WO2020137555A1 - 常温合材 - Google Patents

常温合材 Download PDF

Info

Publication number
WO2020137555A1
WO2020137555A1 PCT/JP2019/048523 JP2019048523W WO2020137555A1 WO 2020137555 A1 WO2020137555 A1 WO 2020137555A1 JP 2019048523 W JP2019048523 W JP 2019048523W WO 2020137555 A1 WO2020137555 A1 WO 2020137555A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
room temperature
chelating agent
asphalt
mixture
Prior art date
Application number
PCT/JP2019/048523
Other languages
English (en)
French (fr)
Inventor
信昭 高村
国広 千葉
信之 大友
実 澤口
Original Assignee
大成ロテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大成ロテック株式会社 filed Critical 大成ロテック株式会社
Priority to CN201980085518.0A priority Critical patent/CN113227499A/zh
Priority to JP2020563048A priority patent/JP6893291B6/ja
Publication of WO2020137555A1 publication Critical patent/WO2020137555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre

Definitions

  • the present invention relates to a room temperature mixture.
  • normal temperature asphalt mixture (normal temperature mixture) that can be installed at normal temperature is used to repair locally damaged areas on existing road pavements.
  • a conventional room temperature asphalt mixture there is a so-called cutback asphalt mixture in which mineral oil or the like is used to forcibly reduce the viscosity of the asphalt mixture.
  • the cutback asphalt mixture is constructed by softening the asphalt with a cutback material such as mineral oil, and after the construction, the cutback material volatilizes to develop the strength of the asphalt mixture.
  • the present invention was devised in view of these problems, and an object thereof is to provide a room temperature mixture that can adjust the curing time of an asphalt mixture to a desired time.
  • the present invention for solving the above-mentioned problems is a room-temperature mixture that can be applied at room temperature, comprising asphalt, a fatty acid, and a chelating agent that dilutes the concentration of the fatty acid. ..
  • the solidification rate of asphalt can be slowed down, so that the curing time of the asphalt mixture can be adjusted to a desired time.
  • the curing time can be adjusted to a preferable time (5 to 25 minutes) for repair work.
  • the normal temperature mixture of the present invention is preferably one in which the fatty acid is linseed oil fatty acid and the chelating agent is phosphite ester. With such a configuration, it becomes easy to adjust the curing time of the asphalt mixture.
  • the blending weight of the linseed oil fatty acid and the blending weight of the phosphite are 95 to 50:5 to 50 in weight ratio. According to such a configuration, it is possible to adjust the curing time of the asphalt mixture to a length that is preferable for the repairing work time and to secure the strength (stability) of the asphalt mixture after curing.
  • the curing time of the asphalt mixture can be adjusted to a desired time.
  • the room temperature composite material 1 can be applied at room temperature, and is for repairing the holes 3 generated on the asphalt road surface 2, for example.
  • the room temperature composite material 1 is configured to include an aggregate, asphalt, a fatty acid, a chelating agent, an alkaline material, and other additives.
  • Aggregate consists of coarse aggregate, fine aggregate and filler, and it is preferable that the aggregate has a continuous particle size.
  • the coarse aggregate is a known material such as crushed stone, crushed stone, gravel, and steel slag.
  • artificially fired aggregate, fired foam aggregate, artificial lightweight aggregate, ceramic grains, emery, etc. can also be used.
  • Fine aggregates are known ones such as natural sand, artificial sand, and screenings.
  • As the filler stone powder obtained by crushing limestone or other rock, slaked lime, cement, recovered dust, fly ash, or the like is used.
  • the maximum particle size of the aggregate is about 2.5 mm to 15 mm and is appropriately adopted according to the use conditions.
  • the maximum grain size is set to a relatively small grain size of 2.5 mm.
  • the maximum particle size is 5 mm.
  • the maximum particle size is about 15 mm with a large particle size.
  • Asphalt is composed of straight asphalt and natural asphalt, for example.
  • linseed oil fatty acid is used as the fatty acid.
  • the linseed oil fatty acid has an iodine value in the range of 183 to 203, and its typical value is 185.
  • the chelating agent has a role of prolonging the curing time, and in the present embodiment, phosphite ester is adopted.
  • the blending ratio of the flaxseed oil fatty acid and the phosphite is 95-50:5-50 by weight.
  • the blended weight of asphalt and the blended weight of linseed oil fatty acid and phosphite (the combined weight of flaxseed oil fatty acid and phosphite) is equivalent.
  • Soft asphalt is formed by mixing flaxseed oil fatty acid and phosphite into asphalt. The soft asphalt has a penetration of 360 or more and is softer than ordinary asphalt.
  • the penetration is measured using a tester based on the JIS K2207 standard. Specifically, the length in which a predetermined needle penetrates into a sample kept at a constant temperature in a constant temperature water tank for a constant time (5 seconds) is measured in units of 0.1 mm.
  • Cement is used as the alkaline material.
  • cements include Portland cement (JISR5210:2009), blast furnace cement (JISR5211:2009), silica cement (JISR5212:2009), fly ash cement (JISR5213:2009), ecocement (JIS).
  • R 5214:2009) and the like can be used, and in the third embodiment, it is a high-fluidity, super-early-strength, non-shrinking mortar described in the JWWA standard.
  • Other additives include iron oxides and polishes that are used to make the cold mix look like a hot asphalt mixture.
  • the mixing ratio of aggregate, asphalt, linseed oil fatty acid and phosphite ester, cement and other additives is about 90:4:3:3:0.6.
  • room-temperature mixture 1 When manufacturing such room-temperature mixture 1, mix asphalt with aggregate and then mix linseed oil fatty acid and phosphite ester. After that, part of the cement and other additives, and finally the rest of the other additives are mixed to complete the room temperature composite material 1. When mixing, carefully manage the mixing time to prevent overmixing. The room-temperature mixture 1 is put in a bag for storage/transportation, and is sold in the bag.
