WO2020134835A1 - 一种抗菌复合纳米纤维膜及其制备方法和应用 - Google Patents

一种抗菌复合纳米纤维膜及其制备方法和应用 Download PDF

Info

Publication number
WO2020134835A1
WO2020134835A1 PCT/CN2019/121561 CN2019121561W WO2020134835A1 WO 2020134835 A1 WO2020134835 A1 WO 2020134835A1 CN 2019121561 W CN2019121561 W CN 2019121561W WO 2020134835 A1 WO2020134835 A1 WO 2020134835A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiber membrane
antibacterial
antibacterial composite
composite nanofiber
membrane
Prior art date
Application number
PCT/CN2019/121561
Other languages
English (en)
French (fr)
Inventor
高明
李佳
黄逸凡
喻学锋
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2020134835A1 publication Critical patent/WO2020134835A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/34Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated alcohols, acetals or ketals as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Definitions

  • the invention relates to a nanofiber material, in particular to an antibacterial composite nanofiber membrane and a preparation method and application thereof.
  • Chinese patent document CN102302875A discloses a method for preparing an antibacterial air filter membrane, which includes: blending an inorganic antibacterial agent containing metal or an organic antibacterial agent containing sulfur and bromine, a polymer, an additive and a solvent into a solution; Or, the antibacterial agent and the polymer are melt-blended to obtain a uniform melt; then the blended solution or melt is spun nanofibers onto the surface of the nonwoven fabric by electrostatic spinning to obtain an antibacterial air filter membrane.
  • CN103446803A discloses an antibacterial air filter felt and its preparation method and application. It uses electrostatically spun polymer nanofiber felt as a carrier and loads nanosilver antibacterial agent through electrostatic spraying. The nanosilver antibacterial agent suspension and polymer are first prepared during preparation The spinning solution is then prepared by electrostatic spinning to prepare nano-fiber mat by synchronous electrostatic spray loading of nano antibacterial agent, and finally vacuum drying.
  • CN103520999A discloses an antibacterial composite nanofiber high-efficiency air filter material and a preparation method thereof.
  • the material sequentially includes a non-woven fabric support layer, a filter layer in which antibacterial fibers are mixed with micrometer fibers, and a nanofiber filter layer.
  • the antibacterial agent is inorganic particles containing silver, copper, or zinc ions.
  • CN104070751A discloses an antibacterial composite fiber membrane that removes both smog particles and formaldehyde, and a preparation method thereof.
  • the membrane is composed of a polymer nanofiber layer and a polymer-metal oxide composite ultrafine fiber layer.
  • the metal oxide is composed of one or more of MgO, CaO, ZnO, TiO 2 , MnO 2 , CuO, SnO, Fe 2 O 3 , and AgO.
  • CN104213202A discloses a spinning solution and a method for preparing an antibacterial air filter membrane, which includes: (1) preparation of a spinning solution; (2) preparation of a nanofiber antibacterial air filter membrane air filter membrane by an electrostatic spinning process.
  • the inorganic antibacterial agent is one or two of titanate and titanium dioxide; the organic antibacterial agent is one or more of sorbic acid, benzoic acid, dehydroacetic acid, and sodium diacetate.
  • CN104524866A discloses a composite antibacterial air filter material and a preparation method thereof, comprising: at least one layer of non-woven fabric substrate, cellulose nanofibers adhering to the fibers of the non-woven fabric substrate to form a network structure, and loaded on the non-woven fabric Chitosan on the surface of the fibers of the substrate and/or cellulose nanofibers.
  • CN104815483A discloses composite antibacterial air filter material, preparation method and application thereof, including: an electret fabric layer, an electrospun fiber membrane layer and a substrate non-woven fabric layer bonded in sequence, wherein the electro-spun fiber membrane layer and the substrate are not The surface of the textile layer is loaded with chitosan and nano-TiO 2 photocatalyst.
  • CN105544091A discloses an antibacterial nanofiber composite material and a preparation method thereof.
  • the surface of the PLA fiber has nanopores, and TiO 2 nanoparticles are deposited on the surface of the PLA fiber and the nanopores to form a fiber body with nanopores and a fiber surface Hybrid structure PLA/TiO 2 fiber membrane containing nano-protrusions.
  • CN106039839A discloses a recyclable, high-efficiency, low-resistance, antibacterial and anti-fog air filter material
  • the air filter material includes a substrate layer and a filter layer
  • the filter layer is a nanofiber layer loaded with nano silver antibacterial agent
  • the filter layer It is produced by in-situ growth method and uses non-woven fabric as the base layer.
  • CN107051232A discloses a sterilization and aldehyde-removing air filter membrane, which is a three-layer nanofiber membrane composite structure, the upper layer is activated carbon nanofiber membrane, the middle layer is pure TiO 2 nanofiber membrane, the lower layer is nano silver antibacterial fiber membrane, the pure TiO 2 nanometer
  • the fiber membrane is a polymer material/TiO 2 precursor composite nanofiber membrane prepared by an electrospinning method and is a pure TiO 2 nanofiber membrane obtained by heat treatment.
  • the activated carbon nanofiber membrane is an electrospun nano activated carbon particle/polymer composite nanofiber Membrane
  • nano silver antibacterial fiber membrane is electro-spun nano silver particle/polymer material composite nano fiber membrane
  • CN107051221A discloses an antibacterial air filter membrane and its manufacturing process, including the following raw materials in parts by weight: 20-35 parts of composite antibacterial agent; 10-20 parts of polymer; 1-2 parts of additive; 200-250 parts of solvent; Tourmaline nanoparticles 1 to 2 parts; adhesive suspension 150 to 200 parts; nano titanium dioxide 1 to 2 parts; composite antibacterial agents are silver oxide, zinc oxide, silver-loaded zirconium phosphate, methylene dithiocyanate, One or more of chitin, mustard and castor oil.
  • CN107261865A discloses a functional air filter material, which is composed of a substrate and an antibacterial electrospinning nanofiber layer.
  • the antibacterial agent in the antibacterial electrospinning nanofiber layer is a biological antibacterial agent.
  • CN107497179A discloses a nano antibacterial air filtering nonwoven material and a preparation method thereof.
  • the nano antibacterial air filtering nonwoven material includes a nanofiber antibacterial layer made of polypropylene nonwoven material and a surface formed on the surface of the nanofiber antibacterial layer A plurality of adhesive points are arranged between the air filter layer, the nanofiber antibacterial layer and the air filter layer, and the nanofiber antibacterial layer and the air filter layer are bonded through the adhesive points.
  • the nano-fiber antibacterial layer is a metal nano-antibacterial layer formed by loading metal nano-antibacterial material on polypropylene.
  • CN108660611A discloses a nano-fiber membrane for air sterilization and purification and a preparation method.
  • Nylon and nano-zeolite powder are added to N,N-dimethylformamide to prepare a shell spinning solution; graphene oxide, Ascorbic acid and water are difficult to disperse to obtain the core material spinning solution; by coaxial electrostatic spinning, a nanofiber membrane with nylon on the outside and graphene on the inside is obtained.
  • CN108560145A discloses a method for preparing sterilized nano-fiber membrane, which is deionized water, polyvinyl alcohol, boric acid, hydrochloric acid, polyhexamethylene biguanide, undecylenamide propyl betaine according to the corresponding mass proportions, Add polyvinyl alcohol and distilled water to a beaker and stir to heat to dissolve, to obtain a polyvinyl alcohol aqueous solution.
