WO2020137756A1 - 血液浄化デバイスと血液成分調整器を備えた体外血液循環システム - Google Patents

血液浄化デバイスと血液成分調整器を備えた体外血液循環システム Download PDF

Info

Publication number
WO2020137756A1
WO2020137756A1 PCT/JP2019/049671 JP2019049671W WO2020137756A1 WO 2020137756 A1 WO2020137756 A1 WO 2020137756A1 JP 2019049671 W JP2019049671 W JP 2019049671W WO 2020137756 A1 WO2020137756 A1 WO 2020137756A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
purification device
molded body
porous molded
piping system
Prior art date
Application number
PCT/JP2019/049671
Other languages
English (en)
French (fr)
Inventor
大石 輝彦
直喜 森田
真 尾関
智徳 小泉
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to JP2020563140A priority Critical patent/JP7112521B2/ja
Priority to CN201980084862.8A priority patent/CN113195013B/zh
Priority to US17/415,377 priority patent/US20220062522A1/en
Priority to EP19904966.9A priority patent/EP3903855B1/en
Priority to KR1020217019251A priority patent/KR102639967B1/ko
Priority to ES19904966T priority patent/ES2931127T3/es
Publication of WO2020137756A1 publication Critical patent/WO2020137756A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • A61M1/3646Expelling the residual body fluid after use, e.g. back to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3666Cardiac or cardiopulmonary bypass, e.g. heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3679Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3687Chemical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • A61M2205/707Testing of filters for clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials

Definitions

  • the present invention relates to an extracorporeal blood circulation system including a blood purification device and a blood component regulator. More specifically, the present invention relates to an extracorporeal blood circulation system including a blood purification device and a blood component regulator different from the blood purification device, and a dialysis mode based on the pressure loss of the blood purification device and the blood component regulator. The present invention relates to an extracorporeal blood circulation system that can be safely used by switching the blood flow control mode to the blood return mode and bypassing the blood circuit.
  • Hemodialysis devices are widely used as devices for performing dialysis therapy for patients with chronic renal failure.
  • the dialysis therapy is a means necessary for maintaining the life of removing water that has been eaten and drink (generally referred to as water removal), especially for patients who do not have urine, and the existence of a dialysis device is extremely important.
  • a high-performance blood purification device dialyzer
  • dialyzer has been developed and it is possible to remove a large amount of water.
  • a large amount of water can be added to patients with chronic renal failure who have impaired renal function. Functional dialysis therapy is desired.
  • Patent Document 1 describes a blood purification method including a blood purification step of treating blood using a blood purification device and a phosphorus adsorption step before and/or after the blood purification step.
  • DFPP Double Filtration Plasma Pheresis
  • PP Plasma Perfusion
  • the problem to be solved by the present invention is to provide an extracorporeal blood circulation system including a blood purification device and a blood component regulator different from the blood purification device, which can be safely used. Is.
  • the present inventors have found that in an extracorporeal blood circulation system including a blood purification device and a blood component regulator different from the blood purification device, a blood purification device and blood Based on the pressure loss of the component regulator, the dialysis mode was switched to the blood return mode, and it was unexpectedly found that it can be used safely by bypassing the blood circuit, which led to the completion of the present invention. is there.
  • a dialysis mode and a blood return mode based on the function of switching the piping system (1) and the bypass piping system (6) based on the pressure loss of the device (4) and the pressure loss of the blood purification device (3).
  • a control unit having a function for switching An extracorporeal blood circulation system.
  • the blood purification device (3) and/or the blood component regulator (4) is provided with a pressure gauge (5, 5′′′) for detecting a pressure loss, and the blood purification device (3) and A piping system (9) connecting the blood component regulator (4); A pressure gauge (5' for returning the blood from the blood component regulator (4) to the blood returning part (1b) in the dialysis mode and for detecting the pressure loss of the blood component regulator (4).
  • a control unit having a function for switching; An extracorporeal blood circulation system.
  • the extracorporeal blood circulation system according to any one of [4] to [10], wherein the amount of phosphorus adsorbed in blood of the porous molded body is 2 (mg-P/mL-Resin) or more.
  • the inorganic ion adsorbent has the following formula (I): MN x O n ⁇ mH 2 O (I) Where x is 0-3, n is 1-4, m is 0-6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb, and Ta It is a metal element selected from the group consisting of and different from each other.
  • the extracorporeal blood circulation system according to any one of [5] to [11] above, which contains at least one metal oxide represented by the following formula.
  • the metal oxide is the following (a) to (c) group: (A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide, and hydrated yttrium oxide; (B) Composite metal oxidation of at least one metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum, and yttrium and at least one metal element selected from the group consisting of aluminum, silicon, and iron. Stuff; (C) The extracorporeal blood circulation system according to the above [12], which is selected from activated alumina.
  • the extracorporeal blood circulation system switches the dialysis mode to the blood-return mode based on the pressure loss of the blood purification device and the blood component regulator, and bypasses the blood circuit to provide a blood purification device and a blood component regulator. , And the blood circuit (piping system) can be prevented from being damaged, so that it can be used safely.
  • FIG. 1 is a schematic diagram of an extracorporeal blood circulation system of Example 1.
  • FIG. 6 is a schematic diagram of an extracorporeal blood circulation system of Example 2.
  • FIG. 2 is a schematic diagram of a column flow test device for low blood phosphorus concentration serum using bovine plasma in the blood purifier of the present embodiment.
  • One embodiment of the present invention is an extracorporeal blood circulation system from a blood collecting part (1a) to a blood returning part (1b), which is as follows: Blood component regulator (4); Blood purification device (3); A pump (2) for supplying the blood from the blood collecting part (1a) to the blood component regulator (4) in the dialysis mode, a physiological saline solution from the piping system (11) in place of the blood in the blood return mode, or A piping system (1) equipped with a valve (8) for supplying air and a pressure gauge (5) for detecting a pressure loss of the blood component regulator (4); By-pass piping system equipped with a valve (7) for supplying blood to the blood purification device (3) by bypassing the blood component regulator (4) and physiological saline or air in the blood return mode ( 6); A blood pressure regulator (4') and/or a pressure gauge (5', 5'') for detecting a pressure loss of the blood purification device (3), and the blood pressure regulator (4) A
  • a control unit having a function for switching An extracorporeal blood circulation system comprising: Such one embodiment specifically corresponds to Example 1 below, and its outline is shown in FIG.
  • Another embodiment of the present invention is an extracorporeal blood circulation system from a blood collecting part (1a) to a blood returning part (1b), which includes the following: Blood purification device (3); Blood component regulator (4); A pump (2) for supplying blood from the blood collecting part (1a) to the blood purification device (3) in the dialysis mode, and physiological saline or air from the piping system (11) in place of blood in the blood return mode.
  • the blood purification device (3) and/or the blood component regulator (4) is provided with a pressure gauge (5, 5′′′) for detecting a pressure loss, and the blood purification device (3) and A piping system (9) connecting the blood component regulator (4); A pressure gauge (5' for returning the blood from the blood component regulator (4) to the blood returning part (1b) in the dialysis mode and for detecting the pressure loss of the blood component regulator (4).
  • An extracorporeal blood circulation system comprising: Such another embodiment specifically corresponds to Example 2 below, and its outline is shown in FIG.
  • a "pipe system” is also called a "blood circuit.”
  • the blood purification device and the blood component adjuster are replaced with each other in the one embodiment.
  • the blood collecting part (1a) and the blood returning part (1b) are inserted into the blood vessels (A) and (B) of the patient, respectively.
  • the blood pressure at the inlet of the blood component regulator (4) and the filtrate pressure at the outlet of the blood component regulator (4) are measured by pressure sensors (5, 5′) at both ends of the blood component regulator (4).
  • the valve (7) of the bypass piping system (6) is opened by the command of the control unit (not shown) so as to bypass the blood component regulator (4).
  • the valve (7) may be connected to any part of the bypass piping system (6).
  • the blood pressure at the inlet of the blood purification device (3) and the filtrate pressure at the outlet are measured by pressure gauges (sensors) (5'', 5''') at both ends of the blood purification device (3). To do.
  • a control unit (not shown) issues a command. , Switching the three-way valve (8) of the piping system (1) to the piping system (11), and if present, switching the three-way valve (8') of the piping system (10) to the piping system (11') for dialysis Change from the mode (dialysis treatment) to the blood return mode (blood return to the patient) or another mode, eg stop mode.
  • the piping system (11) is connected to a reservoir (C) that supplies physiological saline or air, and if present, the piping system (11′) is a blood component regulator (4), a blood purification device. (3) and a reservoir (C′) that temporarily stores the blood and/or physiological saline recovered from the blood circuit before returning it to the body.
  • the extracorporeal blood circulation system of the present embodiment including the blood purification device, the blood component regulator, the piping system (blood circuit), and the control unit described above includes an anticoagulant injector, an arterial pressure monitor, a venous pressure monitor, and a dialysate pressure. It can be configured as a part of a monitor, a bubble detector, a dialysate supply device, a dialysis monitor device having an alarm function, or the like. With such a dialysis monitoring device, it becomes possible to automatically operate various electronic components and devices such as pumps. When a device in which a plurality of blood components are combined (for example, including a DFPP circuit) is used as the blood component regulator, the blood component regulator includes devices such as electronic parts and pumps.
  • the extracorporeal blood circulation system of the present embodiment is preferably provided with a power generator and a battery so that it can be operated even during a power failure such as a disaster in order to use it safely.
  • the blood purification device and the blood component adjuster are replaced in the first embodiment, and therefore the description of the method of use and the operation of the first embodiment will be omitted. The same can be applied to the usage and operation of the other embodiments with reference to FIG.
  • the blood sampling portion (1a) and the blood returning portion (1b) of the blood circuit are inserted into the blood vessels (A) and (B) of the patient, respectively, and the patient is in a mode for performing dialysis treatment.
  • Blood return mode In this mode, the blood in the blood circuit including the blood purification device, the blood component regulator, and the bypass is returned to the body safely and safely.
  • the blood return method in the blood return mode is roughly classified into a physiological saline replacement method and an air replacement method. Either may be used, but the physiological saline replacement method is preferable from the viewpoint of safety.
  • the stop mode is automatically entered.
  • the stop mode is entered. It also automatically enters stop mode if there is a power outage. It is possible to automatically shift to the blood return mode or restart the dialysis mode after the power failure is restored. Even in the blood return mode, it automatically becomes the stop mode at the time of power failure, but the blood return mode is restarted after the power failure is restored. If the dialysis monitor detects an abnormality after the power failure is restored, the stop mode is maintained.
  • the blood purification device (3) is not particularly limited, and may be any blood purification module containing a hollow fiber membrane that is generally used for hemodialysis treatment.
  • hemodialysis (HD: Hemodialysis), ultrafiltration ( ECUM: Extracorporeal ultrafiltration), hemodiafiltration (HDF: Hemodialysis filtration), continuous hemofiltration (CHDF: Continuous Hemodiafiltration), continuous hemofiltration (CHF: Continuous Hemodialysis), continuous hemodialysis (CHD: Continuous Hemodialysis), etc.
  • the pressure gauge (sensor) (5, 5', 5'', 5'') installed in the piping system (1, 9, 10) is not particularly limited, and the blood purification device (3), blood component adjustment Any device capable of converting the pressure at the inlet and/or outlet of the device (4) into an electric signal, such as a gauge type (strain gauge type, metal gauge type, semiconductor gauge type, semiconductor diaphragm type), capacitance type, optical fiber type , Vibration type, pneumatic type, etc. can be exemplified.
  • the pressure sensor may be present in one of the blood purification device (3) and the blood component regulator (4), and is not necessarily at both ends. It is also possible to embed the pressure sensor inside the blood purification device and the blood component regulator.
  • bypass piping system (6) By providing a bypass connecting both ends of the blood component adjuster (4) in FIG. 1 and both ends of the blood purification device (3) in FIG. 2, the bypass of the blood component adjuster (4) or the blood purification device (3) is provided.
  • the valve (7) connected to the bypass piping system (6) is opened and blood or the like is supplied to the bypass piping system (6).
  • the material of the bypass piping system (6) may be the same material as the other piping systems (1, 10) (blood circuit) or may be a different material.
  • the valve (7) connected to the bypass piping system (6) may be located at any part of the piping system, or the piping system (1) and the bypass piping system (6) may be switched by a three-way valve. it can.
  • the valve (7) is a device having a function of opening and closing the passage of liquid to the bypass, and is electronically controllable. It is also possible to adjust the flow rate to the bypass in the half open state. It is also possible to change from the half open state to the closed state, and from the closed state to the half open state.
  • the valve (8') installed in the piping system (10) switches between dialysis mode and blood return mode, and supplies saline or air in the blood return mode.
  • it is a device for collecting and can be electronically controlled.
  • These valves can be three-way valves.
  • the blood component regulator (4) is different than the blood purification device (3).
  • the blood component adjuster (4) is a device capable of removing or supplying blood components of a living organism, and is not particularly limited. It may be a single device (for example, hydrogen supply device, cytokine eliminator, etc.), or a combined device (for example, DFPP, etc.).
  • Blood components include water, plasma, blood cells (erythrocytes, white blood cells, lymphocytes, platelets, etc.), proteins (albumin, fibrinogen, immunoglobulins, etc.), sugars (glucose, glycogen, etc.), lipids (neutral fat, phospholipids, Cholesterol, etc.), inorganic salts (salts consisting of chlorine, bicarbonate, sulfuric acid, phosphoric acid, calcium, sodium, potassium, magnesium, iron, copper, phosphorus, etc.), amino acids, hormones, vitamins, insulin, hydrogen, nitrogen, oxygen , Carbon dioxide, urea, creatine, creatinine, ammonia, antibodies, pathogens, bacteria, viruses, parasites, tumor cells, cytokines (proteins that act on proliferation/differentiation/function expression of cells with a molecular weight of 8 to 30 kDa and are interleukins -1 ⁇ , interleukin-6, interleukin-8, TNF ⁇ and the like), exosomes, microparticles
  • the blood component adjuster can accommodate a blood component adjuster.
  • the blood component adjuster may be a porous molded product having a function of removing or supplying blood components, and examples thereof include activated carbon, membranes (for example, hollow fiber membranes, flat membranes (spiral type, pleat type), tubulars. Membranes, monolithic ceramic membranes), beads, fibers and the like.
  • the blood component regulator (4) is a hydrogen supplier
  • a gas exchange membrane artificial lung
  • a suitable ligand may be added to the porous molded body.
  • a ligand having an electrostatic binding action eg, polyacrylic acid
  • a ligand having a hydrophobic bond eg, hexadecyl group, petroleum pitch-based activated carbon
  • a ligand having a complex bond eg, polymyxin B
  • polyacrylic acid is used as a ligand
  • cholesterol can be removed
  • polymyxin B is used as a ligand
  • endotoxin can be removed.
  • Leukocytes can be removed by using polyester as the fiber material and cellulose diacetate as the bead material.
  • the porous molded body of the present embodiment is composed of a porous molded body forming polymer and a hydrophilic polymer, or a porous molded body forming polymer, a hydrophilic polymer and an inorganic ion adsorbent.
  • the total volume of pores having a pore diameter of 1 nm to 80 nm measured by a nitrogen gas adsorption method is 0.05 cm 3 /unit mass of the inorganic ion adsorbent.
  • the pore volume is calculated by the BJH method by measuring the freeze-dried porous compact by the nitrogen gas adsorption method.
  • the total volume Va of pores per unit mass of the inorganic ion adsorbent is Vb (cm 3 /g), the porosity per unit mass of the porous compact calculated from the dried porous compact, porosity
  • the ash is the residue when the porous molded body is baked at 800° C. for 2 hours.
  • the pore volume of the porous molded body measured by the nitrogen gas adsorption method is a value that mainly reflects the pore volume of the inorganic ion adsorbent contained in the porous molded body. This means that the diffusion efficiency of the ions inside the ion adsorbent becomes high and the adsorption capacity becomes high. If the total pore volume per unit mass of the inorganic ion adsorbent is less than 0.05 cm 3 /g, the pore volume of the inorganic ion adsorbent will be small and the adsorption capacity will be significantly reduced.
  • the specific surface area of the porous molded body measured by the nitrogen gas adsorption method is preferably 50 m 2 /g to 400 m 2 /g, more preferably 70 m 2 /g to 350 m 2 /g, and further preferably 100 m 2 /g to 300 m. 2 /g.
  • the specific surface area is calculated by the BET method by measuring the freeze-dried porous compact by the nitrogen gas adsorption method.
  • the specific surface area of the porous molded body measured by the nitrogen gas adsorption method mainly reflects the specific surface area of the inorganic ion adsorbent contained in the porous molded body. This means that the number of sites increases and the adsorption capacity increases.
  • the specific surface area of the porous molded body is smaller than 50 m 2 /g, the number of adsorption sites of the inorganic ion adsorbent is small and the adsorption capacity is remarkably reduced.
  • this value is more than 400 m 2 /g, the bulk density of the inorganic ion adsorbent is high, the viscosity of the stock solution slurry increases, and granulation becomes difficult.
  • the amount of the inorganic ion adsorbent contained in the porous molded body is preferably 30% by mass to 95% by mass, more preferably 40% by mass to 90% by mass, and further preferably 50% by mass to 80% by mass. If the supported amount is less than 30% by mass, the contact frequency between the ion adsorption target substance and the inorganic ion adsorbent that is the adsorption substrate tends to be insufficient, while if it exceeds 95% by mass, the porous molded article It is easy to lack strength.
  • the porous molded article preferably has an average particle size of 100 ⁇ m to 2500 ⁇ m and is in the form of substantially spherical particles, and the average particle form is more preferably 150 ⁇ m to 2000 ⁇ m, more preferably 200 ⁇ m to 1500 ⁇ m. It is more preferable that the thickness is in the range of 300 ⁇ m to 1000 ⁇ m.
  • the porous molded body is preferably in the form of spherical particles, and the spherical particles may be not only spherical but elliptic spherical.
  • the average particle diameter means a median diameter of a sphere-equivalent diameter obtained from the angular distribution of scattered light intensity of diffraction by laser light, regarding the porous molded body as a spherical shape. If the average particle size is 100 ⁇ m or more, the pressure loss is small when the porous molded body is filled in a container such as a column or a tank, and thus it is suitable for high-speed water flow treatment. On the other hand, when the average particle diameter is 2500 ⁇ m or less, the surface area of the porous molded body when packed in a column or a tank can be increased, and ions can be surely adsorbed even when the liquid is passed through at high speed. ..
  • the inorganic ion adsorbent constituting the porous molded body means an inorganic substance exhibiting an ion adsorption phenomenon or an ion exchange phenomenon.
  • natural inorganic ion adsorbents include various mineral substances such as zeolite and montmorillonite.
  • specific examples of various mineral substances include kaolin minerals having a single layer lattice of aluminosilicate, muscovite with two-layer lattice structure, glauconite, Kanuma soil, pyrophyllite, talc, and feldspar with three-dimensional framework structure. , Zeolite, montmorillonite, and the like.
  • Examples of the synthetic inorganic ion adsorbents include metal oxides, polyvalent metal salts, insoluble hydrous oxides, and the like.
  • the metal oxide includes a composite metal oxide, a composite metal hydroxide, a metal hydrous oxide and the like.
  • the inorganic ion adsorbent has the following formula (I): MN x O n ⁇ mH 2 O (I) ⁇ Where x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce. , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb, and Ta It is a metal element selected from the group consisting of and different from each other. ⁇ It is preferable to contain at least 1 type of metal oxide represented by these.
  • the metal oxide may be a non-hydrated (unhydrated) metal oxide in which m in the above formula (I) is 0, or a hydrous oxide of a metal in which m is a value other than 0 (water).
  • x in the above formula (I) is a value other than 0, each metal element contained is regularly distributed in the whole oxide with regularity and is contained in the metal oxide. It is a composite metal oxide represented by a chemical formula in which the composition ratio of each metal element is fixed.
  • a perovskite structure, a spinel structure, or the like is formed, and nickel ferrite (NiFe 2 O 4 ), zirconium hydrous ferrite (Zr ⁇ Fe 2 O 4 ⁇ mH 2 O, where m is 0. 5 to 6.) and the like.
  • the inorganic ion adsorbent may contain a plurality of types of metal oxides represented by the above formula (I).
  • the metal oxide as the inorganic ion adsorbent has the following excellent adsorbability of the object to be adsorbed, especially phosphorus, from the following (a) to (c) groups: (A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide and hydrated yttrium oxide (b) from the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium A composite metal oxide of at least one metal element selected and at least one metal element selected from the group consisting of aluminum, silicon and iron is preferably selected from (c) activated alumina.
  • Materials selected from any of the groups (a) to (c) may be used, or materials selected from any of the groups (a) to (c) may be used in combination.
  • the materials in each of the groups (a) to (c) may be used in combination. When used in combination, it may be a mixture of two or more kinds of materials selected from any of the groups (a) to (c), and two or more groups of the groups (a) to (c). It may be a mixture of two or more materials selected from.
  • the inorganic ion adsorbent may contain aluminum sulfate-impregnated activated alumina from the viewpoint of being inexpensive and having high adsorbability.
  • the inorganic ion adsorbent in addition to the metal oxide represented by the above formula (I), those in which a metal element other than M and N is further solid-solubilized are, from the viewpoint of adsorbability of inorganic ions and production cost, More preferable.
  • a solid solution of iron in hydrated zirconium oxide represented by ZrO 2 ⁇ mH 2 O (m is a value other than 0) can be mentioned.
  • Examples of the polyvalent metal salt include, for example, the following formula (II): M 2+ (1-p) M 3+ p (OH ⁇ ) (2+p ⁇ q) (A n ⁇ ) q/r (II) ⁇
  • M 2+ is at least one divalent metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+ , and Cu 2+
  • M 3+ is Al 3+ and At least one trivalent metal ion selected from the group consisting of Fe 3+
  • a n ⁇ is an n-valent anion, 0.1 ⁇ p ⁇ 0.5, and 0.1 ⁇ q ⁇ 0. .5 and r is 1 or 2.
  • the hydrotalcite type compound represented by these is mentioned.
  • the hydrotalcite-based compound represented by the above formula (II) is preferable because it is inexpensive as a raw material for the inorganic ion adsorbent and has high adsorbability.
  • Examples of the insoluble hydrous oxide include insoluble heteropolyacid salt and insoluble hexacyanoferrate.
  • metal carbonate As the inorganic ion adsorbent, metal carbonate has excellent performance from the viewpoint of adsorption performance, but from the viewpoint of elution, it is necessary to study the application when using carbonate.
  • the metal carbonate from the viewpoint that an ion exchange reaction with carbonate ion can be expected, the following formula (III): QyRz(CO 3 )s ⁇ tH 2 O (III) ⁇ Wherein y is 1-2, z is 0-1, s is 1-3, t is 0-8, and Q and R are Mg, Ca , Sr, Ba, Sc, Mn, Fe, Co, Ni, Ag, Zn, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the metal carbonate may be a non-hydrated (unhydrated) metal carbonate in which t in formula (III) is 0, or a hydrate in which t is a number other than 0. Good.
  • the following (d) group from the viewpoint of little elution and excellent adsorption performance for phosphorus, boron, fluorine and/or arsenic: (D) Magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, scandium carbonate, manganese carbonate, iron carbonate, cobalt carbonate, nickel carbonate, silver carbonate, zinc carbonate, yttrium carbonate, lanthanum carbonate, cerium carbonate, praseodymium carbonate, neodymium carbonate , Samarium carbonate, europium carbonate, gadolinium carbonate, terbium carbonate, dysprosium carbonate, holmium carbonate, erbium carbonate, thulium carbonate, ytterbium carbonate, and lutetium carbonate; It is preferably selected from
  • the inorganic ion adsorbent constituting the porous molded body may contain an impurity element mixed in due to the manufacturing method or the like within a range not impairing the function of the porous molded body.
  • impurity elements examples include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, hafnium, and the like.
  • the inorganic ion adsorbent constituting the porous molded body may contain an impurity element mixed in due to the manufacturing method or the like within a range not impairing the function of the porous molded body.
  • impurity elements that may be mixed include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, hafnium, and the like.
  • the method of substituting with an organic liquid is not particularly limited, and may be centrifuged or filtered after dispersing the inorganic ion adsorbent containing water in the organic liquid, or filtered with a filter press or the like. After that, the organic liquid may be passed through. In order to increase the substitution rate, it is preferable to repeat the method of dispersing the inorganic ion adsorbent in the organic liquid and then filtering.
  • the replacement ratio of water contained in the production with the organic liquid may be 50% by mass to 100% by mass, preferably 70% by mass to 100% by mass, and more preferably 80% by mass to 100% by mass. Good.
  • the substitution rate of the organic liquid is Sb (mass%) and the water content of the filtrate after treating the inorganic ion adsorbent containing water with the organic liquid is Wc (mass%)
