WO2020137928A1 - 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法 - Google Patents

反射型マスクブランク、反射型マスク、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2020137928A1
WO2020137928A1 PCT/JP2019/050236 JP2019050236W WO2020137928A1 WO 2020137928 A1 WO2020137928 A1 WO 2020137928A1 JP 2019050236 W JP2019050236 W JP 2019050236W WO 2020137928 A1 WO2020137928 A1 WO 2020137928A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
reflective mask
mask blank
less
Prior art date
Application number
PCT/JP2019/050236
Other languages
English (en)
French (fr)
Inventor
洋平 池邊
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to SG11202106508PA priority Critical patent/SG11202106508PA/en
Priority to KR1020217014007A priority patent/KR20210102199A/ko
Priority to US17/311,662 priority patent/US11914281B2/en
Publication of WO2020137928A1 publication Critical patent/WO2020137928A1/ja
Priority to US18/528,544 priority patent/US20240103355A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers

Definitions

  • the present invention relates to a reflective mask blank that is an original plate for manufacturing an exposure mask used for manufacturing a semiconductor device, a reflective mask, and a method for manufacturing a semiconductor device.
  • the type of light source of the exposure apparatus in the semiconductor device manufacturing is evolving while gradually shortening the wavelength, such as g-line of wavelength 436 nm, i-line of wavelength 365 nm, KrF laser of wavelength 248 nm and ArF laser of wavelength 193 nm.
  • EUV lithography using EUV (Extreme Ultra Violet) with a wavelength near 13.5 nm has been developed.
  • EUV lithography a reflective mask is used because there are few materials transparent to EUV light.
  • a multilayer reflective film that reflects exposure light is formed on a low thermal expansion substrate, and a mask structure in which a desired transfer pattern is formed on a protective film for protecting the multilayer reflective film is provided.
  • a binary type reflection mask composed of a relatively thick absorber pattern that sufficiently absorbs EUV light, and a multilayer reflective film that reduces the EUV light by light absorption Phase-shifting reflection mask (halftone phase-shifting reflection mask) that is composed of a relatively thin absorber pattern (phase-shifting pattern) that generates reflected light whose phase is almost inverted with respect to the reflected light There is).
  • Phase-shifting reflection mask halftone phase-shifting reflection mask
  • this phase shift type reflection mask has a resolution improving effect because a high transfer optical image contrast is obtained by the phase shift effect.
  • the absorber pattern (phase shift pattern) of the phase shift reflection mask has a small film thickness, a fine phase shift pattern can be formed with high accuracy.
  • the relative reflectance of the phase shift film is, for example, 3% to 40%, the effect of improving the resolution can be obtained.
  • the "relative reflectance” means that the reflectance of EUV light reflected from the multilayer reflective film (including the multilayer reflective film with a protective film) in a portion having no phase shift pattern is 100%, It is the reflectance of EUV light reflected from the phase shift pattern.
  • the effect on the exposure of the phase shift film becomes more remarkable as the film has a higher reflectance.
  • the effect exerted on the exposure of the phase shift film is increased, the contrast of the pattern transfer image is increased, so that the resolution is improved and the throughput in manufacturing the semiconductor device is improved.
  • one transfer target silicon wafer, etc.
  • one transfer target silicon wafer, etc.
  • the amount of light reflected from the phase shift film increases, so that not only the region to which the pattern is to be transferred by one exposure, but also other regions adjacent to that region.
  • the resist film of is exposed.
  • the resist film near the boundary between two adjacent regions is exposed multiple times, so that the resist film near the boundary is exposed and the desired pattern is accurately transferred to the transfer target. There was a problem that it was difficult to transfer to.
  • an object of the present invention is to provide a reflective mask blank, a reflective mask, and a method for manufacturing a semiconductor device, which are capable of accurately transferring a pattern onto a transfer target.
  • a reflective mask blank comprising a substrate, a multilayer reflective film that reflects EUV light formed on the substrate, and a laminated film formed on the multilayer reflective film,
  • the laminated film includes a first layer and a second layer formed on the first layer, and the absolute reflectance with respect to the EUV light is 2.5% or less
  • the reflective mask blank wherein the first layer includes a phase shift film that shifts the phase of the EUV light.
  • (Configuration 2) The reflective mask blank according to configuration 1, wherein the second layer is an interference layer that reduces the absolute reflectance of the laminated film to 2.5% or less by using optical interference.
  • (Structure 3) The reflective mask blank according to Structure 2, wherein the thickness of the interference layer is 1 nm or more and 20 nm or less, and the refractive index n is 0.85 or more and 0.96 or less.
  • (Structure 7) The configuration 5 or the configuration 6 wherein the absorption layer is made of a material containing at least one element selected from the group consisting of tantalum (Ta), chromium (Cr), cobalt (Co), and nickel (Ni). Reflective mask blank.
  • (Structure 8) 8. The reflective mask blank according to any one of configurations 1 to 7, wherein a relative reflectance of the first layer with respect to the EUV light is 3% or more and 40% or less and a phase difference is 160 to 200°.
  • (Configuration 9) The reflective mask blank according to any one of configurations 1 to 8, wherein the first layer has a film thickness of 5 nm or more and 70 nm or less and a refractive index n of 0.85 or more and 0.96 or less.
  • the first layer is made of a material containing at least one element selected from the group consisting of tantalum (Ta), titanium (Ti), ruthenium (Ru), and chromium (Cr).
  • the reflective mask blank according to any one of the above.
  • a reflective mask blank comprising a substrate, a multilayer reflective film that reflects EUV light formed on the substrate, and a laminated film formed on the multilayer reflective film,
  • the laminated film is a phase shift film that includes a first layer and a second layer formed on the first layer, and that shifts the phase of the EUV light.
  • the said 1st layer is a reflective mask blank containing the absorption layer whose absolute reflectance with respect to the said EUV light is 2.5% or less.
  • the first layer is made of a material containing at least one element selected from the group consisting of tantalum (Ta), chromium (Cr), cobalt (Co), and nickel (Ni).
  • the reflective mask blank according to any one of the above.
  • the protective film is made of a material containing ruthenium (Ru), a material containing silicon (Si) and oxygen (O), a material containing yttrium (Y) and oxygen (O), and a material containing chromium (Cr).
  • Ru ruthenium
  • Si silicon
  • O oxygen
  • Y yttrium
  • Cr chromium
  • a reflective mask blank a reflective mask
  • a method for manufacturing a semiconductor device which are capable of accurately transferring a pattern onto a transfer target.
  • FIG. 1 is a schematic cross-sectional view of a main part of the reflective mask blank 100 of this embodiment.
  • the reflective mask blank 100 includes a substrate 10, a multilayer reflective film 12 formed on the substrate 10, a protective film 14 formed on the multilayer reflective film 12, and a protective film 14. And a laminated film 16 formed on.
  • the laminated film 16 includes a first layer 18 formed in contact with the protective film 14 and a second layer 20 formed on the first layer 18.
  • a back surface conductive film 22 for an electrostatic chuck is formed on the back surface of the substrate 10 (the surface opposite to the side on which the multilayer reflective film 12 is formed).
  • “on” a substrate or a film includes not only the case where the substrate or the film is in contact with the upper surface of the substrate or the film but also the case where the surface is not in contact with the upper surface of the substrate or the film. That is, “on” the substrate or film includes a case where a new film is formed above the substrate or film, a case where another film is interposed between the substrate and the film, and the like. .. In addition, “upward” does not necessarily mean an upper side in the vertical direction. The term “on” merely indicates the relative positional relationship between the substrate and the film.
  • Substrate 10 preferably has a low coefficient of thermal expansion within the range of 0 ⁇ 5 ppb/° C. in order to prevent distortion of the transfer pattern due to heat during exposure with EUV light.
  • a material having a low coefficient of thermal expansion in this range for example, SiO 2 —TiO 2 based glass, multi-component glass ceramics or the like can be used.
  • the main surface of the substrate 10 on which a transfer pattern (a phase shift pattern, an absorption layer pattern and/or a laminated film pattern described later) is formed is preferably processed to enhance flatness.
  • the flatness is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, particularly preferably 0.05 ⁇ m or less in a 132 mm ⁇ 132 mm area of the main surface of the substrate 10 on the side where the transfer pattern is formed. It is preferably 0.03 ⁇ m or less.
  • the main surface (rear surface) opposite to the side where the transfer pattern is formed is a surface fixed to the exposure device by an electrostatic chuck, and has a flatness of 0.1 ⁇ m or less in a 142 mm ⁇ 142 mm area. , More preferably 0.05 ⁇ m or less, particularly preferably 0.03 ⁇ m or less.
  • the flatness is a value representing the warp (deformation amount) of the surface indicated by TIR (Total Indicated Reading), and the plane determined by the least squares method with the substrate surface as a reference is the focal plane. It is the absolute value of the height difference between the highest position of the substrate surface above the plane and the lowest position of the substrate surface below the focal plane.
  • the surface roughness of the main surface of the substrate 10 on which the transfer pattern is formed is preferably a root mean square roughness (Rq) of 0.1 nm or less.
  • the surface roughness can be measured with an atomic force microscope.
  • the substrate 10 preferably has a high rigidity in order to prevent the film (such as the multilayer reflective film 12) formed thereon from being deformed due to film stress. Particularly, those having a high Young's modulus of 65 GPa or more are preferable.
  • the multilayer reflective film 12 has a structure in which a plurality of layers containing elements having different refractive indexes as main components are periodically laminated.
  • the multilayer reflective film 12 includes a thin film of a light element or its compound (high refractive index layer) which is a high refractive index material and a thin film of a heavy element or its compound (low refractive index layer) which is a low refractive index material. And are alternately laminated for about 40 to 60 cycles.
  • a plurality of high refractive index layers and low refractive index layers may be laminated in this order from the substrate 10 side in this order.
  • one (high refractive index layer/low refractive index layer) laminated structure has one cycle.
  • a low refractive index layer and a high refractive index layer may be laminated in this order in plural cycles from the substrate 10 side.
  • one (low refractive index layer/high refractive index layer) laminated structure has one cycle.
  • the uppermost layer of the multilayer reflective film 12, that is, the surface layer of the multilayer reflective film 12 opposite to the substrate 10 is preferably a high refractive index layer.
  • the uppermost layer is the low refractive index layer.
  • the low-refractive index layer is the surface of the multi-layer reflective film 12
  • the low-refractive index layer is easily oxidized and the reflectance of the surface of the multi-layer reflective film is reduced. It is preferable to form a high refractive index layer on top.
  • the uppermost layer is the high refractive index layer.
  • the highest refractive index layer serves as the surface of the multilayer reflective film 12.
  • the high refractive index layer may be a layer containing Si.
  • the high refractive index layer may include a simple substance of Si or may include a Si compound.
  • the Si compound may include Si and at least one element selected from the group consisting of B, C, N, and O.
  • the low refractive index layer is a layer containing at least one element selected from the group consisting of Mo, Ru, Rh, and Pt, or selected from the group consisting of Mo, Ru, Rh, and Pt. It may be a layer containing an alloy containing at least one element.
  • a Mo/Si multilayer film in which Mo films and Si films are alternately laminated for about 40 to 60 cycles can be preferably used.
  • the multilayer reflective film used in the EUV light region for example, Ru/Si periodic multilayer film, Mo/Be periodic multilayer film, Mo compound/Si compound periodic multilayer film, Si/Nb periodic multilayer film, Si/ A Mo/Ru periodic multilayer film, a Si/Mo/Ru/Mo periodic multilayer film, a Si/Ru/Mo/Ru periodic multilayer film, or the like can be used.
  • the material of the multilayer reflective film can be selected in consideration of the exposure wavelength.
  • the reflectance of such a multilayer reflective film 12 alone is, for example, 65% or more.
  • the upper limit of the reflectance of the multilayer reflective film 12 is, for example, 73%.
  • the thickness and period of the layers included in the multilayer reflective film 12 can be selected so as to satisfy Bragg's law.
  • the multilayer reflective film 12 can be formed by a known method.
  • the multilayer reflective film 12 can be formed by, for example, an ion beam sputtering method.
  • the multilayer reflective film 12 is a Mo/Si multilayer film
  • an Mo film having a thickness of about 3 nm is formed on the substrate 12 by an ion beam sputtering method using a Mo target.
  • a Si target is used to form a Si film having a thickness of about 4 nm.
  • the surface layer of the multilayer reflective film 12 opposite to the substrate 10 is a layer containing Si (Si film).
  • the thickness of the Mo/Si film for one cycle is 7 nm.
  • a protective film 14 is formed on or in contact with the surface of the multilayer reflective film 12 in order to protect the multilayer reflective film 12 from dry etching and cleaning in a manufacturing process of a reflective mask 200 described later. be able to.
  • the protective film 14 also has a function of protecting the multilayer reflective film 12 when a black defect of a transfer pattern is repaired using an electron beam (EB).
  • FIG. 1 shows the case where the protective film 14 has one layer, but the protective film 14 may have a laminated structure of two or more layers.
  • the protective film 14 is preferably formed of a material having resistance to an etchant or a cleaning liquid used when patterning the first layer 18.
  • the thickness of the protective film 14 is preferably 1 nm or more and 20 nm.
  • the material of the protective film 14 is resistant to the etching gas used for dry etching for patterning the first layer 18 formed on the protective film 14. Certain materials can be used.
  • the first layer 18 is formed of a plurality of layers, as a material of the protective film 14 in contact with the first layer 18 (the uppermost layer of the protective film 14 when the protective film 14 includes a plurality of layers), Of the layers forming the first layer 18, a material having resistance to the etching gas used for the dry etching for patterning the lowermost layer (the layer in contact with the protective film 14) of the first layer 18 is used. can do.
  • the material of the protective film 14 has an etching selection ratio of the lowermost layer of the first layer 18 to the protective film 14 (etching rate of the lowermost layer of the first layer 18/etching rate of the protective film 14) is 1.5 or more, preferably Is preferably 3 or more.
  • the lowermost layer of the first layer 18 is a material containing a metal containing ruthenium (Ru) and at least one element of chromium (Cr), nickel (Ni), and cobalt (Co) (predetermined Ru).
  • material or a material containing a metal containing ruthenium (Ru) and at least one element of vanadium (V), niobium (Nb), molybdenum (Mo), tungsten (W) and rhenium (Re)
  • the lowermost layer of the first layer 18 can be etched with a mixed gas of chlorine-based gas and oxygen gas or a dry etching gas using oxygen gas. ..
  • the protective film 14 having resistance to the etching gas As a material of the protective film 14 having resistance to the etching gas, a material containing silicon (Si), silicon (Si) and oxygen (O), a material containing silicon (Si) and nitrogen (N), or the like is used.
  • a silicon-based material can be selected. Therefore, when the lowermost layer of the first layer 18 in contact with the surface of the protective film 14 is a thin film made of a predetermined Ru-based material, the protective film 14 is preferably made of the above-mentioned silicon-based material.
  • the silicon-based material has resistance to a mixed gas of chlorine-based gas and oxygen gas or dry etching gas using oxygen gas, and the higher the oxygen content, the higher the resistance. Therefore, the material of the protective film 14 is more preferably silicon oxide (SiO x , 1 ⁇ x ⁇ 2), more preferably x is large, and particularly preferably SiO 2 .
  • the lowermost layer of the first layer 18 in contact with the surface of the protective film 14 is a thin film made of a material containing tantalum (Ta), by dry etching using a halogen-based gas containing no oxygen gas, The bottom layer of the first layer 18 can be etched.
  • a material of the protective film 14 having resistance to this etching gas a material containing ruthenium (Ru) as a main component can be used.
  • the lowermost layer of the first layer 18 in contact with the surface of the protective film 14 is a thin film made of a material containing chromium (Cr), a chlorine-based gas containing no oxygen gas or an oxygen gas and a chlorine-based gas is used.
  • the bottom layer of the first layer 18 can be etched by dry etching using a dry etching gas that is a mixed gas with a gas.
  • a material of the protective film 14 having resistance to this etching gas a material containing ruthenium (Ru) as a main component can be used.
  • the material of the protective film 14 that can be used when the lowermost layer of the first layer 18 is a material containing tantalum (Ta) or chromium (Cr) is a material containing ruthenium as a main component, as described above. ..
  • Specific examples of the material containing ruthenium as a main component include Ru metal simple substance, Ru with titanium (Ti), niobium (Nb), molybdenum (Mo), zirconium (Zr), yttrium (Y), and boron (B). ), lanthanum (La), cobalt (Co), and rhenium (Re), a Ru alloy containing at least one metal, a Ru metal, and a material containing nitrogen in the Ru alloy.
  • the lowermost layer of the first layer 18 is made of a material containing tantalum (Ta) or chromium (Cr)
  • the lowermost layer and the uppermost layer of the protective film 14 are made of the above-mentioned material containing ruthenium as a main component. Can be formed with.
  • the layer between the lowermost layer and the uppermost layer can be formed of a metal other than Ru or an alloy containing the same.
  • the Ru content ratio of the Ru alloy is 50 atomic% or more and less than 100 atomic %, preferably 80 atomic% or more and less than 100 atomic %, and more preferably 95 atomic% or more and less than 100 atomic %.
  • the Ru content ratio of the Ru alloy is 95 atomic% or more and less than 100 atomic %, the diffusion of the element (silicon) forming the multilayer reflective film 12 into the protective film 14 can be suppressed. Further, it is possible to improve the cleaning resistance of the mask while ensuring a sufficient EUV light reflectance.
  • the protective film 14 functions as an etching stopper when etching the first layer 18. Further, the protective film 14 can prevent the multilayer reflective film 12 from changing with time.
  • a compound containing Ru for example, a material containing at least one selected from RuNb, RuN, and RuTi can be used.
  • a compound containing Y and O for example, a material containing Y 2 O 3 can be used.