  • the filling step is a step of filling the hole mixture 3 generated on the asphalt road surface 2 with the room temperature mixture 1.
  • the filling of the room temperature mixture 1 is performed manually by a worker using a shovel or the like from the bag.
  • the filling amount of the room temperature composite material 1 is such that the room temperature composite material 1 is slightly raised from the surface of the road surface 2.
  • the sprinkling process is a process of sprinkling water on the room temperature mixture 1 filled in the holes 3. Watering is done manually by a worker using a watering nozzle. The amount of water sprinkled is 1.5 liters or more with respect to the mass of the normal temperature mixture 1 of 20 kg.
  • the rolling step is a step of compressing the sprinkled room temperature composite material 1 to be flush with the road surface 2.
  • the compaction is performed by tapping the surface of the room temperature composite material 1 with a shovel or by a compaction machine. After rolling, the room temperature composite material 1 is cured by curing for a predetermined time.
  • the room temperature mixture 1 is hardened by sprinkling water and binding the cement with the flaxseed oil fatty acid, and causing the flaxseed oil fatty acid and the alkaline component of the cement to undergo a saponification reaction.
  • the room temperature composite material 1 is hardened, so that the road surface 2 can be used. It can be seen that, according to the room temperature composite material 1 having the configuration according to the present embodiment, it cures in about 12 minutes at the latest after watering (see FIG. 2 ).
  • the following will describe the experimental results of measuring the curing time by changing the blending of the flaxseed oil fatty acid and the chelating agent (phosphite ester) with reference to FIG. 2.
  • the normal temperature mixture was hardened by setting the mixing ratio (weight ratio) of the linseed oil fatty acid and the chelating agent to three kinds of 100:0 (flaxseed oil fatty acid only, no chelating agent), 80:20 and 50:50.
  • the time to do was measured.
  • the curing time is approximately 3 minutes
  • the curing time is approximately 7 minutes
  • the compounding ratio is 50:50
  • the curing time is approximately 12 minutes. From the above results, when the mixing ratio of the chelating agent to the linseed oil fatty acid increases, the curing time tends to increase.
  • a preferable curing time in which the construction time, the time until the opening of traffic, and the strength (stability) after curing are balanced is about 5 to 25 minutes.
  • the curing time is 7 minutes, so that it is possible to open the traffic early while ensuring the construction time of the rolling step. Become. Further, when the blending ratio of the linseed oil fatty acid and the chelating agent is 50:50 (the blending weight of the flaxseed oil fatty acid and the blending weight of the phosphite ester are equal), the curing time is 12 minutes, so , It is possible to balance the time until the opening of traffic and the strength (stability) after curing.
  • the room-temperature composite material 1 is stored in a bag, but since it contains a chelating agent, it becomes difficult to cure, and thus storage stability can be improved.
  • the deformation followability is high, and when applied to road surface repair, cracking and scattering are less likely to occur, which is preferable. That is, as in the present embodiment, by changing the mixing ratio of the flaxseed oil fatty acid and the chelating agent to 95 to 50:5 to 50, it is possible to balance the construction time and the time until the traffic is opened, and The required performance (deformation followability and strength (stability)) can be satisfied.
  • the room temperature mixture 1 of the present embodiment by mixing the linseed oil fatty acid with the chelating agent (phosphite ester) that dilutes the concentration of the fatty acid, the solidification rate of asphalt can be slowed. .. Therefore, the curing time of the asphalt mixture can be adjusted to a desired time, and the strength (stability) after curing can also be adjusted.
  • the chelating agent phosphite ester
  • the fatty acid is linseed oil fatty acid and the chelating agent is phosphite, it is easy to adjust the curing time of the asphalt mixture. Further, since the penetration of asphalt is 360 or more, the flow value is large (stability/flow value is small), and the follow-up performance to the deformation of the existing road surface or the like is improved. Therefore, cracking and scattering of asphalt are less likely to occur.
  • the room-temperature mixture of the present embodiment has a basic blending weight ratio of linseed oil fatty acid and a basic blending weight ratio of phosphite of 95 to 50:5 to 50, which is cured by changing the blending weight ratio. It is possible to control the time that is appropriate for construction, stability (strength), and flow (deformation followability).
  • the normal temperature mixture material according to the second embodiment of the present invention will be described.
  • the rice bran fatty acid is used as the fatty acid in the room temperature mixture according to the second embodiment.
  • the room-temperature mixture of the second embodiment is different from the room-temperature mixture of the first embodiment in that the fatty acid is changed to flaxseed oil fatty acid to be rice bran fatty acid.
  • Rice bran fatty acid has an iodine value in the range of 98 to 108, which is lower than that of flaxseed oil fatty acid.
  • Other configurations are similar to those of the first embodiment.
  • As the chelating agent a phosphite ester is adopted as in the first embodiment.
  • the blending ratio of the rice bran fatty acid and the phosphite is 95-55:5-45 by weight.
  • the compounding weight of asphalt and the compounding weight of rice bran fatty acid and phosphite (the combined weight of rice bran fatty acid and phosphite) is approximately equal.