  • the substitution rate of the organic liquid is as follows.
  • Formula (3): Sb 100-Wc (3)
  • the water content of the filtrate after the treatment with the organic liquid can be determined by the Karl Fischer method.
  • aggregation during drying can be suppressed, and the pore volume of the inorganic ion adsorbent can be increased.
  • the substitution rate of the organic liquid is less than 50% by mass, the effect of suppressing aggregation during drying is reduced and the pore volume of the inorganic ion adsorbent does not increase.
  • the porous molded body-forming polymer according to the present embodiment may be any polymer that can form a porous molded body, and examples thereof include polysulfone-based polymers, polyvinylidene fluoride-based polymers, polyvinylidene chloride-based polymers, and acrylonitrile-based polymers. , Polymethyl methacrylate-based polymer, polyamide-based polymer, polyimide-based polymer, cellulose-based polymer, ethylene vinyl alcohol copolymer-based polymer, polyaryl ether sulfone, polypropylene-based polymer, polystyrene-based polymer, polycarbonate-based polymer, many types, etc.
  • aromatic polysulfones are preferable because they are excellent in thermal stability, acid resistance, alkali resistance, and mechanical strength.
  • the aromatic polysulfone used in this embodiment has the following formula (IV): --O--Ar--C(CH 3 ) 2 --Ar--O--Ar--SO 2 --Ar-- (IV) ⁇ In the formula, Ar is a 2-substituted phenyl group at the para position.
  • formula (V) --O--Ar--SO 2 --Ar-- (V) ⁇ In the formula, Ar is a 2-substituted phenyl group at the para position. ⁇ Which have a repeating unit represented by these.
  • the degree of polymerization and the molecular weight of the aromatic polysulfone are not particularly limited.
  • hydrophilic polymer The hydrophilic polymer swells in water, but is not particularly limited as long as it does not dissolve in water, but is not particularly limited, sulfonic acid group, carboxyl group, carbonyl group, amino group, amide group, cyano group, hydroxyl group, methoxy.
  • examples thereof include polymers having a group, a phosphoric acid group, an oxyethylene group, an imino group, an imide group, an imino ether group, a pyridine group, a pyrrolidone group, an imidazole group, a quaternary ammonium group, etc., alone or in combination.
  • polyvinylpyrrolidone (hereinafter, also referred to as PVP)-based polymer is most preferable as the hydrophilic polymer.
  • PVP polyvinylpyrrolidone
  • examples of the polyvinylpyrrolidone-based polymer include vinylpyrrolidone/vinyl acetate copolymer, vinylpyrrolidone/vinylcaprolactam copolymer, vinylpyrrolidone/vinyl alcohol copolymer, and the like, and at least one of them is contained. Is preferred.
  • polyvinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymer, and vinylpyrrolidone/vinylcaprolactam copolymer are preferably used from the viewpoint of compatibility with the polysulfone-based polymer.
  • the porous molded body is preferably coated with a biocompatible polymer, and the biocompatible polymer is preferably selected from the group consisting of polymethoxyethyl acrylate (PMEA) and polyvinylpyrrolidone (PVP)-based polymers. .. [Polymethoxyethyl acrylate (PMEA)] Regarding the biocompatibility of PMEA, Ken Tanaka, Material for biocompatible surface of artificial organ, BIO INDUSTRY, Vol 20, No. 12, 59-70 2003. Among them, acrylate polymers having different side chain structures were prepared for comparison with PMEA, and various markers of platelets, leukocytes, complement, and coagulation system when blood was circulated were evaluated.
  • PMEA polymethoxyethyl acrylate
  • PVP polyvinylpyrrolidone
  • the measurement area of the ATR-IR method is almost equal to the depth of the "surface layer" corresponding to the surface of the porous molded body. That is, the biocompatibility in the depth region almost equal to the measurement region of the ATR-IR method governs the biocompatibility of the porous molded article, and the presence of PMEA in that region has a certain biocompatibility. It is thought that.
  • PMEA By coating PMEA on the surface of the porous molded body, generation of fine particles from the blood purifier after long-term storage can also be suppressed.
  • the measurement region by the ATR-IR method depends on the wavelength of infrared light in air, the incident angle, the refractive index of the prism, the refractive index of the sample, and the like, and is usually within 1 ⁇ m from the surface.
  • the presence of PMEA on the surface of the porous molded body can be confirmed by thermal decomposition gas chromatograph mass spectrometry of the porous molded body.
  • the presence of PMEA is estimated by a total reflection infrared absorption (ATR-IR) measurement on the surface of the porous molded article if a peak is seen near 1735 cm ⁇ 1 in the infrared absorption curve, but other peaks near this are estimated. It may also be derived from the substance.
  • PMEA the presence of PMEA can be known by performing pyrolysis gas chromatograph mass spectrometry and confirming 2-methoxyethanol derived from PMEA.
  • a solvent for example, PMEA does not dissolve in 100% ethanol solvent, but the water/ethanol mixed solvent has a region that dissolves depending on the mixing ratio. Then, in the mixing ratio in the dissolved region, the larger the amount of water, the stronger the peak intensity of the peak derived from PMEA (around 1735 cm ⁇ 1 ).
  • the water permeability does not change so much and the product design is simple.
  • PMEA has PMEA on the surface of the porous molded body.
  • PMEA adheres in a very thin film state and the surface of the porous molded body is almost free of pores. It is thought that they are coating.
  • PMEA is preferable because it has a small molecular weight and a short molecular chain, so that the film structure is unlikely to become thick and the structure of the porous molded body is unlikely to change.
  • PMEA is preferable because it has high compatibility with other substances, can be uniformly applied to the surface of the porous molded article, and can improve biocompatibility.
  • the weight average molecular weight of PMEA can be measured, for example, by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a method of containing PMEA on the surface of the porous molded body for example, a method of flowing a coating solution in which PMEA is dissolved from the upper part of a column (container) filled with the porous molded body to perform coating is preferably used.
  • the polyvinylpyrrolidone (PVP) polymer is not particularly limited, but polyvinylpyrrolidone (PVP) is preferably used.
  • the porous molded body is suitably used for phosphorus adsorption in hemodialysis of dialysis patients.
  • the blood composition is divided into a plasma component and a blood cell component, and the plasma component is composed of water 91%, protein 7%, lipid component and inorganic salts, and phosphorus is present in the blood plasma component as phosphate ion in the plasma component.
  • the blood cell component is composed of 96% red blood cells, 3% white blood cells, and 1% platelets.
  • the size of red blood cells is 7-8 ⁇ m
  • the size of white blood cells is 5-20 ⁇ m
  • the size of platelets is 2-3 ⁇ m. is there.
  • the method for producing a porous molded article includes, for example, (1) a step of drying an inorganic ion adsorbent, (2) a step of pulverizing the inorganic ion adsorbent obtained in step (1), and a (3) step (2).
  • the method includes the step of molding the slurry obtained in (3) and the step of (5) coagulating the molded article obtained in step (4) in a poor solvent.
  • Step (1) Inorganic ion adsorbent drying step
  • the inorganic ion adsorbent is dried to obtain a powder.
  • the water contained during the production is replaced with an organic liquid and then dried.
  • the organic liquid is not particularly limited as long as it has an effect of suppressing aggregation of the inorganic ion adsorbent, but it is preferable to use a liquid having high hydrophilicity. Examples thereof include alcohols, ketones, esters, ethers and the like.
  • the substitution rate with the organic liquid may be 50% by mass to 100% by mass, preferably 70% by mass to 100% by mass, and more preferably 80% by mass to 100% by mass.
  • the method of substituting with an organic liquid is not particularly limited, and may be centrifuged or filtered after dispersing the inorganic ion adsorbent containing water in the organic liquid, or filtered with a filter press or the like. After that, the organic liquid may be passed through. In order to increase the substitution rate, it is preferable to repeat the method of dispersing the inorganic ion adsorbent in the organic liquid and then filtering.
  • the rate of substitution with the organic liquid can be determined by measuring the water content of the filtrate by the Karl Fischer method.
  • the substitution rate of the organic liquid is less than 50% by mass, the effect of suppressing aggregation during drying is reduced and the pore volume of the inorganic ion adsorbent does not increase.
  • Step (2) Step of pulverizing inorganic ion adsorbent
  • the powder of the inorganic ion adsorbent obtained in the step (1) is pulverized.
  • the pulverization method is not particularly limited, and dry pulverization or wet pulverization can be used.
  • the dry crushing method is not particularly limited, and an impact crusher such as a hammer mill, an air flow crusher such as a jet mill, a medium crusher such as a ball mill, or a compression crusher such as a roller mill is used. be able to.
  • the air flow type pulverizer is preferable because the pulverized inorganic ion adsorbent can have a sharp particle size distribution.
  • the wet pulverization method is not particularly limited as long as it can pulverize and mix the good solvent of the inorganic ion adsorbent and the organic polymer resin, and it is not limited to pressure die breaking, mechanical abrasion, ultrasonic treatment, etc.
  • the means used for the physical crushing method can be used.
  • Specific examples of the pulverizing and mixing means include a generator shaft type homogenizer, a blender such as a Waring blender, a medium agitating mill such as a sand mill, a ball mill, an attritor, a bead mill, a jet mill, a mortar and pestle, a raker, an ultrasonic treatment device, etc. Are listed.
  • the medium agitation type mill is preferable because it has high pulverization efficiency and can pulverize even high viscosity.
  • the diameter of the balls used in the medium stirring mill is not particularly limited, but is preferably 0.1 mm to 10 mm. If the ball diameter is 0.1 mm or more, the mass of the ball is sufficient, so that the crushing power is high and the crushing efficiency is high.
  • the material of the balls used in the medium agitation mill is not particularly limited, but various metals such as metals such as iron and stainless steel, oxides such as alumina and zirconia, and non-oxides such as silicon nitride and silicon carbide. Examples include ceramics.
  • zirconia is excellent in that it is excellent in wear resistance and has little contamination (contamination of wear products) with the product.
  • the inorganic ion adsorbent is sufficiently dispersed in a good solvent for the polymer for forming a porous molded article, and then filtered and purified using a filter or the like.
  • the particle size of the pulverized and purified inorganic ion adsorbent is 0.001 to 10 ⁇ m, preferably 0.001 to 0.1 ⁇ m, and more preferably 0.01 to 0.1 ⁇ m. In order to uniformly disperse the inorganic ion adsorbent in the stock solution for film formation, the smaller the particle size, the better.
  • Step (3) Slurry preparation step
  • the inorganic ion adsorbent obtained in the step (2) is mixed with a good solvent for the porous molded body-forming polymer, the porous molded body-forming polymer, and optionally a water-soluble polymer to form a slurry.
  • the good solvent for the porous molded body-forming polymer used in step (2) and step (3) is a solvent that stably dissolves the porous molded body-forming polymer in an amount of more than 1% by mass under the manufacturing conditions of the porous molded body. There is no particular limitation as long as it is a known one.
  • the good solvent examples include N-methyl-2pyrrolidone (NMP), N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF) and the like.
  • NMP N-methyl-2pyrrolidone
  • DMAC N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • the amount of the porous molded body-forming polymer added in the step (3) is such that the ratio of the porous molded body-forming polymer/(porous porous body-forming polymer+water-soluble polymer+good solvent for the porous molded body-forming polymer) is The amount is preferably 3% by mass to 40% by mass, and more preferably 4% by mass to 30% by mass.
  • the content of the polymer for forming a porous molded body is 3% by mass or more, a porous molded body having high strength is obtained, and when the content is 40% by mass or less, a porous molded body having high porosity is obtained.
  • the water-soluble polymer is not necessarily added, but by the addition, a fibrous structure that forms a three-dimensionally continuous network structure on the outer surface and inside of the porous molded body.
  • a porous molded body including the body can be uniformly obtained, and a porous molded body that can surely adsorb ions even when the liquid is passed through at high speed is obtained.
  • the water-soluble polymer used in the step (3) is not particularly limited as long as it is compatible with the good solvent for the porous molded body forming polymer and the porous molded body forming polymer.
  • the water-soluble polymer any of natural polymers, semi-synthetic polymers, and synthetic polymers can be used. Examples of the natural polymer include guar gum, locust bean gum, color ginnan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein, collagen and the like.
  • Examples of the semi-synthetic polymer include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, methyl starch and the like.
  • Examples of the synthetic polymer include polyvinyl alcohol, polyvinylpyrrolidone (PVP), polyvinyl methyl ether, carboxyvinyl polymer, sodium polyacrylate, polyethylene glycols such as tetraethylene glycol and triethylene glycol.
  • polyvinylpyrrolidone (PVP) and polyethylene glycols are more preferable from the viewpoint of improving porosity.
  • the mass average molecular weights of polyvinylpyrrolidone (PVP) and polyethylene glycols are preferably 400 to 35,000,000, more preferably 1,000 to 1,000,000, and 2,000 to 100, More preferably, it is 000.
  • the mass average molecular weight of the water-soluble polymer can be measured by dissolving the water-soluble polymer in a predetermined solvent and then performing gel permeation chromatography (GPC) analysis.
  • the amount of the water-soluble polymer added is such that the ratio of water-soluble polymer/(water-soluble polymer+polymer for forming porous molded body+good solvent for polymer for forming porous molded body) is 0.1% by mass to 40% by mass.
  • the porous molded body includes a fibrous structure forming a three-dimensionally continuous network structure on the outer surface and inside of the porous molded body. Is uniformly obtained.
  • the addition amount of the water-soluble polymer is 40% by mass or less, the outer surface opening ratio is appropriate, and the presence of the inorganic ion adsorbent on the outer surface of the porous molded body is large. Even in this case, a porous molded body that can surely adsorb ions can be obtained.
  • Step (4) Molding step
  • the molding slurry is a mixed slurry of a porous molded body-forming polymer, a good solvent for the porous molded body-forming polymer, an inorganic ion adsorbent, and a water-soluble polymer.
  • the form of the porous formed article of the present embodiment can take any form such as a particle form, a yarn form, a sheet form, a hollow fiber form, a cylindrical form, a hollow cylindrical form, etc., depending on the method of forming the forming slurry.
  • Particulate for example, as a method of molding in the form of spherical particles, is not particularly limited, for example, from a nozzle provided on the side surface of the rotating container, the molding slurry contained in the container is scattered, A rotating nozzle method for forming drops can be used.
  • the rotating nozzle method it is possible to mold into a particulate form having a uniform particle size distribution.
  • a method of spraying a molding slurry from a one-fluid nozzle or a two-fluid nozzle to coagulate in a coagulating bath can be mentioned.
  • the diameter of the nozzle is preferably 0.1 mm to 10 mm, more preferably 0.1 mm to 5 mm.
  • the centrifugal force is represented by centrifugal acceleration, and is preferably 5G to 1500G, more preferably 10G to 1000G, and further preferably 10G to 800G. If the centrifugal acceleration is 5 G or more, droplets can be easily formed and scattered, and if it is 1500 G or less, it is possible to prevent the molding slurry from being discharged in the form of filaments and widening the particle size distribution.
  • Examples of the method of forming into a thread-like or sheet-like form include a method of extruding a forming slurry from a spinneret or a die having a corresponding shape and coagulating in a poor solvent.
  • a spinneret having an annular orifice is used, and the hollow fiber-shaped porous molded article can be molded in the same manner as a thread-shaped or sheet-shaped porous molded article.
  • the molding slurry when the molding slurry is extruded from the spinneret, it may be solidified in a poor solvent while cutting, or it may be solidified into a thread and then cut later. It doesn't matter.
  • the molded article with accelerated coagulation obtained in the step (4) is coagulated in a poor solvent to obtain a porous molded body.
  • a solvent having a solubility of the porous molded body-forming polymer of 1% by mass or less under the condition of the step (5) can be used, and examples thereof include water, alcohols such as methanol and ethanol. , Ethers, and aliphatic hydrocarbons such as n-hexane and n-heptane. Of these, water is preferable as the poor solvent.
  • the good solvent is brought in from the preceding step, and the concentration of the good solvent changes at the start and the end of the solidification step. Therefore, a poor solvent prepared by adding a good solvent in advance may be used, and it is preferable to perform the coagulation step by controlling the concentration while separately adding water or the like so as to maintain the initial concentration. By adjusting the concentration of the good solvent, it is possible to control the structure (outer surface aperture ratio and particle shape) of the porous molded body.
  • the content of the good solvent for the polymer for forming a porous molded body with respect to water in the coagulation step is 0 to 80% by mass. It is preferably 0 to 60% by mass.
  • the content of the good solvent in the porous molded body-forming polymer is 80% by mass or less, the effect of improving the shape of the porous molded body is exhibited.
  • the temperature of the poor solvent is preferably 40 to 100° C., more preferably 50 to 100° C., and 60 to 100° C. from the viewpoint of controlling the temperature and humidity of the space in step (4). Is more preferable.
  • the manufacturing apparatus includes a rotary container that scatters droplets by centrifugal force, and a coagulation tank that stores a coagulating liquid.
  • a cover for covering the space portion may be provided, and a control means for controlling the temperature and humidity of the space portion may be provided.
  • the rotary container that scatters droplets by centrifugal force is not limited to a specific structure as long as it has a function of forming the molding slurry into spherical droplets and scattering by centrifugal force. Examples include nozzles.
  • the molding slurry is supplied to the center of the rotating disc, and the molding slurry spreads in the form of a film with a uniform thickness along the surface of the rotating disc, and is divided into droplets from the peripheral edge of the disc by centrifugal force. Then, fine droplets are scattered.
  • the rotating nozzle forms a large number of through holes in the peripheral wall of a hollow disk type rotating container, or attaches a nozzle penetrating the peripheral wall to supply the molding slurry into the rotating container and rotate the rotating container. At this time, the forming slurry is discharged from the through hole or the nozzle by centrifugal force to form droplets.
  • the coagulation tank that stores the coagulation liquid is not limited to one having a specific structure as long as it has a function of storing the coagulation liquid.
  • a well-known coagulation tank with an upper surface opening or a cylindrical body that surrounds the rotating container A coagulation tank having a structure in which the coagulation liquid is allowed to flow down by gravity along the inner surface of the coke.
  • the coagulation tank with the upper surface opening is a device that naturally drops the liquid droplets that have been scattered horizontally from the rotary container and captures the liquid droplets with the water surface of the coagulation liquid stored in the coagulation tank with the upper surface opened.
  • the temperature and humidity control means for the space is a means for controlling the temperature and humidity of the space provided with a cover that covers the space between the rotary container and the coagulation tank.
  • the cover for covering the space portion is not limited to one having a specific structure as long as it has a function of separating the space portion from the external environment and facilitating the temperature and humidity of the space portion to be practically controlled. It can be box-shaped, tubular, or umbrella-shaped. Examples of the material of the cover include metallic stainless steel and plastic. It may be covered with a known heat insulating agent in order to isolate it from the external environment. The cover may be provided with an opening to adjust the temperature and humidity.
  • the means for controlling the temperature and humidity of the space portion need only have a function of controlling the temperature and humidity of the space portion, and is not limited to a specific means, and examples thereof include a heater such as an electric heater and a steam heater, and ultrasonic humidification.
  • the humidifier examples include a humidifier and a heating humidifier. From the viewpoint of simple structure, a means for heating the coagulation liquid stored in the coagulation tank and controlling the temperature and humidity of the space using the vapor generated from the coagulation liquid is preferable.
  • a coating film can be formed, for example, by applying a coating liquid containing PMEA or PVP-based polymer to the surface of the porous molded body.
  • the PMEA coating liquid infiltrates into the pores formed in the porous molded body, and does not significantly change the pore diameter of the surface of the porous molded body and PMEA can be included.
  • the solvent of the PMEA coating liquid is not particularly limited as long as it can dissolve or disperse PMEA without dissolving a polymer such as a porous molded body forming polymer or a water-soluble polymer that constitutes the porous molded body.
  • a polymer such as a porous molded body forming polymer or a water-soluble polymer that constitutes the porous molded body.
  • water or an aqueous alcohol solution is preferable because of the safety of the process and the ease of handling in the subsequent drying process. From the viewpoint of boiling point and toxicity, water, ethanol aqueous solution, methanol aqueous solution, isopropyl alcohol aqueous solution and the like are preferably used.
  • the solvent for the PVP coating liquid is not particularly limited as long as it is a solvent that does not dissolve a polymer such as a porous molded body-forming polymer or a water-soluble polymer that constitutes a porous molded body but can dissolve or disperse PVP.
  • water or an aqueous alcohol solution is preferable because of the safety of the process and the ease of handling in the subsequent drying process. From the viewpoint of boiling point and toxicity, water, ethanol aqueous solution, methanol aqueous solution, isopropyl alcohol aqueous solution and the like are preferably used.
  • the type of solvent and the composition of the solvent of the coating liquid are appropriately set in relation to the polymer constituting the porous molded body.
  • the concentration of the PMEA coating liquid is not limited, it can be, for example, 0.001% by mass to 1% by mass of the coating liquid, and more preferably 0.005% by mass to 0.2% by mass.
  • the method for applying the coating solution is not limited, but for example, a porous molded body is filled in an appropriate column (container), the coating solution containing PMEA is allowed to flow from the upper portion, and then the excess solution is removed using compressed air. A method of removing can be adopted. After that, it can be used as a medical device by washing with distilled water or the like to replace and remove the remaining unnecessary solvent and then sterilizing.
  • the amount (mg-P/mL-Resin (porous molded body)) is measured.
  • the phosphate ion concentration is measured by the molybdic acid direct method.
  • the phosphorus adsorption amount when the liquid passing rate is SV120 is 1.5 (mg-P/mL-Resin) or more, the adsorption capacity is large and it is judged that the phosphorus adsorption agent is good.
  • the blood circuit (1) has a blood collecting part (1a) for inserting blood into the blood vessel (A) of the patient, and the blood circuit (10) has a blood returning part (1b) for returning blood to the blood vessel (B) of the patient.
  • these blood circuits can be made of vinyl tubing.
  • a pump (2) is arranged in the blood circuit (1). By this pump (2), blood is supplied to the blood component regulator (4) or to the blood purification device (3) via the bypass piping system (6).
  • the blood purification device (3) has a dialysate inlet (3a) and a dialysate outlet (3b).
  • the blood component adjuster (4) is arranged closer to the blood sampling unit (1a) than the blood purification device (3).
  • pressure sensors (5 to 5′′′) for measuring the blood pressure at the inlet and the filtrate pressure at the outlet are provided.
  • a bypass piping system (6) is provided at both ends of the blood component regulator (4).
  • the valve (7) is provided in the bypass piping system (6).
  • the blood circuit (1) has a blood collecting part (1a) for inserting blood into the blood vessel (A) of the patient, and the blood circuit (10) has a blood returning part (1b) for returning blood to the blood vessel (B) of the patient.
  • these blood circuits can be made of vinyl tubing.
  • a pump (2) is arranged in the blood circuit (1). By this pump (2), blood is supplied to the blood purification device (3) or to the blood component regulator (4) via the bypass piping system (6).
  • the blood purification device (3) has a dialysate inlet (3a) and a dialysate outlet (3b).
  • the blood component adjuster (4) is arranged closer to the blood return part (1b) than the blood purification device (3).
  • pressure sensors 5 to 5′′′ for measuring the blood pressure at the inlet and the filtrate pressure at the outlet are provided.
  • a bypass piping system (6) is provided at both ends of the blood purification device (3).
  • the valve (7) is provided in the bypass piping system (6).
  • the extracorporeal blood circulation system switches the dialysis mode to the blood-return mode based on the pressure loss of the blood purification device and the blood component regulator, and bypasses the blood circuit to provide a blood purification device and a blood component regulator. , And the blood circuit (piping system) can be prevented from being damaged, so that it can be used safely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • External Artificial Organs (AREA)

