WO2020137285A1 - 撮像素子および撮像素子の製造方法 - Google Patents

撮像素子および撮像素子の製造方法 Download PDF

Info

Publication number
WO2020137285A1
WO2020137285A1 PCT/JP2019/045777 JP2019045777W WO2020137285A1 WO 2020137285 A1 WO2020137285 A1 WO 2020137285A1 JP 2019045777 W JP2019045777 W JP 2019045777W WO 2020137285 A1 WO2020137285 A1 WO 2020137285A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color filter
pixels
film
shielding layer
Prior art date
Application number
PCT/JP2019/045777
Other languages
English (en)
French (fr)
Inventor
田中 良和
宣幸 大場
慎太郎 中食
征博 狭山
幸香 大久保
翼 西山
健樹 西木戸
洋右 萩原
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP19904347.2A priority Critical patent/EP3905330A4/en
Priority to KR1020217016931A priority patent/KR20210107640A/ko
Priority to US17/418,657 priority patent/US20220068991A1/en
Priority to JP2020562936A priority patent/JP7544602B2/ja
Priority to CN201980078837.9A priority patent/CN113169200A/zh
Publication of WO2020137285A1 publication Critical patent/WO2020137285A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Definitions

  • the present disclosure relates to an image sensor and a method for manufacturing the image sensor. More specifically, the present invention relates to an image sensor including pixels in which a light shielding film is arranged and a method for manufacturing the image sensor.
  • the image pickup device in which the light shielding film is arranged on the peripheral portion of the pixel is used.
  • this light-shielding film By arranging this light-shielding film, it is possible to shield light that is obliquely incident from adjacent pixels. It is possible to prevent the occurrence of color mixture in which incident light of different colors transmitted through the color filters of adjacent pixels is mixed and noise is generated in the image signal.
  • an image sensor for example, an image sensor using a film of a metal material formed on the surface of an insulating film arranged adjacent to a semiconductor substrate as a light-shielding film is used (see, for example, Patent Document 1). ..).
  • the light shielding film is formed by the following steps.
  • a film made of a metal material is formed on the insulating film.
  • the region of the metal material film other than the peripheral portion of each pixel is etched and removed. Through these steps, the light shielding film is formed on the peripheral portion of the pixel.
  • the above-mentioned conventional technique there is a problem that it becomes difficult to form a light-shielding film as pixels are miniaturized.
  • the pixel becomes finer with the increase in definition of the image sensor, it becomes necessary to downsize the light shielding film.
  • the above-mentioned conventional technique has a problem that it is difficult to form the light shielding film.
  • the present disclosure has been made in view of the above-mentioned problems, and an object thereof is to easily form a light shielding film even when pixels are miniaturized.
  • the present disclosure has been made in order to solve the above-mentioned problems, and a first aspect thereof is a plurality of photoelectric conversion units that are formed on a semiconductor substrate and photoelectrically convert incident light from a subject.
  • a pixel an insulating film disposed in the plurality of pixels to insulate the semiconductor substrate, an incident light transmission film disposed adjacent to the insulating film in the plurality of pixels and transmitting incident light, Of the pixel, and a light-shielding member that is arranged in a groove formed in the incident light transmitting film at each peripheral portion of the pixel and shields the incident light.
  • the groove may be formed by etching the incident light transmitting film.
  • the insulating film may be used as a film that stops the progress of etching when the incident light transmitting film is etched.
  • a light shielding film which is arranged adjacent to the incident light transmitting film and shields the incident light, may be further provided.
  • the light shielding film may be arranged in a peripheral pixel of the plurality of pixels.
  • a phase difference pixel which is the pixel for detecting the phase difference by pupil-dividing the incident light from the subject, is further provided, and the light shielding film is disposed in the phase difference pixel.
  • a part of the incident light may be blocked according to the direction of the pupil division.
  • a second light shield that is disposed in a groove formed in the incident light transmitting film near the end of the light shielding film and shields the diffracted light of the incident light is further provided. May be.
  • the light shield may be formed in a tapered shape.
  • a second aspect of the present disclosure is a step of forming, on a semiconductor substrate, a photoelectric conversion unit that is arranged in each of a plurality of pixels and photoelectrically converts incident light from a subject, and the semiconductor arranged in the plurality of pixels.
  • a step of disposing an insulating film that insulates the substrate a step of disposing an incident light transmitting film that is disposed adjacent to the insulating films of the plurality of pixels and that transmits incident light, and a peripheral edge of each of the plurality of pixels Forming a groove in the incident light transmitting film of a portion, and arranging a light shield for shielding the incident light in the formed groove.
  • Adopting the above-mentioned aspect brings about the effect that the light shielding body is embedded and arranged in the groove formed in the peripheral portion of the incident light transmitting film. It is assumed that a processing step such as etching for patterning the light shield is omitted.
  • a third aspect of the present disclosure is a plurality of pixels each provided with a photoelectric conversion unit that is formed on a semiconductor substrate and photoelectrically converts incident light from a subject, and the plurality of pixels that are arranged in the plurality of pixels.
  • a color filter that makes incident light of a predetermined wavelength incident on the photoelectric conversion unit, and the color filter is arranged in the plurality of pixels to block the incident light and the color filter is arranged in an opening formed in the central portion.
  • An image pickup device including a second light shielding layer of a color filter portion arranged between the layer and the semiconductor substrate.
  • the first color filter part light-shielding layer and the second color filter part light-shielding layer may be made of different materials.
  • the first color filter light-shielding layer may be made of resin, and the second color filter light-shielding layer may be made of metal.
  • the first color filter light-shielding layer may have a transmittance of 30% or less.
  • the third aspect may further include an interlayer film arranged between the first color filter part light-shielding layer and the second color filter part light-shielding layer of the plurality of pixels.
  • the interlayer film may be made of an inorganic material.
  • the second color filter light-shielding layer may be wider than the first color filter light-shielding layer.
  • a planarizing film that is disposed between the color filters of the plurality of pixels and the semiconductor substrate to planarize a surface of the semiconductor substrate, and the planarizing film in the plurality of pixels. It may further include a light-blocking wall that is disposed around the light-blocking wall and blocks the incident light.
  • the third aspect may further include a second interlayer film disposed between the second color filter light-shielding layer and the light-shielding wall of the plurality of pixels.
  • the second interlayer film may be made of an inorganic material.
  • the second color filter light-shielding layer may be configured to have a width wider than that of the light-shielding wall.
  • At least one of the first color filter part light-shielding layer and the second color filter part light-shielding layer in a pixel arranged in a peripheral portion of the plurality of pixels is the pixel. May be configured to shield the entire surface of the.
  • At least one of the first color filter section light-shielding layer and the second color filter section light-shielding layer may be formed in a tapered shape.
  • a fourth aspect of the present disclosure is a step of forming a photoelectric conversion unit, which is arranged for each of a plurality of pixels and photoelectrically converts incident light from a subject, on a semiconductor substrate;
  • a second color filter light-shielding layer in which a color filter that blocks incident light and allows incident light of a predetermined wavelength of the incident light to be incident on the photoelectric conversion unit is disposed in an opening formed in the central portion is provided in the semiconductor.
  • Adopting the above-described mode brings about the effect that the first color filter part light-shielding layer and the second color filter part light-shielding layer are arranged in the same layer as the color filter. It is assumed that the incident light that enters through the adjacent pixels in the color filter unit is blocked.
  • FIG. 3 is a diagram showing a configuration example of a pixel array section according to an embodiment of the present disclosure. It is a figure which shows an example of light shielding of the pixel which concerns on the 1st Embodiment of this indication. It is a figure which shows the structural example of the pixel which concerns on 1st Embodiment of this indication.
  • FIG. 5 is a diagram illustrating an example of a method of manufacturing the pixel array unit according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a method of manufacturing the pixel array unit according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a method of manufacturing the pixel array unit according to the first embodiment of the present disclosure. It is a figure which shows the structural example of the pixel which concerns on the conventional image sensor. It is a figure which shows the structural example of the pixel which concerns on 2nd Embodiment of this indication. It is a figure which shows the structural example of the pixel which concerns on 3rd Embodiment of this indication. It is a figure which shows the structural example of the pixel which concerns on 4th Embodiment of this indication. It is a figure which shows an example of the manufacturing method of the pixel array part which concerns on 4th Embodiment of this indication.
  • FIG. 16 is a cross-sectional view showing another configuration example of a stacked solid-state imaging device to which the technology according to the present disclosure can be applied.
  • FIG. 1 is a diagram illustrating a configuration example of an imaging device according to an embodiment of the present disclosure.
  • the image pickup apparatus 1 in FIG. 1 includes a pixel array section 10, a vertical drive section 20, a column signal processing section 30, and a control section 40.
  • the pixel array unit 10 is configured by arranging the pixels 100 in a two-dimensional lattice shape.
  • the pixel 100 produces
  • the pixel 100 has a photoelectric conversion unit that generates an electric charge according to the applied light.
  • the pixel 100 further includes a pixel circuit. This pixel circuit generates an image signal based on the charges generated by the photoelectric conversion unit. Generation of the image signal is controlled by a control signal generated by the vertical drive unit 20 described later.
  • signal lines 11 and 12 are arranged in an XY matrix.
  • the signal line 11 is a signal line that transmits a control signal of a pixel circuit in the pixel 100, is arranged for each row of the pixel array unit 10, and is commonly wired to the pixels 100 arranged in each row.
  • the signal line 12 is a signal line for transmitting an image signal generated by the pixel circuit of the pixel 100, is arranged for each column of the pixel array unit 10, and is commonly wired to the pixels 100 arranged in each column. It These photoelectric conversion units and pixel circuits are formed on a semiconductor substrate.
  • the vertical drive unit 20 generates a control signal for the pixel circuit of the pixel 100.
  • the vertical drive unit 20 transmits the generated control signal to the pixel 100 via the signal line 11 in the figure.
  • the column signal processing unit 30 processes the image signal generated by the pixel 100.
  • the column signal processing unit 30 processes the image signal transmitted from the pixel 100 via the signal line 12 in the figure.
  • the processing in the column signal processing unit 30 corresponds to, for example, analog-digital conversion for converting an analog image signal generated in the pixel 100 into a digital image signal.
  • the image signal processed by the column signal processing unit 30 is output as an image signal of the imaging device 1.
  • the control unit 40 controls the entire imaging device 1.
  • the control unit 40 controls the imaging device 1 by generating and outputting a control signal for controlling the vertical drive unit 20 and the column signal processing unit 30.
  • the control signal generated by the control unit 40 is transmitted to the vertical drive unit 20 and the column signal processing unit 30 via the signal lines 41 and 42, respectively.
  • the pixel array unit 10 is an example of the image pickup device described in the claims. Further, the image pickup apparatus 1 may be an image pickup element in which the vertical drive unit 20 and the like are arranged.
  • FIG. 2 is a diagram illustrating a configuration example of the pixel array unit according to the embodiment of the present disclosure.
  • the pixel array unit 10 in the figure includes a light-shielding pixel 200 and phase difference pixels 301 and 302.
  • the light-shielded pixel 200 is a pixel arranged in the peripheral portion of the pixel array section 10 and is a pixel that shields incident light.
  • the light blocking pixel 200 generates an image signal in a state where the incident light is blocked. This generated image signal can be used for black level detection.
  • the pixel array section 10 of the figure an example in which the light-shielded pixels 200 are arranged on the outermost periphery of a plurality of pixels is shown.
  • the phase difference pixel is a pixel for detecting the phase difference by dividing the pupil of the subject. Based on the detected phase difference, the focus position of the subject can be detected to perform autofocus.
  • the example of the phase difference pixels 301 and 302 is described in the pixel array section 10 of the figure.
  • the phase difference pixels 301 and 302 are arranged close to each other in the row (horizontal) direction of the pixel array section 10 and divide the subject into pupils in the horizontal direction. Details of the configurations of the pixel 100, the light-shielding pixel 200, and the phase difference pixels 301 and 302 will be described later.
  • FIG. 3 is a diagram showing an example of light shielding of pixels according to the first embodiment of the present disclosure.
  • This figure is a diagram showing an example of blocking of incident light in the pixels 100, the light blocking pixels 200, and the phase difference pixels 301 and 302 of the pixel array section 10.
  • the dotted rectangles in the figure represent the pixels 100, the light blocking pixels 200, and the phase difference pixels 301 and 302.
  • the shaded area (upward to the right) in the figure represents the light shield 142.
  • the light shields 142 are arranged at the peripheral portions of the pixels 100 and the like, and shield the incident light. In the pixel 100 and the like, a region where the light shield 142 is not arranged becomes an opening of the light shield 142, and incident light is transmitted therethrough.
  • the hatched area (sloping down to the right) in the figure represents the area of the light shielding film 243.
  • the light blocking film 243 blocks the incident light similarly to the light blocking body 142.
  • the light-shielding film 243 is formed in a layer different from the light-shielding body 142, and is arranged so as to cover the entire surface of the light-shielding pixel 200.
  • light shielding films 343a and 343b are arranged in the phase difference pixels 301 and 302, respectively.
  • the light shielding films 343a and 343b shield the right and left sides of the phase difference pixels 301 and 302, respectively.
  • the light-shielding films 343a and 343b are provided with light-shielding film openings on the left and right sides, respectively. Therefore, the light transmitted through the right side and the left side of the photographing lens that forms an image of the subject on the image pickup apparatus 1 enters the phase difference pixels 301 and 302, respectively. That is, the phase difference pixels 301 and 302 are pupil-divided in the left-right direction of the pixel array unit 10. In this way, the light shielding films 343a and 343b are arranged according to the direction of pupil division of the phase difference pixels 301 and 302.
  • FIG. 4 is a diagram showing a configuration example of a pixel according to the first embodiment of the present disclosure.
  • the figure is a schematic cross-sectional view showing a configuration example of the pixel 100, the light-shielding pixel 200, and the phase difference pixels 301 and 302 arranged in the pixel array section 10.
  • the pixel 100 includes a semiconductor substrate 111, an insulating layer 121 and a wiring layer 122, an insulating film 130, an incident light transmission film 141, a light shield 142, a flattening film 151, a color filter 160, and an on-chip lens 171.
  • the insulating layer 121 and the wiring layer 122 form a wiring region.
  • the semiconductor substrate 111 is a semiconductor substrate on which the photoelectric conversion portion of the pixel 100 and the semiconductor region portion of the element forming the pixel circuit are formed. These semiconductor elements are formed in a well region formed on a semiconductor substrate. For the sake of convenience, it is assumed that the semiconductor substrate 111 in the figure is formed in a p-type well region.
  • the photoelectric conversion unit 101 is described as an example.
  • the photoelectric conversion unit 101 is composed of an n-type semiconductor region 112. Specifically, the photodiode configured by the pn junction between the n-type semiconductor region 112 and the p-type well region around the n-type semiconductor region 112 corresponds to the photoelectric conversion unit 101.
  • the wiring layer 122 is a wiring that electrically connects the elements formed on the semiconductor substrate 111.
  • the wiring layer 122 can be made of, for example, copper (Cu) or tungsten (W).
  • the insulating layer 121 insulates the wiring layer 122.
  • the insulating layer 121 can be made of, for example, silicon oxide (SiO 2 ).
  • a wiring region formed by the wiring layer 122 and the insulating layer 121 is formed on the front surface side of the semiconductor substrate 111.
  • the insulating film 130 is a film formed on the back surface side of the semiconductor substrate 111 to insulate the semiconductor substrate 111 and protect the semiconductor substrate 111.
  • the insulating film 130 is made of a metal oxide film such as aluminum oxide (Al 2 O 3 ) or tantalum pentoxide (Ta 2 O 5 ), an oxide such as SiO 2 or a nitride such as silicon nitride (SiN). You can Alternatively, the insulating film 130 can be formed using a film in which these films are stacked.
  • the metal oxide film is a film for adjusting the interface state formed on the surface of the semiconductor substrate 111. By disposing this metal oxide film, it is possible to reduce noise generated due to carrier emission from the interface state. Further, the insulating film 130 can also be used as an etching stopper when etching the incident light transmitting film 141 in order to form a groove in the incident light transmitting film 141 in which a light shielding body 142 described later is arranged.
  • the incident light transmitting film 141 is a film that is disposed adjacent to the insulating film 130 and transmits incident light.
  • the incident light transmission film 141 can be made of an oxide such as SiO 2 . Further, the incident light transmission film 141 can be formed by CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition). It should be noted that a light shield 142, which will be described later, is disposed in the groove formed in the incident light transmitting film 141.
  • the light shield 142 is formed in the same layer as the incident light transmission film 141, and is arranged in the peripheral portion of the pixel 100 or the like.
  • the light blocking member 142 can block light obliquely incident from the adjacent pixels 100 or the like.
  • the color filter 160 is arranged in the pixel 100 and the like, and the color filters 160 corresponding to different colors are arranged between the adjacent pixels 100. Therefore, when the light transmitted through the color filter 160 of the pixel 100 is incident on another adjacent pixel 100, color mixing or the like occurs in the other pixel 100 and noise is generated. Therefore, by disposing the light shield 142, it is possible to block the incident light from the adjacent pixels 100 and prevent the occurrence of color mixture.
  • the light shield 142 can be made of, for example, a metal such as aluminum (Al), tungsten (W), and copper (Cu), or a nitride such as tungsten nitride (N 2 W). It is also possible to use a resin in which the light shielding material is dispersed.