  • Soft asphalt is formed by blending rice bran fatty acid and phosphite into asphalt. The soft asphalt has a penetration of 360 or more and is much softer than ordinary asphalt.
  • the mixing ratio (weight ratio) of rice bran fatty acid and chelating agent was set to 100:0 (only rice bran fatty acid was used, no chelating agent), 75:25 and 65:35, and the curing time of the room temperature mixture was set.
  • the curing time is approximately 3 minutes
  • the curing time is approximately 4 minutes.
  • the Marshall stability was determined by setting the blending ratio (weight ratio) of the linseed oil fatty acid and the chelating agent to 85:15, 80:20, 75:25, 70:30, 65:35 and 60:40.
  • the test was conducted and the stability/flow value (100 kgf/cm) was calculated.
  • the stability/flow value was lowered by increasing the compounding ratio of the chelating agent.
  • the tendency of the stability/flow value to decrease due to an increase in the compounding ratio of the chelating agent is larger in the rice bran fatty acid than in the flaxseed oil fatty acid. That is, the rice bran fatty acid has a higher tendency to have higher deformation followability than the flaxseed oil fatty acid, and has a large action effect that cracks and scattering are less likely to occur during road surface repair.
  • the solidification rate of asphalt can be slowed down as in the case of the normal temperature mixture of the first embodiment. Therefore, the curing time of the asphalt mixture can be adjusted to a desired time, and the repair construction time can be secured. Furthermore, the deformability of the asphalt mixture can be improved, and cracking and scattering hardly occur.
  • the normal temperature mixture material according to the third embodiment of the present invention will be described.
  • the normal temperature mixture according to the third embodiment employs a linseed type of plant fatty acid (iodine value adjusted to 170) (hereinafter, referred to as “plant fatty acid”) as the fatty acid.
  • plant fatty acid a linseed type of plant fatty acid (iodine value adjusted to 170) (hereinafter, referred to as “plant fatty acid”) as the fatty acid.
  • the room-temperature mixture of the third embodiment is different from the room-temperature mixture of the first embodiment in that the fatty acid is changed to flaxseed oil fatty acid to be a vegetable fatty acid.
  • the vegetable fatty acid has an iodine value of 170 or more and a representative value of 172, which is slightly lower than that of flaxseed oil fatty acid.
  • the flaxseed type of vegetable fatty acid is a mixture of a fatty acid mainly made from flaxseed oil and a fatty acid having a small amount of other unsaturated components (a fatty acid mainly made from rapeseed, corn and soybeans) to lower the lower limit of iodine value. It is 170.
  • the mixing ratio of the linseed oil fatty acid and the other fatty acids is 60 to 80:40 to 20. Other configurations are similar to those of the first embodiment.
  • the chelating agent a phosphite ester is adopted as in the first embodiment. In the present embodiment, the blending ratio of the vegetable fatty acid and the phosphite is 100 to 80:0 to 20 by weight.
  • the blended weight of asphalt and the blended weight of the plant fatty acid and the phosphite (the total weight of the plant fatty acid and the phosphite) is substantially equal.
  • Soft asphalt is formed by mixing vegetable fatty acid and phosphite into asphalt. The soft asphalt has a penetration of 360 or more and is much softer than ordinary asphalt.
  • the mixing ratio (weight ratio) of the vegetable fatty acid and the chelating agent was set to 3 kinds of 100:0 (only the vegetable fatty acid and no chelating agent), 90:10 and 80:20, and the time required for the room temperature mixture to harden.
  • the curing time is about 5 minutes
  • the curing time is about 6 minutes.
  • the curing time is slightly longer at the compounding ratio of 80:20.
  • the curing time tends to be long. Therefore, it is understood that the curing time can be extended by adding a large amount of the chelating agent.
  • vegetable fatty acids tend to have shorter curing times than flaxseed oil fatty acids, and tend to have longer curing times than rice bran fatty acids. Therefore, the vegetable fatty acid represents an intermediate property between the linseed oil fatty acid and the rice bran fatty acid, and can be used properly according to the construction site.
  • the tendency of the stability/flow value to decrease due to the increase in the compounding ratio of the chelating agent is that the vegetable fatty acid is larger than the flaxseed oil fatty acid, but smaller than the rice bran fatty acid. That is, the vegetable fatty acid tends to have higher deformation followability than the flaxseed oil fatty acid, and tends to have lower deformation followability than the rice bran fatty acid. In road surface repair, it is possible to provide products that are more suited to the site by properly using each site.
  • the solidification rate of asphalt can be slowed down as in the case of the room temperature composite material of the first embodiment. Therefore, the curing time of the asphalt mixture can be adjusted to a desired time, and the repair construction time can be secured. Furthermore, the deformability of the asphalt mixture can be improved, and cracking and scattering hardly occur. Further, in the room temperature mixture of the third embodiment, white turbidity due to low temperature solidification can be reduced as compared with the first and second embodiments. This makes it possible to prevent a decrease in workability due to fatty acid coagulation and a hindrance to the reaction between acid and base components (saponification reaction) when the room temperature mixture is used at low temperatures or in winter in cold regions. Further, the room temperature mixture of the third embodiment can be manufactured at a lower cost than the first and second embodiments.
  • the present invention is not limited to the above embodiments, and design changes can be appropriately made without departing from the spirit of the present invention.
  • the fatty acids are flaxseed oil fatty acid, rice bran fatty acid and vegetable fatty acid
  • the chelating agent is a phosphite ester, but not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