  • gC 3 N 4 nano-antibacterial material-graphite carbon nitride
  • This material has high chemical stability, thermal stability, and excellent electrical conductivity. Mechanical properties and other characteristics. The most important thing is that while it has good bactericidal properties, it is also safe, green and non-toxic.
  • CN107034585A discloses a gC 3 N 4 nanofiber antibacterial film and a preparation method and use thereof. The gC 3 N 4 nanoparticles with a loose porous structure are added to a polyethylene oxide solution to prepare a nanofiber film.
  • CN107158969A also discloses a functionalized nano-fiber filter material and its preparation method and application, which is to disperse the C 3 N 4 nano-sheets evenly by ultrasonic vibration into the solvent, and then add the polymer powder to dissolve uniformly to obtain C 3 N 4 nano-containing
  • the polymer spinning solution of the sheet is prepared on the substrate by electrostatic spinning technology to obtain a filter material that can remove formaldehyde and other organic pollutants.
  • the antibacterial nanofiber filter membranes in the prior art generally use antibacterial agents containing metals or organic substances, and the structure of the fiber membrane is complicated and the preparation steps are cumbersome.
  • one of the purposes of the present invention is to provide an antibacterial composite nanometer Fiber membrane
  • the second object of the present invention is to provide a preparation method of such antibacterial composite nanofiber membrane
  • the third object of the present invention is to provide the application of such antibacterial composite nanofiber membrane.
  • An antibacterial composite nanofiber membrane includes a nanofiber membrane and gC 3 N 4 nanosheets distributed on the surface and inside of the nanofiber membrane.
  • the gC 3 N 4 nanosheet is a two-dimensional gC 3 N 4 nanosheet.
  • the gC 3 N 4 nanosheet exists on the surface and inside of the nanofiber membrane at the same time, forming a grid-like distribution.
  • this antibacterial composite nanofiber membrane there are etched channels with a pore diameter of 20 nm to 100 nm on the surface of the nanofiber membrane.
  • the thickness of the nanofiber membrane is greater than 100 ⁇ m; further preferably, the thickness of the nanofiber membrane is 120 ⁇ m to 800 ⁇ m; still further preferably, the thickness of the nanofiber membrane is 150 ⁇ m to 500 ⁇ m
  • the material of the nanofiber membrane is polyacrylonitrile, polyamide, polylactic acid, polyurethane, polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polycaprolactone, At least one of polyethylene oxide, polystyrene, polyester, polyimide, chitosan, silk fibroin, and collagen.
  • the size of the gC 3 N 4 nanosheet is 10 nm to 100 nm.
  • the preparation method of the above antibacterial composite nanofiber membrane includes the following steps:
  • step 4 Treat the nanofiber membrane in a plasma atmosphere, and then apply the dispersion liquid containing gC 3 N 4 nanosheets obtained in step 1) to obtain the antibacterial composite nanofiber membrane of the above composition.
  • the dosage ratio of gC 3 N 4 nanoparticles to the solvent is (1-8) g: 1 L.
  • the gC 3 N 4 nanoparticles are prepared by a high-temperature calcination method.
  • the solvent is water, acetone, halogenated methane, halogenated acetic acid, formic acid, N,N-dimethylformamide, tetrahydrofuran, dimethylmethylene At least one of sulfones; further preferably, in step 1) of the preparation method, the solvent is water, acetone, methylene chloride, trifluoroacetic acid, formic acid, N,N-dimethylformamide, tetrahydrofuran, dimethylmethylene At least one of sulfones; still further preferably, in step 1) of the preparation method, the solvent is at least one of water, formic acid, and N,N-dimethylformamide.
  • the step of preparation of this antibiotic complex nanofiber membrane 1), the dispersion containing gC 3 N 4 nanosheet the gC 3 N 4 nm particle size sheet is 10nm ⁇ 100nm.
  • the mass ratio of the dispersion liquid containing gC 3 N 4 nanosheets to the electrospinning polymer is 1: (5-30).
  • the electrospinning polymer is polyacrylonitrile, polyamide, polylactic acid, polyurethane, polyvinyl alcohol, polyvinyl butyral, poly At least one of vinylpyrrolidone, polycaprolactone, polyethylene oxide, polystyrene, polyester, polyimide, chitosan, silk fibroin, collagen; further preferably, in the preparation method step 2) , Electrospinning polymers are polyacrylonitrile, polyamide, polylactic acid, polyurethane, polyvinyl alcohol, polyethylene oxide, polystyrene, polyester, polyimide, chitosan, silk fibroin, collagen At least one of the proteins; still further preferably, in step 2) of the preparation method, the electrospinning polymer is at least one of polyacrylonitrile, polyamide, polyvinyl alcohol, and silk fibroin.
  • the thickness of the obtained nanofiber membrane is greater than 100 ⁇ m; further preferably, in step 3) of the preparation method, the thickness of the nanofiber membrane is 120 ⁇ m-800 ⁇ m; and further Preferably, in step 3) of the preparation method, the thickness of the nanofiber membrane is 150 ⁇ m to 500 ⁇ m.
  • the coating method is any one or more of spray coating, shower coating, roll coating, and dip coating; further preferably, preparation method step 4 ), the coating method is spraying; further, the preparation method step 4), the spraying time is 10s ⁇ 60s.
  • an antimicrobial composite nanofiber membrane 4 a dispersion containing gC 3 N 4 nanosheet in gC 3 N 4 mass percent nanosheet 0.05% to 2%; still more preferably, ) prepared in step 4, a dispersion containing gC 3 N 4 nanosheet the gC 3 N 4 mass percent nanosheet 0.1% to 1%.
  • an antimicrobial composite nanofiber membrane 4 a dispersion containing gC 3 N 4 nanosheet the gC 3 N 4 nm particle size sheet is 10nm ⁇ 100nm.
  • the plasma is treated with plasma generated by at least one of nitrogen, air, oxygen, argon, and helium, and plasma atmosphere
  • the time is greater than 60s; further preferably, in step 1) of the preparation method, the plasma atmosphere treatment time is 90s to 300s.
  • the plasma is a plasma generated by a discharge gas through uniform glow discharge, and the discharge gas is nitrogen, argon, helium, or air
  • the plasma atmosphere treatment time is not more than 300s; further preferably, in the preparation method step 4), the plasma atmosphere treatment time is 20s-300s; still further preferably, the preparation method step 4), plasma
  • the time for body atmosphere treatment is 30s to 200s.
  • antibacterial composite nanofiber membrane as an air filter membrane and/or food cling film and/or medical dressing.
  • the antibacterial composite nanofiber membrane is used as an air filtration membrane.
  • the present invention can prepare nanofiber membranes with both antibacterial and filtering functions using only plasma technology and graphite phase carbon nitride (gC 3 N 4 ) particulate materials, and the membrane material has low resistance and high efficiency .
  • the preparation process of the antibacterial composite nanofiber membrane of the present invention is safe and environmentally friendly, without waste water and waste chemical reagents, and the preparation method is simple and easy.
  • Example 1 is a surface morphology diagram of nanofibers on the outer layer of an antibacterial composite nanofiber membrane of Example 1;
  • FIG. 2 is a surface morphology diagram of the nanofibers on the outer layer of the nanofiber membrane of Comparative Example 3.
  • FIG. 2 is a surface morphology diagram of the nanofibers on the outer layer of the nanofiber membrane of Comparative Example 3.