  • a compound containing Cr for example, a material containing CrN can be used.
  • the thickness of the protective film 14 is not particularly limited as long as the protective film 14 can perform the function of protecting the multilayer reflective film 12. From the viewpoint of the reflectance of EUV light, the thickness of the protective film 14 is preferably 1.0 nm to 8.0 nm, more preferably 1.5 nm to 6.0 nm.
  • a known method can be used as a method for forming the protective film 14.
  • methods for forming the protective film 14 include a sputtering method and an ion beam sputtering method.
  • the reflective mask blank 100 further has a back surface conductive film 22 on the main surface of the substrate 10 opposite to the side where the multilayer reflective film 12 is formed.
  • the back surface conductive film 22 is used when the reflective mask blank 100 is attracted by the electrostatic chuck.
  • the reflective mask blank 100 may include a base film formed between the substrate 10 and the multilayer reflective film 12.
  • the base film is formed for the purpose of improving the smoothness of the surface of the substrate 10, for example.
  • the base film is formed for the purpose of, for example, reducing defects, improving the reflectance of the multilayer reflective film, and correcting the stress of the multilayer reflective film.
  • the reflective mask blank 100 of this embodiment has a laminated film 16 formed on the multilayer reflective film 12 (or the multilayer reflective film 12 with the protective film 14).
  • the laminated film 16 has a laminated structure including a first layer 18 formed in contact with the protective film 14 and a second layer 20 formed on the first layer 18.
  • the absolute reflectance of EUV light of the laminated film 16 including the first layer 18 and the second layer 20 is 2.5% or less (binary type), and the first layer 18 (lower layer) Functions as a phase shift film (phase shift type).
  • the laminated film 16 including the first layer 18 and the second layer 20 functions as a phase shift film (phase shift type), and the absolute reflectance of the first layer 18 (lower layer) to EUV light Is 2.5% or less (binary type).
  • the laminated film 16 including the first layer 18 and the second layer 20 has a reflectance (absolute reflectance) for EUV light of 2.5% or less, preferably 2%. It is as follows.
  • the “absolute reflectance” mentioned here refers to the reflectance of the EUV light reflected from the laminated film 16 (ratio of incident light intensity and reflected light intensity).
  • the first layer 18 (lower layer) is composed of a phase shift film that shifts the phase of EUV light.
  • the reflectance (relative reflectance) of the first layer 18 with respect to EUV light is preferably 3% or more and 40% or less (absolute reflectance: 2% to 27%).
  • the “relative reflectance” is the reflectance of EUV light reflected from the multilayer reflective film 12 (including the multilayer reflective film 12 with the protective film 14) in a portion where the phase shift pattern (phase shift film) is not present. Is the reflectance of the EUV light reflected from the phase shift pattern (phase shift film).
  • the EUV light reflected from the first layer 18 is reflected from the multilayer reflective film 12 (including the multilayer reflective film 12 with the protective film 14) exposed by removing the first layer 18 by etching or the like. It is preferable to have a phase difference of 160 to 200° with respect to EUV light. That is, the first layer 18 is preferably made of a phase shift film that causes a phase difference of 160 to 200° with respect to EUV light.
  • the thickness of the first layer 18 is preferably 5 nm or more and 70 nm or less, and more preferably 10 nm or more and 50 nm or less. Further, the first layer 18 preferably has a refractive index n of 0.85 or more and 0.96 or less, and more preferably 0.88 or more and 0.96 or less.
  • the first layer 18 is made of, for example, a material containing at least one element selected from tantalum (Ta), chromium (Cr), ruthenium (Ru), and titanium (Ti).
  • tantalum (Ta) contains at least one element selected from oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H).
  • the material to be contained is mentioned.
  • a material containing nitrogen (N) in tantalum (Ta) is preferable.
  • Specific examples of such a material include tantalum nitride (TaN), tantalum oxynitride (TaON), tantalum boride nitride (TaBN), and tantalum boride oxynitride (TaBON).
  • the composition range (atomic ratio) of Ta and N is preferably 3:1 to 20:1, and more preferably 4:1 to 12:1.
  • a material containing chromium (Cr) at least one element selected from oxygen (O), nitrogen (N), carbon (C), boron (B) and hydrogen (H) is added to chromium (Cr).
  • the material to be contained is mentioned.
  • a material containing nitrogen (N) and/or carbon (C) in chromium (Cr) is preferable.
  • Specific examples of such materials include chromium nitride (CrN), chromium oxynitride (CrON), chromium carbide (CrC), chromium oxycarbide (CrOC), chromium carbonitride (CrCN), and chromium oxycarbonitride (CrOCN).
  • CrN chromium nitride
  • CrON chromium oxynitride
  • CrC chromium carbide
  • CrOC chromium oxycarbide
  • CrCN chromium carbonitride
  • CrOCN
  • the composition range (atomic ratio) of Cr and N is preferably 30:1 to 3:2, more preferably 20:1 to 2:1.
  • the composition range (atomic ratio) of Cr and C is preferably 5:2 to 20:1, and more preferably 3:1 to 12:1.
  • Examples of materials containing ruthenium (Ru) include ruthenium (Ru) simple substance, ruthenium nitride (RuN), ruthenium (Ru), and chromium (Cr), nickel (Ni), cobalt (Co), vanadium (V), niobium. Examples thereof include a material containing at least one element selected from (Nb), molybdenum (Mo), tungsten (W) and rhenium (Re).
  • Ru-based compounds such as RuO are likely to have a crystallized structure and have poor processing characteristics. That is, the crystal grain of the crystallized metal is likely to have large sidewall roughness when forming the phase shift pattern. Therefore, it may adversely affect the formation of the predetermined phase shift pattern.
  • the metal of the material of the phase shift film is amorphous, it is possible to reduce adverse effects when forming the phase shift pattern.
  • the metal of the material of the phase shift film can be made amorphous and the processing characteristics can be improved.
  • the predetermined element (X) at least one element of Cr, Ni, Co, V, Nb, Mo, W and Re can be selected.
  • Binary materials in which a predetermined element (X) is added to Ru can make the phase shift film thinner than RuTa. Moreover, since Ni and Co have a larger extinction coefficient k than Cr, selecting Ni and/or Co as the element (X) enables a thinner phase shift film than selecting Cr. Is.
  • Binary materials in which a predetermined element (X) is added to Ru have better processing characteristics than RuTa.
  • X element
  • Ta When Ta is oxidized, it is difficult to etch Ta with chlorine-based gas and oxygen gas.
  • RuCr has excellent processing characteristics because it can be easily etched with a mixed gas of chlorine gas and oxygen gas.
  • Binary materials in which a predetermined element (X) is added to Ru have an amorphous structure and can be easily etched by a mixed gas of chlorine-based gas and oxygen gas. is there. Further, these materials can be etched by oxygen gas. It is considered that the same applies to ternary materials (RuCrNi, RuCrCo, and RuNiCo) and quaternary materials (RuCrNiCo).
  • binary materials in addition to the above binary materials, binary materials (RuV, RuNb, RuMo, RuW and RuRe) in which V, Nb, Mo, W or Re is added to Ru are more workable than RuTa. Is good. Like RuCr, RuW and RuMo are particularly excellent in processing characteristics.
  • binary materials (RuV, RuNb, RuMo, RuW and RuRe) in which a predetermined element (X) is added to Ru have an amorphous structure and are easily etched by a mixed gas of chlorine-based gas and oxygen gas. It is possible to Further, these materials can be etched by oxygen gas. The same applies to ternary materials and quaternary materials.
  • TaTi-based materials include TaTi alloys and TaTi compounds in which TaTi alloys contain at least one of oxygen, nitrogen, carbon, and boron.
  • TaTi compounds include TaTiN, TaTiO, TaTiON, TaTiCON, TaTiB, TaTiBN, TaTiBO, TaTiBON, and TaTiBCON.
  • the second layer 20 (upper layer) formed on the first layer 18 is an interference layer that reduces the reflectance (absolute reflectance) of the laminated film 16 to 2.5% or less by utilizing optical interference. Become.
  • the second layer 20 (upper layer) is an absorption layer that reduces the reflectance (absolute reflectance) of the laminated film 16 to 2.5% or less by utilizing the light absorption effect.
  • the “interference layer” here is also called an antireflection layer, and is a layer that reduces the absolute reflectance of the laminated film 16 by utilizing optical interference.
  • the second layer 20 (interference layer) is a single layer, the light reflected on the surface of the second layer 20 and the laminated film 16, the protective film 14, the first layer 18, and the second layer 20 are respectively included.
  • the absolute reflectance of the laminated film 16 can be reduced to 2.5% or less by utilizing the effect of canceling each other by the optical interference with the light reflected from the interface.
  • the second layer 20 (interference layer) is composed of a plurality of layers, the absolute reflectance of the laminated film 16 is 2.5% including the effect of canceling each other by the optical interference of the reflected light from the interface of each layer. It can be reduced to the following.
  • the principle of reflectance reduction using optical interference is known, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-280291.
  • the thickness of the second layer 20 is preferably 1 nm or more and 20 nm or less, and more preferably 3 nm or more and 12 nm or less.
  • the refractive index n of the second layer 20 (interference layer) is preferably 0.85 or more and 0.96 or less, and more preferably 0.88 or more and 0.96 or less.
  • the second layer 20 is made of a material containing Ru, for example.
  • the example of the material containing Ru is the same as the example of the material containing Ru used for the first layer 18 described above.
  • the thickness of the second layer 20 is preferably 5 nm or more and 70 nm or less, and more preferably 8 nm or more and 55 nm or less.
  • the extinction coefficient k of the second layer 20 (absorption layer) is preferably 0.02 or more, and more preferably 0.03 or more. Furthermore, the extinction coefficient k of the second layer 20 (absorption layer) is preferably 0.1 or less.
  • the second layer 20 includes, for example, at least one element selected from tantalum (Ta), chromium (Cr), cobalt (Co), and nickel (Ni). Consisting of materials containing.
  • the example of the material containing tantalum (Ta) in this case is the same as the example of the material containing tantalum (Ta) used for the first layer 18 described above, but the extinction coefficient is larger when oxygen is not contained. It is preferable because it is possible.
  • the example of the material containing chromium (Cr) is similar to the example of the material containing chromium (Cr) used in the first layer 18 described above, but it is preferable that oxygen is not contained because the extinction coefficient can be increased. ..
  • the second layer 20 is an absorption layer
  • a material of the second layer 20 at least one element of cobalt (Co) and nickel (Ni) is used, and tungsten (W), niobium (Nb), and tantalum are used.
  • Ti titanium
  • Zr zirconium
  • hafnium Hf
  • yttrium Y
  • phosphorus P
  • tin Sn
  • the additive element (X) preferably contains tungsten (W), tantalum (Ta) and/or tin (Sn), and more preferably contains tantalum (Ta). Since the material of the second layer 20 contains an appropriate additive element (X), the second layer 20 can be controlled to have an appropriate etching rate while maintaining a high extinction coefficient (absorption coefficient). ..
  • Co alone, Ni alone, CoTa 3 , CoTa, Co 3 Ta, NiTa 3 , NiTa or NiTa 3 can be preferably used.
  • the material of the second layer 20 preferably has a total concentration of cobalt (Co) and nickel (Ni) of 10 atomic% or more, and more preferably 20 atomic% or more.
  • the total concentration of cobalt (Co) and nickel (Ni) is preferably 90 atomic% or less, more preferably 85 atomic% or less.
  • the concentration of cobalt (Co) is preferably 10 atomic% or more, and more preferably 20 atomic% or more. Further, the concentration of cobalt (Co) is preferably 90 atomic% or less, and more preferably 85 atomic% or less.
  • the concentration of nickel (Ni) is preferably 10 atomic% or more, and more preferably 20 atomic% or more.
  • the concentration of nickel (Ni) is preferably 90 atomic% or less, more preferably 85 atomic% or less.
  • the additive element (X) is tantalum (Ta), tungsten (W) or tin (Sn)
  • the concentration of tantalum (Ta), tungsten (W) or tin (Sn) is preferably 10 atomic% or more. , 15 atomic% or more is more preferable. Further, the concentration of tantalum (Ta), tungsten (W) or tin (Sn) is preferably 90 atom% or less, more preferably 80 atom% or less.
  • the composition ratio of Co and Ta is preferably 9:1 to 1:9, more preferably 4:1 to 1:4. preferable.
  • the composition ratios of Co and Ta were 3:1, 1:1 and 1:3, an analysis by an X-ray diffractometer (XRD) and a cross-sectional TEM observation were carried out. , Co and Ta-derived peaks were broadly changed to have an amorphous structure.
  • the additive element (X) of the Ni—X alloy is Ta
  • the composition ratio of Ni and Ta (Ni:Ta) is preferably 9:1 to 1:9, and 4:1 to 1:4. Is more preferable.
  • the composition ratio of Ni and Ta was 3:1, 1:1 and 1:3, analysis by an X-ray diffractometer (XRD) and cross-sectional TEM observation were performed, and all samples were analyzed. , Ni and Ta-derived peaks were broadly changed to have an amorphous structure.
  • the composition ratio of CoNi and Ta is preferably 9:1 to 1:9, and 4:1 to 1:4. Is more preferable.
  • the Co-X alloy, Ni-X alloy, or CoNi-X alloy contains nitrogen (N), oxygen ( Other elements such as O), carbon (C) and/or boron (B) may be included.
  • the laminated film 16 including the first layer 18 and the second layer 20 functions as a phase shift film.
  • the reflectance (relative reflectance) of the laminated film 16 including the first layer 18 and the second layer 20 with respect to EUV light is preferably 3% or more and 40% or less.
  • the “relative reflectance” means that the reflectance of EUV light reflected from the multilayer reflective film 12 (including the multilayer reflective film 12 with the protective film 14) in the portion where the laminated film 16 is absent is 100%. This is the reflectance of the EUV light reflected from the laminated film 16 at that time.
  • the EUV light reflected from the laminated film 16 is different from the EUV light reflected from the multilayer reflective film 12 (including the multilayer reflective film 12 with the protective film 14) exposed by removing the laminated film 16 by etching or the like. Therefore, it is preferable to have a phase difference of 160 to 200°. That is, the laminated film 16 is preferably made of a phase shift film that causes a phase difference of 160 to 200° with respect to EUV light.
  • the second layer 20 (upper layer) is preferably an interference layer that shifts the phase of EUV light reflected by the laminated film 16 using optical interference.
  • the “interference layer” here is a layer that enhances the reflectance of the laminated film 16 by utilizing optical interference, contrary to the antireflection layer described above.
  • the second layer 20 (interference layer) is a single layer, the light reflected on the surface of the second layer 20 and the laminated film 16, the protective film 14, the first layer 18, and the second layer 20 are respectively included.
  • the relative reflectance of the laminated film 16 can be increased to 3% or more and 40% or less by utilizing the effect of constructing each other by the optical interference with the light reflected from the interface.
  • the relative reflectance of the laminated film 16 is 3% or more, including the effect of constructing each other by the optical interference of the reflected light from the interface of each layer. % Or less.
  • the thickness of the second layer 20 is preferably 1 nm or more and 20 nm or less, more preferably 3 nm or more and 12 nm or less. Further, the second layer 20 preferably has a refractive index n of 0.85 or more and 0.96 or less, and more preferably 0.88 or more and 0.96 or less.
  • the second layer 20 is made of a material containing Ru, for example.
  • the example of the material containing Ru is the same as the example of the material containing Ru used for the first layer 18 in the case (1) described above.
  • the first layer 18 (lower layer) is an absorption layer having an absolute reflectance for EUV light of 2.5% or less (binary type).
  • the absolute reflectance of the absorbing layer is more preferably 2% or less.
  • the “absolute reflectance” referred to here is the reflectance of EUV light reflected from the first layer 18 (ratio of incident light intensity to reflected light intensity).
  • the first layer 18 is made of, for example, a material containing at least one element selected from tantalum (Ta), chromium (Cr), cobalt (Co), and nickel (Ni).
  • the example of the material containing tantalum (Ta) in this case is the same as the example of the material containing tantalum (Ta) used for the first layer 18 in the case of (1) described above.
  • the example of the material containing chromium (Cr) is the same as the example of the material containing chromium (Cr) used for the first layer 18 in the case (1) described above.
  • the example of the material containing cobalt (Co) is the same as the example of the material containing cobalt (Co) used for the first layer 18 in the case (1) described above.
  • the example of the material containing nickel (Ni) is the same as the example of the material containing nickel (Ni) used for the first layer 18 in the case (1) described above.
  • the relative reflectance and the absolute reflectance can be converted.
  • the absolute reflectance of the multilayer reflective film 12 including the protective film 14
  • the relative reflectance and the absolute reflectance can be converted by the following formula.
  • Relative reflectance (%) absolute reflectance (%) x (100/68)
  • the resist film 24 may be formed on the laminated film 16. This aspect is shown in FIG. A resist pattern can be formed by drawing and exposing a pattern on the resist film 24 by an electron beam drawing apparatus and then performing a developing process. By performing dry etching on the laminated film 16 using this resist pattern as a mask, a pattern (laminated film pattern) can be formed on the laminated film 16.
  • the reflective mask blank 100 of this embodiment can be used to manufacture the reflective mask of this embodiment.
  • an example of a method for manufacturing a reflective mask will be described.
  • the method of manufacturing the reflective mask will be described separately for the cases where the laminated film 16 has the above-described modes (1) and (2).
  • the first layer 18 (lower layer) is formed of a phase shift film that shifts the phase of EUV light by 160 to 200°.
  • the second layer 20 (upper layer) is an interference layer that reduces the reflectance (absolute reflectance) of the laminated film 16 to 2.5% or less by utilizing optical interference.
  • the second layer 20 (upper layer) is an absorption layer that reduces the reflectance (absolute reflectance) of the laminated film 16 to 2.5% or less by utilizing the light absorption effect.
  • the 2nd layer 20 consists of an absorption layer is demonstrated.
  • FIG. 2 is a schematic view showing a method of manufacturing the reflective mask 200.
  • a reflective mask blank 100 having the laminated film 16 (first layer 18 and second layer 20) is prepared (FIG. 2A).
  • the first resist film 24 is formed on the laminated film 16 (FIG. 2B).
  • a pattern is drawn on the first resist film 24 by an electron beam drawing apparatus, and then a development/rinse process is performed to form a first resist pattern 24a (FIG. 2C).
  • the second layer 20 (upper layer) is dry-etched. As a result, the portion of the second layer 20 that is not covered with the first resist pattern 24a is etched to form the absorbing layer pattern 30 (FIG. 2D).
  • an etching gas having etching selectivity with the first layer 18 may be used.
  • a fluorine-based gas and/or a chlorine-based gas can be used depending on the material of the second layer 20.
