WO2020134376A1 - 吸音材料及扬声器箱 - Google Patents

吸音材料及扬声器箱 Download PDF

Info

Publication number
WO2020134376A1
WO2020134376A1 PCT/CN2019/111293 CN2019111293W WO2020134376A1 WO 2020134376 A1 WO2020134376 A1 WO 2020134376A1 CN 2019111293 W CN2019111293 W CN 2019111293W WO 2020134376 A1 WO2020134376 A1 WO 2020134376A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing material
sound absorbing
sound
molecular sieve
speaker box
Prior art date
Application number
PCT/CN2019/111293
Other languages
English (en)
French (fr)
Inventor
冯宏枢
唐琨
戴际强
王和志
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020134376A1 publication Critical patent/WO2020134376A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2811Enclosures comprising vibrating or resonating arrangements for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • H04R1/288Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the invention relates to the technical field of sound absorbing materials, in particular to a sound absorbing material and a speaker box using the sound absorbing material.
  • the speaker box of the related art includes a housing with a receiving space, a sound-generating monomer provided in the housing, and a virtual sound cavity surrounded by the sound-generating monomer and the housing, the virtual sound cavity being filled with sound-absorbing material.
  • the sound-absorbing material is generally filled with activated carbon, zeolite and other microporous low-frequency improved materials, that is, microporous materials.
  • the sound-absorbing material mainly adopts porous carbon materials of Panasonic Electronics and MFI structure molecular sieve of The Floor Company, and of course molecular sieves such as FER and BEA.
  • the sound-absorbing material absorbs and desorbs the air in the rear cavity through the vibration of the sound-generating monomer of the speaker box, increases the volume of the virtual sound cavity, and thus improves the response of the speaker box at a low frequency band.
  • the microporous material adsorbs air molecules at room temperature very little, the response to the low-frequency range of the speaker box is limited.
  • the object of the present invention is to provide a sound-absorbing material with excellent performance and a speaker box with better acoustic performance after using the sound-absorbing material.
  • the present invention provides a sound absorbing material, which includes a microporous material and an adsorbate gas adsorbed in the microporous material;
  • the microporous material includes a zeolite with a silica content of at least 85 wt.% A molecular sieve.
  • the zeolite molecular sieve includes a framework and extra-framework cations.
  • the zeolite molecular sieve has a greater adsorption capacity for the adsorbate gas than for air.
  • the micropore diameter of the zeolite molecular sieve is between 0.35nm-2nm.
  • the structure of the zeolite molecular sieve is any one of MFI, FER, BEA, CHA, MEL, MOR and FAU.
  • the content of cations outside the framework is less than 10 wt.%.
  • the content of cations outside the framework is less than 6 wt.%.
  • the content of cations outside the framework is less than 3 wt.%.
  • the silica content is at least 90 wt.%.
  • the silica content is at least 95 wt.%.
  • the adsorbate gas is at least one of N 2 , CO 2 , SF 6 , C 2 H 8 and C 2 H 6 .
  • the adsorbate gas is CO 2 .
  • the invention also provides a speaker box, which includes a housing with a receiving space and a sound-generating monomer disposed in the housing, the sound-generating monomer divides the receiving space into a front cavity and a rear cavity, and the rear cavity It is filled with the sound absorbing material as described in any one of the above.
  • the sound absorbing material of the present invention adsorbs adsorbent gas with an adsorption amount greater than air through the microporous material, and is used to replace the air molecules in the rear cavity.
  • the sound-absorbing material is used in the speaker box, the low-frequency acoustic performance of the speaker box is significantly improved.
  • 1 is a schematic view of the stereo structure of the present invention using the speaker box
  • FIG. 2 is an exploded schematic view of the stereo structure of the present invention using the speaker box;
  • FIG. 3 is a graph of impedance curves in a comparative test to verify the present invention.
  • the present invention provides a speaker box 100, including a housing 1 with a housing space 10, a sound-generating unit 2 disposed in the housing 1, the sound-generating unit 2
  • the receiving space 10 is divided into a front cavity 101 and a rear cavity 102, and the rear cavity 102 is filled with the sound absorbing material 3.
  • the rear cavity 102 as a virtual sound cavity can improve the low-frequency acoustic performance of the speaker box 100.
  • the present invention also provides a sound absorbing material 3, which includes a microporous material 31 and an adsorbate gas 32 adsorbed on the microporous material 31.
