。
[Examples 31 to 40 and Comparative Examples 31 to 32]
In Examples 21 to 30 and Comparative Examples 21 to 22, transfer films were produced in the same manner as in Examples 21 to 30 and Comparative Examples 21 to 22, except that the gas barrier layer was changed to the following.
 <ガスバリア層の積層>
 図3に示す構造の巻き取り式のスパッタリング・CVD装置21を使用し、ヘキサメチルジシラザンを原料とした化学気相蒸着(CVD)を実施して、SiO膜を積層した。このSiO膜の厚み200nmであった。
<Lamination of gas barrier layer>
Using a winding-type sputtering / CVD apparatus 21 having the structure shown in FIG. 3, chemical vapor deposition (CVD) using hexamethyldisilazane as a raw material was performed, and an SiO 2 film was laminated. The thickness of this SiO 2 film was 200 nm.
 [評価]
 上記の実施例31~40および比較例31~32で得られた転写用フィルムについて、前述の測定および評価を行った。その結果を表4に示す。
[Evaluation]
The transfer films obtained in Examples 31 to 40 and Comparative Examples 31 to 32 were measured and evaluated as described above. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実施例41]
 実施例3で得られた転写用フィルムのガスバリア層上に下記の封止樹脂層塗工液をバーコーターで乾燥厚みが40μmとなるように塗布し、110℃で乾燥して封止樹脂層を積層した。続いて、封止樹脂層上に第2離型フィルム(ニッパ(株)のシリコーン系離型フィルム「PET38×1-A3」)を積層して転写用フィルムを作製した。
[Example 41]
On the gas barrier layer of the transfer film obtained in Example 3, the following sealing resin layer coating solution was applied with a bar coater to a dry thickness of 40 μm, and dried at 110 ° C. to form a sealing resin layer. Laminated. Subsequently, a second release film (silicone release film “PET38 × 1-A3” from Nipper Co., Ltd.) was laminated on the sealing resin layer to produce a transfer film.
 <封止樹脂層>
 封止樹脂としてポリイソブチレン(BASF社製の「オパノールB100」)60質量部と、粘着付与樹脂として脂環族系水添石油樹脂(エクソン・モービル社製の「エスコレッツ5340」)40質量部とをトルエンに溶解して15質量%の樹脂溶液を調製した。
<Sealing resin layer>
60 parts by mass of polyisobutylene (“OPanol B100” manufactured by BASF) as a sealing resin and 40 parts by mass of an alicyclic hydrogenated petroleum resin (“Escollets 5340” manufactured by Exxon Mobil) as a tackifier resin A 15% by mass resin solution was prepared by dissolving in toluene.
 [実施例42]
 実施例5で得られた転写用フィルムのガスバリア層上に、実施例41と同様にして封止樹脂層および第2離型フィルムを積層して、転写用フィルムを作製した。
[Example 42]
On the gas barrier layer of the transfer film obtained in Example 5, a sealing resin layer and a second release film were laminated in the same manner as in Example 41 to produce a transfer film.
 [実施例43]
 実施例23で得られた転写用フィルムのガスバリア層上に、実施例41と同様にして封止樹脂層および第2離型フィルムを積層して、転写用フィルムを作製した。
[Example 43]
On the gas barrier layer of the transfer film obtained in Example 23, a sealing resin layer and a second release film were laminated in the same manner as in Example 41 to produce a transfer film.
 [実施例44]
 実施例25で得られた転写用フィルムのガスバリア層上に、実施例41と同様にして封止樹脂層および第2離型フィルムを積層して、転写用フィルムを作製した。
[Example 44]
On the gas barrier layer of the transfer film obtained in Example 25, a sealing resin layer and a second release film were laminated in the same manner as in Example 41 to produce a transfer film.
 [評価]
 上記の実施例41~44で得られた転写用フィルムについて、前述の測定および評価を行った。その結果を表5に示す。
[Evaluation]
The transfer films obtained in Examples 41 to 44 were measured and evaluated as described above. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
1 離型フィルム
2 アンダーコート層
3 ガスバリア層
4 封止樹脂層
5 第2離型フィルム
10 転写用フィルム
11 基板
12 有機EL素子
13 封止樹脂層
21 巻き取り式スパッタリング・CVD装置
24 アンダーコート層が積層された離型フィルム
26 巻き取り室
27 巻き出し軸
28、29、30 巻き出し側ガイドロール
31 クーリングドラム
32 スパッタ電極またはCVD電極
33、34、35 巻き取り側ガイドロール
36 巻き取り軸
DESCRIPTION OF SYMBOLS 1 Release film 2 Undercoat layer 3 Gas barrier layer 4 Sealing resin layer 5 2nd release film 10 Transfer film 11 Substrate 12 Organic EL element 13 Sealing resin layer 21 Rewind-type sputtering and CVD apparatus 24 Undercoat layer Laminated release film 26 Winding chamber 27 Unwinding shaft 28, 29, 30 Unwinding side guide roll 31 Cooling drum 32 Sputtering electrode or CVD electrode 33, 34, 35 Winding side guide roll 36 Winding shaft