  • the light shield 142 can be formed by embedding the material of the light shield 142 in the groove formed in the incident light transmission film 141.
  • the flattening film 151 is a film that flattens a surface on which a color filter 160 described later is formed.
  • the flattening film 151 is formed by laminating on the surface on which the incident light transmitting film 141 on which the light shield 142 is formed, the light blocking film 243 described later, and the like are arranged, and these surfaces are flattened. As a result, it is possible to prevent the film thickness of the color filter 160 from varying.
  • the flattening film 151 can be made of, for example, SiO 2 or SiN.
  • the color filter 160 is an optical filter and transmits light having a predetermined wavelength of light incident on the pixels 100 and the like.
  • the color filter 160 for example, the color filter 160 that transmits red light, green light, and blue light can be used.
  • the on-chip lens 171 is a lens that is arranged for each pixel 100 and the like and collects incident light on the photoelectric conversion unit 101.
  • the upper layer of the on-chip lens 171 is formed in a hemispherical shape to form a lens.
  • the lower layer portion of the on-chip lens 171 is arranged on the surface of the color filter 160 and flattens the surface of the color filter 160.
  • the surface of the pixel array unit 10 is protected by the lower layer of the on-chip lens 171.
  • the on-chip lens 171 can be made of resin, for example.
  • the pixel array section 10 corresponds to a backside illumination type image pickup element in which incident light is emitted from the backside which is a surface different from the surface on which the wiring layer 122 is formed in the semiconductor substrate 111.
  • a light shielding film 243 is arranged in the light shielding pixel 200.
  • the light-shielding film 243 is arranged adjacent to the incident light-transmitting film 141 and the light-shielding body 142, and is also arranged on the entire surface of the light-shielding pixel 200 in a plan view. Further, the light shielding film 243 is further arranged on the peripheral portion of the pixel array unit 10. It is possible to prevent a step from being generated in the peripheral portion of the pixel array section 10.
  • a contact portion 244 for connecting to the semiconductor substrate 111 is formed on the light shielding film 243.
  • the contact portion 244 is a film that prevents damage due to discharge when the light shielding film 150 is formed.
  • the light shielding film 150 can be formed by forming a material film of metal or the like by CVD or the like and etching it.
  • CVD chemical vapor deposition
  • the contact portion 244 can be formed by disposing the light shielding film 150 in an opening formed through the incident light transmitting film 141 and the insulating film 130.
  • Light-shielding films 343a and 343b are arranged in the phase difference pixels 301 and 302, respectively.
  • the light-shielding films 343a and 343b can also be arranged adjacent to the incident light transmitting film 141 and the light-shielding body 142 similarly to the light-shielding film 243. As described above, the light-shielding films 343a and 343b shield the half of the opening of the light-shielding member 142 in the phase difference pixels 301 and 302, respectively.
  • the light shielding films 243, 343a and 343b can be formed at the same time.
  • the light shielding films 243, 343a and 343b are formed by a process different from that of the light shielding body 142, as described later.
  • the configuration of the pixel array unit 10 is not limited to this example.
  • the bottom of the light shield 142 may have a shape that does not contact the insulating film 130.
  • FIGS. 5 to 8 are diagrams illustrating an example of a method of manufacturing the pixel array unit according to the first embodiment of the present disclosure.
  • the well region and the n-type semiconductor region 112 are formed on the semiconductor substrate 111.
  • the photoelectric conversion unit 101 can be formed.
  • This step is an example of the step of forming the photoelectric conversion section described in the claims on a semiconductor substrate.
  • the insulating layer 121 and the wiring layer 122 (not shown) are formed.
  • the semiconductor substrate 111 is turned upside down and the back surface side is ground to thin the semiconductor substrate 111.
  • the insulating film 130 is formed on the back surface of the semiconductor substrate 111 (A in FIG. 5). This can be done, for example, by sputtering.
  • the incident light transmitting film 141 is arranged on the surface of the insulating film 130. This can be performed by, for example, CVD using HDP (High Density Plasma) (B in FIG. 5).
  • HDP High Density Plasma
  • a resist 501 is formed on the surface of the incident light transmitting film 141.
  • An opening 502 is formed in the resist 501 at a position where the light shield 142 is arranged (C in FIG. 5).
  • the incident light transmitting film 141 is etched to form a groove 143.
  • dry etching can be applied.
  • the etching needs to be stopped at the interface with the insulating film 130. This can be done by adjusting the etching rate and time. Note that it is preferable to employ a film that stops the progress of etching as the insulating film 130 because the etching process can be simplified (D in FIG. 5).
  • This step is an example of the step of forming a groove in the incident light transmitting film described in the claims.
  • the material film 503 of the light shield 142 is laminated on the surface of the incident light transmission film 141, and the material film 503 of the light shield 142 is embedded in the groove 143 and arranged. This can be done, for example, by CVD (E in FIG. 6).
  • the surface of the material film 503 of the light shielding body 142 is ground to remove the material film 503 of the light shielding body 142 arranged in other than the groove 143. This can be performed by, for example, chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the light shield 142 can be formed (F in FIG. 6).
  • This step is an example of the step of disposing the light shield described in the claims.
  • an opening 505 is formed in the incident light transmitting film 141 and the insulating film 130. This can be done by dry etching (G in FIG. 6).
  • a material film 506 such as the light shielding film 243 is laminated on the surfaces of the incident light transmitting film 141 and the light shielding body 142. At this time, the material film 506 is also arranged in the opening 505. This can be done, for example, by CVD (H in FIG. 6).
  • a resist 507 is placed on the surface of the material film 506.
  • An opening 508 is formed in the resist 507 in a region where the light shielding film 243 is not arranged, such as the surface of the pixel 100 (I in FIG. 7).
  • the material film 506 is etched using the resist 507 as a mask. This can be done, for example, by dry etching. Thereby, the light shielding films 243, 343a and 343b can be formed (J in FIG. 7).
  • the flattening film 151 and the color filter 160 are sequentially stacked.
  • a resin as a material of the on-chip lens 171 is applied and then processed into a hemispherical shape to form the on-chip lens 171 (K in FIG. 7).
  • the pixel array section 10 can be manufactured through the above steps.
  • FIG. 8 is a diagram showing a configuration example of a pixel related to a conventional image sensor.
  • This figure is a simplified diagram of a conventional pixel as a comparative example.
  • the image sensor of the same figure includes a pixel 600 and a phase difference pixel 602.
  • a light shielding film 642 is arranged instead of the incident light transmitting film 141 and the light shielding body 142.
  • a light shielding film 643 is arranged on the phase difference pixel 602.
  • a similar light-shielding film is arranged also in a light-shielding pixel (not shown).
  • the light shielding films 642 and 643 are formed by etching the material film arranged adjacent to the insulating film 130 formed on the semiconductor substrate 111. That is, in the conventional image sensor, the light-shielding film arranged in the peripheral portion of the pixel and the light-shielding film for pupil division in the phase difference pixel are formed at the same time. Then, the flattening film 151 is arranged so as to cover the light shielding films 642 and 643. The process can be shortened by simultaneously forming the light-shielding film arranged in the peripheral portion of the pixel and the light-shielding film for dividing the pupil in the phase difference pixel.
  • the pixel 600 size becomes smaller as the image sensor becomes finer, it becomes difficult to form the light shielding film due to the occurrence of defects. Specifically, like the light-shielding film 691 in the figure, defects due to the tilting of the light-shielding film 642 are likely to occur. Further, since the gap between the light shielding films 642 and 643 becomes narrow, the material of the flattening film 151 cannot penetrate, and a gap 692 may be formed in the flattening film 151. When such a gap 692 is formed, an error in phase difference detection in the phase difference pixel 602 increases.
  • the image sensor (pixel array unit 10) of FIG. 4 by embedding the material film 503 of the light shield 142 in the groove formed in the incident light transmission film 141, light shielding is performed.
  • the light shield 142 is formed by a method according to the damascene method used in the manufacturing process of Cu wiring of a semiconductor element. It is possible to easily perform fine processing of the light shield 142, and it is possible to form the light shield 142 without causing defects such as the above-described collapse. Further, since the light shield 142 and the light shield films 343a and 343b are formed in different steps, it is possible to prevent the formation of the above-mentioned gap and the like.
  • the light shield 142 of FIG. 4 is arranged in the groove formed in the incident light transmission film 141, it can be formed in a tapered shape. That is, the portion closer to the photoelectric conversion unit 101 has a narrower width. It is possible to widen the opening in the region close to the photoelectric conversion unit 101, and prevent a decrease in sensitivity.
  • the light shielding films 243, 343a and 343b in FIG. 4 are formed by the etching process using the resist 507 as a mask. Since it can be formed without using CMP, formation of a recess due to dishing can be prevented.
  • the pixel 100 and the like are miniaturized by disposing the light shield 142 in the groove formed in the incident light transmission film 141. Even in this case, the light shield 142 can be formed.
  • the pixel array unit 10 of the above-described first embodiment the light shielding films 343a and 343b are arranged in the phase difference pixels 301 and 302.
  • the pixel array unit 10 according to the second embodiment of the present disclosure differs from the above-described first embodiment in that the pixel array unit 10 according to the second embodiment further includes a light shield disposed at the ends of the light shielding films 343a and 343b. ..
  • FIG. 9 is a diagram showing a configuration example of a pixel according to the second embodiment of the present disclosure.
  • This figure is a diagram in which the configurations of the pixel 100 and the phase difference pixels 301 and 302 are simplified and described.
  • Phase-difference pixels 301 and 302 of A in the figure include light-shielding bodies 342a and 342b, respectively.
  • the light shields 342a and 342b are arranged near the light shield films 343a and 343b, respectively, and are arranged in the grooves formed in the incident light transmission film 141.
  • the light shields 342a and 342b By disposing the light shields 342a and 342b, it is possible to prevent the incident light from being diffracted by the light shield films 343a and 343b, and reduce the generation of noise due to the diffracted light.
  • the bottoms of the light shields 342a and 342b in the figure reach the interface with the insulating film 130, and the noise reduction effect can be improved.
  • the light shields 342a and 342b are formed at positions where the ends thereof are aligned with the ends of the light shielding films 343a and 343b, respectively. This is because the diffracted light can be shielded without affecting the pupil division by the light shielding films 343a and 343b.
  • the phase difference pixels 301 and 302 of B in the figure include light shields 342c and 342d instead of the light shields 342a and 342b.
  • the light shields 342c and 342d are shallower than the light shields 342a and 342b. As a result, a decrease in sensitivity can be reduced as compared with the case where the light shields 342a and 342b are arranged.
  • the groove in which the light shields 342c and 342d are arranged can be formed by a process different from that in which the groove in which the light shield 142 is arranged.
  • the light shields 342c and 342d can be arranged by adjusting the etching time to form a groove having a desired depth.
  • the light shields 342a, 342b, 342c, and 342d are examples of the second light shield described in the claims.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the first embodiment of the present disclosure, and thus the description thereof will be omitted. ..
  • the light shields 342a and 342b and the like are arranged near the light shield films 343a and 343b of the phase difference pixels 301 and 302. As a result, it is possible to reduce the occurrence of noise in the phase difference pixels 301 and 302.
  • an image pickup device including a pixel array unit having a plurality of light shielding walls between pixels has been used.
  • the light shielding wall is formed in the same layer as the flattening film arranged between the insulating film on the surface of the semiconductor substrate and the color filter in the pixel, and is arranged at the boundary with the adjacent pixel.
  • Light from a subject having a high image height is obliquely incident on pixels in the peripheral portion of the image sensor. If this incident light is obliquely incident between adjacent pixels, color mixing or the like will occur. Therefore, by disposing a light shielding wall, oblique incident light from adjacent pixels is shielded (see, for example, Patent Document 1).
  • the phase difference pixel is arranged, the light collecting position in the pixel is adjusted, so that the height of the image pickup device is increased.
  • light shielding walls formed in multiple stages are arranged.
  • an image sensor that reduces deterioration in image quality even when incident light with a high incident angle is incident is proposed.
  • FIG. 10 is a diagram showing a configuration example of a pixel according to the third embodiment of the present disclosure.
  • the figure is a schematic cross-sectional view showing a configuration example of the pixel 100, the light-shielding pixel 200, and the phase difference pixels 301 and 302 arranged in the pixel array section 10.
  • the pixel array section 10 in the figure differs from the pixel array section 10 described in FIG. 4 in the following points.
  • the incident light transmitting film 141 is omitted, and the light shielding film 144 is arranged in the pixel 100 instead of the light shielding body 142.
  • the light shielding film 245 is arranged instead of the light shielding film 243.
  • Light-shielding films 346a and 346b are arranged in the phase difference pixels 301 and 302, respectively. Further, the light shielding wall 152 is further arranged. Further, a first color filter light-shielding layer 162 and a second color filter light-shielding layer 161 are further arranged.
  • the light-shielding film 144 is a light-shielding film that is arranged adjacent to the insulating film 130 and is arranged in the peripheral portion of the pixel 100. Further, the light shielding film 245 is arranged adjacent to the insulating film 130 and is also arranged on the entire surface of the light shielding pixel 200 in a plan view. Further, a contact portion 246 is formed on the light shielding film 245. Further, the light-shielding films 346a and 346b are light-shielding films arranged in the phase difference pixels 301 and 302, respectively, to divide the phase difference pixels 301 and 302 into pupils. These light shielding films 144, 245, 346a and 346b can be formed simultaneously.
  • the light blocking wall 152 is arranged in a wall shape around the flattening film 151 of each pixel 100 or the like to block the incident light. That is, the light shielding wall 152 is arranged near the boundary of the pixel 100.
  • the light blocking wall 152 can be formed by stacking on the light blocking film 144.
  • the light shielding wall 152 can be made of, for example, W or Al.
  • the second color filter light shielding layer 161 is arranged in the same layer as the color filter 160 and shields incident light.
  • An opening 168 is formed in the center of the second color filter light-shielding layer 161.
  • the color filter 160 is arranged in the opening 168. That is, the second color filter light-shielding layer 161 is arranged near the boundary of the pixel 100.
  • the second color filter light-shielding layer 161 is arranged between the first color filter light-shielding layer 162 and the semiconductor substrate 111, which will be described later.
  • the first color filter light shielding layer 162 is disposed in the same layer as the color filter 160 and shields incident light.
  • An opening 169 is formed in the center of the first color filter light-shielding layer 162, similarly to the second color filter light-shielding layer 161.
  • the color filter 160 is arranged in the opening 169. That is, similarly to the second color filter light-shielding layer 161, the first color filter light-shielding layer 162 is also arranged near the boundary of the pixel 100.
  • the first color filter light-shielding layer 162 and the second color filter light-shielding layer 161 shield light that is obliquely incident from adjacent pixels 100 or the like at a high incident angle.
  • the arrow in the figure shows how incident light with a high incident angle is shielded by the first color filter light shielding layer 162.
  • the first color filter light-shielding layer 162 and the second color filter light-shielding layer 161 in the same layer as the color filter 160, it is possible to prevent color mixture due to incident light with a high incident angle. You can
  • the first color filter light-shielding layer 162 and the second color filter light-shielding layer 161 can be made of different materials.
  • the first color filter light shielding layer 162 is made of a resin in which a carbon black pigment, a titanium black pigment, or the like is dispersed
  • the second color filter light shielding layer 161 is made of a metal material such as W or Al.
  • the first color filter light-shielding layer 162 made of resin has a transmittance of 30% for light having a wavelength of 300 to 1000 nm. This is because the ability to block incident light can be improved.
  • the first color filter light-shielding layer 162 can be configured to have a thickness of 100 to 1000 nm. Note that it is preferable to use a photoresist as the resin forming the first color filter light-shielding layer 162. This is because the manufacturing process of the first color filter light-shielding layer 162 can be simplified.
  • the first color filter light-blocking layer 162 and the second color filter light-blocking layer 161 it is possible to increase the thickness of the light-blocking layer arranged in the region of the color filter 160, thereby increasing the light-blocking ability. Can be improved.
  • the color filter 160 has a relatively thick film thickness in order to obtain desired optical characteristics. For this reason, the color filter light-shielding layer disposed in the same layer as the color filter 160 also needs to have a large film thickness.
  • the color filter light-shielding layer is made of a resin, if the color filter light-shielding layer is thickened, the reading error of the alignment mark arranged in the lower layer may occur in the manufacturing process.
  • the exposure position accuracy in the photography process deteriorates, which makes it difficult to manufacture the image sensor.
  • the color filter light-shielding layer is made of metal
  • increasing the thickness of the color filter light-shielding layer increases the warpage of the semiconductor substrate 111 when forming the metal film. Manufacturing becomes difficult as in the case of using a resin.
  • the first color filter light-shielding layer 162 and the second color filter light-shielding layer 161 are made of resin and metal, respectively, and are stacked and arranged. This makes it possible to easily manufacture the color filter light-shielding layer having a desired film thickness.
  • the size (width) of the second color filter light-shielding layer 161 is larger than the size (width) of the first color filter light-shielding layer 162. That is, the opening 168 of the second color filter light-shielding layer 161 is made narrower than the opening 169 of the first color filter light-shielding layer 162. As a result, it is possible to improve the margin of misalignment during manufacturing.
  • the size (width) of the second color filter light-shielding layer 161 is larger than the size (width) of the light-shielding wall 152. Similarly, it is possible to improve the margin of positional deviation during manufacturing.