  • fluorine-based gas CF 4 , CHF 3 , C2F 6 , C 3 F 6 , C 4 F 6 , C 4 F 8 , CH 2 F 2 , CH 3 F, C 3 F 8 , SF 6 , and F 2 are used.
  • Etc. can be used.
  • As the chlorine-based gas Cl 2 , SiCl 4 , CHCl 3 , CCl 4 , BCl 3 or the like can be used.
  • a mixed gas containing a fluorine-based gas and/or a chlorine-based gas and O 2 in a predetermined ratio can be used.
  • These etching gases can further contain an inert gas such as He and/or Ar, if necessary.
  • the first resist pattern 24a is removed with a resist stripping solution.
  • a second resist film 26 is formed on the absorption layer pattern 30 and the first layer 18 (FIG. 2(e)).
  • a second resist pattern 26a is formed by drawing a pattern on the second resist film 26 by an electron beam drawing apparatus and further performing a developing/rinsing process (FIG. 2(f)).
  • the first layer 18 (lower layer) is dry-etched using the second resist pattern 26a as a mask. As a result, the portion of the first layer 18 that is not covered by the second resist pattern 26a is etched to form the phase shift pattern 32 (FIG. 2G).
  • an etching gas having etching selectivity with the protective film 14 may be used.
  • a fluorine-based gas and/or a chlorine-based gas can be used depending on the material of the first layer 18.
  • fluorine-based gas CF 4 , CHF 3 , C2F 6 , C 3 F 6 , C 4 F 6 , C 4 F 8 , CH 2 F 2 , CH 3 F, C 3 F 8 , SF 6 , and F 2 are used.
  • Etc. can be used.
  • As the chlorine-based gas Cl 2 , SiCl 4 , CHCl 3 , CCl 4 , BCl 3 or the like can be used.
  • a mixed gas containing a fluorine-based gas and/or a chlorine-based gas and O 2 in a predetermined ratio can be used.
  • These etching gases can further contain an inert gas such as He and/or Ar, if necessary.
  • the second resist pattern 26a is removed with a resist stripping solution.
  • a reflective mask 200 of this embodiment is obtained by performing a wet cleaning step using an acidic or alkaline aqueous solution (FIG. 2(h)).
  • the reflective mask 200 thus obtained has a structure in which the multilayer reflective film 12, the protective film 14, the phase shift pattern 32, and the absorbing layer pattern 30 are laminated in this order from the substrate 10 side.
  • the region 34 where the multilayer reflective film 12 (including the protective film 14) is exposed has a function of reflecting EUV light.
  • a region 36 in which the multilayer reflective film 12 (including the protective film 14) is covered only by the phase shift pattern 32 is a phase shift type region and can enhance the contrast of the pattern transfer image.
  • a region 38 where the multilayer reflective film 12 (including the protective film 14) is covered with the phase shift pattern 32 and the absorption layer pattern 30 is a binary type region, and is reflected by the reflected light (leakage light) from the phase shift pattern 32. , And has a function of preventing the resist film formed on the transferred material from being exposed to light.
  • the method of manufacturing the reflective mask 200 is not limited to this, and after the region 34 in which the multilayer reflective film 12 (including the protective film 14) is exposed is first formed, the multilayer reflective film 12 (including the protective film 14 is formed. ) May form a region 36 which is covered only by the phase shift pattern 32.
  • the laminated film 16 including the first layer 18 and the second layer 20 functions as a phase shift film.
  • the second layer 20 (upper layer) is an interference layer that shifts the phase of EUV light reflected by the laminated film 16 by 160 to 200° by using optical interference.
  • the first layer 18 (lower layer) is an absorption layer having an absolute reflectance of EUV light of 2.5% or less (binary type).
  • FIG. 3 is a schematic view showing a method of manufacturing the reflective mask 200.
  • a reflective mask blank 100 including the stacked film 16 (first layer 18 and second layer 20) is prepared (FIG. 3A).
  • the first resist film 24 is formed on the laminated film 16 (FIG. 3B).
  • a pattern is drawn on the first resist film 24 by an electron beam drawing apparatus, and then a developing/rinsing process is performed to form a first resist pattern 24a (FIG. 3C).
  • the laminated film 16 (the first layer 18 and the second layer 20) is dry-etched using the first resist pattern 24a as a mask.
  • the first layer 18 and the second layer 20 are etched in two steps by using an etching gas having etching selectivity between them.
  • the portion of the laminated film 16 that is not covered with the first resist pattern 24a is etched, and the laminated film pattern 40 (phase shift pattern) is formed (FIG. 3D).
  • a fluorine-based gas and/or a chlorine-based gas can be used depending on the materials of the first layer 18 and the second layer 20.
  • a fluorine-based gas CF 4 , CHF 3 , C2F 6 , C 3 F 6 , C 4 F 6 , C 4 F 8 , CH 2 F 2 , CH 3 F, C 3 F 8 , SF 6 , and F 2 are used.
  • Etc. can be used.
  • the chlorine-based gas Cl 2 , SiCl 4 , CHCl 3 , CCl 4 , BCl 3 or the like can be used.
  • a mixed gas containing a fluorine-based gas and/or a chlorine-based gas and O 2 in a predetermined ratio can be used.
  • These etching gases can further contain an inert gas such as He and/or Ar, if necessary.
  • an etching gas having etching selectivity with the protective film 14 may be used.
  • the first resist pattern 24a is removed with a resist stripping solution.
  • a second resist film 26 is formed on the laminated film pattern 40 (FIG. 3E).
  • a second resist pattern 26a is formed by drawing a pattern on the second resist film 26 with an electron beam drawing apparatus and further performing a developing/rinsing process (FIG. 3(f)).
  • the second layer 20 (upper layer) is dry-etched.
  • the portion of the second layer 20 not covered with the second resist pattern 26a is etched, and the first layer 18 under the second layer 20 is exposed.
  • the exposed first layer 18 forms an absorption layer pattern 42 (FIG. 3G).
  • an etching gas having etching selectivity with the first layer 18 may be used.
  • the second resist pattern 26a is removed with a resist stripping solution.
  • the reflective mask 200 of this embodiment is obtained by performing a wet cleaning process using an acidic or alkaline aqueous solution (FIG. 3(h)).
  • the reflective mask 200 thus obtained has a structure in which the multilayer reflective film 12, the protective film 14, and the laminated film pattern 40 are laminated on the substrate 10.
  • the region 44 where the multilayer reflective film 12 (including the protective film 14) is exposed has a function of reflecting EUV light.
  • a region 46 in which the multilayer reflective film 12 (including the protective film 14) is covered with the laminated film pattern 40 (the first layer 18 and the second layer 20) is a phase shift type region, and is a region of the pattern transfer image. The contrast can be increased.
  • a region 48 in which the multilayer reflective film 12 (including the protective film 14) is covered only by the absorbing layer pattern 42 (first layer 18) is a binary type region, and is a region of the laminated film pattern 40 (phase shift film). It has a function of preventing the resist film formed on the transferred material from being exposed to the reflected light (leakage light).
  • the method of manufacturing the reflective mask 200 is not limited to this, and the multilayer reflective film 12 (including the protective film 14) is first formed with the region 48 covered with only the absorption layer pattern 42, and then the multilayer reflective film 12 is formed.
  • the region 44 in which (including the protective film 14) is exposed may be formed.
  • a transfer pattern can be formed on the semiconductor substrate by lithography using the reflective mask 200 of this embodiment. This transfer pattern has a shape in which the pattern of the reflective mask 200 is transferred.
  • a semiconductor device can be manufactured by forming a transfer pattern on the semiconductor substrate using the reflective mask 200.
  • FIG. 4 shows the pattern transfer device 50.
  • the pattern transfer device 50 includes a laser plasma X-ray source 52, a reflective mask 200, and a reduction optical system 54.
  • An X-ray reflection mirror is used as the reduction optical system 54.
  • the pattern reflected by the reflective mask 200 is normally reduced to about 1/4 by the reduction optical system 54.
  • a wavelength band of 13 to 14 nm is used as the exposure wavelength, and it is preset so that the optical path is in vacuum.
  • the EUV light generated by the laser plasma X-ray source 52 is made incident on the reflective mask 200.
  • the light reflected by the reflective mask 200 is transferred onto the semiconductor substrate 56 with resist via the reduction optical system 54.
  • the light reflected by the reflective mask 200 enters the reduction optical system 54.
  • the light incident on the reduction optical system 54 forms a transfer pattern on the resist layer on the semiconductor substrate 56 with resist.
  • a resist pattern can be formed on the semiconductor substrate 56 with resist.
  • etching the semiconductor substrate 56 using the resist pattern as a mask for example, a predetermined wiring pattern can be formed on the semiconductor substrate.
  • a semiconductor device is manufactured through such steps and other necessary steps.
  • Example 1 An SiO 2 —TiO 2 glass substrate (6 inch square, thickness 6.35 mm) was prepared. The end face of this glass substrate was chamfered and ground, and then rough-polished with a polishing liquid containing cerium oxide abrasive grains. The glass substrate after these treatments was set in a carrier of a double-sided polishing machine, and precision polishing was performed under a predetermined polishing condition using an alkaline aqueous solution containing colloidal silica abrasive grains as a polishing liquid. After finishing the precision polishing, the glass substrate was washed.
  • the surface roughness of the main surface of the obtained glass substrate was a root mean square roughness (Rq) of 0.10 nm or less.
  • the flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm ⁇ 132 mm.
  • a multilayer reflective film was formed by periodically stacking a Mo film/Si film on the main surface of the glass substrate opposite to the side where the back surface conductive film was formed.
  • a Mo target and a Si target were used, and a Mo film and a Si film were alternately laminated on the substrate by ion beam sputtering (using Ar).
  • the thickness of the Mo film is 2.8 nm.
  • the thickness of the Si film is 4.2 nm.
  • the thickness of one cycle of Mo/Si film is 7.0 nm.
  • Such Mo/Si films were laminated for 40 cycles, and finally a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
  • a protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 atomic %, Nb: 20 atomic %) is used, and a protective film made of a RuNb film is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The protective film had a thickness of 3.5 nm.
  • a first layer made of a TaTiN film was formed on the protective film by the DC magnetron sputtering method.
  • the TaTiN film was formed with a film thickness of 57.3 nm by reactive sputtering using a TaTi target in a mixed gas atmosphere of Ar gas and N 2 gas.
  • the relative reflectance of the first layer was 9.1% (absolute reflectance: 6.2%), and the phase difference was 178°.
  • a second layer (interference layer) was formed on the first layer using a material containing Ru. Specifically, a Ru target was used, and the film was formed by DC magnetron sputtering in an Ar gas atmosphere so as to have a film thickness of 4.5 nm.
  • the absolute reflectance of the laminated film including the first layer and the second layer was 1.7% (relative reflectance: 2.5%), and the phase difference was 215°.
  • the reflective mask blank of Example 1 is a reflective mask blank in which the laminated film has the aspect (1) described above and the second layer is an interference layer.
  • a reflective mask described later was produced by the method shown in FIG. At that time, the second layer (upper layer) made of the Ru film was etched by dry etching using Cl 2 gas and O 2 gas. The first layer (lower layer) made of the TaTiN film was etched by dry etching using Cl 2 gas.
  • Example 2 is an example in which a protective film is a SiO 2 film, a first layer (lower layer) is a RuCr film, and a second layer (upper layer) is a TaBN film. Other than that, it is the same as that of the first embodiment.
  • Example 2 As in Example 1 above, a back surface conductive film made of CrN was formed on the back surface of the SiO 2 —TiO 2 glass substrate, and the multilayer reflective film was formed on the main surface of the opposite substrate. Formed.
  • a protective film made of a SiO 2 film having a film thickness of 2.5 nm was formed on the surface of the multilayer reflective film by an RF sputtering method using a SiO 2 target.
  • the first layer (lower layer) made of the RuCr film was formed on the protective film by the DC magnetron sputtering method.
  • the RuCr film was formed using a RuCr target in an Ar gas atmosphere so as to have a film thickness of 32.6 nm.
  • the relative reflectance of the first layer (RuCr film) formed as described above at a wavelength of 13.5 nm was 19.8% (absolute reflectance: 13.4%), and the phase difference was 179°.
  • a second layer (upper layer) made of a TaBN film was formed on the first layer.
  • the absolute reflectance of the laminated film including the first layer and the second layer was 1.6% (relative reflectance: 2.4%), and the phase difference was 257°.
  • the reflective mask blank of Example 2 is a reflective mask blank in which the mode of the laminated film is the above (1) and the second layer is an absorbing layer.
  • a reflective mask described later was produced by the method shown in FIG. At that time, the second layer (upper layer) made of the TaBN film was etched by dry etching using Cl 2 gas. The first layer (lower layer) made of the RuCr film was etched by dry etching using Cl 2 gas and O 2 gas.
  • Example 3 is an example in which a laminated film in which the first layer (lower layer) is a TaBN film and the second layer (upper layer) is a Ru film is formed. Other than that, it is the same as that of the first embodiment.
  • Example 3 as in Example 1, the back surface conductive film made of CrN was formed on the back surface of the SiO 2 —TiO 2 based glass substrate, and the multilayer reflective film was formed on the main surface of the opposite substrate. Then, a protective film containing a Ru compound was formed on the multilayer reflective film.
  • a first layer (lower layer) made of a TaBN film was formed on the protective film.
  • the absolute reflectance of the first layer (TaBN film) formed as described above was 2.3% (relative reflectance 3.4%), and the phase difference was 143°.
  • a second layer (interference layer) was formed on the first layer with a material containing Ru.
  • a Ru target was used, and the film was formed by DC magnetron sputtering in an Ar gas atmosphere so as to have a film thickness of 4.5 nm.
  • the relative reflectance of the laminated film (phase shift film) including the first layer and the second layer was 8.4% (absolute reflectance 5.7%), and the phase difference was 183°.
  • the reflective mask blank of Example 3 is a reflective mask blank in which the aspect of the laminated film is (2) above.
  • a reflective mask described later was manufactured by the method shown in FIG. At that time, the second layer (upper layer) made of the Ru film was etched by dry etching using Cl 2 gas and O 2 gas. The first layer (lower layer) made of the TaBN film was etched by dry etching using Cl 2 gas.
  • Example 4 is an example in which a laminated film in which the first layer (lower layer) is a CoTa film and the second layer (upper layer) is a Ru film is formed. Other than that, it is the same as that of the first embodiment.
  • Example 4 as in Example 1, the back surface conductive film made of CrN was formed on the back surface of the SiO 2 —TiO 2 glass substrate, and the multilayer reflective film was formed on the main surface of the opposite substrate. Then, a protective film containing a Ru compound was formed on the multilayer reflective film.
  • the first layer made of a CoTa film was formed on the protective film by the DC magnetron sputtering method.
  • the CoTa film was formed with a CoTa target in an Ar gas atmosphere to a film thickness of 54.0 nm.
  • the absolute reflectance of the first layer (CoTa film) formed as described above was 0.8% (relative reflectance 1.2%), and the phase difference was 124°.
  • a second layer (interference layer) was formed on the first layer with a material containing Ru.
  • a Ru target was used, and the film was formed by DC magnetron sputtering in an Ar gas atmosphere so as to have a film thickness of 4.5 nm.
  • the relative reflectance of the laminated film (phase shift film) including the first layer and the second layer was 4.4% (absolute reflectance 3.0%), and the phase difference was 178°.
  • the reflective mask blank of Example 4 is a reflective mask blank in which the aspect of the laminated film is (2).
  • the reflective mask blank of Example 4 a reflective mask described later was produced by the method shown in FIG. At that time, the second layer (upper layer) made of the Ru film was etched by dry etching using Cl 2 gas and O 2 gas. The first layer (lower layer) made of the CoTa film was etched by dry etching using Cl 2 gas.
  • a reflective mask blank was manufactured in the same manner as in Example 1 except that the second layer (upper layer) made of the Ru film was not formed.
  • the reflective mask 200 has a pattern region 202, which is a region in which a plurality of contact holes 206 are densely formed, and a non-pattern region 204, which is a region around the pattern region 202.
  • the non-patterned region 204 is covered with a binary type film having an absolute reflectance of 2.5% or less.
  • the non-patterned area 204 is covered with the first layer and the second layer (binary type).
  • the non-patterned area 204 is covered with the first layer (binary type).
  • the first layer (lower layer) is a phase shift film and does not function as a binary type. Therefore, when the reflective mask blank of the reference example is used, the non-pattern region 204 is not covered with the binary film.
  • a plurality of contact holes 206 are formed in the pattern region 202 at predetermined intervals.
  • a phase shift region 208 is formed with a predetermined width.
  • a binary region 210 is formed further outside the phase shift region 208.
  • the first layer and the second layer are removed by etching, and the multilayer reflective film (including the protective film) is exposed.
  • the phase shift region 208 around the contact hole 206 is covered with a phase shift film.
  • a binary region 210 around the phase shift region 208 is covered with a binary type film.
  • phase shift region 208 is covered with the first layer (phase shift film).
  • the phase shift region 208 is covered with the first layer and the second layer (phase shift film).
  • the phase shift region 208 is covered with the first layer (phase shift film).
  • the binary region 210 is covered with the first layer and the second layer (binary type).
  • the binary region 210 is covered with the first layer (binary type).
  • the first layer (lower layer) is a phase shift film and does not function as a binary type. Therefore, when the reflective mask blank of the reference example is used, the binary region 210 cannot be formed.
  • the pattern was transferred to the resist film on the semiconductor substrate. Then, the exposed resist film was developed to form a resist pattern. By etching the semiconductor substrate using the resist pattern as a mask, a pattern composed of a plurality of contact holes was formed on the semiconductor substrate.
  • one semiconductor substrate on which a resist film was formed was exposed multiple times using the same reflective mask while shifting the position. Even in this case, it was possible to prevent the reflected light from leaking to the region adjacent to the region on the semiconductor substrate where the pattern should be transferred. Further, it was possible to prevent the resist film near the boundary between two adjacent regions from being exposed to light by multiple exposures.
  • the non-patterned region 204 is not covered with the binary film. Therefore, when exposure is performed multiple times while shifting the position on one semiconductor substrate, the reflected light leaks to a region on the semiconductor substrate adjacent to the region to which the pattern is to be transferred, and the pattern is accurately recorded. could not be transferred to. Further, it was not possible to prevent the resist film near the boundary between two adjacent regions from being exposed to light by multiple exposures.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