  • the adsorbate gas 32 is a gas with an adsorption amount greater than air.
  • the adsorbate gas 32 can be quickly adsorbed and desorbed from the microporous material 31. Specifically, the vibration of the sound-generating monomer 2 causes the microporous material 31 to adsorb and desorb the adsorbate gas 32, thereby increasing the gas volume of the rear chamber 102, thereby improving the speaker box 100 Response in the low frequency band.
  • the microporous material 31 includes a zeolite molecular sieve having a silica content of at least 85 wt.%, and the zeolite molecular sieve includes a framework and extra-framework cations.
  • the adsorption amount of the adsorbate gas by the zeolite molecular sieve is greater than that of air.
  • the molecular sieve is a silica-containing zeolite molecular sieve having multiple micropores.
  • the micropore diameter of the zeolite molecular sieve is between 0.35nm-2nm.
  • the silicon-containing zeolite molecular sieve is a microporous material with few cations outside the framework, smooth pores and good stability. Of course, it is not limited to this, and other examples such as porous carbon and silica are also possible.
  • the structure of the zeolite molecular sieve includes any one of MFI, FER, BEA, CHA, MEL, MOR, and FAU.
  • the content of cations outside the skeleton of the microporous material 31 is preferably less than 10 wt.%.
  • the content of cations outside the skeleton of the microporous material is less than 6 At wt.%, the effect of the microporous material 31 is particularly good.
  • the content of cations outside the skeleton of the microporous material is less than 3 At wt.%, the effect of the microporous material 31 is the best.
  • the silica content is at least 90 wt.%. More preferably, the silica content is at least 95 wt.%, the effect of the microporous material 31 is the best.
  • the adsorbate gas 32 is at least one of N2, CO2, SF6, C2H8, and C2H6.
  • the three kinds of gas with the adsorption capacity of CO 2 , C 2 H 8 and C 2 H 6 are larger than air and can be quickly absorbed and desorbed have good effect.
  • the adsorbate gas 32 is CO2, and each test data has an ideal optimal effect.
  • the volume of the rear chamber 102 is increased, Therefore, the response of the speaker box 100 in the low frequency band is improved.
  • Test One A comparative test of the effect of silica zeolite molecular sieves with different structures on the adsorbate gas 32 as CO2.
  • the specific test contents are as follows:
  • a comparative test is performed by adding the adsorbate gas 32 as CO2 or air; and the microporous material 31 is a silicon-containing zeolite molecular sieve, and the four structures of the molecular sieve: MFI, MEL, BEA and CHA are tested separately.
  • Table 1 Comparative test data of the effect of silica zeolite molecular sieves with different structures when the adsorbate gas is CO2.
  • Test 2 Comparative test of the effect of changing the voltage to determine the impedance curve.
  • the specific test content is as follows:
  • a comparative test is performed by adding the adsorbate gas 32 as CO2 or air; and through the cavity or the microporous material 31 is a 0.2g MFI structured silica-containing zeolite molecular sieve;
  • Test 3 Comparative test of the effect of increasing the test temperature, the specific test content is as follows:
  • a comparative test is performed by adding the adsorbate gas 32 as CO2 or air; and through the cavity or the microporous material 31 is a 0.2g MFI structured silica-containing zeolite molecular sieve; The voltage passes two, 100mV and 2V respectively for comparative testing.
  • the test temperature is 35 degrees Celsius.
  • Table 3 compares the test data with the effect of increasing the test temperature.
  • test result data of serial number 7 can be obtained that the ⁇ f0 of the rear chamber 102 in the adsorbate gas 32 is 59.5% higher than that of air by CO2; the test result data of serial number 8 can be obtained of the rear chamber 102 The ⁇ f0 in the adsorbate gas 32 is 59.3% higher than CO2 for air.
  • the invention is filled with sound absorbing material 3 in the rear cavity 102 of the speaker box 100, especially the microporous material 31 and the adsorbent gas 32 therein can be effective
  • the low-frequency acoustic performance of the speaker box 100 is improved.
  • the sound absorbing material of the present invention adsorbs adsorbent gas with an adsorption amount greater than air through the microporous material, and is used to replace the air molecules in the rear cavity.
  • the sound-absorbing material is used in the speaker box, the low-frequency acoustic performance of the speaker box is significantly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种吸音材料,包括微孔材料和吸附于所述微孔材料内的吸附质气体;所述微孔材料包括沸石分子筛,所述沸石分子筛包括骨架和骨架外阳离子,所述沸石分子筛对所述吸附质气体的吸附量大于对空气的吸附量。本发明还提供了一种应用该吸音材料的扬声器箱。与相关技术相比,本发明的吸音材料使用效果好,运用该吸音材料的扬声器箱的低频声学性能更优。