  • a method of manufacturing the image sensor (pixel array unit 10) will be described in detail in the fourth embodiment.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the first embodiment of the present disclosure, and thus the description thereof will be omitted.
  • the first color filter light shielding layer 162 and the second color filter light shielding layer 161 are arranged in the same layer as the color filter 160. To do. This makes it possible to block light obliquely incident from the adjacent pixels 100 or the like at a high incident angle, and prevent deterioration in image quality.
  • the first color filter section light-shielding layer 162, the second color filter section light-shielding layer 161, and the second color filter section light-shielding layer 161 and the light-shielding wall 152 are respectively provided. It was located adjacent to each other.
  • an interlayer film is provided between the first color filter light shielding layer 162, the second color filter light shielding layer 161, and the light shielding wall 152. Is different from the third embodiment described above.
  • FIG. 11 is a diagram showing a configuration example of a pixel according to the fourth embodiment of the present disclosure.
  • the figure is a diagram in which the configuration of the pixel 100 is simplified and described.
  • the pixel 100 shown in the figure is different from the pixel 100 described in FIG. 10 in that it further includes interlayer films 165 and 166.
  • the interlayer film 165 is an interlayer film arranged between the light shielding wall 152 and the second color filter portion light shielding layer 161.
  • the interlayer film 165 can be made of, for example, an inorganic material such as SiO 2 or SiN.
  • By disposing the interlayer film 165 it is possible to protect the light shielding wall 152 disposed in the lower layer when the second color filter light shielding layer 161 is formed.
  • a metal film that is a material of the second color filter light-shielding layer 161 is formed on the flattening film 151 on which the light-shielding wall 152 is arranged and is etched, a chemical solution used in the etching step is infiltrated, The light blocking wall 152 may elute. Therefore, by disposing and separating the interlayer film 165, the light shielding wall 152 can be protected from the chemical liquid in the etching process.
  • the interlayer film 166 is an interlayer film arranged between the first color filter light-shielding layer 162 and the second color filter light-shielding layer 161.
  • the interlayer film 166 can be made of an inorganic material.
  • the adhesion strength between them is relatively low. In some cases, problems such as peeling may occur. Therefore, an interlayer film 166 made of an inorganic material is placed in between. Thereby, the adhesion strength can be improved.
  • the configuration of the pixel array unit 10 is not limited to this example.
  • it may be configured to include any one of the interlayer films 165 and 166.
  • the interlayer film 166 is an example of the interlayer film described in the claims.
  • the interlayer film 165 is an example of the second interlayer film described in the claims.
  • Method of manufacturing image sensor 12 to 15 are diagrams showing an example of a method of manufacturing the pixel array unit according to the fourth embodiment of the present disclosure.
  • the well region and the n-type semiconductor region 112 are formed on the semiconductor substrate 111, and the photoelectric conversion unit 101 is formed.
  • the insulating layer 121 and the wiring layer 122 are formed.
  • the insulating film 130 having the opening 510 is formed on the back surface of the semiconductor substrate 111 (A in FIG. 12).
  • a metal film as a material of the light shielding film 245 and the like is formed and etched to form the light shielding films 144, 245, 346a and 346b (B in FIG. 12).
  • the flattening film 151 is arranged adjacent to the light shielding film 144 and the like, and the opening 511 is formed in the portion where the light shielding wall 152 is arranged (C in FIG. 12).
  • a metal film as a material of the light shielding wall 152 is laminated on the flattening film 151, and the surface of the laminated metal film is ground. This can be done, for example, by CMP. Thereby, the light shielding wall 152 can be arranged in the opening 511 of the flattening film 151 (D in FIG. 12).
  • the interlayer film 165 is arranged adjacent to the flattening film 151 and the light shielding wall 152 (E in FIG. 13).
  • a metal film 512 which is a material of the second color filter light-shielding layer 161 is laminated (F in FIG. 13).
  • a resist 513 is placed on the surface of the metal film 512.
  • the resist 513 has an opening 514 in a region where the opening 168 described in FIG. 10 is arranged (G in FIG. 13).
  • the metal film 512 is etched using the resist 513 as a mask to form a second color filter light-shielding layer 161 having an opening 168 (H in FIG. 14).
  • This step is an example of the step of disposing the second color filter light-shielding layer described in the claims on the semiconductor substrate.
  • the interlayer film 166 is arranged adjacent to the second color filter light-shielding layer 161 and the interlayer film 165 (I in FIG. 14).
  • the resin film 515 that is the material of the first color filter light-shielding layer 162 is arranged adjacent to the interlayer film 166 (J in FIG. 14).
  • the first color filter light-shielding layer 162 is formed from the resin film 515 by the photography technique. Specifically, the resin film 515 is exposed and developed to form an opening 169 and processed into the shape of the first color filter light-blocking layer 162 (K in FIG. 15 ).
  • This step is an example of the step of stacking and arranging the first color filter light-shielding layer described in the claims on the second color filter light-shielding layer.
  • the color filter 160 is arranged adjacent to the interlayer film 166 and the first color filter portion light-shielding layer 162 (L in FIG. 15).
  • the process is an example of a process of disposing the color filter described in the claims.
  • the interlayer film 166 of the same drawing is described to have the same film thickness as the second color filter light-shielding layer 161, but the color filter 160 includes the opening 168 and the first color filter portion light-shielding layer 161. It is arranged in the opening 169 of the color filter light-shielding layer 162.
  • the on-chip lens 171 the pixel array section 10 can be manufactured.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the third embodiment of the present disclosure, and thus the description thereof will be omitted.
  • the pixel array unit 10 can protect the light shielding wall 152 by disposing the interlayer film 165. Also, by disposing the interlayer film 166, the adhesion strength of the first color filter light-shielding layer 162 can be improved.
  • the pixel array unit 10 of the third embodiment described above includes the on-chip lens 171.
  • the pixel array unit 10 according to the fifth embodiment of the present disclosure differs from the above-described third embodiment in that the pixel array unit 10 further includes the intralayer lens 172.
  • FIG. 16 is a diagram showing a configuration example of a pixel according to the fifth embodiment of the present disclosure.
  • the figure is a diagram in which the configuration of the pixel 100 is simplified and described.
  • the pixel 100 shown in the figure is different from the pixel 100 described in FIG. 10 in that the pixel 100 further includes an intralayer lens 172.
  • the in-layer lens 172 is a lens that is arranged on the flattening film 151 and further collects the incident light collected by the on-chip lens 171.
  • the sensitivity of the pixel 100 can be improved.
  • the incident light cannot be condensed on the photoelectric conversion unit 101 only by the on-chip lens 171, and the sensitivity is lowered. Therefore, by disposing the in-layer lens 172, the incident light is further refracted and focused on the photoelectric conversion unit 101. This can reduce the decrease in sensitivity.
  • the in-layer lens 172 can be made of, for example, SiN or silicon oxynitride (SiON).
  • the in-layer lens 172 can be formed by the same method as the on-chip lens 171.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the third embodiment of the present disclosure, and thus the description thereof will be omitted.
  • the pixel array unit 10 can reduce the decrease in sensitivity by disposing the in-layer lens 172.
  • the pixel array section 10 of the third embodiment described above includes the first color filter section light-shielding layer 162 and the second color filter section light-shielding layer 161 that are configured in a rectangular cross section.
  • the pixel array section 10 according to the sixth embodiment of the present disclosure includes the first color filter section light-shielding layer and the second color filter section light-shielding layer each having a tapered cross section. This is different from the third embodiment described above.
  • FIG. 17 is a diagram showing a configuration example of a pixel according to the sixth embodiment of the present disclosure.
  • the figure is a diagram in which the configuration of the pixel 100 is simplified and described.
  • the pixel 100 in the same drawing includes a first color filter section light-shielding layer 164 and a second color filter section light-shielding layer 163 instead of the first color filter section light-shielding layer 162 and the second color filter section light-shielding layer 161. This is different from the pixel 100 described in FIG.
  • the first color filter light-shielding layer 164 and the second color filter light-shielding layer 163 have tapered cross sections.
  • the pixel 100 has a cross-sectional shape whose width becomes narrower toward the semiconductor substrate 111.
  • the lower openings of the first color filter light-shielding layer 164 and the second color filter light-shielding layer 163 are widened, and the sensitivity can be prevented from lowering.
  • the configuration of the pixel 100 is not limited to this example. For example, it is possible to adopt a configuration in which any one of the first color filter light-shielding layer 164 and the second color filter light-shielding layer 163 formed in a tapered shape is arranged.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the third embodiment of the present disclosure, and thus the description thereof will be omitted.
  • the pixel array section 10 includes the first color filter section light-shielding layer 164 and the second color filter section light-shielding layer 163 each having a tapered cross section. By arranging it, the decrease in sensitivity can be reduced.
  • the color filter 160 is configured to cover the first color filter section light shielding layer 162.
  • the color filter 160 is formed in a shape separated by the first color filter light-shielding layer, and thus the third embodiment described above. Different form.
  • FIG. 18 is a diagram showing a configuration example of a pixel according to the seventh embodiment of the present disclosure.
  • the figure is a diagram in which the configuration of the pixel 100 is simplified and described.
  • the pixel 100 shown in the figure is different from the pixel 100 described in FIG. 10 in that the first color filter light-shielding layer 162 is provided in place of the first color filter light-shielding layer 167.
  • the first color filter light-shielding layer 167 has a shape in which the top is adjacent to the on-chip lens 171.
  • the color filter 160 is disposed only in the openings of the first color filter light shielding layer 167 and the second color filter light shielding layer 161, and is separated by the first color filter light shielding layer 167 and the like. As a result, light obliquely incident from the adjacent pixels 100 near the surface of the color filter 160 can be blocked.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the third embodiment of the present disclosure, and thus the description thereof will be omitted.
  • the pixel array unit 10 has a shape in which the color filter 160 is separated by the first color filter light shielding layer 167. As a result, oblique incident light near the surface of the color filter 160 can be blocked, and deterioration of image quality can be further reduced.
  • the light shielding film 245 is arranged on the peripheral edge of the pixel array unit 10.
  • the first color filter section light-shielding layer is further arranged at the peripheral portion of the pixel array section 10, and thus the third embodiment described above. Different form.
  • FIG. 19 is a diagram showing a configuration example of a pixel according to the eighth embodiment of the present disclosure.
  • the light-shielding pixel 200 in the figure is different from the pixel 100 described in FIG. 10 in that the light-shielding pixel 200 includes the first color filter light-shielding layer 267.
  • the first color-filter-portion light-shielding layer 267 shields the entire surface of the light-shielding pixel 200 and is arranged in the peripheral portion of the pixel array unit 10.
  • the first color filter light-shielding layer 267 With resin, it is possible to reduce reflection of incident light in the region. When the reflected light again enters the pixel array section 10 and is photoelectrically converted by the pixel 100, it causes noise. Since this reflected light can be reduced, it is possible to prevent deterioration of image quality.
  • the configuration of the imaging device 1 is not limited to this example.
  • the configuration of the image pickup apparatus 1 other than this is the same as the configuration of the image pickup apparatus 1 described in the third embodiment of the present disclosure, and thus the description thereof will be omitted.
  • the pixel array unit 10 As described above, in the pixel array unit 10 according to the eighth embodiment of the present disclosure, by arranging the first color filter light shielding layer 267 in the peripheral portion of the pixel array unit 10, reflection of incident light is prevented. It is possible to prevent the deterioration of the image quality.
  • the techniques applied to the third to eighth embodiments of the present disclosure can be applied to the pixel array section 10 of the first and second embodiments of the present disclosure.
  • the techniques applied to the first and second embodiments of the present disclosure can be applied to the pixel array section 10 of the third to eighth embodiments of the present disclosure.
  • Example of application to stacked solid-state imaging device> The technology according to the present disclosure (this technology) can also be applied to a stacked solid-state imaging device. That is, the image pickup device described with reference to FIGS. 1 to 19 can also be configured as a laminated solid-state image pickup device.
  • FIG. 20 is a diagram showing an outline of a configuration example of a stacked solid-state imaging device to which the technology according to the present disclosure can be applied.
  • the solid-state imaging device 23010 has one die (semiconductor substrate) 23011 as shown in A of FIG.
  • the die 23011 has a pixel region 23012 in which pixels are arranged in an array, a control circuit 23013 for performing pixel control and various other controls, and a logic circuit 23014 for signal processing.
  • the solid-state imaging device 23020 is configured as one semiconductor chip by stacking two dies of a sensor die 23021 and a logic die 23024 and electrically connecting them.
  • the sensor die 23021 has a pixel region 23012 and a control circuit 23013 mounted thereon, and the logic die 23024 has a logic circuit 23014 including a signal processing circuit for performing signal processing.
  • the pixel area 23012 is mounted on the sensor die 23021, and the control circuit 23013 and the logic circuit 23014 are mounted on the logic die 23024.
  • FIG. 21 is a cross-sectional view showing a first configuration example of the stacked solid-state imaging device 23020.
  • the sensor die 23021 In the sensor die 23021, PDs (photodiodes), FDs (floating diffusions), Trs (MOS FETs), which form pixels serving as the pixel regions 23012, and Trs serving as the control circuit 23013 are formed. Further, the sensor die 23021 is formed with a wiring layer 23101 having a plurality of layers, in this example, three layers of wiring 23110. It should be noted that the control circuit 23013 (which becomes the Tr) can be configured as the logic die 23024 instead of the sensor die 23021.
  • a Tr forming the logic circuit 23014 is formed on the logic die 23024. Further, the logic die 23024 is formed with a wiring layer 23161 having a plurality of layers, in this example, three layers of wiring 23170. Further, the logic die 23024 is formed with a connection hole 23171 having an insulating film 23172 formed on the inner wall surface thereof, and a connection conductor 23173 connected to the wiring 23170 and the like is embedded in the connection hole 23171.
  • the sensor die 23021 and the logic die 23024 are attached so that their wiring layers 23101 and 23161 face each other, whereby a laminated solid-state imaging device 23020 in which the sensor die 23021 and the logic die 23024 are laminated is configured.
  • a film 23191 such as a protective film is formed on a surface where the sensor die 23021 and the logic die 23024 are attached to each other.
  • the sensor die 23021 is formed with a connection hole 23111 that penetrates the sensor die 23021 from the back surface side (the side on which light is incident on the PD) (upper side) of the sensor die 23021 and reaches the uppermost wiring 23170 of the logic die 23024. Further, in the sensor die 23021, a connection hole 23121 is formed near the connection hole 23111 and reaching the wiring 23110 of the first layer from the back surface side of the sensor die 23021. An insulating film 23112 is formed on the inner wall surface of the connection hole 23111, and an insulating film 23122 is formed on the inner wall surface of the connection hole 23121. Then, the connection conductors 23113 and 23123 are embedded in the connection holes 23111 and 23121, respectively.
  • connection conductor 23113 and the connection conductor 23123 are electrically connected to each other on the back surface side of the sensor die 23021, whereby the sensor die 23021 and the logic die 23024 are connected to the wiring layer 23101, the connection hole 23121, the connection hole 23111, and the wiring layer. It is electrically connected via 23161.
  • FIG. 22 is a cross-sectional view showing a second configuration example of the stacked solid-state imaging device 23020.
  • one connection hole 23211 formed in the sensor die 23021 allows the sensor die 23021 (the wiring layer 23101 of the wiring layer 23110) and the logic die 23024 (the wiring layer of the wiring layer 23161). 23170)) is electrically connected.
  • connection hole 23211 is formed so as to penetrate the sensor die 23021 from the back surface side of the sensor die 23021 to reach the wiring 23170 in the uppermost layer of the logic die 23024 and reach the wiring 23110 in the uppermost layer of the sensor die 23021.
  • An insulating film 23212 is formed on the inner wall surface of the connection hole 23211, and a connection conductor 23213 is embedded in the connection hole 23211.
  • the sensor die 23021 and the logic die 23024 are electrically connected by the two connection holes 23111 and 23121, but in FIG. 22, the sensor die 23021 and the logic die 23024 are connected by the one connection hole 23211. It is electrically connected.
  • FIG. 23 is a cross-sectional view showing a third configuration example of the stacked solid-state imaging device 23020.
  • a film 23191 such as a protective film is not formed on the surface on which the sensor die 23021 and the logic die 23024 are bonded, and therefore, on the surface on which the sensor die 23021 and the logic die 23024 are bonded. 21, in which a film 23191 such as a protective film is formed.
  • the sensor die 23021 and the logic die 23024 are superposed so that the wirings 23110 and 23170 are in direct contact with each other, and the wirings 23110 and 23170 are directly joined by heating while applying a required weight. Composed.
  • FIG. 24 is a cross-sectional view showing another configuration example of the stacked solid-state imaging device to which the technology according to the present disclosure can be applied.
  • the solid-state imaging device 23401 has a three-layer laminated structure in which three dies including a sensor die 23411, a logic die 23412, and a memory die 23413 are laminated.
  • the memory die 23413 has, for example, a memory circuit that stores data that is temporarily necessary for signal processing performed by the logic die 23412.
  • the logic die 23412 and the memory die 23413 are stacked below the sensor die 23411 in that order. It can be stacked under 23411.
  • the sensor die 23411 is formed with a PD serving as a photoelectric conversion unit of a pixel and a source/drain region of the pixel Tr.
  • a gate electrode is formed around the PD via a gate insulating film, and a pixel Tr 23421 and a pixel Tr 23422 are formed by a source/drain region paired with the gate electrode.
  • the pixel Tr 23421 adjacent to the PD is the transfer Tr, and one of the source/drain regions of the pair forming the pixel Tr 23421 is the FD.
  • An interlayer insulating film is formed on the sensor die 23411, and a connection hole is formed in the interlayer insulating film.