Abstract

血液浄化デバイス及び血液成分調整器を備え、安全に使用することができる体外血液循環デバイスを提供する。本発明は、血液成分調整器;血液浄化デバイス;採血部からの血液を血液成分調整器に供給するためのポンプ、生理食塩水を供給するための弁、及び圧力損失を検知するための圧力計を備えた配管系;血液成分調整器をバイパスして血液浄化デバイスに血液供給するためのバイパス配管系;圧力損失を検知するための圧力計を備え、血液成分調整器と血液浄化デバイスを接続する配管系;血液浄化デバイスからの血液を返血部に戻すための、また、生理食塩水を回収するための弁、及び圧力損失を検知するための圧力計を備えた配管系;並びに血液成分調整器の圧力損失に基づき、バイパス配管系に切替えるための機能、及び血液浄化デバイスの圧力損失に基づき、返血モードに切替えるための機能を有する制御ユニット;を具備する体外血液循環デバイスに関する。

Description

血液浄化デバイスと血液成分調整器を備えた体外血液循環システム
 本発明は、血液浄化デバイスと血液成分調整器を備えた体外血液循環システムに関する。より詳しくは、本発明は、血液浄化デバイスと該血液浄化デバイスとは異なる血液成分調整器を備えた体外血液循環システムにおいて、該血液浄化デバイスと該血液成分調整器の圧力損失に基づき、透析モードを返血モードに切替え、また、血液回路をバイパスことで、安全に使用することができる体外血液循環システムに関する。
 血液透析装置は、慢性腎不全患者の透析療法を行う装置として広く普及している。透析療法とは、特に尿の出ない患者にとって、飲食した水分を除去(一般に除水という。)する生命を維持するために必要な手段であり、透析装置の存在は極めて重要である。
 近年、高性能の血液浄化デバイス(透析器)が開発され、多量の除水が可能となっているが、腎機能に障害を有している慢性腎不全患者には、除水に加えて多機能な透析療法が望まれている。
 慢性腎不全患者は、過剰なリンを体外に適切に排出できないため、徐々に体内にリンが蓄積され、高リン血症等の疾患を引き起こす。高リン血症が持続すると、二次性副甲状腺機能亢進症が引き起こされ、骨が痛む、脆くなる、変形する、骨折しやすい等の症状を特徴とする腎性骨症となる。これに高カルシウム血症を合併した場合は、心血管系の石灰化による心不全発症のリスクが高くなる。
 心血管系の石灰化は最も深刻な合併症の1つであるので、慢性腎不全患者において、高リン血症を防ぐために体内のリンの量を適切にコントロールすることは非常に重要である。
 以下の特許文献1には、血液浄化デバイスを用いて血液を処理する血液浄化工程と、血液浄化工程の前及び/又は後に、リン吸着工程を含む血液浄化方法が記載されている。
 他の例として、慢性腎不全患者は血液量が多いため心不全を発症する場合が多い。心不全の治療には二重濾過血漿交換法(DFPP: Double Filtration Plasma Pheresis)と血漿灌流吸着療法(PP: Plasma Perfusion)が適している。透析と同時に血液成分を調整できる装置を安全に使用することができれば、慢性腎不全患者の精神的・身体的負担を軽減することができる。
 このように、透析と同時に血液成分を調整できる、安全に使用することができる体外血液循環システムを提供する必要性がある。
国際公開第2017/082423号
 前記した従来技術に鑑み、本発明が解決しようとする課題は、血液浄化デバイスと該血液浄化デバイスとは異なる血液成分調整器を備え、安全に使用することができる体外血液循環システムを提供することである。
 本発明者らは、前記課題を解決すべく鋭意検討し実験を重ねた結果、血液浄化デバイスと該血液浄化デバイスとは異なる血液成分調整器を備えた体外血液循環システムにおいて、血液浄化デバイスと血液成分調整器の圧力損失に基づき、透析モードを返血モードに切替え、また、血液回路をバイパスことで、安全に使用することができることを予想外に見出し、本発明を完成するに至ったものである。
 すなわち、本発明は、以下のとおりのものである。
 [1]採血部(1a)から返血部(1b)に至る体外血液循環システムであって、以下の:
 血液成分調整器(4);
 血液浄化デバイス(3);
 透析モードにおいて該採血部(1a)からの血液を該血液成分調整器(4)に供給するためのポンプ(2)、返血モードにおいて血液に代えて配管系(11)からの生理食塩水又はエアーを供給するための弁(8)、及び該血液成分調整器(4)の圧力損失を検知するための圧力計(5)を備えた配管系(1);
 該血液成分調整器(4)をバイパスして血液浄化デバイス(3)に血液を、返血モードにおいては生理食塩水又はエアーを、供給するための、弁(7)を備えたバイパス配管系(6);
 該血液成分調整器(4)及び/又は該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’、5’’)を備え、かつ、該血液成分調整器(4)と該血液浄化デバイス(3)を接続する配管系(9);
 透析モードにおいて該血液浄化デバイス(3)からの血液を該返血部(1b)に戻すための、また、該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’’’)を備えた配管系(10)、及び必要により、返血モードにおいて血液に代えて配管系(11’)に生理食塩水又はエアーを回収するための弁(8’);並びに
 該血液成分調整器(4)の圧力損失に基づき、該配管系(1)と該バイパス配管系(6)を切替えるための機能、及び該血液浄化デバイス(3)の圧力損失に基づき、透析モードと返血モードを切替えるための機能を有する制御ユニット;
を具備する体外血液循環システム。
 [2]採血部(1a)から返血部(1b)に至る体外血液循環システムであって、以下の:
 血液浄化デバイス(3);
 血液成分調整器(4);
 透析モードにおいて該採血部(1a)からの血液を該血液浄化デバイス(3)に供給するためのポンプ(2)、返血モードにおいて血液に代えて配管系(11)からの生理食塩水又はエアーを供給するための弁(8)、及び該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’’)を配管系(1);
 該血液浄化デバイス(3)をバイパスして該血液成分調整器(4)に血液を、返血モードにおいては生理食塩水又はエアーを、供給するための、弁(7)を備えたバイパス配管系(6);
 該血液浄化デバイス(3)及び/又は該血液成分調整器(4)の圧力損失を検知するための圧力計(5、5’’’)を備え、かつ、該血液浄化デバイス(3)と該血液成分調整器(4)を接続する配管系(9);
 透析モードにおいて該血液成分調整器(4)からの血液を該返血部(1b)に戻すための、また、該血液成分調整器(4)の圧力損失を検知するための圧力計(5’)を備えた配管系(10)、及び必要により、返血モードにおいて血液に代えて配管系(11’)に生理食塩水又はエアーを回収するための弁(8’);並びに
 該血液浄化デバイス(3)の圧力損失に基づき、該配管系(1)と該バイパス配管系(6)を切替えるための機能、該血液成分調整器(4)の圧力損失に基づき、透析モードと返血モードを切替えるための機能を有する制御ユニット;
を具備する体外血液循環システム。
 [3]前記血液成分調整器(4)が血液成分調整体を有する、前記[1]又は[2]に記載の体外血液循環システム。
 [4]前記血液成分調整体が多孔性成形体である、前記[1]に記載の体外血液循環システム。
 [5]前記多孔性成形体が、多孔性成形体形成ポリマーと親水性ポリマーから、又は多孔性成形体形成ポリマーと親水性ポリマーと無機イオン吸着体から構成される、前記[4]に記載の体外血液循環システム。
 [6]前記多孔性成形体形成ポリマーは、芳香族ポリスルホンである、前記[5]に記載の体外血液循環システム。
 [7]前記親水性ポリマーは、生体適合性ポリマーである、前記[5]又は[6]に記載の体外血液循環システム。
 [8]前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマーである、前記[7]に記載の体外血液循環システム。
 [9]前記多孔性成形体は、生体適合性ポリマーにより被覆されている、前記[4]~[8]のいずれかに記載の体外血液循環システム。
 [10]前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマー及びポリメトキシエチルアクリレート(PMEA)からなる群から選ばれる、前記[9]に記載の体外血液循環システム。
 [11]前記多孔性成形体の血中リン吸着量が、2(mg-P/mL-Resin)以上である、前記[4]~[10]のいずれかに記載の体外血液循環システム。
 [12]前記無機イオン吸着体が、下記式(I):
   MN・mHO  …(I)
{式中、xは、0~3であり、nは、1~4であり、mは、0~6であり、そしてMとNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb、及びTaからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属酸化物を含有する、前記[5]~[11]のいずれかに記載の体外血液循環システム。
 [13]前記金属酸化物が、下記(a)~(c)群:
 (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム;
 (b)チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物;
 (c)活性アルミナ
から選ばれる、前記[12]に記載の体外血液循環システム。
 本発明に係る体外血液循環システムは、血液浄化デバイスと血液成分調整器の圧力損失に基づき、透析モードを返血モードに切替え、また、血液回路をバイパスことで、血液浄化デバイス、血液成分調節器、及び血液回路(配管系)の破損を回避することができるため、安全に使用することができる。
実施例1の体外血液循環システムの概略図である。 実施例2の体外血液循環システムの概略図である。 本実施形態の血液浄化器の、牛血漿を使用した低リン濃度血清によるカラムフロー試験装置の概要図である。
 以下、本発明の実施形態を詳細に説明する。
 本発明の1の実施形態は、採血部(1a)から返血部(1b)に至る体外血液循環システムであって、以下の:
 血液成分調整器(4);
 血液浄化デバイス(3);
 透析モードにおいて該採血部(1a)からの血液を該血液成分調整器(4)に供給するためのポンプ(2)、返血モードにおいて血液に代えて配管系(11)からの生理食塩水又はエアーを供給するための弁(8)、及び該血液成分調整器(4)の圧力損失を検知するための圧力計(5)を備えた配管系(1);
 該血液成分調整器(4)をバイパスして血液浄化デバイス(3)に血液を、返血モードにおいては生理食塩水又はエアーを、供給するための、弁(7)を備えたバイパス配管系(6);
 該血液成分調整器(4)及び/又は該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’、5’’)を備え、かつ、該血液成分調整器(4)と該血液浄化デバイス(3)を接続する配管系(9);
 透析モードにおいて該血液浄化デバイス(3)からの血液を該返血部(1b)に戻すための、また、該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’’’)を備えた配管系(10)、及び必要により、返血モードにおいて血液に代えて配管系(11’)に生理食塩水又はエアーを回収するための弁(8’);並びに
 該血液成分調整器(4)の圧力損失に基づき、該配管系(1)と該バイパス配管系(6)を切替えるための機能、及び該血液浄化デバイス(3)の圧力損失に基づき、透析モードと返血モードを切替えるための機能を有する制御ユニット;
を具備する体外血液循環システムである。
 かかる1の実施形態は、具体的には、以下の実施例1に対応するものであり、その概要を図1に示す。
 本発明の他の実施形態は、採血部(1a)から返血部(1b)に至る体外血液循環システムであって、以下の:
 血液浄化デバイス(3);
 血液成分調整器(4);
 透析モードにおいて該採血部(1a)からの血液を該血液浄化デバイス(3)に供給するためのポンプ(2)、返血モードにおいて血液に代えて配管系(11)からの生理食塩水又はエアーを供給するための弁(8)、及び該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’’)を配管系(1);
 該血液浄化デバイス(3)をバイパスして該血液成分調整器(4)に血液を、返血モードにおいては生理食塩水又はエアーを、供給するための、弁(7)を備えたバイパス配管系(6);
 該血液浄化デバイス(3)及び/又は該血液成分調整器(4)の圧力損失を検知するための圧力計(5、5’’’)を備え、かつ、該血液浄化デバイス(3)と該血液成分調整器(4)を接続する配管系(9);
 透析モードにおいて該血液成分調整器(4)からの血液を該返血部(1b)に戻すための、また、該血液成分調整器(4)の圧力損失を検知するための圧力計(5’)を備えた配管系(10)、及び必要により、返血モードにおいて血液に代えて配管系(11’)に生理食塩水又はエアーを回収するための弁(8’);並びに
 該血液浄化デバイス(3)の圧力損失に基づき、該配管系(1)と該バイパス配管系(6)を切替えるための機能、該血液成分調整器(4)の圧力損失に基づき、透析モードと返血モードを切替えるための機能を有する制御ユニット;
を具備する体外血液循環システムである。
 かかる他の実施形態は、具体的には、以下の実施例2に対応するものであり、その概要を図2に示す。
 尚、本明細書中、「配管系」は「血液回路」ともいう。
 上記他の実施形態は、1の実施形態において血液浄化デバイスと血液成分調整器が入れ替わったものである。
 以下、1の実施形態の使用方法、動作について、図1を参照して説明する。
 採血部(1a)と返血部(1b)は、それぞれ、患者の血管(A)と(B)に刺し込まれる。透析モードにおいては、血液成分調整器(4)の入口の血液圧と出口の濾液圧を血液成分調整器(4)の両端部にある圧力センサー(5、5’)により測定する。血液成分調整器(4)内に収容された血液成分調整体の目詰まり等により血液成分調整器(4)の入口の圧力が上昇して所定の圧力に達したとき、又は圧力損失が所定値を超えたとき、制御ユニット(図示せず。)の指令により、バイパス配管系(6)の弁(7)を、血液成分調整器(4)をバイパスするように開ける。弁(7)はバイパス配管系(6)のどの部分に接続してもよい。透析モードにおいては、血液浄化デバイス(3)の入口の血液圧と出口の濾液圧を血液浄化デバイス(3)の両端部にある圧力計(センサー)(5’’、5’’’)により測定する。中空糸等の目詰まり等により血液浄化デバイス(3)の圧力が上昇して所定の圧力に達したとき、又は圧力損失が所定値を超えたとき、制御ユニット(図示せず。)の指令により、配管系(1)の三方弁(8)を配管系(11)に切替え、存在する場合には配管系(10)の三方弁(8’)を配管系(11’)に切替えて、透析モード(透析治療)から返血モード(患者に返血)又は他のモード、例えば、停止モードに変更する。ここで、配管系(11)は、生理食塩水又はエアーを供給するリザーバー(C)に接続され、存在する場合には配管系(11’)は、血液成分調整器(4)、血液浄化デバイス(3)、及び血液回路内から回収された血液及び/又は生理食塩水を体内に戻す前に一時的に貯留するリザーバー(C’)に接続される。
 前記した血液浄化デバイス、血液成分調整器、配管系(血液回路)、及び制御ユニットを備える本実施形態の体外血液循環システムは、抗凝固薬注入器、動脈圧モニター、静脈圧モニター、透析液圧モニター、気泡探知機、透析液供給装置、警報機能を有する透析用監視装置等の一部として構成されることができる。このような透析用監視装置により、各種電子部品やポンプ等の機器を自動運転することが可能となる。また、血液成分調整器として、複数が組合わさったデバイス(例えば、DFPP回路を含む)を用いた場合には、血液成分調整器に、電子部品やポンプ等の機器が含まれることになる。これらの電子部品や機器も透析用監視装置に接続され自動制御されることができる。血液成分調整器の機能に応じて改良した透析用監視装置を用いることもできる。あるいは、血液成分調整器の機能と運転を、透析用監視装置ではなく別装置で監視・制御してもよい。また、本実施形態の体外血液循環システムは、安全に使用するために、災害時等の停電時にも作動できるように発電装置やバッテリーを備えたものであることが好ましい。
 前記したように、上記他の実施形態は、上記1の実施形態において血液浄化デバイスと血液成分調整器が入れ替わったものであるため、上記1の実施形態の使用方法、動作についての説明は、図2を参照して他の実施形態機の使用方法、動作にも、同様に適用可能であろう。
 以下、本実施形態の体外血液循環システムの動作における各種モードについて説明する。