パターンを被転写体に正確に転写することが可能な反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供する。 反射型マスクブランク(100)は、基板(10)と、基板(10)に形成されたEUV光を反射する多層反射膜(12)と、多層反射膜(12)の上に形成された積層膜(16)を含む。積層膜(16)は、第1の層(18)と、第1の層(18)の上に形成された第2の層(20)を含み、EUV光に対する絶対反射率が2.5%以下である。第1の層(18)は、EUV光の位相をシフトさせる位相シフト膜を含む。又は、積層膜(16)は、第1の層(18)と、第1の層(18)の上に形成された第2の層(20)を含み、EUV光の位相をシフトさせる位相シフト膜である。第1の層(18)は、EUV光に対する絶対反射率が2.5%以下である吸収層を含む。

Description

反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
 本発明は、半導体装置の製造などに使用される露光用マスクを製造するための原版である反射型マスクブランク、反射型マスク、及び半導体装置の製造方法に関する。
 半導体装置製造における露光装置の光源の種類は、波長436nmのg線、同365nmのi線、同248nmのKrFレーザ、同193nmのArFレーザと、波長を徐々に短くしながら進化してきており、より微細なパターン転写を実現するため、波長が13.5nm近傍の極端紫外線 (EUV:Extreme Ultra Violet)を用いたEUVリソグラフィーが開発されている。EUVリソグラフィーでは、EUV光に対して透明な材料が少ないことから、反射型のマスクが用いられる。この反射型マスクでは、低熱膨張基板上に露光光を反射する多層反射膜が形成され、当該多層反射膜を保護するための保護膜の上に、所望の転写用パターンが形成されたマスク構造を基本構造としている。また、転写用パターンの構成から、代表的なものとして、EUV光を十分吸収する比較的厚い吸収体パターンからなるバイナリ型反射マスクと、EUV光を光吸収により減光させ、且つ多層反射膜からの反射光に対してほぼ位相が反転(約180°の位相反転)した反射光を発生させる比較的薄い吸収体パターン(位相シフトパターン)からなる位相シフト型反射マスク(ハーフトーン位相シフト型反射マスク)がある。この位相シフト型反射マスクは、透過型光位相シフトマスクと同様に、位相シフト効果によって高い転写光学像コントラストが得られるので解像度向上効果がある。また、位相シフト型反射マスクの吸収体パターン(位相シフトパターン)の膜厚が薄いことから、精度良く微細な位相シフトパターンを形成できる。
特開2010-080659号公報 特開2004-207593号公報
 一般に、位相シフト膜(位相シフトパターン)の相対反射率は、例えば3%~40%であると解像度向上の効果が得られる。ここで、「相対反射率」とは、位相シフトパターンのない部分での多層反射膜(保護膜付きの多層反射膜を含む)から反射されるEUV光の反射率を100%としたときの、位相シフトパターンから反射されるEUV光の反射率である。
 また、一般に、位相シフト膜の露光に与える効果は、高反射率を有するものほど顕著になる。位相シフト膜の露光に与える効果が大きくなると、パターン転写像のコントラストが高くなるため、解像度が向上し、半導体装置を製造する際のスループットが向上する。
 しかし、位相シフト膜の反射率が高くなると、位相シフト膜からの反射光の光量が大きくなるため、パターン転写時に本来であれば感光されるべきではない領域のレジスト膜が感光されてしまう。この場合、所望とするパターンを被転写体に正確に転写することが困難であるという問題があった。
 また、半導体装置を製造する際には、レジスト膜が形成された1枚の被転写体(シリコンウェーハ等)に対して、同じフォトマスクを用いて、位置をずらしながら、複数回露光を行う。しかし、位相シフト膜の反射率が高くなると、位相シフト膜からの反射光の光量が大きくなるため、1回の露光によって、パターンを転写すべき領域だけでなく、その領域に隣接する他の領域のレジスト膜が感光されてしまう。この場合、隣接する2つの領域の境界部付近のレジスト膜は複数回露光されてしまうことになるため、その境界部付近のレジスト膜が感光されてしまい、所望とするパターンを被転写体に正確に転写することが困難であるという問題があった。
 本発明は、上記の問題に鑑み、パターンを被転写体に正確に転写することが可能な反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜の上に形成された積層膜とを含む反射型マスクブランクであって、
 前記積層膜は、第1の層と、該第1の層の上に形成された第2の層とを含み、前記EUV光に対する絶対反射率が2.5%以下であり、
 前記第1の層は、前記EUV光の位相をシフトさせる位相シフト膜を含む、反射型マスクブランク。
(構成2)
 前記第2の層は、光学干渉を利用して前記積層膜の絶対反射率を2.5%以下に低減させる干渉層からなる、構成1に記載の反射型マスクブランク。
(構成3)
 前記干渉層の膜厚が1nm以上20nm以下であり、屈折率nが0.85以上0.96以下である、構成2に記載の反射型マスクブランク。
(構成4)
 前記干渉層は、ルテニウム(Ru)を含む材料からなる、構成2又は構成3に記載の反射型マスクブランク。
(構成5)
 前記第2の層は、吸光効果を利用して前記積層膜の絶対反射率を2.5%以下に低減させる吸収層からなる、構成1に記載の反射型マスクブランク。
(構成6)
 前記吸収層の膜厚が5nm以上70nm以下であり、消衰係数kが0.02以上である、構成5に記載の反射型マスクブランク。
(構成7)
 前記吸収層は、タンタル(Ta)、クロム(Cr)、コバルト(Co)、及びニッケル(Ni)からなる群から選択される少なくとも1種の元素を含む材料からなる、構成5又は構成6に記載の反射型マスクブランク。
(構成8)
 前記第1の層の前記EUV光に対する相対反射率が3%以上40%以下であり、位相差が160~200°である、構成1から構成7のうちいずれかに記載の反射型マスクブランク。
(構成9)
 前記第1の層は、膜厚が5nm以上70nm以下であり、屈折率nが0.85以上0.96以下である、構成1から構成8のうちいずれかに記載の反射型マスクブランク。
(構成10)
 前記第1の層は、タンタル(Ta)、チタン(Ti)、ルテニウム(Ru)、及びクロム(Cr)からなる群から選択される少なくとも1種の元素を含む材料からなる、構成1から構成9のうちいずれかに記載の反射型マスクブランク。
(構成11)
 基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜の上に形成された積層膜とを含む反射型マスクブランクであって、
 前記積層膜は、第1の層と、該第1の層の上に形成された第2の層とを含み、前記EUV光の位相をシフトさせる位相シフト膜であり、
 前記第1の層は、前記EUV光に対する絶対反射率が2.5%以下である吸収層を含む、反射型マスクブランク。
(構成12)
 前記第2の層は、光学干渉を利用して前記積層膜によって反射されるEUV光の位相をシフトさせる干渉層からなる、構成11に記載の反射型マスクブランク。
(構成13)
 前記第2の層の膜厚が1nm以上20nm以下であり、屈折率nが0.85以上0.96以下である、構成11又は構成12に記載の反射型マスクブランク。
(構成14)
 前記第2の層は、ルテニウム(Ru)を含む材料からなる、構成11から構成13のうちいずれかに記載の反射型マスクブランク。
(構成15)
 前記第1の層の膜厚が5nm以上70nm以下であり、消衰係数kが0.02以上である、構成11から構成14のうちいずれかに記載の反射型マスクブランク。
(構成16)
 前記第1の層は、タンタル(Ta)、クロム(Cr)、コバルト(Co)、及びニッケル(Ni)からなる群から選択される少なくとも1種の元素を含む材料からなる、構成11から構成15のうちいずれかに記載の反射型マスクブランク。
(構成17)
 前記積層膜の前記EUV光に対する相対反射率が3%以上40%以下であり、位相差が160~200°である、構成11から構成16のうちいずれかに記載の反射型マスクブランク。
(構成18)
 前記多層反射膜と前記第1の層との間に保護膜を更に有し、
 前記保護膜は、ルテニウム(Ru)を含む材料、珪素(Si)及び酸素(O)を含む材料、イットリウム(Y)と酸素(O)を含む材料、及び、クロム(Cr)を含む材料からなる群から選択される少なくとも1種の材料を含む、構成1から構成17のうちのいずれかに記載の反射型マスクブランク。
(構成19)
 構成1から構成18のうちいずれかに記載の反射型マスクブランクにおける前記積層膜がパターニングされた積層膜パターンを有する、反射型マスク。
(構成20)
 構成19に記載の反射型マスクを使用して、半導体基板上に転写パターンを形成する工程を有する、半導体装置の製造方法。
 本発明によれば、パターンを被転写体に正確に転写することが可能な反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供することができる。
反射型マスクブランクの要部の断面模式図である。 積層膜の態様が(1)の場合における、反射型マスクの製造方法を示す模式図である。 積層膜の態様が(2)の場合における、反射型マスクの製造方法を示す模式図である。 パターン転写装置を示している。 反射型マスクの平面図及び部分拡大図である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、以下の実施形態は、本発明の範囲を何ら制限するものではない。
 図1は、本実施形態の反射型マスクブランク100の要部の断面模式図である。図1に示すように、反射型マスクブランク100は、基板10と、基板10の上に形成された多層反射膜12と、多層反射膜12の上に形成された保護膜14と、保護膜14の上に形成された積層膜16とを含む。積層膜16は、保護膜14の上に接するように形成された第1の層18と、第1の層18の上に形成された第2の層20とを含む。一方、基板10の裏面(多層反射膜12が形成された側と反対側の面)には、静電チャック用の裏面導電膜22が形成されている。
 なお、本明細書において、基板や膜の「上に」とは、その基板や膜の上面に接触する場合だけでなく、その基板や膜の上面に接触しない場合も含む。すなわち、基板や膜の「上に」とは、その基板や膜の上方に新たな膜が形成される場合や、その基板や膜との間に他の膜が介在している場合等を含む。また、「上に」とは、必ずしも鉛直方向における上側を意味するものではない。「上に」とは、基板や膜などの相対的な位置関係を示しているに過ぎない。
<基板>
 基板10は、EUV光による露光時の熱による転写パターンの歪みを防止するため、0±5ppb/℃の範囲内の低熱膨張係数を有するものが好ましく用いられる。この範囲の低熱膨張係数を有する素材としては、例えば、SiO-TiO系ガラス、多成分系ガラスセラミックス等を用いることができる。
 基板10の転写パターン(後述の位相シフトパターン、吸収層パターン及び/又は積層膜パターン)が形成される側の主表面は、平坦度を高めるために加工されることが好ましい。基板10の主表面の平坦度を高めることによって、パターンの位置精度や転写精度を高めることができる。例えば、EUV露光の場合、基板10の転写パターンが形成される側の主表面の132mm×132mmの領域において、平坦度が0.1μm以下であることが好ましく、更に好ましくは0.05μm以下、特に好ましくは0.03μm以下である。また、転写パターンが形成される側と反対側の主表面(裏面)は、露光装置に静電チャックによって固定される面であって、その142mm×142mmの領域において、平坦度が0.1μm以下、更に好ましくは0.05μm以下、特に好ましくは0.03μm以下である。なお、本明細書において平坦度は、TIR(Total Indicated Reading)で示される表面の反り(変形量)を表す値で、基板表面を基準として最小二乗法で定められる平面を焦平面とし、この焦平面より上にある基板表面の最も高い位置と、焦平面より下にある基板表面の最も低い位置との高低差の絶対値である。
 EUV露光の場合、基板10の転写パターンが形成される側の主表面の表面粗さは、二乗平均平方根粗さ(Rq)で0.1nm以下であることが好ましい。なお表面粗さは、原子間力顕微鏡で測定することができる。
 基板10は、その上に形成される膜(多層反射膜12など)の膜応力による変形を防止するために、高い剛性を有しているものが好ましい。特に、65GPa以上の高いヤング率を有しているものが好ましい。
<多層反射膜>
 多層反射膜12は、屈折率の異なる元素を主成分とする複数の層が周期的に積層された構成を有している。一般的に、多層反射膜12は、高屈折率材料である軽元素又はその化合物の薄膜(高屈折率層)と、低屈折率材料である重元素又はその化合物の薄膜(低屈折率層)とが交互に40~60周期程度積層された多層膜からなる。
 多層反射膜12を形成するために、基板10側から高屈折率層と低屈折率層をこの順に複数周期積層してもよい。この場合、1つの(高屈折率層/低屈折率層)の積層構造が、1周期となる。
 多層反射膜12を形成するために、基板10側から低屈折率層と高屈折率層をこの順に複数周期積層してもよい。この場合、1つの(低屈折率層/高屈折率層)の積層構造が、1周期となる。
 なお、多層反射膜12の最上層、すなわち多層反射膜12の基板10と反対側の表面層は、高屈折率層であることが好ましい。基板10側から高屈折率層と低屈折率層をこの順に積層する場合は、最上層が低屈折率層となる。しかし、低屈折率層が多層反射膜12の表面である場合、低屈折率層が容易に酸化されることで多層反射膜の表面の反射率が減少してしまうので、その低屈折率層の上に高屈折率層を形成することが好ましい。一方、基板10側から低屈折率層と高屈折率層をこの順に積層する場合は、最上層が高屈折率層となる。その場合は、最上層の高屈折率層が、多層反射膜12の表面となる。
 本実施形態において、高屈折率層は、Siを含む層であってもよい。高屈折率層は、Si単体を含んでもよく、Si化合物を含んでもよい。Si化合物は、Siと、B、C、N、及びOからなる群から選択される少なくとも1つの元素を含んでもよい。Siを含む層を高屈折率層として使用することによって、EUV光の反射率に優れた多層反射膜が得られる。
 本実施形態において、低屈折率層は、Mo、Ru、Rh、及びPtからなる群から選択される少なくとも1つの元素を含む層、あるいは、Mo、Ru、Rh、及びPtからなる群から選択される少なくとも1つの元素を含む合金を含む層であってもよい。
 例えば、波長13~14nmのEUV光のための多層反射膜12としては、好ましくは、Mo膜とSi膜を交互に40~60周期程度積層したMo/Si多層膜を用いることができる。その他に、EUV光の領域で使用される多層反射膜として、例えば、Ru/Si周期多層膜、Mo/Be周期多層膜、Mo化合物/Si化合物周期多層膜、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜、Si/Ru/Mo/Ru周期多層膜などを用いることができる。露光波長を考慮して、多層反射膜の材料を選択することができる。
 このような多層反射膜12の単独での反射率は、例えば65%以上である。多層反射膜12の反射率の上限は、例えば73%である。なお、多層反射膜12に含まれる層の厚み及び周期は、ブラッグの法則を満たすように選択することができる。
 多層反射膜12は、公知の方法によって形成できる。多層反射膜12は、例えば、イオンビームスパッタ法により形成できる。
 例えば、多層反射膜12がMo/Si多層膜である場合、イオンビームスパッタ法により、Moターゲットを用いて、厚さ3nm程度のMo膜を基板12の上に形成する。次に、Siターゲットを用いて、厚さ4nm程度のSi膜を形成する。このような操作を繰り返すことによって、Mo/Si膜が40~60周期積層した多層反射膜12を形成することができる。このとき、多層反射膜12の基板10と反対側の表面層は、Siを含む層(Si膜)である。1周期のMo/Si膜の厚みは、7nmとなる。
<保護膜>
 後述する反射型マスク200の製造工程におけるドライエッチング及び洗浄から多層反射膜12を保護するために、多層反射膜12の上に、又は多層反射膜12の表面に接するように保護膜14を形成することができる。また、保護膜14は、電子線(EB)を用いた転写パターンの黒欠陥修正の際に、多層反射膜12を保護する機能も有している。ここで、図1では、保護膜14が1層の場合を示しているが、保護膜14が2層以上の積層構造を有してもよい。保護膜14は、第1の層18をパターニングする際に使用するエッチャントや洗浄液に対して耐性を有する材料で形成されることが好ましい。多層反射膜12の上に保護膜14が形成されることにより、反射型マスク200を製造する際の多層反射膜12の表面へのダメージを抑制することができる。その結果、多層反射膜12のEUV光に対する反射率特性が良好となる。このような効果を得るために、保護膜14の厚みは、1nm以上20nmであることが好ましい。