Claims (12)

  1.  離型フィルム上に、アンダーコート層およびガスバリア層をこの順に含むガスバリア性積層膜を有し、離型フィルムとアンダーコート層との剥離力が15~700mN/18mmの範囲であることを特徴とする、ガスバリア性積層膜の転写用フィルム。 It has a gas barrier laminate film including an undercoat layer and a gas barrier layer in this order on the release film, and the peel force between the release film and the undercoat layer is in the range of 15 to 700 mN / 18 mm. , Transfer film for gas barrier laminate film.
  2.  ガスバリア性積層膜の水蒸気透過率が0.1g/m/day未満である、請求項1に記載のガスバリア性積層膜の転写用フィルム。 The transfer film for a gas barrier laminate film according to claim 1, wherein the water vapor permeability of the gas barrier laminate film is less than 0.1 g / m 2 / day.
  3.  前記アンダーコート層が熱硬化樹脂層もしくは活性エネルギー線硬化樹脂層である、請求項1または2に記載のガスバリア性積層膜の転写用フィルム。 The gas barrier laminate film transfer film according to claim 1 or 2, wherein the undercoat layer is a thermosetting resin layer or an active energy ray curable resin layer.
  4.  前記アンダーコート層のガスバリア層側の面の原子間力顕微鏡で測定される表面粗さ(Ra)が2.0nm未満である、請求項1~3のいずれかに記載のガスバリア性積層膜の転写用フィルム。 The gas barrier laminate film transfer according to any one of claims 1 to 3, wherein a surface roughness (Ra) measured by an atomic force microscope of a surface of the undercoat layer on the gas barrier layer side is less than 2.0 nm. Film.
  5.  前記ガスバリア層が少なくとも酸化亜鉛とケイ素酸化物を含有する、請求項1~4のいずれかに記載のガスバリア性積層膜の転写用フィルム。 The film for transfer of a gas barrier laminate film according to any one of claims 1 to 4, wherein the gas barrier layer contains at least zinc oxide and silicon oxide.
  6.  前記ガスバリア層が、酸化亜鉛、二酸化ケイ素および酸化アルミニウムを含有する層である、請求項1~5のいずれかに記載のガスバリア性積層膜の転写用フィルム。 6. The transfer film for a gas barrier laminate film according to claim 1, wherein the gas barrier layer is a layer containing zinc oxide, silicon dioxide and aluminum oxide.
  7.  前記ガスバリア層における、Zn原子濃度が10~40atom%、Si原子濃度が5~20atom%、Al原子濃度が0.5~5atom%、O原子濃度が35~70atom%である、請求項6に記載のガスバリア性積層膜の転写用フィルム。 7. The gas barrier layer according to claim 6, wherein the Zn atom concentration is 10 to 40 atom%, the Si atom concentration is 5 to 20 atom%, the Al atom concentration is 0.5 to 5 atom%, and the O atom concentration is 35 to 70 atom%. A film for transferring a gas barrier laminate film.
  8.  前記ガスバリア性積層膜が、アンダーコート層、ガスバリア層および封止樹脂層をこの順に含む、請求項1~7のいずれかに記載のガスバリア性積層膜の転写用フィルム。 The gas barrier laminate film transfer film according to any one of claims 1 to 7, wherein the gas barrier laminate film comprises an undercoat layer, a gas barrier layer, and a sealing resin layer in this order.
  9.  前記封止樹脂層が、封止樹脂として、ポリイソブチレン、ブチルゴム、ポリイソプレン、スチレン-イソブチレン変性樹脂、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、およびポリブテンからなる群から選択される少なくとも1種の樹脂と、粘着付与樹脂を含有する、請求項8に記載のガスバリア性積層膜の転写用フィルム。 The sealing resin layer is used as a sealing resin, such as polyisobutylene, butyl rubber, polyisoprene, styrene-isobutylene modified resin, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene rubber. 9. The transfer film for a gas barrier laminate film according to claim 8, comprising at least one resin selected from the group consisting of polybutadiene rubber, styrene-butadiene rubber, and polybutene, and a tackifying resin.
  10.  前記封止樹脂層のガスバリア層側ではない面に第2離型フィルムを有する、請求項8または9に記載のガスバリア性積層膜の転写用フィルム。 The transfer film for a gas barrier laminate film according to claim 8 or 9, wherein the transfer resin layer has a second release film on a surface that is not on the gas barrier layer side of the sealing resin layer.
  11.  円筒形マンドレル法(JIS K5600-5-1:1999)に準拠した屈曲性試験において、クラックが発生しない最小のマンドレル直径が4mmである、請求項1~10のいずれかに記載のガスバリア性積層膜の転写用フィルム。 The gas barrier laminate film according to any one of claims 1 to 10, wherein a minimum mandrel diameter at which cracks do not occur is 4 mm in a flexibility test in accordance with a cylindrical mandrel method (JIS K5600-5: 1: 1999). Transfer film.
  12.  請求項1~11のいずれかに記載のガスバリア性積層膜の転写用フィルムのガスバリア性積層膜が有機EL素子上に被着された、有機ELデバイス。
     
