WO2020137382A1 - 脱水素化触媒 - Google Patents
脱水素化触媒 Download PDFInfo
- Publication number
- WO2020137382A1 WO2020137382A1 PCT/JP2019/047229 JP2019047229W WO2020137382A1 WO 2020137382 A1 WO2020137382 A1 WO 2020137382A1 JP 2019047229 W JP2019047229 W JP 2019047229W WO 2020137382 A1 WO2020137382 A1 WO 2020137382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- dehydrogenation catalyst
- dehydrogenation
- oxide
- heat treatment
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 213
- 238000006356 dehydrogenation reaction Methods 0.000 title claims abstract description 135
- 150000001336 alkenes Chemical class 0.000 claims abstract description 94
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 claims abstract description 71
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 27
- 229910052742 iron Inorganic materials 0.000 claims abstract description 25
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 20
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 18
- 229910052788 barium Inorganic materials 0.000 claims abstract description 18
- 238000000197 pyrolysis Methods 0.000 claims description 49
- 239000000463 material Substances 0.000 claims description 48
- 239000000203 mixture Substances 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 11
- 239000007769 metal material Substances 0.000 claims description 10
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 47
- 229930195733 hydrocarbon Natural products 0.000 abstract description 24
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 24
- 239000002994 raw material Substances 0.000 abstract description 24
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 23
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 70
- 238000010438 heat treatment Methods 0.000 description 64
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 49
- 239000011572 manganese Substances 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 36
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 30
- 238000000576 coating method Methods 0.000 description 30
- 239000011248 coating agent Substances 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 27
- 238000000034 method Methods 0.000 description 24
- 229910052760 oxygen Inorganic materials 0.000 description 23
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 21
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 17
- 239000005977 Ethylene Substances 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- 238000004381 surface treatment Methods 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000001354 calcination Methods 0.000 description 10
- 238000004939 coking Methods 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 239000000571 coke Substances 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 229960004106 citric acid Drugs 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 238000010532 solid phase synthesis reaction Methods 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 description 4
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 3
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 229960002303 citric acid monohydrate Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- GJKFIJKSBFYMQK-UHFFFAOYSA-N lanthanum(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GJKFIJKSBFYMQK-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- -1 carbonate compound Chemical class 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940044658 gallium nitrate Drugs 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- QZRHHEURPZONJU-UHFFFAOYSA-N iron(2+) dinitrate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QZRHHEURPZONJU-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910006219 ZrO(NO3)2·2H2O Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005235 decoking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/04—Ethylene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a dehydrogenation catalyst.
- Olefins such as ethylene and propylene are used in industry to manufacture chemical compounds for a wide variety of applications. Olefin is produced by causing hydrocarbons such as ethane and naphtha derived from petroleum to flow through a pyrolysis tube (cracking tube), heating to 700 to 900° C., and thermally decomposing in a gas phase. In the above manufacturing method, a large amount of energy is required to raise the temperature. Further, in the pyrolysis process of the hydrocarbon as a raw material, various problems such as carbon (coking) depositing (coking) on the inner surface of the pyrolysis tube and carburization phenomenon occurring on the inner surface of the pyrolysis tube are caused. Therefore, development of a high-performance dehydrogenation catalyst that can solve these problems is desired.
- Patent Document 1 discloses a perovskite type oxide that suppresses coking to the inner surface of a pyrolysis tube.
- Patent Document 2 discloses, as a catalyst component, at least one selected from the group consisting of oxides of 2B group metal elements, 3B group metal elements, and 4B group metal elements of the periodic table.
- a dehydrogenation catalyst including is disclosed.
- One aspect of the present invention has been made in view of the above problems, and an object thereof is to suppress coking in a thermal decomposition reaction of a hydrocarbon raw material and to dehydrate an olefin in which the yield of olefin can be improved. It is to provide an oxidization catalyst.
- a dehydrogenation catalyst is a dehydrogenation catalyst used for olefin production, and contains at least one element of La and Ce as a catalyst component, When it does not contain Ce, it contains at least one element selected from the group consisting of Ba, Fe and Mn, and when it contains Ce, it contains at least one element of Fe and Mn and does not contain Ba. , And A first oxide containing at least one element of La and Ce, and when the first oxide does not contain Ce, at least one element selected from the group consisting of Ba, Fe, and Mn, When the first oxide contains Ce, it contains at least one of a mixture containing a second oxide containing at least one element of Fe and Mn.
- FIG. 2 is an enlarged view of the inner surface of the pyrolysis tube for olefin production in FIG. It is a figure which shows the structure of the thermal decomposition pipe for olefin production which concerns on Embodiment 2 of this invention,
- (a) is a schematic sectional drawing of the thermal decomposition pipe for olefin production,
- (b) is for olefin production in (a).
- (A) is a graph showing the yield of ethylene in a thermal decomposition experiment of ethane performed using a dehydrogenation catalyst as a catalyst example and a comparative example, and powdery ⁇ -Al 2 O 3 .
- (B) shows the selectivity of ethylene with respect to the conversion rate of ethane in the thermal decomposition experiment of ethane carried out by using a dehydrogenation catalyst as a catalyst example and a comparative example, and powdery ⁇ -Al 2 O 3. It is a graph shown.
- (A) is a graph which shows the yield of ethylene with respect to the crystallite size in a thermal decomposition experiment of ethane carried out using a dehydrogenation catalyst as a catalyst example and a comparative example.
- (B) is a graph which shows the yield of ethylene with respect to the specific surface area in the thermal decomposition experiment of ethane performed using the dehydrogenation catalyst as a catalyst example and a comparative example.
- (A) And (b) is a figure which shows the result of the X-ray-diffraction analysis performed with respect to the dehydrogenation catalyst in a catalyst example.
- (C) is a figure which shows the result of the X-ray-diffraction analysis performed with respect to the dehydrogenation catalyst in a comparative example. It is a graph which shows the evaluation experiment of the amount of carbon deposition performed using the dehydrogenation catalyst as a catalyst example and a comparative example.
- FIG. 1 shows the configuration of an olefin production pyrolysis tube 1A in the present embodiment
- (a) is a schematic sectional view of the olefin production pyrolysis tube 1A
- (b) is an olefin in (a). It is an enlarged view of the inner surface of the production pyrolysis tube 1A.
- the olefin production pyrolysis tube 1A has surfaces of a tubular base material 2 and a plate-shaped body (insert material) 5 made of a heat-resistant metal material.
- Alumina film 3 as a metal oxide film containing Al 2 O 3 is formed on the inner surface of, and the dehydrogenation catalyst 4A is carried on the surface of the alumina film 3.
- the metal oxide film containing Al 2 O 3 is called “alumina film”.
- the olefin production pyrolysis tube 1A improves the olefin yield from hydrocarbon raw materials such as ethane and naphtha by adding a dehydrogenation catalytic reaction to the pyrolysis reaction. be able to.
- the base material 2, the plate-shaped body 5, the alumina film 3, and the dehydrogenation catalyst 4A in the olefin production pyrolysis tube 1A will be described in detail.
- the base material 2 in the present embodiment is a cast product made of a heat resistant metal material in which the alumina coating 3 is formed on the surface of the base material 2.
- the plate-like body 5 in the present embodiment is a cast product or a stainless steel plate that is provided inside the base material 2 and is made of a heat-resistant metal material having the alumina coating 3 formed on the surface of the plate-like body 5.
- the olefin production pyrolysis tube 1A includes the plate-shaped body 5, but it is not an essential member and may not include the plate-shaped body 5.
- the base material 2 and the plate-like body 5 may be, for example, cast products of a conventionally known heat-resistant metal material, and contain at least chromium (Cr), nickel (Ni), and aluminum (Al) in heat resistance.