Description

吸音材料及扬声器箱 技术领域
本发明涉及吸音材料技术领域,尤其涉及一种吸音材料及应用该吸音材料的扬声器箱。
背景技术
随着科技的发展和生活水平的提高,电子产品正迅速向节能化、轻量化、智能化、信息化、多系统、多功能及娱乐性等多元化方向发展,消费者对电子产品在性能上、体积上等提出了更高的要求,这就使得电子产品在扬声器箱的要求越来越高,特别是手机扬声器箱,不仅要求扬声器箱的体积小,而且还能提供优异的音质。
相关技术的扬声器箱包括具有收容空间的壳体、设置于所述壳体内的发声单体以及由所述发声单体与所述壳体共同围成的虚拟声腔,所述虚拟声腔填充吸音材料。
技术问题
然而,实际的扬声器箱中,由于电子消费品体积越来越紧凑,留给扬声器箱后腔的体积越来越小,而扬声器箱后腔体积减小会显著降低其低频段的响应,致使音质变差。所述吸音材料填一般为活性炭、沸石等微孔低频改进材料,即微孔材料。一般所述吸音材料主要采用松下电子的多孔碳材料和楼氏公司的MFI结构分子筛,当然还有FER和BEA等分子筛。所述吸音材料通过其随着所述扬声器箱的所述发声单体的震动来吸脱附后腔中的空气,增加所述虚拟声腔的体积,从而提高所述扬声器箱在低频段的响应。但是由于所述微孔材料在室温下对空气分子的吸附量很小,对所述扬声器箱低频段响应提升有限。
因此,实有必要提供一种新的吸音材料及应用该吸音材料的扬声器箱解决上述技术问题。
技术解决方案
本发明的目的在于提供一种使用性能优的吸音材料以及运用该吸音材料后声学性能更优的扬声器箱。
为达到上述目的,本发明提供了一种吸音材料,其包括微孔材料和吸附于所述微孔材料内的吸附质气体;所述微孔材料包括二氧化硅含量至少为85wt.%的沸石分子筛,所述沸石分子筛包括骨架和骨架外阳离子,所述沸石分子筛对所述吸附质气体的吸附量大于对空气的吸附量。
优选的,所述沸石分子筛的微孔孔径在0.35nm-2nm之间。
优选的,所述沸石分子筛的结构为MFI、FER、BEA、CHA、MEL、MOR以及FAU的任意一种。
优选的,所述骨架外阳离子的含量低于10 wt.%。
优选的,所述骨架外阳离子的含量低于6wt.%。
优选的,所述骨架外阳离子的含量低于3 wt.%。
优选的,所述二氧化硅含量至少为90 wt.%。
优选的,所述二氧化硅含量至少为95 wt.%。
优选的,所述吸附质气体为N 2、CO 2、SF 6、C 2H 8 、C 2H 6的至少一种。
优选的,所述吸附质气体为CO 2
本发明还提供一种扬声器箱,包括具有收容空间的壳体和设置于所述壳体内的发声单体,所述发声单体将所述收容空间分隔成前腔和后腔,所述后腔内填充如上述任意一项所述的吸音材料。
有益效果
与相关技术相比,本发明的吸音材料通过所述微孔材料吸附吸附量大于空气的吸附质气体,用于替代所述后腔中的空气分子。当所述吸音材料用于所述扬声器箱后,显著地提高所述扬声器箱的低频声学性能。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明运用所述扬声器箱的立体结构示意图;
图2为本发明运用所述扬声器箱的立体结构分解示意图;
图3为验证本发明的对比测试中的阻抗曲线图。
本发明的实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参考图1-2所示,本发明提供一种扬声器箱100,包括有收容空间10的壳体1、设置于所述壳体1内的发声单体2所述发声单体2将所述收容空间10分隔成前腔101和后腔102,所述后腔102内填充吸音材料3。所述后腔102作为虚拟声腔可以提高所述扬声器箱100的低频声学性能。
本发明还提供了一种吸音材料3,包括微孔材料31和吸附于所述微孔材料31的吸附质气体32,所述吸附质气体32为吸附量大于空气的气体。所述吸附质气体32能从所述微孔材料31中快速吸脱附。具体的,通过所述发声单体2的振动使所述微孔材料31的吸脱附所述吸附质气体32,从而使所述后腔102的气体体积增大,从而提高所述扬声器箱100在低频段的响应。
所述微孔材料31包括二氧化硅含量至少为85wt.%的沸石分子筛,所述沸石分子筛包括骨架和骨架外阳离子。所述沸石分子筛对所述吸附质气体的吸附量大于对空气的吸附量。在本实施方式中,所述分子筛为具有多个微孔的含硅沸石分子筛。所述沸石分子筛的微孔孔径在0.35nm-2nm之间。所述含硅沸石分子筛为骨架外阳离子少、孔道通畅、稳定性好的微孔材料。当然,不限于此,其他例如多孔炭、二氧化硅也是可以的。
所述沸石分子筛的结构包括MFI、FER、BEA、CHA、MEL、MOR以及FAU的任意一种。所述微孔材料31的骨架外阳离子的含量优选低于10 wt.%。所述微孔材料的骨架外阳离子的含量低于6 wt.%时,所述微孔材料31的效果尤佳。当然,所述微孔材料的骨架外阳离子的含量低于3 wt.%时,所述微孔材料31的效果最佳。
所述二氧化硅含量至少为90 wt.%。更优的是,所述二氧化硅含量至少为95 wt.%,这时所述微孔材料31的效果最佳。
所述吸附质气体32为N2、CO2、SF6、C2H8 、C2H6的至少一种。CO 2、 C 2H 8 、 C 2H 6吸附量大于空气且能快速吸脱附的三种气体都有较好的效果。在本实施方式中,所述吸附质气体32为CO2,各项测试数据都有理想的最优效果。
在本实施方式中,通过其随着所述扬声器箱100的所述发声单体2的震动来吸脱附所述后腔102的所述吸附质气体32,增加所述后腔102的体积,从而提高所述扬声器箱100在低频段的响应。
为了验证本发明的所述吸附质气体32的提高所述扬声器箱100的低频声学性能的效果,进行以下三个对比试验进行验证:
试验一:不同结构的含硅沸石分子筛在所述吸附质气体32为CO2的效果对比测试,具体的检测试验内容如下:
一、测试条件:
 在所述后腔102内通过加入所述吸附质气体32为CO2或空气进行对比测试;并所述微孔材料31为含硅沸石分子筛,并在所述分子筛的四种结构:MFI、MEL、BEA、CHA分别进行测试。
具体操作:在无吸附质气体情况下(所述后腔102内为空气情况下),温度24℃,测试电压0.5V,所述扬声器箱100工装虚拟声腔的f0为946Hz,加入0.2g MFI结构的含硅沸石分子筛的低频改进材料后共振频率f0降低为780Hz;将所述扬声器箱100工装放入CO2气氛下,共振频率f0降低为632Hz。同样进行MEL、BEA、CHA结构的含硅沸石分子筛情况下的对比测试。
二、测试结果
经过对比测试,所述吸附质气体32为CO2时,可以显著增强所述扬声器箱100的低频改进效果。详见表1。
表1不同结构的含硅沸石分子筛在吸附质气体为CO2的效果对比测试数据。
Figure 448742dest_path_image001
试验二:改变电压测定阻抗曲线的效果对比测试,具体的检测试验内容如下:
一、测试条件:
在所述后腔102内通过加入所述吸附质气体32为CO2或空气进行对比测试;并通过空腔或所述微孔材料31为0.2g的MFI结构的含硅沸石分子筛进行对比测试;
具体操作,经过改变电压,将测试电压调至2V,并测定阻抗曲线,并记录共振频率f0和∆ f0。
二、测试结果
经过对比测试,所述吸附质气体32为CO2时,可以显著增强所述扬声器箱100的低频改进效果。详见图3和表2。
表2不同阻抗曲线效果对比测试数据。
Figure 54298dest_path_image002
试验三:提高测试温度的效果对比测试,具体的检测试验内容如下:
一、测试条件:
在所述后腔102内通过加入所述吸附质气体32为CO2或空气进行对比测试;并通过空腔或所述微孔材料31为0.2g的MFI结构的含硅沸石分子筛进行对比测试;测试电压通过两个,分别为100mV和2V进行对比测试。测试温度为35摄氏度。
具体操作,将测试温度调至35摄氏度,进行对比测试,并记录共振频率f0和∆ f0。
二、测试结果
经过对比测试,所述吸附质气体32为CO2时,可以显著增强所述扬声器箱100的低频改进效果。详见表3。
表3调高测试温度的效果对比测试数据。
Figure 771718dest_path_image003
备注:序号为7的测试结果数据可以得出所述后腔102的∆f0在所述吸附质气体32为CO2比空气提升59.5%;序号为8的测试结果数据可以得出所述后腔102的∆f0在所述吸附质气体32为CO2比空气提升59.3%。
通过以上三个对比试验,通过测试数据可以得出本发明在所述扬声器箱100的所述后腔102内填充吸音材料3,尤其是其中的微孔材料31和吸附质气体32,都可以有效提高所述扬声器箱100的低频声学性能。
与相关技术相比,本发明的吸音材料通过所述微孔材料吸附吸附量大于空气的吸附质气体,用于替代所述后腔中的空气分子。当所述吸音材料用于所述扬声器箱后,显著地提高所述扬声器箱的低频声学性能。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种吸音材料,其特征在于,该吸音材料包括微孔材料和吸附于所述微孔材料内的吸附质气体;所述微孔材料包括二氧化硅含量至少为85wt.%的沸石分子筛,所述沸石分子筛包括骨架和骨架外阳离子,所述沸石分子筛对所述吸附质气体的吸附量大于对空气的吸附量。
  2. 根据权利要求1所述的吸音材料,其特征在于,所述沸石分子筛的微孔孔径在0.35nm-2nm之间。
  3. 根据权利要求2所述的吸音材料,其特征在于,所述沸石分子筛的结构为MFI、FER、BEA、CHA、MEL、MOR以及FAU的任意一种。
  4. 根据权利要求1所述的吸音材料,其特征在于,所述骨架外阳离子的含量低于10 wt.%。
  5. 根据权利要求4所述的吸音材料,其特征在于,所述骨架外阳离子的含量低于6wt.%。
  6. 根据权利要求5所述的吸音材料,其特征在于,所述骨架外阳离子的含量低于3 wt.%。
  7. 根据权利要求1所述的吸音材料,其特征在于,所述二氧化硅含量至少为90 wt.%。
  8. 根据权利要求7所述的吸音材料,其特征在于,所述二氧化硅含量至少为95 wt.%。
  9. 根据权利要求1所述的吸音材料,其特征在于,所述吸附质气体为N 2、CO 2、SF 6、C 2H 8 、C 2H 6的至少一种。
  10. 根据权利要求9所述的吸音材料,其特征在于,所述吸附质气体为CO 2
  11. 一种扬声器箱,包括具有收容空间的壳体和设置于所述壳体内的发声单体,所述发声单体将所述收容空间分隔成前腔和后腔,其特征在于,所述后腔内填充如权利要求1~10任意一项所述的吸音材料。
PCT/CN2019/111293 2018-12-29 2019-10-15 吸音材料及扬声器箱 WO2020134376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811637346.7 2018-12-29
CN201811637346.7A CN109511062A (zh) 2018-12-29 2018-12-29 吸音材料及扬声器箱

Publications (1)

Publication Number Publication Date
WO2020134376A1 true WO2020134376A1 (zh) 2020-07-02

Family

ID=65755742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111293 WO2020134376A1 (zh) 2018-12-29 2019-10-15 吸音材料及扬声器箱

Country Status (3)

Country Link
US (1) US11488570B2 (zh)
CN (1) CN109511062A (zh)
WO (1) WO2020134376A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975347A (zh) * 2018-07-28 2018-12-11 瑞声科技(南京)有限公司 吸音材料及其制备方法和应用该吸音材料的扬声器箱
GB201819321D0 (en) * 2018-11-27 2019-01-09 Carbon Air Ltd Cavities and active regions
CN109511062A (zh) * 2018-12-29 2019-03-22 瑞声科技(南京)有限公司 吸音材料及扬声器箱
KR20210015556A (ko) 2019-08-02 2021-02-10 삼성전자주식회사 공기 흡착 부재 및 스피커 모듈을 포함하는 전자 장치
CN113060975B (zh) * 2021-03-26 2022-08-02 镇江贝斯特新材料有限公司 一种耐低温的吸音材料及其制备方法与应用
CN113903320A (zh) * 2021-09-29 2022-01-07 瑞声光电科技(常州)有限公司 吸音材料及应用该吸音材料的扬声器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038855A (zh) * 2014-06-04 2014-09-10 瑞声光电科技(常州)有限公司 电声器件及所述电声器件的组装方法
US20180167721A1 (en) * 2016-12-13 2018-06-14 AAC Technologies Pte. Ltd. Sound absorbing material and manufacturing method thereof and speaker using sound absorbing material
CN108996515A (zh) * 2018-07-28 2018-12-14 瑞声科技(南京)有限公司 一种吸音材料及应用该吸音材料的扬声器箱
CN109511062A (zh) * 2018-12-29 2019-03-22 瑞声科技(南京)有限公司 吸音材料及扬声器箱