    12. An organic EL device comprising a gas barrier laminate film of the gas barrier laminate film transfer film according to claim 1 deposited on an organic EL element.
PCT/JP2017/024900 2016-07-20 2017-07-07 Film for transfer of gas barrier multilayer film and organic el device WO2018016346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539389A JPWO2018016346A1 (en) 2016-07-20 2017-07-07 Film for transfer of gas barrier laminated film and organic EL device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-142071 2016-07-20
JP2016142071 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016346A1 true WO2018016346A1 (en) 2018-01-25

Family

ID=60993316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024900 WO2018016346A1 (en) 2016-07-20 2017-07-07 Film for transfer of gas barrier multilayer film and organic el device

Country Status (3)

Country Link
JP (1) JPWO2018016346A1 (en)
TW (1) TW201812402A (en)
WO (1) WO2018016346A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135216A1 (en) * 2017-01-18 2018-07-26 コニカミノルタ株式会社 Functional film laminate and method for manufacturing electronic device
WO2018180962A1 (en) * 2017-03-30 2018-10-04 リンテック株式会社 Gas-barrier film and sealed object
WO2020138206A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
WO2021132030A1 (en) * 2019-12-26 2021-07-01 リンテック株式会社 Optical layered body
WO2023067852A1 (en) * 2021-10-19 2023-04-27 Dic株式会社 Layered product and packaging material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179291A (en) * 1994-12-27 1996-07-12 Dainippon Printing Co Ltd Production of plastic substrate for liquid crystal display element
JPH08234181A (en) * 1995-02-24 1996-09-13 Oike Ind Co Ltd Transfer foil for plastic liquid crystal panel
JP2009028946A (en) * 2007-07-25 2009-02-12 Toppan Printing Co Ltd Optical material-protecting laminate, and electroluminescence optical element and electrophoretic display panel using the same
WO2013018602A1 (en) * 2011-08-03 2013-02-07 リンテック株式会社 Gas barrier adhesive sheet, method for producing same, electronic member, and optical member
JP2017043058A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Production method of gas barrier film and transfer method of gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179291A (en) * 1994-12-27 1996-07-12 Dainippon Printing Co Ltd Production of plastic substrate for liquid crystal display element
JPH08234181A (en) * 1995-02-24 1996-09-13 Oike Ind Co Ltd Transfer foil for plastic liquid crystal panel
JP2009028946A (en) * 2007-07-25 2009-02-12 Toppan Printing Co Ltd Optical material-protecting laminate, and electroluminescence optical element and electrophoretic display panel using the same
WO2013018602A1 (en) * 2011-08-03 2013-02-07 リンテック株式会社 Gas barrier adhesive sheet, method for producing same, electronic member, and optical member
JP2017043058A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Production method of gas barrier film and transfer method of gas barrier film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135216A1 (en) * 2017-01-18 2018-07-26 コニカミノルタ株式会社 Functional film laminate and method for manufacturing electronic device