  • a pixel Tr 23421 and a connection conductor 23431 connected to the pixel Tr 23422 are formed in the connection hole.
  • the sensor die 23411 is formed with a wiring layer 23433 having a plurality of layers of wiring 23432 connected to each connection conductor 23431.
  • an aluminum pad 23434 serving as an electrode for external connection is formed on the lowermost layer of the wiring layer 23433 of the sensor die 23411. That is, in the sensor die 23411, the aluminum pad 23434 is formed at a position closer to the adhesion surface 23440 to the logic die 23412 than the wiring 23432.
  • the aluminum pad 23434 is used as one end of wiring for inputting/outputting signals to/from the outside.
  • the sensor die 23411 is formed with a contact 23441 used for electrical connection with the logic die 23412.
  • the contact 23441 is connected to the contact 23451 of the logic die 23412 and also to the aluminum pad 23442 of the sensor die 23411.
  • the sensor die 23411 is formed with a pad hole 23443 so as to reach the aluminum pad 23442 from the back surface side (upper side) of the sensor die 23411.
  • the technology according to the present disclosure can be applied to the solid-state imaging device as described above.
  • the technology according to the present disclosure can be applied to various products.
  • the present technology may be realized as an image pickup device mounted on an image pickup apparatus such as a camera.
  • FIG. 25 is a block diagram showing a schematic configuration example of a camera which is an example of an imaging device to which the present technology can be applied.
  • the camera 1000 in the figure includes a lens 1001, an image sensor 1002, an image capture controller 1003, a lens driver 1004, an image processor 1005, an operation input unit 1006, a frame memory 1007, and a display unit 1008. And a recording unit 1009.
  • the lens 1001 is a taking lens of the camera 1000.
  • the lens 1001 collects light from a subject and makes it incident on an image sensor 1002 described later to form an image of the subject.
  • the image pickup element 1002 is a semiconductor element that picks up the light from the subject condensed by the lens 1001.
  • the image sensor 1002 generates an analog image signal according to the emitted light, converts it into a digital image signal, and outputs it.
  • the image capturing control unit 1003 controls image capturing by the image sensor 1002.
  • the imaging control unit 1003 controls the imaging element 1002 by generating a control signal and outputting the control signal to the imaging element 1002.
  • the imaging control unit 1003 can also perform autofocus in the camera 1000 based on the image signal output from the image sensor 1002.
  • the auto focus is a system that detects the focal position of the lens 1001 and automatically adjusts it.
  • a method (image plane phase difference autofocus) of detecting a focus position by detecting an image plane phase difference by a phase difference pixel arranged in the image sensor 1002 can be used. It is also possible to apply a method (contrast autofocus) of detecting the position where the contrast of the image is the highest as the focus position.
  • the imaging control unit 1003 adjusts the position of the lens 1001 via the lens driving unit 1004 based on the detected focal position, and performs autofocus.
  • the imaging control unit 1003 can be configured by, for example, a DSP (Digital Signal Processor) equipped with firmware.
  • DSP Digital Signal Processor
  • the lens driving unit 1004 drives the lens 1001 under the control of the imaging control unit 1003.
  • the lens driving unit 1004 can drive the lens 1001 by changing the position of the lens 1001 using a built-in motor.
  • the image processing unit 1005 processes the image signal generated by the image sensor 1002. This processing includes, for example, demosaic for generating image signals of insufficient colors among the image signals corresponding to red, green and blue for each pixel, noise reduction for removing noise of the image signals and encoding of the image signals. Applicable
  • the image processing unit 1005 can be configured by, for example, a microcomputer equipped with firmware.
  • the operation input unit 1006 receives an operation input from the user of the camera 1000.
  • this operation input unit 1006 for example, a push button or a touch panel can be used.
  • the operation input received by the operation input unit 1006 is transmitted to the imaging control unit 1003 and the image processing unit 1005. After that, processing according to the operation input, for example, processing such as imaging of a subject is started.
  • the frame memory 1007 is a memory that stores a frame that is an image signal for one screen.
  • the frame memory 1007 is controlled by the image processing unit 1005 and holds a frame in the process of image processing.
  • the display unit 1008 displays the image processed by the image processing unit 1005.
  • a liquid crystal panel can be used for the display unit 1008.
  • the recording unit 1009 records the image processed by the image processing unit 1005.
  • a memory card or a hard disk can be used.
  • the present technology can be applied to the image sensor 1002 among the configurations described above.
  • the image pickup apparatus 1 described with reference to FIG. 1 can be applied to the image pickup element 1002.
  • the camera has been described as an example, but the technology according to the present disclosure may be applied to, for example, a monitoring device and the like. Further, the present disclosure can be applied to a semiconductor device in the form of a semiconductor module as well as an electronic device such as a camera. Specifically, the technology according to the present disclosure can be applied to an imaging module which is a semiconductor module in which the imaging device 1002 and the imaging control unit 1003 of FIG. 25 are enclosed in one package.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 26 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure can be applied.
  • FIG. 26 shows a situation in which an operator (doctor) 11131 is operating on a patient 11132 on a patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as a pneumoperitoneum tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 into which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid endoscope having the rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. Good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. It is irradiated toward the observation target in the body cavity of the patient 11132 via the lens.
  • the endoscope 11100 may be a direct-viewing endoscope, or may be a perspective or side-viewing endoscope.
  • An optical system and an image pickup device are provided inside the camera head 11102, and reflected light (observation light) from an observation target is condensed on the image pickup device by the optical system.
  • the observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to the camera control unit (CCU: 11201) as RAW data.
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operations of the endoscope 11100 and the display device 11202 in a centralized manner. Further, the CCU 11201 receives the image signal from the camera head 11102, and performs various image processing such as development processing (demosaic processing) on the image signal for displaying an image based on the image signal.
  • image processing such as development processing (demosaic processing)
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operation site or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various kinds of information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for cauterization of tissue, incision, sealing of blood vessel, or the like.
  • the pneumoperitoneum device 11206 is used to inflate the body cavity of the patient 11132 through the pneumoperitoneum tube 11111 in order to inflate the body cavity of the patient 11132 for the purpose of securing the visual field by the endoscope 11100 and the working space of the operator.
  • the recorder 11207 is a device capable of recording various information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies irradiation light to the endoscope 11100 when imaging a surgical site can be configured by, for example, an LED, a laser light source, or a white light source configured by a combination thereof.
  • a white light source is formed by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy, so that the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated on the observation target in a time division manner, and the drive of the image pickup device of the camera head 11102 is controlled in synchronization with the irradiation timing so as to correspond to each of the RGB. It is also possible to take the captured image in a time division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the intensity of the light to acquire an image in a time-division manner and combining the images, a high dynamic image without so-called blackout and blown-out highlights is obtained. An image of the range can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of the absorption of light in body tissues, by irradiating a narrow band of light as compared with the irradiation light (that is, white light) during normal observation, the mucosal surface layer
  • the so-called narrow band imaging is performed in which a predetermined tissue such as blood vessels is imaged with high contrast.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating the excitation light may be performed.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected.
  • the excitation light corresponding to the fluorescence wavelength of the reagent can be irradiated to obtain a fluorescence image.
  • the light source device 11203 can be configured to be capable of supplying narrowband light and/or excitation light compatible with such special light observation.
  • FIG. 27 is a block diagram showing an example of the functional configuration of the camera head 11102 and the CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at the connecting portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup unit 11402 is composed of an image pickup element.
  • the number of image pickup elements forming the image pickup section 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to R, G, and B may be generated by the respective image pickup elements, and these may be combined to obtain a color image.
  • the image capturing unit 11402 may be configured to have a pair of image capturing elements for respectively acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display.
  • the 3D display enables the operator 11131 to more accurately understand the depth of the living tissue in the operation site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the image pickup unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Accordingly, the magnification and focus of the image captured by the image capturing unit 11402 can be adjusted appropriately.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405.
  • the control signal includes, for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of capturing, and/or information that specifies the magnification and focus of the captured image. Contains information about the condition.
  • the image capturing conditions such as the frame rate, the exposure value, the magnification, and the focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 11100.
  • AE Auto Exposure
  • AF Auto Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives the image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electric communication, optical communication, or the like.
  • the image processing unit 11412 performs various kinds of image processing on the image signal that is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls regarding imaging of a surgical site or the like by the endoscope 11100 and display of a captured image obtained by imaging the surgical site or the like. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a captured image of the surgical site or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects a surgical instrument such as forceps, a specific living body part, bleeding, and a mist when the energy treatment instrument 11112 is used by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may use the recognition result to superimpose and display various types of surgery support information on the image of the operation unit. By displaying the surgery support information in a superimposed manner and presenting it to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can surely proceed with the surgery.
  • the transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above.
  • the imaging device 1 described with reference to FIG. 1 can be applied to the imaging unit 10402.
  • the endoscopic surgery system has been described as an example, but the technology according to the present disclosure may be applied to, for example, a microscopic surgery system or the like.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 28 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjusting and a control device such as a braking device for generating a braking force of the vehicle.
  • the body system control unit 12020 controls operations of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • radio waves or signals of various switches transmitted from a portable device that substitutes for a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle door lock device, the power window device, the lamp, and the like.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the image capturing unit 12031 to capture an image of the vehicle exterior and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected with, for example, a driver state detection unit 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether or not the driver is asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes functions of ADAS (Advanced Driver Assistance System) including avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, a vehicle collision warning, or a vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, or the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, thereby It is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information on the outside of the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the voice image output unit 12052 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to an occupant of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an onboard display and a head-up display, for example.
  • FIG. 29 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, 12105 as the imaging unit 12031.
  • the image capturing units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper portion of the windshield inside the vehicle.
  • the image capturing unit 12101 provided on the front nose and the image capturing unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the image capturing unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the images in the front acquired by the image capturing units 12101 and 12105 are mainly used for detecting the preceding vehicle, pedestrians, obstacles, traffic lights, traffic signs, lanes, or the like.
  • FIG. 29 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors
  • the imaging range 12114 indicates The imaging range of the imaging part 12104 provided in a rear bumper or a back door is shown.
  • a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image capturing units 12101 to 12104 may be a stereo camera including a plurality of image capturing elements, or may be an image capturing element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change of this distance (relative speed with respect to the vehicle 12100). By determining, the closest three-dimensional object on the traveling path of the vehicle 12100, which is traveling in the substantially same direction as the vehicle 12100 at a predetermined speed (for example, 0 km/h or more), can be extracted as the preceding vehicle. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation of the driver.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 uses the distance information obtained from the imaging units 12101 to 12104 to convert three-dimensional object data regarding a three-dimensional object to other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified, extracted, and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles visible to the driver of the vehicle 12100 and obstacles difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 outputs the audio through the audio speaker 12061 and the display unit 12062. A driver can be assisted for avoiding a collision by outputting an alarm to the driver and performing forced deceleration or avoidance steering through the drive system control unit 12010.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the images captured by the imaging units 12101 to 12104. To recognize such a pedestrian, for example, a procedure of extracting a feature point in an image captured by the image capturing units 12101 to 12104 as an infrared camera, and a pattern matching process on a series of feature points indicating an outline of an object are performed to determine whether the pedestrian is a pedestrian. It is performed by the procedure of determining.
  • the audio image output unit 12052 causes the recognized pedestrian to have a rectangular contour line for emphasis.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 to display an icon indicating a pedestrian or the like at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device 1 described in FIG. 1 can be applied to the imaging unit 12031.
  • drawings in the above-described embodiments are schematic, and the dimensional ratios of the respective parts and the like do not necessarily match the actual ones. Further, it is needless to say that the drawings may include portions having different dimensional relationships and ratios.
  • the present technology may have the following configurations.
  • a plurality of pixels each provided with a photoelectric conversion unit formed on a semiconductor substrate and photoelectrically converting incident light from a subject;
  • An insulating film disposed in the plurality of pixels to insulate the semiconductor substrate;
  • An incident light transmitting film which is disposed adjacent to the insulating film of the plurality of pixels and transmits incident light;
  • An image pickup device comprising: a light shield arranged in a groove formed in the incident light transmitting film at a peripheral portion of each of the plurality of pixels to shield the incident light.
  • a plurality of pixels each of which is formed on a semiconductor substrate and in which photoelectric conversion units that photoelectrically convert incident light from a subject are arranged, A color filter arranged in the plurality of pixels to make incident light of a predetermined wavelength of the incident light incident on the photoelectric conversion unit, A first color filter light-shielding layer disposed in the plurality of pixels to shield the incident light, and the color filter disposed in an opening formed in a central portion;
  • the color filter is arranged in the plurality of pixels to block the incident light and is arranged in an opening formed in a central portion, and is arranged between the first color filter light-shielding layer and the semiconductor substrate.
  • an image pickup device including a second color filter light-shielding layer.
  • the second color filter light-shielding layer has a width wider than that of the first color filter light-shielding layer.
  • a planarizing film that is disposed between the color filters of the plurality of pixels and the semiconductor substrate to planarize a surface of the semiconductor substrate, The image sensor according to any one of (10) to (16), further comprising: a light shielding wall that is arranged around the flattening film in the plurality of pixels and shields incident light.
  • the image pickup device further including a second interlayer film disposed between the second color filter light-shielding layer and the light-shielding wall of the plurality of pixels.
  • the interlayer film is made of an inorganic material.
  • the second color filter light-shielding layer has a width wider than that of the light-shielding wall.
  • At least one of the first color filter part light-shielding layer and the second color filter part light-shielding layer in the pixel arranged in the peripheral portion of the plurality of pixels has a shape that shields the entire surface of the pixel.
  • the first color filter light-shielding layer which is disposed in the plurality of pixels to shield the incident light and has the color filter disposed in the opening formed in the center, is used as the second color filter light-shielding layer.
  • Stacking and placing A method of manufacturing an image sensor, comprising: disposing the color filter in the openings of the second color filter light-shielding layer and the first color filter light-shielding layer of the plurality of pixels.
  • Imaging Device 10 Pixel Array Section 100 Pixels 101 Photoelectric Conversion Section 111 Semiconductor Substrate 130 Insulating Film 141 Incident Light Transmission Film 142, 342a, 342b, 342c, 342d Light Shielding Body 143 Grooves 144, 150, 243, 245, 343a, 343b, 346a 346b Light-shielding film 151 Flattening film 152 Light-shielding wall 160 Color filter 161, 163 Second color filter light-shielding layer 162, 164, 167, 267 First color filter light-shielding layer 165, 166 Interlayer film 168, 169 Opening 171 On-chip lens 172 In-layer lens 200 Light-shielding pixel 301, 302 Phase difference pixel 1000 Camera 1002 Image sensor 11402, 12031, 12101 to 12105 Imaging unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

画素が微細化した場合であっても、隣接する画素からの入射光を遮光する遮光体を容易に形成する。 撮像素子は、光電変換部、絶縁膜、入射光透過膜および遮光体を具備する。光電変換部は、半導体基板に形成されて被写体からの入射光を光電変換するとともに複数の画素に配置される。絶縁膜は、複数の画素に配置されて半導体基板を絶縁する。入射光透過膜は、複数の画素の絶縁膜に隣接して配置されて入射光を透過する。遮光体は、複数の画素のそれぞれの周縁部の入射光透過膜に形成された溝に配置されて入射光を遮光する。

Description

撮像素子および撮像素子の製造方法
 本開示は、撮像素子および撮像素子の製造方法に関する。詳しくは、遮光膜が配置される画素を備える撮像素子および当該撮像素子の製造方法に関する。
 従来、撮像素子において、画素の周縁部に遮光膜が配置された撮像素子が使用されている。この遮光膜を配置することにより、隣接する画素から斜めに入射する光を遮光することができる。隣接する画素のカラーフィルタを透過した異なる色の入射光が混入して画像信号にノイズを生じる混色の発生を防ぐことが可能となる。このような撮像素子として、例えば、半導体基板に隣接して配置された絶縁膜の表面に形成された金属材料の膜を遮光膜として使用する撮像素子が使用されている(例えば、特許文献1参照。)。この撮像素子においては、遮光膜は次の工程により形成される。まず、絶縁膜上に金属材料による膜を形成する。次に、金属材料の膜のうち各画素の周縁部以外の領域をエッチングして除去する。これらの工程により、画素の周縁部に遮光膜が形成される。
国際公開第2016/114154号
 上述の従来技術では、画素の微細化に伴い、遮光膜の形成が困難になるという問題がある。撮像素子の高精細化に伴い画素が微細化した際に、遮光膜を小型化する必要を生じる。このような場合に、上述の従来技術では、遮光膜の形成が困難になるという問題がある。
 本開示は、上述した問題点に鑑みてなされたものであり、画素が微細化した場合であっても遮光膜を容易に形成することを目的としている。
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、半導体基板に形成されて被写体からの入射光を光電変換する光電変換部がそれぞれ配置される複数の画素と、上記複数の画素に配置されて上記半導体基板を絶縁する絶縁膜と、上記複数の画素の上記絶縁膜に隣接して配置されて入射光を透過する入射光透過膜と、上記複数の画素のそれぞれの周縁部の上記入射光透過膜に形成された溝に配置されて上記入射光を遮光する遮光体とを具備する撮像素子である。
 また、この第1の態様において、上記溝は、上記入射光透過膜をエッチングすることにより形成されてもよい。
 また、この第1の態様において、上記絶縁膜は、上記入射光透過膜のエッチングの際にエッチングの進行を停止させる膜として使用されてもよい。
 また、この第1の態様において、上記入射光透過膜に隣接して配置されて上記入射光を遮光する遮光膜をさらに具備してもよい。
 また、この第1の態様において、上記遮光膜は、上記複数の画素のうち周縁部の画素に配置されてもよい。
 また、この第1の態様において、上記被写体からの入射光を瞳分割して位相差を検出するための上記画素である位相差画素をさらに具備し、上記遮光膜は、上記位相差画素に配置されるとともに上記瞳分割の方向に応じて上記入射光の一部を遮光してもよい。
 また、この第1の態様において、上記遮光膜の端部の近傍における上記入射光透過膜に形成された溝に配置されて上記入射光の回折光を遮光する第2の遮光体をさらに具備してもよい。
 また、この第1の態様において、上記遮光体は、テーパ形状に構成されてもよい。
 また、本開示の第2の態様は、複数の画素毎に配置されて被写体からの入射光を光電変換する光電変換部を半導体基板に形成する工程と、上記複数の画素に配置されて上記半導体基板を絶縁する絶縁膜を配置する工程と、上記複数の画素の上記絶縁膜に隣接して配置されて入射光を透過する入射光透過膜を配置する工程と、上記複数の画素のそれぞれの周縁部の上記入射光透過膜に溝を形成する工程と、上記形成された溝に上記入射光を遮光する遮光体を配置する工程とを具備する撮像素子の製造方法である。
 以上の態様を採ることにより、入射光透過膜の周縁部に形成された溝に遮光体が埋め込まれて配置されるという作用をもたらす。遮光体をパターニングするためのエッチング等の加工工程の省略が想定される。
 また、本開示の第3の態様は、半導体基板に形成されて被写体からの入射光を光電変換する光電変換部がそれぞれ配置される複数の画素と、上記複数の画素に配置されて上記入射光のうち所定の波長の入射光を上記光電変換部に入射させるカラーフィルタと、上記複数の画素に配置されて上記入射光を遮光するとともに中央部に形成された開口部に上記カラーフィルタが配置される第1のカラーフィルタ部遮光層と、上記複数の画素に配置されて上記入射光を遮光するとともに中央部に形成された開口部に上記カラーフィルタが配置され、上記第1のカラーフィルタ部遮光層と上記半導体基板との間に配置される第2のカラーフィルタ部遮光層とを具備する撮像素子である。
 また、この第3の態様において、上記第1のカラーフィルタ部遮光層および上記第2のカラーフィルタ部遮光層は、異なる材料により構成されてもよい。
 また、この第3の態様において、上記第1のカラーフィルタ部遮光層は、樹脂により構成され、上記第2のカラーフィルタ部遮光層は、金属により構成されてもよい。
 また、この第3の態様において、上記第1のカラーフィルタ部遮光層は、30%以下の透過率に構成されてもよい。
 また、この第3の態様において、上記複数の画素の上記第1のカラーフィルタ部遮光層および上記第2のカラーフィルタ部遮光層の間に配置される層間膜をさらに具備してもよい。
 また、この第3の態様において、上記層間膜は、無機材料により構成されてもよい。
 また、この第3の態様において、上記第2のカラーフィルタ部遮光層は、上記第1のカラーフィルタ部遮光層より広い幅に構成されてもよい。
また、この第3の態様において、上記複数の画素の上記カラーフィルタおよび上記半導体基板の間に配置されて上記半導体基板の表面を平坦化する平坦化膜と、上記複数の画素における上記平坦化膜の周囲に配置されて入射光を遮光する遮光壁とをさらに具備してもよい。
 また、この第3の態様において、上記複数の画素の上記第2のカラーフィルタ部遮光層および上記遮光壁の間に配置される第2の層間膜をさらに具備してもよい。
 また、この第3の態様において、上記第2の層間膜は、無機材料により構成されてもよい。
 また、この第3の態様において、上記第2のカラーフィルタ部遮光層は、上記遮光壁より広い幅に構成されてもよい。
 また、この第3の態様において、上記複数の画素のうち周縁部に配置される画素における上記第1のカラーフィルタ部遮光層および上記第2のカラーフィルタ部遮光層の少なくとも1つは、当該画素の全面を遮光する形状に構成されてもよい。
 また、この第3の態様において、上記第1のカラーフィルタ部遮光層および上記第2のカラーフィルタ部遮光層の少なくとも1つは、テーパ形状に構成されてもよい。
 また、本開示の第4の態様は、複数の画素毎に配置されて被写体からの入射光を光電変換する光電変換部を半導体基板に形成する工程と、上記複数の画素に配置されて上記入射光を遮光するとともに中央部に形成された開口部に上記入射光のうち所定の波長の入射光を上記光電変換部に入射させるカラーフィルタが配置される第2のカラーフィルタ部遮光層を上記半導体基板に配置する工程と、上記複数の画素に配置されて上記入射光を遮光するとともに中央部に形成された開口部に上記カラーフィルタが配置される第1のカラーフィルタ部遮光層を上記第2のカラーフィルタ部遮光層に積層して配置する工程と、上記複数の画素の上記第2のカラーフィルタ部遮光層および上記第1のカラーフィルタ部遮光層のそれぞれの上記開口部に上記カラーフィルタを配置する工程とを具備する撮像素子の製造方法である。
 以上の態様を採ることにより、第1のカラーフィルタ部遮光層および第2のカラーフィルタ部遮光層がカラーフィルタと同層に配置されるという作用をもたらす。カラーフィルタ部における隣接する画素等を介して入射する入射光の遮光が想定される。
本開示の実施の形態に係る撮像装置の構成例を示す図である。 本開示の実施の形態に係る画素アレイ部の構成例を示す図である。 本開示の第1の実施の形態に係る画素の遮光の一例を示す図である。 本開示の第1の実施の形態に係る画素の構成例を示す図である。 本開示の第1の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 従来の撮像素子に係る画素の構成例を示す図である。 本開示の第2の実施の形態に係る画素の構成例を示す図である。 本開示の第3の実施の形態に係る画素の構成例を示す図である。 本開示の第4の実施の形態に係る画素の構成例を示す図である。 本開示の第4の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 本開示の第4の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 本開示の第4の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 本開示の第4の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。 本開示の第5の実施の形態に係る画素の構成例を示す図である。 本開示の第6の実施の形態に係る画素の構成例を示す図である。 本開示の第7の実施の形態に係る画素の構成例を示す図である。 本開示の第8の実施の形態に係る画素の構成例を示す図である。 本開示に係る技術を適用し得る積層型の固体撮像装置の構成例の概要を示す図である。 積層型の固体撮像装置23020の第1の構成例を示す断面図である。 積層型の固体撮像装置23020の第2の構成例を示す断面図である。 積層型の固体撮像装置23020の第3の構成例を示す断面図である。 本開示に係る技術を適用し得る積層型の固体撮像装置の他の構成例を示す断面図である。 本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 次に、図面を参照して、本開示を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。また、以下の順序で実施の形態の説明を行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.第5の実施の形態
 6.第6の実施の形態
 7.第7の実施の形態
 8.第8の実施の形態
 9.積層型の固体撮像装置への応用例
 10.カメラへの応用例
 11.内視鏡手術システムへの応用例
 12.移動体への応用例
 <1.第1の実施の形態>
 [撮像装置の構成]
 図1は、本開示の実施の形態に係る撮像装置の構成例を示す図である。同図の撮像装置1は、画素アレイ部10と、垂直駆動部20と、カラム信号処理部30と、制御部40とを備える。
画素アレイ部10は、画素100が2次元格子状に配置されて構成されたものである。ここで、画素100は、照射された光に応じた画像信号を生成するものである。この画素100は、照射された光に応じた電荷を生成する光電変換部を有する。また画素100は、画素回路をさらに有する。この画素回路は、光電変換部により生成された電荷に基づく画像信号を生成する。画像信号の生成は、後述する垂直駆動部20により生成された制御信号により制御される。画素アレイ部10には、信号線11および12がXYマトリクス状に配置される。信号線11は、画素100における画素回路の制御信号を伝達する信号線であり、画素アレイ部10の行毎に配置され、各行に配置される画素100に対して共通に配線される。信号線12は、画素100の画素回路により生成された画像信号を伝達する信号線であり、画素アレイ部10の列毎に配置され、各列に配置される画素100に対して共通に配線される。これら光電変換部および画素回路は、半導体基板に形成される。
 垂直駆動部20は、画素100の画素回路の制御信号を生成するものである。この垂直駆動部20は、生成した制御信号を同図の信号線11を介して画素100に伝達する。カラム信号処理部30は、画素100により生成された画像信号を処理するものである。このカラム信号処理部30は、同図の信号線12を介して画素100から伝達された画像信号の処理を行う。カラム信号処理部30における処理には、例えば、画素100において生成されたアナログの画像信号をデジタルの画像信号に変換するアナログデジタル変換が該当する。カラム信号処理部30により処理された画像信号は、撮像装置1の画像信号として出力される。制御部40は、撮像装置1の全体を制御するものである。この制御部40は、垂直駆動部20およびカラム信号処理部30を制御する制御信号を生成して出力することにより、撮像装置1の制御を行う。制御部40により生成された制御信号は、信号線41および42により垂直駆動部20およびカラム信号処理部30に対してそれぞれ伝達される。
 なお、画素アレイ部10は、請求の範囲に記載の撮像素子の一例である。また、撮像装置1を垂直駆動部20等が配置された撮像素子とすることもできる。
 [撮像素子の構成]
 図2は、本開示の実施の形態に係る画素アレイ部の構成例を示す図である。同図の画素アレイ部10は、画素100のほかに遮光画素200ならびに位相差画素301および302を備える。
 遮光画素200は、画素アレイ部10の周縁部に配置される画素であり、入射光が遮光される画素である。この遮光画素200は、入射光が遮光された状態において画像信号を生成する。この生成された画像信号は、黒レベルの検出に使用することができる。同図の画素アレイ部10には、遮光画素200が複数の画素の最外周に配置される例を表したものである。
 位相差画素は、被写体を瞳分割することにより位相差を検出するための画素である。この検出された位相差により、被写体の焦点位置を検出してオートフォーカスを行うことができる。同図の画素アレイ部10には、位相差画素301および302の例を記載した。これら位相差画素301および302は、画素アレイ部10の行(横)方向に近接して配置され、被写体を横方向に瞳分割する。画素100、遮光画素200ならびに位相差画素301および302の構成の詳細については後述する。
 [画素の遮光]
 図3は、本開示の第1の実施の形態に係る画素の遮光の一例を示す図である。同図は、画素アレイ部10の画素100、遮光画素200ならびに位相差画素301および302における入射光の遮光の一例を表した図である。同図の点線の矩形は、画素100、遮光画素200ならびに位相差画素301および302を表す。同図の斜線(右上がり)のハッチングの領域は、遮光体142を表す。遮光体142は、画素100等のそれぞれの周縁部に配置され、入射光を遮光するものである。画素100等において、遮光体142が配置されない領域は、遮光体142の開口部となり、入射光が透過する。
 また、同図の斜線(右下がり)のハッチングの領域は、遮光膜243の領域を表す。遮光膜243は、遮光体142と同様に入射光を遮光するものである。遮光膜243は、遮光体142とは異なる層に形成され、遮光画素200の全面を覆うように配置される。また、位相差画素301および302には、それぞれ遮光膜343aおよび343bが配置される。遮光膜343aおよび343bは、位相差画素301および302のそれぞれ右側および左側を遮光する。すなわち、遮光膜343aおよび343bには、それぞれ左側および右側に遮光膜の開口部が形成される。このため、位相差画素301および302には、撮像装置1に被写体を結像する撮影レンズのそれぞれ右側および左側を透過した光が入射する。すなわち、位相差画素301および302は、画素アレイ部10の左右方向に瞳分割される。このように遮光膜343aおよび343bは、位相差画素301および302の瞳分割の方向に応じて配置される。
 [画素の構成]
 図4は、本開示の第1の実施の形態に係る画素の構成例を示す図である。同図は、画素アレイ部10に配置される画素100、遮光画素200ならびに位相差画素301および302の構成例を表した模式断面図である。画素100は、半導体基板111と、絶縁層121および配線層122と、絶縁膜130と、入射光透過膜141と、遮光体142と、平坦化膜151と、カラーフィルタ160と、オンチップレンズ171とを備える。なお、絶縁層121および配線層122は、配線領域を構成する。
 半導体基板111は、画素100の光電変換部や画素回路を構成する素子の半導体領域部分が形成される半導体の基板である。これらの半導体素子は、半導体基板に形成されたウェル領域に形成される。便宜上、同図の半導体基板111は、p型のウェル領域に構成されるものと想定する。同図には、光電変換部101を例として記載した。光電変換部101は、n型半導体領域112により構成される。具体的には、n型半導体領域112とn型半導体領域112の周囲のp型のウェル領域との間のpn接合により構成されるフォトダイオードが光電変換部101に該当する。
 配線層122は、半導体基板111に形成された素子を電気的に接続する配線である。配線層122は、例えば、銅(Cu)やタングステン(W)により構成することができる。絶縁層121は、配線層122を絶縁するものである。絶縁層121は、例えば、酸化シリコン(SiO)により構成することができる。これら配線層122および絶縁層121により構成される配線領域は、半導体基板111の表面側に形成される。
 絶縁膜130は、半導体基板111の裏面側に形成されて、半導体基板111を絶縁するとともに半導体基板111を保護する膜である。この絶縁膜130は、酸化アルミニウム(Al)や五酸化タンタル(Ta)等の酸化金属膜やSiO等の酸化物、窒化シリコン(SiN)等の窒化物により構成することができる。また、これらの膜を積層した膜により絶縁膜130を構成することもできる。なお、酸化金属膜は、半導体基板111の表面に形成される界面準位の調整を行う膜である。この酸化金属膜を配置することにより、界面準位からのキャリアの放出等に基づいて生じるノイズを軽減することができる。また、絶縁膜130は、後述する遮光体142を配置する溝を入射光透過膜141に形成するために入射光透過膜141をエッチングする際のエッチングストッパとして使用することもできる。 
 入射光透過膜141は、絶縁膜130に隣接して配置されて入射光を透過する膜である。この入射光透過膜141は、SiO等の酸化物により構成することができる。また、入射光透過膜141は、CVD(Chemical Vapor Deposition)やALD(Atomic Layer Deposition)により形成することができる。なお、この入射光透過膜141に形成された溝に後述する遮光体142が配置される。
 遮光体142は、入射光透過膜141と同層に形成され、画素100等の周縁部に配置される。この遮光体142により、隣接する画素100等から斜めに入射する光を遮光することができる。後述するように、画素100等にはカラーフィルタ160が配置され、隣接する画素100間においては、異なる色に対応するカラーフィルタ160が配置される。このため、画素100のカラーフィルタ160を透過した光が隣接する他の画素100に入射すると、当該他の画素100において混色等が発生し、ノイズを生じる。そこで、遮光体142を配置することにより、隣接する画素100からの入射光を遮光し、混色の発生を防止することができる。遮光体142は、例えば、アルミニウム(Al)、タングステン(W)および銅(Cu)等の金属や窒化タングステン(NW)等の窒化物により構成することができる。また、遮光材を分散させた樹脂により構成することも可能である。
 なお、遮光体142は、入射光透過膜141に形成された溝に遮光体142の材料を埋め込むことにより、形成することができる。
 平坦化膜151は、後述するカラーフィルタ160が形成される面を平坦化する膜である。この平坦化膜151は、遮光体142が形成された入射光透過膜141や後述する遮光膜243等が配置された面に積層して形成され、これらの面を平坦化する。これにより、カラーフィルタ160の膜厚の変動を防止することができる。この平坦化膜151は、例えば、SiOやSiNにより構成することができる。
 カラーフィルタ160は、光学的なフィルタであり、画素100等への入射光のうち所定の波長の光を透過するものである。カラーフィルタ160として、例えば、赤色光、緑色光および青色光を透過するカラーフィルタ160を使用することができる。
 オンチップレンズ171は、画素100等毎に配置されて入射光を光電変換部101に集光するレンズである。オンチップレンズ171は、上層部が半球形状に形成されてレンズを構成する。オンチップレンズ171の下層部は、カラーフィルタ160の表面に配置され、カラーフィルタ160の表面を平坦化する。また、オンチップレンズ171の下層部により画素アレイ部10の表面が保護される。オンチップレンズ171は、例えば、樹脂により構成することができる。
 同図に表したように、画素アレイ部10は、半導体基板111における配線層122が形成される表面とは異なる面である裏面から入射光が照射される裏面照射型の撮像素子に該当する。
 遮光画素200には、遮光膜243が配置される。この遮光膜243は、入射光透過膜141および遮光体142に隣接して配置されるとともに平面視において遮光画素200の全面に配置される。また、遮光膜243は、画素アレイ部10の周縁部にさらに配置される。画素アレイ部10の周縁部における段差の発生を防止することができる。なお、遮光膜243には、半導体基板111と接続するためのコンタクト部244が形成される。このコンタクト部244は、遮光膜150を形成する際の放電による破損を防止する膜である。後述するように、遮光膜150は、金属等の材料膜をCVD等により成膜し、エッチングすることにより形成することができる。このCVDの際のプラズマが材料膜に入射して材料膜が帯電すると、半導体基板111等との間において放電を生じて破損する場合がある。そこで、コンタクト部244を形成することにより材料膜の帯電を防止することができる。コンタクト部244は、入射光透過膜141および絶縁膜130を貫通して形成された開口部に遮光膜150を配置することにより形成することができる。
 位相差画素301および302には、それぞれ遮光膜343aおよび343bが配置される。この遮光膜343aおよび343bも、遮光膜243と同様に、入射光透過膜141および遮光体142に隣接して配置することができる。前述のように、遮光膜343aおよび343bは、それぞれ位相差画素301および302における遮光体142の開口部の半分の領域を遮光する。
 遮光膜243、343aおよび343bは、同時に形成することができる。一方、遮光膜243、343aおよび343bは、後述するように、遮光体142とは異なる工程により形成される。
 なお、画素アレイ部10の構成は、この例に限定されない。例えば、遮光体142の底部が絶縁膜130とは接触しない形状にすることができる。例えば、遮光体142を配置する入射光透過膜141の溝の深さを調整して入射光透過膜141の膜の途中の深さの溝を形成し、遮光体142を配置することができる。また、入射光透過膜141を複数の膜により構成し、これら複数の膜のうちの上部の膜に溝を形成する構成を採ることもできる。
 [撮像素子の製造方法]
 図5乃至8は、本開示の第1の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。まず、半導体基板111にウェル領域およびn型半導体領域112を形成する。これより、光電変換部101を形成することができる。当該工程は、請求の範囲に記載の光電変換部を半導体基板に形成する工程の一例である。次に、絶縁層121および配線層122(不図示)を形成する。次に、半導体基板111の天地を反転させて、裏面側を研削し、半導体基板111を薄肉化する。次に、半導体基板111の裏面に絶縁膜130を形成する(図5におけるA)。これは、例えば、スパッタリングにより行うことができる。
 次に、絶縁膜130の表面に入射光透過膜141を配置する。これは、例えば、HDP(High Density Plasma)を適用したCVDにより行うことができる(図5におけるB)。
 次に、入射光透過膜141の表面にレジスト501を形成する。このレジスト501には、遮光体142を配置する位置に開口部502が形成される(図5におけるC)。次に、レジスト501をマスクとして使用し、入射光透過膜141のエッチングを行って溝143を形成する。このエッチングには、例えば、ドライエッチングを適用することができる。エッチングは、絶縁膜130との界面で停止させる必要がある。これは、エッチングのレートおよび時間を調整することにより行うことができる。なお、絶縁膜130としてエッチングの進行を停止させる膜を採用することによりエッチングの工程を簡略化することができ、好適である(図5におけるD)。当該工程は、請求の範囲に記載の入射光透過膜に溝を形成する工程の一例である。