  • the invention discloses an antibacterial composite nanofiber air filter membrane, which is composed of nanofibers and two-dimensional gC 3 N 4 nanosheets, and there are nanopores on the surface of the nanofibers outside the membrane, and gC 3 N 4 nanosheets exist simultaneously Nanofiber membrane surface and interior.
  • the gC 3 N 4 nanosheet exists on the surface and inside of the nanofiber membrane at the same time, thereby forming a grid-like dense distribution.
  • the side coated with the nanosheet corresponds to the side in contact with the polluted air containing bacteria.
  • the preparation method of the present invention adopts plasma technology. First, the gC 3 N 4 nanoparticles prepared by the high-temperature calcination method are added to the solvent required for spinning, and then placed in a plasma atmosphere for processing, so that the nanoparticles are exfoliated into nanometers of a certain size At the same time, active groups are introduced on the surface of the nanosheet. Then add the polymer to be spun and stir until dispersed.
  • the obtained polymer spinning solution is spun by conventional electrospinning technology to obtain a nanofiber membrane with a thickness greater than a certain thickness.
  • the resulting nanofiber membrane is then placed in a plasma atmosphere for processing, and then a dispersion liquid containing gC 3 N 4 nanosheets is sprayed on.
  • the raw materials used in the examples can be obtained from conventional commercial sources.
  • the gC 3 N 4 nanoparticles prepared by the high-temperature calcination method mentioned in the examples, as well as the electrospinning method are conventional techniques.
  • Figure 1 shows the surface morphology of the outer nanofibers in the antibacterial composite nanofiber membrane obtained in this example. It can be seen from Figure 1 that the nanofibers have etched channels on the surface and are loaded with nanosheets.
  • a universal cigarette smoke filtration test method was used to test the filtration effect of the nanofiber membrane, and a pressure gauge was used to measure the air pressure difference of the filter membrane.
  • the results showed that the fiber membrane prepared in this example filtered the PM (particulate matter) in the air. Up to more than 97.8%, filtration pressure drop between 10 ⁇ 50Pa.
  • the antibacterial performance of the fiber membrane was tested. The antibacterial rate of the fiber membrane against Staphylococcus aureus reached 98.6%, and the antibacterial rate against E. coli reached 97.5%.
  • the 0.15g high-temperature calcination method prepared gC 3 N 4 nanoparticles were added to 60 ml of formic acid solvent, and then placed in an argon plasma atmosphere for 90 s, so that the nanoparticles were peeled into nanosheets with a diameter of 20 nm.
  • the polyamide polymer to be spun is added and stirred until it is uniformly dispersed; the resulting polymer spinning solution is spun by electrostatic spinning to obtain a 450-micrometer-thick nanofiber membrane; the resulting nanofiber membrane is repositioned
  • the treatment was carried out in an argon uniform glow discharge plasma atmosphere for 150 seconds, then sprayed with a dispersion containing 0.2 wt.% of gC 3 N 4 nanosheets, sprayed for 30 seconds, and dried at room temperature to obtain antibacterial composite nanofiber membrane products.
  • a universal cigarette smoke filtration test method was used to test the filtration effect of the nanofiber membrane, and a pressure gauge was used to measure the air pressure difference of the filter membrane.
  • the results showed that the fiber membrane prepared in this example had a filtration efficiency of more than 96.9% for PM in the air
  • the filtration pressure drop is between 20 and 50Pa.
  • the antibacterial performance of the fiber membrane was tested. The antibacterial rate of the fiber membrane against Staphylococcus aureus reached 97.8%, and the antibacterial rate against E. coli reached 96.5%.
  • the gC 3 N 4 nanoparticles prepared by the 0.4 g high-temperature calcination method were added to 100 ml of deionized water solvent, and then placed in an oxygen plasma atmosphere for 300 s, so that the nanoparticles were exfoliated into nanosheets with a particle size of 30 nm.
  • the polyvinyl alcohol polymer to be spun is added and stirred until uniformly dispersed; the resulting polymer spinning solution is spun by electrospinning to obtain a 500-micrometer-thick nanofiber film; the resulting nanofiber film is then Place in a nitrogen uniform glow discharge plasma atmosphere for 200s, then spray a dispersion containing 0.5wt.% of gC 3 N 4 nanosheets, spray for 15s, and dry at room temperature to obtain antibacterial composite nanofiber membrane products.
  • a universal cigarette smoke filtration test method was used to test the filtration effect of the nanofiber membrane, and a pressure gauge was used to measure the air pressure difference of the filter membrane.
  • the results showed that the fiber membrane prepared in this example had a filtration efficiency of more than 98.9% for PM in the air
  • the filtration pressure drop is between 20 and 60Pa.
  • the antibacterial performance of the fiber membrane was tested, and the antibacterial rate of the fiber membrane against Staphylococcus aureus reached 98.8%, and the antibacterial rate against E. coli reached 98.1%.
  • the 0.2g high-temperature calcination method prepared gC 3 N 4 nanoparticles were added to 80 ml of formic acid solvent, and then placed in a nitrogen plasma atmosphere for 180 s, so that the nanoparticles were exfoliated into nanosheets with a diameter of 10 nm.
  • the silk fibroin polymer to be spun is added and stirred until it is uniformly dispersed; the resulting polymer spinning solution is spun by electrostatic spinning to obtain a 150-micrometer-thick nanofiber membrane; the resulting nanofiber membrane is then Put it in a uniform glow discharge plasma atmosphere for 30s, then spray a dispersion containing 1wt.% of gC 3 N 4 nanosheets, spray for 45s, and dry at room temperature to obtain antibacterial composite nanofiber membrane products.
  • a universal cigarette smoke filtration test method was used to test the filtration effect of the nanofiber membrane, and a pressure gauge was used to measure the air pressure difference of the filter membrane.
  • the results showed that the fiber membrane prepared in this example had a filtration efficiency of more than 99.1% for PM in the air
  • the filtration pressure drop is between 30 and 70Pa.
  • the antibacterial performance of the fiber membrane was tested. The antibacterial rate of the fiber membrane against Staphylococcus aureus reached 98.2%, and the antibacterial rate against E. coli reached 99.0%.
  • the 0.2g high-temperature calcination method prepared gC 3 N 4 nanoparticles were added to 80 ml of formic acid solvent, and then placed in a nitrogen plasma atmosphere for 180 s, so that the nanoparticles were exfoliated into nanosheets with a diameter of 10 nm. Subsequently, the silk fibroin polymer to be spun is added and stirred until it is uniformly dispersed; the resulting polymer spinning solution is spun by conventional electrospinning techniques to obtain a 150-micrometer-thick nanofiber membrane; the resulting nanofiber membrane It was then placed in a uniform glow discharge plasma atmosphere for 30 seconds, and then the gC 3 N 4 nanosheets were not sprayed to obtain the final product.
  • FIG. 2 is a surface morphology diagram of the nanofibers on the outer layer of the nanofiber membrane obtained in this comparative example.
  • a universal cigarette smoke filtration test method was used to test the filtration effect of the nanofiber membrane, and a pressure gauge was used to measure the air pressure difference of the filtration membrane.
  • the results showed that the filtration membrane prepared in Comparative Example 2 reduced the PM filtration efficiency in air to 89.1% Above, the filtration pressure drop is between 40 and 70Pa.
  • the antibacterial performance of the fiber membrane was tested. The antibacterial rate of the fiber membrane against Staphylococcus aureus was only 87.2%, and the antibacterial rate against E. coli was only 88.0%.