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994461B (zh) * 2015-07-03 2019-07-05 歌尔股份有限公司 吸音颗粒及其加工方法和扬声器模组及其封装方法
CN105503247B (zh) * 2015-12-03 2018-03-23 歌尔股份有限公司 介孔吸音材料颗粒的制备方法和介孔吸音材料颗粒
CN105621436B (zh) * 2016-01-29 2018-06-12 瑞声光电科技(常州)有限公司 沸石分子筛的制备方法及扬声器
CN107659880A (zh) * 2017-10-27 2018-02-02 温州华大信息技术有限公司 一种具有减震功能的扬声器
CN108430012B (zh) * 2018-01-30 2020-09-18 瑞声科技(新加坡)有限公司 吸音材料及扬声器
CN108696807A (zh) * 2018-07-28 2018-10-23 瑞声科技(南京)有限公司 吸音材料及应用该吸音材料的扬声器箱
CN108975347A (zh) * 2018-07-28 2018-12-11 瑞声科技(南京)有限公司 吸音材料及其制备方法和应用该吸音材料的扬声器箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038855A (zh) * 2014-06-04 2014-09-10 瑞声光电科技(常州)有限公司 电声器件及所述电声器件的组装方法
US20180167721A1 (en) * 2016-12-13 2018-06-14 AAC Technologies Pte. Ltd. Sound absorbing material and manufacturing method thereof and speaker using sound absorbing material
CN108996515A (zh) * 2018-07-28 2018-12-14 瑞声科技(南京)有限公司 一种吸音材料及应用该吸音材料的扬声器箱
CN109511062A (zh) * 2018-12-29 2019-03-22 瑞声科技(南京)有限公司 吸音材料及扬声器箱

Also Published As

Publication number Publication date
CN109511062A (zh) 2019-03-22
US11488570B2 (en) 2022-11-01
US20200211524A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020134376A1 (zh) 吸音材料及扬声器箱
US10506333B2 (en) Acoustic device
US10271130B2 (en) Sound absorbing material and manufacturing method thereof and speaker using sound absorbing material
CN108298559B (zh) 分子筛及应用该分子筛的吸音材料和扬声器
WO2018040394A1 (zh) 扬声器模组
WO2018040392A1 (zh) 扬声器模组
JP5031926B2 (ja) スピーカ装置
TWI625302B (zh) 具改善聲音之揚聲器系統
WO2018045668A1 (zh) 扬声器模组
WO2018040393A1 (zh) 扬声器模组
WO2018120697A1 (zh) 发声装置的吸音件及其制备方法和发声装置模组
US10939195B2 (en) Sound absorbing material and speaker box using same
WO2005099300A1 (ja) スピーカ装置
JP2011199574A (ja) 音響スピーカー装置
WO2024103562A1 (zh) 吸音材料、发声装置和电子设备
CN109874089B (zh) 二氧化硅气凝胶吸音材料和发声装置
TW202302458A (zh) 用於吸音材料的zsm-5分子篩、其製備方法及所得產品
KR101788109B1 (ko) 공기 흡착제를 구비한 마이크로 스피커
CN109678392B (zh) 二氧化硅气凝胶吸音材料和发声装置
CN115460531B (zh) 沸石颗粒、发声装置和电子设备
CN210112267U (zh) 一种发声装置
CN116723443A (zh) 吸音件及发声装置
CN115784666A (zh) 吸音材料、发声装置和电子设备
CN116959395A (zh) 吸音材料、发声装置和电子设备
CN113903320A (zh) 吸音材料及应用该吸音材料的扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902005

Country of ref document: EP

Kind code of ref document: A1