 次に、入射光透過膜141の表面に遮光体142の材料膜503を積層し、溝143に遮光体142の材料膜503を埋め込んで配置する。これは、例えば、CVDにより行うことができる(図6におけるE)。次に、遮光体142の材料膜503の表面を研削し、溝143以外に配置された遮光体142の材料膜503を除去する。これは、例えば、化学的機械的研磨(CMP:Chemical Mechanical Polishing)により行うことができる。これにより、遮光体142を形成することができる(図6におけるF)。当該工程は、請求の範囲に記載の遮光体を配置する工程の一例である。
 次に、入射光透過膜141および絶縁膜130に開口部505を形成する。これは、ドライエッチングにより行うことができる(図6におけるG)。
 次に、入射光透過膜141および遮光体142の表面に遮光膜243等の材料膜506を積層する。この際、開口部505にも材料膜506を配置する。これは、例えば、CVDにより行うことができる(図6におけるH)。
 次に、材料膜506の表面にレジスト507を配置する。このレジスト507には、画素100の表面等の、遮光膜243が配置されない領域に開口部508が形成される(図7におけるI)。
 次に、レジスト507をマスクとして材料膜506のエッチングを行う。これは、例えば、ドライエッチングにより行うことができる。これにより、遮光膜243、343aおよび343bを形成することができる(図7におけるJ)。
 次に平坦化膜151、カラーフィルタ160を順に積層する。次に、オンチップレンズ171の材料となる樹脂を塗布した後に半球状に加工してオンチップレンズ171を形成する(図7におけるK)。以上の工程により、画素アレイ部10を製造することができる。
 [従来の画素の構成]
 図8は、従来の撮像素子に係る画素の構成例を示す図である。同図は、比較例として従来の画素を簡略化して表した図である。同図の撮像素子は、画素600および位相差画素602を備える。画素600は、入射光透過膜141および遮光体142の代わりに遮光膜642が配置される。また、位相差画素602には、遮光膜643が配置される。なお、不図示の遮光画素においても同様の遮光膜が配置される。この遮光膜642および643は、半導体基板111に形成された絶縁膜130に隣接して配置された材料膜をエッチングすることにより形成されたものである。すなわち、従来の撮像素子では、画素の周縁部に配置される遮光膜と位相差画素における瞳分割のための遮光膜とを同時に形成していた。その後、遮光膜642および643を覆うように平坦化膜151が配置される。画素の周縁部に配置される遮光膜と位相差画素における瞳分割のための遮光膜とを同時に形成することにより工程を短縮することができる。
 しかし、同図の撮像素子では、撮像素子の微細化に伴い画素600サイズが小さくなると、欠陥の発生により遮光膜の形成が困難になる。具体的には、同図の遮光膜691のように、遮光膜642の倒れによる欠陥が発生しやすくなる。また、遮光膜642および643の間隔が狭くなるため平坦化膜151の材料が浸透できず、平坦化膜151に隙間692が形成される場合がある。このような隙間692が形成されると、位相差画素602における位相差検出の誤差が増大する。
 これに対し、図4の撮像素子(画素アレイ部10)では、図6乃至7において説明したように、遮光体142の材料膜503を入射光透過膜141に形成した溝に埋め込むことにより、遮光体142を形成する。半導体素子のCu配線の製造工程において使用されるダマシン法に準じた方式により遮光体142を形成する。遮光体142の微細な加工を容易に行うことができ、上述の倒れ等の欠陥を生じることなく遮光体142を形成することができる。また、遮光体142と遮光膜343aおよび343bとを異なる工程により形成するため、上述の隙間の形成等を防止することができる。
 また、図4の遮光体142は、入射光透過膜141に形成した溝に配置されるため、テーパ形状に構成することができる。すなわち、光電変換部101に近い部分程幅が狭い形状に構成される。光電変換部101に近い領域の開口部を広くすることができ、感度の低下を防止することができる。
 また、図7において説明したように、図4の遮光膜243、343aおよび343bは、レジスト507をマスクとして用いたエッチング工程により形成される。CMPを使用せずに形成することができるため、ディッシングによる凹部の形成を防止することができる。
 以上説明したように、本開示の第1の実施の形態の画素アレイ部10は、入射光透過膜141に形成された溝に遮光体142を配置することにより、画素100等が微細化した場合であっても遮光体142を形成することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態の画素アレイ部10は、位相差画素301および302に遮光膜343aおよび343bが配置されていた。これに対し、本開示の第2の実施の形態の画素アレイ部10は、遮光膜343aおよび343bの端部に配置される遮光体をさらに備える点で、上述の第1の実施の形態と異なる。
 [画素の構成]
 図9は、本開示の第2の実施の形態に係る画素の構成例を示す図である。同図は、画素100ならびに位相差画素301および302の構成を簡略化して記載した図である。同図におけるAの位相差画素301および302は、それぞれ遮光体342aおよび342bを備える。遮光体342aおよび342bは、それぞれ遮光膜343aおよび343bの近傍に配置され、入射光透過膜141に形成された溝に配置されて構成される。この遮光体342aおよび342bを配置することにより、遮光膜343aおよび343bによる入射光の回折を防ぐことができ、回折光によるノイズの発生を軽減することができる。同図の遮光体342aおよび342bは、底部が絶縁膜130との界面に達しており、ノイズの低減効果を向上させることができる。なお、同図に表したように、遮光体342aおよび342bは、端部がそれぞれ遮光膜343aおよび343bの端部と一致する位置に形成すると好適である。遮光膜343aおよび343bによる瞳分割に影響を及ぼすとなく回折光を遮光することができるためである。
 同図におけるBの位相差画素301および302は、遮光体342aおよび342bの代わりに遮光体342cおよび342dを備える。この遮光体342cおよび342dは、遮光体342aおよび342bより浅い深さに構成される。これにより、遮光体342aおよび342bを配置した場合と比較して、感度の低下を軽減することができる。遮光体342cおよび342dを配置する溝は、遮光体142を配置する溝とは異なる工程により形成することができる。エッチングの時間を調整して所望の深さの溝を形成することにより、遮光体342cおよび342dを配置することができる。
 なお、遮光体342a、342b、342cおよび342dは、請求の範囲に記載の第2の遮光体の一例である。
 これ以外の撮像装置1の構成は本開示の第1の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。 
 以上説明したように、本開示の第2の実施の形態の画素アレイ部10は、位相差画素301および302の遮光膜343aおよび343bの近傍に遮光体342aおよび342b等を配置する。これにより、位相差画素301および302のノイズの発生を軽減することができる。
 <3.第3の実施の形態>
 従来、撮像素子において、画素間に複数段の遮光壁を有する画素アレイ部を備える撮像装置が使用されている。この遮光壁は、画素における半導体基板表面の絶縁膜およびカラーフィルタの間に配置された平坦化膜と同層に形成されて隣接する画素との境界に配置される。像高が高い被写体からの光は、撮像素子の周縁部の画素において斜めに入射する。この入射光が隣接する画素間において斜めに入射すると、混色等を生じることとなる。そそこで、遮光壁を配置することにより隣接する画素からの斜めの入射光を遮光する(例えば、特許文献1参照。)。位相差画素が配置される場合には画素における集光位置を調整するため、撮像素子が高背化する。この場合には、多段に形成された遮光壁が配置される。
 上述の従来技術では、高い入射角度の入射光が画素に入射することにより画質が低下するという問題がある。被写体からの光が筐体等により反射されて撮像素子に到達する際、極端に高い入射角度において画素に入射する場合がある。この場合、このような入射光により画像信号にノイズを生じ、画質が低下する。
 本開示の第3の実施の形態では、上述の問題点に鑑みて、高い入射角度の入射光が入射した場合であっても画質の低下を軽減する撮像素子について提案する。
 [画素の構成]
 図10は、本開示の第3の実施の形態に係る画素の構成例を示す図である。同図は、画素アレイ部10に配置される画素100、遮光画素200ならびに位相差画素301および302の構成例を表した模式断面図である。同図の画素アレイ部10は、以下の点で、図4において説明した画素アレイ部10と異なる。入射光透過膜141が省略され、遮光体142の代わりに遮光膜144が画素100に配置される。遮光画素200には、遮光膜243の代わりに遮光膜245が配置される。位相差画素301および302には、それぞれ遮光膜346aおよび346bが配置される。また、遮光壁152がさらに配置される。また、第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161がさらに配置される。
 遮光膜144は、絶縁膜130に隣接して配置されるとともに画素100の周縁部に配置される遮光膜である。また、遮光膜245は、絶縁膜130に隣接して配置されるとともに平面視において遮光画素200の全面に配置される。また、遮光膜245にはコンタクト部246が形成される。また、遮光膜346aおよび346bは、それぞれ位相差画素301および302に配置され、位相差画素301および302を瞳分割するための遮光膜である。これら遮光膜144、245、346aおよび346bは、同時に形成することができる。
 遮光壁152は、各画素100等の平坦化膜151の周囲に壁状に配置されて入射光を遮光するものである。すなわち、遮光壁152は、画素100の境界の近傍に配置される。この遮光壁152は、遮光膜144に積層して形成することができる。遮光壁152は、例えば、WやAl等により構成することができる。
 第2のカラーフィルタ部遮光層161は、カラーフィルタ160と同層に配置されて入射光を遮光するものである。この第2のカラーフィルタ部遮光層161には中央部に開口部168が形成される。この開口部168にカラーフィルタ160が配置される。すなわち、第2のカラーフィルタ部遮光層161は、画素100の境界の近傍に配置される。また、第2のカラーフィルタ部遮光層161は、後述する第1のカラーフィルタ部遮光層162および半導体基板111の間に配置される。
 第1のカラーフィルタ部遮光層162は、カラーフィルタ160と同層に配置されて入射光を遮光するものである。この第1のカラーフィルタ部遮光層162には、第2のカラーフィルタ部遮光層161と同様に中央部に開口部169が形成される。この開口部169にカラーフィルタ160が配置される。すなわち、第2のカラーフィルタ部遮光層161と同様に、第1のカラーフィルタ部遮光層162も画素100の境界の近傍に配置される。
 第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161は、それぞれ隣接する画素100等から高い入射角度において斜めに入射する光を遮光する。同図の矢印は、高い入射角度の入射光が第1のカラーフィルタ部遮光層162により遮光される様子を表したものである。このように、第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161をカラーフィルタ160と同層に配置することにより、高い入射角度の入射光による混色の発生を防止することができる。
 第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161は、それぞれ異なる材料により構成することができる。例えば、第1のカラーフィルタ部遮光層162をカーボンブラック顔料やチタンブラック顔料等を分散させた樹脂により構成し、第2のカラーフィルタ部遮光層161をWやAl等の金属材料により構成することができる。樹脂により構成された第1のカラーフィルタ部遮光層162をカラーフィルタ部遮光層や遮光壁のうちの最外部に配置するため、画素アレイ部10の入射光の反射を軽減することができる。また、樹脂により構成された第1のカラーフィルタ部遮光層162は、波長300乃至1000nmの光に対して30%の透過率に構成すると好適である。入射光の遮光能力を向上させることができるためである。また、第1のカラーフィルタ部遮光層162は、100乃至1000nmの厚さに構成することができる。なお、第1のカラーフィルタ部遮光層162を構成する樹脂には、フォトレジストを採用すると好適である。第1のカラーフィルタ部遮光層162の製造工程を簡略化することができるためである。
 また、第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161を積層することにより、カラーフィルタ160の領域に配置する遮光層の厚さを厚くすることができ、遮光能力を向上させることができる。カラーフィルタ160は、所望の光学特性を得るため、比較的厚い膜厚に構成される。このため、カラーフィルタ160と同層に配置されるカラーフィルタ部遮光層も厚い膜厚に構成する必要がある。しかし、樹脂によりカラーフィルタ部遮光層を構成する場合には、カラーフィルタ部遮光層を厚くすると、製造工程において下層に配置された位置合わせマークの読み取り不良を生じる。フォトグラフィのプロセスにおける露光位置精度が低下し、撮像素子の製造が困難になる。一方、カラーフィルタ部遮光層を金属により構成する場合には、カラーフィルタ部遮光層を厚くすると、金属膜の成膜の際の半導体基板111の反りが増大する。樹脂により構成する場合と同様に製造が困難になる。
 そこで、これら第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161をそれぞれ樹脂および金属により構成するとともにこれらを積層して配置する。これにより、所望の膜厚のカラーフィルタ部遮光層を容易に製造することができる。
また、同図に表したように、第2のカラーフィルタ部遮光層161のサイズ(幅)を第1のカラーフィルタ部遮光層162のサイズ(幅)より大きくすると好適である。すなわち、第2のカラーフィルタ部遮光層161の開口部168を第1のカラーフィルタ部遮光層162の開口部169より狭くする。これにより、製造の際の位置ずれのマージンを向上させることができる。
 同様に、同図に表したように、第2のカラーフィルタ部遮光層161のサイズ(幅)を遮光壁152のサイズ(幅)より広くすると好適である。同様に、製造の際の位置ずれのマージンを向上させることができるためである。
 撮像素子(画素アレイ部10)の製造方法については、第4の実施の形態において詳細に説明する。
 これ以外の撮像装置1の構成は本開示の第1の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第3の実施の形態の画素アレイ部10は、カラーフィルタ160と同層に第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161を配置する。これにより、高い入射角度において隣接する画素100等から斜めに入射する光を遮光することができ、画質の低下を防止することができる。
 <4.第4の実施の形態>
 上述の第3の実施の形態の画素アレイ部10は、第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161ならびに第2のカラーフィルタ部遮光層161および遮光壁152がそれぞれ隣接して配置されていた。これに対し、本開示の第4の実施の形態の画素アレイ部10は、第1のカラーフィルタ部遮光層162、第2のカラーフィルタ部遮光層161および遮光壁152のそれぞれの層間に層間膜を備える点で、上述の第3の実施の形態と異なる。
 [画素の構成]
 図11は、本開示の第4の実施の形態に係る画素の構成例を示す図である。同図は、画素100の構成を簡略化して記載した図である。同図の画素100は、層間膜165および166をさらに備える点で、図10において説明した画素100と異なる。
 層間膜165は、遮光壁152および第2のカラーフィルタ部遮光層161の間に配置される層間膜である。この層間膜165は、例えば、SiOやSiN等の無機材料により構成することができる。この層間膜165を配置することにより、第2のカラーフィルタ部遮光層161を形成する際に下層に配置された遮光壁152を保護することができる。具体的には、遮光壁152が配置された平坦化膜151に第2のカラーフィルタ部遮光層161の材料となる金属膜を形成してエッチングする際、エッチング工程において使用する薬液が浸潤し、遮光壁152が溶出する場合がある。そこで、層間膜165を配置して分離することにより、エッチング工程の薬液から遮光壁152を保護することができる。
 層間膜166は、第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161の間に配置される層間膜である。この層間膜166も、層間膜165と同様に、無機材料により構成することができる。樹脂により構成された第1のカラーフィルタ部遮光層162を金属により構成された第2のカラーフィルタ部遮光層161に隣接して配置した場合には、これらの間の密着強度が比較的低いため、剥離等の不具合を生じる場合がある。そこで、無機材料により構成された層間膜166を間に配置する。これにより、密着強度を向上させることができる。
 なお、画素アレイ部10の構成は、この例に限定されない。例えば、層間膜165および166の何れか1つを備える構成にすることもできる。
 なお、層間膜166は、請求の範囲に記載の層間膜の一例である。層間膜165は、請求の範囲に記載の第2の層間膜の一例である。
 [撮像素子の製造方法]
 図12乃至15は、本開示の第4の実施の形態に係る画素アレイ部の製造方法の一例を示す図である。まず、半導体基板111にウェル領域およびn型半導体領域112を形成し、光電変換部101を形成する。次に、絶縁層121および配線層122(不図示)を形成する。次に、半導体基板111の裏面に開口部510を有する絶縁膜130を形成する(図12におけるA)。
 次に、遮光膜245等の材料となる金属膜を成膜してエッチングを行い、遮光膜144、245、346aおよび346bを形成する(図12におけるB)。
 次に遮光膜144等に隣接して平坦化膜151を配置し、遮光壁152を配置する部分に開口部511を形成する(図12におけるC)。
 次に平坦化膜151に遮光壁152の材料となる金属膜を積層し、この積層した金属膜の表面を研削する。これは、例えば、CMPにより行うことができる。これにより、平坦化膜151の開口部511に遮光壁152を配置することができる(図12におけるD)。
 次に、平坦化膜151および遮光壁152に隣接して層間膜165を配置する(図13におけるE)。
 次に、第2のカラーフィルタ部遮光層161の材料となる金属膜512を積層する(図13におけるF)。次に、金属膜512の表面にレジスト513を配置する。このレジスト513は、図10において説明した開口部168を配置する領域に開口部514を備える(図13におけるG)。次に、レジスト513をマスクとして金属膜512のエッチングを行い、開口部168を有する第2のカラーフィルタ部遮光層161を形成する(図14におけるH)。当該工程は、請求の範囲に記載の第2のカラーフィルタ部遮光層を半導体基板に配置する工程の一例である。
 次に、第2のカラーフィルタ部遮光層161および層間膜165に隣接して層間膜166を配置する(図14におけるI)。
 次に、第1のカラーフィルタ部遮光層162の材料となる樹脂膜515を層間膜166に隣接して配置する(図14におけるJ)。次に、フォトグラフィ技術により樹脂膜515から第1のカラーフィルタ部遮光層162を形成する。具体的には、樹脂膜515に対して露光および現像を行って開口部169を形成し、第1のカラーフィルタ部遮光層162の形状に加工する(図15におけるK)。当該工程は、請求の範囲に記載の第1のカラーフィルタ部遮光層を第2のカラーフィルタ部遮光層に積層して配置する工程の一例である。
 次に、層間膜166および第1のカラーフィルタ部遮光層162に隣接してカラーフィルタ160を配置する(図15におけるL)。当該工程は、請求の範囲に記載のカラーフィルタを配置する工程の一例である。なお、便宜上、同図の層間膜166は第2のカラーフィルタ部遮光層161と同じ膜厚に記載したが、カラーフィルタ160は、第2のカラーフィルタ部遮光層161の開口部168および第1のカラーフィルタ部遮光層162の開口部169に配置される。次に、オンチップレンズ171を配置することにより、画素アレイ部10を製造することができる。
 これ以外の撮像装置1の構成は本開示の第3の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第4の実施の形態の画素アレイ部10は、層間膜165を配置することにより、遮光壁152を保護することができる。また、層間膜166を配置することにより、第1のカラーフィルタ部遮光層162の密着強度を向上させることができる。
 <5.第5の実施の形態>
 上述の第3の実施の形態の画素アレイ部10は、オンチップレンズ171を備えていた。これに対し、本開示の第5の実施の形態の画素アレイ部10は、層内レンズ172をさらに備える点で、上述の第3の実施の形態と異なる。
 [画素の構成]
 図16は、本開示の第5の実施の形態に係る画素の構成例を示す図である。同図は、画素100の構成を簡略化して記載した図である。同図の画素100は、層内レンズ172をさらに備える点で、図10において説明した画素100と異なる。
 層内レンズ172は、平坦化膜151に配置されて、オンチップレンズ171により集光された入射光をさらに集光するレンズである。層内レンズ172を配置することにより、画素100の感度を向上させることができる。画素アレイ部10の周縁部に配置された画素100においては、被写体からの光が斜めに入射する。このような場合、オンチップレンズ171だけでは、入射光を光電変換部101に集光することができず、感度が低下する。そこで、層内レンズ172を配置することにより入射光をさらに屈折させて光電変換部101に集光させる。これにより、感度の低下を軽減することができる。この層内レンズ172は、例えば、SiNや酸窒化シリコン(SiON)により構成することができる。また、層内レンズ172は、オンチップレンズ171と同様の方法により形成することができる。
 これ以外の撮像装置1の構成は本開示の第3の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第5の実施の形態の画素アレイ部10は、層内レンズ172を配置することにより、感度の低下を軽減することができる。
 <6.第6の実施の形態>
 上述の第3の実施の形態の画素アレイ部10は、矩形形状の断面に構成された第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161を備えていた。これに対し、本開示の第6の実施の形態の画素アレイ部10は、テーパ形状の断面に構成された第1のカラーフィルタ部遮光層および第2のカラーフィルタ部遮光層を備える点で、上述の第3の実施の形態と異なる。
 [画素の構成]
 図17は、本開示の第6の実施の形態に係る画素の構成例を示す図である。同図は、画素100の構成を簡略化して記載した図である。同図の画素100は、第1のカラーフィルタ部遮光層162および第2のカラーフィルタ部遮光層161の代わりに第1のカラーフィルタ部遮光層164および第2のカラーフィルタ部遮光層163を備える点で、図10において説明した画素100と異なる。
 同図に表したように、第1のカラーフィルタ部遮光層164および第2のカラーフィルタ部遮光層163は、テーパ形状の断面に構成される。具体的には、画素100の半導体基板111に向かう程幅が狭くなる断面の形状に構成される。これにより、第1のカラーフィルタ部遮光層164および第2のカラーフィルタ部遮光層163の下側の開口部が広くなり、感度の低下を防止することができる。なお、画素100の構成はこの例に限定されない。例えば、テーパ形状に構成された第1のカラーフィルタ部遮光層164および第2のカラーフィルタ部遮光層163の何れか1つを配置する構成を採ることもできる。
 これ以外の撮像装置1の構成は本開示の第3の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第6の実施の形態の画素アレイ部10は、テーパ形状の断面に構成された第1のカラーフィルタ部遮光層164および第2のカラーフィルタ部遮光層163を配置することにより、感度の低下を軽減することができる。
 <7.第7の実施の形態>