 本実施形態の反射型マスクブランク100では、保護膜14の材料として、保護膜14の上に形成される第1の層18をパターニングするためのドライエッチングに用いられるエッチングガスに対して、耐性のある材料を使用することができる。第1の層18が複数の層で形成される場合には、第1の層18に接する保護膜14(保護膜14が複数層含む場合には、保護膜14の最上層)の材料として、第1の層18を形成する層のうち、第1の層18の最下層(保護膜14に接する層)をパターニングするためのドライエッチングに用いられるエッチングガスに対して、耐性のある材料を使用することができる。保護膜14の材料は、保護膜14に対する第1の層18の最下層のエッチング選択比(第1の層18の最下層のエッチング速度/保護膜14のエッチング速度)が1.5以上、好ましくは3以上となる材料であることが好ましい。
 例えば、第1の層18の最下層が、ルテニウム(Ru)と、クロム(Cr)、ニッケル(Ni)及びコバルト(Co)のうち少なくとも1以上の元素とを含む金属を含む材料(所定のRu系材料)や、ルテニウム(Ru)と、バナジウム(V)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)及びレニウム(Re)のうち少なくとも1以上の元素とを含む金属を含む材料(所定のRu系材料)からなる薄膜である場合には、塩素系ガス及び酸素ガスの混合ガス、又は酸素ガスを用いたドライエッチングガスにより、第1の層18の最下層をエッチングすることができる。このエッチングガスに対して、耐性を有する保護膜14の材料として、ケイ素(Si)、ケイ素(Si)及び酸素(O)を含む材料、又はケイ素(Si)及び窒素(N)を含む材料などのケイ素系材料を選択することができる。したがって、保護膜14の表面に接する第1の層18の最下層が、所定のRu系材料からなる薄膜の場合には、保護膜14は、上記ケイ素系材料からなることが好ましい。上記ケイ素系材料は、塩素系ガス及び酸素ガスの混合ガス、又は酸素ガスを用いたドライエッチングガスに対して耐性を有し、酸素の含有量が多いほど、耐性は大きい。そのため、保護膜14の材料は、酸化ケイ素(SiO、1≦x≦2)であることがより好ましく、xが大きい方が更に好ましく、SiOであることが特に好ましい。
 また、保護膜14の表面に接する第1の層18の最下層が、タンタル(Ta)を含む材料からなる薄膜である場合には、酸素ガスを含まないハロゲン系ガスを用いたドライエッチングにより、第1の層18の最下層をエッチングすることができる。このエッチングガスに対して耐性を有する保護膜14の材料として、ルテニウム(Ru)を主成分として含む材料を使用することができる。
 また、保護膜14の表面に接する第1の層18の最下層が、クロム(Cr)を含む材料からなる薄膜である場合には、酸素ガスを含まない塩素系ガス、又は酸素ガスと塩素系ガスとの混合ガスのドライエッチングガスを用いたドライエッチングにより、第1の層18の最下層をエッチングすることができる。このエッチングガスに対して耐性を有する保護膜14の材料として、ルテニウム(Ru)を主成分として含む材料を使用することができる。
 第1の層18の最下層が、タンタル(Ta)又はクロム(Cr)を含む材料の場合に用いることのできる保護膜14の材料は、上述のように、ルテニウムを主成分として含む材料である。ルテニウムを主成分として含む材料の例として、具体的には、Ru金属単体、Ruにチタン(Ti)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、及びレニウム(Re)から選択される少なくとも1種の金属を含有するRu合金、Ru金属、及び、Ru合金に窒素を含む材料を挙げることができる。
 また、第1の層18の最下層が、タンタル(Ta)又はクロム(Cr)を含む材料で形成される場合、保護膜14の最下層と最上層は、上記のルテニウムを主成分として含む材料で形成することができる。最下層と最上層との間の層は、Ru以外の金属若しくはそれを含む合金で形成することができる。
 Ru合金のRu含有比率は、50原子%以上100原子%未満、好ましくは80原子%以上100原子%未満、更に好ましくは95原子%以上100原子%未満である。特に、Ru合金のRu含有比率が95原子%以上100原子%未満の場合は、多層反射膜12を構成する元素(ケイ素)の、保護膜14への拡散を抑制することができる。また、EUV光の反射率を十分確保しつつ、マスクの洗浄耐性を向上させることができる。さらに、保護膜14は、第1の層18をエッチング加工する時に、エッチングストッパとして機能する。また、保護膜14は、多層反射膜12の経時変化を防止することができる。
 保護膜14の材料として、Ruを含む化合物、例えば、RuNb、RuN、及びRuTiから選択される少なくとも1種を含む材料を用いることができる。また、保護膜14の材料として、YとOを含む化合物、例えば、Yを含む材料を用いることができる。また、保護膜14の材料として、Crを含む化合物、例えば、CrNを含む材料を用いることができる。
 保護膜14の厚みは、保護膜14が多層反射膜12を保護する機能を果たすことができる限り、特に制限されない。EUV光の反射率の観点から、保護膜14の厚みは、好ましくは、1.0nm~8.0nm、より好ましくは、1.5nm~6.0nmである。
 保護膜14の形成方法としては、公知の方法を用いることができる。保護膜14の形成方法の例として、スパッタリング法及びイオンビームスパッタリング法が挙げられる。
 反射型マスクブランク100は、さらに、基板10の多層反射膜12が形成されている側とは反対側の主表面上に、裏面導電膜22を有している。裏面導電膜22は、静電チャックによって反射型マスクブランク100を吸着する際に使用される。
 反射型マスクブランク100は、基板10と多層反射膜12との間に形成された下地膜を備えてもよい。下地膜は、例えば、基板10の表面の平滑性向上の目的で形成される。下地膜は、例えば、欠陥低減、多層反射膜の反射率向上、多層反射膜の応力補正等の目的で形成される。
<積層膜>
 本実施形態の反射型マスクブランク100は、多層反射膜12(あるいは保護膜14付きの多層反射膜12)の上に形成された積層膜16を有している。積層膜16は、保護膜14に接するように形成された第1の層18と、第1の層18の上に形成された第2の層20を含む積層構造からなる。
 本実施形態の反射型マスクブランク100において、積層膜16の態様は、以下の2つがある。
 (1)第1の層18及び第2の層20を合わせた積層膜16のEUV光に対する絶対反射率が2.5%以下(バイナリ型)であり、かつ、第1の層18(下層)が位相シフト膜として機能(位相シフト型)する。
 (2)第1の層18及び第2の層20を合わせた積層膜16が位相シフト膜として機能(位相シフト型)し、かつ、第1の層18(下層)のEUV光に対する絶対反射率が2.5%以下(バイナリ型)である。
Figure JPOXMLDOC01-appb-T000001
[積層膜の態様が上記(1)の場合]
 まず、積層膜16の態様が上記(1)の場合について説明する。
 上記(1)の場合には、第1の層18及び第2の層20からなる積層膜16は、EUV光に対する反射率(絶対反射率)が2.5%以下であり、好ましくは2%以下である。ここでいう「絶対反射率」とは、積層膜16から反射されるEUV光の反射率(入射光強度と反射光強度の比)をいう。
 上記(1)の場合、第1の層18(下層)は、EUV光の位相をシフトさせる位相シフト膜からなる。第1の層18のEUV光に対する反射率(相対反射率)は、3%以上40%以下(絶対反射率:2%~27%)であることが好ましい。ここで、「相対反射率」とは、位相シフトパターン(位相シフト膜)のない部分での多層反射膜12(保護膜14付きの多層反射膜12を含む)から反射されるEUV光の反射率を100%としたときの、位相シフトパターン(位相シフト膜)から反射されるEUV光の反射率である。
 第1の層18から反射されたEUV光は、第1の層18がエッチング等によって除去されることで露出した多層反射膜12(保護膜14付きの多層反射膜12を含む)から反射されるEUV光に対して、160~200°の位相差を有することが好ましい。すなわち、第1の層18は、EUV光に対して160~200°の位相差を生じさせる位相シフト膜からなることが好ましい。
 十分な位相シフト効果を得るために、第1の層18は、膜厚が5nm以上70nm以下であることが好ましく、10nm以上50nm以下であることがより好ましい。また、第1の層18は、屈折率nが0.85以上0.96以下であることが好ましく、0.88以上0.96以下であることがより好ましい。
 第1の層18は、例えば、タンタル(Ta)、クロム(Cr)、ルテニウム(Ru)、及びチタン(Ti)から選択される少なくとも1種の元素を含む材料からなる。
 タンタル(Ta)を含む材料の例として、タンタル(Ta)に、酸素(O)、窒素(N)、炭素(C)、ホウ素(B)及び水素(H)から選ばれる少なくとも1種の元素を含有する材料が挙げられる。これらの中でも、タンタル(Ta)に、窒素(N)を含有する材料が好ましい。このような材料の具体例としては、窒化タンタル(TaN)、酸化窒化タンタル(TaON)、ホウ化窒化タンタル(TaBN)、及びホウ化酸化窒化タンタル(TaBON)等が挙げられる。
 第1の層18がTa及びNを含む場合、Ta及びNの組成範囲(原子比率)は、3:1~20:1が好ましく、4:1~12:1がより好ましい。
 クロム(Cr)を含む材料の例として、クロム(Cr)に、酸素(O)、窒素(N)、炭素(C)、ホウ素(B)及び水素(H)から選ばれる少なくとも1種の元素を含有する材料が挙げられる。これらの中でも、クロム(Cr)に、窒素(N)及び/又は炭素(C)を含有する材料が好ましい。このような材料の具体例としては、窒化クロム(CrN)、酸化窒化クロム(CrON)、炭化クロム(CrC)、酸化炭化クロム(CrOC)、炭化窒化クロム(CrCN)、及び酸化炭化窒化クロム(CrOCN)等が挙げられる。
 第1の層18がCr及びNを含む場合、Cr及びNの組成範囲(原子比率)は、30:1~3:2が好ましく、20:1~2:1がより好ましい。第1の層18がCr及びCを含む場合、Cr及びCの組成範囲(原子比率)は、5:2~20:1が好ましく、3:1~12:1がより好ましい。
 ルテニウム(Ru)を含む材料の例として、ルテニウム(Ru)単体、窒化ルテニウム(RuN)、ルテニウム(Ru)と、クロム(Cr)、ニッケル(Ni)、コバルト(Co)、バナジウム(V)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)及びレニウム(Re)から選ばれる少なくとも1種の元素を含有する材料が挙げられる。
 Ruの屈折率nは、n=0.886(消衰係数k=0.017)であり、高反射率の位相シフト膜の材料として好ましい。しかしながら、RuO等のRu系化合物は、結晶化した構造になりやすく、また加工特性も悪い。すなわち、結晶化した金属の結晶粒子は、位相シフトパターンを形成する際に側壁ラフネスが大きくなりやすい。そのため、所定の位相シフトパターンを形成する際に悪影響を及ぼす場合がある。一方、位相シフト膜の材料の金属がアモルファスである場合には、位相シフトパターンを形成する際の悪影響を低減することができる。Ruに所定の元素(X)を添加することにより、位相シフト膜の材料の金属をアモルファス化するとともに、加工特性を向上させることができる。所定の元素(X)として、Cr、Ni、Co、V、Nb、Mo、W及びReのうち少なくとも1種の元素を選択することができる。
 なお、Niの屈折率n及び消衰係数kは、n=0.948及びk=0.073である。また、Coは、n=0.933及びk=0.066であり、Crは、n=0.932及びk=0.039である。また、Vの屈折率n及び消衰係数kは、n=0.944及びk=0.025、Nbの屈折率n及び消衰係数kは、n=0.933及びk=0.005、Moの屈折率n及び消衰係数kは、n=0.923及びk=0.007、Wの屈折率n及び消衰係数kは、n=0.933及びk=0.033、Reの屈折率n及び消衰係数kは、n=0.914及びk=0.04である。Ruに所定の元素(X)を添加した二元系の材料(RuCr、RuNi及びRuCo)は、RuTaよりも位相シフト膜の薄膜化が可能である。また、Ni及びCoの方が、Crよりも消衰係数kが大きいため、元素(X)としてNi及び/又はCoを選択した方が、Crを選択するよりも位相シフト膜の薄膜化が可能である。
 Ruに所定の元素(X)を添加した二元系の材料(RuCr、RuNi及びRuCo)は、RuTaと比べて、加工特性がよい。Taは酸化されると塩素系ガス及び酸素ガスでエッチングが困難である。特に、RuCrは、塩素系ガス及び酸素ガスの混合ガスで容易にエッチングすることが可能であるため、加工特性に優れている。
 Ruに所定の元素(X)を添加した二元系の材料(RuCr、RuNi及びRuCo)は、アモルファス構造であり、塩素系ガス及び酸素ガスの混合ガスにより、容易にエッチングをすることが可能である。また、これらの材料は、酸素ガスによるエッチングが可能である。三元系の材料(RuCrNi、RuCrCo及びRuNiCo)及び四元系の材料(RuCrNiCo)についても同様であると考えられる。
 また、上記の二元系の材料の他、RuにV、Nb、Mo、W又はReを添加した二元系の材料(RuV、RuNb、RuMo、RuW及びRuRe)は、RuTaと比べて加工性がよい。RuCrと同様、RuW及びRuMoは、特に加工特性に優れている。
 また、Ruに所定の元素(X)を添加した二元系の材料(RuV、RuNb、RuMo、RuW及びRuRe)は、アモルファス構造であり、塩素系ガス及び酸素ガスの混合ガスにより、容易にエッチングをすることが可能である。また、これらの材料は、酸素ガスによるエッチングが可能である。三元系の材料及び四元系の材料についても同様であると考えられる。
 チタン(Ti)を含む材料の例として、タンタル(Ta)及びチタン(Ti)を含むTaTi系材料が挙げられる。TaTi系材料の例として、TaTi合金、並びに、TaTi合金に酸素、窒素、炭素及びホウ素のうち少なくとも一つを含有したTaTi化合物が挙げられる。TaTi化合物の例として、TaTiN、TaTiO、TaTiON、TaTiCON、TaTiB、TaTiBN、TaTiBO、TaTiBON、及びTaTiBCONが挙げられる。
 第1の層18の上に形成された第2の層20(上層)は、光学干渉を利用して積層膜16の反射率(絶対反射率)を2.5%以下に低減させる干渉層からなる。あるいは、第2の層20(上層)は、吸光効果を利用して積層膜16の反射率(絶対反射率)を2.5%以下に低減させる吸収層からなる。
 ここでいう「干渉層」は、反射防止層とも呼ばれるものであり、光学干渉を利用して積層膜16の絶対反射率を低減させる層である。第2の層20(干渉層)が1層の場合、第2の層20の表面で反射した光と、積層膜16、保護膜14、第1の層18、及び第2の層20各々の界面から反射した光との光学干渉による打ち消し合いの効果を利用して、積層膜16の絶対反射率を2.5%以下に低減させることができる。第2の層20(干渉層)が複数層で構成される場合、さらに各層の界面からの反射光の光学干渉による打ち消し合いの効果も含めて、積層膜16の絶対反射率を2.5%以下に低減させることができる。なお、光学干渉を利用した反射率低減の原理は公知であり、例えば、特開2002-280291号公報に開示されている。
 第2の層20が干渉層からなる場合、第2の層20(干渉層)の膜厚は、1nm以上20nm以下であることが好ましく、3nm以上12nm以下がより好ましい。第2の層20(干渉層)の屈折率nは、0.85以上0.96以下であることが好ましく、0.88以上0.96以下であることがより好ましい。
 第2の層20が干渉層からなる場合、第2の層20は、例えば、Ruを含む材料からなる。Ruを含む材料の例は、上述した第1の層18に用いられるRuを含む材料の例と同様である。
 第2の層20が吸収層からなる場合、第2の層20(吸収層)の膜厚は、5nm以上70nm以下であることが好ましく、8nm以上55nm以下がより好ましい。第2の層20(吸収層)の消衰係数kは、0.02以上であることが好ましく、0.03以上がより好ましい。さらに、第2の層20(吸収層)の消衰係数kは、0.1以下であることが好ましい。
 第2の層20が吸収層からなる場合、第2の層20は、例えば、タンタル(Ta)、クロム(Cr)、コバルト(Co)、及びニッケル(Ni)から選択される少なくとも1種の元素を含む材料からなる。この場合のタンタル(Ta)を含む材料の例は、上述した第1の層18に用いられるタンタル(Ta)を含む材料の例と同様であるが、酸素を含まない方が消衰係数を大きくできるため好ましい。クロム(Cr)を含む材料の例は、上述した第1の層18に用いられるクロム(Cr)を含む材料の例と同様であるが、酸素を含まない方が消衰係数を大きくできるため好ましい。