  • Comparative Example 1 and Comparative Example 2 It can be seen from Comparative Example 1 and Comparative Example 2 that the lack of plasma treatment causes the nanoparticles to agglomerate, making conventional spinning impossible. Without post-treatment sprayed nanosheets, gC 3 N 4 nanosheets only exist inside the nanofiber membrane, significantly reducing its antibacterial and bacteriostatic effect.
  • Example 1 Comparing the surface morphology of the nanofibers on the outer layer of the nanofiber membranes of Example 1 and Comparative Example 3, that is, Figures 1 and 2, it can be seen that the etched channels formed by plasma treatment in Example 1 show that the surface of the nanofibers is significantly rough, and Loaded with nanosheets.
  • the nanofiber membrane of the present invention has a simple structure and does not contain antibacterial agents of metal or organic matter, which is safe, efficient, green and environmentally friendly.
  • the preparation method of the nanofiber membrane provided by the invention is simple and easy, and does not produce chemical residue and waste water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种抗菌复合纳米纤维膜及其制备方法和应用。一种抗菌复合纳米纤维膜,包括纳米纤维膜以及分布在所述纳米纤维膜表面和内部的g-C 3N 4纳米片。同时也公开了这种抗菌复合纳米纤维膜的制备方法,还公开了这种抗菌复合纳米纤维膜的应用。与现有技术相比,本发明仅仅利用等离子体技术和石墨相氮化碳颗粒材料即可制备出兼具抗菌和过滤功能的纳米纤维膜,且此膜材料低阻高效。同时,本发明的抗菌复合纳米纤维膜制备过程安全环保,制备方法简单易行。

Description

一种抗菌复合纳米纤维膜及其制备方法和应用 技术领域
本发明涉及一种纳米纤维材料,特别涉及一种抗菌复合纳米纤维膜及其制备方法和应用。
背景技术
近年来,以可吸入颗粒物(PM10)、细颗粒物(PM2.5)为特征污染物的区域性大气环境问题日益突出,这些颗粒污染物不仅降低了空气的能见度,而且还会严重影响人们的身体健康。与此同时,在一些人类活动的内部环境中,空气中除了粉尘颗粒外,还会存在大量致病细菌,同样会对人们身体健康产生较大危害。相比于传统的过滤材料,静电纺丝纳米纤维膜以其稀疏多孔的结构和相对较高的比表面积,在众多过滤材料中性能最为优越。但由于其一般由高聚物纺制而成,大多只能对空气中的悬浮颗粒进行拦截和静电吸附,不能除去空气中的细菌,病毒和有机污染物。在这种背景和应用需求引导下,制备出具有抗菌功能的纳米纤维过滤材料具有重要的现实意义。
现有技术中,中国专利文献CN102302875A公开了一种抗菌空气过滤膜的制备方法,包括:将含有金属的无机抗菌剂或含有硫、溴的有机抗菌剂、聚合物、添加剂和溶剂共混成溶液;或抗菌剂与聚合物通过熔融共混得到均一的熔体;然后将共混溶液或熔体通过静电纺丝将纳米纤维纺到无纺布表面即得抗菌空气过滤膜。
CN103446803A公开了一种抗菌空气过滤毡及其制备方法和应用,是以静电纺高分子纳米纤维毡作为载体,通过静电喷涂负载纳米银抗菌剂,制备时先配制纳米银抗菌剂悬浮液和高分子纺丝液,然后采用静电纺丝制备纳米纤维毡同步静电喷涂负载纳米抗菌剂,最后真空干燥。
CN103520999A公开了一种抗菌的复合纳米纤维高效空气过滤材料及其制备方法,该材料依次包含无纺布支撑层、抗菌纤维与微米纤维混纺的过滤层和纳米纤维过滤层。该文献公开的抗菌纤维中,抗菌剂为含银、铜或锌离子的无机粒子。
CN104070751A公开了一种既除雾霾微粒又除甲醛的抗菌复合纤维膜及其制备方法。该膜由聚合物纳米纤维层、聚合物-金属氧化物复合超细纤维层构成。金属氧化物由MgO、CaO、ZnO、TiO 2、MnO 2、CuO、SnO、Fe 2O 3、AgO中的一种或多种组成。
CN104213202A公开了一种纺丝液及其制备抗菌空气过滤膜的方法,包括:(1)纺丝液的制备;(2)通过静电纺丝工艺制备纳米纤维抗菌空气过滤膜空气过滤膜。该无机抗菌剂为钛酸酯、二氧化钛中的一种或两种;有机抗菌剂为山梨酸、苯甲酸、脱氢乙酸、双乙酸钠中的一种或几种。
CN104524866A公开了复合抗菌空气过滤材料及其制备方法,包括:至少一层无纺布基材,粘连在无纺布基材的纤维之间形成网络结构的纤维素纳米纤维,以及负载在无纺布基材的纤维和/或纤维素纳米纤维表面的壳聚糖。
CN104815483A公开了复合抗菌空气过滤材料、制备方法及其应用,包括:依次粘结的驻极织物层、静电纺纤维膜层和基材无纺布层,其中,静电纺纤维膜层和基材无纺布层的 表面负载有壳聚糖和纳米TiO 2光触媒。
CN105544091A公开了一种抗菌型纳米纤维复合材料及其制备方法,该PLA纤维的表面具有纳米孔洞,TiO 2纳米颗粒沉积在该PLA纤维的表面和纳米孔洞中,形成纤维通体具有纳米孔、纤维表面含有纳米凸起物的混杂结构PLA/TiO 2纤维膜。
CN106039839A公开了一种可循环利用、高效低阻、抗菌防雾霾的空气过滤材料,该空气过滤材料包括基材层和过滤层,过滤层为负载纳米银抗菌剂的纳米纤维层,该过滤层通过原位生长法制得,以非织造布为基材层。
CN107051232A公开了一种杀菌除醛空气过滤膜,为三层纳米纤维膜复合结构,上层为活性炭纳米纤维膜,中间层为纯TiO 2纳米纤维膜,下层纳米银抗菌纤维膜,该纯TiO 2纳米纤维膜为静电纺丝法制得的高分子材料/TiO 2前驱体复合纳米纤维膜经热处理所得的纯TiO 2纳米纤维膜,该活性炭纳米纤维膜为电纺纳米活性炭颗粒/高分子材料复合纳米纤维膜,纳米银抗菌纤维膜为电纺纳米银颗粒/高分子材料复合纳米纤维膜。
CN107051221A公开了一种抗菌性空气过滤膜及其制作工艺,包括以下按重量份的原料:复合抗菌剂20~35份;聚合物10~20份;添加剂1~2份;溶剂200~250份;电气石纳米颗粒1~2份;粘接剂悬浮液150~200份;纳米二氧化钛1~2份;复合抗菌剂为氧化银、氧化锌、载银磷酸锆、亚甲基双硫氰酸酯、甲壳素、芥末、蓖麻油中的一种或几种。
CN107261865A公开了一种功能型空气过滤材料,该材料由基材和抗菌型静电纺丝纳米纤维层复合而成,该抗菌型静电纺丝纳米纤维层中的抗菌剂为生物抗菌剂。
CN107497179A公开了一种纳米抗菌空气过滤非织造材料及其制备方法,该纳米抗菌空气过滤非织造材料包括由聚丙烯非织造材料制成的纳米纤维抗菌层以及在该纳米纤维抗菌层的表面形成一层空气过滤层,纳米纤维抗菌层与空气过滤层之间设有若干个粘胶点,纳米纤维抗菌层与空气过滤层通过该粘胶点粘合。该纳米纤维抗菌层为金属纳米抗菌材料负载于聚丙烯而形成的金属纳米抗菌层。