アスファルト混合物の硬化時間を所望の時間に調整できる常温合材を提供する。常温にて施工可能な常温合材(1)において、アスファルトと、脂肪酸と、当該脂肪酸の濃度を薄めるキレート剤とを備えたことを特徴とする。前記脂肪酸は、亜麻仁油脂肪酸であり、前記キレート剤は、亜リン酸エステルであるものが好ましい。さらに、前記亜麻仁油脂肪酸の配合重量と、前記亜リン酸エステルの配合重量は、重量比で95~50:5~50であるものが好ましい。

Description

常温合材
 本発明は、常温合材に関する。
 既設道路舗装において局所的に発生する破損個所を補修するために、常温状態で施工可能な常温アスファルト混合物(常温合材)が使用されている。従来の常温アスファルト混合物としては、鉱物油等を使用してアスファルト混合物の粘度を強制的に低下させる、いわゆるカットバックアスファルト混合物があった。カットバックアスファルト混合物は、鉱物油等のカットバック材でアスファルトを軟化させて施工を行い、施工後は、カットバック材が揮発することで、アスファルト混合物の強度を発現させる。
 しかし、カットバックアスファルト混合物では、施工後の混合物強度が極端に低く、養生時間が長くなるといった問題があった。この問題を解決するには、カットバックアスファルト混合物を施工後、急速に固化させる必要があるが、常温で鉱物油を固化させることはできない。そこで、通常使用するアスファルト混合物の材料に、油脂または脂肪酸にアルカリ性添加物を添加・混合して、アスファルトの粘度を低下させたアスファルト混合物(特許文献1参照)があった。特許文献1のアスファルト混合物は、施工中もしくは施工直後にアスファルト混合物に硬化促進剤を供給することにより、油脂または脂肪酸とアルカリ分とが急速に鹸化反応し、硬化することで早期の交通開放が可能となる。
特許5583978号公報
 特許文献1のアスファルト混合物では、養生時間を短くすることができるものの、アスファルト混合物の使用(交通開放)が可能となる可使時間(アスファルト混合物の硬化時間)を遅くして所望の時間に調整することはできない。
 そこで、本発明は、これらの問題に鑑みて創案されたものであり、アスファルト混合物の硬化時間を所望の時間に調整できる常温合材を提供することを課題とする。
 前記課題を解決するための本発明は、常温にて施工可能な常温合材において、アスファルトと、脂肪酸と、当該脂肪酸の濃度を薄めるキレート剤とを備えたことを特徴とする常温合材である。
 このような構成の常温合材によれば、キレート剤を添加して脂肪酸の濃度を薄めることで、アスファルトの固化速度を遅くできるので、アスファルト混合物の硬化時間を所望の時間に調整できる。これによって、硬化時間を補修の施工に好ましい時間(5~25分)に調整することができる。
 本発明の常温合材は、前記脂肪酸が亜麻仁油脂肪酸であり、前記キレート剤が亜リン酸エステルであるものが好ましい。このような構成によれば、アスファルト混合物の硬化時間を調整し易くなる。
 また、本発明の常温合材は、前記亜麻仁油脂肪酸の配合重量と、前記亜リン酸エステルの配合重量は、重量比で95~50:5~50であるものが好ましい。このような構成によれば、アスファルト混合物の硬化時間を、補修の施工時間に好ましい長さに調整することができるとともに、アスファルト混合物の硬化後の強度(安定度)を確保することができる。
 本発明に係る常温合材によれば、アスファルト混合物の硬化時間を所望の時間に調整することができる。
本発明の第一実施形態に係る常温合材の施工手順を示した図であって、(a)は充填工程、(b)は散水工程、(c)は転圧工程を示した断面図である。 本発明の第一実施形態に係る常温合材の配合と硬化時間との関係を示したグラフである。 本発明の第一実施形態に係る常温合材の配合と安定度/フロー値との関係を示したグラフである。 本発明の第二実施形態に係る常温合材の配合と硬化時間との関係を示したグラフである。 本発明の第二実施形態に係る常温合材の配合と安定度/フロー値との関係を示したグラフである。 本発明の第三実施形態に係る常温合材の配合と硬化時間との関係を示したグラフである。 本発明の第三実施形態に係る常温合材の配合と安定度/フロー値との関係を示したグラフである。
 本発明の第一実施形態に係る常温合材について、添付図面を参照しつつ詳細に説明する。図1に示すように、本発明に係る常温合材1は、常温にて施工可能なものであって、たとえば、アスファルト路面2上に発生した穴3の補修を行うためのものである。かかる常温合材1は、骨材とアスファルトと脂肪酸とキレート剤とアルカリ系材料とその他添加材とを備えて構成されている。
 骨材は、粗骨材、細骨材、フィラーからなり、連続粒度を有するものが好ましい。粗骨材は、砕石、玉砕、砂利、鉄鋼スラグ等の公知のものである。その他、人口焼成骨材、焼成発泡骨材、人工軽量骨材、陶磁器粒、エメリーなども使用することができる。細骨材は、天然砂、人工砂、スクリーニングス等の公知のものである。フィラーは、石灰岩やその他の岩石を粉砕した石粉、消石灰、セメント、回収ダストまたはフライアッシュ等を用いる。骨材の最大粒径は、2.5mm~15mm程度のものが使用条件に応じて適宜採用される。たとえば、穴3が浅い場合や細い場合には、比較的小さい粒径2・5mmを最大粒径とする。穴3が所定以上の大きさ(狭くない大きさ)の場合は、粒径5mmを最大粒径とする。また、透水性が要求される場合には、大きい粒径15mm程度を最大粒径とする。
