CN114515519B - 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用 - Google Patents

一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用 Download PDF

Info

Publication number
CN114515519B
CN114515519B CN202210256465.8A CN202210256465A CN114515519B CN 114515519 B CN114515519 B CN 114515519B CN 202210256465 A CN202210256465 A CN 202210256465A CN 114515519 B CN114515519 B CN 114515519B
Authority
CN
China
Prior art keywords
molecular sieve
membrane
heating
tmax
carbon molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210256465.8A
Other languages
English (en)
Other versions
CN114515519A (zh
Inventor
刘公平
李仁号
程龙
金万勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210256465.8A priority Critical patent/CN114515519B/zh
Publication of CN114515519A publication Critical patent/CN114515519A/zh
Application granted granted Critical
Publication of CN114515519B publication Critical patent/CN114515519B/zh
Priority to US18/165,290 priority patent/US11759763B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

本发明涉及一种混合基质碳分子筛膜、制备方法以及在C2H4/C2H6分离中的应用,属于膜分离技术领域。本发明解决了现有技术中碳分子筛材料对乙烯乙烷分离过程中的选择性低、通量低的问题。本专利将C3N4作为填充粒子制备了混合基质膜,并将混合基质膜热解制备CMS膜,基于C3N4/6FDA‑DAM混合基质膜具有良好的C2分离性能。