 第2の層20が吸収層からなる場合、第2の層20の材料として、コバルト(Co)及びニッケル(Ni)のうち少なくとも1以上の元素に、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、イットリウム(Y)、リン(P)及びスズ(Sn)のうち少なくとも1以上の元素(X)を添加したCo-X合金、Ni-X合金、CoNi-X合金を用いることができる。添加元素(X)としては、タングステン(W)、タンタル(Ta)及び/又はスズ(Sn)を含むことが好ましく、タンタル(Ta)を含むことがより好ましい。第2の層20の材料が、適切な添加元素(X)を含むことにより、第2の層20を、高い消衰係数(吸収係数)に保ちつつ、適切なエッチング速度に制御することができる。
 第2の層20の材料として、具体的には、Co単体、Ni単体、CoTa、CoTa、CoTa、NiTa、NiTa又はNiTaを好ましく用いることができる。
 第2の層20の材料は、コバルト(Co)及びニッケル(Ni)の濃度の合計が、10原子%以上であることが好ましく、20原子%以上であることがより好ましい。また、コバルト(Co)及びニッケル(Ni)の濃度の合計が、90原子%以下であることが好ましく、85原子%以下であることがより好ましい。
 第2の層20の材料がコバルト(Co)を含む場合、コバルト(Co)の濃度は、10原子%以上であることが好ましく、20原子%以上であることがより好ましい。また、コバルト(Co)の濃度が、90原子%以下であることが好ましく、85原子%以下であることがより好ましい。
 第2の層20の材料がニッケル(Ni)を含む場合、ニッケル(Ni)の濃度は、10原子%以上であることが好ましく、20原子%以上であることがより好ましい。また、ニッケル(Ni)の濃度が、90原子%以下であることが好ましく、85原子%以下であることがより好ましい。
 添加元素(X)がタンタル(Ta)、タングステン(W)又はスズ(Sn)の場合、タンタル(Ta)、タングステン(W)又はスズ(Sn)の濃度は、10原子%以上であることが好ましく、15原子%以上であることがより好ましい。また、タンタル(Ta)、タングステン(W)又はスズ(Sn)の濃度が、90原子%以下であることが好ましく、80原子%以下であることがより好ましい。
 Co-X合金の添加元素(X)がTaの場合には、CoとTaとの組成比(Co:Ta)は、9:1~1:9が好ましく、4:1~1:4がより好ましい。CoとTaとの組成比が3:1、1:1及び1:3としたときの各試料に対してX線回折装置(XRD)による分析及び断面TEM観察を行ったところ、すべての試料において、Co及びTa由来のピークがブロードに変化し、アモルファス構造となっていた。
 また、Ni-X合金の添加元素(X)がTaの場合には、NiとTaとの組成比(Ni:Ta)は、9:1~1:9が好ましく、4:1~1:4がより好ましい。NiとTaとの組成比が3:1、1:1及び1:3としたときの各試料に対してX線回折装置(XRD)による分析及び断面TEM観察を行ったところ、すべての試料において、Ni及びTa由来のピークがブロードに変化し、アモルファス構造となっていた。
 また、CoNi-X合金の添加元素(X)がTaの場合には、CoNiとTaとの組成比(CoNi:Ta)は、9:1~1:9が好ましく、4:1~1:4がより好ましい。
 また、Co-X合金、Ni-X合金又はCoNi-X合金は、上記添加元素(X)の他に、屈折率及び消衰係数に大きく影響を与えない範囲で、窒素(N)、酸素(O)、炭素(C)及び/又はホウ素(B)等の他の元素を含んでもよい。
[積層膜の態様が上記(2)の場合]
 次に、積層膜16の態様が上記(2)の場合について説明する。
 上記(2)の場合には、第1の層18及び第2の層20を合わせた積層膜16は、位相シフト膜として機能する。
 第1の層18及び第2の層20を合わせた積層膜16のEUV光に対する反射率(相対反射率)は、3%以上40%以下であることが好ましい。ここで、「相対反射率」とは、積層膜16のない部分での多層反射膜12(保護膜14付きの多層反射膜12を含む)から反射されるEUV光の反射率を100%としたときの、積層膜16から反射されるEUV光の反射率である。
 積層膜16から反射されたEUV光は、積層膜16がエッチング等によって除去されることで露出した多層反射膜12(保護膜14付きの多層反射膜12を含む)から反射されるEUV光に対して、160~200°の位相差を有することが好ましい。すなわち、積層膜16は、EUV光に対して160~200°の位相差を生じさせる位相シフト膜からなることが好ましい。
 第2の層20(上層)は、光学干渉を利用して積層膜16によって反射されるEUV光の位相をシフトさせる干渉層からなることが好ましい。
 ここでいう「干渉層」は、上述の反射防止層とは逆に、光学干渉を利用して、積層膜16の反射率を高める層である。第2の層20(干渉層)が1層の場合、第2の層20の表面で反射した光と、積層膜16、保護膜14、第1の層18、及び第2の層20各々の界面から反射した光との光学干渉による強め合いの効果を利用して、積層膜16の相対反射率を3%以上40%以下に高めることができる。第2の層20(干渉層)が複数層で構成される場合、さらに各層の界面からの反射光の光学干渉による強め合いの効果も含めて、積層膜16の相対反射率を3%以上40%以下に高めることができる。
 十分な位相シフト効果を得るために、第2の層20は、膜厚が1nm以上20nm以下であることが好ましく、3nm以上12nm以下がより好ましい。また、第2の層20は、屈折率nが0.85以上0.96以下であることが好ましく、0.88以上0.96以下であることがより好ましい。
 第2の層20が干渉層からなる場合、第2の層20は、例えば、Ruを含む材料からなる。Ruを含む材料の例は、上述した(1)の場合における、第1の層18に用いられるRuを含む材料の例と同様である。
 積層膜16の態様が上記(2)の場合には、第1の層18(下層)は、EUV光に対する絶対反射率が2.5%以下(バイナリ型)の吸収層からなる。吸収層の絶対反射率は2%以下がより好ましい。ここでいう「絶対反射率」とは、第1の層18から反射されるEUV光の反射率(入射光強度と反射光強度の比)をいう。
 第1の層18は、例えば、タンタル(Ta)、クロム(Cr)、コバルト(Co)、及びニッケル(Ni)から選択される少なくとも1種の元素を含む材料からなる。この場合のタンタル(Ta)を含む材料の例は、上述した(1)の場合における、第1の層18に用いられるタンタル(Ta)を含む材料の例と同様である。クロム(Cr)を含む材料の例は、上述した(1)の場合における、第1の層18に用いられるクロム(Cr)を含む材料の例と同様である。コバルト(Co)を含む材料の例は、上述した(1)の場合における、第1の層18に用いられるコバルト(Co)を含む材料の例と同様である。ニッケル(Ni)を含む材料の例は、上述した(1)の場合における、第1の層18に用いられるニッケル(Ni)を含む材料の例と同様である。
 なお、上記の説明において、相対反射率と絶対反射率は換算することが可能である。例えば、多層反射膜12(保護膜14を含む)の絶対反射率が68%である場合には、以下の式により、相対反射率と絶対反射率を換算することができる。
 相対反射率(%)= 絶対反射率(%) × (100/68)
 本実施形態の反射型マスクブランク100において、積層膜16の上に、レジスト膜24が形成されてもよい。図1にはこの態様が示されている。レジスト膜24に電子線描画装置によってパターンを描画及び露光した後、現像工程を経ることによって、レジストパターンを形成することができる。このレジストパターンをマスクとして積層膜16にドライエッチングを行うことによって、積層膜16にパターン(積層膜パターン)を形成することができる。
<反射型マスク及びその製造方法>
 本実施形態の反射型マスクブランク100を使用して、本実施形態の反射型マスクを製造することができる。以下、反射型マスクの製造方法の例について説明する。
 反射型マスクの製造方法についても、積層膜16の態様が上記(1)、(2)の場合を分けて説明する。
[積層膜の態様が上記(1)の場合]
 積層膜16の態様が上記(1)の場合、第1の層18(下層)は、EUV光の位相を160~200°シフトさせる位相シフト膜からなる。第2の層20(上層)は、光学干渉を利用して積層膜16の反射率(絶対反射率)を2.5%以下に低減させる干渉層からなる。あるいは、第2の層20(上層)は、吸光効果を利用して積層膜16の反射率(絶対反射率)を2.5%以下に低減させる吸収層からなる。以下では、第2の層20が吸収層からなる場合について説明する。
 図2は、反射型マスク200の製造方法を示す模式図である。
 図2に示すように、まず、基板10と、基板10の上に形成された多層反射膜12と、多層反射膜12の上に形成された保護膜14と、保護膜14の上に形成された積層膜16(第1の層18及び第2の層20)とを有する反射型マスクブランク100を準備する(図2(a))。つぎに、積層膜16の上に、第1のレジスト膜24を形成する(図2(b))。第1のレジスト膜24に、電子線描画装置によってパターンを描画し、さらに現像・リンス工程を経ることによって、第1のレジストパターン24aを形成する(図2(c))。
 第1のレジストパターン24aをマスクとして、第2の層20(上層)をドライエッチングする。これにより、第2の層20の第1のレジストパターン24aによって被覆されていない部分がエッチングされ、吸収層パターン30が形成される(図2(d))。
 なお、第2の層20をドライエッチングするためのエッチングガスとしては、第1の層18との間でエッチング選択性のあるエッチングガスを用いればよい。エッチングガスは、第2の層20の材料に応じて、フッ素系ガス及び/又は塩素系ガスを用いることができる。フッ素系ガスとしては、CF、CHF、C2F、C、C、C、CH、CHF、C、SF、及びF等を用いることができる。塩素系ガスとしては、Cl、SiCl、CHCl、CCl、及びBCl等を用いることができる。また、フッ素系ガス及び/又は塩素系ガスと、Oとを所定の割合で含む混合ガスを用いることができる。これらのエッチングガスは、必要に応じて、更に、He及び/又はArなどの不活性ガスを含むことができる。
 吸収層パターン30が形成された後、レジスト剥離液により第1のレジストパターン24aを除去する。第1のレジストパターン24aを除去した後、吸収層パターン30及び第1の層18の上に、第2のレジスト膜26を形成する(図2(e))。第2のレジスト膜26に、電子線描画装置によってパターンを描画し、さらに現像・リンス工程を経ることによって、第2のレジストパターン26aを形成する(図2(f))。
 第2のレジストパターン26aをマスクとして、第1の層18(下層)をドライエッチングする。これにより、第1の層18の、第2のレジストパターン26aによって被覆されていない部分がエッチングされ、位相シフトパターン32が形成される(図2(g))。
 なお、第1の層18をドライエッチングするためのエッチングガスとしては、保護膜14との間でエッチング選択性のあるエッチングガスを用いればよい。エッチングガスは、第1の層18の材料に応じて、フッ素系ガス及び/又は塩素系ガスを用いることができる。フッ素系ガスとしては、CF、CHF、C2F、C、C、C、CH、CHF、C、SF、及びF等を用いることができる。塩素系ガスとしては、Cl、SiCl、CHCl、CCl、及びBCl等を用いることができる。また、フッ素系ガス及び/又は塩素系ガスと、Oとを所定の割合で含む混合ガスを用いることができる。これらのエッチングガスは、必要に応じて、更に、He及び/又はArなどの不活性ガスを含むことができる。
 位相シフトパターン32が形成された後、レジスト剥離液により第2のレジストパターン26aを除去する。第2のレジストパターン26aを除去した後、酸性やアルカリ性の水溶液を用いたウェット洗浄工程を経ることによって、本実施形態の反射型マスク200が得られる(図2(h))。
 このようにして得られた反射型マスク200は、基板10側から順番に、多層反射膜12、保護膜14、位相シフトパターン32、及び吸収層パターン30が積層された構成を有している。
 多層反射膜12(保護膜14を含む)が露出している領域34は、EUV光を反射する機能を有している。多層反射膜12(保護膜14を含む)が位相シフトパターン32のみによって覆われている領域36は、位相シフト型の領域であり、パターン転写像のコントラストを高めることができる。多層反射膜12(保護膜14を含む)が位相シフトパターン32及び吸収層パターン30によって覆われている領域38は、バイナリ型の領域であり、位相シフトパターン32からの反射光(漏れ光)によって、被転写体に形成されたレジスト膜が感光されることを防止する機能を有している。
 なお、反射型マスク200の製造方法はこれに限られず、先に多層反射膜12(保護膜14を含む)が露出している領域34を形成した後、多層反射膜12(保護膜14を含む)が位相シフトパターン32のみによって覆われている領域36を形成してもよい。
[積層膜の態様が上記(2)の場合]
 積層膜16の態様が上記(2)の場合、第1の層18及び第2の層20を合わせた積層膜16は、位相シフト膜として機能する。第2の層20(上層)は、光学干渉を利用して積層膜16によって反射されるEUV光の位相を160~200°シフトさせる干渉層からなる。第1の層18(下層)は、EUV光に対する絶対反射率が2.5%以下(バイナリ型)の吸収層からなる。
 図3は、反射型マスク200の製造方法を示す模式図である。
 図3に示すように、まず、基板10と、基板10の上に形成された多層反射膜12と、多層反射膜12の上に形成された保護膜14と、保護膜14の上に形成された積層膜16(第1の層18及び第2の層20)とを有する反射型マスクブランク100を準備する(図3(a))。つぎに、積層膜16の上に、第1のレジスト膜24を形成する(図3(b))。第1のレジスト膜24に、電子線描画装置によってパターンを描画し、さらに現像・リンス工程を経ることによって、第1のレジストパターン24aを形成する(図3(c))。
 第1のレジストパターン24aをマスクとして、積層膜16(第1の層18及び第2の層20)をドライエッチングする。第1の層18と第2の層20とは、互いの間でエッチング選択性を有するエッチングガスを用いて2段階のエッチングを行う。これにより、積層膜16の第1のレジストパターン24aによって被覆されていない部分がエッチングされ、積層膜パターン40(位相シフトパターン)が形成される(図3(d))。
 第1の層18及び第2の層20のエッチングガスは、第1の層18及び第2の層20の材料に応じて、フッ素系ガス及び/又は塩素系ガスを用いることができる。フッ素系ガスとしては、CF、CHF、C2F、C、C、C、CH、CHF、C、SF、及びF等を用いることができる。塩素系ガスとしては、Cl、SiCl、CHCl、CCl、及びBCl等を用いることができる。また、フッ素系ガス及び/又は塩素系ガスと、Oとを所定の割合で含む混合ガスを用いることができる。これらのエッチングガスは、必要に応じて、更に、He及び/又はArなどの不活性ガスを含むことができる。
 なお、第1の層18をドライエッチングするためのエッチングガスとしては、保護膜14との間でエッチング選択性のあるエッチングガスを用いればよい。
 積層膜パターン40が形成された後、レジスト剥離液により第1のレジストパターン24aを除去する。第1のレジストパターン24aを除去した後、積層膜パターン40の上に、第2のレジスト膜26を形成する(図3(e))。第2のレジスト膜26に、電子線描画装置によってパターンを描画し、さらに現像・リンス工程を経ることによって、第2のレジストパターン26aを形成する(図3(f))。
 第2のレジストパターン26aをマスクとして、第2の層20(上層)をドライエッチングする。これにより、第2の層20の、第2のレジストパターン26aによって被覆されていない部分がエッチングされ、第2の層20の下にあった第1の層18が露出する。この露出した第1の層18によって、吸収層パターン42が形成される(図3(g))。
 なお、第2の層20をドライエッチングするためのエッチングガスとしては、第1の層18との間でエッチング選択性のあるエッチングガスを用いればよい。
 吸収層パターン42が形成された後、レジスト剥離液により第2のレジストパターン26aを除去する。第2のレジストパターン26aを除去した後、酸性やアルカリ性の水溶液を用いたウェット洗浄工程を経ることによって、本実施形態の反射型マスク200が得られる(図3(h))。
 このようにして得られた反射型マスク200は、基板10の上に、多層反射膜12、保護膜14、及び積層膜パターン40が積層された構成を有している。
 多層反射膜12(保護膜14を含む)が露出している領域44は、EUV光を反射する機能を有している。多層反射膜12(保護膜14を含む)が積層膜パターン40(第1の層18及び第2の層20)によって覆われている領域46は、位相シフト型の領域であり、パターン転写像のコントラストを高めることができる。多層反射膜12(保護膜14を含む)が吸収層パターン42(第1の層18)のみによって覆われている領域48は、バイナリ型の領域であり、積層膜パターン40(位相シフト膜)からの反射光(漏れ光)によって、被転写体に形成されたレジスト膜が感光されることを防止する機能を有している。