[洗浄又はプライミングモード]
 血液浄化デバイス、血液成分調整器、バイパスを含む血液回路内の微小な塵、充填液、及び空気を生理食塩水等により洗浄除去し、透析モードを開始できる状態にするモードである。洗浄又はプライミングモードでは、血液回路の採血部(1a)と返血部(1b)は、それぞれ、患者の血管(A)と(B)には刺し込まれず、リザーバー(C、C’)、廃棄物リザーバー等に接続される。
[透析モード]
 血液回路の採血部(1a)と返血部(1b)は、それぞれ、患者の血管(A)と(B)に刺し込まれ、患者に透析治療を行うモードとなる。
[返血モード]
 血液浄化デバイス、血液成分調整器、バイパスを含む血液回路内の血液を、清潔、かつ、安全に体内に戻すモードである。返血モードにおける返血方法は、生理食塩水置換法、エアー置換法に大別される。どちらを用いてもよいが、安全性の観点から生理食塩水置換法が好ましい。返血完了時には、自動的に停止モードとなる。
[停止モード]
 体外血液循環システム稼働時に透析用監視装置が異常を感知した場合、停止モードに入る。停電した場合にも自動的に停止モードに入る。停電復旧後に自動的に返血モードへの移行又は透析モードを再開することが可能である。返血モードの場合にも停電時に自動的に停止モードとなるが、停電復旧後に返血モードが再開される。停電復旧後に透析用監視装置が異常を感知した場合、停止モードを維持する。
 以下、血液浄化デバイス(3)、圧力計(センサー)(5、5’、5’’、5’’’)、バイパス配管系(6)、弁(7、8、8’)、血液成分調整器(4)について順番に説明する。
[血液浄化デバイス(3)]
 血液浄化デバイス(3)は、特に制限はなく、一般に血液透析治療に使用されている中空糸膜を収納した血液浄化モジュールであればよく、例えば、血液透析(HD: Hemodialysis)、限外濾過(ECUM: Extracorporeal ultrafiltration)、血液濾過透析(HDF: Hemodialysis filtration)、持続的血液濾過透析(CHDF: Continuous Hemodiafiltration)、持続的血液濾過(CHF: Continuous Hemofiltration)、持続的血液透析(CHD: Continuous Hemodialysis)等に用いられる血液浄化モジュールが挙げられる。図1に示すように、一般に透析液は、入口(3a)から出口(3b)に流れる。
[圧力計(センサー)]
 配管系(1、9、10)に設置される圧力計(センサー)(5、5’、5’’、5’’’)は、特に制限はなく、血液浄化デバイス(3)、血液成分調整器(4)の入口及び/又は出口の圧力を電気信号に変えるものであればよく、ゲージ式(ひずみゲージ式、金属ゲージ式、半導体ゲージ式、半導体隔膜式)、静電容量型、光ファイバー型、振動式、空気式等を例示できる。圧力センサーは、血液浄化デバイス(3)、血液成分調整器(4)の一方に存在してもよく、必ずしも両端にある必要はない。また、圧力センサーを血液浄化デバイスと血液成分調整器の内部に埋め込むことも可能である。
[バイパス配管系(6)]
 図1では、血液成分調整器(4)の両端を、図2では、血液浄化デバイス(3)の両端を連絡するバイパスを設けて、血液成分調整器(4)又は血液浄化デバイス(3)の入口圧力が上昇して所定の圧力に達したとき、又は圧力損失が所定値を超えたとき、バイパス配管系(6)に接続した弁(7)を開いてバイパス配管系(6)に血液等を流すことができる。想定しない圧力上昇にも対応できるので、安全に透析療法を行うことが可能である。バイパス配管系(6)の素材は、他の配管系(1、10)(血液回路)と同一の素材であってもよいし、異なる素材であってもよい。
[弁(7、8、8’)]
 バイパス配管系(6)に接続される弁(7)は、該配管系のどの部分に位置してもよいし、配管系(1)とバイパス配管系(6)は、三方弁で切替えることもできる。弁(7)は、バイパスへの通液を開閉する機能を有する機器であり、電子制御可能である。半開状態でバイパスへの通液量を調整することも可能である。半開状態から閉状態に、また、閉状態から半開状態にすることも可能である。
 配管系(1)に設置する弁(8)、必要により配管系(10)に設置する弁(8’)は、透析モードと返血モードを切替え、返血モードにおいて生理食塩水又はエアーを供給又は回収するための機器であり、電子制御可能である。これらの弁は、三方弁であることができる。
[血液成分調整器(4)]
 血液成分調整器(4)は、血液浄化デバイス(3)とは異なる。血液成分調整器(4)とは、生物の血液成分を除去又は供給することが可能なデバイスであり、特に限定されない。単一デバイス(例えば、水素供給器、サイトカイン除去器等)、複数が組合わさったデバイス(例えば、DFPP等)であってもよい。血液成分としては、水分、血漿、血球(赤血球、白血球、リンパ球、血小板等)、タンパク質(アルブミン、フィブリノーゲン、免疫グロブリン等)、糖類(グルコース、グリコーゲン等)、脂質(中性脂肪、リン脂質、コレステロール等)、無機塩類(塩素、重炭酸、硫酸、リン酸、カルシウム、ナトリウム、カリウム、マグネシウム、鉄、銅、リン等からなる塩類)、アミノ酸、ホルモン、ビタミン類、インスリン、水素、窒素、酸素、二酸化炭素、尿素、クレアチン、クレアチニン、アンモニア、抗体、病原体、細菌、ウイルス、寄生虫、腫瘍細胞、サイトカイン(分子量8~30kDaの細胞の増殖・分化・機能発現に作用するタンパク質であってインターロイキン-1β、インターロイキン-6、インターロイキン-8、TNFα等が挙げられる)、エクソソーム、マイクロパーティクル、RNA、MicroRNA等である。血液成分調整器は、疾病の原因(関連)物質を除去し、又は疾病を治療するための物質を供給することができる。
[血液成分調整体]
 血液成分調整器は、血液成分調整体を収容することができる。血液成分調整体とは、血液成分を除去又は供給機能を有する多孔性成形体であることができ、例えば、活性炭、膜(例えば、中空糸膜、平膜(スパイラル型、プリーツ型)、チューブラー膜、モノリス型セラミック膜)、ビーズ、繊維等であることができる。例えば、血液成分調整器(4)が水素供給器であれば、血液成分調整体としてガス交換膜(人工肺)を用いることができる。また、目的物の除去のためには、適したリガンドを多孔性成形体に付与すればよい。静電結合作用を有するリガンド(例えば、ポリアクリル酸等)、疎水結合を有するリガンド(例えば、ヘキサデシル基、石油ピッチ系活性炭)、複合的結合を有するリガンド(例えば、ポリミキシンB)等が用いることができる。例えば、リガンドとしてポリアクリル酸を用いれば、コレステロールの除去が可能であり、リガンドとしてポリミキシンBを用いれば、エンドトキシンの除去が可能である。繊維素材としてポリエステル、ビーズ素材としてセルロースジアセテートを用いれば、白血球の除去が可能である。
[多孔性成形体]
 本実施形態の多孔性成形体は、多孔性成形体形成ポリマーと親水性ポリマー、又は多孔性成形体形成ポリマーと親水性ポリマーと無機イオン吸着体から構成される。多孔性成形体が、無機イオン吸着体を含む場合には、窒素ガス吸着法で測定した細孔直径1nm~80nmの細孔体積の総和が該無機イオン吸着体の単位質量当たり0.05cm/g~0.7cm/gであり、好ましくは0.1cm/g~0.6cm/gであり、より好ましくは0.2cm/g~0.5cm/gであることができる。
 細孔体積は凍結乾燥した多孔性成形体を窒素ガス吸着法により測定し、BJH法によって算出されるものである。
 無機イオン吸着体の単位質量当たりの細孔体積の総和Vaは、乾燥した多孔性成形体から算出された多孔性成形体の単位質量当たりの細孔体積をVb(cm/g)、多孔性成形体の無機イオン吸着体担持量をSa(質量%)としたとき、下記式(1):
   Va = Vb / Sa × 100  …(1)
で求められる。
 多孔性成形体の無機イオン吸着体の担持量(質量%)Saは、多孔性成形体の乾燥時の質量Wa(g)、灰分の質量Wb(g)とするとき下記式(2):
   Sa = Wb / Wa × 100  …(2)
で求められる。
 ここで、灰分とは多孔性成形体を800℃で2時間焼成したときの残分である。
 窒素ガス吸着法により測定される多孔性成形体の細孔体積は、主に多孔性成形体に含まれる無機イオン吸着体の細孔体積が反映された値となるため、その値が大きいほど無機イオン吸着体内部へのイオンの拡散効率が高くなり、吸着容量が高くなることを意味する。
 無機イオン吸着体の単位質量当たりの細孔体積の総和が0.05cm/gより小さいと、無機イオン吸着体の細孔体積が小さく、吸着容量が著しく低下する。他方、この値が0.7cm/gより大きいと、無機イオン吸着体の嵩密度が高く、原液スラリーの粘度上昇が起こり、造粒が困難となる。
 窒素ガス吸着法により測定した多孔性成形体の比表面積は、好ましくは50m/g~400m/g、より好ましくは70m/g~350m/g、さらに好ましくは100m/g~300m/gである。
 比表面積は凍結乾燥した多孔性成形体を窒素ガス吸着法により測定し、BET法によって算出されるものである。
 窒素ガス吸着法により測定される多孔性成形体の比表面積は、主に多孔性成形体に含まれる無機イオン吸着体の比表面積が反映された値となるため、その値が大きいほどイオンの吸着サイトが増加して、吸着容量が高くなることを意味する。
 多孔性成形体の比表面積が50m/gより小さいと、無機イオン吸着体の吸着サイトが少なく、吸着容量が著しく低下する。他方、この値が400m/gより大きいと、無機イオン吸着体の嵩密度が高く、原液スラリーの粘度上昇が起こり、造粒が困難となる。
 多孔性成形体に含まれる無機イオン吸着体の担持量は、好ましくは30質量%~95質量%、より好ましくは40質量%~90質量%、さらに好ましくは50質量%~80質量%である。
 かかる担持量が30質量%未満であると、イオンの吸着対象物質と吸着基質である無機イオン吸着体との接触頻度が不十分となりやすく、他方、95質量%を超えると、多孔性成形体の強度が不足しやすい。
 多孔性成形体は、平均粒径が100μm~2500μmであり、かつ、実質的に球状粒子の形態にあることが好ましく、平均粒形は、150μm~2000μmであることがより好ましく、200μm~1500μmであることがさらに好ましく、300μm~1000μmであることがよりさらに好ましい。
 多孔性成形体は、球状粒子の形態であることが好ましく、球状粒子としては、真球状のみならず、楕円球状であってもよい。
 平均粒径は、多孔性成形体を球状とみなして、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のメディアン径を意味する。
 平均粒径が100μm以上であれば、多孔性成形体をカラムやタンクになどの容器へ充填した際に圧カ損失が小さいため高速通水処理に適する。他方、平均粒径が2500μm以下であれば、カラムやタンクに充填したときの多孔性成形体の表面積を大きくすることができ、高速で通液処理してもイオンを確実に吸着することができる。
[無機イオン吸着体]
 多孔性成形体を構成する無機イオン吸着体とは、イオン吸着現象又はイオン交換現象を示す無機物質を意味する。
 天然物系の無機イオン吸着体としては、例えば、ゼオライト、モンモリロナイト等の各種の鉱物性物質等が挙げられる。
 各種の鉱物性物質の具体例としては、アルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライト及びモンモリロナイト等が挙げられる。
 合成物系の無機イオン吸着体としては、例えば、金属酸化物、多価金属の塩及び不溶性の含水酸化物等が挙げられる。金属酸化物としては、複合金属酸化物、複合金属水酸化物及び金属の含水酸化物等を含む。
 無機イオン吸着体は、吸着対象物、中でも、リンの吸着性能の観点から、下記式(I):
   MN・mHO  …(I)
{式中、xは、0~3であり、nは、1~4であり、mは、0~6であり、そしてMとNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb、及びTaからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属酸化物を含有することが好ましい。
 金属酸化物は、上記式(I)中のmが0である未含水(未水和)の金属酸化物であってもよいし、mが0以外の数値である金属の含水酸化物(水和金属酸化物)であってもよい。
 上記式(I)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布し、金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される複合金属酸化物である。
 具体的には、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe)、ジルコニウムの含水亜鉄酸塩(Zr・Fe・mHO、ここで、mは0.5~6である。)等が挙げられる。
 無機イオン吸着体は、上記式(I)で表される金属酸化物を複数種含有していてもよい。
 無機イオン吸着体としての金属酸化物は、吸着対象物、中でも、リンの吸着性能に優れているという観点から、下記(a)~(c)群:
 (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
 (b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物
 (c)活性アルミナ
から選ばれることが好ましい。
 (a)~(c)群のいずれかの群から選択される材料であってもよく、(a)~(c)群のいずれかの群から選択される材料を組み合わせて用いてもよく、(a)~(c)群のそれぞれにおける材料を組み合わせて用いてもよい。組み合わせて用いる場合には、(a)~(c)群のいずれかの群から選ばれる2種以上の材料の混合物であってもよく、(a)~(c)群の2つ以上の群から選ばれる2種以上の材料の混合物であってもよい。
 無機イオン吸着体は、安価で吸着性が高いという観点から、硫酸アルミニウム添着活性アルミナを含有してもよい。
 無機イオン吸着体としては、上記式(I)で表される金属酸化物に加え、上記M及びN以外の金属元素がさらに固溶したものは、無機イオンの吸着性や製造コストの観点から、より好ましい。
 例えば、ZrO・mHO(mが0以外の数値である。)で表される水和酸化ジルコニウムに、鉄が固溶したものが挙げられる。
 多価金属の塩としては、例えば、下記式(II):
   M2+ (1-p)3+ (OH(2+p-q)(An-q/r …(II)
{式中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+、及びCu2+からなる群から選ばれる少なくとも一種の二価の金属イオンであり、M3+は、Al3+及びFe3+からなる群から選ばれる少なくとも一種の三価の金属イオンであり、An-は、n価のアニオンであり、0.1≦p≦0.5であり、0.1≦q≦0.5であり、そしてrは、1又は2である。}で表されるハイドロタルサイト系化合物が挙げられる。
 上記式(II)で表されるハイドロタルサイト系化合物は、無機イオン吸着体として原料が安価であり、吸着性が高いことから好ましい。
 不溶性の含水酸化物としては、例えば、不溶性のヘテロポリ酸塩及び不溶性ヘキサシアノ鉄酸塩等が挙げられる。
 無機イオン吸着体として、金属炭酸塩は吸着性能の観点で優れた性能を有するが、溶出の観点からは炭酸塩を用いる場合は用途の検討が必要である。
 金属炭酸塩としては、炭酸イオンとのイオン交換反応が期待できるという観点から、下記式(III):
   QyRz(CO)s・tHO   …(III)
{式中、yは、1~2であり、zは、0~1であり、sは、1~3であり、tは、0~8であり、そして、QとRは、Mg、Ca、Sr、Ba、Sc、Mn、Fe、Co、Ni、Ag、Zn、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属炭酸塩を含有することができる。
 金属炭酸塩は、上記式(III)中のtが0である未含水(未水和)の金属炭酸塩であってもよいし、tが0以外の数値である水和物であってもよい。
 無機イオン吸着体としては、溶出が少なく、リン、ホウ素、フッ素及び/又はヒ素の吸着性能に優れているという観点から、下記(d)群:
 (d)炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸スカンジウム、炭酸マンガン、炭酸鉄、炭酸コバルト、炭酸ニッケル、炭酸銀、炭酸亜鉛、炭酸イットリウム、炭酸ランタン、炭酸セリウム、炭酸プラセオジム、炭酸ネオジム、炭酸サマリウム、炭酸ユウロピウム、炭酸ガドリニウム、炭酸テルビウム、炭酸ジスプロシウム、炭酸ホルミウム、炭酸エルビウム、炭酸ツリウム、炭酸イッテルビウム、及び炭酸ルテチウム;
から選ばれることが好ましい。