JP7158377B2 (en) 2017-03-30 2022-10-21 リンテック株式会社 Gas barrier film and sealant
WO2018180962A1 (en) * 2017-03-30 2018-10-04 リンテック株式会社 Gas-barrier film and sealed object
JPWO2018180962A1 (en) * 2017-03-30 2020-02-06 リンテック株式会社 Gas barrier film and sealing body
WO2020138206A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
JPWO2020138207A1 (en) * 2018-12-27 2021-11-18 リンテック株式会社 Gas barrier laminate
JPWO2020138206A1 (en) * 2018-12-27 2021-11-18 リンテック株式会社 Gas barrier laminate
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
JP7398394B2 (en) 2018-12-27 2023-12-14 リンテック株式会社 Gas barrier laminate
JP7401463B2 (en) 2018-12-27 2023-12-19 リンテック株式会社 Gas barrier laminate
WO2021132030A1 (en) * 2019-12-26 2021-07-01 リンテック株式会社 Optical layered body
CN114845873A (en) * 2019-12-26 2022-08-02 琳得科株式会社 Optical laminate
WO2023067852A1 (en) * 2021-10-19 2023-04-27 Dic株式会社 Layered product and packaging material
JP7290204B1 (en) * 2021-10-19 2023-06-13 Dic株式会社 Laminates and packaging materials

Also Published As

Publication number Publication date
JPWO2018016346A1 (en) 2019-05-09
TW201812402A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
WO2018016346A1 (en) Film for transfer of gas barrier multilayer film and organic el device
EP2774755B1 (en) Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
EP2839953B1 (en) Gas barrier laminate, method for producing same, member for electronic devices, and electronic device
EP2979860B1 (en) Gas barrier laminate, member for electronic device, and electronic device
WO2012137662A1 (en) Gas barrier film
EP2957425A1 (en) Gas barrier film laminate, production method therefor, and electronic device
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
EP2982506B1 (en) Laminate, method for producing same, member for electronic device, and electronic device
EP3904079A1 (en) Gas barrier laminate
JP7287284B2 (en) Gas barrier film and its manufacturing method
JP2017177808A (en) Base film for gas barrier film, gas barrier film and organic el device
WO2017130617A1 (en) Gas barrier film
JP7227124B2 (en) Functional films and devices
JP2013237264A (en) Gas barrier film
WO2010024143A1 (en) Heat-insulating article, process for producing heat-insulating article, and building member
WO2015152076A1 (en) Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device
JP2018113137A (en) Seal film for organic element and organic element
JP2013198983A (en) Gas barrier film
EP3437855B1 (en) Gas barrier laminated body, member for electronic device, and electronic device
KR20160114038A (en) Gas barrier film
US20200236804A1 (en) Laminate, member for electronic devices, and electronic device
JP2015074160A (en) Gas barrier film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017539389

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830866

Country of ref document: EP

Kind code of ref document: A1