WO2022203067A1 - Curable resin composition and cured resin layer using same - Google Patents

Curable resin composition and cured resin layer using same Download PDF

Info

Publication number
WO2022203067A1
WO2022203067A1 PCT/JP2022/014625 JP2022014625W WO2022203067A1 WO 2022203067 A1 WO2022203067 A1 WO 2022203067A1 JP 2022014625 W JP2022014625 W JP 2022014625W WO 2022203067 A1 WO2022203067 A1 WO 2022203067A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
resin layer
cured
curable
resin composition
Prior art date
Application number
PCT/JP2022/014625
Other languages
French (fr)
Japanese (ja)
Inventor
博貴 木下
智史 永縄
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023509342A priority Critical patent/JPWO2022203067A1/ja
Publication of WO2022203067A1 publication Critical patent/WO2022203067A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides

Definitions

  • the present invention relates to a curable resin composition and a cured resin layer using the same.
  • Patent Literature 1 relating to a gas barrier laminate used for display devices and the like describes a cured product of a curable resin composition containing a polymer component (A) and a curable monomer (B) as a plastic film.
  • An underlayer is disclosed which consists of:
  • an object of the present invention is to provide a curable resin composition having a low thermal shrinkage rate and excellent heat resistance, and a cured resin layer that is a cured product of the curable resin composition.
  • the cured resin layer is composed of a polymer component (A) containing a polyimide resin having a specific weight average molecular weight and a curable monomer (B)
  • the present inventors have found that the above problems can be solved by forming a layer made of a cured product of a curable resin composition containing and, and completed the present invention. That is, the present invention provides the following [1] to [8].
  • the present invention it is possible to provide a curable resin composition having a low thermal shrinkage rate and excellent heat resistance, and a cured resin layer that is a cured product of the curable resin composition.
  • the definition of being preferred can be arbitrarily selected, and it can be said that a combination of the definitions of being preferred is more preferred.
  • the description "XX to YY” means “XX or more and YY or less”.
  • the lower and upper limits described stepwise can be independently combined. For example, from the statement “preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)” and “more preferred upper limit (60)” to "10 to 60” can also In this specification, for example, "(meth)acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the curable resin composition of the present invention is a curable resin composition containing a polymer component (A) and a curable monomer (B), wherein the polymer component (A) contains a polyimide resin,
  • the weight average molecular weight of the polyimide resin is 100,000 or more and 230,000 or less.
  • the curable resin composition containing the polymer component (A) and the curable monomer (B) is made into a cured product, the residual shrinkage stress associated with the curing reaction of the monomer component The internal stress can be reduced by adjusting the weight average molecular weight of the polyimide resin in the polymer component (A) to 100,000 or more and 230,000 or less.
  • thermal deformation is further suppressed, leading to a reduction in thermal shrinkage.
  • the curable resin composition of the present invention contains a polymer component (A) containing a polyimide resin.
  • Polyimide resins have a high Tg and excellent heat resistance, and are readily soluble in general-purpose organic solvents while exhibiting good heat resistance.
  • a polyimide resin (amorphous thermoplastic resin) as the polymer component (A)
  • a cured resin layer composed of a cured product of the curable resin composition can be efficiently formed by using a solution casting method, as described later.
  • the amorphous thermoplastic resin means a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
  • the glass transition temperature of the polymer component (A) is preferably 250°C or higher, more preferably 290°C or higher, still more preferably 320°C or higher.
  • the polymer component (A) having a Tg of 250°C or higher it is possible to impart sufficient heat resistance to the cured resin layer.
  • the cured resin layer is affected by heating (including solvent drying, etc.) during coating of the coating film, and deformation, etc., is suppressed, and as a result, the function that the functional layer of the laminate originally has is suppressed. can be fully demonstrated.
  • a coating film is a film obtained by coating a coating material on a base material or an object and, if necessary, performing a treatment such as drying or curing by heating.
  • the coating material containing the component forming the functional layer described later is applied on the cured resin layer, and cured by either or both of drying, heating, irradiation of active energy rays, etc. It is a film obtained by processing.
  • Tg is the maximum point of tan ⁇ (loss modulus/storage modulus) obtained by viscoelasticity measurement (measurement in tensile mode in the range of 0 to 400° C. at a frequency of 10 Hz and a heating rate of 3° C./min). means temperature.
  • the weight average molecular weight (Mw) of the polyimide resin in the polymer component (A) is 100,000 or more and 230,000 or less. If the weight-average molecular weight (Mw) is less than 100,000, the mechanical strength is lowered, for example, the toughness tends to be lowered and the elongation at break is lowered. If it exceeds 230,000, the mobility of the molecular chains in the curing system will not be sufficiently high when the resin composition is naturally cooled after curing, so the shrinkage stress accompanying the curing reaction of the monomer component will increase.
  • the polymer component (A) having a weight average molecular weight (Mw) of 100,000 or more it becomes difficult to reduce the internal stress derived from Further, by using the polymer component (A) having a weight average molecular weight (Mw) of 100,000 or more, the molecular chains of the polymer component (A) are sufficiently entangled with each other, and the toughness of the cured resin layer can be ensured.
  • Mw weight average molecular weight
  • can It is preferably 100,000 or more and 220,000 or less, more preferably 100,000 or more and 210,000 or less, and still more preferably 100,000 or more and 200,000 or less.
  • the weight average molecular weight (Mw) is in this range, for example, when forming a functional layer or the like contained in a laminate described later from a coating film, before and after heating (including solvent drying etc.) during coating of the coating film The heat shrinkage of the cured resin layer is suppressed, and as a result, the original function of the functional layer of the laminate can be fully exhibited.
  • the molecular weight distribution (Mw/Mn) is preferably in the range of 1.0 to 5.0, more preferably 1.2 to 3.0.
  • a weight average molecular weight (Mw) and a molecular weight distribution (Mw/Mn) are polystyrene equivalent values measured by a gel permeation chromatography (GPC) method.
  • the polyimide resin is not particularly limited as long as it does not impair the effects of the present invention.
  • aromatic polyimide resin, aromatic (carboxylic acid component) - cycloaliphatic (diamine component) polyimide resin, cyclic Group (carboxylic acid component)-aromatic (diamine component) polyimide resins, cycloaliphatic polyimide resins, fluorinated aromatic polyimide resins, and the like can be used.
  • a polyimide resin having a fluoro group in its molecule, which will be described later, is preferred.
  • a polyimide resin obtained by polymerization to polyamic acid and chemical imidization reaction using an aromatic diamine compound and a tetracarboxylic dianhydride is preferred.
  • the aromatic diamine compound is a polyimide that is soluble in a common solvent (for example, N,N-dimethylacetamide (DMAC)) and has a certain level of transparency by reacting with the tetracarboxylic dianhydride that is used together.
  • a common solvent for example, N,N-dimethylacetamide (DMAC)
  • Any aromatic diamine compound can be used as long as it provides the aromatic diamine compound.
  • aromatic diamine compounds may be used alone, or two or more aromatic diamine compounds may be used.
  • preferable aromatic diamine compounds include 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2 -bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3 ,3,3-hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4- (4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3, 3,3-hexafluoropropane,
  • tetracarboxylic dianhydride a tetracarboxylic acid that is soluble in a common solvent (eg, N,N-dimethylacetamide (DMAC)) and gives a polyimide having a predetermined transparency, like the aromatic diamine compound.
  • a common solvent eg, N,N-dimethylacetamide (DMAC)
  • Any dianhydride can be used, and specifically, 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic acid di anhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 1,4-hydroquinonedibenzoate-3,3',4,4'-tetracarboxylic acid Acid dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-diphenylethertetracarboxylic dianhydride and the like are exemplified.
  • tetracarboxylic dianhydrides may be used alone, or two or more kinds of tetracarboxylic dianhydrides may be used.
  • 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic dianhydride and the like from the viewpoint of transparency, heat resistance and solubility in solvents preferably a tetracarboxylic dianhydride having at least one fluoro group.
  • Polymerization into polyamic acid can be carried out by reacting the above aromatic diamine compound and tetracarboxylic dianhydride while dissolving in a solvent in which the resulting polyamic acid is soluble.
  • Solvents used for polymerization to polyamic acid include solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and dimethylsulfoxide. can be used.
  • the polymerization reaction to polyamic acid is preferably carried out while stirring in a reaction vessel equipped with a stirring device.
  • a method of dissolving a predetermined amount of an aromatic diamine compound in the above solvent, adding tetracarboxylic dianhydride while stirring to react, and obtaining polyamic acid, dissolving the tetracarboxylic dianhydride in the solvent is mentioned.
  • the temperature of the polymerization reaction to polyamic acid is not particularly limited, but it is preferably carried out at a temperature of 0 to 70°C, more preferably 10 to 60°C, and even more preferably 20 to 50°C. By performing the polymerization reaction within the above range, it is possible to obtain a high-molecular-weight polyamic acid with little coloration and excellent transparency.
  • the aromatic diamine compound and the tetracarboxylic dianhydride used for polymerization into polyamic acid are generally used in equimolar amounts. It is also possible to change the molar amount of the compound/the molar amount (molar ratio) of the aromatic diamine compound within the range of 0.95 to 1.05.
  • the molar ratio of the tetracarboxylic dianhydride and the aromatic diamine compound is preferably in the range of 1.001-1.02, more preferably 1.001-1.01.
  • the degree of polymerization of the resulting polyamic acid can be stabilized, and the unit derived from the tetracarboxylic dianhydride can be It can be placed at the end of the polymer, and as a result, it is possible to obtain a polyimide with little coloration and excellent transparency.
  • the concentration of the polyamic acid solution to be produced is preferably adjusted to an appropriate concentration (for example, about 10 to 30% by mass) so that the viscosity of the solution can be properly maintained and handling in the subsequent steps can be facilitated.
  • An imidizing agent is added to the resulting polyamic acid solution to carry out a chemical imidization reaction.
  • the imidizing agent carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride can be used. Preference is given to using acetic acid.
  • the equivalent of the imidizing agent to be used is at least the equivalent of the amide bond of the polyamic acid that performs the chemical imidization reaction, preferably 1.1 to 5 times the equivalent of the amide bond, and 1.5 to 4 times. is more preferable. By using the imidizing agent in a slightly excess amount with respect to the amide bond in this way, the imidization reaction can be efficiently carried out even at a relatively low temperature.
  • aliphatic, aromatic or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine can be used as imidization accelerators.
  • imidization accelerators such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine.
  • the chemical imidization reaction temperature it is preferably carried out at 10°C or higher and lower than 50°C, more preferably at 15°C or higher and lower than 45°C.
  • a poor solvent for polyimide is added to the polyimide solution obtained by the chemical imidization reaction to precipitate polyimide to form powder, which is powderization and drying.
  • the polyimide resin is preferably soluble in low-boiling organic solvents such as benzene and methyl ethyl ketone.
  • low-boiling organic solvents such as benzene and methyl ethyl ketone.
  • it is preferably soluble in methyl ethyl ketone.
  • a curable resin layer which will be described later, comprising a cured product of the curable resin composition by coating and drying.
  • a polyimide resin containing a fluoro group is particularly preferable from the viewpoint that it is easily dissolved in a general-purpose organic solvent having a low boiling point such as methyl ethyl ketone and that a curable resin layer is easily formed by a coating method.
  • the polyimide resin having a fluoro group is preferably an aromatic polyimide resin having a fluoro group in the molecule, and preferably has a skeleton represented by the following chemical formula in the molecule.
  • a polyimide resin having a skeleton represented by the above chemical formula has an extremely high Tg exceeding 300°C due to the high rigidity of the skeleton. Therefore, the heat resistance of the cured resin layer can be greatly improved.
  • the skeleton is linear and has relatively high flexibility, which facilitates increasing the breaking elongation of the curable resin layer.
  • the polyimide resin having the above skeleton can dissolve in general-purpose low-boiling organic solvents such as methyl ethyl ketone due to the presence of fluoro groups. Therefore, the coating can be performed using a solution casting method to form a curable resin layer as a coating film, and the solvent can be easily removed by drying.
  • the polyimide resin having a skeleton represented by the above chemical formula includes 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl and 4,4′-(1,1,1,3,3,3 -Hexafluoropropane-2,2-diyl)diphthalic dianhydride can be obtained by polymerization and imidization reaction of the polyamic acid described above.
  • the polymer component (A) may further contain other components.
  • a polyarylate resin is a resin composed of a polymer compound obtained by reacting an aromatic diol with an aromatic dicarboxylic acid or a chloride thereof.
  • the polyarylate resin also has a relatively high Tg, similarly to the polyimide resin, and has relatively good elongation properties.
  • the polyarylate resin is not particularly limited, and known ones can be used.
  • aromatic diols include bis(4-hydroxyphenyl)methane [bisphenol F], bis(3-methyl-4-hydroxyphenyl)methane, 1,1-bis(4′-hydroxyphenyl)ethane, 1, 1-bis(3'-methyl-4'-hydroxyphenyl)ethane, 2,2-bis(4'-hydroxyphenyl)propane [bisphenol A], 2,2-bis(3'-methyl-4'-hydroxy bis(hydroxyphenyl)alkanes such as phenyl)propane, 2,2-bis(4'-hydroxyphenyl)butane, 2,2-bis(4'-hydroxyphenyl)octane; 1,1-bis(4'- bis(hydroxyphenyl)cyclopentane, 1,1-bis(4'-hydroxyphenyl)cyclohexane [bisphenol Z], 1,1-bis(4'-hydroxyphenyl)-3,3,5-trimethylcyclohexane, etc.
  • bisphenol F bis(4-hydroxyphenyl)methan
  • phenyl)cycloalkanes bis(4-hydroxyphenyl)phenylmethane, bis(3-methyl-4-hydroxyphenyl)phenylmethane, bis(2,6-dimethyl-4-hydroxyphenyl)phenylmethane, bis(2, 3,6-trimethyl-4-hydroxyphenyl)phenylmethane, bis(3-t-butyl-4-hydroxyphenyl)phenylmethane, bis(3-phenyl-4-hydroxyphenyl)phenylmethane, bis(3-fluoro- 4-hydroxyphenyl)phenylmethane, bis(3-bromo-4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)-4-fluorophenylmethane, bis(3-fluoro-4-hydroxyphenyl)-4- Fluorophenylmethane, bis(4-hydroxyphenyl)-4-chlorophenylmethane, bis(4-hydroxyphenyl)-4
  • aromatic dicarboxylic acids or chlorides thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyl ether 4,4′-dicarboxylic acid, 4,4′- diphenylsulfonedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, chlorides thereof, and the like.
  • the polyarylate-based resin to be used may be a modified polyarylate-based resin.
  • the polyarylate-based resin is preferably a resin composed of a polymer compound obtained by reacting 2,2-bis(4'-hydroxyphenyl)propane with isophthalic acid.
  • the polymer component (A) can be used singly or in combination of two or more. Also, the polymer component (A) and the polymer component (A') having a glass transition temperature of less than 250°C may be used in combination. Examples of the polymer component (A′) include polyamide resins and polyarylate resins having a Tg of less than 250° C. Polyamide resins are preferred.
  • the polyamide resin one that is soluble in an organic solvent is preferable, and a rubber-modified polyamide resin is preferable.
  • a rubber-modified polyamide resin for example, those described in JP-A-2004-035638 can be used.
  • polymer component (A) and the polymer component (A') one using a single type of polyimide resin, one using a plurality of different types of polyimide resin, and polyimide resin with polyamide resin and polyarylate resin It is preferable to add at least one of them from the viewpoint of adjusting the elongation characteristics and the viewpoint of solvent resistance.
  • the amount of the resin to be added is 100 parts by mass of the polyimide resin from the viewpoint of imparting moderate flexibility while maintaining a high Tg. , preferably 100 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 50 parts by mass or less, still more preferably 30 parts by mass or less, and preferably 1 part by mass or more, more preferably It is 3 parts by mass or more.
  • the curable resin composition of the present invention contains a curable monomer (B).
  • a curable monomer (B) is a monomer having a polymerizable unsaturated bond, and is a monomer that can participate in a polymerization reaction or a polymerization reaction and a cross-linking reaction.
  • curing means a broad concept including this "polymerization reaction of monomers” or “polymerization reaction of monomers and subsequent cross-linking reaction of polymers”.
  • the molecular weight of the curable monomer (B) is generally 3,000 or less, preferably 150-2,000, more preferably 150-1,000.
  • the number of polymerizable unsaturated bonds in the curable monomer (B) is not particularly limited.
  • the curable monomer (B) is a monofunctional monomer having one polymerizable unsaturated bond, or a multifunctional monomer such as a bifunctional or trifunctional monomer having a plurality of polymerizable unsaturated bonds. There may be.
  • Examples of the monofunctional monomers include monofunctional (meth)acrylic acid derivatives.
  • the monofunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. Examples include monofunctional (meth)acrylic acid derivatives having a nitrogen atom, monofunctional (meth)acrylic acid derivatives having an alicyclic structure, and monofunctional (meth)acrylic acid derivatives having a polyether structure. .
  • Examples of monofunctional (meth)acrylic acid derivatives having a nitrogen atom include compounds represented by the following formula.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 and R 3 each independently represent a hydrogen atom or an organic group having 1 to 12 carbon atoms
  • R 2 and R 3 may combine to form a ring structure
  • R 4 represents a divalent organic group.
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group and the like, and a methyl group is preferred.
  • Examples of organic groups having 1 to 12 carbon atoms represented by R 2 and R 3 include alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; cycloalkyl groups having 3 to 12 carbon atoms; aromatic groups having 6 to 12 carbon atoms such as phenyl, biphenyl and naphthyl groups; These groups may have a substituent at any position. Also, R 2 and R 3 may combine to form a ring, and the ring may further have a nitrogen atom or an oxygen atom in its skeleton. Divalent organic groups represented by R 4 include groups represented by -(CH 2 ) m - and -NH-(CH 2 ) m -. Here, m is an integer of 1-10.
  • the (meth)acryloylmorpholine represented by the following formula is preferred as the monofunctional (meth)acrylic acid derivative having a nitrogen atom.
  • a cured resin layer with more excellent heat resistance can be formed.
  • Examples of monofunctional (meth)acrylic acid derivatives having an alicyclic structure include compounds represented by the following formulas.
  • R 1 has the same meaning as above, and R 5 is a group having an alicyclic structure.
  • the group having an alicyclic structure represented by R 5 includes cyclohexyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecanyl group and the like.
  • monofunctional (meth)acrylic acid derivatives having an alicyclic structure include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-adamantyl (meth)acrylate and the like. mentioned.
  • a cured resin layer with more excellent optical properties can be formed.
  • the monofunctional (meth)acrylic acid derivative having a polyether structure includes compounds represented by the following formula.
  • R 1 has the same meaning as above, and R 6 represents an organic group having 1 to 12 carbon atoms.
  • the organic group having 1 to 12 carbon atoms represented by R 6 include alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; A cycloalkyl group; an aromatic group having 6 to 12 carbon atoms such as a phenyl group, a biphenyl group and a naphthyl group; j represents an integer from 2 to 20;
  • monofunctional (meth)acrylic acid derivatives having a polyether structure include ethoxylated o-phenylphenol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, and the like. .
  • a cured fat layer with excellent toughness can be formed.
  • polyfunctional monomers examples include polyfunctional (meth)acrylic acid derivatives.
  • the polyfunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. Examples thereof include di- to hexa-functional (meth)acrylic acid derivatives.
  • Bifunctional (meth)acrylic acid derivatives include compounds represented by the following formulas.
  • R 1 has the same meaning as above, and R 7 represents a divalent organic group.
  • R 7 represents a divalent organic group. Examples of the divalent organic group represented by R 7 include groups represented by the following formulae.
  • bifunctional (meth)acrylic acid derivative represented by the above formula examples include tricyclodecanedimethanol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate. , ethoxylated bisphenol A di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 9,9-bis[4-(2-acryloyloxyethoxy) phenyl]fluorene and the like.
  • the divalent organic group represented by R7 has a tricyclodecane skeleton, propoxy
  • the divalent organic group represented by R7 has a bisphenol skeleton, 9,9-bis [4-(2-Acryloyloxyethoxy)phenyl]fluorene, etc., in which the divalent organic group represented by R 7 in the above formula preferably has a 9,9-bisphenylfluorene skeleton.
  • bifunctional (meth)acrylic acid derivatives other than these include neopentyl glycol adipate di(meth)acrylate, neopentylglycol hydroxypivalate di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, Ethylene oxide-modified phosphoric acid di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate and the like can be mentioned.
  • Trifunctional (meth)acrylic acid derivatives include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate. ) acrylate, tris(acryloxyethyl) isocyanurate, and the like.
  • Examples of tetrafunctional (meth)acrylic acid derivatives include pentaerythritol tetra(meth)acrylate.
  • Pentafunctional (meth)acrylic acid derivatives include propionic acid-modified dipentaerythritol penta(meth)acrylate.
  • Examples of hexafunctional (meth)acrylic acid derivatives include dipentaerythritol hexa(meth)acrylate and caprolactone-modified dipentaerythritol hexa(meth)acrylate.
  • a cyclization-polymerizable monomer may be used as the curable monomer (B).
  • a cyclization-polymerizable monomer is a monomer that has the property of being radically polymerized while being cyclized.
  • Cyclopolymerizable monomers include non-conjugated dienes, for example, ⁇ -allyloxymethyl acrylic acid-based monomers can be used, 2-allyloxymethyl acrylic acid alkyl esters having 1 to 4 carbon atoms, Cyclohexyl 2-(allyloxymethyl)acrylate is preferred, C 1-4 alkyl esters of 2-allyloxymethylacrylic acid are more preferred, and methyl 2-(allyloxymethyl)acrylate is even more preferred.
  • the curable monomer (B) can be used singly or in combination of two or more.
  • the curable monomer (B) is preferably a polyfunctional monomer because a cured resin layer having excellent heat resistance and solvent resistance can be obtained.
  • the polyfunctional monomer a bifunctional (meth)acrylic acid derivative is preferable from the viewpoints that it is easily mixed with the polymer component (A) and that curing shrinkage of the polymer hardly occurs and curling of the cured product can be suppressed.
  • the curable monomer (B) contains a polyfunctional (meth)acrylate compound and a cyclopolymerizable monomer.
  • the curable monomer (B) contains a polyfunctional monomer
  • the content thereof is preferably 40% by mass or more in the total amount of the curable monomer (B), and 50 to 100% by mass. more preferred.
  • the curable resin composition of the present invention is prepared by mixing the polymer component (A), the curable monomer (B), and optionally the polymerization initiator and other components described later, and dissolving or dispersing them in an appropriate solvent. It can be prepared by
  • the total content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably 40 to 99 with respect to the total mass of the curable resin composition excluding the solvent. .5% by mass, more preferably 60 to 99% by mass, still more preferably 80 to 98% by mass.
  • the mass ratio of the polymer component (A) to the curable monomer (B) is within this range, the thermal shrinkage rate of the cured resin layer before and after heat treatment at a high temperature tends to decrease. , the elongation at break is easily maintained.
  • the content of the polyimide resin in the polymer component (A) is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, based on the total mass of the polymer component (A) excluding the solvent. , more preferably 95 to 100% by mass.
  • the polymer component (A) when using a combination of a plurality of resins with different solvent solubility, such as a combination of the polyimide resin described above and a polyamide resin or a polyarylate resin, first, the resin is added to a solvent suitable for each. After dissolving, it is preferable to add a solution in which another resin is dissolved to the low boiling point organic solvent in which the resin is dissolved.
  • the curable resin composition can optionally contain a polymerization initiator.
  • Any polymerization initiator can be used without particular limitation as long as it initiates the curing reaction. Examples thereof include thermal polymerization initiators and photopolymerization initiators.
  • Thermal polymerization initiators include organic peroxides and azo compounds.
  • organic peroxides include dialkyl peroxides such as di-t-butyl peroxide, t-butylcumyl peroxide and dicumyl peroxide; diacyl peroxides such as acetyl peroxide, lauroyl peroxide and benzoyl peroxide.
  • ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methyl cyclohexanone peroxide
  • peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane ; t-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2, Hydroperoxides such as 5-dihydroperoxide; esters; and the like.
  • Azo compounds include 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2-cyclopropylpropionitrile), 2,2′-azobis(2 ,4-dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo ) isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
  • Photoinitiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenylketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one , 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-[4-[4-(2-hydroxy-2 -methyl-propionyl)-benzyl]phenyl]-2-methyl-propan-1-one, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Amino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone Alkylphenone-based photopolymerization initiators such as; -Phosphorus-based
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, ethyl(2,4,6-trimethylbenzoyl)- Phosphorus-based photopolymerization initiators such as phenylphosphinate and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide are preferred.
  • the polymer component (A) is a thermoplastic resin having an aromatic ring such as the polyimide resin used in the present invention, the polymer component (A) absorbs ultraviolet rays, and as a result, the curing reaction may be difficult to occur.
  • a polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • the content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and still more preferably 0.05 to 5% by mass, relative to the entire curable resin composition.
  • the curable resin composition contains a polymer component (A), a curable monomer (B), and a polymerization initiator, as well as triisopropanolamine and photopolymerization such as 4,4′-diethylaminobenzophenone. It may contain an initiation aid.
  • the solvent used for preparing the curable resin composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; and dichloromethane.
  • ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene and other halogenated hydrocarbon solvents methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether and other alcohol solvents; acetone, methyl ethyl ketone, 2 - ketone solvents such as pentanone, isophorone and cyclohexanone; ester solvents such as ethyl acetate and butyl acetate; cellosolve solvents such as ethyl cellosolve; ether solvents such as 1,3-dioxolane;
  • the content of the solvent in the curable resin composition is not particularly limited, but is usually 0.1 to 1,000 g, preferably 1 to 100 g, per 1 g of polymer component (A). By appropriately adjusting the amount of the solvent, the viscosity of the curable resin composition can be appropriately adjusted.
  • the curable resin composition may further contain known additives such as plasticizers, antioxidants, and ultraviolet absorbers within a range that does not impair the objects and effects of the present invention.
  • the cured resin layer consists of a cured product of a curable resin composition containing a polymer component (A) containing a polyimide resin and a curable monomer (B).
  • FIG. 1 is a cross-sectional view showing an example of the cured resin layer of the present invention.
  • the cured resin layer 1 may be a single layer or multiple layers. The method for forming the cured resin layer will be described in detail in the method for manufacturing a laminate, which will be described later.
  • the cured resin layer of the present invention exhibits heat shrinkability (shrinks when heated).
  • the thermal shrinkage rate when heat-treated at 100° C. for 2 minutes is preferably 0.08% or less, more preferably 0.05% or less, and still more preferably 0.01% or less.
  • the heat shrinkage of the cured resin layer is within this range, the cured resin layer has high heat resistance. Therefore, for example, as described above, a functional layer, which will be described later, is formed on the cured resin layer by coating and heat drying.
  • a manufacturing process involving heating is performed after forming a cured resin layer, such as a laminate, heat shrinkage is suppressed, and mechanical deformation (e.g., warpage, peeling, wrinkles, etc.) of the functional layer is less likely to occur.
  • the predetermined function inherent in the functional layer can be exhibited sufficiently.
  • the thermal shrinkage rate was measured by the method described in Examples described later.
  • the breaking elongation of the cured resin layer is preferably 2.5% or more, more preferably 3.0% or more, and still more preferably 3.5% or more.
  • the breaking elongation of the cured resin layer is in this range, for example, if it is 2.5% or more, it becomes easy to adjust the breaking elongation of the laminate to about 2% or more, resulting in excellent flexibility. A laminated body is easily obtained.
  • the breaking elongation was measured by the method described in Examples described later.
  • the in-plane retardation of the cured resin layer is preferably 2 nm or less, preferably 1.5 nm or less, more preferably 1.0 nm or less, even more preferably 0.5 nm or less, and even more preferably 0.3 nm or less. be.
  • the retardation in the thickness direction is usually ⁇ 500 nm or less, preferably ⁇ 450 nm or less.
  • the value (birefringence) obtained by dividing the in-plane retardation by the thickness of the cured resin layer is usually 100 ⁇ 10 ⁇ 5 or less, preferably 20 ⁇ 10 ⁇ 5 or less.
  • the cured resin layer is excellent in optical isotropy and can be preferably used as a member for optical applications.
  • the in-plane retardation was measured by the method described in Examples described later.
  • the thickness of the cured resin layer is not particularly limited, and may be appropriately adjusted, for example, according to the purpose of the laminate having a functional layer, which will be described later.
  • the thickness of the cured resin layer is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 0.1 to 20 ⁇ m, even more preferably 0.1 to 15 ⁇ m, particularly preferably 0.2 to 10 ⁇ m.
  • a thin laminate is preferable because the laminate does not cause an increase in the thickness of the entire applicable device in applications such as devices that require thinner devices.
  • the amount of stretching strain of the outermost layer can be reduced when the laminate is bent, and the flexibility of the laminate can be improved.
  • flexibility after mounting of the laminate can be secured.
  • the cured resin layer of the present invention is excellent in solvent resistance. Because of its excellent solvent resistance, even when an organic solvent is used to form another layer on the surface of the cured resin layer, the surface of the cured resin layer is hardly dissolved. Therefore, for example, even when the functional layer is formed on the surface of the cured resin layer using a resin solution containing an organic solvent, the components of the cured resin layer are less likely to penetrate into the functional layer. is difficult to decrease.
  • the gel fraction of the cured resin layer is preferably 80% or higher, more preferably 85% or higher, even more preferably 87% or higher, and particularly preferably 90% or higher.
  • a cured resin layer having a gel fraction of 80% or more has excellent solvent resistance.
  • the gel fraction is obtained by performing the following operations (a), (b), and (c), and comparing the weight of the measured structure after drying to the structure before immersion in MEK (methyl ethyl ketone) solvent Calculated by dividing by body weight.
  • the cured resin layer was wrapped with a mesh ( ⁇ _UX SCREEN 150-035/380TW manufactured by NBC Meshtec) and stapled to form a structure, and the weight of the structure was measured.
  • MEK Methyl ethyl ketone
  • FIG. 2 is a schematic cross-sectional view showing an example of a laminate using the cured resin layer of the present invention.
  • a laminate 11 is, for example, a laminate of a functional layer 2 on a cured resin layer 1, and the cured resin layer 1 can be used as a layer or a substrate on which the functional layer 2 is provided.
  • the laminate may include a process film, a cured resin layer, and a functional layer in this order. When the laminate is actually used, the process film is peeled off from the laminate, and the laminate is attached to an electronic device such as a predetermined display. Since the cured resin layer of the present invention has a low thermal shrinkage rate at high temperatures and is excellent in heat resistance, it is more preferably used in a manufacturing process or the like having a heat treatment step at high temperatures.
  • the functional layer is not particularly limited, but includes, for example, a conductive layer, an adhesive layer, an adhesive layer, an adhesive layer, a gas barrier layer, an impact absorption layer, a hard coat layer, an antireflection layer, and the like.
  • the arrangement position of the functional layer is not particularly limited.
  • materials constituting the conductive layer (electrode, transparent conductive layer, etc.) used as the functional layer include metals, alloys, metal oxides, electrically conductive compounds, mixtures thereof, and the like.
  • transparent conductive layers for example, antimony-doped tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, germanium-doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide ( ITO), semi-conductive metal oxides such as indium zinc oxide (IZO); metals such as gold, silver, chromium, nickel; mixtures of these metals and conductive metal oxides; inorganic materials such as copper iodide and copper sulfide conductive substances; organic conductive materials such as polyaniline, polythiophene, and polypyrrole; and the like.
  • Methods for forming the conductive layer include, for example, a printing method, a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, and the like.
  • the thickness of the conductor layer may be appropriately selected according to its use. It is usually 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • the adhesive layer is a layer used, for example, when attaching the laminate to an adherend or the like.
  • the material for forming the adhesive layer is not particularly limited, and known adhesives or adhesives such as acrylic, silicone, rubber, epoxy, etc., heat sealing materials, etc. can also be used. Epoxy-based adhesive is preferable as the material constituting the .
  • the pressure-sensitive adhesive layer is a layer used, for example, when attaching the laminate to an adherend or the like.
  • adhesives used for the adhesive layer include acrylic adhesives, urethane adhesives, silicone adhesives, rubber adhesives, and the like. Among these, acrylic pressure-sensitive adhesives and urethane-based pressure-sensitive adhesives are preferred from the viewpoints of adhesive strength, transparency, and handleability. Also, a pressure-sensitive adhesive capable of forming a crosslinked structure is preferred.
  • the adhesive may be in any form such as a solvent-type adhesive, an emulsion-type adhesive, a hot-melt-type adhesive, or the like.
  • the thickness of the laminate can be determined as appropriate depending on the intended use, such as an adherend or an electronic device.
  • a substantial thickness of the laminate is preferably 0.3 to 50 ⁇ m, more preferably 0.5 to 25 ⁇ m, and more preferably 0.7 to 12 ⁇ m from the viewpoint of handleability.
  • substantially thickness means the thickness in the state of use. That is, the laminate may have a process film, etc. as described above, but the thickness of the portion (process film, etc.) that is removed during use is not included in the "substantial thickness". do not have.
  • the laminate of the present invention can be produced using a process film as one aspect. By using the process film, the laminate can be produced efficiently and easily.
  • the method for producing a laminate of the present invention includes the following (Step 1) to (Step 3).
  • Step 1) A step of forming a curable resin layer (coating film) on a process film using a curable resin composition containing a polymer component (A) and a curable monomer (B)
  • step 2) Step of curing the curable resin layer (coating film) obtained in step 1 to form a cured resin layer
  • step 3) Forming a functional layer on the cured resin layer obtained in step 2 process
  • the method of applying the curable resin composition onto the process film is not particularly limited, and may be spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, or gravure coating.
  • a known coating method such as a method can be used.
  • the method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used.
  • the drying temperature of the coating film is usually 30 to 150°C, preferably 50 to 130°C.
  • the curable resin layer (coating film) obtained in step 1 is cured to form a cured resin layer.
  • a method for curing the curable resin layer (coating film) is not particularly limited, and a known method can be employed.
  • the curable resin layer (coating film) is formed using a curable resin composition containing a thermal polymerization initiator, the curable resin layer (coating film) is cured by heating.
  • the resin layer (coating film) can be cured.
  • the heating temperature is usually 30 to 150°C, preferably 50 to 130°C.
  • the curable resin layer (coating film) is formed using a curable resin composition containing a photopolymerization initiator, the curable resin layer (coating film) is irradiated with an active energy ray.
  • the curable resin layer (coating film) can be cured.
  • Active energy rays can be applied using a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, or the like.
  • the wavelength of the active energy ray is preferably 200-400 nm, more preferably 350-400 nm.
  • the illuminance of the active energy rays is usually in the range of 50-1,000 mW/cm 2 , preferably 100-600 mW/cm 2 .
  • the amount of active energy rays is in the range of 50 to 5,000 mJ/cm 2 , preferably 300 to 4,000 mJ/cm 2 .
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds. In consideration of the heat load of the light irradiation process, the irradiation may be performed multiple times in order to satisfy the aforementioned light amount.
  • a filter that absorbs light of wavelengths unnecessary for the curing reaction is interposed, and the active energy rays are applied.
  • the curable resin composition may be irradiated.
  • the filter absorbs light of a wavelength that is unnecessary for the curing reaction and degrades the polymer component (A). It becomes easy to obtain a resin.
  • a resin film such as a polyethylene terephthalate film can be used as the filter.
  • the resin film is usually peeled off after step 2.
  • the curable resin layer (coating film) can also be cured by irradiating the curable resin layer (coating film) with an electron beam.
  • the curable resin layer (coating film) can be cured usually without using a photopolymerization initiator.
  • an electron beam accelerator or the like can be used.
  • the irradiation dose is usually in the range of 10 to 1,000 krad.
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds.
  • the curing of the curable resin layer (coating film) may be performed under an inert gas atmosphere such as nitrogen gas, if necessary. Curing in an inert gas atmosphere makes it easier to prevent oxygen, moisture, and the like from interfering with curing.
  • a desired functional layer is formed on the cured resin layer obtained in step 2.
  • the method described above can be appropriately adopted.
  • the laminate When the laminate has a process film, the laminate may have the process film on one side or both sides. In the latter case, it is preferable to use two types of process films and make the process film to be peeled off first easier to peel.
  • the process film is preferably sheet-like or film-like.
  • sheet-like or film-like includes not only a long one but also a short flat plate-like one.
  • Process films include paper base materials such as glassine paper, coated paper, and fine paper; laminated paper obtained by laminating these paper base materials with thermoplastic resins such as polyethylene and polypropylene; Those subjected to filling treatment with alcohol, acrylic-styrene resin, etc.; plastic films such as polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polyethylene and polypropylene; and glass. Further, the process film may be a paper substrate or a plastic film having a release agent layer provided thereon from the viewpoint of ease of handling.
  • the release layer can be formed using conventionally known release agents such as silicone release agents, fluorine release agents, alkyd release agents, and olefin release agents.
  • the thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 ⁇ m, more preferably 0.05 to 1.5 ⁇ m.
  • the thickness of the process film is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, from the viewpoint of ease of handling.
  • the process film is usually peeled off in a predetermined process depending on the use of the laminate.
  • the manufacturing method including the above (Step 1) to (Step 3) forms a cured resin layer using a process film, and the laminate obtained by this method has a process film. may or may not have.
  • the laminate according to one aspect of the present invention can be efficiently, continuously, and easily produced.
  • thermal change rate thermal shrinkage rate
  • in-plane retardation in-plane retardation
  • elongation at break of the cured resin layers produced in Examples and Comparative Examples were evaluated by the following methods.
  • the laminate of the cured resin layers was heated from 25°C to 100°C at a heating rate of 5°C/min, held for 2 minutes, and then cooled to 25°C at a cooling rate of 5°C/min.
  • the rate of change in displacement in the longitudinal direction before and after heating and cooling (a value expressed as a percentage of the amount of displacement with respect to the chuck-to-chuck distance of 20 mm) was defined as the rate of thermal change.
  • the obtained value takes a negative value, it means that the cured resin layer has shrunk (heat shrinkage), and when it takes a positive value, it means that the cured resin layer has elongated.
  • test piece was subjected to a tensile test at a speed of 200 mm/min after setting the distance between chucks to 100 mm using a tensile tester (manufactured by Shimadzu Corporation, Autograph). %) was measured. When the test piece did not have a yield point, the tensile breaking strain was taken as the breaking elongation.
  • Example 1 Formation of cured resin layer A curable resin composition was prepared as follows.
  • PI polyimide resin
  • a curable monomer (B) 122 parts by weight of tricyclodecanedimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-DCP, molecular weight 304.4) as a curable monomer (B), and a polymerization initiator, (2,4,6-trimethylbenzoyl)-phenylphosphine oxide (OMNIRAD TPO manufactured by IGM Resins) (5 parts by mass) was added and mixed to prepare a curable resin composition.
  • the curable monomer (B) and the polymerization initiator used in the present examples and comparative examples do not contain a solvent and are all raw materials having a solid content of 100%.
  • PET polyethylene terephthalate
  • H04-L41 high-pressure mercury lamp
  • the cured resin layer of Example 1 using a polyimide resin having a weight average molecular weight of 190,000 has a weight average molecular weight of Compared to the cured resin layer of Comparative Example 1 using a polyimide resin of 280,000, the thermal shrinkage rate is one order lower, and the elongation at break (toughness) usually decreases as the weight average molecular weight decreases. is expected, but contrary to this, it can be seen that the breaking strength is maintained.
  • the cured resin layer made of the cured product has a low thermal shrinkage rate at high temperatures, so it is possible to suppress the occurrence of curls and wrinkles. It has excellent toughness (toughness), has optical isotropy, and is thin and flexible, so it is required to be manufactured at high temperature.
  • toughness toughness
  • optical isotropy optical isotropy
  • other members such as flexible organic EL elements and flexible thermoelectric conversion elements. expected to be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a curable resin composition having low thermal shrinkage and excellent heat resistance; and a cured resin layer which is a cured product of said curable resin composition. The present invention provides a curable resin composition and a cured resin layer which is a cured product thereof, the curable resin composition containing a polymer component (A) and a curable monomer (B), wherein the polymer component (A) contains a polyimide resin, and the weight-average molecular weight of the polyimide resin is 100,000-230,000.