 上述の第3の実施の形態の画素アレイ部10は、カラーフィルタ160が第1のカラーフィルタ部遮光層162を覆う形状に構成されていた。これに対し、本開示の第7の実施の形態の画素アレイ部10は、カラーフィルタ160が第1のカラーフィルタ部遮光層により分離される形状に構成される点で、上述の第3の実施の形態と異なる。
 [画素の構成]
 図18は、本開示の第7の実施の形態に係る画素の構成例を示す図である。同図は、画素100の構成を簡略化して記載した図である。同図の画素100は、第1のカラーフィルタ部遮光層162の代わりに第1のカラーフィルタ部遮光層167を備える点で、図10において説明した画素100と異なる。
 同図に表したように、第1のカラーフィルタ部遮光層167は、頂部がオンチップレンズ171に隣接する形状に構成される。これにより、カラーフィルタ160は、第1のカラーフィルタ部遮光層167および第2のカラーフィルタ部遮光層161の開口部のみに配置され、第1のカラーフィルタ部遮光層167等により分離される。これにより、カラーフィルタ160の表面近傍において隣接する画素100から斜めに入射する光を遮光することができる。
 これ以外の撮像装置1の構成は本開示の第3の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第7の実施の形態の画素アレイ部10は、カラーフィルタ160が第1のカラーフィルタ部遮光層167により分離される形状に構成される。これにより、カラーフィルタ160の表面近傍における斜めの入射光を遮光することができ、画質の低下をさらに軽減することができる。
 <8.第8の実施の形態>
 上述の第3の実施の形態の画素アレイ部10は、画素アレイ部10の周縁部に遮光膜245が配置されていた。これに対し、本開示の第8の実施の形態の画素アレイ部10は、第1のカラーフィルタ部遮光層が画素アレイ部10の周縁部にさらに配置される点で、上述の第3の実施の形態と異なる。
 [画素の構成]
 図19は、本開示の第8の実施の形態に係る画素の構成例を示す図である。同図の遮光画素200は、第1のカラーフィルタ部遮光層267を備える点で、図10において説明した画素100と異なる。
 第1のカラーフィルタ部遮光層267は、遮光膜245と同様に、遮光画素200の全面を遮光するとともに画素アレイ部10の周縁部に配置される。第1のカラーフィルタ部遮光層267を樹脂により構成することにより、当該領域における入射光の反射を低減することができる。反射光が画素アレイ部10に再度入射して画素100により光電変換されるとノイズの原因となる。この反射光を減少させることができるため、画質の低下を防止することができる。
 なお、撮像装置1の構成はこの例に限定されない。例えば、第2のカラーフィルタ部遮光層161と同様に金属により構成されたカラーフィルタ部遮光層を遮光画素200等に配置することもできる。
 これ以外の撮像装置1の構成は本開示の第3の実施の形態において説明した撮像装置1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第8の実施の形態の画素アレイ部10は、第1のカラーフィルタ部遮光層267を画素アレイ部10の周縁部に配置することにより、入射光の反射を低減し、画質の低下を防止することができる。
 なお、本開示の第3乃至第8の実施の形態に適用した技術は、本開示の第1および第2の実施の形態の画素アレイ部10に適用することができる。同様に、本開示の第1および第2の実施の形態に適用した技術は、本開示の第3乃至第8の実施の形態の画素アレイ部10に適用することができる。
 <9.積層型の固体撮像装置への応用例>
 本開示に係る技術(本技術)は、積層型の固体撮像装置にも応用することができる。すなわち図1乃至19において説明した撮像素子は、積層型の固体撮像素子に構成することもできる。
 図20は、本開示に係る技術を適用し得る積層型の固体撮像装置の構成例の概要を示す図である。
 図20のAは、非積層型の固体撮像装置の概略構成例を示している。固体撮像装置23010は、図20のAに示すように、1枚のダイ(半導体基板)23011を有する。このダイ23011には、画素がアレイ状に配置された画素領域23012と、画素の駆動その他の各種の制御を行う制御回路23013と、信号処理するためのロジック回路23014とが搭載されている。
 図20のB及びCは、積層型の固体撮像装置の概略構成例を示している。固体撮像装置23020は、図20のB及びCに示すように、センサダイ23021とロジックダイ23024との2枚のダイが積層され、電気的に接続されて、1つの半導体チップとして構成されている。
図20のBでは、センサダイ23021には、画素領域23012と制御回路23013が搭載され、ロジックダイ23024には、信号処理を行う信号処理回路を含むロジック回路23014が搭載されている。
 図20のCでは、センサダイ23021には、画素領域23012が搭載され、ロジックダイ23024には、制御回路23013及びロジック回路23014が搭載されている。
 図21は、積層型の固体撮像装置23020の第1の構成例を示す断面図である。
 センサダイ23021には、画素領域23012となる画素を構成するPD(フォトダイオード)や、FD(フローティングディフュージョン)、Tr(MOS FET)、及び、制御回路23013となるTr等が形成される。さらに、センサダイ23021には、複数層、本例では3層の配線23110を有する配線層23101が形成される。なお、制御回路23013(となるTr)は、センサダイ23021ではなく、ロジックダイ23024に構成することができる。
 ロジックダイ23024には、ロジック回路23014を構成するTrが形成される。さらに、ロジックダイ23024には、複数層、本例では3層の配線23170を有する配線層23161が形成される。また、ロジックダイ23024には、内壁面に絶縁膜23172が形成された接続孔23171が形成され、接続孔23171内には、配線23170等と接続される接続導体23173が埋め込まれる。
 センサダイ23021とロジックダイ23024とは、互いの配線層23101及び23161が向き合うように貼り合わされ、これにより、センサダイ23021とロジックダイ23024とが積層された積層型の固体撮像装置23020が構成されている。センサダイ23021とロジックダイ23024とが貼り合わされる面には、保護膜等の膜23191が形成されている。
 センサダイ23021には、センサダイ23021の裏面側(PDに光が入射する側)(上側)からセンサダイ23021を貫通してロジックダイ23024の最上層の配線23170に達する接続孔23111が形成される。さらに、センサダイ23021には、接続孔23111に近接して、センサダイ23021の裏面側から1層目の配線23110に達する接続孔23121が形成される。接続孔23111の内壁面には、絶縁膜23112が形成され、接続孔23121の内壁面には、絶縁膜23122が形成される。そして、接続孔23111及び23121内には、接続導体23113及び23123がそれぞれ埋め込まれる。接続導体23113と接続導体23123とは、センサダイ23021の裏面側で電気的に接続され、これにより、センサダイ23021とロジックダイ23024とが、配線層23101、接続孔23121、接続孔23111、及び、配線層23161を介して、電気的に接続される。
 図22は、積層型の固体撮像装置23020の第2の構成例を示す断面図である。
 固体撮像装置23020の第2の構成例では、センサダイ23021に形成する1つの接続孔23211によって、センサダイ23021(の配線層23101(の配線23110))と、ロジックダイ23024(の配線層23161(の配線23170))とが電気的に接続される。
 すなわち、図22では、接続孔23211が、センサダイ23021の裏面側からセンサダイ23021を貫通してロジックダイ23024の最上層の配線23170に達し、且つ、センサダイ23021の最上層の配線23110に達するように形成される。接続孔23211の内壁面には、絶縁膜23212が形成され、接続孔23211内には、接続導体23213が埋め込まれる。上述の図21では、2つの接続孔23111及び23121によって、センサダイ23021とロジックダイ23024とが電気的に接続されるが、図22では、1つの接続孔23211によって、センサダイ23021とロジックダイ23024とが電気的に接続される。
 図23は、積層型の固体撮像装置23020の第3の構成例を示す断面図である。
 図23の固体撮像装置23020は、センサダイ23021とロジックダイ23024とが貼り合わされる面に、保護膜等の膜23191が形成されていない点で、センサダイ23021とロジックダイ23024とが貼り合わされる面に、保護膜等の膜23191が形成されている図21の場合と異なる。
 図23の固体撮像装置23020は、配線23110及び23170が直接接触するように、センサダイ23021とロジックダイ23024とを重ね合わせ、所要の加重をかけながら加熱し、配線23110及び23170を直接接合することで構成される。
 図24は、本開示に係る技術を適用し得る積層型の固体撮像装置の他の構成例を示す断面図である。
 図24では、固体撮像装置23401は、センサダイ23411と、ロジックダイ23412と、メモリダイ23413との3枚のダイが積層された3層の積層構造になっている。
 メモリダイ23413は、例えば、ロジックダイ23412で行われる信号処理において一時的に必要となるデータの記憶を行うメモリ回路を有する。
 図24では、センサダイ23411の下に、ロジックダイ23412及びメモリダイ23413が、その順番で積層されているが、ロジックダイ23412及びメモリダイ23413は、逆順、すなわち、メモリダイ23413及びロジックダイ23412の順番で、センサダイ23411の下に積層することができる。
 なお、図24では、センサダイ23411には、画素の光電変換部となるPDや、画素Trのソース/ドレイン領域が形成されている。
 PDの周囲にはゲート絶縁膜を介してゲート電極が形成され、ゲート電極と対のソース/ドレイン領域により画素Tr23421、画素Tr23422が形成されている。
 PDに隣接する画素Tr23421が転送Trであり、その画素Tr23421を構成する対のソース/ドレイン領域の一方がFDになっている。
 また、センサダイ23411には、層間絶縁膜が形成され、層間絶縁膜には、接続孔が形成される。接続孔には、画素Tr23421、及び、画素Tr23422に接続する接続導体23431が形成されている。
 さらに、センサダイ23411には、各接続導体23431に接続する複数層の配線23432を有する配線層23433が形成されている。
 また、センサダイ23411の配線層23433の最下層には、外部接続用の電極となるアルミパッド23434が形成されている。すなわち、センサダイ23411では、配線23432よりもロジックダイ23412との接着面23440に近い位置にアルミパッド23434が形成されている。アルミパッド23434は、外部との信号の入出力に係る配線の一端として用いられる。
 さらに、センサダイ23411には、ロジックダイ23412との電気的接続に用いられるコンタクト23441が形成されている。コンタクト23441は、ロジックダイ23412のコンタクト23451に接続されるとともに、センサダイ23411のアルミパッド23442にも接続されている。
 そして、センサダイ23411には、センサダイ23411の裏面側(上側)からアルミパッド23442に達するようにパッド孔23443が形成されている。
 本開示に係る技術は、以上のような固体撮像装置に適用することができる。
 <10.カメラへの応用例>
 本開示に係る技術(本技術)は、様々な製品に応用することができる。例えば、本技術は、カメラ等の撮像装置に搭載される撮像素子として実現されてもよい。
 図25は、本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。同図のカメラ1000は、レンズ1001と、撮像素子1002と、撮像制御部1003と、レンズ駆動部1004と、画像処理部1005と、操作入力部1006と、フレームメモリ1007と、表示部1008と、記録部1009とを備える。
 レンズ1001は、カメラ1000の撮影レンズである。このレンズ1001は、被写体からの光を集光し、後述する撮像素子1002に入射させて被写体を結像させる。
 撮像素子1002は、レンズ1001により集光された被写体からの光を撮像する半導体素子である。この撮像素子1002は、照射された光に応じたアナログの画像信号を生成し、デジタルの画像信号に変換して出力する。
 撮像制御部1003は、撮像素子1002における撮像を制御するものである。この撮像制御部1003は、制御信号を生成して撮像素子1002に対して出力することにより、撮像素子1002の制御を行う。また、撮像制御部1003は、撮像素子1002から出力された画像信号に基づいてカメラ1000におけるオートフォーカスを行うことができる。ここでオートフォーカスとは、レンズ1001の焦点位置を検出して、自動的に調整するシステムである。このオートフォーカスとして、撮像素子1002に配置された位相差画素により像面位相差を検出して焦点位置を検出する方式(像面位相差オートフォーカス)を使用することができる。また、画像のコントラストが最も高くなる位置を焦点位置として検出する方式(コントラストオートフォーカス)を適用することもできる。撮像制御部1003は、検出した焦点位置に基づいてレンズ駆動部1004を介してレンズ1001の位置を調整し、オートフォーカスを行う。なお、撮像制御部1003は、例えば、ファームウェアを搭載したDSP(Digital Signal Processor)により構成することができる。
 レンズ駆動部1004は、撮像制御部1003の制御に基づいて、レンズ1001を駆動するものである。このレンズ駆動部1004は、内蔵するモータを使用してレンズ1001の位置を変更することによりレンズ1001を駆動することができる。
 画像処理部1005は、撮像素子1002により生成された画像信号を処理するものである。この処理には、例えば、画素毎の赤色、緑色および青色に対応する画像信号のうち不足する色の画像信号を生成するデモザイク、画像信号のノイズを除去するノイズリダクションおよび画像信号の符号化等が該当する。画像処理部1005は、例えば、ファームウェアを搭載したマイコンにより構成することができる。
 操作入力部1006は、カメラ1000の使用者からの操作入力を受け付けるものである。この操作入力部1006には、例えば、押しボタンやタッチパネルを使用することができる。操作入力部1006により受け付けられた操作入力は、撮像制御部1003や画像処理部1005に伝達される。その後、操作入力に応じた処理、例えば、被写体の撮像等の処理が起動される。
 フレームメモリ1007は、1画面分の画像信号であるフレームを記憶するメモリである。このフレームメモリ1007は、画像処理部1005により制御され、画像処理の過程におけるフレームの保持を行う。
 表示部1008は、画像処理部1005により処理された画像を表示するものである。この表示部1008には、例えば、液晶パネルを使用することができる。
 記録部1009は、画像処理部1005により処理された画像を記録するものである。この記録部1009には、例えば、メモリカードやハードディスクを使用することができる。
 以上、本開示が適用され得るカメラについて説明した。本技術は以上において説明した構成のうち、撮像素子1002に適用され得る。具体的には、図1において説明した撮像装置1は、撮像素子1002に適用することができる。
 なお、ここでは、一例としてカメラについて説明したが、本開示に係る技術は、その他、例えば監視装置等に適用されてもよい。また、本開示は、カメラ等の電子機器の他に、半導体モジュールの形式の半導体装置に適用することもできる。具体的には、図25の撮像素子1002および撮像制御部1003を1つのパッケージに封入した半導体モジュールである撮像モジュールに本開示に係る技術を適用することもできる。
 <11.内視鏡手術システムへの応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図26は、本開示に係る技術が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図26では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図27は、図26に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カメラヘッド11102の撮像部11402に適用され得る。具体的には、図1において説明した撮像装置1は、撮像部10402に適用することができる。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
 <12.移動体への応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図28は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図28に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図28の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図29は、撮像部12031の設置位置の例を示す図である。
 図29では、車両12100は、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図29には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112、12113は、それぞれサイドミラーに設けられた撮像部12102、12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図1において説明した撮像装置1は、撮像部12031に適用することができる。
 最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 また、上述の実施の形態における図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 なお、本技術は以下のような構成もとることができる。
(1)半導体基板に形成されて被写体からの入射光を光電変換する光電変換部がそれぞれ配置される複数の画素と、
 前記複数の画素に配置されて前記半導体基板を絶縁する絶縁膜と、
 前記複数の画素の前記絶縁膜に隣接して配置されて入射光を透過する入射光透過膜と、
 前記複数の画素のそれぞれの周縁部の前記入射光透過膜に形成された溝に配置されて前記入射光を遮光する遮光体と
を具備する撮像素子。
(2)前記溝は、前記入射光透過膜をエッチングすることにより形成される前記(1)に記載の撮像素子。
(3)前記絶縁膜は、前記入射光透過膜のエッチングの際にエッチングの進行を停止させる膜として使用される前記(2)に記載の撮像素子。
(4)前記入射光透過膜に隣接して配置されて前記入射光を遮光する遮光膜をさらに具備する前記(1)から(3)の何れかに記載の撮像素子。
(5)前記遮光膜は、前記複数の画素のうち周縁部の画素に配置される前記(4)に記載の撮像素子。
(6)前記被写体からの入射光を瞳分割して位相差を検出するための前記画素である位相差画素をさらに具備し、
 前記遮光膜は、前記位相差画素に配置されるとともに前記瞳分割の方向に応じて前記入射光の一部を遮光する
前記(4)に記載の撮像素子。
(7)前記遮光膜の端部の近傍における前記入射光透過膜に形成された溝に配置されて前記入射光の回折光を遮光する第2の遮光体をさらに具備する前記(6)に記載の撮像素子。
(8)前記遮光体は、テーパ形状に構成される前記(1)から(7)の何れかに記載の撮像素子。
(9)複数の画素毎に配置されて被写体からの入射光を光電変換する光電変換部を半導体基板に形成する工程と、
 前記複数の画素に配置されて前記半導体基板を絶縁する絶縁膜を配置する工程と、
 前記複数の画素の前記絶縁膜に隣接して配置されて入射光を透過する入射光透過膜を配置する工程と、
 前記複数の画素のそれぞれの周縁部の前記入射光透過膜に溝を形成する工程と、
 前記形成された溝に前記入射光を遮光する遮光体を配置する工程と
を具備する撮像素子の製造方法。
(10)半導体基板に形成されて被写体からの入射光を光電変換する光電変換部がそれぞれ配置される複数の画素と、
 前記複数の画素に配置されて前記入射光のうち所定の波長の入射光を前記光電変換部に入射させるカラーフィルタと、
 前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記カラーフィルタが配置される第1のカラーフィルタ部遮光層と、
 前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記カラーフィルタが配置され、前記第1のカラーフィルタ部遮光層と前記半導体基板との間に配置される第2のカラーフィルタ部遮光層と
を具備する撮像素子。
(11)前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層は、異なる材料により構成される前記(10)に記載の撮像素子。
(12)前記第1のカラーフィルタ部遮光層は、樹脂により構成され、
 前記第2のカラーフィルタ部遮光層は、金属により構成される
前記(11)に記載の撮像素子。
(13)前記第1のカラーフィルタ部遮光層は、30%以下の透過率に構成される前記(12)に記載の撮像素子。
(14)前記複数の画素の前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層の間に配置される層間膜をさらに具備する前記(10)から(13)の何れかに記載の撮像素子。
(15)前記層間膜は、無機材料により構成される前記(14)に記載の撮像素子。
(16)前記第2のカラーフィルタ部遮光層は、前記第1のカラーフィルタ部遮光層より広い幅に構成される前記(10)から(15)の何れかに記載の撮像素子。
(17)前記複数の画素の前記カラーフィルタおよび前記半導体基板の間に配置されて前記半導体基板の表面を平坦化する平坦化膜と、
 前記複数の画素における前記平坦化膜の周囲に配置されて入射光を遮光する遮光壁と
をさらに具備する前記(10)から(16)の何れかに記載の撮像素子。
(18)前記複数の画素の前記第2のカラーフィルタ部遮光層および前記遮光壁の間に配置される第2の層間膜をさらに具備する前記(17)に記載の撮像素子。
(19)前記層間膜は、無機材料により構成される前記(18)に記載の撮像素子。
(20)前記第2のカラーフィルタ部遮光層は、前記遮光壁より広い幅に構成される前記(17)から(19)の何れかに記載の撮像素子。
(21)前記複数の画素のうち周縁部に配置される画素における前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層の少なくとも1つは、当該画素の全面を遮光する形状に構成される前記(10)から(20)の何れかに記載の撮像素子。
(22)前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層の少なくとも1つは、テーパ形状に構成される前記(10)から(21)の何れかに記載の撮像素子。
(23)複数の画素毎に配置されて被写体からの入射光を光電変換する光電変換部を半導体基板に形成する工程と、
 前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記入射光のうち所定の波長の入射光を前記光電変換部に入射させるカラーフィルタが配置される第2のカラーフィルタ部遮光層を前記半導体基板に配置する工程と、
 前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記カラーフィルタが配置される第1のカラーフィルタ部遮光層を前記第2のカラーフィルタ部遮光層に積層して配置する工程と、
 前記複数の画素の前記第2のカラーフィルタ部遮光層および前記第1のカラーフィルタ部遮光層のそれぞれの前記開口部に前記カラーフィルタを配置する工程と
を具備する撮像素子の製造方法。
 1 撮像装置
 10 画素アレイ部
 100 画素
 101 光電変換部
 111 半導体基板
 130 絶縁膜
 141 入射光透過膜
 142、342a、342b、342c、342d 遮光体
 143 溝
 144、150、243、245、343a、343b、346a、346b 遮光膜
 151 平坦化膜
 152 遮光壁
 160 カラーフィルタ
 161、163 第2のカラーフィルタ部遮光層
 162、164、167、267 第1のカラーフィルタ部遮光層
 165、166 層間膜
 168、169 開口部
 171 オンチップレンズ
 172 層内レンズ
 200 遮光画素
 301、302 位相差画素
 1000 カメラ
 1002 撮像素子
 11402、12031、12101~12105 撮像部

Claims (23)

  1.  半導体基板に形成されて被写体からの入射光を光電変換する光電変換部がそれぞれ配置される複数の画素と、
     前記複数の画素に配置されて前記半導体基板を絶縁する絶縁膜と、
     前記複数の画素の前記絶縁膜に隣接して配置されて入射光を透過する入射光透過膜と、
     前記複数の画素のそれぞれの周縁部の前記入射光透過膜に形成された溝に配置されて前記入射光を遮光する遮光体と
    を具備する撮像素子。
  2.  前記溝は、前記入射光透過膜をエッチングすることにより形成される請求項1記載の撮像素子。
  3.  前記絶縁膜は、前記入射光透過膜のエッチングの際にエッチングの進行を停止させる膜として使用される請求項2記載の撮像素子。
  4.  前記入射光透過膜に隣接して配置されて前記入射光を遮光する遮光膜をさらに具備する請求項1記載の撮像素子。
  5.  前記遮光膜は、前記複数の画素のうち周縁部の画素に配置される請求項4記載の撮像素子。
  6.  前記被写体からの入射光を瞳分割して位相差を検出するための前記画素である位相差画素をさらに具備し、
     前記遮光膜は、前記位相差画素に配置されるとともに前記瞳分割の方向に応じて前記入射光の一部を遮光する
    請求項4記載の撮像素子。
  7.  前記遮光膜の端部の近傍における前記入射光透過膜に形成された溝に配置されて前記入射光の回折光を遮光する第2の遮光体をさらに具備する請求項6記載の撮像素子。
  8.  前記遮光体は、テーパ形状に構成される請求項1記載の撮像素子。
  9.  複数の画素毎に配置されて被写体からの入射光を光電変換する光電変換部を半導体基板に形成する工程と、
     前記複数の画素に配置されて前記半導体基板を絶縁する絶縁膜を配置する工程と、
     前記複数の画素の前記絶縁膜に隣接して配置されて入射光を透過する入射光透過膜を配置する工程と、
     前記複数の画素のそれぞれの周縁部の前記入射光透過膜に溝を形成する工程と、
     前記形成された溝に前記入射光を遮光する遮光体を配置する工程と
    を具備する撮像素子の製造方法。
  10.  半導体基板に形成されて被写体からの入射光を光電変換する光電変換部がそれぞれ配置される複数の画素と、
     前記複数の画素に配置されて前記入射光のうち所定の波長の入射光を前記光電変換部に入射させるカラーフィルタと、
     前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記カラーフィルタが配置される第1のカラーフィルタ部遮光層と、
     前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記カラーフィルタが配置され、前記第1のカラーフィルタ部遮光層と前記半導体基板との間に配置される第2のカラーフィルタ部遮光層と
    を具備する撮像素子。
  11.  前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層は、異なる材料により構成される請求項10記載の撮像素子。
  12.  前記第1のカラーフィルタ部遮光層は、樹脂により構成され、
     前記第2のカラーフィルタ部遮光層は、金属により構成される
    請求項11記載の撮像素子。
  13.  前記第1のカラーフィルタ部遮光層は、30%以下の透過率に構成される請求項12記載の撮像素子。
  14.  前記複数の画素の前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層の間に配置される層間膜をさらに具備する請求項10記載の撮像素子。
  15.  前記層間膜は、無機材料により構成される請求項14記載の撮像素子。
  16.  前記第2のカラーフィルタ部遮光層は、前記第1のカラーフィルタ部遮光層より広い幅に構成される請求項10記載の撮像素子。
  17.  前記複数の画素の前記カラーフィルタおよび前記半導体基板の間に配置されて前記半導体基板の表面を平坦化する平坦化膜と、
     前記複数の画素における前記平坦化膜の周囲に配置されて入射光を遮光する遮光壁と
    をさらに具備する請求項10記載の撮像素子。
  18.  前記複数の画素の前記第2のカラーフィルタ部遮光層および前記遮光壁の間に配置される第2の層間膜をさらに具備する請求項17記載の撮像素子。
  19.  前記層間膜は、無機材料により構成される請求項18記載の撮像素子。
  20.  前記第2のカラーフィルタ部遮光層は、前記遮光壁より広い幅に構成される請求項17記載の撮像素子。
  21.  前記複数の画素のうち周縁部に配置される画素における前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層の少なくとも1つは、当該画素の全面を遮光する形状に構成される請求項10記載の撮像素子。
  22.  前記第1のカラーフィルタ部遮光層および前記第2のカラーフィルタ部遮光層の少なくとも1つは、テーパ形状に構成される請求項10記載の撮像素子。
  23.  複数の画素毎に配置されて被写体からの入射光を光電変換する光電変換部を半導体基板に形成する工程と、
     前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記入射光のうち所定の波長の入射光を前記光電変換部に入射させるカラーフィルタが配置される第2のカラーフィルタ部遮光層を前記半導体基板に配置する工程と、
     前記複数の画素に配置されて前記入射光を遮光するとともに中央部に形成された開口部に前記カラーフィルタが配置される第1のカラーフィルタ部遮光層を前記第2のカラーフィルタ部遮光層に積層して配置する工程と、
     前記複数の画素の前記第2のカラーフィルタ部遮光層および前記第1のカラーフィルタ部遮光層のそれぞれの前記開口部に前記カラーフィルタを配置する工程と
    を具備する撮像素子の製造方法。
PCT/JP2019/045777 2018-12-27 2019-11-22 撮像素子および撮像素子の製造方法 WO2020137285A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19904347.2A EP3905330A4 (en) 2018-12-27 2019-11-22 IMAGING ELEMENT AND METHOD OF MAKING THE IMAGING ELEMENT
KR1020217016931A KR20210107640A (ko) 2018-12-27 2019-11-22 촬상 소자 및 촬상 소자의 제조 방법
US17/418,657 US20220068991A1 (en) 2018-12-27 2019-11-22 Imaging element and manufacturing method of imaging element
JP2020562936A JP7544602B2 (ja) 2018-12-27 2019-11-22 撮像素子
CN201980078837.9A CN113169200A (zh) 2018-12-27 2019-11-22 成像元件以及成像元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244434 2018-12-27
JP2018-244434 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137285A1 true WO2020137285A1 (ja) 2020-07-02

Family

ID=71129335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045777 WO2020137285A1 (ja) 2018-12-27 2019-11-22 撮像素子および撮像素子の製造方法

Country Status (7)

Country Link
US (1) US20220068991A1 (ja)
EP (1) EP3905330A4 (ja)
JP (1) JP7544602B2 (ja)
KR (1) KR20210107640A (ja)
CN (1) CN113169200A (ja)
TW (1) TWI843777B (ja)
WO (1) WO2020137285A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202151A1 (ja) * 2021-03-26 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
WO2023042447A1 (ja) * 2021-09-16 2023-03-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085666A (ja) * 2018-11-26 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 生体由来物質検出用チップ、生体由来物質検出装置及び生体由来物質検出システム
JP7465120B2 (ja) * 2020-03-10 2024-04-10 キヤノン株式会社 半導体装置、その製造方法及び機器
US11985438B2 (en) * 2021-03-18 2024-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Pixel array including dark pixel sensors
US20220384505A1 (en) * 2021-05-28 2022-12-01 UTAC Headquarters Pte. Ltd. Semiconductor Device and Method of Forming an Optical Semiconductor Package with a Shield Structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294647A (ja) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法
JP2014225667A (ja) * 2013-05-16 2014-12-04 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Bsi型cmosイメージセンサ
JP2015185844A (ja) * 2014-03-20 2015-10-22 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited ソリッドステート撮像装置とその製造方法
JP2015204397A (ja) * 2014-04-15 2015-11-16 ソニー株式会社 焦点検出装置、電子機器
WO2016114154A1 (ja) * 2015-01-13 2016-07-21 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
WO2017073321A1 (ja) * 2015-10-26 2017-05-04 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556273B2 (ja) 2000-03-21 2010-10-06 ソニー株式会社 固体撮像素子およびこれを用いたカメラシステム
JP3827909B2 (ja) 2000-03-21 2006-09-27 シャープ株式会社 固体撮像装置およびその製造方法
JP2003282850A (ja) 2002-03-26 2003-10-03 Seiko Epson Corp 固体撮像素子
JP4686201B2 (ja) 2005-01-27 2011-05-25 パナソニック株式会社 固体撮像装置及びその製造方法
US7935994B2 (en) 2005-02-24 2011-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. Light shield for CMOS imager
JP2008235689A (ja) 2007-03-22 2008-10-02 Sharp Corp 固体撮像素子およびその製造方法、電子情報機器
JP2009021415A (ja) 2007-07-12 2009-01-29 Panasonic Corp 固体撮像装置およびその製造方法
JP2010134228A (ja) 2008-12-05 2010-06-17 Fujifilm Corp カラーフィルタの製造方法及び固体撮像装置
JP5503209B2 (ja) 2009-07-24 2014-05-28 キヤノン株式会社 撮像素子及び撮像装置
JP2011176715A (ja) 2010-02-25 2011-09-08 Nikon Corp 裏面照射型撮像素子および撮像装置
JP2011258728A (ja) 2010-06-08 2011-12-22 Sharp Corp 固体撮像素子および電子情報機器
JP5640630B2 (ja) * 2010-10-12 2014-12-17 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、及び電子機器
JP5736755B2 (ja) 2010-12-09 2015-06-17 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP5776296B2 (ja) 2011-04-18 2015-09-09 セイコーエプソン株式会社 カラーフィルター基板、電気光学装置および電子機器
JP2013157442A (ja) 2012-01-30 2013-08-15 Nikon Corp 撮像素子および焦点検出装置
JP2013251292A (ja) 2012-05-30 2013-12-12 Panasonic Corp 固体撮像装置およびその製造方法
TW201405792A (zh) 2012-07-30 2014-02-01 Sony Corp 固體攝像裝置、固體攝像裝置之製造方法及電子機器
JP6308717B2 (ja) 2012-10-16 2018-04-11 キヤノン株式会社 固体撮像装置、固体撮像装置の製造方法、および撮像システム
JP2014086515A (ja) 2012-10-22 2014-05-12 Canon Inc 撮像装置、その製造方法及びカメラ
JP2014086538A (ja) 2012-10-23 2014-05-12 Toshiba Corp 固体撮像装置の製造方法および固体撮像装置
KR102350138B1 (ko) 2013-03-29 2022-01-14 소니그룹주식회사 촬상 소자 및 촬상 장치
JP2015060855A (ja) * 2013-09-17 2015-03-30 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
JP2015065268A (ja) * 2013-09-25 2015-04-09 ソニー株式会社 レンズアレイおよびその製造方法、固体撮像装置、並びに電子機器
JP2016015431A (ja) 2014-07-03 2016-01-28 ソニー株式会社 固体撮像素子、および電子装置
CN113972230A (zh) 2014-10-01 2022-01-25 索尼半导体解决方案公司 光检测装置以及电子设备
CN106796942A (zh) * 2014-10-03 2017-05-31 索尼半导体解决方案公司 固态成像元件、制造方法和电子设备
US9666620B2 (en) 2014-10-06 2017-05-30 Visera Technologies Company Limited Stacked filter and image sensor containing the same
JP6740628B2 (ja) 2016-02-12 2020-08-19 凸版印刷株式会社 固体撮像素子及びその製造方法
JP2018064007A (ja) 2016-10-12 2018-04-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および電子装置
JP7058479B2 (ja) 2016-10-18 2022-04-22 ソニーセミコンダクタソリューションズ株式会社 光検出器
US11411030B2 (en) * 2017-02-17 2022-08-09 Sony Semiconductor Solutions Corporation Imaging element and electronic apparatus
JP2018198272A (ja) * 2017-05-24 2018-12-13 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294647A (ja) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法
JP2014225667A (ja) * 2013-05-16 2014-12-04 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Bsi型cmosイメージセンサ
JP2015185844A (ja) * 2014-03-20 2015-10-22 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited ソリッドステート撮像装置とその製造方法
JP2015204397A (ja) * 2014-04-15 2015-11-16 ソニー株式会社 焦点検出装置、電子機器
WO2016114154A1 (ja) * 2015-01-13 2016-07-21 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
WO2017073321A1 (ja) * 2015-10-26 2017-05-04 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905330A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202151A1 (ja) * 2021-03-26 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
WO2023042447A1 (ja) * 2021-09-16 2023-03-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
EP3905330A1 (en) 2021-11-03
TWI843777B (zh) 2024-06-01
EP3905330A4 (en) 2022-03-30
JP7544602B2 (ja) 2024-09-03
CN113169200A (zh) 2021-07-23
KR20210107640A (ko) 2021-09-01
US20220068991A1 (en) 2022-03-03
TW202101537A (zh) 2021-01-01
JPWO2020137285A1 (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
TWI782058B (zh) 固體攝像裝置
JP7544602B2 (ja) 撮像素子
CN110199394B (zh) 图像传感器及图像传感器的制造方法
CN111295761A (zh) 成像元件、成像元件的制造方法和电子设备
CN110770907B (zh) 固态成像元件和成像装置
JPWO2019138923A1 (ja) 固体撮像装置、電子機器
WO2019155782A1 (ja) 半導体装置および半導体装置の製造方法
JP7544601B2 (ja) 撮像素子および撮像装置
CN113039652A (zh) 半导体元件
TWI821431B (zh) 半導體元件及其製造方法
WO2022220084A1 (ja) 撮像装置
CN113785399A (zh) 摄像装置
WO2021186907A1 (ja) 固体撮像装置及びその製造方法、並びに電子機器
US20230042668A1 (en) Imaging device and electronic device
WO2023042462A1 (ja) 光検出装置、光検出装置の製造方法、及び電子機器
JP7520499B2 (ja) 半導体素子および電子機器
JP7562250B2 (ja) 半導体素子および電子機器
WO2019176302A1 (ja) 撮像素子および撮像素子の製造方法
WO2022130987A1 (ja) 固体撮像装置およびその製造方法
WO2023074136A1 (ja) 半導体装置、機器及び半導体装置の製造方法
US20240038807A1 (en) Solid-state imaging device
WO2024057814A1 (ja) 光検出装置および電子機器
WO2023112479A1 (ja) 受光装置および電子機器
WO2020090432A1 (ja) 撮像素子および撮像素子の製造方法
TW202220228A (zh) 半導體裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904347

Country of ref document: EP

Effective date: 20210727