CN108660611A公开了一种用于空气杀菌净化的纳米纤维膜及制备方法,将尼龙、纳米沸石粉加入到N,N-二甲基甲酰胺中,配制成壳材纺丝溶液;将氧化石墨烯、抗坏血酸、水分散难得到芯材纺丝液;通过同轴静电纺丝,得到外部为尼龙、内部为石墨烯的纳米纤维膜。
CN108560145A公开了一种杀菌纳米纤维膜的制备方法,是按相应质量份配比去离子水、聚乙烯醇、硼酸、盐酸、聚六亚甲基双胍盐、十一碳烯酰胺丙基甜菜碱,将聚乙烯醇和蒸馏水加入烧杯搅拌加热至溶解,得聚乙烯醇水溶液,向该溶液加入硼酸,搅拌反应得聚乙烯醇-硼酸水溶液;分别加入聚六亚甲基双胍盐和十一碳烯酰胺丙基甜菜碱,搅拌均匀加入盐酸,将配置好的静电纺丝液倒入注射器中,不锈钢针头作喷针,在针头处连接高压电场提供高压,根据纺丝时间长短即可得到不同厚度的纳米纤维膜。
上述文献公开的方法均取得了良好效果,但是抗菌作用均基于复杂化学组分的抗菌剂,且过滤材料较为复杂,同时也存在制备步骤繁琐等问题。
最近,一种简单低成本的纳米抗菌材料——石墨相氮化碳(g-C 3N 4)吸引人们的注意力,这种材料具备很高的化学稳定性、热稳定性和优异的导电性能和机械性能等特性。最重要的是,其在具有良好的杀菌性能的同时,还安全绿色、无毒副作用。CN107034585A公开了一种g-C 3N 4纳米纤维抗菌膜及其制备方法与用途,是将具有疏松多孔结构g-C 3N 4纳米颗 粒添加到聚氧化乙烯溶液中制备成纳米纤维膜。随后,将g-C 3N 4纳米纤维抗菌膜在烘箱干燥4h后放置于紫外灯下灭菌处理2h,冷等离子体500W处理2min备用,即得到可以抗大肠杆菌和金黄色葡萄球菌的纳米纤维膜。CN107158969A还公开了一种功能化纳米纤维过滤材料及其制备方法和应用,是将C 3N 4纳米片超声震荡分散均匀到溶剂当中,再加入聚合物粉末溶解均匀,得到含C 3N 4纳米片的聚合物纺丝液,将所得聚合物纺丝液通过静电纺丝技术制备于基底上,得到可以除甲醛等有机污染物的过滤材料。但是这些过滤材料中,C 3N 4纳米材料是存在于过滤材料的内部,而空气首先是与过滤材料的表面接触,其过滤效果仍有待进一步提高。所以,如何提供一种更高效低阻的抗菌过滤纳米纤维膜是行内研究者关注的热点问题。
发明内容
现有技术的抗菌纳米纤维过滤膜普遍使用含有金属或有机物的抗菌剂,且纤维膜的结构复杂,制备步骤繁琐。为了克服现有技术的缺陷,解决如何简单易行使用低成本、环保安全的材料来制备出高效低阻的抗菌过滤纳米纤维材料的技术问题,本发明的目的之一在于提供一种抗菌复合纳米纤维膜,本发明的目的之二在于提供这种抗菌复合纳米纤维膜的制备方法,本发明的目的之三在于提供这种抗菌复合纳米纤维膜的应用。
本发明所采取的技术方案是:
一种抗菌复合纳米纤维膜,包括纳米纤维膜以及分布在所述纳米纤维膜表面和内部的g-C 3N 4纳米片。
进一步的,这种抗菌复合纳米纤维膜中,g-C 3N 4纳米片为二维g-C 3N 4纳米片,g-C 3N 4纳米片同时存在纳米纤维膜表面和内部,形成网格化分布。
优选的,这种抗菌复合纳米纤维膜中,纳米纤维膜的表面存在孔径为20nm~100nm的刻蚀孔道。
优选的,这种抗菌复合纳米纤维膜中,纳米纤维膜的厚度大于100μm;进一步优选的,纳米纤维膜的厚度为120μm~800μm;再进一步优选的,纳米纤维膜的厚度为150μm~500μm
优选的,这种抗菌复合纳米纤维膜中,纳米纤维膜的材质为聚丙烯腈、聚酰胺、聚乳酸、聚氨酯、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚已内酯、聚氧化乙烯、聚苯乙烯、聚酯、聚酰亚胺、壳聚糖、丝素蛋白、胶原蛋白中的至少一种。
优选的,这种抗菌复合纳米纤维膜中,g-C 3N 4纳米片的尺寸为10nm~100nm。
上述这种抗菌复合纳米纤维膜的制备方法,包括以下步骤:
1)将g-C 3N 4纳米颗粒与溶剂混合,得到的混合液置于等离子体氛围中处理,得到含有g-C 3N 4纳米片的分散液;
2)将含有g-C 3N 4纳米片的分散液与可静电纺丝的聚合物混合搅拌,得到聚合物纺丝液;
3)将聚合物纺丝液进行静电纺丝,得到纳米纤维膜;
4)将纳米纤维膜置于等离子体氛围中处理,再涂覆步骤1)所得含有g-C 3N 4纳米片的分散液,得到上述组成的抗菌复合纳米纤维膜。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤1)中,g-C 3N 4纳米颗粒与溶剂的用量比为(1~8)g:1L。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤1)中,g-C 3N 4纳米颗粒是通过高温煅烧法制备得到的。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤1)中,溶剂为水、丙酮、卤代甲烷、卤代乙酸、甲酸、N,N-二甲基甲酰胺、四氢呋喃、二甲基亚砜中的至少一种;进一步优选的,制备方法步骤1)中,溶剂为水、丙酮、二氯甲烷、三氟乙酸、甲酸、N,N-二甲基甲酰胺、四氢呋喃、二甲基亚砜中的至少一种;再进一步优选的,制备方法步骤1)中,溶剂为水、甲酸、N,N-二甲基甲酰胺中的至少一种。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤1)中,含有g-C 3N 4纳米片的分散液中g-C 3N 4纳米片的粒径为10nm~100nm。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤1)、步骤2)和步骤4)中,含有g-C 3N 4纳米片的分散液中g-C 3N 4纳米片的质量百分比任选为0.05%~5%。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤2)中,含有g-C 3N 4纳米片的分散液与可静电纺丝的聚合物的质量比为1:(5~30)。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤2)中,可静电纺丝的聚合物为聚丙烯腈、聚酰胺、聚乳酸、聚氨酯、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚已内酯、聚氧化乙烯、聚苯乙烯、聚酯、聚酰亚胺、壳聚糖、丝素蛋白、胶原蛋白中的至少一种;进一步优选的,制备方法步骤2)中,可静电纺丝的聚合物为聚丙烯腈、聚酰胺、聚乳酸、聚氨酯、聚乙烯醇、聚氧化乙烯、聚苯乙烯、聚酯、聚酰亚胺、壳聚糖、丝素蛋白、胶原蛋白中的至少一种;再进一步优选的,制备方法步骤2)中,可静电纺丝的聚合物为聚丙烯腈、聚酰胺、聚乙烯醇、丝素蛋白中的至少一种。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤3)中,得到的纳米纤维膜厚度大于100μm;进一步优选的,制备方法步骤3)中,纳米纤维膜的厚度为120μm~800μm;再进一步优选的,制备方法步骤3)中,纳米纤维膜的厚度为150μm~500μm。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤4)中,涂覆的方法为喷涂、淋涂、辊涂、浸涂中的任意一种或多种;进一步优选的,制备方法步骤4),涂覆的方法为喷涂;再进一步的,制备方法步骤4),喷涂的时间为10s~60s。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤4)中,含有g-C 3N 4纳米片的分散液中g-C 3N 4纳米片的质量百分比为0.05%~2%;再进一步优选的,制备方法步骤4)中,含有g-C 3N 4纳米片的分散液中g-C 3N 4纳米片的质量百分比为0.1%~1%。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤4)中,含有g-C 3N 4纳米片的分散液中g-C 3N 4纳米片的粒径为10nm~100nm。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤1)中,等离子体是采用由氮气、空气、氧气、氩气、氦气中的至少一种气体产生的等离子体,等离子体氛围处理的时间大于60s;进一步优选的,制备方法步骤1)中,等离子体氛围处理的时间为90s~300s。