Description

硬化性樹脂組成物及びそれを用いた硬化樹脂層Curable resin composition and cured resin layer using the same
 本発明は、硬化性樹脂組成物及びそれを用いた硬化樹脂層に関する。 The present invention relates to a curable resin composition and a cured resin layer using the same.
 近年、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ等のディスプレイデバイス、また熱電変換素子等を含む、種々の電子デバイスには、薄型化、軽量化及びフレキシブル化等を実現するために、デバイスを構成する部材として、従来のガラス、又はセラミックス等のリジッドな基板に代えて、厚さの薄い透明プラスチックフィルムを用いることが検討されている。
 しかし、一般にプラスチックフィルムは、ガラスに比べて、耐熱性に劣り、例えば、透明プラスチックフィルムを前記電子デバイス等の支持基板として使用する場合、製造工程において、高温下での熱履歴を経ることが多々あり、その際に機械的な損傷等を受けることにより、電子デバイス内部の素子等に作用し、短絡の発生等によりデバイス性能が低下したり、寿命が短くなるという問題があった。
 例えば、ディスプレイデバイス等に用いるガスバリア性積層体に係る特許文献1には、プラスチックフィルムとして、重合体成分(A)及び硬化性単量体(B)を含有する、硬化性樹脂組成物の硬化物からなる下地層が開示されている。
In recent years, various electronic devices, including display devices such as liquid crystal displays and organic electroluminescence (EL) displays, thermoelectric conversion elements, etc., have been configured to achieve thinness, weight reduction, flexibility, etc. As a member for supporting, it is being studied to use a thin transparent plastic film instead of a conventional rigid substrate such as glass or ceramics.
However, plastic films are generally inferior to glass in heat resistance. For example, when a transparent plastic film is used as a support substrate for the electronic device or the like, it often undergoes a heat history at high temperatures during the manufacturing process. At that time, mechanical damage or the like is received, which acts on the elements inside the electronic device, and causes problems such as the occurrence of a short circuit, which degrades the device performance and shortens the life of the device.
For example, Patent Literature 1 relating to a gas barrier laminate used for display devices and the like describes a cured product of a curable resin composition containing a polymer component (A) and a curable monomer (B) as a plastic film. An underlayer is disclosed which consists of:
国際公開第2020/138206号WO2020/138206
 しかしながら、特許文献1における下地層を構成する硬化性樹脂組成物に含まれる重合体成分(A)として、ポリイミド樹脂の使用について記載はあるが、高温下での熱履歴による熱変形については、ポリイミド樹脂の重量平均分子量の観点からは十分に検討されていない。 However, although the use of a polyimide resin is described as the polymer component (A) contained in the curable resin composition constituting the underlayer in Patent Document 1, regarding thermal deformation due to heat history at high temperatures, polyimide It has not been sufficiently studied from the viewpoint of the weight average molecular weight of the resin.
 本発明は、上記を鑑み、熱収縮率の低い耐熱性に優れる硬化性樹脂組成物及び該硬化性樹脂組成物の硬化物である硬化樹脂層を提供することを課題とする。 In view of the above, an object of the present invention is to provide a curable resin composition having a low thermal shrinkage rate and excellent heat resistance, and a cured resin layer that is a cured product of the curable resin composition.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、硬化樹脂層を、特定の重量平均分子量を有するポリイミド樹脂を含む重合体成分(A)と硬化性単量体(B)とを含有させた硬化性樹脂組成物の硬化物でなる層とすることで、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[8]を提供するものである。
[1]重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物であって、前記重合体成分(A)がポリイミド樹脂を含み、該ポリイミド樹脂の重量平均分子量が100,000以上、230,000以下である、硬化性樹脂組成物。
[2]前記重合体成分(A)のガラス転移温度が250℃以上である、上記[1]に記載の硬化性樹脂組成物。
[3]前記ポリイミド樹脂は、メチルエチルケトンに可溶である、上記[1]に記載の硬化性樹脂組成物。
[4]前記ポリイミド樹脂は、分子内にフルオロ基を有する、上記[1]又は[3]に記載の硬化性樹脂組成物。
[5]上記[1]~[4]のいずれかに記載の硬化性樹脂組成物の硬化物からなる硬化樹脂層であって、厚さが20μm以下である、硬化樹脂層。
[6]100℃で2分間の熱処理をしたときの前記硬化樹脂層の熱収縮率が0.08%以下である、上記[5]に記載の硬化樹脂層。
[7]前記硬化樹脂層の面内の位相差が2.0nm以下である、上記[6]に記載の硬化樹脂層。
[8]上記[5]~[7]のいずれかに記載の硬化樹脂層上に機能層を備える、積層体。
The present inventors have made intensive studies to solve the above problems, and as a result, the cured resin layer is composed of a polymer component (A) containing a polyimide resin having a specific weight average molecular weight and a curable monomer (B) The present inventors have found that the above problems can be solved by forming a layer made of a cured product of a curable resin composition containing and, and completed the present invention.
That is, the present invention provides the following [1] to [8].
[1] A curable resin composition containing a polymer component (A) and a curable monomer (B), wherein the polymer component (A) contains a polyimide resin, and the weight average molecular weight of the polyimide resin is 100,000 or more and 230,000 or less.
[2] The curable resin composition according to [1] above, wherein the polymer component (A) has a glass transition temperature of 250°C or higher.
[3] The curable resin composition according to [1] above, wherein the polyimide resin is soluble in methyl ethyl ketone.
[4] The curable resin composition according to [1] or [3] above, wherein the polyimide resin has a fluoro group in its molecule.
[5] A cured resin layer comprising a cured product of the curable resin composition according to any one of [1] to [4] above, wherein the cured resin layer has a thickness of 20 μm or less.
[6] The cured resin layer according to [5] above, wherein the cured resin layer has a thermal shrinkage of 0.08% or less when heat-treated at 100° C. for 2 minutes.
[7] The cured resin layer according to [6] above, wherein the in-plane retardation of the cured resin layer is 2.0 nm or less.
[8] A laminate comprising a functional layer on the cured resin layer according to any one of [5] to [7] above.
 本発明によれば、熱収縮率の低い耐熱性に優れる硬化性樹脂組成物及び該硬化性樹脂組成物の硬化物である硬化樹脂層を提供することができる。 According to the present invention, it is possible to provide a curable resin composition having a low thermal shrinkage rate and excellent heat resistance, and a cured resin layer that is a cured product of the curable resin composition.
本発明の硬化樹脂層の一例を示す断面図である。It is a sectional view showing an example of a cured resin layer of the present invention. 本発明の硬化樹脂層を用いた積層体の一例を示す断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows an example of the laminated body using the cured resin layer of this invention.
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
In the present specification, the definition of being preferred can be arbitrarily selected, and it can be said that a combination of the definitions of being preferred is more preferred.
In this specification, the description "XX to YY" means "XX or more and YY or less".
In this specification, for preferred numerical ranges (for example, ranges of content etc.), the lower and upper limits described stepwise can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
In this specification, for example, "(meth)acrylic acid" indicates both "acrylic acid" and "methacrylic acid", and the same applies to other similar terms.
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物は、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物であって、前記重合体成分(A)がポリイミド樹脂を含み、該ポリイミド樹脂の重量平均分子量が100,000以上、230,000以下であることを特徴とする。
 本発明では、重合体成分(A)と硬化性単量体(B)とを含む硬化性樹組成物を硬化物にした際に残存する、単量体成分の硬化反応に伴う収縮応力由来の内部応力を、重合体成分(A)中のポリイミド樹脂の重量平均分子量を100,000以上、230,000以下にすることにより、低下させることができる。結果として、硬化樹脂層にあっては、熱変形がより抑制され、熱収縮率の低減につながる。
[Curable resin composition]
The curable resin composition of the present invention is a curable resin composition containing a polymer component (A) and a curable monomer (B), wherein the polymer component (A) contains a polyimide resin, The weight average molecular weight of the polyimide resin is 100,000 or more and 230,000 or less.
In the present invention, when the curable resin composition containing the polymer component (A) and the curable monomer (B) is made into a cured product, the residual shrinkage stress associated with the curing reaction of the monomer component The internal stress can be reduced by adjusting the weight average molecular weight of the polyimide resin in the polymer component (A) to 100,000 or more and 230,000 or less. As a result, in the cured resin layer, thermal deformation is further suppressed, leading to a reduction in thermal shrinkage.
<重合体成分(A)>
 本発明の硬化性樹脂組成物は、ポリイミド樹脂を含む重合体成分(A)を含有する。ポリイミド樹脂は、Tgが高く耐熱性に優れており、また、良好な耐熱性を示しつつも汎用の有機溶剤に可溶なものを得やすい。
 また、重合体成分(A)として、ポリイミド樹脂(非晶性熱可塑性樹脂)を用いることで、透明性に優れた硬化樹脂層が得られ易くなる。また、前述したように有機溶剤に溶け易いため、後述するように、溶液キャスト法を利用して、効率よく硬化性樹脂組成物の硬化物からなる硬化樹脂層を形成することができる。
 ここで、非晶性熱可塑性樹脂とは、示差走査熱量測定において、融点が観測されない熱可塑性樹脂をいう。
<Polymer component (A)>
The curable resin composition of the present invention contains a polymer component (A) containing a polyimide resin. Polyimide resins have a high Tg and excellent heat resistance, and are readily soluble in general-purpose organic solvents while exhibiting good heat resistance.
In addition, by using a polyimide resin (amorphous thermoplastic resin) as the polymer component (A), it becomes easier to obtain a cured resin layer with excellent transparency. In addition, since it is easily soluble in an organic solvent as described above, a cured resin layer composed of a cured product of the curable resin composition can be efficiently formed by using a solution casting method, as described later.
Here, the amorphous thermoplastic resin means a thermoplastic resin whose melting point is not observed in differential scanning calorimetry.
 重合体成分(A)のガラス転移温度は、250℃以上であることが好ましく、より好ましくは290℃以上、さらに好ましくは320℃以上である。Tgが250℃以上の重合体成分(A)を用いることで、硬化樹脂層に十分な耐熱性を付与することができ、例えば、後述する積層体に含まれる機能層等を塗膜から形成する場合に、塗膜の塗工時の加熱(溶媒乾燥等含む)によって、硬化樹脂層が影響を受けて変形等を生じることが抑制され、結果的に、積層体の機能層が本来有する機能を十分に発揮させることができる。
 なお、塗膜とは、塗布材料を基材や対象物上に塗布し、必要に応じて乾燥や加熱等による硬化等の処理を施して得られる被膜である。機能層を塗膜とする場合は、後述する機能層を形成する成分を含む塗布材料を硬化樹脂層上に塗布し、乾燥及び加熱や活性エネルギー線の照射等のいずれか一方のみ又は両方による硬化処理を行って得られる被膜である。
 ここでTgは、粘弾性測定(周波数10Hz、昇温速度3℃/分で0~400℃の範囲で引張モードによる測定)により得られたtanδ(損失弾性率/貯蔵弾性率)の極大点の温度をいう。
The glass transition temperature of the polymer component (A) is preferably 250°C or higher, more preferably 290°C or higher, still more preferably 320°C or higher. By using the polymer component (A) having a Tg of 250°C or higher, it is possible to impart sufficient heat resistance to the cured resin layer. In this case, the cured resin layer is affected by heating (including solvent drying, etc.) during coating of the coating film, and deformation, etc., is suppressed, and as a result, the function that the functional layer of the laminate originally has is suppressed. can be fully demonstrated.
A coating film is a film obtained by coating a coating material on a base material or an object and, if necessary, performing a treatment such as drying or curing by heating. When the functional layer is a coating film, the coating material containing the component forming the functional layer described later is applied on the cured resin layer, and cured by either or both of drying, heating, irradiation of active energy rays, etc. It is a film obtained by processing.
Here, Tg is the maximum point of tan δ (loss modulus/storage modulus) obtained by viscoelasticity measurement (measurement in tensile mode in the range of 0 to 400° C. at a frequency of 10 Hz and a heating rate of 3° C./min). means temperature.
 重合体成分(A)中のポリイミド樹脂の重量平均分子量(Mw)は、100,000以上、230,000以下である。重量平均分子量(Mw)が100,000未満であると、機械的強度が低下し、例えば、靭性が低くなり易くなり、破断伸度が低下する。230,000超であると、樹脂組成物を硬化させた後の自然冷却の際、硬化系中の分子鎖の運動性が十分に高くならないことから、単量体成分の硬化反応に伴う収縮応力由来の内部応力を減少させにくくなる。また、重量平均分子量(Mw)が100,000以上の重合体成分(A)を用いることで、重合体成分(A)の分子鎖同士が十分に絡み合い、硬化樹脂層の靭性を担保することができる。好ましくは100,000以上、220,000以下、より好ましくは100,000以上、210,000以下、さらに好ましくは100,000以上、200,000以下である。重量平均分子量(Mw)がこの範囲にあると、例えば、後述する積層体に含まれる機能層等を塗膜から形成する場合に、塗膜の塗工時の加熱(溶媒乾燥等含む)前後での硬化樹脂層の熱収縮が抑制され、結果的に、積層体の機能層が本来有する機能を十分に発揮させることができる。
 また、分子量分布(Mw/Mn)は、好ましくは、1.0~5.0、より好ましくは、1.2~3.0の範囲である。
 重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。
The weight average molecular weight (Mw) of the polyimide resin in the polymer component (A) is 100,000 or more and 230,000 or less. If the weight-average molecular weight (Mw) is less than 100,000, the mechanical strength is lowered, for example, the toughness tends to be lowered and the elongation at break is lowered. If it exceeds 230,000, the mobility of the molecular chains in the curing system will not be sufficiently high when the resin composition is naturally cooled after curing, so the shrinkage stress accompanying the curing reaction of the monomer component will increase. It becomes difficult to reduce the internal stress derived from Further, by using the polymer component (A) having a weight average molecular weight (Mw) of 100,000 or more, the molecular chains of the polymer component (A) are sufficiently entangled with each other, and the toughness of the cured resin layer can be ensured. can. It is preferably 100,000 or more and 220,000 or less, more preferably 100,000 or more and 210,000 or less, and still more preferably 100,000 or more and 200,000 or less. When the weight average molecular weight (Mw) is in this range, for example, when forming a functional layer or the like contained in a laminate described later from a coating film, before and after heating (including solvent drying etc.) during coating of the coating film The heat shrinkage of the cured resin layer is suppressed, and as a result, the original function of the functional layer of the laminate can be fully exhibited.
Also, the molecular weight distribution (Mw/Mn) is preferably in the range of 1.0 to 5.0, more preferably 1.2 to 3.0.
A weight average molecular weight (Mw) and a molecular weight distribution (Mw/Mn) are polystyrene equivalent values measured by a gel permeation chromatography (GPC) method.
 ポリイミド樹脂としては、本発明の効果を損なわない範囲であれば特に制限されないが、例えば、芳香族ポリイミド樹脂、芳香族(カルボン酸成分)-環式脂肪族(ジアミン成分)ポリイミド樹脂、環式脂肪族(カルボン酸成分)-芳香族(ジアミン成分)ポリイミド樹脂、環式脂肪族ポリイミド樹脂、及びフッ素化芳香族ポリイミド樹脂等を使用することができる。特に、後述する分子内にフルオロ基を有するポリイミド樹脂が好ましい。
 具体的には、芳香族ジアミン化合物とテトラカルボン酸二無水物を用いて、ポリアミド酸への重合、化学イミド化反応を経て得られるポリイミド樹脂が好ましい。
The polyimide resin is not particularly limited as long as it does not impair the effects of the present invention. For example, aromatic polyimide resin, aromatic (carboxylic acid component) - cycloaliphatic (diamine component) polyimide resin, cyclic Group (carboxylic acid component)-aromatic (diamine component) polyimide resins, cycloaliphatic polyimide resins, fluorinated aromatic polyimide resins, and the like can be used. In particular, a polyimide resin having a fluoro group in its molecule, which will be described later, is preferred.
Specifically, a polyimide resin obtained by polymerization to polyamic acid and chemical imidization reaction using an aromatic diamine compound and a tetracarboxylic dianhydride is preferred.
 芳香族ジアミン化合物としては、合わせて用いられるテトラカルボン酸二無水物との反応により、共通の溶媒(例えば、N,N-ジメチルアセトアミド(DMAC))に可溶で、所定の透明性を有するポリイミドを与える芳香族ジアミン化合物であれば、任意の芳香族ジアミン化合物を使用することができる。具体的には、m-フェニレンジアミン、p-フェニレンジアミン、3,4’-ジアミノジフェニルエ-テル、4,4’-ジアミノジフェニルエ-テル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、3,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェニル)〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェニル)〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕エ-テル、ビス〔4-(4-アミノフェノキシ)フェニル〕エ-テル、ビス〔3-(3-アミノフェノキシ)フェニル〕エ-テル、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス〔4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、1,3-ビス〔4-(4-アミノ-6-フルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等が挙げられる。 The aromatic diamine compound is a polyimide that is soluble in a common solvent (for example, N,N-dimethylacetamide (DMAC)) and has a certain level of transparency by reacting with the tetracarboxylic dianhydride that is used together. Any aromatic diamine compound can be used as long as it provides the aromatic diamine compound. Specifically, m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4' -diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminobenzophenone, 3 , 3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2 -(3-aminophenyl)-2-(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2- bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3, 3,3-hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 1,4 -bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 3,3'-bis(4-aminophenoxy)biphenyl, 3,4'-bis(3-aminophenoxy) Biphenyl, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[3-(4-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[3-(4 -aminophenoxy)phenyl]sulfide, bis[3-(3-aminophenoxy)phenyl]sulfide, bis[3-(4-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenyl)]sulfone, bis [3-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenyl)]sulfone, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(4-amino phenoxy)phenyl] ether, bis[3-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(4-aminophenoxy)phenyl L]methane, bis[3-(3-aminophenoxy)phenyl]methane, bis[3-(4-aminophenoxy)phenyl]methane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[3-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy) Phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoro Propane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(4-aminophenoxy)phenyl ]-1,1,1,3,3,3-hexafluoropropane, 1,3-bis[4-(4-amino-6-trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 1, 3-bis[4-(4-amino-6-fluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl-4 ,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl and the like. .
 これらの芳香族ジアミン化合物は単独で用いてもよく、2種類以上の芳香族ジアミン化合物を使用してもよい。そして、透明性や耐熱性の観点から、好ましい芳香族ジアミン化合物としては、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス〔4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等のフルオロ基を有する芳香族ジアミン化合物が挙げられ、使用する芳香族ジアミン化合物の少なくとも1種類はフルオロ基を有する芳香族ジアミン化合物であることが好ましく、特に好ましくは2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルである。フルオロ基を有する芳香族ジアミン化合物を用いることで、透明性、耐熱性、溶剤への可溶性を得ることが容易となる。 These aromatic diamine compounds may be used alone, or two or more aromatic diamine compounds may be used. From the viewpoint of transparency and heat resistance, preferable aromatic diamine compounds include 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2 -bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3 ,3,3-hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4- (4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3, 3,3-hexafluoropropane, 2,2-bis[3-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,3-bis[4-( 4-amino-6-trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 3,3′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 2,2′-bis(trifluoro Examples include aromatic diamine compounds having a fluoro group such as methyl)-4,4'-diaminobiphenyl, and at least one of the aromatic diamine compounds used is preferably an aromatic diamine compound having a fluoro group, particularly 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl is preferred. By using an aromatic diamine compound having a fluoro group, it becomes easy to obtain transparency, heat resistance, and solubility in a solvent.