 アスファルトは、たとえば、ストレートアスファルトや天然アスファルトにて構成されている。脂肪酸は、本実施形態では、亜麻仁油脂肪酸が採用されている。亜麻仁油脂肪酸は、ヨウ素価が183~203の範囲であり、その代表値は185である。キレート剤は、硬化時間を長くする役目を有するものであって、本実施形態では、亜リン酸エステルが採用されている。本実施形態では、亜麻仁油脂肪酸と亜リン酸エステルの配合比率は、重量比95~50:5~50である。また、アスファルトの配合重量と、亜麻仁油脂肪酸および亜リン酸エステルの配合重量(亜麻仁油脂肪酸の重量と亜リン酸エステルの重量を合わせた重量)は同等である。アスファルトに亜麻仁油脂肪酸と亜リン酸エステルを配合することで、軟質アスファルトが形成されている。軟質アスファルトは、針入度360以上となっており、通常のアスファルトよりも軟質である。
 針入度の測定は、JIS K2207の規格に基づいた試験機を用いて行っている。具体的には、恒温水槽で一定温度に保った試料に、既定の針が一定時間(5秒間)に進入する長さを0.1mm単位で計測している。
 アルカリ系材料は、セメントが採用されている。かかるセメントとしては、ポルトランドセメント(JIS R 5210:2009)、高炉セメント(JIS R 5211:2009)、シリカセメント(JIS R 5212:2009)、フライアッシュセメント(JIS R 5213:2009)、エコセメント(JIS R 5214:2009)等が使用可能であり、第三実施形態においてはJWWA規格に記載されている、高流動性、超早強、無収縮のモルタルである。その他の添加材は、当該常温合材を加熱アスファルト混合物に風合いを似せるために用いる、酸化鉄や艶出し剤等からなる。骨材と、アスファルトと、亜麻仁油脂肪酸および亜リン酸エステルと、セメントと、その他添加材の配合比率は、略90:4:3:3:0.6である。
 かかる常温合材1を製造するに際しては、骨材にアスファルトを混合したのち、亜麻仁油脂肪酸と亜リン酸エステルを混ぜたものを混合する。その後にセメントおよびその他添加剤の一部、最後にその他添加剤の残りを混合して、常温合材1が完成する。なお、混合の際、過混合を防ぐため混合時間を入念に管理する。常温合材1は、袋に入れて貯蔵・搬送され、袋に保存された状態で販売される。
 かかる常温合材1を施工するに際しては、充填工程と散水工程と転圧工程とを行う。図1の(a)に示すように、充填工程は、アスファルト路面2上に発生した穴3に常温合材1を充填する工程である。常温合材1の充填は、袋からシャベル等を用いて作業員が手作業で行う。常温合材1の充填量は、常温合材1が路面2の表面より、若干盛り上がる程度の量とする。補修する穴3が多数の場合や大きい場合には、手作業ではなく重機を用いて充填してもよい。
 図1の(b)に示すように、散水工程は、穴3に充填された常温合材1に水を撒く工程である。散水は散水ノズルを用いて作業員が手作業で行う。散水量は、常温合材1の質量20kgに対して1.5リットル以上である。
 図1の(c)に示すように、転圧工程は、散水された常温合材1を圧縮して、路面2と面一にする工程である。転圧は、シャベルで常温合材1の表面を叩いたり、転圧機で行ったりする。転圧後、所定時間養生することで、常温合材1が硬化する。
 常温合材1の硬化は、散水によってセメントが亜麻仁油脂肪酸と結合し、亜麻仁油脂肪酸とセメントのアルカリ成分が鹸化反応を起こすことで為される。鹸化反応することで、常温合材1が硬化するので、路面2が使用可能となる。本実施形態に係る構成の常温合材1によれば、散水後、最遅で略12分で硬化することが分かる(図2参照)。
 以下に、図2を参照しながら、亜麻仁油脂肪酸とキレート剤(亜リン酸エステル)の配合を変えて硬化時間を測定した実験結果を説明する。かかる実験では、亜麻仁油脂肪酸とキレート剤の配合比(重量比)を、100:0(亜麻仁油脂肪酸のみで、キレート剤なし)、80:20および50:50の三種として、常温合材が硬化する時間を計測した。配合比100:0では硬化時間は略3分、配合比80:20では硬化時間は略7分、配合比50:50では硬化時間は略12分である。以上の結果より、亜麻仁油脂肪酸に対してキレート剤の配合割合が大きくなると、硬化時間が長くなる傾向が得られる。
 ここで、硬化時間について検討すると、硬化時間が短すぎると、転圧工程が完了する前に常温合材が硬化してしまうという問題が発生する。一方、硬化時間が長すぎると、交通開放までの時間(可使時間)が長くなってしまうという問題が発生する。その他、可使時間を長くする目的でキレート剤(亜リン酸エステル)を多く配合すると硬化後の強度低下と言う問題が発生する。これら全体を考慮すると、施工時間と、交通開放までの時間と、硬化後の強度(安定度)のバランスがとれた好ましい硬化時間は5~25分程度である。本実施形態のように、亜麻仁油脂肪酸とキレート剤の配合比を80:20とすると、硬化時間が7分となることから、転圧工程の施工時間を確保できつつ早期の交通開放が可能となる。また、亜麻仁油脂肪酸とキレート剤の配合比を50:50(亜麻仁油脂肪酸の配合重量と、亜リン酸エステルの配合重量を同等)とすると、硬化時間が12分となることから、施工時間と、交通開放までの時間と、硬化後の強度(安定度)のバランスを取ることができる。常温合材1は、袋に入れた状態で貯蔵されるが、キレート剤を含むことで、硬化し難くなるため、貯蔵安定性を高めることができる。