 なお、反射型マスク200の製造方法はこれに限られず、先に多層反射膜12(保護膜14を含む)が吸収層パターン42のみによって覆われている領域48を形成した後、多層反射膜12(保護膜14を含む)が露出している領域44を形成してもよい。
<半導体装置の製造方法>
 本実施形態の反射型マスク200を使用したリソグラフィーにより、半導体基板上に転写パターンを形成することができる。この転写パターンは、反射型マスク200のパターンが転写された形状を有している。半導体基板上に反射型マスク200によって転写パターンを形成することによって、半導体装置を製造することができる。
 図4を用いて、レジスト付き半導体基板56にEUV光によってパターンを転写する方法について説明する。
 図4は、パターン転写装置50を示している。パターン転写装置50は、レーザープラズマX線源52、反射型マスク200、及び、縮小光学系54等を備えている。縮小光学系54としては、X線反射ミラーが用いられている。
 反射型マスク200で反射されたパターンは、縮小光学系54により、通常1/4程度に縮小される。例えば、露光波長として13~14nmの波長帯を使用し、光路が真空中になるように予め設定する。このような条件で、レーザープラズマX線源52で発生したEUV光を、反射型マスク200に入射させる。反射型マスク200によって反射された光を、縮小光学系54を介して、レジスト付き半導体基板56上に転写する。
 反射型マスク200によって反射された光は、縮小光学系54に入射する。縮小光学系54に入射した光は、レジスト付き半導体基板56上のレジスト層に転写パターンを形成する。露光されたレジスト層を現像することによって、レジスト付き半導体基板56上にレジストパターンを形成することができる。レジストパターンをマスクとして半導体基板56をエッチングすることにより、半導体基板上に例えば所定の配線パターンを形成することができる。このような工程及びその他の必要な工程を経ることで、半導体装置が製造される。
 以下、本発明のさらに具体的な実施例について説明する。
[実施例1]
 SiO-TiO系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(Rq)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。
 上記のガラス基板の裏面に、以下の条件で、CrNからなる裏面導電膜をマグネトロンスパッタリング法により形成した。
 (条件):Crターゲット、Ar+Nガス雰囲気(Ar:N=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm
 ガラス基板の裏面導電膜が形成された側と反対側の主表面上に、Mo膜/Si膜を周期的に積層することで多層反射膜を形成した。
 具体的には、MoターゲットとSiターゲットを使用し、イオンビームスパッタリング(Arを使用)により、基板上に、Mo膜及びSi膜を交互に積層した。Mo膜の厚みは、2.8nmである。Si膜の厚みは、4.2nmである。1周期のMo/Si膜の厚みは、7.0nmである。このようなMo/Si膜を、40周期積層し、最後にSi膜を4.0nmの膜厚で成膜し、多層反射膜を形成した。
 多層反射膜の上に、Ru化合物を含む保護膜を形成した。具体的には、RuNbターゲット(Ru:80原子%、Nb:20原子%)を使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングにより、多層反射膜の上に、RuNb膜からなる保護膜を形成した。保護膜の厚みは、3.5nmであった。
 次に、DCマグネトロンスパッタリング法により、保護膜の上に、TaTiN膜からなる第1の層を形成した。TaTiN膜は、TaTiターゲットを用いて、ArガスとNガスの混合ガス雰囲気にて反応性スパッタリングで、57.3nmの膜厚で成膜した。TaTiN膜の含有比率は、Ta:Ti:N=1:1:1であった。
 第1の層(TaTiN膜)の波長13.5nmにおける屈折率n、消衰係数(屈折率虚部)kは、それぞれ以下であった。
 TaTiN:n=0.937、k=0.030
 第1の層(TaTiN膜)の相対反射率は9.1%(絶対反射率:6.2%)であり、位相差は178°であった。
 第1の層の上に、Ruを含む材料によって、第2の層(干渉層)を形成した。具体的には、Ruターゲットを使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングで4.5nmの膜厚となるように成膜した。
 第1の層及び第2の層を合わせた積層膜の絶対反射率は1.7%(相対反射率:2.5%)であり、位相差は215°であった。
 以上により、基板の上に、保護膜、多層反射膜、及び積層膜(第1の層及び第2の層)が積層された反射型マスクブランクが得られた。この実施例1の反射型マスクブランクは、積層膜の態様が上記(1)であり、かつ、第2の層が干渉層である反射型マスクブランクである。
 実施例1の反射型マスクブランクにおいて、図2に示す方法で後述の反射型マスクを作製した。その際、Ru膜からなる第2の層(上層)は、Clガス及びOガスを用いたドライエッチングによってエッチングを行った。TaTiN膜からなる第1の層(下層)は、Clガスを用いたドライエッチングによってエッチングを行った。
[実施例2]
 実施例2は、保護膜がSiO膜であり、第1の層(下層)がRuCr膜であり、第2の層(上層)がTaBN膜である積層膜を形成した実施例である。それ以外は、実施例1と同様である。
 すなわち、実施例2では、上記実施例1と同様に、SiO-TiO系ガラス基板の裏面に、CrNからなる裏面導電膜を形成し、反対側の基板の主表面上に、多層反射膜を形成した。
 次に、Arガス雰囲気中で、SiOターゲットを使用したRFスパッタリング法により、多層反射膜の表面に、SiO膜からなる保護膜を2.5nmの膜厚で成膜した。
 次に、DCマグネトロンスパッタリング法により、保護膜の上に、RuCr膜からなる第1の層(下層)を形成した。RuCr膜は、RuCrターゲットを用いて、Arガス雰囲気で、32.6nmの膜厚になるように成膜した。RuCr膜の含有比率(原子比)は、Ru:Cr=90:10であった。
 上記のように形成した第1の層(RuCr膜)の波長13.5nmにおける屈折率n、消衰係数(屈折率虚部)kは、それぞれ以下の通りであった。
 RuCr膜:n=0.890、k=0.019
 上記のように形成した第1の層(RuCr膜)の波長13.5nmにおける相対反射率は19.8%(絶対反射率:13.4%)であり、位相差は179°であった。
 次に、第1の層の上に、TaBN膜からなる第2の層(上層)を形成した。TaBN膜は、TaB混合焼結ターゲット(Ta:B=80:20、原子比)を用いて、Arガス及びNガスの混合ガス雰囲気中で、反応性スパッタリングにより、30.5nmの膜厚になるように成膜した。TaBN膜の組成(原子比)は、Ta:B:N=75:12:13であった。
 上記のように形成した第2の層(TaBN膜)の波長13.5nmにおける屈折率n、消衰係数(屈折率虚部)kは、それぞれ以下の通りであった。
 TaBN膜:n=0.951、k=0.033
 第1の層及び第2の層を合わせた積層膜の絶対反射率は1.6%(相対反射率:2.4%)であり、位相差は257°であった。
 以上により、基板の上に、保護膜、多層反射膜、及び積層膜(第1の層及び第2の層)が積層された反射型マスクブランクが得られた。この実施例2の反射型マスクブランクは、積層膜の態様が上記(1)であり、かつ、第2の層が吸収層である反射型マスクブランクである。
 実施例2の反射型マスクブランクにおいて、図2に示す方法で後述の反射型マスクを作製した。その際、TaBN膜からなる第2の層(上層)は、Clガスを用いたドライエッチングによってエッチングを行った。RuCr膜からなる第1の層(下層)は、Clガス及びOガスを用いたドライエッチングによってエッチングを行った。
[実施例3]
 実施例3は、第1の層(下層)がTaBN膜であり、第2の層(上層)がRu膜である積層膜を形成した実施例である。それ以外は、実施例1と同様である。
 すなわち、実施例3では、上記実施例1と同様に、SiO-TiO系ガラス基板の裏面に、CrNからなる裏面導電膜を形成し、反対側の基板の主表面上に、多層反射膜を形成し、多層反射膜の上に、Ru化合物を含む保護膜を形成した。
 次に、保護膜の上に、TaBN膜からなる第1の層(下層)を形成した。TaBN膜は、TaB混合焼結ターゲット(Ta:B=80:20、原子比)を用いて、Arガス及びNガスの混合ガス雰囲気中で、反応性スパッタリングにより、54.0nmの膜厚になるように成膜した。TaBN膜の組成(原子比)は、Ta:B:N=75:12:13であった。
 上記のように形成した第1の層(TaBN膜)の波長13.5nmにおける屈折率n、消衰係数(屈折率虚部)kは、それぞれ以下の通りであった。
 TaBN膜:n=0.951、k=0.033
 上記のように形成した第1の層(TaBN膜)の絶対反射率は2.3%(相対反射率3.4%)であり、位相差は143°であった。
 次に、第1の層の上に、Ruを含む材料によって、第2の層(干渉層)を形成した。具体的には、Ruターゲットを使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングで4.5nmの膜厚となるように成膜した。
 第1の層及び第2の層を合わせた積層膜(位相シフト膜)の相対反射率は8.4%(絶対反射率5.7%)であり、位相差は183°であった。
 以上により、基板の上に、保護膜、多層反射膜、及び積層膜(第1の層及び第2の層)が積層された反射型マスクブランクが得られた。この実施例3の反射型マスクブランクは、積層膜の態様が上記(2)である反射型マスクブランクである。
 実施例3の反射型マスクブランクにおいて、図3に示す方法で後述の反射型マスクを作製した。その際、Ru膜からなる第2の層(上層)は、Clガス及びOガスを用いたドライエッチングによってエッチングを行った。TaBN膜からなる第1の層(下層)は、Clガスを用いたドライエッチングによってエッチングを行った。
[実施例4]
 実施例4は、第1の層(下層)がCoTa膜であり、第2の層(上層)がRu膜である積層膜を形成した実施例である。それ以外は、実施例1と同様である。
 すなわち、実施例4では、上記実施例1と同様に、SiO-TiO系ガラス基板の裏面に、CrNからなる裏面導電膜を形成し、反対側の基板の主表面上に、多層反射膜を形成し、多層反射膜の上に、Ru化合物を含む保護膜を形成した。
 次に、DCマグネトロンスパッタリング法により、保護膜の上に、CoTa膜からなる第1の層を形成した。CoTa膜は、CoTaターゲットを用いて、Arガス雰囲気にて、54.0nmの膜厚で成膜した。CoTa膜の含有比率は、Co:Ta=50:50であった。
 上記のように形成した第1の層(CoTa膜)の波長13.5nmにおける屈折率n、消衰係数(屈折率虚部)kは、それぞれ以下であった。
 CoTa:n=0.950、k=0.047
 上記のように形成した第1の層(CoTa膜)の絶対反射率は0.8%(相対反射率1.2%)であり、位相差は124°であった。
 次に、第1の層の上に、Ruを含む材料によって、第2の層(干渉層)を形成した。具体的には、Ruターゲットを使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングで4.5nmの膜厚となるように成膜した。
 第1の層及び第2の層を合わせた積層膜(位相シフト膜)の相対反射率は4.4%(絶対反射率3.0%)であり、位相差は178°であった。
 以上により、基板の上に、保護膜、多層反射膜、及び積層膜(第1の層及び第2の層)が積層された反射型マスクブランクが得られた。この実施例4の反射型マスクブランクは、積層膜の態様が上記(2)である反射型マスクブランクである。
 実施例4の反射型マスクブランクにおいて、図3に示す方法で後述の反射型マスクを作製した。その際、Ru膜からなる第2の層(上層)は、Clガス及びOガスを用いたドライエッチングによってエッチングを行った。CoTa膜からなる第1の層(下層)は、Clガスを用いたドライエッチングによってエッチングを行った。
[参考例]
 参考例として、Ru膜からなる第2の層(上層)を形成しなかった以外は、実施例1と同様に、反射型マスクブランクを製造した。
[反射型マスクブランクの評価]
 実施例1~4、及び、参考例の反射型マスクブランクを使用して、図5に示す反射型マスクを製造した。
 図5に示すように、反射型マスク200は、複数のコンタクトホール206が密集して形成された領域であるパターン領域202と、そのパターン領域202の周辺の領域である非パターン領域204を有する。非パターン領域204は、絶対反射率2.5%以下のバイナリ型の膜によって被覆されている。
 すなわち、実施例1及び実施例2の反射型マスクブランクを用いた場合、非パターン領域204は、第1の層及び第2の層(バイナリ型)によって被覆されている。実施例3及び実施例4の反射型マスクブランクを用いた場合、非パターン領域204は、第1の層(バイナリ型)によって被覆されている。
 一方、参考例の反射型マスクブランクにおいて、第1の層(下層)は位相シフト膜であり、バイナリ型として機能しない。そのため、参考例の反射型マスクブランクを用いた場合、非パターン領域204は、バイナリ型の膜によって被覆されない。
 図5の右側の拡大図に示すように、パターン領域202には、複数のコンタクトホール206が所定の間隔で形成されている。それぞれのコンタクトホール206の周囲には、位相シフト領域208が所定の幅で形成されている。位相シフト領域208のさらに外側には、バイナリ領域210が形成されている。
 コンタクトホール206においては、第1の層及び第2の層がエッチングによって除去されており、多層反射膜(保護膜を含む)が露出している。コンタクトホール206の周囲にある位相シフト領域208は、位相シフト膜によって被覆されている。位相シフト領域208の周囲にあるバイナリ領域210は、バイナリ型の膜によって被覆されている。
 すなわち、実施例1及び実施例2の反射型マスクブランクを用いた場合、位相シフト領域208は、第1の層(位相シフト膜)によって被覆されている。実施例3及び実施例4の反射型マスクブランクを用いた場合、位相シフト領域208は、第1の層及び第2の層(位相シフト膜)によって被覆されている。参考例の反射型マスクブランクを用いた場合、位相シフト領域208は、第1の層(位相シフト膜)によって被覆されている。
 また、実施例1及び実施例2の反射型マスクブランクを用いた場合、バイナリ領域210は、第1の層及び第2の層(バイナリ型)によって被覆されている。実施例3及び実施例4の反射型マスクブランクを用いた場合、バイナリ領域210は、第1の層(バイナリ型)によって被覆されている。
 一方、参考例の反射型マスクブランクにおいて、第1の層(下層)は位相シフト膜であり、バイナリ型として機能しない。そのため、参考例の反射型マスクブランクを用いた場合、バイナリ領域210を形成することができない。
 上記のように製造された反射型マスクを用いて、半導体基板上のレジスト膜にパターンを転写した。その後、露光されたレジスト膜を現像することによって、レジストパターンを形成した。レジストパターンをマスクとして半導体基板をエッチングすることにより、半導体基板上に複数のコンタクトホールからなるパターンを形成した。
 実施例1~実施例4の反射型マスクブランクから製造された反射型マスクを使用して露光を行った場合には、半導体基板上に、複数のコンタクトホールからなるパターンを正確に転写することができた。
 また、レジスト膜が形成された1枚の半導体基板に対して、同じ反射型マスクを用いて、位置をずらしながら、複数回露光を行った。この場合でも、半導体基板上の、パターンを転写すべき領域に隣接する領域に反射光が漏れることを防止することができた。また、隣接する2つの領域の境界部付近のレジスト膜が、複数回の露光によって感光されてしまうことを防止することができた。
 一方、参考例の反射型マスクブランクから製造された反射型マスクを使用して露光を行った場合には、半導体基板上に、複数のコンタクトホールからなるパターンを正確に転写することができなかった。これは、位相シフトパターンからの反射光によって、本来であれば感光されるべきではない領域のレジスト膜が感光されてしまい、半導体基板上のレジスト膜にパターンを正確に転写することができなかったことが原因であると推察される。
 参考例の反射型マスクブランクから製造された反射型マスクにおいて、非パターン領域204は、バイナリ型の膜によって被覆されていない。そのため、1枚の半導体基板に対して位置をずらしながら複数回露光を行った場合には、半導体基板上の、パターンを転写すべき領域に隣接する領域に反射光が漏れてしまい、パターンを正確に転写することができなかった。また、隣接する2つの領域の境界部付近のレジスト膜が、複数回の露光によって感光されてしまうことを防止することができなかった。
10  基板
12  多層反射膜
14  保護膜
16  積層膜
18  第1の層
20  第2の層
22  裏面導電膜
30  吸収層パターン
32  位相シフトパターン
40  積層膜パターン
42  吸収層パターン
100 反射型マスクブランク
200 反射型マスク