优选的,这种抗菌复合纳米纤维膜的制备方法步骤4)中,等离子体为放电气体经均匀辉光放电产生的等离子体,所述的放电气体为氮气、氩气、氦气、空气中的至少一种,等离子体氛围处理的时间为不超过300s;进一步优选的,制备方法步骤4)中,等离子体氛围处理的时间为20s~300s;再进一步优选的,制备方法步骤4)中,等离子体氛围处理的时间为30s~200s。
这种抗菌复合纳米纤维膜作为空气过滤膜和/或食品保鲜膜和/或医用敷料中的应用。
进一步优选的,这种抗菌复合纳米纤维膜作为空气过滤膜的应用。
本发明的有益效果是:
与现有技术相比,本发明仅仅利用等离子体技术和石墨相氮化碳(g-C 3N 4)颗粒材料即可制备出兼具抗菌和过滤功能的纳米纤维膜,且此膜材料低阻高效。同时,本发明的抗菌复合纳米纤维膜制备过程安全环保、无废水和废化学试剂产生,制备方法简单易行。
附图说明
图1是实施例1抗菌复合纳米纤维膜外层纳米纤维的表面形貌图;
图2是对比例3纳米纤维膜外层纳米纤维的表面形貌图。
具体实施方式
本发明公开了一种抗菌复合纳米纤维空气过滤膜,是由纳米纤维和二维g-C 3N 4纳米片构成,且在膜外层的纳米纤维表面存在纳米孔道,g-C 3N 4纳米片同时存在纳米纤维膜表面和内部。本发明通过对g-C 3N 4纳米片与纳米纤维复合方式和结构的设计,使得g-C 3N 4纳米片同时存在于纳米纤维膜的表面和内部,从而形成网格状密集分布。使用时,将涂覆有纳米片的那一面对应到与含有细菌的污染空气接触的一侧,当载有细菌的颗粒物接触纳米纤维网时,外层纳米纤维表面纳米孔中的g-C 3N 4纳米片会与内部的纳米片共同作用于细菌,抑制其存活。本发明的制备方法采用了等离子体技术,首先将高温煅烧法制备g-C 3N 4纳米颗粒加入纺丝需要的溶剂中,然后置于等离子体氛围中进行处理,使得纳米颗粒剥离成一定尺寸的纳米片,同时纳米片表面引入活性基团。随后加入待纺丝的聚合物,搅拌直至分散均匀。将所得的聚合物纺丝液通过常规静电纺丝技术进行纺丝,得到大于一定厚度的纳米纤维膜。将得到的纳米纤维膜再置于等离子体氛围中进行处理,随后利用喷涂含有g-C 3N 4纳米片的分散液。
以下通过具体的实施例对本发明的内容作进一步详细的说明。实施例中所用的原料如无特殊说明,均可从常规商业途径得到。实施例中提及的高温煅烧法制备得到g-C 3N 4纳米颗粒,以及静电纺丝法均属于常规的技术。
实施例1
将0.1g高温煅烧法制备得到g-C 3N 4纳米颗粒加入50ml N,N-二甲基甲酰胺(DMF)溶剂中,然后置于空气等离子体氛围中进行处理120s,使得纳米颗粒剥离成粒径为15nm的纳米片。随后加入待纺丝的聚丙烯腈聚合物,搅拌直至分散均匀;将所得的聚合物纺丝液通过静电纺丝法进行纺丝,得到300微米厚的纳米纤维膜;将得到的纳米纤维膜再置于氦气均匀辉光放电等离子体氛围中进行处理180s,随后喷涂含有g-C 3N 4纳米片0.1wt.%的分散液,喷涂20s,室温干燥,即得到抗菌复合纳米纤维膜制品。
附图1所示是本实施例得到的抗菌复合纳米纤维膜中外层纳米纤维的表面形貌图。从图1中可以看到纳米纤维表面具有刻蚀孔道,且负载有纳米片。
利用通用的香烟烟雾过滤测试方法来测试纳米纤维膜的过滤效果,采用压力计来测量滤膜的气流压力差,结果表明本实施例所制备的纤维膜对空气中PM(particulate  matter)的过滤效率高达97.8%以上,过滤压降在10~50Pa之间。根据国家标准GB/T20944.3-2008对纤维膜的抗菌性能进行了测试,测得纤维膜对金黄色葡萄球菌的抗菌率达到了98.6%,对大肠杆菌的抗菌率达到了97.5%。
实施例2
将0.15g高温煅烧法制备得到g-C 3N 4纳米颗粒加入60ml甲酸溶剂中,然后置于氩气等离子体氛围中进行处理90s,使得纳米颗粒剥离成粒径为20nm的纳米片。随后加入待纺丝的聚酰胺聚合物,搅拌直至分散均匀;将所得的聚合物纺丝液通过静电纺丝法进行纺丝,得到450微米厚的纳米纤维膜;将得到的纳米纤维膜再置于氩气均匀辉光放电等离子体氛围中进行处理150s,随后喷涂含有g-C 3N 4纳米片0.2wt.%的分散液,喷涂30s,室温干燥,即得到抗菌复合纳米纤维膜制品。
利用通用的香烟烟雾过滤测试方法来测试纳米纤维膜的过滤效果,采用压力计来测量滤膜的气流压力差,结果表明本实施例所制备的纤维膜对空气中PM的过滤效率高达96.9%以上,过滤压降在20~50Pa之间。根据国家标准GB/T 20944.3-2008对纤维膜的抗菌性能进行了测试,测得纤维膜对金黄色葡萄球菌的抗菌率达到了97.8%,对大肠杆菌的抗菌率达到了96.5%。
实施例3
将0.4g高温煅烧法制备得到g-C 3N 4纳米颗粒加入100ml去离子水溶剂中,然后置于氧气等离子体氛围中进行处理300s,使得纳米颗粒剥离成粒径为30nm的纳米片。随后加入待纺丝的聚乙烯醇聚合物,搅拌直至分散均匀;将所得的聚合物纺丝液通过静电纺丝法进行纺丝,得到500微米厚的纳米纤维膜;将得到的纳米纤维膜再置于氮气均匀辉光放电等离子体氛围中进行处理200s,随后喷涂含有g-C 3N 4纳米片0.5wt.%的分散液,喷涂15s,室温干燥,即得到抗菌复合纳米纤维膜制品。
利用通用的香烟烟雾过滤测试方法来测试纳米纤维膜的过滤效果,采用压力计来测量滤膜的气流压力差,结果表明本实施例所制备的纤维膜对空气中PM的过滤效率高达98.9%以上,过滤压降在20~60Pa之间。根据国家标准GB/T 20944.3-2008对纤维膜的抗菌性能进行了测试,测得纤维膜对金黄色葡萄球菌的抗菌率达到了98.8%,对大肠杆菌的抗菌率达到了98.1%。
实施例4
将0.2g高温煅烧法制备得到g-C 3N 4纳米颗粒加入80ml甲酸溶剂中,然后置于氮气等离子体氛围中进行处理180s,使得纳米颗粒剥离成粒径为10nm的纳米片。随后加入待纺丝的丝素蛋白聚合物,搅拌直至分散均匀;将所得的聚合物纺丝液通过静电纺丝法进行纺丝,得到150微米厚的纳米纤维膜;将得到的纳米纤维膜再置于空气均匀辉光放电等离子体氛围中进行处理30s,随后喷涂含有g-C 3N 4纳米片1wt.%的分散液,喷涂45s,室温干燥,即得到抗菌复合纳米纤维膜制品。
利用通用的香烟烟雾过滤测试方法来测试纳米纤维膜的过滤效果,采用压力计来测量滤膜的气流压力差,结果表明本实施例所制备的纤维膜对空气中PM的过滤效率高达99.1%以上,过滤压降在30~70Pa之间。根据国家标准GB/T 20944.3-2008对纤维膜的抗菌性能进行了测试,测得纤维膜对金黄色葡萄球菌的抗菌率达到了98.2%,对大肠杆菌的抗菌率达到了99.0%。
对比例1
将0.2g高温煅烧法制备得到的g-C 3N 4纳米颗粒加入甲酸溶剂中,不经过等离子体处理,随后直接加入待纺丝的丝素蛋白聚合物,搅拌发现纳米颗粒存在团聚现象,无法溶解均匀,因此无法进行常规静电纺丝。
对比例2
将0.2g高温煅烧法制备得到g-C 3N 4纳米颗粒加入80ml甲酸溶剂中,然后置于氮气等离子体氛围中进行处理180s,使得纳米颗粒剥离成粒径为10nm的纳米片。随后加入待纺丝的丝素蛋白聚合物,搅拌直至分散均匀;将所得的聚合物纺丝液通过常规静电纺丝技术进行纺丝,得到150微米厚的纳米纤维膜;将得到的纳米纤维膜再置于空气均匀辉光放电等离子体氛围中进行处理30s,随后不喷涂g-C 3N 4纳米片,即得到最终制品。
对比例3
使用与实施例1相同的聚丙烯腈聚合物,通过相同的静电纺丝法进行纺丝,得到300微米厚的纳米纤维膜。附图2是本对比例得到的纳米纤维膜外层纳米纤维的表面形貌图。
利用通用的香烟烟雾过滤测试方法来测试纳米纤维膜的过滤效果,采用压力计来测量滤膜的气流压力差,结果表明对比例2所制备的过滤膜对空气中PM的过滤效率下降至89.1%以上,过滤压降在40~70Pa之间。根据国家标准GB/T 20944.3-2008对纤维膜的抗菌性能进行了测试,测得纤维膜对金黄色葡萄球菌的抗菌率仅为87.2%,对大肠杆菌的抗菌率仅为88.0%。