 テトラカルボン酸二無水物としては、上記芳香族ジアミン化合物と同様に、共通の溶媒(例えば、N,N-ジメチルアセトアミド(DMAC))に可溶で所定の透明性を有するポリイミドを与えるテトラカルボン酸二無水物であれば、任意のものを使用でき、具体的には、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,4-ヒドロキノンジベンゾエ-ト-3, 3’,4,4’-テトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物等が例示される。これらのテトラカルボン酸二無水物は単独で用いてもよく、二種類以上のテトラカルボン酸二無水物を使用してもよい。そして、透明性、耐熱性及び溶剤への可溶性の観点から、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物等、少なくとも1種類のフルオロ基を有するテトラカルボン酸二無水物を使用することが好ましい。 As the tetracarboxylic dianhydride, a tetracarboxylic acid that is soluble in a common solvent (eg, N,N-dimethylacetamide (DMAC)) and gives a polyimide having a predetermined transparency, like the aromatic diamine compound. Any dianhydride can be used, and specifically, 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic acid di anhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 1,4-hydroquinonedibenzoate-3,3',4,4'-tetracarboxylic acid Acid dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-diphenylethertetracarboxylic dianhydride and the like are exemplified. These tetracarboxylic dianhydrides may be used alone, or two or more kinds of tetracarboxylic dianhydrides may be used. 4,4′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic dianhydride and the like from the viewpoint of transparency, heat resistance and solubility in solvents , preferably a tetracarboxylic dianhydride having at least one fluoro group.
 ポリアミド酸への重合は、生成するポリアミド酸が可溶な溶剤への溶解下で、上記芳香族ジアミン化合物及びテトラカルボン酸二無水物を反応させることにより行うことができる。ポリアミド酸への重合に用いる溶剤としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の溶剤を用いることができる。 Polymerization into polyamic acid can be carried out by reacting the above aromatic diamine compound and tetracarboxylic dianhydride while dissolving in a solvent in which the resulting polyamic acid is soluble. Solvents used for polymerization to polyamic acid include solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and dimethylsulfoxide. can be used.
 ポリアミド酸への重合反応は、撹拌装置を備えた反応容器で撹拌しながら行うことが好ましい。例えば、上記溶剤に所定量の芳香族ジアミン化合物を溶解させて、撹拌しながらテトラカルボン酸二無水物を投入して反応を行い、ポリアミド酸を得る方法、テトラカルボン酸二無水物を溶剤に溶解させて、撹拌しながら芳香族ジアミン化合物を投入して反応を行い、ポリアミド酸を得る方法、芳香族ジアミン化合物とテトラカルボン酸二無水物を交互に投入して反応させてポリアミド酸を得る方法等が挙げられる。 The polymerization reaction to polyamic acid is preferably carried out while stirring in a reaction vessel equipped with a stirring device. For example, a method of dissolving a predetermined amount of an aromatic diamine compound in the above solvent, adding tetracarboxylic dianhydride while stirring to react, and obtaining polyamic acid, dissolving the tetracarboxylic dianhydride in the solvent. A method of obtaining polyamic acid by adding an aromatic diamine compound while stirring and reacting, a method of obtaining polyamic acid by alternately adding an aromatic diamine compound and a tetracarboxylic dianhydride and reacting them, etc. is mentioned.
 ポリアミド酸への重合反応の温度については特に制約はないが、0~70℃の温度で行うことが好ましく、より好ましくは10~60℃であり、さらに好ましくは20~50℃である。重合反応を上記範囲内で行うことで、着色が少なく透明性に優れた高分子量のポリアミド酸を得ることが可能となる。 The temperature of the polymerization reaction to polyamic acid is not particularly limited, but it is preferably carried out at a temperature of 0 to 70°C, more preferably 10 to 60°C, and even more preferably 20 to 50°C. By performing the polymerization reaction within the above range, it is possible to obtain a high-molecular-weight polyamic acid with little coloration and excellent transparency.
 また、ポリアミド酸への重合に使用する芳香族ジアミン化合物とテトラカルボン酸二無水物は、概ね当モル量を使用するが、得られるポリアミド酸の重合度をコントロールするために、テトラカルボン酸二無水物のモル量/芳香族ジアミン化合物のモル量(モル比率)を0.95~1.05の範囲で変化させることも可能である。そして、テトラカルボン酸二無水物と芳香族ジアミン化合物のモル比率は、1.001~1.02の範囲であることが好ましく、1.001~1.01であることがより好ましい。このようにテトラカルボン酸二無水物を芳香族ジアミン化合物に対して僅かに過剰にすることで、得られるポリアミド酸の重合度を安定させることができるとともに、テトラカルボン酸二無水物由来のユニットをポリマーの末端に配置することができ、その結果、着色が少なく透明性に優れたポリイミドを与えることが可能となる。 In addition, the aromatic diamine compound and the tetracarboxylic dianhydride used for polymerization into polyamic acid are generally used in equimolar amounts. It is also possible to change the molar amount of the compound/the molar amount (molar ratio) of the aromatic diamine compound within the range of 0.95 to 1.05. The molar ratio of the tetracarboxylic dianhydride and the aromatic diamine compound is preferably in the range of 1.001-1.02, more preferably 1.001-1.01. By making the tetracarboxylic dianhydride slightly excessive relative to the aromatic diamine compound in this way, the degree of polymerization of the resulting polyamic acid can be stabilized, and the unit derived from the tetracarboxylic dianhydride can be It can be placed at the end of the polymer, and as a result, it is possible to obtain a polyimide with little coloration and excellent transparency.
 生成するポリアミド酸溶液の濃度は、溶液の粘度を適正に保ち、その後の工程での取り扱いが容易になるよう、適切な濃度(例えば、10~30質量%程度)に整えることが好ましい。 The concentration of the polyamic acid solution to be produced is preferably adjusted to an appropriate concentration (for example, about 10 to 30% by mass) so that the viscosity of the solution can be properly maintained and handling in the subsequent steps can be facilitated.
 得られたポリアミド酸溶液にイミド化剤を加えて化学イミド化反応を行う。イミド化剤としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水フタル酸、無水安息香酸等のカルボン酸無水物を用いることができ、コストや反応後の除去のしやすさの観点から無水酢酸を使用することが好ましい。使用するイミド化剤の当量は化学イミド化反応を行うポリアミド酸のアミド結合の当量以上であり、アミド結合の当量の1.1~5倍であることが好ましく、1.5~4倍であることがより好ましい。このようにアミド結合に対して少し過剰のイミド化剤を使用することで、比較的低温でも効率的にイミド化反応を行うことができる。 An imidizing agent is added to the resulting polyamic acid solution to carry out a chemical imidization reaction. As the imidizing agent, carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride can be used. Preference is given to using acetic acid. The equivalent of the imidizing agent to be used is at least the equivalent of the amide bond of the polyamic acid that performs the chemical imidization reaction, preferably 1.1 to 5 times the equivalent of the amide bond, and 1.5 to 4 times. is more preferable. By using the imidizing agent in a slightly excess amount with respect to the amide bond in this way, the imidization reaction can be efficiently carried out even at a relatively low temperature.
 化学イミド化反応には、イミド化促進剤として、ピリジン、ピコリン、キノリン、イソキノリン、トリメチルアミン、トリエチルアミン等の脂肪族、芳香族又は複素環式第三級アミン類を使用することができる。このようなアミン類を使用することで、低温で効率的にイミド化反応を行うことができ、その結果イミド化反応時の着色を抑えることが可能となり、より透明なポリイミドを得易くなる。 For the chemical imidization reaction, aliphatic, aromatic or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine can be used as imidization accelerators. By using such amines, the imidization reaction can be efficiently carried out at a low temperature, and as a result, it becomes possible to suppress coloring during the imidization reaction, making it easier to obtain a more transparent polyimide.
 化学イミド化反応温度については特に制約はないが、10℃以上50℃未満で行うことが好ましく、15℃以上45℃未満で行うことがより好ましい。10℃以上50℃未満の温度で化学イミド化反応を行うことで、イミド化反応時の着色が抑えられ、透明性に優れたポリイミドを得ることができる。 Although there are no particular restrictions on the chemical imidization reaction temperature, it is preferably carried out at 10°C or higher and lower than 50°C, more preferably at 15°C or higher and lower than 45°C. By performing the chemical imidization reaction at a temperature of 10° C. or more and less than 50° C., coloration during the imidization reaction can be suppressed, and a polyimide having excellent transparency can be obtained.
 この後、必要に応じて、化学イミド化反応により得られたポリイミド溶液に、ポリイミドの貧溶媒を加えてポリイミドを析出させて粉体を形成させる粉体化、乾燥を行う。 After that, if necessary, a poor solvent for polyimide is added to the polyimide solution obtained by the chemical imidization reaction to precipitate polyimide to form powder, which is powderization and drying.
 ポリイミド樹脂としては、ベンゼンやメチルエチルケトン等の低沸点の有機溶剤に可溶であることが好ましい。特に、メチルエチルケトンに可溶であることが好ましい。メチルエチルケトンに可溶であると、塗布・乾燥によって容易に硬化性樹脂組成物の硬化物からなる後述する硬化樹脂層を形成することができる。 The polyimide resin is preferably soluble in low-boiling organic solvents such as benzene and methyl ethyl ketone. In particular, it is preferably soluble in methyl ethyl ketone. When it is soluble in methyl ethyl ketone, it is possible to easily form a curable resin layer, which will be described later, comprising a cured product of the curable resin composition by coating and drying.
 フルオロ基を含むポリイミド樹脂は、メチルエチルケトン等の沸点の低い汎用の有機溶剤に溶解し易くなり、塗布法で硬化性樹脂層を形成し易くなるという観点から、特に好ましい。
 フルオロ基を有するポリイミド樹脂としては、分子内にフルオロ基を有する芳香族ポリイミド樹脂が好ましく、分子内に以下の化学式で示す骨格を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000001
A polyimide resin containing a fluoro group is particularly preferable from the viewpoint that it is easily dissolved in a general-purpose organic solvent having a low boiling point such as methyl ethyl ketone and that a curable resin layer is easily formed by a coating method.
The polyimide resin having a fluoro group is preferably an aromatic polyimide resin having a fluoro group in the molecule, and preferably has a skeleton represented by the following chemical formula in the molecule.
Figure JPOXMLDOC01-appb-C000001
 上記化学式で示される骨格を有するポリイミド樹脂は、上記骨格の剛直性が高いことにより、300℃を超える極めて高いTgを有している。このため、硬化樹脂層の耐熱性を大きく向上させ得る。また、上記骨格は直線的であり比較的柔軟性が高く、硬化性樹脂層の破断伸度を高くさせ易くなる。さらに、上記骨格を有するポリイミド樹脂は、フルオロ基を有することにより、メチルエチルケトン等の低沸点の汎用有機溶剤に溶解し得る。したがって、溶液キャスト法を用いて塗工を行い、塗膜として硬化性樹脂層を形成することができ、また、乾燥による溶剤除去も容易である。上記化学式で示される骨格を有するポリイミド樹脂は、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルと、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物とを用いて、上述のポリアミド酸の重合及びイミド化反応により得ることができる。 A polyimide resin having a skeleton represented by the above chemical formula has an extremely high Tg exceeding 300°C due to the high rigidity of the skeleton. Therefore, the heat resistance of the cured resin layer can be greatly improved. In addition, the skeleton is linear and has relatively high flexibility, which facilitates increasing the breaking elongation of the curable resin layer. Furthermore, the polyimide resin having the above skeleton can dissolve in general-purpose low-boiling organic solvents such as methyl ethyl ketone due to the presence of fluoro groups. Therefore, the coating can be performed using a solution casting method to form a curable resin layer as a coating film, and the solvent can be easily removed by drying. The polyimide resin having a skeleton represented by the above chemical formula includes 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl and 4,4′-(1,1,1,3,3,3 -Hexafluoropropane-2,2-diyl)diphthalic dianhydride can be obtained by polymerization and imidization reaction of the polyamic acid described above.
 重合体成分(A)には、さらに他の成分が含まれていてもよい。
 ポリアリレート樹脂は、芳香族ジオールと芳香族ジカルボン酸又はそのクロライドとの反応により得られる高分子化合物からなる樹脂である。ポリアリレート樹脂も、ポリイミド樹脂と同様、比較的高いTgを有しており、伸び特性も比較的良好である。ポリアリレート樹脂としては、特に限定されず、公知のものが使用できる。
The polymer component (A) may further contain other components.
A polyarylate resin is a resin composed of a polymer compound obtained by reacting an aromatic diol with an aromatic dicarboxylic acid or a chloride thereof. The polyarylate resin also has a relatively high Tg, similarly to the polyimide resin, and has relatively good elongation properties. The polyarylate resin is not particularly limited, and known ones can be used.
 芳香族ジオールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン〔ビスフェノールF〕、ビス(3-メチル-4-ヒドロキシフェニル)メタン、1,1-ビス(4’-ヒドロキシフェニル)エタン、1,1-ビス(3’-メチル-4’-ヒドロキシフェニル)エタン、2,2-ビス(4’-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、2,2-ビス(3’-メチル-4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-ヒドロキシフェニル)ブタン、2,2-ビス(4’-ヒドロキシフェニル)オクタン等のビス(ヒドロキシフェニル)アルカン類;1,1-ビス(4’-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4’-ヒドロキシフェニル)シクロヘキサン〔ビスフェノールZ〕、1,1-ビス(4’-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等のビス(ヒドロキシフェニル)シクロアルカン類;ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(3-メチル-4-ヒドロキシフェニル)フェニルメタン、ビス(2,6-ジメチル-4-ヒドロキシフェニル)フェニルメタン、ビス(2,3,6-トリメチル-4-ヒドロキシフェニル)フェニルメタン、ビス(3-t-ブチル-4-ヒドロキシフェニル)フェニルメタン、ビス(3-フェニル-4-ヒドロキシフェニル)フェニルメタン、ビス(3-フルオロ-4-ヒドロキシフェニル)フェニルメタン、ビス(3-ブロモ-4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)-4-フルオロフェニルメタン、ビス(3-フルオロ-4-ヒドロキシフェニル)-4-フルオロフェニルメタン、ビス(4-ヒドロキシフェニル)-4-クロロフェニルメタン、ビス(4-ヒドロキシフェニル)-4-ブロモフェニルメタン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)-4-フルオロフェニルメタン、1,1-ビス(4’-ヒドロキシフェニル)-1-フェニルエタン〔ビスフェノールP〕、1,1-ビス(3’-メチル-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(3’-t-ブチル-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(3’-フェニル-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4’-ヒドロキシフェニル)-1-(4’-ニトロフェニル)エタン、1,1-ビス(3’-ブロモ-4’-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4’-ヒドロキシフェニル)-1-フェニルプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ジベンジルメタン等のビス(ヒドロキシフェニル)フェニルアルカン類;ビス(4-ヒドロキシフェニル)エーテル、ビス(3-メチル-4-ヒドロキシフェニル)エーテル等のビス(ヒドロキシフェニル)エーテル類;ビス(4-ヒドロキシフェニル)ケトン、ビス(3-メチル-4-ヒドロキシフェニル)ケトン等のビス(ヒドロキシフェニル)ケトン類;ビス(4-ヒドロキシフェニル)スルフィド、ビス(3-メチル-4-ヒドロキシフェニル)スルフィド等のビス(ヒドロキシフェニル)スルフィド類;ビス(4-ヒドロキシフェニル)スルホキシド、ビス(3-メチル-4-ヒドロキシフェニル)スルホキシド等のビス(ヒドロキシフェニル)スルホキシド類;ビス(4-ヒドロキシフェニル)スルホン〔ビスフェノールS〕、ビス(3-メチル-4-ヒドロキシフェニル)スルホン等のビス(ヒドロキシフェニル)スルホン類;9,9-ビス(4’-ヒドロキシフェニル)フルオレン、9,9-ビス(3’-メチル-4’-ヒドロキシフェニル)フルオレン等のビス(ヒドロキシフェニル)フルオレン類;等が挙げられる。 Examples of aromatic diols include bis(4-hydroxyphenyl)methane [bisphenol F], bis(3-methyl-4-hydroxyphenyl)methane, 1,1-bis(4′-hydroxyphenyl)ethane, 1, 1-bis(3'-methyl-4'-hydroxyphenyl)ethane, 2,2-bis(4'-hydroxyphenyl)propane [bisphenol A], 2,2-bis(3'-methyl-4'-hydroxy bis(hydroxyphenyl)alkanes such as phenyl)propane, 2,2-bis(4'-hydroxyphenyl)butane, 2,2-bis(4'-hydroxyphenyl)octane; 1,1-bis(4'- bis(hydroxyphenyl)cyclopentane, 1,1-bis(4'-hydroxyphenyl)cyclohexane [bisphenol Z], 1,1-bis(4'-hydroxyphenyl)-3,3,5-trimethylcyclohexane, etc. phenyl)cycloalkanes; bis(4-hydroxyphenyl)phenylmethane, bis(3-methyl-4-hydroxyphenyl)phenylmethane, bis(2,6-dimethyl-4-hydroxyphenyl)phenylmethane, bis(2, 3,6-trimethyl-4-hydroxyphenyl)phenylmethane, bis(3-t-butyl-4-hydroxyphenyl)phenylmethane, bis(3-phenyl-4-hydroxyphenyl)phenylmethane, bis(3-fluoro- 4-hydroxyphenyl)phenylmethane, bis(3-bromo-4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)-4-fluorophenylmethane, bis(3-fluoro-4-hydroxyphenyl)-4- Fluorophenylmethane, bis(4-hydroxyphenyl)-4-chlorophenylmethane, bis(4-hydroxyphenyl)-4-bromophenylmethane, bis(3,5-dimethyl-4-hydroxyphenyl)-4-fluorophenylmethane , 1,1-bis(4′-hydroxyphenyl)-1-phenylethane [bisphenol P], 1,1-bis(3′-methyl-4′-hydroxyphenyl)-1-phenylethane, 1,1- Bis(3′-t-butyl-4′-hydroxyphenyl)-1-phenylethane, 1,1-bis(3′-phenyl-4′-hydroxyphenyl)-1-phenylethane, 1,1-bis( 4′-hydroxyphenyl)-1-(4′-nitrophenyl)ethane, 1,1-bis(3′ -bromo-4′-hydroxyphenyl)-1-phenylethane, 1,1-bis(4′-hydroxyphenyl)-1-phenylpropane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)di bis(hydroxyphenyl)phenylalkanes such as benzylmethane; bis(hydroxyphenyl)ethers such as bis(4-hydroxyphenyl)ether and bis(3-methyl-4-hydroxyphenyl)ether; bis(4-hydroxyphenyl) ) ketones, bis (hydroxyphenyl) ketones such as bis (3-methyl-4-hydroxyphenyl) ketone; bis (4-hydroxyphenyl) sulfide, bis (3-methyl-4-hydroxyphenyl) sulfide and other bis ( hydroxyphenyl) sulfides; bis(4-hydroxyphenyl) sulfoxide, bis(3-methyl-4-hydroxyphenyl) sulfoxide and other bis(hydroxyphenyl) sulfoxides; bis(4-hydroxyphenyl) sulfone [bisphenol S], Bis(hydroxyphenyl)sulfones such as bis(3-methyl-4-hydroxyphenyl)sulfone; 9,9-bis(4′-hydroxyphenyl)fluorene, 9,9-bis(3′-methyl-4′- bis(hydroxyphenyl)fluorenes such as hydroxyphenyl)fluorene;
 芳香族ジカルボン酸又はそのクロライドとしては、例えば、フタル酸、イソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエーテル4,4’-ジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、及びそれらのクロライド等が挙げられる。また、用いるポリアリレート系樹脂は、変性ポリアリレート系樹脂であってもよい。これらの中でも、ポリアリレート系樹脂としては、2,2-ビス(4’-ヒドロキシフェニル)プロパンとイソフタル酸との反応により得られる高分子化合物からなる樹脂が好ましい。 Examples of aromatic dicarboxylic acids or chlorides thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyl ether 4,4′-dicarboxylic acid, 4,4′- diphenylsulfonedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, chlorides thereof, and the like. Further, the polyarylate-based resin to be used may be a modified polyarylate-based resin. Among these, the polyarylate-based resin is preferably a resin composed of a polymer compound obtained by reacting 2,2-bis(4'-hydroxyphenyl)propane with isophthalic acid.
 重合体成分(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。また、重合体成分(A)と、ガラス転移温度が250℃未満である重合体成分(A’)とを組み合わせて用いてもよい。重合体成分(A’)としては、例えば、ポリアミド樹脂、Tgが250℃未満であるポリアリレート樹脂が挙げられ、ポリアミド樹脂が好ましい。 The polymer component (A) can be used singly or in combination of two or more. Also, the polymer component (A) and the polymer component (A') having a glass transition temperature of less than 250°C may be used in combination. Examples of the polymer component (A′) include polyamide resins and polyarylate resins having a Tg of less than 250° C. Polyamide resins are preferred.
 ポリアミド樹脂としては、有機溶媒に可溶であるものが好ましく、ゴム変性ポリアミド樹脂が好ましい。ゴム変性ポリアミド樹脂としては、例えば、特開2004-035638号公報に記載のものを用いることができる。 As the polyamide resin, one that is soluble in an organic solvent is preferable, and a rubber-modified polyamide resin is preferable. As the rubber-modified polyamide resin, for example, those described in JP-A-2004-035638 can be used.
 重合体成分(A)及び重合体成分(A’)としては、単一種類のポリイミド樹脂を用いたもの、種類の異なるポリイミド樹脂を複数用いたもの、及び、ポリイミド樹脂にポリアミド樹脂及びポリアリレート樹脂のうち少なくとも一方を添加したものが、伸び特性を調整し得る観点、及び、耐溶剤性の観点から好ましい。 As the polymer component (A) and the polymer component (A'), one using a single type of polyimide resin, one using a plurality of different types of polyimide resin, and polyimide resin with polyamide resin and polyarylate resin It is preferable to add at least one of them from the viewpoint of adjusting the elongation characteristics and the viewpoint of solvent resistance.
 ポリイミド樹脂にポリアミド樹脂やTgが250℃未満であるポリアリレート樹脂を添加する場合、添加する樹脂の量は、Tgを高く維持しつつ、適度に柔軟性を付与する観点から、ポリイミド樹脂100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは50質量部以下、より更に好ましくは30質量部以下であり、また、好ましくは1質量部以上、より好ましくは3質量部以上である。 When adding a polyamide resin or a polyarylate resin having a Tg of less than 250 ° C. to the polyimide resin, the amount of the resin to be added is 100 parts by mass of the polyimide resin from the viewpoint of imparting moderate flexibility while maintaining a high Tg. , preferably 100 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 50 parts by mass or less, still more preferably 30 parts by mass or less, and preferably 1 part by mass or more, more preferably It is 3 parts by mass or more.
<硬化性単量体(B)>
 本発明の硬化性樹脂組成物は、硬化性単量体(B)を含有する。
 硬化性単量体(B)は、重合性不飽和結合を有する単量体であって、重合反応、又は、重合反応及び架橋反応に関与し得る単量体である。なお、本明細書において、「硬化」とは、この「単量体の重合反応」、又は、「単量体の重合反応及び引き続く重合体の架橋反応」を含めた広い概念を意味する。
<Curable monomer (B)>
The curable resin composition of the present invention contains a curable monomer (B).
A curable monomer (B) is a monomer having a polymerizable unsaturated bond, and is a monomer that can participate in a polymerization reaction or a polymerization reaction and a cross-linking reaction. In this specification, the term "curing" means a broad concept including this "polymerization reaction of monomers" or "polymerization reaction of monomers and subsequent cross-linking reaction of polymers".
 硬化性単量体(B)の分子量は、通常、3,000以下、好ましくは150~2,000、より好ましくは150~1,000である。
 硬化性単量体(B)中の重合性不飽和結合の数は特に制限されない。硬化性単量体(B)は、重合性不飽和結合を1つ有する単官能型の単量体であっても、複数有する2官能型や3官能型等の多官能型の単量体であってもよい。
The molecular weight of the curable monomer (B) is generally 3,000 or less, preferably 150-2,000, more preferably 150-1,000.
The number of polymerizable unsaturated bonds in the curable monomer (B) is not particularly limited. The curable monomer (B) is a monofunctional monomer having one polymerizable unsaturated bond, or a multifunctional monomer such as a bifunctional or trifunctional monomer having a plurality of polymerizable unsaturated bonds. There may be.
 前記単官能型の単量体としては、単官能の(メタ)アクリル酸誘導体が挙げられる。
 単官能の(メタ)アクリル酸誘導体としては、特に限定されず、公知の化合物を用いることができる。例えば、窒素原子を有する単官能の(メタ)アクリル酸誘導体、脂環式構造を有する単官能の(メタ)アクリル酸誘導体、ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体等が挙げられる。
Examples of the monofunctional monomers include monofunctional (meth)acrylic acid derivatives.
The monofunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. Examples include monofunctional (meth)acrylic acid derivatives having a nitrogen atom, monofunctional (meth)acrylic acid derivatives having an alicyclic structure, and monofunctional (meth)acrylic acid derivatives having a polyether structure. .
 窒素原子を有する単官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。 Examples of monofunctional (meth)acrylic acid derivatives having a nitrogen atom include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、R及びRは、それぞれ独立に、水素原子又は炭素数1~12の有機基を表し、RとRは、結合して環構造を形成してもよく、Rは、2価の有機基を表す。
 Rで表される炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられ、メチル基が好ましい。
 R及びRで表される炭素数1~12の有機基としては、メチル基、エチル基、プロピル基等の、炭素数1~12のアルキル基;シクロペンチル基、シクロへキシル基等の、炭素数3~12のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基等の、炭素数6~12の芳香族基;が挙げられる。これらの基は、任意の位置に置換基を有していてもよい。また、RとRが一緒になって環を形成してもよく、該環は、骨格中に更に窒素原子や酸素原子を有していてもよい。
 Rで表される2価の有機基としては、-(CH-、-NH-(CH-で表される基が挙げられる。ここで、mは、1~10の整数である。
In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 and R 3 each independently represent a hydrogen atom or an organic group having 1 to 12 carbon atoms, and R 2 and R 3 may combine to form a ring structure, and R 4 represents a divalent organic group.
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group and the like, and a methyl group is preferred.
Examples of organic groups having 1 to 12 carbon atoms represented by R 2 and R 3 include alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; cycloalkyl groups having 3 to 12 carbon atoms; aromatic groups having 6 to 12 carbon atoms such as phenyl, biphenyl and naphthyl groups; These groups may have a substituent at any position. Also, R 2 and R 3 may combine to form a ring, and the ring may further have a nitrogen atom or an oxygen atom in its skeleton.
Divalent organic groups represented by R 4 include groups represented by -(CH 2 ) m - and -NH-(CH 2 ) m -. Here, m is an integer of 1-10.
 これらの中でも、窒素原子を有する単官能の(メタ)アクリル酸誘導体としては、下記式で表される(メタ)アクリロイルモルホリンが好ましいものとして挙げられる。 Among these, the (meth)acryloylmorpholine represented by the following formula is preferred as the monofunctional (meth)acrylic acid derivative having a nitrogen atom.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 窒素原子を有する単官能の(メタ)アクリル酸誘導体を、硬化性単量体(B)として用いることで、より耐熱性に優れる硬化樹脂層を形成することができる。 By using a monofunctional (meth)acrylic acid derivative having a nitrogen atom as the curable monomer (B), a cured resin layer with more excellent heat resistance can be formed.
 脂環式構造を有する単官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。 Examples of monofunctional (meth)acrylic acid derivatives having an alicyclic structure include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、Rは上記と同じ意味を表し、Rは脂環式構造を有する基である。
 Rで表される脂環式構造を有する基としては、シクロへキシル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデカニル基等が挙げられる。
In the formula, R 1 has the same meaning as above, and R 5 is a group having an alicyclic structure.
The group having an alicyclic structure represented by R 5 includes cyclohexyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecanyl group and the like.
 脂環式構造を有する単官能の(メタ)アクリル酸誘導体の具体例としては、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-アダマンチル(メタ)アクリレート等が挙げられる。 Specific examples of monofunctional (meth)acrylic acid derivatives having an alicyclic structure include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-adamantyl (meth)acrylate and the like. mentioned.
 脂環式構造を有する単官能の(メタ)アクリル酸誘導体を、硬化性単量体(B)として用いることで、より光学特性に優れる硬化樹脂層を形成することができる。 By using a monofunctional (meth)acrylic acid derivative having an alicyclic structure as the curable monomer (B), a cured resin layer with more excellent optical properties can be formed.
 ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。 The monofunctional (meth)acrylic acid derivative having a polyether structure includes compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rは上記と同じ意味を表し、Rは炭素数1~12の有機基を表す。Rで表される炭素数1~12の有機基としては、メチル基、エチル基、プロピル基等の、炭素数1~12のアルキル基;シクロへキシル基等の、炭素数3~12のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基等の、炭素数6~12の芳香族基;等が挙げられる。jは、2~20の整数を表す。 In the formula, R 1 has the same meaning as above, and R 6 represents an organic group having 1 to 12 carbon atoms. Examples of the organic group having 1 to 12 carbon atoms represented by R 6 include alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group; A cycloalkyl group; an aromatic group having 6 to 12 carbon atoms such as a phenyl group, a biphenyl group and a naphthyl group; j represents an integer from 2 to 20;
 ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体の具体例としては、エトキシ化o-フェニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート等が挙げられる。 Specific examples of monofunctional (meth)acrylic acid derivatives having a polyether structure include ethoxylated o-phenylphenol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, and the like. .
 ポリエーテル構造を有する単官能の(メタ)アクリル酸誘導体を、硬化性単量体(B)として用いることで、靭性に優れる硬化脂層を形成することができる。 By using a monofunctional (meth)acrylic acid derivative having a polyether structure as the curable monomer (B), a cured fat layer with excellent toughness can be formed.
 前記多官能型の単量体としては、多官能の(メタ)アクリル酸誘導体が挙げられる。
 多官能の(メタ)アクリル酸誘導体としては、特に限定されず、公知の化合物を用いることができる。例えば、2~6官能の(メタ)アクリル酸誘導体が挙げられる。
 2官能の(メタ)アクリル酸誘導体としては、下記式で示される化合物が挙げられる。
Examples of the polyfunctional monomers include polyfunctional (meth)acrylic acid derivatives.
The polyfunctional (meth)acrylic acid derivative is not particularly limited, and known compounds can be used. Examples thereof include di- to hexa-functional (meth)acrylic acid derivatives.
Bifunctional (meth)acrylic acid derivatives include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Rは、上記のものと同じ意味を表し、Rは、2価の有機基を表す。Rで表される2価の有機基としては、下記式で示される基が挙げられる。 In the formula, R 1 has the same meaning as above, and R 7 represents a divalent organic group. Examples of the divalent organic group represented by R 7 include groups represented by the following formulae.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、sは1~20の整数を表し、tは、1~30の整数を表し、uとvは、それぞれ独立に、1~30の整数を表し、両末端の「-」は、結合手を表す。) (Wherein, s represents an integer of 1 to 20, t represents an integer of 1 to 30, u and v each independently represent an integer of 1 to 30, and "-" at both ends is represents a bond.)
 前記式で示される2官能の(メタ)アクリル酸誘導体の具体例としては、トリシクロデカンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等が挙げられる。これらの中でも、耐熱性及び靭性の観点から、トリシクロデカンジメタノールジ(メタ)アクリレート等の、上記式において、Rで表される2価の有機基がトリシクロデカン骨格を有するもの、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート等の、上記式において、Rで表される2価の有機基がビスフェノール骨格を有するもの、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等の、上記式において、Rで表される2価の有機基が9,9-ビスフェニルフルオレン骨格を有するものが好ましい。 Specific examples of the bifunctional (meth)acrylic acid derivative represented by the above formula include tricyclodecanedimethanol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate. , ethoxylated bisphenol A di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 9,9-bis[4-(2-acryloyloxyethoxy) phenyl]fluorene and the like. Among these, from the viewpoint of heat resistance and toughness, in the above formula, such as tricyclodecanedimethanol di(meth)acrylate, those in which the divalent organic group represented by R7 has a tricyclodecane skeleton, propoxy In the above formula, such as ethoxylated bisphenol A di(meth)acrylate and ethoxylated bisphenol A di(meth)acrylate, the divalent organic group represented by R7 has a bisphenol skeleton, 9,9-bis [4-(2-Acryloyloxyethoxy)phenyl]fluorene, etc., in which the divalent organic group represented by R 7 in the above formula preferably has a 9,9-bisphenylfluorene skeleton.
 また、これら以外の2官能の(メタ)アクリル酸誘導体としては、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート等が挙げられる。 Further, bifunctional (meth)acrylic acid derivatives other than these include neopentyl glycol adipate di(meth)acrylate, neopentylglycol hydroxypivalate di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, Ethylene oxide-modified phosphoric acid di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate and the like can be mentioned.
 3官能の(メタ)アクリル酸誘導体としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
 4官能の(メタ)アクリル酸誘導体としては、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能の(メタ)アクリル酸誘導体としては、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能の(メタ)アクリル酸誘導体としては、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Trifunctional (meth)acrylic acid derivatives include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate. ) acrylate, tris(acryloxyethyl) isocyanurate, and the like.
Examples of tetrafunctional (meth)acrylic acid derivatives include pentaerythritol tetra(meth)acrylate.
Pentafunctional (meth)acrylic acid derivatives include propionic acid-modified dipentaerythritol penta(meth)acrylate.
Examples of hexafunctional (meth)acrylic acid derivatives include dipentaerythritol hexa(meth)acrylate and caprolactone-modified dipentaerythritol hexa(meth)acrylate.
 硬化性単量体(B)として、環化重合性モノマーを用いてもよい。環化重合性モノマーとは、環化しながらラジカル重合する性質をもつモノマーである。環化重合性モノマーとしては、非共役ジエン類が挙げられ、例えば、α-アリルオキシメチルアクリル酸系モノマーを用いることができ、2-アリロキシメチルアクリル酸の炭素数1~4のアルキルエステル、2-(アリルオキシメチル)アクリル酸シクロヘキシルが好ましく、2-アリロキシメチルアクリル酸の炭素数1~4のアルキルエステルがより好ましく、2-(アリルオキシメチル)アクリル酸メチルがさらに好ましい。
 また、ジメチル -2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(i-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ブチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ヘキシル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート等の環化重合性モノマーを用いることもできる。
A cyclization-polymerizable monomer may be used as the curable monomer (B). A cyclization-polymerizable monomer is a monomer that has the property of being radically polymerized while being cyclized. Cyclopolymerizable monomers include non-conjugated dienes, for example, α-allyloxymethyl acrylic acid-based monomers can be used, 2-allyloxymethyl acrylic acid alkyl esters having 1 to 4 carbon atoms, Cyclohexyl 2-(allyloxymethyl)acrylate is preferred, C 1-4 alkyl esters of 2-allyloxymethylacrylic acid are more preferred, and methyl 2-(allyloxymethyl)acrylate is even more preferred.
In addition, dimethyl-2,2'-[oxybis(methylene)]bis-2-propenoate, diethyl-2,2'-[oxybis(methylene)]bis-2-propenoate, di(n-propyl)-2,2 '-[oxybis(methylene)]bis-2-propenoate, di(i-propyl)-2,2'-[oxybis(methylene)]bis-2-propenoate, di(n-butyl)-2,2'- [oxybis(methylene)]bis-2-propenoate, di(n-hexyl)-2,2'-[oxybis(methylene)]bis-2-propenoate, dicyclohexyl-2,2'-[oxybis(methylene)]bis Cyclopolymerizable monomers such as -2-propenoate can also be used.
 硬化性単量体(B)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、硬化性単量体(B)は、耐熱性及び耐溶剤性により優れる硬化樹脂層が得られることから多官能型の単量体が好ましい。多官能の単量体としては、重合体成分(A)と混ざりやすく、かつ、重合物の硬化収縮が起こりにくく硬化物のカールが抑制できるという観点から、2官能(メタ)アクリル酸誘導体が好ましい。
 硬化性単量体(B)として、多官能(メタ)アクリレート化合物と、環化重合性モノマーとが含まれることがより好ましい。これらを併用することで、硬化樹脂層の耐熱性を適度に調整しつつ、硬化樹脂層の破断伸度を調整し易くなる。
 硬化性単量体(B)が多官能型の単量体を含む場合、その含有量は、硬化性単量体(B)の全量中、40質量%以上が好ましく、50~100質量%がより好ましい。
The curable monomer (B) can be used singly or in combination of two or more.
Among these, the curable monomer (B) is preferably a polyfunctional monomer because a cured resin layer having excellent heat resistance and solvent resistance can be obtained. As the polyfunctional monomer, a bifunctional (meth)acrylic acid derivative is preferable from the viewpoints that it is easily mixed with the polymer component (A) and that curing shrinkage of the polymer hardly occurs and curling of the cured product can be suppressed. .
More preferably, the curable monomer (B) contains a polyfunctional (meth)acrylate compound and a cyclopolymerizable monomer. By using these together, it becomes easy to adjust the breaking elongation of the cured resin layer while appropriately adjusting the heat resistance of the cured resin layer.
When the curable monomer (B) contains a polyfunctional monomer, the content thereof is preferably 40% by mass or more in the total amount of the curable monomer (B), and 50 to 100% by mass. more preferred.
 本発明の硬化性樹脂組成物は、重合体成分(A)、硬化性単量体(B)、及び所望により、後述する重合開始剤やその他の成分を混合し、適当な溶媒に溶解又は分散させることにより調製することができる。 The curable resin composition of the present invention is prepared by mixing the polymer component (A), the curable monomer (B), and optionally the polymerization initiator and other components described later, and dissolving or dispersing them in an appropriate solvent. It can be prepared by
 硬化性樹脂組成物中の、重合体成分(A)と硬化性単量体(B)の合計含有量は、溶媒を除いた硬化性樹脂組成物全体の質量に対して、好ましくは40~99.5質量%、より好ましくは60~99質量%、さらに好ましくは80~98質量%である。 The total content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably 40 to 99 with respect to the total mass of the curable resin composition excluding the solvent. .5% by mass, more preferably 60 to 99% by mass, still more preferably 80 to 98% by mass.
 硬化性樹脂組成物中の、重合体成分(A)と硬化性単量体(B)の含有量は、重合体成分(A)と硬化性単量体(B)との質量比で、好ましくは、重合体成分(A):硬化性単量体(B)=20:80~90:10、より好ましくは30:70~70:30である。
 硬化性樹脂組成物において、重合体成分(A):硬化性単量体(B)の質量比がこの範囲にあると、硬化樹脂層の高温での熱処理前後の熱収縮率が低下し易くなり、破断伸度が維持され易くなる。
 また、重合体成分(A)中のポリイミド樹脂の含有量は、溶媒を除いた重合体成分(A)全体の質量に対して、好ましくは70~100質量%、より好ましくは80~100質量%、さらに好ましくは95~100質量%である。
The content of the polymer component (A) and the curable monomer (B) in the curable resin composition is preferably the mass ratio of the polymer component (A) and the curable monomer (B) is polymer component (A):curable monomer (B)=20:80 to 90:10, more preferably 30:70 to 70:30.
In the curable resin composition, when the mass ratio of the polymer component (A) to the curable monomer (B) is within this range, the thermal shrinkage rate of the cured resin layer before and after heat treatment at a high temperature tends to decrease. , the elongation at break is easily maintained.
Further, the content of the polyimide resin in the polymer component (A) is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, based on the total mass of the polymer component (A) excluding the solvent. , more preferably 95 to 100% by mass.
 重合体成分(A)として、上述したポリイミド樹脂と、ポリアミド樹脂あるいはポリアリレート樹脂との組合せ等の、溶剤可溶性の異なる複数の樹脂を組み合わせて用いる場合は、まず、それぞれに適した溶剤に樹脂を溶解した上で、樹脂を溶解した低沸点の有機溶剤に、他の樹脂を溶解した溶液を添加することが好ましい。 As the polymer component (A), when using a combination of a plurality of resins with different solvent solubility, such as a combination of the polyimide resin described above and a polyamide resin or a polyarylate resin, first, the resin is added to a solvent suitable for each. After dissolving, it is preferable to add a solution in which another resin is dissolved to the low boiling point organic solvent in which the resin is dissolved.
 硬化性樹脂組成物には、所望により重合開始剤を含有させることができる。重合開始剤は、硬化反応を開始させるものであれば、特に制限なく用いることができ、例えば、熱重合開始剤や光重合開始剤が挙げられる。 The curable resin composition can optionally contain a polymerization initiator. Any polymerization initiator can be used without particular limitation as long as it initiates the curing reaction. Examples thereof include thermal polymerization initiators and photopolymerization initiators.
 熱重合開始剤としては、有機過酸化物やアゾ系化合物が挙げられる。
 有機過酸化物としては、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類;アセチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド類;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール類;t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド等のヒドロパーオキサイド類;t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシエステル類;等が挙げられる。
 アゾ系化合物としては、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。
Thermal polymerization initiators include organic peroxides and azo compounds.
Examples of organic peroxides include dialkyl peroxides such as di-t-butyl peroxide, t-butylcumyl peroxide and dicumyl peroxide; diacyl peroxides such as acetyl peroxide, lauroyl peroxide and benzoyl peroxide. ; ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methyl cyclohexanone peroxide; peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane ; t-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2, Hydroperoxides such as 5-dihydroperoxide; esters; and the like.
Azo compounds include 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2-cyclopropylpropionitrile), 2,2′-azobis(2 ,4-dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo ) isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
 光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤;ビス(η-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル]チタニウム等のチタノセン系光重合開始剤;1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル系光重合開始剤;ベンゾフェノン、p-クロロベンゾフェノン、ベンゾイル安息香酸、o-ベンゾイル安息香酸メチル、4-メチルベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-(13-アクリロイル-1,4,7,10,13-ペンタオキサトリデシル)-ベンゾフェノン等のベンゾフェノン系光重合開始剤;チオキサントン、2-クロロチオキサントン、3-メチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン系光重合開始剤;等が挙げられる。 Photoinitiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenylketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one , 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-[4-[4-(2-hydroxy-2 -methyl-propionyl)-benzyl]phenyl]-2-methyl-propan-1-one, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Amino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone Alkylphenone-based photopolymerization initiators such as; -Phosphorus-based photoinitiators such as phenylphosphinate and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide; bis(η 5 -2,4-cyclopentadien-1-yl) )-Bis[2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl]titanium titanocene-based photopolymerization initiator; 1,2-octanedione-1-[4-(phenylthio)- 2-(O-benzoyloxime)], ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime) and other oxime esters Photopolymerization initiator; benzophenone, p-chlorobenzophenone, benzoylbenzoic acid, o-methylbenzoylbenzoate, 4-methylbenzophenone, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyl-diphenyl benzophenones such as sulfide, 3,3′-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-(13-acryloyl-1,4,7,10,13-pentoxatridecyl)-benzophenone Photopolymerization initiator; thioxanthone, 2-chlorothioxanthone, 3-methylthioxanthone, 2,4-dimethylthioxanthone thioxanthone-based photopolymerization initiators such as tilthioxanthone, 2,4-diisopropylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone; are mentioned.
 上記の光重合開始剤の中でも、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤が好ましい。
 重合体成分(A)が本発明に用いるポリイミド樹脂のように芳香族環を有する熱可塑性樹脂である場合、重合体成分(A)が紫外線を吸収する結果、硬化反応が起こりにくいことがある。しかしながら、上記のリン系光重合開始剤を用いることで、上記重合体成分(A)に吸収されない波長の光を利用して硬化反応を効率よく進行させることができる。
 重合開始剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Among the above photoinitiators, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, ethyl(2,4,6-trimethylbenzoyl)- Phosphorus-based photopolymerization initiators such as phenylphosphinate and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide are preferred.
When the polymer component (A) is a thermoplastic resin having an aromatic ring such as the polyimide resin used in the present invention, the polymer component (A) absorbs ultraviolet rays, and as a result, the curing reaction may be difficult to occur. However, by using the above phosphorus-based photopolymerization initiator, it is possible to efficiently proceed the curing reaction using light of a wavelength that is not absorbed by the polymer component (A).
A polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
 重合開始剤の含有量は、硬化性樹脂組成物全体に対して、0.05~15質量%が好ましく、0.05~10質量%がより好ましく、0.05~5質量%が更に好ましい。 The content of the polymerization initiator is preferably 0.05 to 15% by mass, more preferably 0.05 to 10% by mass, and still more preferably 0.05 to 5% by mass, relative to the entire curable resin composition.
 また、前記硬化性樹脂組成物は、重合体成分(A)、硬化性単量体(B)、及び重合開始剤に加えて、トリイソプロパノールアミンや、4,4’-ジエチルアミノベンゾフェノン等の光重合開始助剤を含有していてもよい。 In addition, the curable resin composition contains a polymer component (A), a curable monomer (B), and a polymerization initiator, as well as triisopropanolamine and photopolymerization such as 4,4′-diethylaminobenzophenone. It may contain an initiation aid.
 前記硬化性樹脂組成物の調製に用いる溶媒としては、特に制限されず、例えば、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、塩化エチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、プロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;エチルセロソルブ等のセロソルブ系溶剤;1,3-ジオキソラン等のエーテル系溶媒;等が挙げられる。 The solvent used for preparing the curable resin composition is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; and dichloromethane. , ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene and other halogenated hydrocarbon solvents; methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether and other alcohol solvents; acetone, methyl ethyl ketone, 2 - ketone solvents such as pentanone, isophorone and cyclohexanone; ester solvents such as ethyl acetate and butyl acetate; cellosolve solvents such as ethyl cellosolve; ether solvents such as 1,3-dioxolane;
 前記硬化性樹脂組成物中の溶媒の含有量は、特に限定されないが、重合体成分(A)1gに対し、通常、0.1~1,000g、好ましくは、1~100gである。溶媒の量を適宜調節することによって、硬化性樹脂組成物の粘度を適宜なものに調節することができる。 The content of the solvent in the curable resin composition is not particularly limited, but is usually 0.1 to 1,000 g, preferably 1 to 100 g, per 1 g of polymer component (A). By appropriately adjusting the amount of the solvent, the viscosity of the curable resin composition can be appropriately adjusted.
 また、前記硬化性樹脂組成物は、本発明の目的、効果を損なわない範囲内で、可塑剤、酸化防止剤、紫外線吸収剤等の、公知の添加剤をさらに含有していてもよい。 In addition, the curable resin composition may further contain known additives such as plasticizers, antioxidants, and ultraviolet absorbers within a range that does not impair the objects and effects of the present invention.
<硬化樹脂層>
 硬化樹脂層は、ポリイミド樹脂を含む重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物の硬化物からなる。
 図1は、本発明の硬化樹脂層の一例を示す断面図である。硬化樹脂層1は単層であってもよく、複数層としてもよい。
 なお、硬化樹脂層の形成方法については、後述する積層体の製造方法において、詳述する。
<Cured resin layer>
The cured resin layer consists of a cured product of a curable resin composition containing a polymer component (A) containing a polyimide resin and a curable monomer (B).
FIG. 1 is a cross-sectional view showing an example of the cured resin layer of the present invention. The cured resin layer 1 may be a single layer or multiple layers.
The method for forming the cured resin layer will be described in detail in the method for manufacturing a laminate, which will be described later.
 本発明の硬化樹脂層は熱収縮性(加熱により収縮する)を示す。100℃で2分間の熱処理をしたときの熱収縮率は、好ましくは0.08%以下、より好ましくは0.05%以下、さらに好ましくは、0.01%以下である。硬化樹脂層の熱収縮率がこの範囲にあると、硬化樹脂層の耐熱性が高いことから、例えば、上述したように、塗工及び加熱乾燥によって硬化樹脂層上に後述する機能層を形成し積層体とする等、硬化樹脂層形成後に加熱を伴う製造工程を経る場合、熱収縮が抑制され、機能層への機械的な変形(例えば、そり、剥がれ、皺等)を生じさせにくくなり、機能層が本来有する所定の機能を十分発揮させることができる。
 なお、熱収縮率の測定は、後述する実施例に記載した方法で行った。
The cured resin layer of the present invention exhibits heat shrinkability (shrinks when heated). The thermal shrinkage rate when heat-treated at 100° C. for 2 minutes is preferably 0.08% or less, more preferably 0.05% or less, and still more preferably 0.01% or less. When the heat shrinkage of the cured resin layer is within this range, the cured resin layer has high heat resistance. Therefore, for example, as described above, a functional layer, which will be described later, is formed on the cured resin layer by coating and heat drying. When a manufacturing process involving heating is performed after forming a cured resin layer, such as a laminate, heat shrinkage is suppressed, and mechanical deformation (e.g., warpage, peeling, wrinkles, etc.) of the functional layer is less likely to occur. The predetermined function inherent in the functional layer can be exhibited sufficiently.
The thermal shrinkage rate was measured by the method described in Examples described later.
 硬化樹脂層の破断伸度は、好ましくは2.5%以上、より好ましくは3.0%以上、さらに好ましくは、3.5%以上である。硬化樹脂層の破断伸度がこの範囲にあると、例えば、2.5%以上であれば、積層体の破断伸度を2%以上程度に調整し易くなり、結果的に、フレキシブル性に優れる積層体が得られ易くなる
 なお、破断伸度の測定は、後述する実施例に記載した方法で行った。
The breaking elongation of the cured resin layer is preferably 2.5% or more, more preferably 3.0% or more, and still more preferably 3.5% or more. When the breaking elongation of the cured resin layer is in this range, for example, if it is 2.5% or more, it becomes easy to adjust the breaking elongation of the laminate to about 2% or more, resulting in excellent flexibility. A laminated body is easily obtained. The breaking elongation was measured by the method described in Examples described later.
 硬化樹脂層の面内の位相差は、好ましくは2nm以下であり、好ましくは1.5nm以下、より好ましくは1.0nm以下、さらに好ましくは0.5nm以下、よりさらに好ましくは0.3nm以下である。厚さ方向の位相差は、通常、-500nm以下であり、-450nm以下が好ましい。また、面内の位相差を硬化樹脂層の厚さで割った値(複屈折率)は、通常、100×10-5以下であり、好ましくは20×10-5以下である。
 硬化樹脂層の面内の位相差、厚さ方向の位相差、複屈折率が上記の範囲内であれば、光学等方性に優れることから光学用途の部材として好ましく用いることができる。
 なお、面内の位相差の測定は、後述する実施例に記載した方法で行った。
The in-plane retardation of the cured resin layer is preferably 2 nm or less, preferably 1.5 nm or less, more preferably 1.0 nm or less, even more preferably 0.5 nm or less, and even more preferably 0.3 nm or less. be. The retardation in the thickness direction is usually −500 nm or less, preferably −450 nm or less. Further, the value (birefringence) obtained by dividing the in-plane retardation by the thickness of the cured resin layer is usually 100×10 −5 or less, preferably 20×10 −5 or less.
If the in-plane retardation, the thickness direction retardation, and the birefringence of the cured resin layer are within the above ranges, the cured resin layer is excellent in optical isotropy and can be preferably used as a member for optical applications.
The in-plane retardation was measured by the method described in Examples described later.
 硬化樹脂層の厚さは、特に限定されず、例えば、後述する機能層を有する積層体の目的に合わせて適宜調整すればよい。硬化樹脂層の厚さは、通常、50μm以下、好ましくは20μm以下、より好ましくは0.1~20μm、さらに好ましくは0.1~15μm、特に好ましくは0.2~10μmである。
 硬化樹脂層の厚さがこの範囲であると、後述する積層体の厚さが大きくなることを防止でき、薄型の積層体とすることができる。薄型の積層体であれば、より薄型化が求められるデバイス等の用途において、積層体が適用デバイス全体の厚さの増大要因とならないため好ましい。さらに、積層体を屈曲したときの、最表層の伸縮歪み量を小さくすることができ、積層体のフレキシブル性を向上させることができる。また、薄型の積層体であれば、積層体の実装後のフレキシブル性が担保できる。
The thickness of the cured resin layer is not particularly limited, and may be appropriately adjusted, for example, according to the purpose of the laminate having a functional layer, which will be described later. The thickness of the cured resin layer is usually 50 μm or less, preferably 20 μm or less, more preferably 0.1 to 20 μm, even more preferably 0.1 to 15 μm, particularly preferably 0.2 to 10 μm.
When the thickness of the cured resin layer is within this range, it is possible to prevent the thickness of the laminate to be described later from becoming large, and it is possible to obtain a thin laminate. A thin laminate is preferable because the laminate does not cause an increase in the thickness of the entire applicable device in applications such as devices that require thinner devices. Furthermore, the amount of stretching strain of the outermost layer can be reduced when the laminate is bent, and the flexibility of the laminate can be improved. Moreover, if the laminate is thin, flexibility after mounting of the laminate can be secured.
 本発明の硬化樹脂層は、耐溶剤性に優れる。耐溶剤性に優れることから、例えば、硬化樹脂層表面に他の層を形成する際に有機溶剤を用いる場合であっても、硬化樹脂層表面はほとんど溶解しない。したがって、例えば、硬化樹脂層表面に、有機溶剤を含む樹脂溶液を用いて機能層を形成する場合であっても、硬化樹脂層の成分が機能層に浸入しにくいため、機能層の本来有する機能が低下しにくい。
 上記観点から、硬化樹脂層のゲル分率は好ましくは80%以上、より好ましくは85%以上、さらに好ましくは87%以上、特に好ましくは90%以上である。ゲル分率が80%以上の硬化樹脂層は、耐溶剤性に優れるものであるため、硬化樹脂層表面に機能層をコーティングにより形成する際に有機溶剤を用いる場合であっても、硬化樹脂層表面がほとんど溶解せず、耐溶剤性に優れる積層体を得易くすることができる。
 ここで、ゲル分率は、例えば、以下の操作(a)、(b)、(c)を行い、測定された乾燥後の構成体の重量を、MEK(メチルエチルケトン)溶媒に浸漬する前の構成体の重量で除することにより算出した。
(a)硬化樹脂層を、メッシュ(NBCメッシュテック社製、α_UX SCREEN 150―035/380TW)で包み、ホチキスで止めた構成体とし当該構成体の重量を測定
(b)メチルエチルケトン(MEK)溶媒を満たしたビンに、構成体を浸漬した後、密閉し、25℃で36時間放置
(c)構成体を溶媒から取り出し、100℃で60分間の乾燥を行い、乾燥後の構成体の重量を測定
The cured resin layer of the present invention is excellent in solvent resistance. Because of its excellent solvent resistance, even when an organic solvent is used to form another layer on the surface of the cured resin layer, the surface of the cured resin layer is hardly dissolved. Therefore, for example, even when the functional layer is formed on the surface of the cured resin layer using a resin solution containing an organic solvent, the components of the cured resin layer are less likely to penetrate into the functional layer. is difficult to decrease.
From the above viewpoint, the gel fraction of the cured resin layer is preferably 80% or higher, more preferably 85% or higher, even more preferably 87% or higher, and particularly preferably 90% or higher. A cured resin layer having a gel fraction of 80% or more has excellent solvent resistance. It is possible to easily obtain a laminate having a surface that hardly dissolves and having excellent solvent resistance.
Here, for example, the gel fraction is obtained by performing the following operations (a), (b), and (c), and comparing the weight of the measured structure after drying to the structure before immersion in MEK (methyl ethyl ketone) solvent Calculated by dividing by body weight.
(a) The cured resin layer was wrapped with a mesh (α_UX SCREEN 150-035/380TW manufactured by NBC Meshtec) and stapled to form a structure, and the weight of the structure was measured. (b) Methyl ethyl ketone (MEK) solvent was added. After the composition is immersed in the filled bottle, it is sealed and left at 25°C for 36 hours. (c) The composition is removed from the solvent, dried at 100°C for 60 minutes, and the weight of the composition after drying is measured.
(積層体)
 本発明の一態様として、硬化樹脂層上に機能層を備えることが好ましい。
 図2は、本発明の硬化樹脂層を用いた積層体の一例を示す断面模式図である。図2において、積層体11は、例えば、硬化樹脂層1上に機能層2を積層したものであり、硬化樹脂層1は、上記機能層2を設ける層や基材として用いることができる。
 また、本発明の他の一態様として、積層体は、工程フィルムと、硬化樹脂層と、機能層とをこの順で備えていてもよい。積層体を実際に用いる際には、該積層体から工程フィルムを剥離し、例えば、所定のディスプレイ等の電子デバイス等に貼り付けて使用する。
 本発明の硬化樹脂層は、高温下での熱収縮率が低く耐熱性に優れることから、高温での熱処理工程を有する製造プロセス等に用いることがより好ましい。
(Laminate)
As one aspect of the present invention, it is preferable to provide a functional layer on the cured resin layer.
FIG. 2 is a schematic cross-sectional view showing an example of a laminate using the cured resin layer of the present invention. In FIG. 2, a laminate 11 is, for example, a laminate of a functional layer 2 on a cured resin layer 1, and the cured resin layer 1 can be used as a layer or a substrate on which the functional layer 2 is provided.
Moreover, as another aspect of the present invention, the laminate may include a process film, a cured resin layer, and a functional layer in this order. When the laminate is actually used, the process film is peeled off from the laminate, and the laminate is attached to an electronic device such as a predetermined display.
Since the cured resin layer of the present invention has a low thermal shrinkage rate at high temperatures and is excellent in heat resistance, it is more preferably used in a manufacturing process or the like having a heat treatment step at high temperatures.
 機能層としては、特に制限されないが、例えば、導電層、接着剤層、粘着剤層、粘接着剤層、ガスバリア層、衝撃吸収層、ハードコート層、反射防止層等が挙げられる。なお、機能層の配置位置は特に限定されない。 The functional layer is not particularly limited, but includes, for example, a conductive layer, an adhesive layer, an adhesive layer, an adhesive layer, a gas barrier layer, an impact absorption layer, a hard coat layer, an antireflection layer, and the like. In addition, the arrangement position of the functional layer is not particularly limited.
 例えば、機能層として用いる導電層(電極、透明導電層等)を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。透明導電層では、例えば、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、ゲルマニウムをドープした酸化亜鉛(GZO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の半導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。
 導電層の形成方法としては、例えば、印刷法、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。
 導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nm~50μm、好ましくは20nm~20μmである。
For example, materials constituting the conductive layer (electrode, transparent conductive layer, etc.) used as the functional layer include metals, alloys, metal oxides, electrically conductive compounds, mixtures thereof, and the like. In transparent conductive layers, for example, antimony-doped tin oxide (ATO); fluorine-doped tin oxide (FTO); tin oxide, germanium-doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide ( ITO), semi-conductive metal oxides such as indium zinc oxide (IZO); metals such as gold, silver, chromium, nickel; mixtures of these metals and conductive metal oxides; inorganic materials such as copper iodide and copper sulfide conductive substances; organic conductive materials such as polyaniline, polythiophene, and polypyrrole; and the like.
Methods for forming the conductive layer include, for example, a printing method, a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, and the like.
The thickness of the conductor layer may be appropriately selected according to its use. It is usually 10 nm to 50 μm, preferably 20 nm to 20 μm.
 接着剤層は、例えば、積層体を被着体等に貼付する場合に用いられる層である。接着剤層を形成する材料としては、特に限定されず、アクリル系、シリコーン系、ゴム系、エポキシ系等の公知の接着剤または粘着剤、ヒートシール材等を使用することもできる、接着剤層を構成する材料としては、エポキシ系接着剤が好ましい。
 同様に、粘着剤層は、例えば、積層体を被着体等に貼付する場合に用いられる層である。粘着剤層に用いる粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられる。これらの中でも、粘着力、透明性及び取り扱い性の点から、アクリル系粘着剤、ウレタン系粘着剤が好ましい。また、架橋構造を形成し得る粘着剤が好ましい。粘着剤は、溶剤型粘着剤、エマルジョン型粘着剤、ホットメルト型粘着剤等のいずれの形態のものであってもよい。
The adhesive layer is a layer used, for example, when attaching the laminate to an adherend or the like. The material for forming the adhesive layer is not particularly limited, and known adhesives or adhesives such as acrylic, silicone, rubber, epoxy, etc., heat sealing materials, etc. can also be used. Epoxy-based adhesive is preferable as the material constituting the .
Similarly, the pressure-sensitive adhesive layer is a layer used, for example, when attaching the laminate to an adherend or the like. Examples of adhesives used for the adhesive layer include acrylic adhesives, urethane adhesives, silicone adhesives, rubber adhesives, and the like. Among these, acrylic pressure-sensitive adhesives and urethane-based pressure-sensitive adhesives are preferred from the viewpoints of adhesive strength, transparency, and handleability. Also, a pressure-sensitive adhesive capable of forming a crosslinked structure is preferred. The adhesive may be in any form such as a solvent-type adhesive, an emulsion-type adhesive, a hot-melt-type adhesive, or the like.
 積層体の厚さは、目的とする、被着体、電子デバイス等の用途によって適宜決定することができる。積層体の実質的な厚さは、取り扱い性の観点から、好ましくは0.3~50μm、より好ましくは0.5~25μm、より好ましくは0.7~12μmである。
 なお、「実質的な厚さ」とは、使用状態における厚さをいう。すなわち、上記積層体は、前述したように工程フィルム等を有していてもよいが、使用時に除去される部分(工程フィルム等)の厚さは、「実質的な厚さ」には含まれない。
The thickness of the laminate can be determined as appropriate depending on the intended use, such as an adherend or an electronic device. A substantial thickness of the laminate is preferably 0.3 to 50 μm, more preferably 0.5 to 25 μm, and more preferably 0.7 to 12 μm from the viewpoint of handleability.
In addition, "substantial thickness" means the thickness in the state of use. That is, the laminate may have a process film, etc. as described above, but the thickness of the portion (process film, etc.) that is removed during use is not included in the "substantial thickness". do not have.
(積層体の製造方法)
 本発明の積層体は、一態様として工程フィルムを用いて製造することができる。工程フィルムを用いることで、積層体を効率よく、かつ、容易に製造することができる。
(Laminate manufacturing method)
The laminate of the present invention can be produced using a process film as one aspect. By using the process film, the laminate can be produced efficiently and easily.
 本発明の積層体の製造方法は、以下(工程1)~(工程3)を含む。
(工程1):工程フィルム上に、重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物を用いて硬化性樹脂層(塗膜)を形成する工程
(工程2):工程1で得られた硬化性樹脂層(塗膜)を硬化させて、硬化樹脂層を形成する工程
(工程3):工程2で得られた硬化樹脂層上に、機能層を形成する工程
The method for producing a laminate of the present invention includes the following (Step 1) to (Step 3).
(Step 1): A step of forming a curable resin layer (coating film) on a process film using a curable resin composition containing a polymer component (A) and a curable monomer (B) (step 2): Step of curing the curable resin layer (coating film) obtained in step 1 to form a cured resin layer (step 3): Forming a functional layer on the cured resin layer obtained in step 2 process
 硬化性樹脂組成物を工程フィルム上に塗工する方法は、特に制限されず、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法を利用することができる。 The method of applying the curable resin composition onto the process film is not particularly limited, and may be spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, or gravure coating. A known coating method such as a method can be used.
 得られた塗膜を乾燥する方法は特に制限されず、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を利用することができる。
 塗膜の乾燥温度は、通常、30~150℃、好ましくは、50~130℃である。
The method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used.
The drying temperature of the coating film is usually 30 to 150°C, preferably 50 to 130°C.
 工程1で得られた硬化性樹脂層(塗膜)を硬化させて硬化樹脂層を形成する。
 硬化性樹脂層(塗膜)を硬化する方法としては、特に限定されず、公知の方法が採用できる。例えば、硬化性樹脂層(塗膜)が、熱重合開始剤を含有する硬化性樹脂組成物を用いて形成されたものである場合、硬化性樹脂層(塗膜)を加熱することで硬化性樹脂層(塗膜)を硬化させることができる。加熱温度は、通常、30~150℃、好ましくは、50~130℃である。
 また、硬化性樹脂層(塗膜)が、光重合開始剤を含有する硬化性樹脂組成物を用いて形成されたものである場合、硬化性樹脂層(塗膜)に活性エネルギー線を照射することで硬化性樹脂層(塗膜)を硬化させることができる。活性エネルギー線は、高圧水銀ランプ、無電極ランプ、キセノンランプ等を用いて照射することができる。
The curable resin layer (coating film) obtained in step 1 is cured to form a cured resin layer.
A method for curing the curable resin layer (coating film) is not particularly limited, and a known method can be employed. For example, when the curable resin layer (coating film) is formed using a curable resin composition containing a thermal polymerization initiator, the curable resin layer (coating film) is cured by heating. The resin layer (coating film) can be cured. The heating temperature is usually 30 to 150°C, preferably 50 to 130°C.
Further, when the curable resin layer (coating film) is formed using a curable resin composition containing a photopolymerization initiator, the curable resin layer (coating film) is irradiated with an active energy ray. Thus, the curable resin layer (coating film) can be cured. Active energy rays can be applied using a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, or the like.
 活性エネルギー線の波長は、200~400nmが好ましく、350~400nmがより好ましい。活性エネルギー線の照度としては、通常、50~1,000mW/cm、好ましくは100~600mW/cmの範囲である。活性エネルギー線の光量としては、50~5,000mJ/cm、好ましくは300~4,000mJ/cmの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、更に好ましくは10~100秒である。光照射工程の熱負荷を考慮して前述の光量を満たすために、複数回照射してもよい。 The wavelength of the active energy ray is preferably 200-400 nm, more preferably 350-400 nm. The illuminance of the active energy rays is usually in the range of 50-1,000 mW/cm 2 , preferably 100-600 mW/cm 2 . The amount of active energy rays is in the range of 50 to 5,000 mJ/cm 2 , preferably 300 to 4,000 mJ/cm 2 . The irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds. In consideration of the heat load of the light irradiation process, the irradiation may be performed multiple times in order to satisfy the aforementioned light amount.
 この場合、活性エネルギー線照射による重合体成分(A)の劣化や、硬化樹脂層の着色を防止するために、硬化反応に不要な波長の光を吸収するフィルタを介在して、活性エネルギー線を硬化性樹脂組成物に照射してもよい。この方法によれば、硬化反応に不要で、かつ、重合体成分(A)を劣化させる波長の光がフィルタに吸収されるため、重合体成分(A)の劣化が抑制され、無色透明の硬化樹脂が得られ易くなる。
 フィルタとしては、ポリエチレンテレフタレートフィルム等の樹脂フィルムを利用することができる。樹脂フィルムを用いる場合、工程1と工程2の間に、硬化性樹脂層上にポリエチレンテレフタレートフィルム等の樹脂フィルムを積層させる工程を設けることが好ましい。なお、樹脂フィルムは、通常は、工程2の後に剥離される。
In this case, in order to prevent deterioration of the polymer component (A) and coloration of the cured resin layer due to irradiation with active energy rays, a filter that absorbs light of wavelengths unnecessary for the curing reaction is interposed, and the active energy rays are applied. The curable resin composition may be irradiated. According to this method, the filter absorbs light of a wavelength that is unnecessary for the curing reaction and degrades the polymer component (A). It becomes easy to obtain a resin.
A resin film such as a polyethylene terephthalate film can be used as the filter. When using a resin film, it is preferable to provide a step of laminating a resin film such as a polyethylene terephthalate film on the curable resin layer between steps 1 and 2 . The resin film is usually peeled off after step 2.
 また、硬化性樹脂層(塗膜)に電子線を照射することで、硬化性樹脂層(塗膜)を硬化させることもできる。電子線を照射する場合は、通常、光重合開始剤を利用しなくても、硬化性樹脂層(塗膜)を硬化させることができる。電子線を照射する場合は、電子線加速器等を用いることができる。照射量は、通常10~1,000kradの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、さらに好ましくは10~100秒である。 The curable resin layer (coating film) can also be cured by irradiating the curable resin layer (coating film) with an electron beam. In the case of electron beam irradiation, the curable resin layer (coating film) can be cured usually without using a photopolymerization initiator. When irradiating with an electron beam, an electron beam accelerator or the like can be used. The irradiation dose is usually in the range of 10 to 1,000 krad. The irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds.
 硬化性樹脂層(塗膜)の硬化は、必要に応じて窒素ガス等の不活性ガス雰囲気下で行ってもよい。不活性ガス雰囲気下で硬化を行うことにより、酸素や水分等が硬化を妨げることを回避し易くなる。 The curing of the curable resin layer (coating film) may be performed under an inert gas atmosphere such as nitrogen gas, if necessary. Curing in an inert gas atmosphere makes it easier to prevent oxygen, moisture, and the like from interfering with curing.
 工程2で得られた硬化樹脂層上に、所望の機能層を形成する。
 機能層を形成する方法としては、先に説明した方法を適宜採用することができる。
A desired functional layer is formed on the cured resin layer obtained in step 2.
As a method for forming the functional layer, the method described above can be appropriately adopted.
 積層体が工程フィルムを有する場合、積層体は片面に工程フィルムを有していてもよく、両面に工程フィルムを有していてもよい。後者の場合は、2種類の工程フィルムを用いて、先に剥離する工程フィルムをより剥離しやすいものにするのが好ましい。
 工程フィルムは、シート状またはフィルム状のものが好ましい。シート状またはフィルム状とは、長尺のものに限らず、短尺の平板状のものも含まれる。
 工程フィルムとしては、グラシン紙、コート紙、上質紙等の紙基材;これらの紙基材にポリエチレンやポリプロピレン等の熱可塑性樹脂をラミネートしたラミネート紙;上記紙基材に、セルロース、デンプン、ポリビニルアルコール、アクリル-スチレン樹脂等で目止め処理を行ったもの;あるいはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルムやポリエチレンやポリプロピレン等のポリオレフィンフィルム等のプラスチックフィルム;ガラス等が挙げられる。
 また、工程フィルムは、取り扱い易さの点から、紙基材や、プラスチックフィルム上に剥離剤層を設けたものであってもよい。剥離層は、シリコーン系剥離剤、フッ素系剥離剤、アルキッド系剥離剤、オレフィン系剥離剤等、従来公知の剥離剤を用いて形成することができる。
 剥離剤層の厚さは、特に制限されないが、通常、0.02~2.0μm、より好ましくは0.05~1.5μmである。
 工程フィルムの厚さは、取り扱い易さの点から、1~500μmが好ましく、5~300μmがより好ましい。
 また、工程フィルムは、通常は、積層体の用途等に応じて、所定の工程において剥離される。
When the laminate has a process film, the laminate may have the process film on one side or both sides. In the latter case, it is preferable to use two types of process films and make the process film to be peeled off first easier to peel.
The process film is preferably sheet-like or film-like. The term "sheet-like" or "film-like" includes not only a long one but also a short flat plate-like one.
Process films include paper base materials such as glassine paper, coated paper, and fine paper; laminated paper obtained by laminating these paper base materials with thermoplastic resins such as polyethylene and polypropylene; Those subjected to filling treatment with alcohol, acrylic-styrene resin, etc.; plastic films such as polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polyethylene and polypropylene; and glass.
Further, the process film may be a paper substrate or a plastic film having a release agent layer provided thereon from the viewpoint of ease of handling. The release layer can be formed using conventionally known release agents such as silicone release agents, fluorine release agents, alkyd release agents, and olefin release agents.
The thickness of the release agent layer is not particularly limited, but is usually 0.02 to 2.0 μm, more preferably 0.05 to 1.5 μm.
The thickness of the process film is preferably 1 to 500 μm, more preferably 5 to 300 μm, from the viewpoint of ease of handling.
Moreover, the process film is usually peeled off in a predetermined process depending on the use of the laminate.
 このように、前記(工程1)~(工程3)を含む製造方法は、工程フィルムを利用して硬化樹脂層を形成するものであるが、この方法によって得られる積層体は、工程フィルムを有していてもよいし、有していなくてもよい。
 上述した積層体の製造方法によれば、本発明の一態様に係る積層体を効率よく、連続的に、かつ容易に製造することができる。
Thus, the manufacturing method including the above (Step 1) to (Step 3) forms a cured resin layer using a process film, and the laminate obtained by this method has a process film. may or may not have.
According to the above-described method for manufacturing a laminate, the laminate according to one aspect of the present invention can be efficiently, continuously, and easily produced.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited by these examples.
 実施例及び比較例で作製した硬化樹脂層の熱変化率(熱収縮率)、面内の位相差及び破断伸度の評価は、以下の方法で行った。 The thermal change rate (thermal shrinkage rate), in-plane retardation, and elongation at break of the cured resin layers produced in Examples and Comparative Examples were evaluated by the following methods.
(1)熱変化率(熱収縮率)
 実施例及び比較例で得られた、工程フィルムとしてのポリエチレンテレフタレート(PET)フィルムを剥離除去した硬化樹脂層を8枚積層して、合計40μmの厚さの積層体とした。次に、5mm×30mmの試験片に裁断し、熱機械分析装置(NETZSCH Japan社製、型名「TMA4000SE」)を用いて、チャック間の距離を20mmに設定して、前記硬化樹脂層の積層体を把持した。次いで、当該硬化樹脂層の積層体を、加熱速度5℃/minで25℃から100℃まで加熱し、2分間保持し、その後、冷却速度5℃/minで25℃まで冷却した。加熱冷却前後の長尺方向の変位の変化率(チャック間距離20mmに対する変位量の割合を百分率で示した値)を熱変化率とした。得られた値が負の値をとる場合、硬化樹脂層が収縮したこと(熱収縮)を意味し、正の値をとる場合、硬化樹脂層が伸長したことを意味する。
(2)面内の位相差
 実施例及び比較例で得られた硬化樹脂層を、位相差測定装置(王子計測機器社製、型名「KOBRA-WR」、波長:589nm)を使用し、温度23℃の条件で、面内の位相差(リタデーション値)を測定した。
(3)破断伸度
 実施例及び比較例で得られた硬化樹脂層を15mm×150mmの試験片に裁断し、JIS K7127:1999に従い、破断伸度を測定した。具体的には、上記試験片を、引張試験機(島津製作所社製,オートグラフ)にて、チャック間距離を100mmに設定した後、200mm/minの速度で引張試験を行い、破断伸度(%)を測定した。なお、試験片が降伏点を持たない場合には引張り破断ひずみを、降伏点を持つ場合には降伏点時のひずみを破断伸度とした。
(1) Thermal change rate (heat shrinkage rate)
Eight cured resin layers obtained in Examples and Comparative Examples, from which polyethylene terephthalate (PET) films as process films were peeled off, were laminated to form a laminate having a total thickness of 40 μm. Next, cut into a test piece of 5 mm × 30 mm, set the distance between chucks to 20 mm using a thermomechanical analyzer (manufactured by NETZSCH Japan, model name "TMA4000SE"), and laminate the cured resin layer. I grabbed my body. Next, the laminate of the cured resin layers was heated from 25°C to 100°C at a heating rate of 5°C/min, held for 2 minutes, and then cooled to 25°C at a cooling rate of 5°C/min. The rate of change in displacement in the longitudinal direction before and after heating and cooling (a value expressed as a percentage of the amount of displacement with respect to the chuck-to-chuck distance of 20 mm) was defined as the rate of thermal change. When the obtained value takes a negative value, it means that the cured resin layer has shrunk (heat shrinkage), and when it takes a positive value, it means that the cured resin layer has elongated.
(2) In-plane phase difference The cured resin layers obtained in Examples and Comparative Examples were measured using a phase difference measuring device (manufactured by Oji Scientific Instruments Co., Ltd., model name “KOBRA-WR”, wavelength: 589 nm). The in-plane retardation (retardation value) was measured under the condition of 23°C.
(3) Breaking Elongation The cured resin layers obtained in Examples and Comparative Examples were cut into test pieces of 15 mm×150 mm, and the breaking elongation was measured according to JIS K7127:1999. Specifically, the test piece was subjected to a tensile test at a speed of 200 mm/min after setting the distance between chucks to 100 mm using a tensile tester (manufactured by Shimadzu Corporation, Autograph). %) was measured. When the test piece did not have a yield point, the tensile breaking strain was taken as the breaking elongation.
(実施例1)
・硬化樹脂層の形成
 硬化性樹脂組成物を以下のように調製した。
 重合体成分(A)として、ポリイミド樹脂(PI)のペレット(河村産業社製、製品名「KPI-MX300F」、Tg=354℃、重量平均分子量190,000)100質量部をメチルエチルケトン(MEK)に溶解して、PIの15質量%溶液を調製した。次いで、この溶液に、硬化性単量体(B)として、トリシクロデカンジメタノールジアクリレート(新中村化学工業社製、A-DCP、分子量304.4)122質量部、及び重合開始剤として、(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(IGM Resins社製、Omnirad TPO)5質量部を添加、混合して、硬化性樹脂組成物を調製した。なお、本実施例及び比較例において使用した硬化性単量体(B)及び重合開始剤は溶媒を含まず、全て固形分100%の原料である。
 次に、工程フィルムとして、片面に易接着層を有するポリエチレンテレフテレート(PET)フィルム(東洋紡社製、PET100A-4100、厚さ50μm)を使用し、このPETフィルムの易接着層面とは反対の面に、硬化性樹脂組成物を塗布し、得られた塗膜を90℃で2分間加熱して乾燥した。
 高圧水銀ランプ(アイグラフィクス社製、製品名「H04-L41」)を用いて、光線波長365nmの照度が130mW/cm、光量が700mJ/cm(Heraus社製、紫外線光量計、UV Power Puck(登録商標)II)の条件で、窒素雰囲気下にて紫外線照射して硬化反応を行い、厚さ5μmの硬化樹脂層を形成した。
 得られた硬化樹脂層の熱収縮率、面内の位相差及び破断伸度の評価を行った。結果を表1に示す。
(Example 1)
- Formation of cured resin layer A curable resin composition was prepared as follows.
As the polymer component (A), 100 parts by mass of polyimide resin (PI) pellets (manufactured by Kawamura Sangyo Co., Ltd., product name “KPI-MX300F”, Tg = 354 ° C., weight average molecular weight 190,000) to methyl ethyl ketone (MEK) By dissolving, a 15% by mass solution of PI was prepared. Next, in this solution, 122 parts by weight of tricyclodecanedimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-DCP, molecular weight 304.4) as a curable monomer (B), and a polymerization initiator, (2,4,6-trimethylbenzoyl)-phenylphosphine oxide (OMNIRAD TPO manufactured by IGM Resins) (5 parts by mass) was added and mixed to prepare a curable resin composition. The curable monomer (B) and the polymerization initiator used in the present examples and comparative examples do not contain a solvent and are all raw materials having a solid content of 100%.
Next, as a process film, a polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., PET100A-4100, thickness 50 μm) having an easy-adhesion layer on one side was used. A curable resin composition was applied to the surface, and the resulting coating film was dried by heating at 90° C. for 2 minutes.
Using a high-pressure mercury lamp (manufactured by Eyegraphics, product name “H04-L41”), the illuminance at a light wavelength of 365 nm was 130 mW/cm 2 and the amount of light was 700 mJ/cm 2 (manufactured by Heraus, UV photometer, UV Power Puck). Under the conditions of (registered trademark) II), a curing reaction was performed by irradiating ultraviolet rays in a nitrogen atmosphere to form a cured resin layer having a thickness of 5 μm.
The thermal shrinkage rate, in-plane retardation and breaking elongation of the obtained cured resin layer were evaluated. Table 1 shows the results.
(比較例1)
 実施例1の硬化性樹脂組成物における重合体成分(A)のポリイミド樹脂(PI)のペレットを、より高い重量平均分子量のポリイミド樹脂(PI)のペレット(河村産業社製、製品名「KPI-MX300F」、Tg=354℃、重量平均分子量280,000)に代えた以外は、実施例1と同様に、厚さ5μmの硬化樹脂層を形成した。
 得られた硬化樹脂層の熱収縮率、面内の位相差及び破断伸度の評価を行った。結果を表1に示す。
(Comparative example 1)
Pellets of the polyimide resin (PI) of the polymer component (A) in the curable resin composition of Example 1 were replaced with pellets of a polyimide resin (PI) having a higher weight average molecular weight (manufactured by Kawamura Sangyo Co., Ltd., product name "KPI- MX300F”, Tg=354° C., weight average molecular weight 280,000) was used to form a cured resin layer having a thickness of 5 μm in the same manner as in Example 1.
The thermal shrinkage rate, in-plane retardation and breaking elongation of the obtained cured resin layer were evaluated. Table 1 shows the results.
 以下に、実施例及び比較例で使用した、硬化性単量体(B)の化学構造式を示す。 The chemical structural formula of the curable monomer (B) used in Examples and Comparative Examples is shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 硬化性樹脂組成物を構成する重合体成分(A)として、重量平均分子量が190,000のポリイミド樹脂を用いた実施例1の硬化樹脂層は、重合体成分(A)として、重量平均分子量が280,000のポリイミド樹脂を用いた比較例1の硬化樹脂層に比べ、熱収縮率が1オーダーも低く、かつ、通常、重量平均分子量の減少に伴い、破断伸度(靭性)は低下することが予想されるが、これに反し破断強度が維持されていることが分かる。 As the polymer component (A) constituting the curable resin composition, the cured resin layer of Example 1 using a polyimide resin having a weight average molecular weight of 190,000 has a weight average molecular weight of Compared to the cured resin layer of Comparative Example 1 using a polyimide resin of 280,000, the thermal shrinkage rate is one order lower, and the elongation at break (toughness) usually decreases as the weight average molecular weight decreases. is expected, but contrary to this, it can be seen that the breaking strength is maintained.
 本発明の硬化性樹脂組成物によれば、その硬化物でなる硬化樹脂層は、高温下で、熱収縮率が低いことからカールや皺等の発生を抑制することができ、また、破断伸度(靭性)に優れ、光学等方性を有し、さらに薄くてフレキシブル性を有していることから、高温下で製造されることが要求される電子デバイス、また光学用フィルム等の部材、例えば、反射防止用のハードコートフィルム、液晶ディスプレイに用いられる偏光板の偏光板保護フィルム、さらに、タッチパネル等に用いられるITO基材フィルム、その他、フレキシブル有機EL素子、フレキシブル熱電変換素子等の部材に適用されることが期待される。 According to the curable resin composition of the present invention, the cured resin layer made of the cured product has a low thermal shrinkage rate at high temperatures, so it is possible to suppress the occurrence of curls and wrinkles. It has excellent toughness (toughness), has optical isotropy, and is thin and flexible, so it is required to be manufactured at high temperature. For example, antireflection hard coat films, polarizing plate protective films for polarizing plates used in liquid crystal displays, ITO base films used in touch panels, etc., and other members such as flexible organic EL elements and flexible thermoelectric conversion elements. expected to be applied.
1:硬化樹脂層
2:機能層
11:積層体
1: Cured resin layer 2: Functional layer 11: Laminate