 次に、図3を参照しながら、亜麻仁油脂肪酸とキレート剤(亜リン酸エステル)の配合を変えて安定度/フロー値を測定した実験結果を説明する。かかる実験では、亜麻仁油脂肪酸とキレート剤の配合比(重量比)を、80:20、75:25、70:30、65:35および60:40の五種として、マーシャル安定度試験を行い、安定度/フロー値(100kgf/cm)を算出した。その結果、亜麻仁油脂肪酸にキレート剤を添加した場合、キレート剤の配合比率を増加させることで、安定度/フロー値が低くなることが分かった。安定度/フロー値が低くなることで、変形追従性が高くなるので、路面補修に適用した場合、ひび割れや飛散が生じ難くなるので好ましい。つまり、本実施形態のように、亜麻仁油脂肪酸とキレート剤の配合比を95~50:5~50と変化させることにより、施工時間と交通開放までの時間とのバランスを取りつつ、現場毎の要求性能(変形追従性や強度(安定度))を満たすことができる。
 以上説明したように、本実施形態の常温合材1によれば、亜麻仁油脂肪酸に、当該脂肪酸の濃度を薄めるキレート剤(亜リン酸エステル)を混合したことで、アスファルトの固化速度を遅くできる。よって、アスファルト混合物の硬化時間を所望の時間に調整でき、硬化後の強度(安定度)も調整することが可能である。
 また、本実施形態の常温合材は、脂肪酸が亜麻仁油脂肪酸であり、キレート剤が亜リン酸エステルであるので、アスファルト混合物の硬化時間を調整し易くなる。さらに、アスファルトの針入度が360以上であるので、フロー値が大きく(安定度/フロー値が小さく)なり、既設路面等の変形に対する追従性能が向上する。したがって、アスファルトのひび割れや飛散が生じにくくなる。
 さらに、本実施形態の常温合材は、亜麻仁油脂肪酸の基本配合重量比と、亜リン酸エステルの基本配合重量比は95~50:5~50であり、配合重量比を変化させることにより硬化時間を施工に適度な時間、安定度(強度)、フロー(変形追従性)をコントロールすることができる。
 本発明の第二実施形態に係る常温合材について説明する。第二実施形態に係る常温合材は、脂肪酸として米ぬか脂肪酸が採用されている。第二実施形態の常温合材は、第一実施形態の常温合材と比較して、脂肪酸を亜麻仁油脂肪酸に替えて米ぬか脂肪酸としたものである。米ぬか脂肪酸は、ヨウ素価が98~108の範囲であり、亜麻仁油脂肪酸より低くなっている。その他の構成については、第一実施形態と同様である。キレート剤は第一実施形態と同様に亜リン酸エステルが採用されている。本実施形態では、米ぬか脂肪酸と亜リン酸エステルの配合比率は、重量比で95~55:5~45である。また、アスファルトの配合重量と、米ぬか脂肪酸および亜リン酸エステルの配合重量(米ぬか脂肪酸の重量と亜リン酸エステルの重量を合わせた重量)は略同等である。アスファルトに米ぬか脂肪酸と亜リン酸エステルを配合することで、軟質アスファルトが形成されている。軟質アスファルトは、針入度360以上となっており、通常のアスファルトよりも非常に軟質である。
 以下に、図4を参照しながら、米ぬか脂肪酸とキレート剤(亜リン酸エステル)の配合を変えて硬化時間を測定した実験結果を説明する。かかる実験では、米ぬか脂肪酸とキレート剤の配合比(重量比)を、100:0(米ぬか脂肪酸のみで、キレート剤なし)、75:25および65:35の三種として、常温合材が硬化する時間を計測した。配合比100:0では硬化時間は略3分、配合比75:25と配合比65:35では硬化時間は略4分である。なお、配合比75:25と配合比65:35では、グラフ上の違いはほとんどないが、詳細には、配合比65:35の方が硬化時間は僅かに長い。
 以上の結果より、米ぬか脂肪酸に対してキレート剤の配合割合が大きくなると、硬化時間が長くなる傾向が得られる。したがって、キレート剤を多く配合することで、硬化時間を長くできることが分かる。また、米ぬか脂肪酸は、亜麻仁油脂肪酸と比較して、硬化時間が短くなる傾向がある。したがって、米ぬか脂肪酸は、補修する穴が小さく施工時間が短くて済む場合に適している。
 次に、図5を参照しながら、米ぬか脂肪酸とキレート剤(亜リン酸エステル)の配合を変えて安定度/フロー値を測定した実験結果を説明する。かかる実験では、亜麻仁油脂肪酸とキレート剤の配合比(重量比)を、85:15、80:20、75:25、70:30、65:35および60:40の六種として、マーシャル安定度試験を行い、安定度/フロー値(100kgf/cm)を算出した。その結果、亜麻仁油脂肪酸にキレート剤を添加した場合、キレート剤の配合比率を増加させることで、安定度/フロー値が低くなることが分かった。キレート剤の配合比率の増加による、安定度/フロー値の低下傾向は、米ぬか脂肪酸の方が、亜麻仁油脂肪酸よりも大きい。つまり、米ぬか脂肪酸の方が、亜麻仁油脂肪酸よりも、変形追従性が高くなる傾向が高く、路面補修においてひび割れや飛散が生じにくくなる作用効果が大きい。
 第二実施形態の常温合材においても、第一実施形態の常温合材と同様に、アスファルトの固化速度を遅くできる。よって、アスファルト混合物の硬化時間を所望の時間に調整でき、補修の施工時間を確保することができる。さらに、アスファルト混合物の変形追従性を高くでき、ひび割れや飛散が生じにくくなる。
 本発明の第三実施形態に係る常温合材について説明する。第三実施形態に係る常温合材は、脂肪酸として植物脂肪酸の亜麻仁タイプ(ヨウ素価170調整)(以下、「植物脂肪酸」と記す。)が採用されている。第三実施形態の常温合材は、第一実施形態の常温合材と比較して、脂肪酸を亜麻仁油脂肪酸に替えて植物脂肪酸にしたものである。植物脂肪酸は、ヨウ素価が170以上で代表値が172であり、亜麻仁油脂肪酸よりも若干低くなっている。植物脂肪酸の亜麻仁タイプは、亜麻仁油を主原料とする脂肪酸と、その他不飽和成分が少ない脂肪酸(主に菜種、コーン、大豆を主原料とする脂肪酸)とを混合させて、ヨウ素価の下限を170としたものである。亜麻仁油脂肪酸とその他の脂肪酸の配合比率は、60~80:40~20である。その他の構成については、第一実施形態と同様である。キレート剤は第一実施形態と同様に亜リン酸エステルが採用されている。本実施形態では、植物脂肪酸と亜リン酸エステルの配合比率は、重量比で100~80:0~20である。また、アスファルトの配合重量と、植物脂肪酸および亜リン酸エステルの配合重量(植物脂肪酸の重量と亜リン酸エステルの重量を合わせた重量)は略同等である。アスファルトに植物脂肪酸と亜リン酸エステルを配合することで、軟質アスファルトが形成されている。軟質アスファルトは、針入度360以上となっており、通常のアスファルトよりも非常に軟質である。
 以下に、図6を参照しながら、植物脂肪酸とキレート剤(亜リン酸エステル)の配合を変えて硬化時間を測定した実験結果を説明する。かかる実験では、植物脂肪酸とキレート剤の配合比(重量比)を、100:0(植物脂肪酸のみで、キレート剤なし)、90:10および80:20の三種として、常温合材が硬化する時間を計測した。配合比100:0では硬化時間は略5分、配合比90:10と配合比80:20では硬化時間は略6分である。なお、配合比90:10と配合比80:20では、グラフ上の違いはほとんどないが、詳細には、配合比80:20の方が硬化時間は僅かに長い。
 以上の結果より、植物脂肪酸に対してキレート剤の配合割合が大きくなると、硬化時間が長くなる傾向が得られる。したがって、キレート剤を多く配合することで、硬化時間を長くできることが分かる。また、植物脂肪酸は、亜麻仁油脂肪酸と比較して、硬化時間が短くなる傾向があり、米ぬか脂肪酸と比較して硬化時間が長くなる傾向がある。したがって、植物脂肪酸は、亜麻仁油脂肪酸と米ぬか脂肪酸の中間の性状を表し、施工現場に合わせた使い分けが可能である。
 次に、図7を参照しながら、植物脂肪酸とキレート剤(亜リン酸エステル)の配合を変えて安定度/フロー値を測定した実験結果を説明する。かかる実験では、植物脂肪酸とキレート剤の配合比(重量比)を、100:0、95:5、90:10、85:15、および80:20の五種として、マーシャル安定度試験を行い、安定度/フロー値(100kgf/cm)を算出した。その結果、植物脂肪酸にキレート剤を添加した場合、キレート剤の配合比率を増加させることで、安定度/フロー値が低くなることが分かった。キレート剤の配合比率の増加による、安定度/フロー値の低下傾向は、植物脂肪酸の方が、亜麻仁油脂肪酸よりも大きいが、米ぬか脂肪酸より小さい。つまり、植物脂肪酸の方が、亜麻仁油脂肪酸よりも、変形追従性が高くなる傾向があり、米ぬか脂肪酸より変形追従性が低くなる傾向がある。路面補修において、それぞれの現場に即した使い分けを行うことによる、より現場に即した製品を提供することが可能である。
 第三実施形態の常温合材においても、第一実施形態の常温合材と同様に、アスファルトの固化速度を遅くできる。よって、アスファルト混合物の硬化時間を所望の時間に調整でき、補修の施工時間を確保することができる。さらに、アスファルト混合物の変形追従性を高くでき、ひび割れや飛散が生じにくくなる。また、第三実施形態の常温合材では、第一及び第二実施形態と比較して、低温凝固による白濁を低減できる。これによって、当該常温合材を低温時または寒冷地の冬季に使用した際に、脂肪酸凝固によるワーカビリティの低下や、酸と塩基成分の反応(鹸化反応)の妨げになることを防止できる。さらに、第三実施形態の常温合材は、第一及び第二実施形態と比較して、安価に製造できる。
 以上、本発明を実施するための形態について説明したが、本発明は前記実施の形態に限定する趣旨ではなく、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。たとえば、前記実施形態では、脂肪酸が、亜麻仁油脂肪酸、米ぬか脂肪酸および植物脂肪酸であって、キレート剤が亜リン酸エステルであるがこれに限定されるものではない。
 1   常温合材
 2   アスファルト路面
 3   穴

Claims (4)

  1.  常温にて施工可能な常温合材において、
     アスファルトと、脂肪酸と、当該脂肪酸の濃度を薄めるキレート剤とを備えた
     ことを特徴とする常温合材。
  2.  前記脂肪酸は、亜麻仁油脂肪酸であり、
     前記キレート剤は、亜リン酸エステルである
     ことを特徴とする請求項1に記載の常温合材。
  3.  前記亜麻仁油脂肪酸の配合重量と、前記亜リン酸エステルの配合重量は、重量比で95~50:5~50である
     ことを特徴とする請求項2に記載の常温合材。
  4.  前記脂肪酸は、植物脂肪酸の亜麻仁油タイプであり、
     前記キレート剤は、亜リン酸エステルである
     ことを特徴とする請求項1に記載の常温合材。
PCT/JP2019/048523 2018-12-25 2019-12-11 常温合材 WO2020137555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980085518.0A CN113227499A (zh) 2018-12-25 2019-12-11 常温混合料
JP2020563048A JP6893291B6 (ja) 2018-12-25 2019-12-11 常温合材および常温合材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241001 2018-12-25
JP2018-241001 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137555A1 true WO2020137555A1 (ja) 2020-07-02

Family

ID=71127184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048523 WO2020137555A1 (ja) 2018-12-25 2019-12-11 常温合材

Country Status (3)

Country Link
JP (1) JP6893291B6 (ja)
CN (1) CN113227499A (ja)
WO (1) WO2020137555A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256864A (ja) * 1986-04-30 1987-11-09 Dainippon Ink & Chem Inc 新設または修繕用施工材料
JP2013520548A (ja) * 2010-02-23 2013-06-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 瀝青組成物
WO2017117127A1 (en) * 2015-12-30 2017-07-06 Kraton Polymers U.S. Llc Oil gel for asphalt modification and rejuvenation
JP2018526497A (ja) * 2015-08-07 2018-09-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 亜リン酸を使用する改質アスファルト
JP2018165331A (ja) * 2017-03-28 2018-10-25 クオドラントポリペンコジャパン株式会社 樹脂成形体及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212956A (zh) * 1998-11-13 1999-04-07 李思雪 常温沥青拌合料
CN102101791B (zh) * 2011-02-23 2015-02-04 江苏苏博特新材料股份有限公司 一种耐高温的水泥乳化沥青砂浆材料
CN102504552B (zh) * 2011-10-26 2014-10-22 中国石油化工股份有限公司 一种道路石油沥青抗老化剂及其制备方法
CN102942335A (zh) * 2012-11-07 2013-02-27 重庆暄洁环保产业(集团)股份有限公司 一种微晶蜡改性的冷补沥青混合料及其制备方法
CN108179671A (zh) * 2018-02-09 2018-06-19 温州市城南市政建设维修有限公司 人行道快速维修方法
CN108467599A (zh) * 2018-04-20 2018-08-31 石梦成 一种阻燃改性建筑沥青嵌缝油膏及生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256864A (ja) * 1986-04-30 1987-11-09 Dainippon Ink & Chem Inc 新設または修繕用施工材料
JP2013520548A (ja) * 2010-02-23 2013-06-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 瀝青組成物
JP2018526497A (ja) * 2015-08-07 2018-09-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 亜リン酸を使用する改質アスファルト
WO2017117127A1 (en) * 2015-12-30 2017-07-06 Kraton Polymers U.S. Llc Oil gel for asphalt modification and rejuvenation
JP2018165331A (ja) * 2017-03-28 2018-10-25 クオドラントポリペンコジャパン株式会社 樹脂成形体及びその製造方法

Also Published As

Publication number Publication date
CN113227499A (zh) 2021-08-06
JP6893291B2 (ja) 2021-06-23
JPWO2020137555A1 (ja) 2021-09-09
JP6893291B6 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
KR102294203B1 (ko) 속경성 모르타르 조성물
JP6183572B1 (ja) 速硬性セメント組成物
JP2008184353A (ja) 補修用モルタルおよびこれを用いたトンネル補修工法
CN109455980A (zh) 混凝土路面快速修复材料及其修复方法
JPH0813413A (ja) 軟弱路床土の改良方法
KR101334319B1 (ko) 친환경 흙콘크리트 조성물 및 이를 이용한 포장방법
JP2017114734A (ja) 超速硬性セメントモルタル
WO2020137555A1 (ja) 常温合材
KR102074356B1 (ko) 초속경 및 조강 특성을 갖는 유황 함유 콘크리트 조성물 및 이를 이용한 도로 포장 보수·보강장치
JP2010285849A (ja) 舗装表層部の補修方法
JP2015175160A (ja) 常温硬化型超高強度繊維補強コンクリートの目粗し方法及びセメント硬化体
JP3926769B2 (ja) 地下構造物用蓋の取替工法に使用する表層用セメントモルタル及び地下構造物用蓋の取替工法
JP6564674B2 (ja) セメント組成物、及び、セメント硬化体
JP2004345885A (ja) 水硬性組成物、それを用いた地盤の埋め戻し材、非高強度硬化部構造材、並びに掘削地盤の埋め戻し工法
AU2015221197B2 (en) Dry mortar, mortar slurry and method for producing semi-rigid coatings
JP4606526B2 (ja) 鉄道軌道用急硬性注入材とその製造方法
WO2020238945A1 (zh) 一种砌筑式沥青混凝土及其制备方法
JP7093742B2 (ja) ブロック舗装構造及びその構築方法
US100954A (en) Improved composition for concrete pavements, walks
KR102661980B1 (ko) 도로 또는 지반 공동부 긴급 복구용 조성물 및 도로 또는 지반 공동부 긴급 복구 방법
JP2000119057A (ja) 舗装体用急硬性注入材とその製造方法
KR101686062B1 (ko) 천연아스팔트 코팅볼을 활용한 하부층용 아스팔트 혼합물 및 이를 이용한 포장구조 시공방법
JPH02248507A (ja) 転圧コンクリート舗装材およびその舗装方法
JPH02145469A (ja) 半剛性舗装方法
KR101686061B1 (ko) 천연아스팔트 코팅볼을 활용한 하부층용 구스아스팔트 혼합물 및 이를 이용한 포장구조 시공방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903535

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020563048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903535

Country of ref document: EP

Kind code of ref document: A1