由对比例1和对比例2可以看出,缺少等离子体处理使得纳米颗粒团聚,无法进行常规纺丝。而没有后处理喷涂纳米片,则使得g-C 3N 4纳米片仅仅存在纳米纤维膜的内部,显著降低了其抗菌抑菌效果。
对比实施例1和对比例3的纳米纤维膜外层纳米纤维的表面形貌图,即图1和图2可知,实施例1通过等离子体处理形成的刻蚀孔道,纳米纤维表面明显粗糙,且负载有纳米片。
通过以上实例可知:本发明的纳米纤维膜结构简单,且不含有金属或有机物的抗菌剂,安全高效、绿色环保。本发明所提供的纳米纤维膜制备方法简单易行,不产生化学残留和废水。

Claims (10)

  1. 一种抗菌复合纳米纤维膜,其特征在于:包括纳米纤维膜以及分布在所述纳米纤维膜表面和内部的g-C 3N 4纳米片。
  2. 根据权利要求1所述的一种抗菌复合纳米纤维膜,其特征在于:纳米纤维膜的表面存在孔径为20nm~100nm的刻蚀孔道。
  3. 根据权利要求1或2所述的一种抗菌复合纳米纤维膜,其特征在于:纳米纤维膜的厚度大于100μm。
  4. 根据权利要求1所述的一种抗菌复合纳米纤维膜,其特征在于:g-C 3N 4纳米片的尺寸为10nm~100nm。
  5. 一种抗菌复合纳米纤维膜的制备方法,其特征在于:包括以下步骤:
    1)将g-C 3N 4纳米颗粒与溶剂混合,得到的混合液置于等离子体氛围中处理,得到含有g-C 3N 4纳米片的分散液;
    2)将含有g-C 3N 4纳米片的分散液与可静电纺丝的聚合物混合搅拌,得到聚合物纺丝液;
    3)将聚合物纺丝液进行静电纺丝,得到纳米纤维膜;
    4)将纳米纤维膜置于等离子体氛围中处理,再涂覆步骤1)所得含有g-C 3N 4纳米片的分散液,得到权利要求1~4任一项所述组成的抗菌复合纳米纤维膜。
  6. 根据权利要求5所述一种抗菌复合纳米纤维膜的制备方法,其特征在于:步骤1)、步骤2)和步骤4)中,含有g-C 3N 4纳米片的分散液中g-C 3N 4纳米片的质量百分比任选为0.05%~5%。
  7. 根据权利要求5或6所述一种抗菌复合纳米纤维膜的制备方法,其特征在于:步骤2)中,含有g-C 3N 4纳米片的分散液与可静电纺丝的聚合物的质量比为1:(5~30)。
  8. 根据权利要求5或6所述一种抗菌复合纳米纤维膜的制备方法,其特征在于:步骤1)中,等离子体是采用由氮气、空气、氧气、氩气、氦气中的至少一种气体产生的等离子体,等离子体氛围处理的时间大于60s。
  9. 根据权利要求5或6所述一种抗菌复合纳米纤维膜的制备方法,其特征在于:步骤4)中,等离子体为放电气体经均匀辉光放电产生的等离子体,所述的放电气体为氮气、氩气、氦气、空气中的至少一种,等离子体氛围处理的时间为不超过300s。
  10. 权利要求1~4任一项所述一种抗菌复合纳米纤维膜作为空气过滤膜和/或食品保鲜膜和/或医用敷料中的应用。
PCT/CN2019/121561 2018-12-26 2019-11-28 一种抗菌复合纳米纤维膜及其制备方法和应用 WO2020134835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811599162.6 2018-12-26
CN201811599162.6A CN109675450B (zh) 2018-12-26 2018-12-26 一种抗菌复合纳米纤维膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020134835A1 true WO2020134835A1 (zh) 2020-07-02

Family

ID=66188404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121561 WO2020134835A1 (zh) 2018-12-26 2019-11-28 一种抗菌复合纳米纤维膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109675450B (zh)
WO (1) WO2020134835A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169007A (zh) * 2020-09-23 2021-01-05 上海纳米技术及应用国家工程研究中心有限公司 一种基于静电纺丝的抗菌纤维膜的制备方法
CN113713633A (zh) * 2021-07-30 2021-11-30 清华大学 一种褶皱结构多功能纳滤膜及其制备方法
CN114307694A (zh) * 2021-12-10 2022-04-12 安徽安泰农业开发有限责任公司 一种用于养猪场的污水处理膜的制备方法
CN114515519A (zh) * 2022-03-16 2022-05-20 南京工业大学 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675450B (zh) * 2018-12-26 2020-09-25 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用
CN110215848A (zh) * 2019-05-20 2019-09-10 刘佳秀 一种高强度污水处理复合膜的制备方法
CN111167494B (zh) * 2020-01-07 2022-06-17 吉首大学 全固态(ZnO-Pt)/GR/C3N4复合纳米纤维光催化材料及制备方法和用途
CN111534933B (zh) * 2020-04-30 2022-02-25 南通大学 一种抗病毒复合纳米纤维材料及其制备方法
CN111841165A (zh) * 2020-06-22 2020-10-30 上海工程技术大学 一种抗菌消毒空气过滤材料的制造方法
CN112064142B (zh) * 2020-08-21 2023-01-24 西安工程大学 硫化镍-石墨相氮化碳异质结光触媒纤维及其制备方法
CN112227065A (zh) * 2020-09-27 2021-01-15 安徽荣业纺织有限公司 一种延长棉麻混纺面料抗菌防霉性能的加工工艺
CN112167707B (zh) * 2020-09-28 2022-08-26 江苏中烟工业有限责任公司 一种选择性降低卷烟烟气中氨的滤嘴及其制备方法
CN112375804B (zh) * 2020-09-30 2023-12-12 长春理工大学 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理
CN113193178A (zh) * 2020-12-07 2021-07-30 北京服装学院 为智能服装供电的二氧化锰纳米片包覆碳纤维的制备方法
CN113186655A (zh) * 2021-04-06 2021-07-30 北京理工大学 一种纳米氮化碳纤维膜及其制备方法
CN113186656A (zh) * 2021-04-29 2021-07-30 北京石油化工学院 一种氮化碳-聚乙烯醇复合抗菌膜及其制备方法与应用
CN113481612B (zh) * 2021-07-02 2022-06-28 南通大学 一种纳米纤维膜复合面料的制备工艺
CN113797649B (zh) * 2021-08-12 2022-03-25 浙江大学 一种抗菌防病毒的空气过滤材料及其制备方法
CN114351357B (zh) * 2022-01-12 2023-03-24 大连民族大学 一种柔性杀菌纳米纤维膜及其制备方法与应用
CN114411335A (zh) * 2022-01-27 2022-04-29 华侨大学 一种保鲜膜及其制备方法和应用
CN114645375B (zh) * 2022-03-21 2023-12-29 东莞华工创为生物科技有限公司 一种抗菌银盐/g-C3N4复合纳米纤维膜的应用