Description

一种混合基质碳分子筛膜、制备方法以及在C2H4/C2H6分离中的 应用
技术领域
本发明涉及一种混合基质碳分子筛膜、制备方法以及在C2H4/C2H6分离中的应用,属于膜分离技术领域。
背景技术
气体分离过程是化学工业和环境保护必不可少的单元操作,如乙烯乙烷(C2H4/C2H6)的分离。乙烯乙烷(C2)是重要的石油化工产品。在烯烃生产中,将石油进行分馏得到乙烷,再将乙烷进行热裂解制备出乙烯。
传统的气体分离操作包括吸收、变压吸附(PSA)和低温精馏等。吸收的原理是根据溶剂与溶质的化学亲和力不同,将一种物质溶解到另一种的单元操作。广泛用于CO2分离,吸收剂通常为单乙醇胺或固体吸收剂。溶剂回收能耗高。PSA工艺是基于吸附剂(如分子筛)在高气相分压下吸附气体的能力。吸附剂的正确选择对吸附剂的性能和使用寿命都至关重要。分离气体在较高的分压下被吸附,之后在较低的分压下解吸。低温精馏工艺是根据进料组分蒸发点的不同而进行分离。其主要优势是生产富集C4+、乙烷、丙烷等,但是成本和能耗高。
气体分离膜技术是以压力梯度为传至驱动力,将两种不同的气体混合物进行分离,与传统分离技术相比,具有无相变、高效、低能耗、易操作等优点。膜材料根据孔径大小可以分为多孔膜和致密膜。在多孔膜材料中,分子平均自由程(λ)定义为一个气体分子在与另一个气体分子碰撞前所经过的平均距离。当膜孔径r大于气体分子的平均自由程λ时,气体分子之间的相互作用更大,传递方式为粘性流,膜材料几乎未提供分离作用。当膜孔径r小于λ时,气体分子与孔壁的相互作用大于气体分子之间相互作用,传递方式称为努森扩散。此时气体分子的努森扩散系数与分子质量的平方根成反比,所以基于努森扩散的两种气体的分离系数是由分子质量的平方根之比。在致密膜材料中,气体的传输是基于溶解-扩散机制。溶解 -扩散模型包括三个步骤:根据原料混合物的气相和聚合物之间的分配系数对其进行吸附;各组分根据活性梯度在膜内进行扩散;以及在渗透气相中的组分从膜的解吸。在实际的扩散控制分离过程中,有效的气体的传输的通过膜中产生的浓度梯度来实现的。努森扩散和溶解- 扩散模型都能使气体的进行选择性传输,从而实现不同气体的分离。
碳分子筛(CMS)膜是含碳前驱体在惰性气体或真空保护条件下通过的高温裂解制备一种新型膜材料。Koresh和Soffer在1983年首次报道了无缺陷的中空纤维碳分子筛膜,以纤维素中空纤维为前驱体在高温下裂解制备而成的,并发现该类膜的气体分离效果优于聚合物膜。与其他无机膜相比,CMS膜制备简易,可以通过聚合物膜的直接裂解来生产无缺陷的膜,并且可以在现有中空纤维纺丝技术等经验基础上扩大产业化。CMS膜具有优异的分离性能和性能易调控性,其刚性狭缝状的孔结构比聚合物展现了更好的抗塑化能力,并且溶胀更小。CMS 膜具有优异的化学稳定性和热稳定性,表现出非常有前途的分离性能,超过了具有多种气体对的聚合物膜所面临的上限。
目前对碳分子筛膜的前驱体研究不再局限于单一聚合物,聚合物的共混、改性和掺杂无机粒子受到众多研究者的关注。混合基质膜可以通过掺杂无机粒子,改变CMS膜的孔道结构,提高CMS膜的气体分离性能。但是制备CMS膜的填充物质需要满足两个条件,一是要求具有较好的热稳定性,在高温裂解中保持结构稳定;二是与聚合物材料保持较好的材料相容性,减少因为填充材料尺寸和热收缩系数不匹配带来的缺陷发生。
发明内容
本发明的目的是:解决现有技术中碳分子筛材料对乙烯乙烷分离过程中的选择性低、通量低的问题。本专利将C3N4作为填充粒子制备了混合基质膜,并将混合基质膜热解制备CMS 膜,基于C3N4/6FDA-DAM混合基质膜具有良好的C2分离性能。
技术方案是:
一种混合基质碳分子筛膜,包括碳基质,以及分散于碳基质中的C3N4纳米片。
所述的碳基质是由聚合物热解后得到。
所述的聚合物是6FDA-DAM。
所述的C3N4纳米片经过热剥离处理。
所述的C3N4纳米片在碳基质中的含量是0.5-10wt%。
上述的混合基质碳分子筛膜的制备方法,包括如下步骤:
步骤1,将聚合物溶解于溶剂中,再加入C3N4纳米片,作为铸膜液;
步骤2,将铸膜液涂于基材表面,热解处理后得到混合基质碳分子筛膜。
C3N4纳米片的制备方法包括:将三聚氰胺升温聚合后,降至室温;再经过热剥离处理。
所述的升温聚合是以1-5℃/min升温至450-600℃,保持2-6h。