- the casting is preferably made of a metal material.
- the base material 2 and the plate-shaped body 5 can be manufactured by a conventionally known method.
- the alumina coating 3 is formed on the inner surface of the base material 2 and the surface of the plate-shaped body 5, but the alumina coating 3 may be formed only on the inner surface of the base material 2, or The alumina film 3 may be formed only on the surface of the sheet 5.
- the dehydrogenation catalyst 4A is carried on the inner surface of the base material 2 and the surface of the plate-like body 5, but the dehydrogenation catalyst 4A is carried only on the inner surface of the base material 2. Alternatively, the dehydrogenation catalyst 4A may be carried only on the surface of the plate-like body 5.
- At least a part of the inner surface of the tubular base material 2 and/or the surface of the plate-shaped body 5 constitutes a concave portion and/or a convex portion.
- the alumina film 3 formed on the inner surface of the base material 2 and the surface of the plate-like body 5 of the present invention has high density, and prevents oxygen, carbon, and nitrogen from entering the base material 2 and the plate-like body 5 from the outside. It acts as a barrier to prevent.
- the alumina film 3 is formed on the inner surface of the base material 2 and the surface of the plate-like body 5, so that the inner surface of the base material 2 and the plate are formed. It is possible to suppress the generation of coke on the surface of the body 5. As a result, the frequency of performing decoking can be reduced.
- the alumina film 3 of the present invention is formed by the surface treatment step and the first heat treatment step.
- the surface treatment step and the first heat treatment step will be described in detail below.
- the surface treatment step is a step for performing a surface treatment on a target portion of the base material 2 and the plate-like body 5 that comes into contact with a high temperature atmosphere when the product is used, and adjusting the surface roughness of the portion.
- the surface treatment of the base material 2 and the plate-like body 5 can be exemplified by polishing treatment.
- the surface treatment can be carried out so that the surface roughness (Ra) of the target site is 0.05 to 2.5 ⁇ m. More preferably, the surface roughness (Ra) is 0.5 to 2.0 ⁇ m. Further, at this time, by adjusting the surface roughness by the surface treatment, the residual stress and strain of the heat-affected zone can be simultaneously removed.
- the first heat treatment step is a step for subjecting the base material 2 and the plate-shaped body 5 after the surface treatment step to heat treatment in an oxidizing atmosphere.
- the oxidizing atmosphere is an oxidizing gas containing 20% by volume or more of oxygen, or an oxidizing environment in which steam or CO 2 is mixed.
- the heat treatment is performed at a temperature of 900° C. or higher, preferably 1000° C. or higher, and the heating time is 1 hour or longer.
- the alumina coating 3 is stably formed on the inner surface of the base material 2 and the surface of the plate-shaped body 5 by sequentially performing the surface treatment step and the first heat treatment step on the base material 2 and the plate-shaped body 5.
- the pyrolysis tube for olefin production can be obtained.
- the thickness of the alumina coating 3 formed on the inner surface of the base material 2 and the surface of the plate-like body 5 is preferably 0.5 ⁇ m or more and 6 ⁇ m or less in order to effectively exhibit the barrier function. .. If the thickness of the alumina coating 3 is less than 0.5 ⁇ m, the carburization resistance may decrease, and if it exceeds 6 ⁇ m, the difference in thermal expansion coefficient between the base material 2 and the plate-like body 5 and the coating. There is a possibility that the alumina coating 3 may be easily peeled off due to the influence of.
- the thickness of the alumina coating 3 is more preferably 0.5 ⁇ m or more and 2.5 ⁇ m or less.
- a chromium oxide scale may be partially formed on the alumina film 3. The reason is that the chromium oxide scale formed near the surfaces of the base material 2 and the plate-shaped body 5 is pushed up to the product surface by Al 2 O 3 .
- This chromium oxide scale is preferably as small as possible, and it is preferable that the surface area of the product is less than 20 area% and Al 2 O 3 accounts for 80 area% or more.
- the dehydrogenation catalyst 4A is a dehydrogenation catalyst used for olefin production.
- the dehydrogenation catalyst 4A is for improving the yield of olefins in the thermal decomposition reaction (specifically, the reaction of thermally decomposing a hydrocarbon raw material such as naphtha and ethane into olefins) using the thermal decomposition pipe 1A for olefin production. And is supported on the surface of the alumina coating 3.
- the dehydrogenation catalyst 4A contains at least one element of La and Ce as a catalyst component, and when Ce is not included, contains at least one element selected from the group consisting of Ba, Fe, and Mn, and contains Ce.
- a composite oxide containing at least one element of Fe and Mn and not containing Ba, a first oxide containing at least one element of La and Ce, and the first oxide being Ce When not containing, at least one element selected from the group consisting of Ba, Fe, and Mn is contained.
- the first oxide contains Ce, a second oxidation containing at least one element of Fe and Mn. And at least one of a mixture containing a substance. Thereby, the conversion rate of the hydrocarbon raw material can be improved.
- the conversion rate of the hydrocarbon raw material has a difference of several mol% (for example, about 1 to 2 mol%), the olefin yield becomes a large difference when manufactured on an industrial scale. Therefore, the improvement in the conversion rate of the hydrocarbon raw material has a greater effect on the olefin yield than the improvement in the olefin selectivity.
- the yield of olefin in the thermal decomposition reaction of the hydrocarbon raw material can be improved.
- the thermal decomposition reaction of the hydrocarbon raw material is carried out, for example, at 700° C. or higher, and generally coking due to overcracking is likely to occur, but the dehydrogenation catalyst 4A has the above-mentioned constitution, so that coking is not performed. Can be suppressed.
- Examples of the complex oxide include oxides of La, Ba, Fe, Mn, and O, oxides of La, Ba, Mn, and O, oxides of La, Ba, Fe, and O, Examples thereof include oxides of Ce, Mn, and O, and oxides of La, Ce, Mn, and O (La a Ce b Mn c O d ).
- Examples of the first oxide include CeO 2 , La 2 O 3 and the like.
- Examples of the second oxide include Mn 2 O 3 and LaMnO 3 .
- Examples of the mixture include a mixture of CeO 2 and Mn 2 O 3 , a mixture of La 2 O 3 and Mn 2 O 3, and the like.
- the crystallite size of the composite oxide or the first oxide is preferably 20 to 75 nm, more preferably 20 to 50 nm, and further preferably 20 to 40 nm. Thereby, the yield of olefin in the thermal decomposition reaction in which the hydrocarbon raw material is thermally decomposed into olefin can be improved.
- the crystallite size is the crystallite size measured by the X-ray diffraction method.
- the complex oxide is preferably a perovskite type oxide.
- the perovskite type oxide is a complex oxide having a perovskite structure represented by ABO 3 .
- the A site contains at least one element of La and Ba
- the B site contains at least one element of Mn and Fe.
- the composite oxide contains Ce
- the A site contains Ce and the B site contains at least one of Mn and Fe.
- the complex oxide contains La and Ce
- the A site contains La and Ce
- the B site contains at least one of Mn and Fe.
- the crystal structure is distorted due to the difference in size of the elements forming the A site and the B site.
- Oxygen (lattice oxygen) in the crystal lattice is easier to get in and out than in a structure without distortion.
- constituent elements can be replaced while maintaining the perovskite structure. Therefore, the properties of various elements can be incorporated. Further, the size of the constituent element changes by substituting the constituent element. As a result, the size of the distortion of the crystal structure also changes, and the mobility of lattice oxygen also changes.
- perovskite-type structures depends on the size of alternating AO and BO 2 layers.
- the tolerance factor is expressed as a quantitative measure, and is expressed by the following equation (1).
- t r A /r O / ⁇ 2(r B +r O ) (1)
- r A , r B , and r O are the ionic radii of A, B, and O ions, respectively.