CN114870654A (zh) * 2022-05-09 2022-08-09 广东工业大学 一种纳米改性碳片基超滤膜材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148744A (zh) * 2015-08-25 2015-12-16 华南理工大学 可调控超薄二维纳米g-C3N4膜及其制备方法与应用
CN107034585A (zh) * 2017-04-19 2017-08-11 江苏大学 一种g‑C3N4纳米纤维抗菌膜及其制备方法与用途
CN107142616A (zh) * 2017-04-19 2017-09-08 江苏大学 一种可降解农药残留的纳米纤维包装材料的制备方法
CN109675450A (zh) * 2018-12-26 2019-04-26 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661257B2 (en) * 2016-02-16 2020-05-26 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN108178134B (zh) * 2016-08-13 2020-05-05 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其制备方法
CN106868708A (zh) * 2017-02-16 2017-06-20 江苏大学 一种β‑环糊精/聚环氧乙烯抗菌膜及制备方法和用途
CN107497182B (zh) * 2017-08-17 2020-05-26 东华大学 一种兼具光催化/抗菌功能的复合纳米纤维过滤材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148744A (zh) * 2015-08-25 2015-12-16 华南理工大学 可调控超薄二维纳米g-C3N4膜及其制备方法与应用
CN107034585A (zh) * 2017-04-19 2017-08-11 江苏大学 一种g‑C3N4纳米纤维抗菌膜及其制备方法与用途
CN107142616A (zh) * 2017-04-19 2017-09-08 江苏大学 一种可降解农药残留的纳米纤维包装材料的制备方法
CN109675450A (zh) * 2018-12-26 2019-04-26 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169007A (zh) * 2020-09-23 2021-01-05 上海纳米技术及应用国家工程研究中心有限公司 一种基于静电纺丝的抗菌纤维膜的制备方法
CN113713633A (zh) * 2021-07-30 2021-11-30 清华大学 一种褶皱结构多功能纳滤膜及其制备方法
CN114307694A (zh) * 2021-12-10 2022-04-12 安徽安泰农业开发有限责任公司 一种用于养猪场的污水处理膜的制备方法
CN114515519A (zh) * 2022-03-16 2022-05-20 南京工业大学 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用
CN114515519B (zh) * 2022-03-16 2022-10-04 南京工业大学 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用

Also Published As

Publication number Publication date
CN109675450A (zh) 2019-04-26
CN109675450B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2020134835A1 (zh) 一种抗菌复合纳米纤维膜及其制备方法和应用
Haider et al. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology
Wang et al. Silk nanofibers as high efficient and lightweight air filter
KR100928232B1 (ko) 나노섬유 웹을 포함하는 방진, 방취 및 항균용 필터
Yang et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2. 5 capture
CN108993167B (zh) 一种抗菌的静电纺丝纳米纤维空气过滤材料的制备及应用
Song et al. Electrospun nanofibers with antimicrobial properties
Zhang et al. Recent progress in cellulose-based electrospun nanofibers as multifunctional materials
WO2020134836A1 (zh) 一种多维度亲疏水结构复合纳米纤维膜及其制备方法
CN112921502A (zh) 一种抗菌抗病毒熔喷布及其制备方法
CN101352630A (zh) 一种多功能纳米滤材及其制备方法
CN109468751B (zh) 表面含壳聚糖粉末的纳米纤维空气净化材料及其制备方法
Henning et al. Review on polymeric, inorganic, and composite materials for air filters: from processing to properties
KR20110023683A (ko) 화학작용제 흡착제거를 위한 기능성 재료가 도입된 화학작용제 보호포 및 그 제조방법과 이를 사용하는 화학작용제 보호의
CN113797649B (zh) 一种抗菌防病毒的空气过滤材料及其制备方法
CN113457477A (zh) 一种纳米纤维过滤膜及其制备方法和应用
Jiang et al. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration
Chen et al. A review on recent trends of the antibacterial nonwovens air filter materials: Classification, fabrication, and application
Rodríguez-Tobías et al. Electrospinning and electrospraying techniques for designing antimicrobial polymeric biocomposite mats
JP2013194329A (ja) ナノコンポジット・ナノファイバーの製造方法
CN114737312A (zh) 超薄纳米Ag-2MI/PLA复合静电纺丝纤维膜、制备方法及应用
JP2014144420A (ja) 抗菌エアフィルタろ材
Yue et al. Incorporating charged Ag@ MOFs to boost the antibacterial and filtration properties of porous electrospinning polylactide films
Hong et al. Electrospinning of multicomponent ultrathin fibrous nonwovens for semi‐occlusive wound dressings
CN217287610U (zh) 一种基于纳米纤维的空气过滤材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2021).