 金属炭酸塩の無機イオン吸着機構としては、金属炭酸塩の溶出、金属炭酸塩上での無機イオンと金属イオンの再結晶化が予想されるため、金属炭酸塩の溶解度が高いものほど無機イオン吸着量は高く、優れた吸着性能を期待できる。同時に、無機イオン吸着体からの金属溶出が懸念されるため、金属溶出が問題となる用途での使用においては充分な検討が必要となる。
 多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、例えば、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム、ハフニウム等が挙げられる。
 多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、例えば、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム、ハフニウム等が挙げられる。
 有機液体への置換方法は、特に限定されるものではなく、有機液体に水を含んだ無機イオン吸着体を分散させた後に遠心分離、濾過をしてもよいし、フィルタープレス等でろ過を行った後に有機液体を通液してもよい。置換率を高くするためには、有機液体へ無機イオン吸着体を分散後に濾過する方法を繰り返すことが好ましい。
 製造時に含有される水分の有機液体への置換率は、50質量%~100質量%であればよく、好ましくは70質量%~100質量%、より好ましくは80質量%~100質量%であればよい。
 有機液体の置換率とは、有機液体への置換率をSb(質量%)、水を含んだ無機イオン吸着体を有機液体で処理後の濾液の水分率をWc(質量%)とするとき下記式(3):
   Sb = 100 - Wc  …(3)
で表される値をいう。
 有機液体で処理後の濾液の水分率は、カールフィッシャー法で測定することで求められる。
 無機イオン吸着体に含まれる水分を有機液体に置換した後に乾燥を行うことで、乾燥時の凝集を抑制することができ、無機イオン吸着体の細孔体積を増加させることができ、その吸着容量を増加させることができる。
 有機液体の置換率が50質量%未満であると、乾燥時の凝集抑制効果が低くなり無機イオン吸着体の細孔体積が増加しない。
[多孔性成形体形成ポリマー]
 本実施形態に係る多孔性成形体形成ポリマーは、多孔性成形体を形成することができるポリマーであればよく、例えば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー、ポリアリールエーテルスルホン、ポリプロピレン系ポリマー、ポリスチレン系ポリマー、ポリカーボネート系ポリマー、多種類等が挙げられる。中でも芳香族ポリスルホンは、その熱安定性、耐酸、耐アルカリ性、機械的強度に優れるため好ましい。
 本実施形態で用いられる芳香族ポリスルホンとしては、下記式(IV):
   -O-Ar-C(CH-Ar-O-Ar-SO-Ar- …(IV)
{式中、Arは、パラ位での2置換のフェニル基である。}又は下記式(V):
   -O-Ar-SO-Ar-  …(V)
{式中、Arは、パラ位での2置換のフェニル基である。}で表される繰り返し単位を有するものが挙げられる。尚、芳香族ポリスルホンの重合度や分子量については特に限定しない。
[親水性ポリマー]
 親水性ポリマーとしては、水中で膨潤するが、水に溶解しないものであればよく、特に限定されないが、スルホン酸基、カルボキシル基、カルボニル基、アミノ基、アミド基、シアノ基、ヒドロキシル基、メトキシ基、リン酸基、オキシエチレン基、イミノ基、イミド基、イミノエーテル基、ピリジン基、ピロリドン基、イミダゾール基、4級アンモニウム基等を単独あるいは複数種有するポリマーを例示することができる。
 多孔性成形体形成ポリマーが芳香族ポリスルホンである場合、親水性ポリマーとしてはポリビニルピロリドン(以下、PVPともいう。)系ポリマーが最も好ましい。
 ポリビニルピロリドン系ポリマーとしては、ビニルピロリドン・酢酸ビニル共重合ポリマー、ビニルピロリドン・ビニルカプロラクタム共重合ポリマー、ビニルピロリドン・ビニルアルコール共重合ポリマー、などが挙げられ、これらのうち少なくとも1種を含んでいることが好ましい。中でも、ポリスルホン系ポリマーとの相溶性という観点から、ポリビニルピロリドン、ビニルピロリドン・酢酸ビニル共重合ポリマー、ビニルピロリドン・ビニルカプロラクタム共重合ポリマーが好適に用いられる。
 多孔性成形体は、生体適合性ポリマーにより被覆されていることが好ましく、該生体適合性ポリマーは、好ましくは、ポリメトキシエチルアクリレート(PMEA)及びポリビニルピロリドン(PVP)系ポリマーからなる群から選ばれる。
[ポリメトキシエチルアクリレート(PMEA)]
 PMEAの生体適合性については、田中 賢,人工臓器の表面を生体適合化するマテリアル,BIO INDUSTRY,Vol20,No.12,59-70 2003に詳細に述べられている。
 その中で、PMEAとその比較のために側鎖構造の異なるアクリレート系ポリマーを作成し、血液を循環させたときの血小板、白血球、補体、凝固系の各種マーカーを評価したところ、「PMEA表面は他の高分子に比べて血液成分の活性化が軽微であった。また、PMEA表面はヒト血小板の粘着数が有意に少なく粘着血小板の形態変化が小さいことから血液適合性に優れる」と記載されている。
 このように、PMEAは、単に構造中にエステル基があるから生体適合性が良いというのではなく、その表面に吸着した水分子の状態が生体適合性に大きな影響を与えると考えられている。
 ATR-IR法においては、試料に入射した波は試料にわずかにもぐり込んで反射するため、このもぐり込み深さ領域の赤外吸収を測定できることが知られているところ、本発明者らは、このATR-IR法の測定領域が、多孔性成形体の表面に相当する「表層」の深さとほぼ等しいことも見出した。すなわち、ATR-IR法の測定領域とほぼ等しい深さ領域における生体適合性が、多孔性成形体の生体適合性を支配し、その領域にPMEAを存在させることで、一定の生体適合性を有すると考えられる。
 PMEAを多孔性成形体の表面にコートすることで、長期保管後の血液浄化器からの微粒子の発生も抑制可能である。
 ATR-IR法による測定領域は、空気中での赤外光の波長、入射角、プリズムの屈折率、試料の屈折率等に依存し,通常、表面から1μm以内の領域である。
 PMEAが多孔性成形体の表面に存在することは、多孔性成形体の熱分解ガスクロマトグラフ質量分析により確認できる。PMEAの存在は多孔性成形体の表面に対する全反射赤外吸収(ATR-IR)測定で、赤外吸収曲線の1735cm-1付近にピークが見られれば推定されるが、この付近のピークは他の物質に由来する可能性もある。そこで、熱分解ガスクロマトグラフ質量分析を行い、PMEA由来の2-メトキシエタノールを確認することでPMEAの存在が分かる。
 PMEAの溶媒に対する溶解性は特異なものがある。例えば、PMEAは100%エタノール溶媒には溶解しないが、水/エタノール混合溶媒にはその混合比によって溶解する領域がある。そして、その溶解する領域内の混合比では、水の量が多いほど、PMEA由来のピーク(1735cm-1付近)のピーク強度は強くなる。
 表面にPMEAを含む多孔性成形体においては、表面の細孔径の変化が小さいので、透水性能の変化があまりなく製品設計が簡単である。は、PMEAを多孔性成形体の表面に有するが、例えば、PMEAを多孔性成形体にコートした場合、PMEAが極薄膜状に付着し、細孔をほぼ塞がない状態で多孔性成形体表面をコートしていると考えられる。特に、PMEAは分子量が小さく、分子鎖が短いことから、被膜の構造が厚くなりにくく、多孔性成形体の構造を変化させにくいため好ましい。また、PMEAは他の物質との相溶性が高く、多孔性成形体の表面に均一に塗布することができ、生体適合性を向上させることができるため好ましい。
 PMEAの重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)などにより測定することができる。
 多孔性成形体の表面にPMEAを含む方法としては、例えば、多孔性成形体を充填したカラム(容器)の上部からPMEAを溶解したコート液を流してコーティングする方法等が好適に用いられる。
[ポリビニルピロリドン(PVP)系ポリマー]
 ポリビニルピロリドン(PVP)系ポリマーは、特に制限はないが、ポリビニルピロリドン(PVP)が好適に用いられる。
[多孔性成形体のリン吸着性能]
 多孔性成形体は、透析患者の血液透析におけるリン吸着に好適に用いられる。血液組成は血漿成分と血球成分に分かれ、血漿成分は水91%、タンパク質7%、脂質成分及び無機塩類で構成されており、血液中でリンは、リン酸イオンとして血漿成分中に存在する。血球成分は赤血球96%、白血球3%及び血小板1%で構成されており、赤血球の大きさは直径7~8μm、白血球の大きさは直径5~20μm、血小板の大きさは直径2~3μmである。
 水銀ポロシメーターで測定した多孔性成形体の最頻細孔径が0.08~0.70μmであることにより、外表面の無機イオン吸着体の存在量が多いため、高速で通液処理してもリンイオンを確実に吸着でき、リンイオンの多孔性成形体内部への浸透拡散吸着性にも優れる。さらに、血球成分等の目詰り等による血液流れ性が低下することもない。
 かかる多孔性成形体の表面に生体適合性ポリマーを有することにより、より好適な血液処理用リン吸着剤として用いることができる。
 最頻細孔径が0.08~0.70μmである多孔性成形体を含有し、該多孔性成形体の表面に生体適合性ポリマーを有することにより、血液中のリンイオンを選択的に確実に吸着することで、体内に戻る血中リン濃度はほとんど0に近いものとなる。ほとんどリンを含まない血液を体内に戻すことで細胞内又は細胞外からの血中へのリンの移動が活発になりリフィリング効果が大きくなることが考えられる。
 また、血中のリンを補おうとするリフィリング効果を誘発することで、通常排泄できない細胞外液、細胞内に存在するリンも排泄できる可能性がある。
 これにより、透析患者が、リン吸着剤経口薬を服用しないか、少量の服用(補助的な使用)に留めても、透析患者の副作用を起こさずに、体内血液中のリン濃度を適切に管理することができる。
[多孔性成形体の製造方法]
 次に、多孔性成形体の製造方法について説明する。
 多孔性成形体の製造方法は、例えば、(1)無機イオン吸着体を乾燥する工程、(2)工程(1)で得られた無機イオン吸着体を粉砕する工程、(3)工程(2)で得られた無機イオン吸着体、多孔性成形体形成ポリマーの良溶媒、多孔性成形体形成ポリマー、及び親水性ポリマー(水溶性高分子)を混合してスラリーを作製する工程、(4)工程(3)で得られたスラリーを成形する工程、(5)工程(4)で得られた成形品を貧溶媒中で凝固させる工程を含む。
[工程(1):無機イオン吸着体の乾燥工程]
 工程(1)において、無機イオン吸着体を乾燥させて粉体を得る。このとき、乾燥時の凝集を抑制するために、製造時に含有される水分を有機液体に置換した後に乾燥されることが好ましい。有機液体としては、無機イオン吸着体の凝集を抑制される効果があれば特に限定されないが、親水性が高い液体を用いることが好ましい。例えば、アルコール類、ケトン類、エステル類、エーテル類等が挙げられる。
 有機液体への置換率は、50質量%~100質量%であればよく、好ましくは70質量%~100質量%、より好ましくは80質量%~100質量%であればよい。
 有機液体への置換方法は、特に限定されるものではなく、有機液体に水を含んだ無機イオン吸着体を分散させた後に遠心分離、濾過をしてもよいし、フィルタープレスなどでろ過を行った後に有機液体を通液してもよい。置換率を高くするためには、有機液体へ無機イオン吸着体を分散後に濾過する方法を繰り返すことが好ましい。
 有機液体への置換率は、濾液の水分率をカールフィッシャー法で測定することで求められる。
 無機イオン吸着体に含まれる水分を有機液体に置換した後に乾燥を行うことで、乾燥時の凝集を抑制することができ、無機イオン吸着体の細孔体積を増加させることができ、その吸着容量を増加させることができる。
 有機液体の置換率が50質量%未満であると、乾燥時の凝集抑制効果が低くなり無機イオン吸着体の細孔体積が増加しない。
[工程(2):無機イオン吸着体の粉砕工程]
 工程(2)においては、工程(1)により得られた無機イオン吸着体の粉末を粉砕する。粉砕の方法としては、特に限定されるものではなく、乾式粉砕や湿式粉砕を用いることができる。
 乾式粉砕方法は、特に限定されるものではなく、ハンマーミルなどの衝撃式破砕機、ジェットミルなどの気流式粉砕機、ボールミルなどの媒体式粉砕機、ローラーミルなどの圧縮式粉砕機などを用いることができる。
 中でも、粉砕した無機イオン吸着体の粒子径分布をシャープにすることができることから、気流式粉砕機が好ましい。
 湿式粉砕方法は、無機イオン吸着体及び有機高分子樹脂の良溶媒を合わせて粉砕、混合できるものであれば、特に限定されるものではなく、加圧型破壊、機械的磨砕、超音波処理等の物理的破砕方法に用いられる手段を用いることができる。
 粉砕混合手段の具体例としては、ジェネレーターシャフト型ホモジナイザー、ワーリングブレンダー等のブレンダー、サンドミル、ボールミル、アトライタ、ビーズミル等の媒体撹拌型ミル、ジェットミル、乳鉢と乳棒、らいかい器、超音波処理器等が挙げられる。
 中でも、粉砕効率が高く、粘度の高いものまで粉砕できることから、媒体撹拌型ミルが好ましい。
 媒体撹拌型ミルに使用するボール径は、特に限定されるものではないが、0.1mm~10mmであることが好ましい。ボール径が0.1mm以上であれば、ボール質量が充分あるので粉砕力があり粉砕効率が高く、ボール径が10mm以下であれば、微粉砕する能力に優れる。
 媒体攪拌型ミルに使用するボールの材質は、特に限定されるものではないが、鉄やステンレス等の金属、アルミナ、ジルコニア等の酸化物類、窒化ケイ素、炭化ケイ素等の非酸化物類の各種セラミック等が挙げられる。中でも、耐摩耗性に優れ、製品へのコンタミネーション(摩耗物の混入)が少ない点で、ジルコニアが優れている。
 粉砕後は多孔性成形体形成ポリマーの良溶媒に無機イオン吸着体が十分に分散した状態でフィルター等を用いて濾過精製することが好ましい。
 粉砕・精製した無機イオン吸着体の粒子径は、0.001~10μm、好ましくは0.001~0.1μm、より好ましくは0.01~0.1μmである。製膜原液中で無機イオン吸着体を均一に分散させるには、粒子径が小さい程良い。0.001μm未満の均一した微粒子を製造し難い傾向にある。10μmを超える無機イオン吸着体では、多孔性成形体を安定して製造し難い傾向にある。
[工程(3):スラリー作製工程]
 工程(3)においては、工程(2)により得られた無機イオン吸着体と、多孔性成形体形成ポリマーの良溶媒、多孔性成形体形成ポリマー、場合により水溶性高分子を混合してスラリーを作製する。
 工程(2)及び工程(3)に用いる多孔性成形体形成ポリマーの良溶媒としては、多孔性成形体の製造条件において多孔性成形体形成ポリマーを安定に1質量%を超えて溶解するものであれば、特に限定されるものではなく、従来公知のものを使用できる。
 良溶媒としては、例えば、N-メチル-2ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)等が挙げられる。
 良溶媒は1種のみを用いてもよく、2種以上を混合して用いてもよい。
 工程(3)における多孔性成形体形成ポリマーの添加量は、多孔性成形体形成ポリマー/(多孔性成形体形成ポリマー+水溶性高分子+多孔性成形体形成ポリマーの良溶媒)の割合が、3質量%~40質量%となるようにすることが好ましく、4質量%~30質量%であることがより好ましい。多孔性成形体形成ポリマーの含有率が3質量%以上であれば、強度の高い多孔性成形体が得られ、40質量%以下であれば、空孔率の高い多孔性成形体が得られる。
 工程(3)において、水溶性高分子は必ずしも添加される必要は無いが、添加をすることで多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られ、高速で通液処理してもイオンを確実に吸着できる多孔性成形体が得られる。
 工程(3)に用いる水溶性高分子は、多孔性成形体形成ポリマーの良溶媒と多孔性成形体形成ポリマーとに対して相溶性のあるものであれば、特に限定されるものではない。
 水溶性高分子としては、天然高分子、半合成高分子、及び合成高分子のいずれも使用できる。
 天然高分子としては、例えば、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン、コラーゲン等が挙げられる。
 半合成高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン、メチルデンプン等が挙げられる。
 合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン(PVP)、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、テトラエチレングリコール、トリエチレングリコール等のポリエチレングリコール類等が挙げられる。