- perovskite type oxides since the lattice oxygen is easy to move, it has redox ability (redox ability) and causes oxygen-mediated dehydrogenation reaction (oxidative dehydrogenation reaction).
- the oxidative dehydrogenation reaction is generally more reactive than the simple dehydrogenation reaction.
- the lattice oxygen since the lattice oxygen easily moves, it reacts with the coke (C) adhering to the catalyst surface and gasifies as carbon monoxide (CO) and carbon dioxide (CO 2 ) to precipitate coke.
- the amount (deposition amount) can be suppressed.
- the specific surface area (BET specific surface area) of the dehydrogenation catalyst 4A is preferably 5 to 80 m 2 /g, more preferably 5 to 40 m 2 /g, and 5 to 20 m 2 /g. More preferable. Thereby, the yield of olefin in the thermal decomposition reaction in which the hydrocarbon raw material is thermally decomposed into olefin can be improved. Further, generally, as the specific surface area increases, the reaction rate of the thermal decomposition reaction increases, but coke tends to precipitate even if the specific surface area is too large. When the specific surface area is 5 m 2 /g or more, the reaction rate of the thermal decomposition reaction can be increased.
- the specific surface area is 80 m 2 /g or less, it is possible to prevent the coking amount from becoming too large.
- the specific surface area is the specific surface area of the complex oxide or mixture (dehydrogenation catalyst 4A).
- the specific surface area is the same as that of the dehydrogenation catalyst 4B in which the catalyst component 4Ba is supported on the carrier 4Bb. Specific surface area.
- the method for producing the dehydrogenation catalyst 4A is preferably a citric acid complex polymerization method or a solid phase method.
- the citric acid complex polymerization method includes a mixing and stirring step, a drying step, a calcination step, and a main calcination step.
- a salt containing an element constituting the dehydrogenation catalyst 4A eg, nitrate or acetate
- citric acid monohydrate e.g, nitrate or acetate
- ethylene glycol e.g., ethylene glycol
- distilled water e.g., distilled water
- Citric acid monohydrate is preferably added in an amount of 3 to 4 times the total molar amount of La, Ce, Ba, Fe, and Mn contained in the salt.
- Ethylene glycol is preferably added in an amount of 3 to 4 times the total molar amount of La, Ce, Ba, Fe, and Mn contained in the salt.
- Distilled water is preferably added in an amount of 1200 to 1600 times the total molar amount of La, Ce, Ba, Fe, and Mn contained in the salt.
- the mixed solution is preferably stirred at 60 to 70° C. for 10 to 17 hours.
- the mixed liquid is dried to obtain powder.
- heating and drying may be performed on a hot plate while stirring.
- the powder is calcinated to obtain a calcinated body.
- the calcination step is preferably performed in the atmosphere or oxygen, the calcination temperature is preferably 400 to 450° C., and the holding time is preferably 2 to 3 hours.
- the firing temperature and the holding time may be appropriately adjusted within the range according to the amount of the catalyst to be prepared.
- the temporary fired body is main fired to obtain an oxide.
- the main calcination step is preferably performed in the atmosphere or oxygen, the main calcination temperature is preferably 850 to 900° C., and the holding time is preferably 8 to 12 hours. The firing temperature and the holding time may be appropriately adjusted within the range according to the amount of the catalyst to be prepared.
- Solid phase method includes a pulverizing and mixing step, a drying step, and a baking step.
- a compound containing an element constituting the dehydrogenation catalyst 4A (for example, an oxide or a carbonate compound) is mixed, and the mixture is pulverized and mixed to obtain a pulverized and mixed powder.
- the compounds are mixed so that La, Ce, Ba, Fe, and Mn have a desired molar ratio. For example, it may be pulverized and mixed by a wet bead mill.
- the pulverized and mixed powder is dried to obtain a dried body.
- the dried body is fired to obtain an oxide.
- the firing step is preferably performed in the atmosphere or oxygen, the firing temperature is 500 to 1300° C., and the holding time is preferably 1 to 10 hours.
- the firing temperature and the holding time may be appropriately adjusted within the range according to the amount of the catalyst to be prepared.
- the method for supporting the dehydrogenation catalyst 4A on the alumina film 3 includes a coating step and a second heat treatment step. The coating process and the second heat treatment process will be described in detail below.
- the coating step is a step of coating the surface of the alumina coating 3 formed by the surface treatment step and the first heat treatment step with a slurry containing the previously produced dehydrogenation catalyst 4A.
- the second heat treatment step is a step of heat treating the base material 2 and the plate-like body 5 in which the slurry is applied to the alumina coating 3 by the applying step.
- the heat treatment in the second heat treatment step is performed in the air or an acidic atmosphere.
- the heat treatment temperature in the second heat treatment step is in the range of 500 to 900° C., and the heat treatment time is 1 to 6 hours.
- the alumina film 3 can be loaded with the dehydrogenation catalyst 4A.
- the dehydrogenation catalyst 4A can be supported on the alumina film 3 at an appropriate concentration (amount).
- the olefin production pyrolysis tube 1A in the present embodiment has the alumina coating 3 on the inner surface of the tubular base material 2 made of a heat-resistant metal material and/or the surface of the plate-shaped body 5 made of a heat-resistant metal material. Are formed, and the dehydrogenation catalyst 4A is carried on the surface of the alumina film 3.
- the olefin production pyrolysis tube 1A has the alumina coating 3 formed on the inner surface of the base material 2 and the surface of the plate-like body 5. Therefore, it is possible to suppress the generation of coke on the surfaces of the alumina coating 3 (the base material 2 and the plate-shaped body 5).
- the dehydrogenation catalyst 4A is carried on the surface of the alumina film 3.
- ethylene can be produced from ethane by a dehydrogenation reaction, for example.
- the yield of olefins from hydrocarbon raw materials such as ethane and naphtha due to thermal decomposition can be improved.
- the coating step and the second heat treatment step are performed on the alumina film 3 formed on the inner surface of the base material 2 and the surface of the plate-like body 5 by the surface treatment step and the first heat treatment step.
- the dehydrogenation catalyst 4A was supported on the alumina coating 3, but the olefin production pyrolysis tube of the present invention is not limited to this.
- the coating step and the heat treatment step may be performed after the surface treatment step.
- the alumina film 3 is formed on the inner surface of the base material 2 and the surface of the plate-like body 5, and the dehydrogenation catalyst 4A is carried on the alumina film 3.
- the alumina coating 3 can be formed on the inner surface of the base material 2 and the surface of the plate-shaped body 5 and the dehydrogenation catalyst 4A can be supported on the alumina coating 3 by performing the heat treatment step only once.
- the dehydrogenation catalyst 4A is carried on the inner surface of the base material 2 and the surface of the alumina film 3 formed on the surface of the plate-like body 5.
- the pyrolysis tube 1A for olefin production is not limited to this. That is, the olefin production pyrolysis tube of the present invention has a barrier function and can carry the dehydrogenation catalyst 4A, and is different from Al 2 O 3 in a metal oxide film (eg, Cr 2 O 3 , MnCr 2 O 4 ). And the like) may have a configuration in which the dehydrogenation catalyst 4A is supported on the surface of the (4).
- FIG. 2 shows the structure of the olefin production pyrolysis tube 1A′, (a) is a schematic cross-sectional view of the olefin production pyrolysis tube 1A′, and (b) is the olefin production pyrolysis tube in FIG. It is an enlarged view of the inner surface of pyrolysis tube 1A'.
- the thermal decomposition pipe for olefin production 1A' as a modified example has an inner surface and a plate shape of a tubular base material 2 made of a heat resistant metal material. This is different from the olefin production pyrolysis tube 1A in that the dehydrogenation catalyst 4A is directly carried on the surface of the body 5.