Claims (8)

  1.  重合体成分(A)及び硬化性単量体(B)を含有する硬化性樹脂組成物であって、前記重合体成分(A)がポリイミド樹脂を含み、該ポリイミド樹脂の重量平均分子量が100,000以上、230,000以下である、硬化性樹脂組成物。 A curable resin composition containing a polymer component (A) and a curable monomer (B), wherein the polymer component (A) contains a polyimide resin, and the polyimide resin has a weight average molecular weight of 100, 000 or more and 230,000 or less, a curable resin composition.
  2.  前記重合体成分(A)のガラス転移温度が250℃以上である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the polymer component (A) has a glass transition temperature of 250°C or higher.
  3.  前記ポリイミド樹脂は、メチルエチルケトンに可溶である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the polyimide resin is soluble in methyl ethyl ketone.
  4.  前記ポリイミド樹脂は、分子内にフルオロ基を有する、請求項1又は3に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 3, wherein the polyimide resin has a fluoro group in its molecule.
  5.  請求項1~4のいずれか1項に記載の硬化性樹脂組成物の硬化物からなる硬化樹脂層であって、厚さが20μm以下である、硬化樹脂層。 A cured resin layer comprising a cured product of the curable resin composition according to any one of claims 1 to 4, and having a thickness of 20 μm or less.
  6.  100℃で2分間の熱処理をしたときの前記硬化樹脂層の熱収縮率が0.08%以下である、請求項5に記載の硬化樹脂層。 The cured resin layer according to claim 5, wherein the cured resin layer has a thermal shrinkage rate of 0.08% or less when heat-treated at 100°C for 2 minutes.
  7.  前記硬化樹脂層の面内の位相差が2.0nm以下である、請求項6に記載の硬化樹脂層。 The cured resin layer according to claim 6, wherein the in-plane retardation of the cured resin layer is 2.0 nm or less.
  8.  請求項5~7のいずれか1項に記載の硬化樹脂層上に機能層を備える、積層体。 A laminate comprising a functional layer on the cured resin layer according to any one of claims 5 to 7.
PCT/JP2022/014625 2021-03-26 2022-03-25 Curable resin composition and cured resin layer using same WO2022203067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509342A JPWO2022203067A1 (en) 2021-03-26 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054142 2021-03-26
JP2021054142 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022203067A1 true WO2022203067A1 (en) 2022-09-29

Family

ID=83397556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014625 WO2022203067A1 (en) 2021-03-26 2022-03-25 Curable resin composition and cured resin layer using same

Country Status (3)

Country Link
JP (1) JPWO2022203067A1 (en)
TW (1) TW202307016A (en)
WO (1) WO2022203067A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181088A (en) * 1997-12-19 1999-07-06 Mitsui Chem Inc Polyimide and its production
JP2004043760A (en) * 2001-08-27 2004-02-12 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and production method for the sheet
JP2004317725A (en) * 2003-04-15 2004-11-11 Kanegafuchi Chem Ind Co Ltd Water developable photosensitive resin composition, photosensitive dry film resist, and its use
JP2009074067A (en) * 2007-08-29 2009-04-09 Hitachi Chem Co Ltd Adhesive film and adhesive sheet for fixing semiconductor device,
JP2013082876A (en) * 2011-03-16 2013-05-09 Kaneka Corp Polyimide solution and polyimide film obtained from the solution
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181088A (en) * 1997-12-19 1999-07-06 Mitsui Chem Inc Polyimide and its production
JP2004043760A (en) * 2001-08-27 2004-02-12 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and production method for the sheet
JP2004317725A (en) * 2003-04-15 2004-11-11 Kanegafuchi Chem Ind Co Ltd Water developable photosensitive resin composition, photosensitive dry film resist, and its use
JP2009074067A (en) * 2007-08-29 2009-04-09 Hitachi Chem Co Ltd Adhesive film and adhesive sheet for fixing semiconductor device,
JP2013082876A (en) * 2011-03-16 2013-05-09 Kaneka Corp Polyimide solution and polyimide film obtained from the solution
WO2020138207A1 (en) * 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate

Also Published As

Publication number Publication date
JPWO2022203067A1 (en) 2022-09-29
TW202307016A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP7401463B2 (en) Gas barrier laminate
US9102833B2 (en) Curable resin composition, curable resin molded body, cured resin molded body, method for producing each of same, and laminate body
US9023913B2 (en) Curable resin composition, curable resin molded body, cured resin molded body, method for producing each of same, and laminate body
JP7398394B2 (en) Gas barrier laminate
WO2021261195A1 (en) Optical film, optical film manufacturing method, transparent conductive film, and gas barrier film
WO2022203067A1 (en) Curable resin composition and cured resin layer using same
WO2022203071A1 (en) Curable resin composition and cured resin layer using same
WO2023054528A1 (en) Laminate
WO2021193889A1 (en) Laminate for transparent conductive film, transparent conductive film, and transparent conductive film manufacturing method
WO2022203086A1 (en) Multilayer body
JP2023086574A (en) Curable resin layer
JP2023151639A (en) Laminate, transparent conductive film, and method for manufacturing transparent conductive film
JP2023114821A (en) optical film
JP2023104378A (en) Structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509342

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775848

Country of ref document: EP

Kind code of ref document: A1