 中でも、無機イオン吸着体の担持性を高める点から、合成高分子が好ましく、多孔性が向上する点から、ポリビニルピロリドン(PVP)、ポリエチレングリコール類がより好ましい。
 ポリビニルピロリドン(PVP)とポリエチレングリコール類の質量平均分子量は、400~35,000,000であることが好ましく、1,000~1,000,000であることがより好ましく、2,000~100,000であることがさらに好ましい。
 質量平均分子量が400以上であれば、表面開口性の高い多孔性成形体が得られ、35,000,000以下であれば、成形する時のスラリーの粘度が低いので成形が容易になる傾向がある。
 水溶性高分子の質量平均分子量は、水溶性高分子を所定の溶媒に溶解し、ゲル浸透クロマトグラフィー(GPC)分析により測定できる。
 水溶性高分子の添加量は、水溶性高分子/(水溶性高分子+多孔性成形体形成ポリマー+多孔性成形体形成ポリマーの良溶媒)の割合が、0.1質量%~40質量%となるようにすることが好ましく、0.1質量%~30質量%であることがより好ましく、0.1質量%~10質量%であることがさらに好ましい。
 水溶性高分子の添加量が0.1質量%以上であれば、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られる。水溶性高分子の添加量が40質量%以下であれば、外表面開口率が適当であり、多孔性成形体の外表面の無機イオン吸着体の存在量が多いため、高速で通液処理してもイオンを確実に吸着できる多孔性成形体が得られる。
[工程(4):成形工程]
 工程(4)においては、工程(3)により得られたスラリー(成形用スラリー)を成形する。成形用スラリーは、多孔性成形体形成ポリマーと、多孔性成形体形成ポリマーの良溶媒と、無機イオン吸着体と、水溶性高分子の混合スラリーである。
 本実施形態の多孔性成形体の形態は、成形用スラリーを成形する方法によって、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態を採ることができる。
 粒子状、例えば、球状粒子の形態に成形する方法としては、特に限定されないが、例えば、回転する容器の側面に設けたノズルから、容器中に収納されている成形用スラリーを飛散させて、液滴を形成させる回転ノズル法等が挙げられる。回転ノズル法により、粒度分布が揃った粒子状の形態に成形することができる。
 具体的には、1流体ノズルや2流体ノズルから、成形用スラリーを噴霧して凝固浴中で凝固する方法が挙げられる。
 ノズルの径は、0.1mm~10mmであることが好ましく、0.1mm~5mmであることがより好ましい。ノズルの径が0.1mm以上であれば、液滴が飛散しやすく、10mm以下であれば、粒度分布を均一にすることができる。
 遠心力は、遠心加速度で表され、5G~1500Gであることが好ましく、10G~1000Gであることがより好ましく、10G~800Gであることがさらに好ましい。
 遠心加速度が5G以上であれば、液滴の形成と飛散が容易であり、1500G以下であえば、成形用スラリーが糸状にならずに吐出し、粒度分布が広くなるのを抑えることができる。粒度分布が狭いことにより、カラムに多孔性成形体を充填した時に水の流路が均一になるため、超高速通水処理に用いても通水初期からイオン(吸着対象物)が漏れ出す(破過する)ことが無いという利点を有している。
 糸状又はシート状の形態に成形する方法としては、該当する形状の紡口、ダイスから成形用スラリーを押し出し、貧溶媒中で凝固させる方法が挙げられる。
 中空糸状の多孔性成形体を成形する方法としては、環状オリフィスからなる紡口を用いることで、糸状やシート状の多孔性成形体を成形する方法と同様にして成形できる。
 円柱状又は中空円柱状の多孔性成形体を成形する方法としては、紡口から成形用スラリーを押し出す際、切断しながら貧溶媒中で凝固させてもよいし、糸状に凝固させてから後に切断しても構わない。
[工程(5):凝固工程]
 工程(5)においては、工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させて、多孔性成形体を得る。
<貧溶媒>
 工程(5)における貧溶媒としては、工程(5)の条件において多孔性成形体形成ポリマーの溶解度が1質量%以下の溶媒を使用することができ、例えば、水、メタノール及びエタノール等のアルコール類、エーテル類並びにn-ヘキサン、n-ヘプタン等の脂肪族炭化水素類等が挙げられる。中でも、貧溶媒としては、水が好ましい。
 工程(5)では、先行する工程から良溶媒が持ち込まれ、良溶媒の濃度が、凝固工程開始時と終点で、変化してしまう。そのため、予め良溶媒を加えた貧溶媒としてもよく、初期の濃度を維持するように水等を別途加えながら濃度を管理して凝固工程を行うことが好ましい。
 良溶媒の濃度を調整することで、多孔性成形体の構造(外表面開口率及び粒子形状)を制御できる。
 貧溶媒が水又は多孔性成形体形成ポリマーの良溶媒と水の混合物の場合、凝固工程において、水に対する多孔性成形体形成ポリマーの良溶媒の含有量は、0~80質量%であることが好ましく、0~60質量%であることがより好ましい。
 多孔性成形体形成ポリマーの良溶媒の含有量が80質量%以下であれば、多孔性成形体の形状が良好になる効果が発現される。
 貧溶媒の温度は、工程(4)の空間部の温度と湿度を制御する観点から、40~100℃であることが好ましく、50~100℃であることがより好ましく、60~100℃であることがさらに好ましい。
[多孔性成形体の製造装置]
 多孔性成形体が粒子状の形態である場合、その製造装置は、液滴を遠心力で飛散させる回転容器と、凝固液を貯留する凝固槽と、を備え、回転容器と凝固槽の間の空間部分を覆うカバーを具備し、空間部の温度と湿度を制御する制御手段を備えたものであることができる。
 液滴を遠心力で飛散させる回転容器は、成形用スラリーを球状の液滴にして遠心力で飛散する機能があれば、特定の構造からなるものに限定されず、例えば周知の回転ディスク及び回転ノズル等が挙げられる。
 回転ディスクは、成形用スラリーが回転するディスクの中心に供給され、回転するディスクの表面に沿って成形用スラリーが均一な厚みでフィルム状に展開し、ディスクの周縁から遠心力で滴状に分裂して微小液滴を飛散させるものである。
 回転ノズルは、中空円盤型の回転容器の周壁に多数の貫通孔を形成するか、または周壁に貫通させてノズルを取付け、回転容器内に成形用スラリーを供給すると共に回転容器を回転させ、その際に貫通孔又はノズルから遠心力により成形用スラリーを吐出させて液滴を形成するものである。
 凝固液を貯留する凝固槽は、凝固液を貯留できる機能があれば、特定の構造からなるものに限定されず、例えば周知の上面開口の凝固槽や、回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽等が挙げられる。
 上面開口の凝固槽は、回転容器から水平方向に飛散した液滴を自然落下させ、上面が開口した凝固槽に貯留した凝固液の水面で液滴を捕捉する装置である。
 回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽は、凝固液を筒体の内面に沿わせて周方向にほぼ均等な流量で流出させ、内面に沿って自然流下する凝固液流中に液滴を捕捉して凝固させる装置である。
 空間部の温度と湿度の制御手段は、回転容器と凝固槽の間の空間部を覆うカバーを具備し、空間部の温度と湿度を制御する手段である。
 空間部を覆うカバーは、空間部を外部の環境から隔離して、空間部の温度及び湿度を現実的に制御し易くする機能があれば、特定の構造からなるものに限定されず、例えば、箱状、筒状及び傘状の形状とすることができる。
 カバーの材質は、例えば、金属のステンレス鋼やプラスチック等が挙げられる。外部環境と隔離する点で、公知の断熱剤で覆うこともできる。カバーには、一部開口部を設けて、温度及び湿度を調整してもよい。
 空間部の温度及び湿度の制御手段は、空間部の温度と湿度を制御する機能があればよく、特定の手段に限定されず、例えば、電気ヒーター及びスチームヒーター等の加熱機並びに超音波式加湿器及び加熱式加湿器等の加湿器が挙げられる。
 構造が簡便であるという点で、凝固槽に貯留した凝固液を加温して、凝固液から発生する蒸気を利用して空間部の温度と湿度を制御する手段が好ましい。
 以下、多孔性成形体の表面に生体適合性ポリマーの被覆層を形成する方法について説明する。
 多孔性成形体の表面に、例えば、PMEA又はPVP系ポリマーを含むコート液を塗布することによって、被膜を形成することができる。この際、例えば、PMEAコート液は多孔性成形体に形成された細孔内に浸入し、多孔質な成形体表面の細孔径を大きく変化させずに、多孔性成形体の細孔表面全体にPMEAを含ませることができる。
 PMEAコート液の溶媒としては、多孔性成形体を構成する多孔性成形体形成ポリマーや水溶性高分子といった高分子を溶解せず、PMEAを溶解する又は分散させることができるものであれば特に限定されるものではないが、工程の安全性や、続く乾燥工程での取り扱いの良さから、水やアルコール水溶液が好ましい。沸点、毒性の観点から、水、エタノール水溶液、メタノール水溶液、イソプロピルアルコール水溶液などが好適に用いられる。
 PVPコート液の溶媒としては、多孔性成形体を構成する多孔性成形体形成ポリマーや水溶性高分子といった高分子を溶解せず、PVPを溶解する又は分散させることができる溶媒であれば特に限定されるものではないが、工程の安全性や、続く乾燥工程での取り扱いの良さから、水やアルコール水溶液が好ましい。沸点、毒性の観点から、水、エタノール水溶液、メタノール水溶液、イソプロピルアルコール水溶液などが好適に用いられる。
 コート液の溶媒の種類、溶媒の組成については、多孔性成形体を構成する高分子との関係で、適宜設定する。
 PMEAコート液の濃度に限定はないが、例えば、コート液の0.001質量%~1質量%とすることができ、0.005質量%~0.2質量%であることがより好ましい。
 コート液の塗布方法に限定はないが、例えば、多孔性成形体を適当なカラム(容器)に充填し、上部からPMEAを含んだコート液を流し、次いで、圧縮空気を用いて余分な溶液を除去する方法を採用することができる。
 その後、蒸留水などで洗浄を行い残った不要な溶媒を置換除去した後、滅菌をすることで医療用具として用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 以下、前記した各種物性値の測定方法を説明する。
[多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径]
 多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径は、レーザー回折/散乱式粒度分布測定装置(HORIBA社製のLA-950(商品名))で測定する。分散媒体は水を用いる。無機イオン吸着体に水和酸化セリウムを使用したサンプルの測定時は、屈折率に酸化セリウムの値を使用して測定する。同様に、無機イオン吸着体に水和酸化ジルコニウムを使用したサンプルを測定する時は、屈折率に酸化ジルコニウムの値を使用して測定する。
[牛血漿でのリン吸着量]
 図3に示す装置を用いて、牛血漿を使用した低リン濃度血清によるカラムフロー試験により、リン吸着量を測定する。低リン濃度(0.7mg/dL)程度に調整し、実験台(13)上の恒温槽(12)内で攪拌した牛血漿を、一般的な透析条件(空間速度SV=120,4時間透析)と同等な条件で、圧力計(16)を備えたポンプ(14)により、多孔性形成体を充填したカラム(15)に通過させ、サンプリング(17)して、多孔性成形体のリン吸着量(mg-P/mL-Resin(多孔性成形体))を測定する。
 リン酸イオン濃度は、モリブデン酸直接法にて測定する。
 通液速度がSV120の時のリン吸着量が、1.5(mg-P/mL-Resin)以上であれば、吸着容量が大きく、リン吸着剤として良好であると判断する。
[実施例1]
 本発明の1の実施形態を、図1を参照して具体的に説明する。
 (A)と(B)は患者の血管である。血液回路(1)は、患者の血管(A)に刺し込み採血する採血部(1a)を、そして血液回路(10)は、患者の血管(B)に返血する返血部(1b)を含み、これらの血液回路(配管系)はビニールチューブ製であることができる。血液回路(1)にはポンプ(2)が配置されている。このポンプ(2)により、血液は、血液成分調整器(4)に又はバイパス配管系(6)を介して血液浄化デバイス(3)に供給される。血液浄化デバイス(3)は、透析液入口(3a)と透析液出口(3b)を有している。血液成分調整器(4)は、血液浄化デバイス(3)よりも採血部(1a)側に配置されている。血液浄化デバイス(3)及び前記血液成分調整器(4)の端部には入口の血液圧と出口の濾液圧を測定するための圧力センサー(5乃至5’’’)が設けられている。血液成分調整器(4)の両端にはバイパス配管系(6)が設けられている。弁(7)は、バイパス配管系(6)に設けられている。
 目詰まり等により血液成分調整器(4)の入口圧力が所定値を超えて上昇したとき、又は圧力損失が所定以上となったとき、血液成分調整器(4)の両端部にある圧力センサー(5、5’)のデータに基づき、弁(7)を閉から開に切り替えることによりバイパス配管系(6)に血液を流して血液成分調整器(4)及び血液回路の破損を防ぐことができるため、安全な運転が可能となる。血液浄化デバイス(3)と血液成分調整器(4)の間に圧力センサー(5’、5’’)が2つ存在するが、1つであってもよい。
 また、目詰まり等により血液浄化デバイス(3)の圧力が所定値を超えて上昇したとき、又は圧力損失が所定値以上となったとき、血液浄化デバイス(3)の両端部にある圧力センサー(5’’、5’’’)のデータに基づき、制御ユニットの指令により、透析モードから返血モード又は他のモードに切替える。これにより血液浄化デバイス(3)及び血液回路の破損を防ぐことができるため、安全な運転が可能となる。
[実施例2]
 本発明の他の実施形態を、図2を参照して具体的に説明する。
 (A)と(B)は患者の血管である。血液回路(1)は、患者の血管(A)に刺し込み採血する採血部(1a)を、そして血液回路(10)は、患者の血管(B)に返血する返血部(1b)を含み、これらの血液回路(配管系)はビニールチューブ製であることができる。血液回路(1)にはポンプ(2)が配置されている。このポンプ(2)により、血液は、血液浄化デバイス(3)に又はバイパス配管系(6)を介して血液成分調整器(4)に供給される。血液浄化デバイス(3)は、透析液入口(3a)と透析液出口(3b)を有している。血液成分調整器(4)は、血液浄化デバイス(3)よりも返血部(1b)側に配置されている。血液浄化デバイス(3)及び前記血液成分調整器(4)の端部には入口の血液圧と出口の濾液圧を測定するための圧力センサー(5乃至5’’’)が設けられている。血液浄化デバイス(3)の両端にはバイパス配管系(6)が設けられている。弁(7)は、バイパス配管系(6)に設けられている。
 目詰まり等により血液浄化デバイス(3)の入口圧力が所定値を超えて上昇したとき、又は圧力損失が所定以上となったとき、血液浄化デバイス(3)の両端部にある圧力センサー(5’’、5’’’)のデータに基づき、弁(7)を閉から開に切り替えることによりバイパス配管系(6)に血液を流して血液浄化デバイス(3)及び血液回路の破損を防ぐことができるため、安全な運転が可能となる。血液浄化デバイス(3)と血液成分調整器(4)の間に圧力センサー(5、5’’’)が2つ存在するが、1つであってもよい。
 また、目詰まり等により血液成分調整器(4)の圧力が所定値を超えて上昇したとき、又は圧力損失が所定値以上となったとき、血液成分調整器(4)の両端部にある圧力センサー(5、5’)のデータに基づき、制御ユニットの指令により、透析モードから返血モード又は他のモードに切替える。これにより血液成分調整器(4)及び血液回路の破損を防ぐことができるため、安全な運転が可能となる。
 本発明に係る体外血液循環システムは、血液浄化デバイスと血液成分調整器の圧力損失に基づき、透析モードを返血モードに切替え、また、血液回路をバイパスことで、血液浄化デバイス、血液成分調節器、及び血液回路(配管系)の破損を回避することができるため、安全に使用することができる。
 A  患者の血管
 B  患者の血管
 C  リザーバー
 C’  リザーバー
 1  配管系(血液回路)
 1a  採血部
 1b  返血部
 2  ポンプ
 3  血液浄化デバイス
 3a  透析液入口
 3b  透析液出口
 4  血液成分調整器
 5  圧力計(センサー)
 5’  圧力計
 5’’  圧力計
 5’’’  圧力計
 6  バイパス配管系(血液回路)
 7  弁
 8  (三方)弁
 8’  (三方)弁
 9  配管系(血液回路)
 10  配管系(血液回路)
 11  配管系
 11’  配管系
 12  恒温槽
 13  実験台
 14  ポンプ
 15  リン吸収剤入りカラム
 16  圧力計
 17  サンプリング