Claims (20)

  1.  基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜の上に形成された積層膜とを含む反射型マスクブランクであって、
     前記積層膜は、第1の層と、該第1の層の上に形成された第2の層とを含み、前記EUV光に対する絶対反射率が2.5%以下であり、
     前記第1の層は、前記EUV光の位相をシフトさせる位相シフト膜を含む、反射型マスクブランク。
  2.  前記第2の層は、光学干渉を利用して前記積層膜の絶対反射率を2.5%以下に低減させる干渉層からなる、請求項1に記載の反射型マスクブランク。
  3.  前記干渉層の膜厚が1nm以上20nm以下であり、屈折率nが0.85以上0.96以下である、請求項2に記載の反射型マスクブランク。
  4.  前記干渉層は、ルテニウム(Ru)を含む材料からなる、請求項2又は請求項3に記載の反射型マスクブランク。
  5.  前記第2の層は、吸光効果を利用して前記積層膜の反射率(絶対反射率)を2.5%以下に低減させる吸収層からなる、請求項1に記載の反射型マスクブランク。
  6.  前記吸収層の膜厚が5nm以上70nm以下であり、消衰係数kが0.02以上である、請求項5に記載の反射型マスクブランク。
  7.  前記吸収層は、タンタル(Ta)、クロム(Cr)、コバルト(Co)、及びニッケル(Ni)からなる群から選択される少なくとも1種の元素を含む材料からなる、請求項5又は請求項6に記載の反射型マスクブランク。
  8.  前記第1の層の前記EUV光に対する相対反射率が3%以上40%以下であり、位相差が160~200°である、請求項1から請求項7のうちいずれか1項に記載の反射型マスクブランク。
  9.  前記第1の層は、膜厚が5nm以上70nm以下であり、屈折率nが0.85以上0.96以下である、請求項1から請求項8のうちいずれか1項に記載の反射型マスクブランク。
  10.  前記第1の層は、タンタル(Ta)、チタン(Ti)、ルテニウム(Ru)、及びクロム(Cr)からなる群から選択される少なくとも1種の元素を含む材料からなる、請求項1から請求項9のうちいずれか1項に記載の反射型マスクブランク。
  11.  基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜の上に形成された積層膜とを含む反射型マスクブランクであって、
     前記積層膜は、第1の層と、該第1の層の上に形成された第2の層とを含み、前記EUV光の位相をシフトさせる位相シフト膜であり、
     前記第1の層は、前記EUV光に対する絶対反射率が2.5%以下である吸収層を含む、反射型マスクブランク。
  12.  前記第2の層は、光学干渉を利用して前記積層膜によって反射されるEUV光の位相をシフトさせる干渉層からなる、請求項11に記載の反射型マスクブランク。
  13.  前記第2の層の膜厚が1nm以上20nm以下であり、屈折率nが0.85以上0.96以下である、請求項11又は請求項12に記載の反射型マスクブランク。
  14.  前記第2の層は、ルテニウム(Ru)を含む材料からなる、請求項11から請求項13のうちいずれか1項に記載の反射型マスクブランク。
  15.  前記第1の層の膜厚が5nm以上70nm以下であり、消衰係数kが0.02以上である、請求項11から請求項14のうちいずれか1項に記載の反射型マスクブランク。
  16.  前記第1の層は、タンタル(Ta)、クロム(Cr)、コバルト(Co)、及びニッケル(Ni)からなる群から選択される少なくとも1種の元素を含む材料からなる、請求項11から請求項15のうちいずれか1項に記載の反射型マスクブランク。
  17.  前記積層膜の前記EUV光に対する相対反射率が3%以上40%以下であり、位相差が160~200°である、請求項11から請求項16のうちいずれか1項に記載の反射型マスクブランク。
  18.  前記多層反射膜と前記第1の層との間に保護膜を更に有し、
     前記保護膜は、ルテニウム(Ru)を含む材料、珪素(Si)及び酸素(O)を含む材料、イットリウム(Y)と酸素(O)を含む材料、及び、クロム(Cr)を含む材料からなる群から選択される少なくとも1種の材料を含む、請求項1から請求項17のうちのいずれか1項に記載の反射型マスクブランク。
  19.  請求項1から請求項18のうちいずれか1項に記載の反射型マスクブランクにおける前記積層膜がパターニングされた積層膜パターンを有する、反射型マスク。
  20.  請求項19に記載の反射型マスクを使用して、半導体基板上に転写パターンを形成する工程を有する、半導体装置の製造方法。
PCT/JP2019/050236 2018-12-27 2019-12-23 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法 WO2020137928A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202106508PA SG11202106508PA (en) 2018-12-27 2019-12-23 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
KR1020217014007A KR20210102199A (ko) 2018-12-27 2019-12-23 반사형 마스크 블랭크, 반사형 마스크, 및 반도체 장치의 제조 방법
US17/311,662 US11914281B2 (en) 2018-12-27 2019-12-23 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
US18/528,544 US20240103355A1 (en) 2018-12-27 2023-12-04 Reflective mask blank, reflective mask and method for manufacturing a semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244406A JP7250511B2 (ja) 2018-12-27 2018-12-27 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP2018-244406 2018-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/311,662 A-371-Of-International US11914281B2 (en) 2018-12-27 2019-12-23 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
US18/528,544 Continuation US20240103355A1 (en) 2018-12-27 2023-12-04 Reflective mask blank, reflective mask and method for manufacturing a semiconductor device

Publications (1)

Publication Number Publication Date
WO2020137928A1 true WO2020137928A1 (ja) 2020-07-02

Family

ID=71127981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050236 WO2020137928A1 (ja) 2018-12-27 2019-12-23 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法

Country Status (6)

Country Link
US (2) US11914281B2 (ja)
JP (2) JP7250511B2 (ja)
KR (1) KR20210102199A (ja)
SG (1) SG11202106508PA (ja)
TW (1) TWI822936B (ja)
WO (1) WO2020137928A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050156A1 (ja) * 2020-09-04 2022-03-10 Agc株式会社 反射型マスク、反射型マスクブランク、および反射型マスクの製造方法
EP4053632A1 (en) * 2021-03-03 2022-09-07 Shin-Etsu Chemical Co., Ltd. Reflective mask blank, and method for manufacturing thereof
WO2022235545A1 (en) * 2021-05-03 2022-11-10 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300871B2 (en) 2020-04-29 2022-04-12 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
JP7318607B2 (ja) * 2020-07-28 2023-08-01 Agc株式会社 Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法
KR102525928B1 (ko) * 2020-09-02 2023-04-28 주식회사 에스앤에스텍 극자외선용 반사형 블랭크 마스크 및 그 제조방법
JP2022124344A (ja) * 2021-02-15 2022-08-25 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
KR102649175B1 (ko) * 2021-08-27 2024-03-20 에이지씨 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크, 반사형 마스크 블랭크의 제조 방법 및 반사형 마스크의 제조 방법
WO2023095769A1 (ja) * 2021-11-24 2023-06-01 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
KR20240008979A (ko) * 2021-12-13 2024-01-19 에이지씨 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크, 반사형 마스크 블랭크의 제조 방법 및 반사형 마스크의 제조 방법
WO2023171582A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 反射型マスクブランク、並びに、反射型マスク及びその製造方法
TW202347008A (zh) * 2022-03-29 2023-12-01 日商凸版光掩模有限公司 反射型空白光罩及反射型光罩
WO2024029409A1 (ja) * 2022-08-03 2024-02-08 Agc株式会社 反射型マスクブランク及び反射型マスク

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280291A (ja) * 2001-03-21 2002-09-27 Hoya Corp Euv露光用反射型マスクブランクおよびeuv露光用反射型マスク
JP2010080659A (ja) * 2008-09-25 2010-04-08 Toppan Printing Co Ltd ハーフトーン型euvマスク、ハーフトーン型euvマスクの製造方法、ハーフトーン型euvマスクブランク及びパターン転写方法
US20130157177A1 (en) * 2011-12-16 2013-06-20 Taiwan Semiconductor Manufacturing Company, Ltd. Euv mask and method for forming the same
US20130260288A1 (en) * 2012-04-02 2013-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography process and mask
JP2016046370A (ja) * 2014-08-22 2016-04-04 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207593A (ja) 2002-12-26 2004-07-22 Toppan Printing Co Ltd 極限紫外線露光用マスク及びブランク並びにパターン転写方法
JP2009046770A (ja) * 2007-08-16 2009-03-05 Mitsubishi Rayon Co Ltd アクリロニトリル系炭素繊維前駆体繊維
JP5638769B2 (ja) 2009-02-04 2014-12-10 Hoya株式会社 反射型マスクブランクの製造方法及び反射型マスクの製造方法
KR20130111524A (ko) 2010-07-27 2013-10-10 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사층 형성 기판, 및 euv 리소그래피용 반사형 마스크 블랭크
SG11201509897WA (en) 2013-09-27 2016-04-28 Hoya Corp Conductive film coated substrate, multilayer reflectivefilm coated substrate, reflective mask blank, reflectivemask, and semiconductor device manufacturing method
JP6301127B2 (ja) 2013-12-25 2018-03-28 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP6739960B2 (ja) 2016-03-28 2020-08-12 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
KR101981890B1 (ko) 2017-04-17 2019-05-23 에이지씨 가부시키가이샤 Euv 노광용 반사형 마스크 블랭크 및 반사형 마스크

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280291A (ja) * 2001-03-21 2002-09-27 Hoya Corp Euv露光用反射型マスクブランクおよびeuv露光用反射型マスク
JP2010080659A (ja) * 2008-09-25 2010-04-08 Toppan Printing Co Ltd ハーフトーン型euvマスク、ハーフトーン型euvマスクの製造方法、ハーフトーン型euvマスクブランク及びパターン転写方法
US20130157177A1 (en) * 2011-12-16 2013-06-20 Taiwan Semiconductor Manufacturing Company, Ltd. Euv mask and method for forming the same
US20130260288A1 (en) * 2012-04-02 2013-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography process and mask
JP2016046370A (ja) * 2014-08-22 2016-04-04 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050156A1 (ja) * 2020-09-04 2022-03-10 Agc株式会社 反射型マスク、反射型マスクブランク、および反射型マスクの製造方法
EP4053632A1 (en) * 2021-03-03 2022-09-07 Shin-Etsu Chemical Co., Ltd. Reflective mask blank, and method for manufacturing thereof
WO2022235545A1 (en) * 2021-05-03 2022-11-10 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Also Published As

Publication number Publication date
US20240103355A1 (en) 2024-03-28
US11914281B2 (en) 2024-02-27
JP7250511B2 (ja) 2023-04-03
JP2020106639A (ja) 2020-07-09
US20220107557A1 (en) 2022-04-07
JP2023076522A (ja) 2023-06-01
KR20210102199A (ko) 2021-08-19
TW202041964A (zh) 2020-11-16
SG11202106508PA (en) 2021-07-29
TWI822936B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2020137928A1 (ja) 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
US11815806B2 (en) Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
US11815807B2 (en) Reflective mask blank, reflective mask, method of manufacturing reflective mask, and method of manufacturing semiconductor device
US10921705B2 (en) Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing semiconductor device
US20220390826A1 (en) Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP7268211B2 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
KR20190059326A (ko) 반사형 마스크 블랭크, 반사형 마스크의 제조 방법, 및 반도체 장치의 제조 방법
JP2016046370A5 (ja)
WO2020184473A1 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
KR20220161261A (ko) 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크, 및 반도체 장치의 제조 방법
KR20230073195A (ko) 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크의 제조 방법, 및 반도체 장치의 제조 방법
JP2021105727A (ja) 反射型マスク、並びに反射型マスクブランク及び半導体装置の製造方法
TWI835798B (zh) 反射型光罩基底、反射型光罩及其製造方法、以及半導體裝置之製造方法
WO2022203024A1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクの製造方法及び半導体装置の製造方法
WO2022138434A1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
WO2022210334A1 (ja) 反射型マスクブランク、反射型マスク、反射型マスクの製造方法、及び半導体装置の製造方法
JP7168573B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
TW202409712A (zh) 反射型遮罩基底、反射型遮罩以及半導體裝置之製造方法
TW202248742A (zh) 附多層反射膜之基板、反射型光罩基底、反射型光罩及半導體裝置之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903746

Country of ref document: EP

Kind code of ref document: A1