所述的热剥离处理是500-600℃条件下处理1-4h。
所述的溶剂是四氢呋喃。
所述的铸膜液涂于基材表面后得到的前驱体聚合物膜的厚度10-300μm。
所述的热解处理的步骤选自快速热解或者慢速热解中的一种。
所述的慢速热解的参数是:
1)以3℃/min的升温速率从20℃升温到50℃;2)以6.67℃/min的升温速率从50℃升温到250℃3)以3.85℃/min的升温速率从250℃升温到Tmax-15℃;4)以0.15℃/min的升温速率从Tmax-15℃升温到Tmax℃;5)在Tmax℃保温两小时;6)自然冷却到室温。
所述的快速热解的参数是:
1)以3℃/min的升温速率从20℃升温到50℃;2)以10℃/min的升温速率从50℃升温到Tmax-50℃;3)以1℃/min的升温速率从Tmax-50℃升温到Tmax℃;4)自然冷却到室温。
Tmax范围是500-700℃。
上述的混合基质碳分子筛膜在乙烯乙烷分离过程中的应用。
有益效果
本发明发现使用6FDA-DAM为连续相,通过C3N4纳米片填充材料混合基质膜制备,C3N4 纳米片与CMS材料的相容性较好,得到的CMS膜的表现出良好的C2分离性能。
石墨相氮化碳(g-C3N4)是一种类似石墨烯的层状二维纳米材料,纳米片之间的层间通道和其亚纳米的孔道结构可以为气体分子提供传输通道和筛分通道。g-C3N4层间通道大约为
Figure BDA0003548756500000031
表面分布着直径为
Figure BDA0003548756500000032
的亚纳米孔。
本发明的制备方法中,对C3N4纳米片进行热剥离处理后,有效地改变了纳米片的层数结构,使得制备得到的纳米片表现出更好的分离系数。
本发明的制备方法中,在进行热解的过程采用了快速热解法,制备得到的CMS膜在渗透系数和分离性能上都得到了显著提高。
附图说明
图1是C3N4/6FDA-DAM混合基质碳分子筛膜示意图
图2是C3N4纳米片XRD表征图谱
图3是C3N4纳米片热蚀刻前后和C3N4/6FDA-DAM膜碳化前后SEM图像(a)C3N4纳米片(b)C3N4/6FDA-DAM断面(c)热蚀刻后C3N4纳米片(d)CMS-C3N4/6FDA-DAM断面
图4是C3N4掺杂CMS膜C2分离性能
图5是C3N4掺杂CMS膜与CMS-6FDA-DAM的C2分离性能
具体实施方式
实施例1 C3N4纳米片的制备
C3N4纳米片由三聚氰胺在500℃聚合:将一定量的三聚氰胺放置在坩埚中,以2.3℃/min 升温速率升到550℃,在550℃温度下保持四小时。以1℃/min降温速率冷却到室温。
后处理阶段是:在空气氛围下550℃温度2h热剥离形成纳米片。
实施例2混合基质碳分子筛膜的制备
6FDA-DAM的合成(6FDA为4,4'-(六氟异丙烯)二酞酸酐;DAM为2,4-二氨基均三甲苯):
使用两步生长聚合法合成聚合物。在第一步反应中,化学计量比1:1的二酐单体(120℃) 和二胺单体(50℃)在真空干燥24h。然后将二胺单体溶于NMP溶剂中,等到二胺单体完全溶解后,加入二酐单体。反应24h后生成聚酰胺酸,将三乙胺和乙酸酐加入到反应混合物中,进行24h聚酰胺酸脱水反应生成聚酰亚胺。所有的操作都是在氮气保护下完成的。将得到的产物使用甲醇洗涤三遍,之后在甲醇溶液中浸泡16h,最后在200℃真空干燥24h去除残留溶剂。
将6FDA-DAM在120℃真空干燥24h,然后溶于四氢呋喃(THF)中。填充粒子(C3N4纳米片)充分研磨分散在THF中搅拌分散。将充分分散的填充粒子加入到溶解6FDA-DAM 的四氢呋喃溶液中,超声10min,然后使用混匀仪在室温下充分混合24h。C3N4/6FDA-DAM 掺杂量为3wt%(按照纳米片/(纳米片+聚合物)的质量比折算)。将所得铸膜液、光滑的玻璃板和湿膜制备器放入到手套袋中,并在手套袋中用THF预饱和至少4小时。使用刮涂的方法将铸膜液制备成前驱体聚合物膜。得到厚度约为50-70μm前驱体聚合物膜。将前驱体膜剪成直径约25mm的圆形,夹在两块干净的石英板之间。石英板是多孔且透气的材料,可以将热解副产物及时放出。将石英板放入管式炉中。在真空(≤1Pa)下进行热解,压力由0.1Pa–1bar 压力传感器监测。CMS膜厚度用高精度测微计测量。
采用了两种热解方式,慢速热解和快速热解。
聚合物膜和C3N4/6FDA-DAM的慢速热解方法如下:
1)以3℃/min的升温速率从20℃升温到50℃;
2)以6.67℃/min的升温速率从50℃升温到250℃
3)以3.85℃/min的升温速率从250℃升温到Tmax-15℃;
4)以0.15℃/min的升温速率从Tmax-15℃升温到Tmax℃;
5)在Tmax℃保温两小时;
6)自然冷却到室温。
C3N4/6FDA-DAM的快速热解方法如下:
1)以3℃/min的升温速率从20℃升温到50℃;
2)以10℃/min的升温速率从50℃升温到Tmax-50℃;
3)以1℃/min的升温速率从Tmax-50℃升温到Tmax℃;
4)自然冷却到室温。
以上的Tmax在实验时采用了两种温度,分别是550℃和650℃。
对照例1
与实施例2的区别在于:制备CMS膜的过程中,采用6FDA-DAM聚合物依同法制备,区别在于未加入C3N4纳米片。
热解过程采用慢速热解程序。
C3N4纳米片的热剥离处理结果:
在实施例1的基础上,同时使用了在550℃和650℃条件下进行热剥离处理的纳米片,进行XRD表征。
使用广角XRD对g-C3N4纳米片进行表征,XRD表征图谱如图2中所示,在550℃和 650℃热处理后的纳米片在13.48°附近出现(100)特征峰和28.34°附近出现(002)特征峰,出峰位置与g-C3N4纳米片一致。证明g-C3N4纳米片经过热处理仍然保持典型的二维结构,具有优异的热稳定性。
图3是C3N4纳米片和3wt%C3N4/6FDA-DAM在热处理前后的SEM观察到的形貌,在经过550℃热蚀刻之后,可以看出C3N4纳米片尺寸变小。C3N4纳米片尺寸的变化是因为纳米片经过热蚀刻之后层数变少,与多层纳米片相比,能够提高选择分离性。在混合基质膜制备成CMS膜后,有利于避免的结构缺陷的产生,提高CMS膜的制备质量。从C3N4/6FDA-DAM 膜断面可以观察到,C3N4纳米片与连续相6FDA-DAM有着较好的相容性,在热解制备成CMS 膜之后,可以清楚观察到C3N4纳米片的存在。
C3N4/6FDA-DAM混合基质碳分子筛膜气体分离性能
C3N4/6FDA-DAM热解制备的碳分子筛膜的C2混合气分离性能如图4所示(采用的实验条件为:乙烯:乙烯的体积比1:1,压力3bar,温度35℃)。首先探讨了慢速热解方法制备CMS膜C2分离性能,慢速热解-550℃的C2H4渗透系数为440Barrer,C2H4/C2H6选择性为 3.46。将热解温度从550℃提高到650℃,气体渗透系数出现降低,选择性增高。当使用快速热解方法,在快速热解-550℃表现出了四种膜最高的C2H4渗透系数,为780Barrer。快速热解-650℃表现出了四种膜最高的C2H4/C2H6选择性,为4.79。慢速和快速的两种热解方法依然遵循热解温度升高,气体渗透系数降低,选择性增高的规律。
相比聚合物CMS膜性能,当使用慢速热解方法时,C3N4纳米片的加入提高了CMS膜的气体渗透系数,同时带来了微小的选择性损失,其中慢速热解-550℃渗透系数提升了29.4%,选择性降低了1.7%(对照例1中的纯聚合物CMS膜在慢速热解-550℃条件下制备完成后, C2H4渗透系数340Barrer,选择性3.52,在快速热解-550℃条件下制备完成后,C2H4渗透系数122Barrer,选择性4.52)。当使用快速热解方法时,快速热解-550℃气体渗透系数最高,但同时选择性最低,快速热解-650℃同时提高了CMS膜的气体渗透系数和选择性。CMS膜分离性能的变化表明了热解温度对C3N4纳米片和纯CMS膜的双重影响。快速热解方法的 CMS膜混合气C2分离性能更接近CMS-trad-off。
C3N4纳米片的热剥离处理对气体分离膜性能的影响
与实施例2的区别在于:使用未经过热剥离的C3N4纳米片进行掺杂:
3wt%的混合基质膜在550℃慢速热解,C2H4渗透系数为660.61Barrer,C2H4/C2H6选择性为3.12;而在相同条件下的实施例1中的CMS膜的选择分离性是3.46。
5wt%的混合基质膜在550℃慢速热解,C2H4渗透系数为2092.4Barrer,C2H4/C2H6选择性为2.64;在650℃热解C2H4渗透系数为882Barrer,C2H4/C2H6选择性2.98。
可以看出,与使用未经过热剥离的C3N4纳米片制备得到的CMS相比,经过热剥离处理的C3N4纳米片制备出分离膜后,表现出了更好的对于C2的分离选择性。