- a slurry containing a pre-produced dehydrogenation catalyst 4A is applied to the inner surface of the base material 2 and the surface of the plate-like body 5, and the atmosphere or a nitrogen atmosphere is appropriately used. Heat treatment under various conditions. As a result, the dehydrogenation catalyst 4A can be supported on the inner surface of the base material 2 and the surface of the plate-shaped body 5.
- the dehydrogenation catalyst 4A is carried on the inner surface of the base material 2 and the surface of the plate-like body 5.
- the dehydrogenation catalyst 4A acts as a dehydrogenation catalyst in the thermal decomposition using the olefin production thermal decomposition pipe 1A'
- ethylene can be produced from ethane by a dehydrogenation reaction, for example.
- the yield of olefins from hydrocarbon raw materials such as ethane and naphtha due to thermal decomposition can be improved.
- the structure of the dehydrogenation catalyst is different from that of the dehydrogenation catalyst 4A of the first embodiment.
- FIG. 3 shows a configuration of the olefin production thermal decomposition tube 1B in the present embodiment
- (a) is a schematic sectional view of the olefin production thermal decomposition tube 1B
- (b) is an olefin in (a). It is an enlarged view of the inner surface of manufacturing pyrolysis tube 1B.
- the dehydrogenation catalyst 4B in the olefin production pyrolysis tube 1B of the present embodiment includes a catalyst component 4Ba and a carrier 4Bb carrying the catalyst component. ..
- the catalyst component 4Ba is the same as the dehydrogenation catalyst 4A described in “(Dehydrogenation catalyst 4A)”.
- the carrier 4Bb is a carrier on which the catalyst component 4Ba is carried in the dehydrogenation catalyst 4B.
- the carrier 4Bb preferably has a large specific surface area in order to improve the function of the catalyst component 4Ba as a catalyst.
- the specific surface area of the carrier 4Bb is preferably 20 m 2 /g or more, and more preferably 40 m 2 /g or more.
- the catalyst component 4Ba can be highly dispersed in the carrier 4Bb.
- the olefin yield can be improved in the thermal decomposition reaction in which the hydrocarbon raw material is thermally decomposed into olefins.
- Examples of the carrier 4Bb include alumina (Al 2 O 3 ) and silica (SiO 2 ).
- Al 2 O 3 has four phases, ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 and ⁇ -Al 2 O 3 .
- ⁇ -Al 2 O 3 is heat treated, as the heat treatment temperature rises, ( ⁇ -Al 2 O 3 ) ⁇ ( ⁇ -Al 2 O 3 ) ⁇ ( ⁇ -Al 2 O 3 ) ⁇ ( ⁇ - Al 2 O 3 ) undergoes phase transformation in this order, and the specific surface area decreases as the phase transformation proceeds.
- the carrier 4Bb of the dehydrogenation catalyst 4B in the present embodiment preferably has a specific surface area of 20 m 2 /g or more as described above.
- the carrier 4Bb preferably has a structure mainly composed of ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 or ⁇ -Al 2 O 3 .
- the Al 2 O 3 as the carrier 4Bb does not become a single phase unless it is before heat treatment or after heat treatment at a high temperature of 1300° C. or higher, and ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 and ⁇ -Al 2 O 3 are assumed to be mixed. Therefore, the specific surface area of Al 2 O 3 as the carrier 4Bb is an average value of the specific surface areas of Al 2 O 3 in which the phases are mixed.
- the carrier 4Bb preferably forms a complex oxide or a solid solution with the catalyst component 4Ba in the production of the dehydrogenation catalyst 4B. This can prevent the catalyst component 4Ba from aggregating in the thermal decomposition reaction in which the hydrocarbon raw material is thermally decomposed into olefins. As a result, a high olefin yield can be maintained for a long period of time, so that the olefin yield can be further improved. Specifically, it is preferable that at least a part of the carrier 4Bb is ⁇ -Al 2 O 3 .
- ⁇ Method for producing dehydrogenation catalyst 4B> Next, a method for manufacturing the dehydrogenation catalyst 4B will be described. In the following, two types of dehydrogenation catalysts are used, (1) using ⁇ -Al 2 O 3 as a starting material for the carrier 4Bb and (2) using ⁇ -Al 2 O 3 as a starting material for the carrier 4Bb. A method of manufacturing 4B will be described. (1) When ⁇ -Al 2 O 3 is used as the starting material for the carrier 4Bb The dehydrogenation catalyst 4B was prepared by attaching an aqueous solution containing the catalyst component 4Ba to ⁇ -Al 2 O 3 as the starting material for the carrier 4Bb. After that, it can be manufactured by heat treatment.
- the heat treatment is performed in the atmosphere or oxygen, the heat treatment temperature is in the range of 500 to 1300° C., and the heat treatment time is 1 to 6 hours.
- the dehydrogenation catalyst 4B in which the catalyst component 4Ba is supported on ⁇ -Al 2 O 3 as the carrier 4Bb can be obtained.
- ⁇ -Al 2 O 3 is used as the starting material for the carrier 4Bb
- the dehydrogenation catalyst 4B was prepared by attaching an aqueous solution containing the catalyst component 4Ba to ⁇ -Al 2 O 3 as the starting material for the carrier 4Bb.
- ⁇ -Al 2 O 3 to which the aqueous solution is attached can be heat-treated (heat treatment step).
- the heat treatment is performed in the atmosphere or oxygen, the heat treatment temperature is in the range of 500 to 1300° C., and the heat treatment time is 1 to 6 hours.
- the catalyst component 4Ba becomes Al 2 O 3 ( ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 or ⁇ -Al 2 O 3 as the carrier 4Bb. It is possible to obtain the dehydrogenation catalyst 4B carried by (4).
- the heat treatment temperature is preferably in the range of 500 to 1100°C. This is because when the heat treatment temperature is in the range of 500 to 1100° C., it is possible to suppress the complete phase transformation of ⁇ -Al 2 O 3 into ⁇ -Al 2 O 3 during the heat treatment, so that the carrier is used. The decrease in the specific surface area of Al 2 O 3 can be suppressed. As a result, the catalyst component 4Ba can be highly dispersed in Al 2 O 3 as a carrier.
- the heat treatment temperature is more preferably in the range of 1000 to 1100°C. This is because when the heat treatment temperature is in the range of 1000 ⁇ 1100 °C, Al 2 O 3 when at least a portion of the ⁇ -Al 2 O 3 during the heat treatment is phase transformation ⁇ -Al 2 O 3, a phase transformation This is because at least a part of the above bonds with the catalyst component 4Ba to form a complex oxide or a solid solution. This can prevent the catalyst component 4Ba from aggregating in the thermal decomposition reaction in which the hydrocarbon raw material is thermally decomposed into olefins.
- the heat treatment temperature is more preferably in the range of 1000 to 1080°C. This is because when the heat treatment temperature is in the range of 1000 to 1100° C., the rate of phase transformation of ⁇ -Al 2 O 3 into ⁇ -Al 2 O 3 during the heat treatment can be increased.
- the method for supporting the dehydrogenation catalyst 4B on the alumina film 3 includes a coating step and a third heat treatment step. The coating process and the third heat treatment process will be described in detail below.
- the application step is a step of applying the slurry containing the dehydrogenation catalyst 4B to the surface of the alumina film 3 formed by the surface treatment step and the first heat treatment step described in the first embodiment.
- the third heat treatment step is a step of heat treating the base material 2 and the plate-shaped body 5 in which the slurry containing the dehydrogenation catalyst 4B is applied to the alumina coating 3 by the coating step.
- the heat treatment in the third heat treatment step is performed in the air or oxygen.
- the heat treatment temperature in the third heat treatment step is in the range of 500 to 900° C., and the heat treatment time is 1 to 6 hours.
- the dehydrogenation catalyst 4B can be supported on the alumina film 3.
- the dehydrogenation catalyst 4B can be supported on the alumina film 3 at an appropriate concentration (amount).
- the method for producing an olefin according to one aspect of the present invention is a method for producing an olefin using the above-described thermal decomposition tubes 1A, 1A', and 1B for producing an olefin.
- the olefin include ethylene and propylene.
- the hydrocarbon raw material include ethane and naphtha.
- Olefins are produced by flowing a hydrocarbon raw material into pyrolysis tubes 1A, 1A', 1B for olefin production, heating it to 700 to 900°C, and thermally decomposing it in the gas phase.
- Catalyst Example 1 The dehydrogenation catalyst in Catalyst Example 1 was prepared by the citric acid complex polymerization method.
- the La: Ba: Fe: Mn 0.8: 0.2: 0.4: it weighed so as to provide 0.6 mole ratio And made the solute.
- Citric acid monohydrate and ethylene glycol in an amount of 3 times the molar amount of La, Ba, Fe, and Mn in the solute were added to distilled water in an amount of 1500 times the molar amount of the total molar amount. It was dissolved and sufficiently stirred (hereinafter referred to as solvent).
- solvent dissolved and sufficiently stirred
- the solute was mixed with the solvent, and the mixture was heated with stirring at 70° C. overnight. Then, it was heated and dried on a pot plate with stirring to obtain a powder.
- La 0.8 Ba 0.2 Fe 0.4 Mn 0.6 was obtained by temporarily calcining the powder at 400° C. for 2 hours, and then by calcination at 850° C. for 10 hours.
- O 3 hereinafter referred to as LBFMO
- LBFMO the LBFMO in Catalyst Example 1 is also referred to as LBFMO (citric acid complex polymerization method).
- Catalyst Example 2 The dehydrogenation catalyst in Catalyst Example 2 was prepared by the solid phase method.
- the mixed powder was sufficiently pulverized and mixed by a wet bead mill to obtain a pulverized and mixed powder. Then, it dried and the dried body was obtained.
- LBFMO was prepared by calcining the dried product at 1200° C. for 5 hours.
- the LBFMO in Catalyst Example 2 is also referred to as LBFMO (solid phase method).
- CO+MO a mixture of CeO 2 and Mn 2 O 3 with a molar ratio of 1:1
- the thermal decomposition experiment of ethane was first conducted by using 100 mg of a sample (LBFMO (citric acid complex polymerization method), LBFMO (solid phase method), LBMO, LBFO, CMO, ⁇ -Al 2 O 3 , or BZCO) and an inert solid was mixed with 392 mg of SiC, which was filled in a quartz tube (inner diameter: 4 mm, length: 180 mm) at a height of 30 mm. Next, the quartz tube was inserted into the tubular furnace, and the temperature inside the tubular furnace was raised to 700°C. Next, gas was supplied to the quartz tube, and ethane was thermally decomposed in the quartz tube.
- the raw material flow rates were ethane (C 2 H 6 ): 18.1 mL/min, steam (H 2 O): 24.7 mL/min, and N 2 : 98.0 mL/min.
- hydrogen (H 2 ) and nitrogen (N 2 ) were analyzed by TCG gas chromatograph (Shimadzu, GC-8A), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), monoxide.
- Carbon (CO) and methane (CH 4 ) were analyzed by a FID gas chromatograph (Shimadzu, GC-8A) equipped with a methanizer, and the yield of ethylene (C 2 H 4 ) and ethane (C 3 H 6 ) were analyzed. The conversion rate and the selectivity of ethylene (C 2 H 4 ) were calculated.
- FIG. 4(a) is a graph showing the yield of ethylene in a thermal decomposition experiment of ethane performed using a dehydrogenation catalyst as a catalyst example and a comparative example, and powdery ⁇ -Al 2 O 3. Is.
- FIG. 4B shows the conversion rate of ethane in the ethane thermal decomposition experiment performed using the dehydrogenation catalyst as the catalyst example and the comparative example, and powdery ⁇ -Al 2 O 3 .
- the graph which shows the selectivity of ethylene is shown.
- the dehydrogenation catalysts in Catalyst Examples 1 to 7 were the dehydrogenation catalyst of Comparative Example 2 and the powdery ⁇ -Al 2 O as Comparative Example 1.
- the yield of ethylene was higher than that of 3 .
- the dehydrogenation catalysts of Catalyst Examples 1 to 7 are the dehydrogenation catalyst of Comparative Example 2 and the powdery ⁇ -Al 2 O 3 as Comparative Example 1.
- the conversion of ethane was higher than that.
- FIG. 5A is a graph showing the yield of ethylene with respect to the crystallite size in the thermal decomposition experiment of ethane carried out using the dehydrogenation catalyst as the catalyst example and the comparative example.
- the dehydrogenation catalyst in Catalyst Example 5 was a mixture of CeO 2 and Mn 2 O 3 (a physical mixture having different crystal structures), only peaks of CeO 2 and Mn 2 O 3 were observed. .. Although CeO 2 and Mn 2 O 3 each have a low catalytic performance as a simple substance, it was found that the catalytic performance is enhanced when the mixture is a mixture. In addition, Table 1 shows the crystallite size of CeO 2 of Catalyst Example 5.
- the dehydrogenation catalysts in Catalyst Examples 1 to 6 had high yields in the crystallite size range of 20 to 75 nm.
- FIG. 6( a ) The result of the X-ray diffraction analysis performed on the dehydrogenation catalysts in Catalyst Examples 1, 3 and 4 is shown in FIG. 6( a ), and was performed on the dehydrogenation catalysts in Catalyst Examples 6 and 7.
- the result of the X-ray diffraction analysis is shown in FIG.
- the result of the X-ray diffraction analysis performed on the dehydrogenation catalyst in Comparative Example 2 is shown in (c) of FIG.
- the specific surface area of the dehydrogenation catalysts of Catalyst Examples 1 to 6 and Comparative Example 2 was measured using GeminiVII2390a (manufactured by Micromeritics).
- Table 1 shows the specific surface areas of Catalyst Examples 1 to 6 and Comparative Example 2.
- FIG. 5(b) shows a graph showing the yield of ethylene with respect to the specific surface area in the thermal decomposition experiment of ethane performed using the dehydrogenation catalyst as the catalyst example and the comparative example.
- the yield was basically high in proportion to the specific surface area.
- Catalyst Example 5 showed a high yield, which was greatly deviated from the straight line.
- the sample obtained by the above method is referred to as "Ga/ ⁇ -Al 2 O 3 ".
- the sample obtained by the above method is referred to as “Ga-0.1Ba/ ⁇ -Al 2 O 3 ”.
- Example 1 ⁇ Evaluation experiment of carbon deposition amount> Using the dehydrogenation catalysts of Catalyst Example 1 and Comparative Examples 3 and 4, thermal decomposition reaction of ethane was carried out in the same manner as in Example 1. After the thermal decomposition reaction of ethane, using a thermal conductivity detector (TCD) (TGA-50 (manufactured by Shimadzu Corp.)), the catalyst for dehydrogenation in Example 1 and Comparative Examples 3 and 4 was treated with 100- Carbon was detected as carbon monoxide (CO) and carbon dioxide (CO 2 ) by flowing oxygen in the temperature range of 900°C.
- FIG. 7 shows a graph showing an evaluation experiment of the amount of carbon deposition performed using the dehydrogenation catalyst as the catalyst example and the comparative example.
- the TCD signal on the vertical axis indicates the amount of detected carbon monoxide and carbon dioxide.
- the present invention can be used for a pyrolysis tube for thermally decomposing hydrocarbon raw materials such as ethane and naphtha into olefins.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
LaおよびCeの少なくとも一方の元素を含む第1の酸化物と、前記第1の酸化物がCeを含まない場合、Ba、Fe、およびMnからなる群より選ばれる少なくとも一種の元素を含み、前記第1の酸化物がCeを含む場合、FeおよびMnの少なくとも一方の元素を含む第2の酸化物とを含む混合物の少なくとも一方を含む。
以下、本発明の実施形態1におけるオレフィン製造用熱分解管1Aについて、図1を参照しながら詳細に説明する。図1は、本実施形態におけるオレフィン製造用熱分解管1Aの構成を示すものであり、(a)はオレフィン製造用熱分解管1Aの概略断面図であり、(b)は(a)におけるオレフィン製造用熱分解管1Aの内表面の拡大図である。
本実施形態における母材2は、母材2の表面にアルミナ皮膜3が形成された耐熱性金属材料からなる鋳造物である。本実施形態における板状体5は、母材2の内側に備えられ、板状体5の表面にアルミナ皮膜3が形成された耐熱性金属材料からなる鋳造物またはステンレス鋼板である。なお、本実施形態では、オレフィン製造用熱分解管1Aは板状体5を備えているが、必須な部材ではなく、板状体5を備えていなくてもよい。母材2および板状体5は、例えば、従来公知の耐熱性金属材料の鋳造物とすればよく、クロム(Cr)、ニッケル(Ni)、およびアルミニウム(Al)を少なくとも含有している耐熱性金属材料からなる鋳造物であることが好ましい。母材2および板状体5は、従来公知の方法によって製造することができる。本実施形態では、母材2の内表面および板状体5の表面にアルミナ皮膜3が形成されているが、母材2の内表面のみにアルミナ皮膜3が形成されていてもよいし、板状体5の表面のみにアルミナ皮膜3が形成されていてもよい。また、本実施形態では、母材2の内表面および板状体5の表面に脱水素化触媒4Aが担持されているが、母材2の内表面のみに脱水素化触媒4Aが担持されていてもよいし、板状体5の表面のみに脱水素化触媒4Aが担持されていてもよい。
本発明の母材2の内表面および板状体5の表面に形成されるアルミナ皮膜3は、緻密性が高く、外部から酸素、炭素、窒素の母材2および板状体5への侵入を防ぐバリアとしての作用を有する。
表面処理工程は、母材2および板状体5の、製品使用時に高温雰囲気と接触することとなる対象部位に表面処理を行ない、該部位の表面粗さを調整するための工程である。
第1熱処理工程は、表面処理工程後の母材2および板状体5を酸化性雰囲気下にて加熱処理を施すための工程である。
脱水素化触媒4Aは、オレフィン製造に用いられる脱水素化触媒である。脱水素化触媒4Aは、オレフィン製造用熱分解管1Aを用いた熱分解反応(具体的には、ナフサやエタンなど炭化水素原料をオレフィンに熱分解させる反応)におけるオレフィンの収率を向上させるための触媒であり、アルミナ皮膜3の表面に担持されている。
ここでrA、rB、rOは、それぞれA、B、Oイオンのイオン半径である。ペロブスカイト型酸化物はt=1.05~0.90前後で出現し、理想的なペロブスカイト型構造はt=1で実現される。
脱水素化触媒4Aの製造方法は、クエン酸錯体重合法または固相法であることが好ましい。
クエン酸錯体重合法は、混合撹拌工程、乾燥工程、仮焼成工程、および本焼成工程を含む。
固相法は、粉砕混合工程、乾燥工程、および焼成工程を含む。
次に、脱水素化触媒4Aのアルミナ皮膜3へ担持方法について説明する。脱水素化触媒4Aのアルミナ皮膜3へ担持方法は、塗布工程および第2熱処理工程を含んでいる。以下に、塗布工程および第2熱処理工程について詳細に説明する。
塗布工程は、表面処理工程および第1熱処理工程により形成されたアルミナ皮膜3の表面に、予め製造した脱水素化触媒4Aを含むスラリーを塗布する工程である。
第2熱処理工程は、塗布工程によりアルミナ皮膜3に前記スラリーが塗布された母材2および板状体5を熱処理する工程である。
次に、実施形態1におけるオレフィン製造用熱分解管1Aの変形例としてのオレフィン製造用熱分解管1A´について、図2を参照しながら説明する。図2は、オレフィン製造用熱分解管1A´の構成を示すものであり、(a)はオレフィン製造用熱分解管1A´の概略断面図であり、(b)は(a)におけるオレフィン製造用熱分解管1A´の内表面の拡大図である。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の実施形態2におけるオレフィン製造用熱分解管1Bについて、図3を参照しながら詳細に説明する。図3は、本実施形態におけるオレフィン製造用熱分解管1Bの構成を示すものであり、(a)はオレフィン製造用熱分解管1Bの概略断面図であり、(b)は(a)におけるオレフィン製造用熱分解管1Bの内表面の拡大図である。
次に、脱水素化触媒4Bの製造方法について説明する。以下では、(1)担体4Bbの出発材料としてα-Al2O3を用いる場合と、(2)担体4Bbの出発材料としてγ-Al2O3を用いる場合との2通りの脱水素化触媒4Bの製造方法について説明する。
(1)担体4Bbの出発材料としてα-Al2O3を用いる場合
脱水素化触媒4Bは、担体4Bbの出発材料としてのα-Al2O3に、触媒成分4Baを含む水溶液を付着させたのち、熱処理することにより製造することができる。熱処理は、大気中または酸素中で行い、熱処理温度は、500~1300℃の範囲であり、熱処理時間は、1~6時間である。前記の条件で熱処理することにより、触媒成分4Baが担体4Bbとしてのα-Al2O3に担持された脱水素化触媒4Bを得ることができる。
(2)担体4Bbの出発材料としてγ-Al2O3を用いる場合
脱水素化触媒4Bは、担体4Bbの出発材料としてのγ-Al2O3に、触媒成分4Baを含む水溶液を付着させたのち(付着工程)、水溶液を付着させたγ-Al2O3を熱処理すること(熱処理工程)により製造することができる。熱処理は、大気中または酸素中で行い、熱処理温度は、500~1300℃の範囲であり、熱処理時間は、1~6時間である。前記の条件で熱処理することにより、触媒成分4Baが担体4BbとしてのAl2O3(γ-Al2O3、δ-Al2O3、θ-Al2O3、またはα-Al2O3)に担持された脱水素化触媒4Bを得ることができる。
次に、脱水素化触媒4Bのアルミナ皮膜3へ担持方法について説明する。脱水素化触媒4Bのアルミナ皮膜3へ担持方法は、塗布工程および第3熱処理工程を含んでいる。以下に、塗布工程および第3熱処理工程について詳細に説明する。
塗布工程は、実施形態1で説明した、表面処理工程および第1熱処理工程により形成されたアルミナ皮膜3の表面に、脱水素化触媒4Bを含むスラリーを塗布する工程である。
第3熱処理工程は、塗布工程によりアルミナ皮膜3に脱水素化触媒4Bを含むスラリーが塗布された母材2および板状体5を熱処理する工程である。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
以下に、本発明の一態様に係るオレフィン製造用熱分解管において用いられる脱水素化触媒の実施例について説明する。
(触媒実施例1)
触媒実施例1における脱水素化触媒は、クエン酸錯体重合法により調製した。硝酸ランタン6水和物(La(NO3)3・6H2O)、硝酸バリウム(Ba(NO3)2)、硝酸鉄9水和物(Fe(NO3)3・9H2O)、および硝酸マンガン6水和物(Mn(NO3)3・6H2O)をLa:Ba:Fe:Mn=0.8:0.2:0.4:0.6のモル比となるように秤量して溶質とした。溶質中のLa、Ba、Fe、およびMnの総モル量に対して3倍のモル量のクエン酸一水和物およびエチレングリコールを当該総モル量に対して1500倍のモル量の蒸留水に溶解し、十分に撹拌した(以下、溶媒とする)。溶媒に溶質を混合し、70℃にて一晩、加熱撹拌した。その後、ポットプレート上にて撹拌しながら加熱乾燥し、粉末とした。当該粉末を400℃、2時間保持の条件にて仮焼成し、さらに850℃、10時間保持の条件にて本焼成することにより、La0.8Ba0.2Fe0.4Mn0.6O3(以下、LBFMOと称する)を調製した。以下では、触媒実施例1におけるLBFMOをLBFMO(クエン酸錯体重合法)とも呼ぶ。
触媒実施例2における脱水素化触媒は、固相法により調製した。酸化ランタン(La2O3)、炭酸バリウム(Ba(CO3)2)、酸化鉄(Fe2O3)、および酸化マンガン(MnO2)をLa:Ba:Fe:Mn=0.8:0.2:0.4:0.6のモル比となるように混合した。混合した粉末を湿式ビーズミルにて十分に粉砕混合して粉砕混合済み粉末を得た。その後、乾燥して乾燥体を得た。乾燥体を1200℃、5時間保持の条件で焼成することにより、LBFMOを調製した。以下では、触媒実施例2におけるLBFMOをLBFMO(固相法)とも呼ぶ。
硝酸ランタン6水和物(La(NO3)3・6H2O)、硝酸バリウム(Ba(NO3)2)、および硝酸マンガン6水和物(Mn(NO3)3・6H2O)をLa:Ba:Mn=0.8:0.2:1のモル比となるように秤量して溶質とした。それ以外は触媒実施例1と同様にしてLa0.8Ba0.2MnO3(以下、LBMOとも称する)を調製した。
硝酸ランタン6水和物(La(NO3)3・6H2O)、硝酸バリウム(Ba(NO3)2)、および硝酸鉄9水和物(Fe(NO3)3・9H2O)をLa:Ba:Fe=0.8:0.2:1のモル比となるように秤量して溶質とした。それ以外は触媒実施例1と同様にしてLa0.8Ba0.2FeO3(以下、LBFOとも称する)を調製した。
硝酸セリウム6水和物(Ce(NO3)3・6H2O)、および硝酸マンガン6水和物(Mn(NO3)3・6H2O)をCe:Mn=1:1のモル比となるように秤量して溶質とした。それ以外は触媒実施例1と同様にしてCeO2とMn2O3とのモル比1:1の混合物(以下、CO+MOとも称する)を調製した。
硝酸セリウム6水和物(Ce(NO3)3・6H2O)、および硝酸マンガン6水和物(Mn(NO3)3・6H2O)をCe:Mn=0.7:0.3のモル比となるように秤量して溶質とした。それ以外は触媒実施例1と同様にしてCe0.7Mn0.3O3(以下、CMO(1)とも称する)を調製した。なお、本実施例では、CMO(1)を2ロット調製した。それぞれをCMO(1)(ロット1)、CMO(1)(ロット2)と称する。
硝酸セリウム6水和物(Ce(NO3)3・6H2O)、および硝酸マンガン6水和物(Mn(NO3)3・6H2O)をCe:Mn=0.9:0.1のモル比となるように秤量して溶質とした。それ以外は触媒実施例1と同様にしてCe0.9Mn0.1O3(以下、CMO(2)とも称する)を調製した。
硝酸バリウム(Ba(NO3)2)、オキシ硝酸ジルコニウム2水和物(ZrO(NO3)2・2H2O)、および硝酸セリウム6水和物(Ce(NO3)3・6H2O)をBa:Zr:Ce=1:0.3:0.7のモル比となるように秤量して溶質とした。それ以外は触媒実施例1と同様にしてBaZr0.3Ce0.7O3(以下、BZCOとも称する)を調製した。
次に、上述の方法により得られた、LBFMO(クエン酸錯体重合法)、LBFMO(固相法)、LBMO、LBFO、CMO、およびBZCOを使用して行ったエタンの熱分解実験について説明する。なお、比較例1では、脱水素化触媒を支持させていない粉末状のα-Al2O3を使用した。粉末状のα-Al2O3は、触媒学会参照触媒であるJRC-ALO-6(γ-Al2O3)を1300℃、3時間保持の条件で熱処理して製造した。
触媒実施例1~7、並びに比較例2における脱水素化触媒に対してX線回折分析を行った。X線回折分析の結果から、各脱水素化触媒の結晶子サイズを求めた。触媒実施例1~6、および比較例2の結晶子サイズを表1に示す。また、図5の(a)に、触媒実施例および比較例としての脱水素化触媒を使用して行ったエタンの熱分解実験における結晶子サイズに対するエチレンの収率を示すグラフを示す。
触媒実施例1~6、並びに比較例2における脱水素化触媒に対して、GeminiVII2390a(Micromeritics社製)を用いて比表面積測定を行った。触媒実施例1~6、および比較例2の比表面積を表1に示す。また、図5の(b)に、触媒実施例および比較例としての脱水素化触媒を使用して行ったエタンの熱分解実験における比表面積に対するエチレンの収率を示すグラフを示す。
以下に、本発明の一態様に係るオレフィン製造用熱分解管において用いられる脱水素化触媒のさらなる実施例について説明する。ここでは、脱水素化触媒の実施例としての触媒実施例1、並びに比較例としての比較例3および4について説明する。
(比較例3)
比較例3における脱水素化触媒は、支持体としてのα-Al2O3に、硝酸ガリウム(Ga(NO3)2・nH2O,n=7~9)水溶液を塗布し、大気中において1050℃で3時間焼成することにより製造した。このとき、ガリウム(Ga)の量が、ガリウム(Ga)とα-Al2O3との合計量に対して5重量%となるように調製した。焼成後の脱水素化触媒は、350~500mmに粒径を調整した。以下では、前記の方法で得られた試料を「Ga/α-Al2O3」と呼ぶ。
比較例4における脱水素化触媒/助触媒は、支持体としてのα-Al2O3に、硝酸ガリウム(Ga(NO3)2・nH2O,n=7~9)と硝酸バリウム(Ba(NO3)2)との混合水溶液を塗布し、大気中において1050℃で3時間焼成することにより製造した。このとき、ガリウム(Ga)の量が、ガリウム(Ga)とα-Al2O3との合計量に対して5重量%となるように調製した。また、バリウム(Ba)の量が、ガリウム(Ga)の量に対して、モル比で0.1倍となるように調製した。焼成後の脱水素化触媒/助触媒は、350~500mmに粒径を調整した。以下では、前記の方法で得られた試料を「Ga-0.1Ba/α-Al2O3」と呼ぶ。
触媒実施例1、並びに比較例3および4における脱水素化触媒を用いて第1実施例と同様にエタンの熱分解反応を行った。エタンの熱分解反応後、熱伝導度検出器(TCD)(TGA-50(株式会社島津製作所製))を用いて、触媒実施例1、並びに比較例3および4における脱水素化触媒に100~900℃の温度範囲において酸素を流して一酸化炭素(CO)および二酸化炭素(CO2)として炭素を検出した。図7に、触媒実施例および比較例としての脱水素化触媒を使用して行った炭素析出量の評価実験を示すグラフを示す。縦軸のTCD signalは検出された一酸化炭素および二酸化炭素の量を示す。
2 母材
3 アルミナ皮膜(金属酸化物皮膜)
4A、4B 脱水素化触媒
4Ba 触媒成分
4Bb 担体
5 板状体
Claims (6)
- オレフィン製造に用いられる脱水素化触媒であって、
触媒成分として、LaおよびCeの少なくとも一方の元素を含み、Ceを含まない場合、Ba、Fe、およびMnからなる群より選ばれる少なくとも一種の元素を含み、Ceを含む場合、FeおよびMnの少なくとも一方の元素を含み、かつ、Baを含まない複合酸化物、並びに、
LaおよびCeの少なくとも一方の元素を含む第1の酸化物と、前記第1の酸化物がCeを含まない場合、Ba、Fe、およびMnからなる群より選ばれる少なくとも一種の元素を含み、前記第1の酸化物がCeを含む場合、FeおよびMnの少なくとも一方の元素を含む第2の酸化物とを含む混合物の少なくとも一方を含むことを特徴とする脱水素化触媒。 - 比表面積が、5~80m2/gであることを特徴とする請求項1に記載の脱水素化触媒。
- 前記複合酸化物または前記第1の酸化物の結晶子サイズが、20~75nmであることを特徴とする請求項1または2に記載の脱水素化触媒。
- 前記複合酸化物が、ペロブスカイト型酸化物であることを特徴とする請求項1~3のいずれか1項に記載の脱水素化触媒。
- 耐熱性金属材料からなる管状の母材の内表面および/または耐熱性金属材料からなる板状体の表面に、請求項1~4のいずれか1項に記載の脱水素化触媒が担持されていることを特徴とするオレフィン製造用熱分解管。
- 請求項5に記載のオレフィン製造用熱分解管を用いてオレフィンを製造することを特徴とするオレフィンの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3103773A CA3103773A1 (en) | 2018-12-27 | 2019-12-03 | Dehydrogenation catalyst |
EP19904505.5A EP3903931A4 (en) | 2018-12-27 | 2019-12-03 | DEHYDROGENATION CATALYST |
CN201980041238.XA CN112334226A (zh) | 2018-12-27 | 2019-12-03 | 脱氢催化剂 |
US17/252,472 US20210346870A1 (en) | 2018-12-27 | 2019-12-03 | Dehydrogenation catalyst |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018246155 | 2018-12-27 | ||
JP2018-246155 | 2018-12-27 | ||
JP2019-019925 | 2019-02-06 | ||
JP2019019925A JP7189040B2 (ja) | 2018-12-27 | 2019-02-06 | 脱水素化触媒 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020137382A1 true WO2020137382A1 (ja) | 2020-07-02 |
Family
ID=71127098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/047229 WO2020137382A1 (ja) | 2018-12-27 | 2019-12-03 | 脱水素化触媒 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020137382A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116983996A (zh) * | 2023-06-20 | 2023-11-03 | 华南农业大学 | 一种垃圾填埋气化学链重整制备低碳烯烃联产高纯一氧化碳的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010032338A1 (ja) * | 2008-09-22 | 2010-03-25 | 学校法人早稲田大学 | レドックス能の高いアルキル芳香族化合物の脱水素触媒およびその製造方法並びにそれを使用した脱水素化方法 |
US9499747B2 (en) | 2010-05-31 | 2016-11-22 | General Electric Company | Method and reactor for cracking hydrocarbon |
JP2017521231A (ja) * | 2014-05-09 | 2017-08-03 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 炭化水素の脱水素化のための改良された触媒 |
JP2017534623A (ja) * | 2014-10-31 | 2017-11-24 | サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ | メタンとエタンの合成ガスとエチレンへの変換 |
JP2017209661A (ja) | 2016-05-20 | 2017-11-30 | 株式会社クボタ | オレフィン製造用熱分解管および脱水素化触媒の製造方法 |
-
2019
- 2019-12-03 WO PCT/JP2019/047229 patent/WO2020137382A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010032338A1 (ja) * | 2008-09-22 | 2010-03-25 | 学校法人早稲田大学 | レドックス能の高いアルキル芳香族化合物の脱水素触媒およびその製造方法並びにそれを使用した脱水素化方法 |
US9499747B2 (en) | 2010-05-31 | 2016-11-22 | General Electric Company | Method and reactor for cracking hydrocarbon |
JP2017521231A (ja) * | 2014-05-09 | 2017-08-03 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 炭化水素の脱水素化のための改良された触媒 |
JP2017534623A (ja) * | 2014-10-31 | 2017-11-24 | サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ | メタンとエタンの合成ガスとエチレンへの変換 |
JP2017209661A (ja) | 2016-05-20 | 2017-11-30 | 株式会社クボタ | オレフィン製造用熱分解管および脱水素化触媒の製造方法 |
Non-Patent Citations (1)
Title |
---|
BECKERS, JURRIAAN ET AL.: "Selective Hydrogen Oxidation in the Presence of C3 Hydrocarbons Using Perovskite Oxygen Reservoirs", CHEMPHYSCHEM, vol. 9, 2008, pages 1062 - 1068, XP055028316, DOI: 10.1002/cphc.200800039 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116983996A (zh) * | 2023-06-20 | 2023-11-03 | 华南农业大学 | 一种垃圾填埋气化学链重整制备低碳烯烃联产高纯一氧化碳的方法 |
CN116983996B (zh) * | 2023-06-20 | 2024-03-29 | 华南农业大学 | 一种垃圾填埋气化学链重整制备低碳烯烃联产高纯一氧化碳的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts | |
Gao et al. | Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation | |
US8987160B2 (en) | Fischer-tropsch catalysts containing iron or cobalt selective towards higher hydrocarbons | |
Dai et al. | Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation | |
US9707546B2 (en) | Cobalt-containing fischer-tropsch catalysts, methods of making, and methods of conducting fischer-tropsch synthesis | |
JP6187282B2 (ja) | 炭化水素改質触媒 | |
WO2013021506A1 (ja) | 熱化学水分解用レドックス材料及び水素製造方法 | |
JP7189040B2 (ja) | 脱水素化触媒 | |
JP4119652B2 (ja) | 炭化水素分解用触媒及びその製造法 | |
WO2020137382A1 (ja) | 脱水素化触媒 | |
JP2004255245A (ja) | 炭化水素分解用触媒及びその製造方法、並びに該炭化水素分解用触媒を用いた水素製造方法 | |
CN112469803B (zh) | 氧化脱氢催化剂组合物 | |
JP6785133B2 (ja) | オレフィン製造用熱分解管および脱水素化触媒の製造方法 | |
Shi et al. | Particle size effect of SiO 2-supported ZnO catalysts in propane dehydrogenation | |
JP2012092092A (ja) | ブタジエンの製造方法 | |
KR101828791B1 (ko) | 개질반응용 내열성 개선 모노리스 촉매 | |
Chapman et al. | Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde | |
US20240181435A1 (en) | Carbon Dioxide Methanation Catalyst Molded Body and Method for Producing the Same | |
US20100249252A1 (en) | Zr-fe catalysts for fischer-tropsch synthesis | |
JP6925961B2 (ja) | オレフィン製造用熱分解管 | |
JP2022112005A (ja) | 脱水素化触媒、オレフィン製造用熱分解管、およびオレフィンの製造方法 | |
JP2023176687A (ja) | 脱水素化触媒、オレフィン製造用熱分解管、およびオレフィンの製造方法 | |
KR20120021858A (ko) | 감마-비스무스 몰리브데이트 단일상 촉매 및 이를 이용한 1,3-부타디엔의 제조방법 | |
KR20210059424A (ko) | 산화적 탈수소화 반응용 촉매 및 이의 제조방법 | |
Daniel et al. | Flame synthesis of Zr/ZSM-5 catalysts with tunable acidity for the oxidative dehydrogenation of propane to propene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19904505 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3103773 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019904505 Country of ref document: EP Effective date: 20210727 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 520420825 Country of ref document: SA |