Claims (13)

  1.  採血部(1a)から返血部(1b)に至る体外血液循環システムであって、以下の:
     血液成分調整器(4);
     血液浄化デバイス(3);
     透析モードにおいて該採血部(1a)からの血液を該血液成分調整器(4)に供給するためのポンプ(2)、返血モードにおいて血液に代えて配管系(11)からの生理食塩水又はエアーを供給するための弁(8)、及び該血液成分調整器(4)の圧力損失を検知するための圧力計(5)を備えた配管系(1);
     該血液成分調整器(4)をバイパスして血液浄化デバイス(3)に血液を、返血モードにおいては生理食塩水又はエアーを、供給するための、弁(7)を備えたバイパス配管系(6);
     該血液成分調整器(4)及び/又は該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’、5’’)を備え、かつ、該血液成分調整器(4)と該血液浄化デバイス(3)を接続する配管系(9);
     透析モードにおいて該血液浄化デバイス(3)からの血液を該返血部(1b)に戻すための、また、該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’’’)を備えた配管系(10)、及び必要により、返血モードにおいて血液に代えて配管系(11’)に生理食塩水又はエアーを回収するための弁(8’);並びに
     該血液成分調整器(4)の圧力損失に基づき、該配管系(1)と該バイパス配管系(6)を切替えるための機能、及び該血液浄化デバイス(3)の圧力損失に基づき、透析モードと返血モードを切替えるための機能を有する制御ユニット;
    を具備する体外血液循環システム。
  2.  採血部(1a)から返血部(1b)に至る体外血液循環システムであって、以下の:
     血液浄化デバイス(3);
     血液成分調整器(4);
     透析モードにおいて該採血部(1a)からの血液を該血液浄化デバイス(3)に供給するためのポンプ(2)、返血モードにおいて血液に代えて配管系(11)からの生理食塩水又はエアーを供給するための弁(8)、及び該血液浄化デバイス(3)の圧力損失を検知するための圧力計(5’’)を配管系(1);
     該血液浄化デバイス(3)をバイパスして該血液成分調整器(4)に血液を、返血モードにおいては生理食塩水又はエアーを、供給するための、弁(7)を備えたバイパス配管系(6);
     該血液浄化デバイス(3)及び/又は該血液成分調整器(4)の圧力損失を検知するための圧力計(5、5’’’)を備え、かつ、該血液浄化デバイス(3)と該血液成分調整器(4)を接続する配管系(9);
     透析モードにおいて該血液成分調整器(4)からの血液を該返血部(1b)に戻すための、また、該血液成分調整器(4)の圧力損失を検知するための圧力計(5’)を備えた配管系(10)、及び必要により、返血モードにおいて血液に代えて配管系(11’)に生理食塩水又はエアーを回収するための弁(8’);並びに
     該血液浄化デバイス(3)の圧力損失に基づき、該配管系(1)と該バイパス配管系(6)を切替えるための機能、該血液成分調整器(4)の圧力損失に基づき、透析モードと返血モードを切替えるための機能を有する制御ユニット;
    を具備する体外血液循環システム。
  3.  前記血液成分調整器(4)が血液成分調整体を有する、請求項1又は2に記載の体外血液循環システム。
  4.  前記血液成分調整体が多孔性成形体である、請求項3に記載の体外血液循環システム。
  5.  前記多孔性成形体が、多孔性成形体形成ポリマーと親水性ポリマーから、又は多孔性成形体形成ポリマーと親水性ポリマーと無機イオン吸着体から構成される、請求項4に記載の体外血液循環システム。
  6.  前記多孔性成形体形成ポリマーは、芳香族ポリスルホンである、請求項5に記載の体外血液循環システム。
  7.  前記親水性ポリマーは、生体適合性ポリマーである、請求項5又は6に記載の体外血液循環システム。
  8.  前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマーである、請求項7に記載の体外血液循環システム。
  9.  前記多孔性成形体は、生体適合性ポリマーにより被覆されている、請求項4~8のいずれか1項に記載の体外血液循環システム。
  10.  前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマー及びポリメトキシエチルアクリレート(PMEA)からなる群から選ばれる、請求項9に記載の体外血液循環システム。
  11.  前記多孔性成形体の血中リン吸着量が、2(mg-P/mL-Resin)以上である、請求項4~10のいずれか1項に記載の体外血液循環システム。
  12.  前記無機イオン吸着体が、下記式(I):
       MN・mHO  …(I)
    {式中、xは、0~3であり、nは、1~4であり、mは、0~6であり、そしてMとNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb、及びTaからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属酸化物を含有する、請求項5~11のいずれか1項に記載の体外血液循環システム。
  13.  前記金属酸化物が、下記(a)~(c)群:
     (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム;
     (b)チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物;
     (c)活性アルミナ
    から選ばれる、請求項12に記載の体外血液循環システム。
PCT/JP2019/049671 2018-12-25 2019-12-18 血液浄化デバイスと血液成分調整器を備えた体外血液循環システム WO2020137756A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020563140A JP7112521B2 (ja) 2018-12-25 2019-12-18 血液浄化デバイスと血液成分調整器を備えた体外血液循環システム
CN201980084862.8A CN113195013B (zh) 2018-12-25 2019-12-18 具备血液净化装置和血液成分调整器的体外血液循环系统
US17/415,377 US20220062522A1 (en) 2018-12-25 2019-12-18 Extracorporeal blood circulation system provided with blood purification device and blood component adjuster
EP19904966.9A EP3903855B1 (en) 2018-12-25 2019-12-18 Blood purification device and extracorporeal blood circulation system provided with blood component adjuster
KR1020217019251A KR102639967B1 (ko) 2018-12-25 2019-12-18 혈액 정화 디바이스와 혈액 성분 조정기를 구비한 체외 혈액 순환 시스템
ES19904966T ES2931127T3 (es) 2018-12-25 2019-12-18 Dispositivo de depuración sanguínea y sistema de circulación sanguínea extracorpórea provisto de ajustador de componentes sanguíneos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241839 2018-12-25
JP2018-241839 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137756A1 true WO2020137756A1 (ja) 2020-07-02

Family

ID=71126200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049671 WO2020137756A1 (ja) 2018-12-25 2019-12-18 血液浄化デバイスと血液成分調整器を備えた体外血液循環システム

Country Status (8)

Country Link
US (1) US20220062522A1 (ja)
EP (1) EP3903855B1 (ja)
JP (1) JP7112521B2 (ja)
KR (1) KR102639967B1 (ja)
CN (1) CN113195013B (ja)
ES (1) ES2931127T3 (ja)
TW (1) TWI725676B (ja)
WO (1) WO2020137756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112370589A (zh) * 2020-09-28 2021-02-19 中国科学院精密测量科学与技术创新研究院 一种人工肺/人工肾的装置和方法
WO2023008561A1 (ja) * 2021-07-30 2023-02-02 東レ株式会社 血液成分吸着材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL264001A (en) * 2018-12-27 2019-01-31 Tel Hashomer Medical Res Infrastructure & Services Ltd A facility for extracorporeal oxidation using a membrane and simultaneous renal replacement therapy
CN113750310B (zh) * 2021-09-23 2023-10-10 龚淑利 一种稳压急停式安全腹水超滤回输仪
KR102507037B1 (ko) 2021-11-02 2023-03-08 주식회사 뮨 동맥혈 폐쇄 채혈 장치
TWI824735B (zh) * 2022-09-22 2023-12-01 友達光電股份有限公司 分光裝置及血液透析系統

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102335A (ja) * 2000-09-28 2002-04-09 M P G Kk 血液透析装置
WO2016103216A1 (en) * 2014-12-23 2016-06-30 Universita' Degli Studi Di Milano - Bicocca Regional scoagulation system for an extracorporeal circulation circuit
WO2017082423A1 (ja) 2015-11-11 2017-05-18 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476444A (en) * 1992-09-04 1995-12-19 Idt, Inc. Specialized perfusion protocol for whole-body hyperthermia
DE60220220T2 (de) * 2001-08-10 2008-01-17 KURARAY CO., LTD, Kurashiki Blutbehandlungssystem
JP4457235B2 (ja) * 2001-12-18 2010-04-28 株式会社北九州バイオフィジックス研究所 自動血液透析装置および該装置を使用したプライミング方法。
TWI406703B (zh) * 2003-11-17 2013-09-01 Asahi Kasei Medical Co Ltd Purify blood with hollow fiber membrane and use its blood purifier
CN102316915B (zh) * 2007-06-13 2014-08-27 川澄化学工业株式会社 双重过滤血液净化装置及其预充方法
JP5220171B2 (ja) * 2011-08-17 2013-06-26 日機装株式会社 血液浄化装置
EP2679302A1 (de) * 2012-06-28 2014-01-01 Zentrum für biomedizinische Technologie der Donau- Universität Krems Selektives Sorptionsmittel für die extrakorporale Blutreinigung
EP2962709B1 (en) * 2013-02-26 2017-12-06 Terumo Kabushiki Kaisha Blood component separation apparatus
EP3097930A4 (en) * 2014-01-22 2017-12-27 Nipro Corporation Blood treatment filter device, priming method, and blood treatment method
WO2015168280A1 (en) 2014-04-29 2015-11-05 Outset Medical, Inc. Dialysis system and methods
ES2704202T3 (es) * 2014-09-29 2019-03-14 Asahi Kasei Medical Co Ltd Dispositivo de purificación sanguínea de tipo membrana de fibras huecas
CN105107041A (zh) * 2015-06-28 2015-12-02 唐天泽 血液净化装置及滤器的置换方法
DE102017210134A1 (de) * 2016-12-15 2018-06-21 Fresenius Medical Care Deutschland Gmbh System zur extrakorporalen Blutbehandlung, Behandlungsvorrichtung, Kit und Verfahren zum Betreiben eines Systems zur extrakorporalen Blutbehandlung
JP6785365B2 (ja) * 2017-03-31 2020-11-18 旭化成メディカル株式会社 血液浄化装置及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102335A (ja) * 2000-09-28 2002-04-09 M P G Kk 血液透析装置
WO2016103216A1 (en) * 2014-12-23 2016-06-30 Universita' Degli Studi Di Milano - Bicocca Regional scoagulation system for an extracorporeal circulation circuit
WO2017082423A1 (ja) 2015-11-11 2017-05-18 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA, K.: "Artificial organ surface-biocompatibilizing materials", BIO INDUSTRY, vol. 20, no. 12, 2003, pages 59 - 70

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112370589A (zh) * 2020-09-28 2021-02-19 中国科学院精密测量科学与技术创新研究院 一种人工肺/人工肾的装置和方法
WO2023008561A1 (ja) * 2021-07-30 2023-02-02 東レ株式会社 血液成分吸着材料

Also Published As

Publication number Publication date
KR102639967B1 (ko) 2024-02-22
CN113195013A (zh) 2021-07-30
EP3903855A4 (en) 2022-03-09
EP3903855A1 (en) 2021-11-03
KR20210094016A (ko) 2021-07-28
CN113195013B (zh) 2023-08-29
TWI725676B (zh) 2021-04-21
JPWO2020137756A1 (ja) 2021-09-27
JP7112521B2 (ja) 2022-08-03
TW202031304A (zh) 2020-09-01
ES2931127T3 (es) 2022-12-27
US20220062522A1 (en) 2022-03-03
EP3903855B1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2020137756A1 (ja) 血液浄化デバイスと血液成分調整器を備えた体外血液循環システム
JP7074898B2 (ja) 血液処理用リン吸着剤、血液処理システム及び血液処理方法
CN110636874B (zh) 血液处理用磷吸附剂、血液处理系统及血液处理方法
JP6899957B2 (ja) 血液浄化器及びその製法
JP7117368B2 (ja) 血液浄化器及びその製法
TWI782263B (zh) 血液淨化器
CN113631257B (zh) 血液净化器及其制法
TWI776136B (zh) 血液淨化器
JP2020163150A (ja) 血液処理用多孔性成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563140

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217019251

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904966

Country of ref document: EP

Effective date: 20210726