Claims (7)

1.一种混合基质碳分子筛膜,其特征在于,混合基质碳分子筛膜中包括碳基质,以及分散于碳基质中的C3N4纳米片;
所述的碳基质是由聚合物热解后得到;
所述的C3N4纳米片在碳基质中的含量是0.5-10wt%;
所述的混合基质碳分子筛膜制备方法包括如下步骤:
步骤1,将聚合物溶解于溶剂中,再加入C3N4纳米片,作为铸膜液;
步骤2,将铸膜液涂于基材表面,热解处理后得到混合基质碳分子筛膜;
C3N4纳米片的制备方法包括:将三聚氰胺升温聚合后,降至室温;再经过热剥离处理;
所述的热剥离处理是500-600℃条件下处理1-4h。
2.根据权利要求1所述的混合基质碳分子筛膜,其特征在于,所述的升温聚合是以1-5℃/min升温至450-600℃,保持2-6h。
3.根据权利要求1所述的混合基质碳分子筛膜,其特征在于,所述的聚合物是6FDA-DAM。
4.根据权利要求1所述的混合基质碳分子筛膜,其特征在于,所述的溶剂是四氢呋喃。
5.根据权利要求1所述的混合基质碳分子筛膜,其特征在于,所述的铸膜液涂于基材表面后得到的前驱体聚合物膜的厚度10-300μm。
6.根据权利要求1所述的混合基质碳分子筛膜,其特征在于,所述的热解处理的步骤选自快速热解或者慢速热解中的一种;
所述的慢速热解的参数是:1)以3℃/min的升温速率从20℃升温到50℃;2)以6.67℃/min的升温速率从50℃升温到250℃;3)以3.85℃/min的升温速率从250℃升温到Tmax-15℃;4)以0.15℃/min的升温速率从Tmax-15℃升温到Tmax℃;5)在Tmax℃保温两小时;6)自然冷却到室温;Tmax范围是500-700℃;
所述的快速热解的参数是:1)以3℃/min的升温速率从20℃升温到50℃;2)以10℃/min的升温速率从50℃升温到Tmax-50℃;3)以1℃/min的升温速率从Tmax-50℃升温到Tmax℃;4)自然冷却到室温;Tmax范围是500-700℃。
7.权利要求1所述的混合基质碳分子筛膜在乙烯乙烷分离过程中的应用。
CN202210256465.8A 2022-03-16 2022-03-16 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用 Active CN114515519B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210256465.8A CN114515519B (zh) 2022-03-16 2022-03-16 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用
US18/165,290 US11759763B1 (en) 2022-03-16 2023-02-06 Mixed matrix carbon molecular sieve (CMS) membrane and use of mixed matrix CMS membrane in C2H4/C2H6 separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210256465.8A CN114515519B (zh) 2022-03-16 2022-03-16 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用

Publications (2)

Publication Number Publication Date
CN114515519A CN114515519A (zh) 2022-05-20
CN114515519B true CN114515519B (zh) 2022-10-04

Family

ID=81599979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210256465.8A Active CN114515519B (zh) 2022-03-16 2022-03-16 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用

Country Status (2)

Country Link
US (1) US11759763B1 (zh)
CN (1) CN114515519B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003284A (ja) * 2000-06-14 2002-01-09 Toshiba Tungaloy Co Ltd 硬質膜被覆超高温高圧焼結体
JP2004066664A (ja) * 2002-08-07 2004-03-04 Toyota Central Res & Dev Lab Inc 密着層を備える積層体
CN105565427A (zh) * 2015-12-17 2016-05-11 南京工业大学 一种基于石墨相氮化碳薄膜的光降解反应器及其制备方法
CN106731891A (zh) * 2017-02-27 2017-05-31 中国科学院上海高等研究院 一种氮化碳二维材料复合膜及其制备方法和用途
WO2020134835A1 (zh) * 2018-12-26 2020-07-02 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用
WO2020221598A1 (fr) * 2019-05-02 2020-11-05 IFP Energies Nouvelles Procede de decontamination photocatalytique d'un milieu gazeux en presence d'un champ electrique externe
CN112156659A (zh) * 2020-09-25 2021-01-01 南京工业大学 一种M-gallate金属有机骨架膜及其制备方法与应用
CN112717726A (zh) * 2020-12-21 2021-04-30 太原理工大学 一种原位掺杂碳化氮的混合基质碳分子筛膜的制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554506C (zh) * 2005-03-09 2009-10-28 东京毅力科创株式会社 半导体处理用的成膜方法及装置
US10322382B2 (en) * 2016-06-30 2019-06-18 Uop Llc High performance facilitated transport membranes for olefin/paraffin separations
GB201805261D0 (en) * 2018-03-29 2018-05-16 G20 Water Tech Limited Membranes
CN108745404B (zh) * 2018-06-14 2020-12-04 苏州大学 基于黑磷/金属有机框架修饰的氮化碳膜复合材料及其制备方法与在废气处理中的应用
CN112958137B (zh) * 2019-04-28 2023-06-06 苏州大学 一种利用四氧化三钴十二面体/氮化碳纳米片复合物处理废气的方法
CN110394071B (zh) * 2019-07-25 2022-04-15 辽宁科技大学 一种混合基质气体分离膜材料及其制备方法
CN113750821B (zh) * 2021-09-28 2024-01-05 太原理工大学 基于嵌入式多孔少层g-C3N4/ZIF-8混合基质膜的制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003284A (ja) * 2000-06-14 2002-01-09 Toshiba Tungaloy Co Ltd 硬質膜被覆超高温高圧焼結体
JP2004066664A (ja) * 2002-08-07 2004-03-04 Toyota Central Res & Dev Lab Inc 密着層を備える積層体
CN105565427A (zh) * 2015-12-17 2016-05-11 南京工业大学 一种基于石墨相氮化碳薄膜的光降解反应器及其制备方法
CN106731891A (zh) * 2017-02-27 2017-05-31 中国科学院上海高等研究院 一种氮化碳二维材料复合膜及其制备方法和用途
WO2020134835A1 (zh) * 2018-12-26 2020-07-02 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用
WO2020221598A1 (fr) * 2019-05-02 2020-11-05 IFP Energies Nouvelles Procede de decontamination photocatalytique d'un milieu gazeux en presence d'un champ electrique externe
CN112156659A (zh) * 2020-09-25 2021-01-01 南京工业大学 一种M-gallate金属有机骨架膜及其制备方法与应用
CN112717726A (zh) * 2020-12-21 2021-04-30 太原理工大学 一种原位掺杂碳化氮的混合基质碳分子筛膜的制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property;Cheng 等;《SEPARATION AND PURIFICATION TECHNOLOGY》;20200806;第250卷;全文 *
Hydrogen-containing carbon nitride films produced by the combined hot filament-plasma CVD technique;Wang 等;《THIN SOLID FILMS》;20001201;第377卷;全文 *
Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane;Hou 等;《 MOLECULAR SIMULATION》;20190630;第45卷(第16期);全文 *
Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures;Altintas 等;《RSC ADVANCES》;20171127;第7卷(第7期);全文 *
丙烯/丙烷分离的ZIF-8膜研究进展;潘宜昌 等;《化工进展》;20201231;第39卷(第6期);全文 *

Also Published As

Publication number Publication date
US11759763B1 (en) 2023-09-19
CN114515519A (zh) 2022-05-20
US20230294070A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
Centeno et al. Supported carbon molecular sieve membranes based on a phenolic resin
Rao et al. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application
Salleh et al. Carbon membranes for gas separation processes: Recent progress and future perspective
Lua et al. Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation
Song et al. Preparation and gas separation properties of poly (furfuryl alcohol)-based C/CMS composite membranes
Hou et al. Carbon nanotube networks as nanoscaffolds for fabricating ultrathin carbon molecular sieve membranes
JP6054318B2 (ja) エチレン/エタン分離のためのポリイミド系炭素分子ふるい膜
Cheng et al. g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property
Zeynali et al. Performance evaluation of graphene oxide (GO) nanocomposite membrane for hydrogen separation: Effect of dip coating sol concentration
Li et al. Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressure
Tin et al. Carbon molecular sieve membranes for biofuel separation
Sazali et al. Influence of intermediate layers in tubular carbon membrane for gas separation performance
US11969694B2 (en) Method for separating a gas mixture
Weng et al. Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane
Messaoud et al. Mixed matrix membranes using SAPO-34/polyetherimide for carbon dioxide/methane separation
Feijani et al. Synthesis and gas permselectivity of CuBTC–GO–PVDF mixed matrix membranes
Roy et al. Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation
Wang et al. Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation
Zhang et al. Carbon molecular sieve/ZSM-5 mixed matrix membranes with enhanced gas separation performance and the performance recovery of the aging membranes
Jia et al. In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification
CN114515519B (zh) 一种混合基质碳分子筛膜、制备方法以及在c2h4/c2h6分离中的应用
He et al. Nanoarchitectonics of carbon molecular sieve membranes with graphene oxide and polyimide for hydrogen purification
CN110270231B (zh) Mof衍生气体分离膜及其制备方法和应用
Wu et al. High-Performance Carbon Molecular Sieve Membrane Derived from a Crown Ether-Containing Co-Polyimide Precursor for Gas Separation
Lagorsse et al. Novel carbon molecular sieve honeycomb membrane module: configuration and membrane characterization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant