WO2018040393A1 - 扬声器模组 - Google Patents

扬声器模组 Download PDF

Info

Publication number
WO2018040393A1
WO2018040393A1 PCT/CN2016/111110 CN2016111110W WO2018040393A1 WO 2018040393 A1 WO2018040393 A1 WO 2018040393A1 CN 2016111110 W CN2016111110 W CN 2016111110W WO 2018040393 A1 WO2018040393 A1 WO 2018040393A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound absorbing
absorbing particles
foaming sound
speaker module
module according
Prior art date
Application number
PCT/CN2016/111110
Other languages
English (en)
French (fr)
Inventor
曹晓东
刘金利
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2018040393A1 publication Critical patent/WO2018040393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the present invention relates to the field of speaker technology, and in particular to a speaker module.
  • the speaker module is an indispensable component in electro-acoustic products.
  • the speaker module is usually composed of a casing and a speaker unit, and the speaker unit divides the inner cavity of the module casing into two chambers of a front sound chamber and a rear sound chamber.
  • a sound absorbing member is usually added in the rear sound chamber, and the sound absorbing member absorbs part of the sound energy, which is equivalent to expanding the volume of the rear cavity, thereby Achieve the effect of reducing the module F0.
  • Conventional sound absorbing members are foamed foams such as polyurethane, melamine and the like.
  • a porous material such as activated carbon, natural zeolite powder, active silica, molecular sieve or according to a specific type and ratio
  • the mixture is filled into the rear acoustic cavity, and the special physical pore structure inside the porous material is used to realize rapid adsorption-desorption of the gas in the rear acoustic cavity, thereby achieving the effect of virtually increasing the resonance space of the acoustic cavity after the speaker.
  • This method can reduce the resonant frequency F0 of the speaker and improve the sensitivity of the low frequency sound.
  • the processing technology of the porous material is not perfect, the porous material produced has certain defects, so it is necessary to improve the processing technology or structure of the porous material to improve the attraction performance.
  • a speaker module comprising:
  • module housing having a receiving cavity
  • a speaker assembly disposed in the accommodating cavity, the speaker assembly dividing the accommodating cavity into a rear acoustic cavity and a front sounding zone;
  • non-foaming sound absorbing particle having a multi-stage pore structure, the non-foaming sound absorbing particles being filled in the rear acoustic cavity, and the non-foaming sound absorbing particles being composed of a zeolite original powder particle bonding;
  • the non-foaming sound absorbing particles have pores of three different pore sizes, such as micropores, mesopores and macropores, the micropores having a pore size ranging from 0.3 to 0.9 nm, and the pore diameter of the mesopores ranging from 2 to 40 nm.
  • the bubble sound absorbing particles have a doping element, and the doping element includes at least one of boron, iron, titanium, potassium, calcium, tin, antimony, bismuth, magnesium, sodium, and titanium.
  • the doping element is doped inside the crystal of the non-foaming sound absorbing particles.
  • the doping element is configured for surface modification of the zeolite raw powder particles.
  • the non-foaming sound absorbing particles have a binder therein, and the binder contains a doping element.
  • the binder is doped with an auxiliary agent, and the auxiliary agent contains a doping element.
  • the doping element comprises a rare earth element.
  • the non-foaming sound absorbing particles have a specific surface area ranging from 250 to 500 m 2 /g.
  • the macropores have a pore size greater than 0.1 micron and the macropores have a local peak diameter ranging from 0.1 to 25 micrometers.
  • the secondary pores there is a secondary pore between the zeolite raw powder particles, the secondary pores having a diameter greater than 100 nanometers, and the secondary pores having a local peak diameter ranging from 0.1 to 25 micrometers.
  • the non-foaming sound absorbing particles have a spherical or spheroidal structure, and the non-foaming sound absorbing particles have an aspect ratio of less than 1.5 and a particle size ranging from 0.15 to 0.45 mm.
  • the inventors of the present invention have found that in the prior art, the novel porous material has a better sound absorbing effect than the conventional sound absorbing material, and the novel porous sound absorbing material is generally known to those skilled in the art.
  • the performance is highly recognized. Therefore, in the case where it is required to further improve the acoustic performance of the speaker and reduce the resonance frequency, those skilled in the art generally do not consider changing the processing technique or composition of the porous sound absorbing material.
  • the inventors of the present invention have recognized the drawbacks of the porous sound absorbing material and have made corresponding improvements. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is a schematic structural view of a non-foaming sound absorbing particle provided by an embodiment of the present invention
  • FIG. 2 is a schematic view showing the microstructure of non-foaming sound absorbing particles provided by an embodiment of the present invention.
  • the invention provides a speaker module, which comprises a module housing, a speaker assembly and non-foaming sound absorbing particles, wherein the non-foaming sound absorbing particles have doping elements, which can be reduced by doping doping elements.
  • the crystal defects in the non-foaming sound absorbing particles can eliminate the polarity of the crystal structure to some extent and reduce the failure phenomenon caused by the adsorption of heterogeneous molecules by the sound absorbing particles.
  • the module housing has a receiving cavity for receiving various components of the speaker module.
  • the speaker assembly is disposed in the receiving cavity to divide the receiving cavity into a front sounding zone and a rear sounding cavity.
  • the speaker assembly generally includes a vibrating assembly that drives the vibrating assembly to vibrate to emit sound, and a sound that is transmitted from the front sounding area to the outside, the rear sound chamber for absorbing sound propagating from the back side of the vibrating assembly, and capable of Plays the role of strengthening the bass.
  • the non-foaming sound absorbing particles 1 are filled in the rear acoustic cavity, and Fig. 1 shows the structure of the non-foaming sound absorbing particles 1 which are stacked together when filled in the rear acoustic cavity.
  • the non-foaming sound absorbing particles 1 have a multi-stage pore structure inside, and when the surrounding air pressure changes, the pore structure therein can adsorb air or desorb air, thereby absorbing sound and balancing air pressure.
  • the non-foaming sound absorbing particles 1 have pores of three different pore size ranges of micropores 21, mesopores 22 and macropores, wherein the micropores 21 have the smallest pore size range, and can be selected from 0.3 to 0.9 nm. between.
  • the pores of the micropores 21 are used for adsorbing and desorbing air molecules, and in the non-foaming sound absorbing particles 1 mainly function to absorb sound and enlarge the virtual space of the sound chamber.
  • the pore size of the mesopores 22 is larger than the pore diameter of the micropores 21, and the pore size range is selected to be between 2 and 40 nanometers.
  • the micropores 21 are communicated around the mesopores 22.
  • the mesopores 22 mainly serve to introduce air into the micropores 21 or to quickly discharge the air in the micropores 21.
  • the mesopores 22 themselves can also be used to some extent.
  • the action of adsorbing and desorbing air cooperates with the micropores 21 to exert a sound absorbing effect.
  • the macropore has a larger aperture than the mesopores 22, and the macropores communicate with the mesopores 22 and the micropores 21.
  • the macropores function to rapidly introduce outside air into the mesopores 22 and the micropores 21, or The air adsorbed in the holes 22 and the micro holes 21 is led to the outside.
  • the non-foaming sound absorbing particles are doped with a doping element
  • the doping element may include At least one of boron, iron, titanium, potassium, calcium, tin, antimony, bismuth, magnesium, sodium, and titanium.
  • at least one of the above doping elements may be incorporated into the non-foaming sound absorbing particles according to different use environments.
  • the present invention replaces or replaces a part of silicon atoms or other hetero atoms such as aluminum atoms by purposely incorporating a specific doping element into the crystal structure of the non-foaming sound absorbing particles.
  • These doping elements can adsorb the repulsion of the non-foaming sound absorbing particles by the heterogeneous molecules, thereby preventing or controlling the adsorption of the heterogeneous molecules by the non-foaming sound absorbing particles, and weakening the failure phenomenon caused by the inability to desorb after adsorbing the heterogeneous molecules.
  • the non-foaming sound absorbing particles of the present invention are usually composed of fine particles of zeolite raw powder, and the original particles of the zeolite may be aluminosilicate powder or non-aluminosilicate zeolite powder, which is not limited by the present invention.
  • the doping of the present invention utilizes other elements or groups of atoms similar in nature to silicon and aluminum, partially replacing silicon, aluminum, and heteroatoms in the crystal framework of the zeolite structure, or filling defect vacancies to form a complete, good time-consuming structural crystal skeleton.
  • the method of doping may be a displacement method, a hydrothermal synthesis method, or the like, which is not limited by the present invention.
  • the crystal material must have atomic defects during growth, and the defect position is strong, and it is easy to adsorb heterogeneous molecules, which causes the micropores to be desorbed, thereby causing failure. Doping elements can occupy these defect sites and reduce the adsorption of heterogeneous molecules.
  • the aluminoxy tetrahedron has a negative charge, and the heterogeneous molecules which are unable to desorb are usually polar molecules, and thus are non-foamed. Sound absorbing particles are highly susceptible to the adsorption of heterogeneous molecules.
  • the polarity of the microscopic crystal structure can be eliminated or changed, making it repulsive to heterogeneous molecules and unable to adsorb heterogeneous molecules. Further, the smoothness of the micropores and mesopores is ensured, and the failure phenomenon is not or rarely generated, and the stability of the attraction performance is ensured.
  • the several doping elements provided by the present invention are elements capable of achieving the above effects or effects, and the doping elements in the non-foaming sound absorbing particles should include at least one of the above elements according to actual performance requirements.
  • the doping element may be doped inside the crystal structure of the non-foaming sound absorbing particles.
  • the doping element may also be configured for surface modification treatment of the zeolite raw powder particles. The invention does not limit the form in which the doping element is incorporated into the non-foaming sound absorbing particles.
  • the non-foaming sound absorbing particles have a binder
  • the doping element may also To be doped in the binder, this doping is suitable for various types of adhesives such as organic binders or inorganic binders.
  • the adhesive may further have an auxiliary agent.
  • auxiliaries such as defoamers, accelerators, and homogenizers may be used.
  • the doping element may also be incorporated in the auxiliary agent, and the doping element incorporated in the binder or the auxiliary agent can be combined with the non-foaming sound absorbing particle when performing the hydrothermal crystallization reaction or the like. The crystal structure produces a reaction.
  • the doping element may further include a rare earth element, and a person skilled in the art may select a suitable rare earth element to be doped in the non-foaming sound absorbing particle according to actual performance requirements, which is not limited by the present invention.
  • the non-foaming sound absorbing particles provided by the present invention have a specific surface area ranging from 250 to 500 m 2 /g.
  • the specific surface area is controlled within this range, and the content of micropores in the non-foaming sound absorbing particles can be controlled within an appropriate range. In this way, it can ensure that there are enough micropores to adsorb and desorb air molecules, and also ensure that there are enough mesopores and macropores to allow air to quickly enter and exit the micropores.
  • This embodiment can increase the utilization of micropores and enhance the response sensitivity of non-foaming sound absorbing particles.
  • the proportion of micropores in the non-foaming sound absorbing particles is high, it means that the proportion of mesopores and macropores is low. Although the overall specific surface area is higher, the pore structure in the non-foaming sound absorbing particles can accommodate more air molecules. However, due to the low ratio of mesopores and macropores, the air molecules cannot smoothly and quickly enter and exit the micropores, resulting in a low utilization rate of the micropores and a significant improvement in sound absorption.
  • the macropores have a pore size greater than 0.1 micron and the macropores have a local peak diameter ranging from 0.1 to 25 micrometers.
  • the large hole serves as the main passage for the air to enter and exit the sound absorbing particles. If the aperture is too small, it will seriously affect the ability of the sound absorbing particles to respond to the pressure change. If the aperture of the large hole is too large, the internal pores of the sound absorbing particles will be sparse and the specific surface area will be reduced. In the case, the acoustic performance is degraded, and the mechanical properties are poor, and it is easy to cause powder or breakage. Therefore, in a preferred embodiment, the large pores have a local peak diameter in the range of 0.1 to 25 microns.
  • a secondary channel 3 between the zeolite original powder particles after bonding, and the secondary channel 3 also provides a flow channel for adsorption and desorption of air, and a secondary channel.
  • the pore size of 3 is typically greater than 100 nanometers.
  • the original zeolite powder The degree of bonding of the microparticles 11 is such that the local peak of the secondary pores 3 may range from 0.1 to 25 microns, which is substantially equivalent to the diameter of the pores of the macropores. If the gap of the zeolite raw powder particles is large, the secondary pores in the pore size range are not formed, and the present invention does not limit this.
  • the particle size range of the non-foaming sound absorbing particles 1 may be between 0.05 and 1 mm.
  • the particles as a whole have a spherical structure, or a spherical ellipsoid or an irregular spherical structure.
  • the non-foaming sound absorbing particles 1 have a particle diameter ranging from 0.15 to 0.45 mm, and the entire particle length to width ratio is less than 1.5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本发明公开了一种扬声器模组。该扬声器模组包括:模组壳体,所述模组壳体具有容纳腔;扬声器组件,所述扬声器组件设置在所述容纳腔中,所述扬声器组件将所述容纳腔分割为后声腔和前出声区;具有多级孔道结构的非发泡吸音颗粒,所述非发泡吸音颗粒填充在所述后声腔中,非发泡吸音颗粒由沸石原粉微粒粘接构成;非发泡吸音颗粒具有微孔、介孔以及大孔三种不同孔径范围的孔道,所述微孔的孔径范围为0.3-0.9纳米,所述介孔的孔径范围为2-40纳米,非发泡吸音颗粒中具有掺杂元素,所述掺杂元素包括硼、铁、钛、钾、钙、锡、铯、锗、镁、钠、钛中的至少一种。

Description

扬声器模组 技术领域
本发明涉及属于扬声器技术领域,具体地,涉及一种扬声器模组。
背景技术
扬声器模组作为一种将电信号转换为声音信号能量转换器,是电声产品中不可或缺的部件。扬声器模组通常由外壳和扬声器单体组成,扬声器单体将模组外壳的内腔分隔成前声腔和后声腔两个腔体。为了改善扬声器模组声学性能(如降低模组的谐振频率F0、扩展带宽),通常会在后声腔内增设吸音件,吸音件会吸收掉部分声能,等效于扩大后腔体容积,从而达到降低模组F0效果。传统的吸音件为发泡类泡棉,如聚氨酯、三聚氰胺等。
近年,在电子产品的日益轻薄化的发展趋势下,作为电子产品重要零部件的扬声器单元不断向结构扁平化的方向发展。但是,扁平结构的微型扬声器模组会造成后声腔的腔体容积缩小,导致扬声器谐振频率F0升高,低频灵敏度降低,对扬声器声学性能造成不利影响。
为解决扬声器模组轻薄化与声学性能之间的矛盾,本发明的发明人发现,可以将多孔性材料(如活性炭、天然沸石粉、活性二氧化硅、分子筛或按照特定种类和比例而制的混合物等)填充到后声腔内,利用多孔性材料内部特殊物理孔道构造实现对后声腔内气体快速吸附-脱附,达到虚拟增大扬声器后声腔的谐振空间的效果。这种方法可以降低扬声器的谐振频率F0,提高低频声音灵敏度。
但是,由于这种多孔性材料的加工工艺并不完善,制成的多孔性材料存在一定缺陷,所以,有必要对多孔性材料的加工工艺或结构进行改进,提升吸引性能。
发明内容
本发明的一个目的是提供一种扬声器模组的新技术方案。
根据本发明的第一方面,提供了一种扬声器模组,其中包括:
模组壳体,所述模组壳体具有容纳腔;
扬声器组件,所述扬声器组件设置在所述容纳腔中,所述扬声器组件将所述容纳腔分割为后声腔和前出声区;
具有多级孔道结构的非发泡吸音颗粒,所述非发泡吸音颗粒填充在所述后声腔中,非发泡吸音颗粒由沸石原粉微粒粘接构成;
非发泡吸音颗粒具有微孔、介孔以及大孔三种不同孔径范围的孔道,所述微孔的孔径范围为0.3-0.9纳米,所述介孔的孔径范围为2-40纳米,非发泡吸音颗粒中具有掺杂元素,所述掺杂元素包括硼、铁、钛、钾、钙、锡、铯、锗、镁、钠、钛中的至少一种。
可选地,所述掺杂元素掺杂在非发泡吸音颗粒的晶体内部。
可选地,所述掺杂元素配置为用于对沸石原粉微粒进行表面改性。
可选地,所述非发泡吸音颗粒中具有粘接剂,所述粘接剂中含有掺杂元素。
可选地,所述粘接剂中掺有助剂,所述助剂中含有掺杂元素。
可选地,所述掺杂元素包括稀土元素。
可选地,所述非发泡吸音颗粒的比表面积范围为250-500m2/g。
可选地,所述大孔的孔径大于0.1微米,大孔的孔径局部峰值范围为0.1-25微米。
可选地,所述沸石原粉微粒之间存在二级孔道,所述二级孔道的直径大于100纳米,所述二级孔道的孔径局部峰值范围为0.1-25微米。
可选地,所述非发泡吸音颗粒呈球形或类球形结构,非发泡吸音颗粒的长宽比小于1.5,粒径范围为0.15-0.45mm。
本发明的发明人发现,在现有技术中,新型多孔性材料具有比传统吸音材料更好的吸音效果,本领域技术人员普遍对这种新型多孔吸音材料 的性能有很高的认可度。所以,在需要进一步改善扬声器声学性能,降低谐振频率的情况下,本领域技术人员通常不考虑改变多孔吸音材料的加工工艺或成分。而本发明的发明人意识到了多孔吸音材料存在的缺陷,并做出了相应的改进。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明具体实施方式提供的非发泡吸音颗粒的结构示意图;
图2是本发明具体实施方式提供的非发泡吸音颗粒的微观结构示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供了一种扬声器模组,模组中包括模组壳体、扬声器组件以及非发泡吸音颗粒,所述非发泡吸音颗粒中具有掺杂元素,通过掺入掺杂元素,能够减少非发泡吸音颗粒中的晶体缺陷,或者,可以在一定程度上消除晶体结构的极性,减少吸音颗粒吸附异类分子造成的失效现象。
所述模组壳体具有容纳腔,用于容纳扬声器模组的各部件。所述扬声器组件设置在容纳腔中,将容纳腔分为前出声区和后声腔。扬声器组件通常包括振动组件和磁路系统,磁路系统驱动振动组件振动从而发出声音,声音从所述前出声区传到外界,后声腔用于吸收从振动组件背侧传播的声音,并能够起到强化低音的作用。所述非发泡吸音颗粒1填充在所述后声腔中,图1示出了非发泡吸音颗粒1的结构,其填充在后声腔中时各颗粒堆积在一起。
所述非发泡吸音颗粒1内部具有多级孔道结构,在周围气压发生变化时,其中的孔道结构能够吸附空气或脱附空气,起到吸收声音、平衡气压的作用。如图2所示,非发泡吸音颗粒1中具有微孔21、介孔22和大孔三种不同孔径范围的孔道,其中,微孔21的孔径范围最小,可选在0.3-0.9纳米之间。微孔21孔道用于吸附、脱附空气分子,在非发泡吸音颗粒1中主要起到吸收声音、扩大后声腔虚拟空间的作用。所述介孔22的孔径大于微孔21的孔径,孔径范围可选在2-40纳米之间。介孔22周围连通有微孔21,介孔22主要起到将空气传入微孔21或快速将微孔21中的空气导出的作用,另一方面,介孔22本身也能够一定程度上起到吸附、脱附空气的作用,与微孔21共同作用发挥吸音效果。所述大孔的孔径大于介孔22,大孔与介孔22和微孔21连通,所述大孔的作用是快速将外界的空气导入介孔22和微孔21内,或者,快速将介孔22和微孔21内吸附的空气导出到外界。
特别地,所述非发泡吸音颗粒中掺有掺杂元素,掺杂元素可以包括 硼、铁、钛、钾、钙、锡、铯、锗、镁、钠、钛中的至少一种。根据对扬声器模组的性能要求不同,使用环境不同,可以在上述掺杂元素中至少选择一种掺入非发泡吸音颗粒中。本发明通过有目的性的将特定的掺杂元素掺入非发泡吸音颗粒的晶体结构中,取代、置换其中的部分硅原子,或者铝原子等其它杂原子。这些掺杂元素能够对非发泡吸音颗粒吸附异类分子产生的排斥作用力,从而防止或控制非发泡吸音颗粒吸附异类分子,减弱吸附异类分子后无法脱附造成的失效现象。
本发明所述非发泡吸音颗粒通常由沸石原粉微粒粘接构成,沸石原粉颗粒可以是硅铝酸盐粉末,也可以是无铝硅酸盐沸石粉末,本发明不对此进行限制。本发明的掺杂是利用性质与硅、铝相似的其它元素或原子团,部分取代沸石结构晶体骨架中的硅、铝以及杂原子,或者填充缺陷空位,形成完整、良好的费时结构晶体骨架。掺杂的方式可以采用置换法、水热合成法等,本发明不对此进行限制。
这种掺杂通过两个方面达到形成良好晶体结构的作用。一方面,晶体材料在生长时必然存在原子缺陷,缺陷位置活性强,易吸附异类分子,造成微孔无法脱附,进而造成失效。掺杂元素能够占据这些缺陷位置,减少异类分子的吸附。另一方面,在采用硅铝酸盐形成非发泡吸音颗粒的情况下,铝氧四面体带有一个负电荷,而能够造成无法脱附的异类分子通常都是极性分子,因此非发泡吸音颗粒极易吸附异类分子。通过掺杂置换,能够消除或改变微观晶体结构的极性,使其对异类分子产生排斥力,无法吸附异类分子。进一步地,保证了微孔、介孔的畅通,不会或很少产生失效现象,保证了吸引性能的稳定性。本发明以上提供的几种掺杂元素是能够达到上述效果或作用的元素,根据实际性能的需求,非发泡吸音颗粒中的掺杂元素应至少包括上述元素的一种。
可选地,所述掺杂元素可以掺杂在非发泡吸音颗粒的晶体结构内部。或者,可选地,所述掺杂元素也可以配置为用于对沸石原粉微粒进行表面改性处理。本发明并不限制掺杂元素掺入非发泡吸音颗粒中的形式。
进一步地,所述非发泡吸音颗粒中具有粘接剂,所述掺杂元素还可 以掺杂在所述粘接剂中,这种掺杂适用于各种类型的粘接剂,例如有机粘接剂或无机粘接剂。可选地,所述粘接剂中还可以具有助剂。根据非发泡吸音颗粒的原料、性能要求以及成型工艺的不同,可以选用不同种类的助剂,例如消泡剂、促凝剂、均匀剂等。特别地,所述掺杂元素还可以掺在所述助剂中,在进行水热晶化反应等加工时,掺在粘接剂或助剂中的掺杂元素能够与非发泡吸音颗粒的晶体结构产生反应。
可选地,所述掺杂元素还可以包括稀土元素,本领域技术人员可以根据实际性能要求的不同,选择适合的稀土元素掺杂在非发泡吸音颗粒中,本发明不对此进行限制。
优选地,本发明提供的非发泡吸音颗粒的比表面积范围为250-500m2/g。比表面积控制在这一范围内,能够将非发泡吸音颗粒中的微孔含量控制在适当的范围内。这样,既能够保证有足够的微孔对空气分子进行吸附、脱附作用,也能够保证有足够多的介孔和大孔,使空气能够快速进出微孔。这种实施方式能够提高微孔的利用率,并且增强非发泡吸音颗粒的响应灵敏度。如果微孔在非发泡吸音颗粒中所占的比例较高,则意味着介孔和大孔所占的比例较低。虽然,整体的比表面积更高意味着非发泡吸音颗粒中的孔道结构能够容纳更多空气分子。但是,由于介孔和大孔的比例较低,所以,空气分子无法顺畅、快速的进出微孔,造成了微孔的实际利用率很低,吸音效果没有明显提升。
进一步可选地,所述大孔的孔径大于0.1微米,大孔的孔径局部峰值范围为0.1-25微米。大孔作为空气进出吸音颗粒的主要通道,如果孔径过小,会严重影响吸音颗粒对气压变化的响应能力;而如果大孔的孔径过大,则会出现吸音颗粒内部孔道稀疏,比表面积降低的情况,声学性能下降,且机械性能差,容易起粉、破损。所以,在优选的实施方式中,所述大孔的孔径局部峰值在0.1-25微米范围内。
另外,如图2所示,经过粘接成型后的沸石原粉微粒之间还可以存在有二级孔道3,这种二级孔道3也为空气提供吸附、脱附的流动通道,二级孔道3的孔径大小通常大于100纳米。根据不同实施方式中沸石原粉 微粒11的粘接密实程度,所述二级孔道3的孔径局部峰值范围可以为0.1-25微米,与所述大孔的孔道直径基本相当。如果沸石原粉微粒的间隙较大,则不会形成该孔径范围内的二级孔道,本发明不对此进行限制。
可选地,在考虑扬声器模组对非发泡吸音颗粒的性能要求的前提下,为了充分利用后声腔的空间,所述非发泡吸音颗粒1的粒径范围可以在0.05-1mm之间,颗粒整体呈球形结构,或者呈类球形的椭球、不规则球形结构。优选地,非发泡吸音颗粒1的粒径范围为0.15-0.45mm之间,颗粒整体的长宽比小于1.5。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种扬声器模组,其特征在于,包括:
    模组壳体,所述模组壳体具有容纳腔;
    扬声器组件,所述扬声器组件设置在所述容纳腔中,所述扬声器组件将所述容纳腔分割为后声腔和前出声区;
    具有多级孔道结构的非发泡吸音颗粒(1),所述非发泡吸音颗粒(1)填充在所述后声腔中,非发泡吸音颗粒(1)由沸石原粉微粒(11)粘接构成;
    非发泡吸音颗粒(1)具有微孔(21)、介孔(22)以及大孔三种不同孔径范围的孔道,所述微孔(21)的孔径范围为0.3-0.9纳米,所述介孔(22)的孔径范围为2-40纳米,非发泡吸音颗粒(1)中具有掺杂元素,所述掺杂元素包括硼、铁、钛、钾、钙、锡、铯、锗、镁、钠、钛中的至少一种。
  2. 根据权利要求1所述的扬声器模组,其特征在于,所述掺杂元素掺杂在非发泡吸音颗粒(1)的晶体内部。
  3. 根据权利要求1或2所述的扬声器模组,其特征在于,所述掺杂元素配置为用于对沸石原粉微粒(11)进行表面改性。
  4. 根据权利要求1-3任意之一所述的扬声器模组,其特征在于,所述非发泡吸音颗粒(1)中具有粘接剂,所述粘接剂中含有掺杂元素。
  5. 根据权利要求1-4任意之一所述的扬声器模组,其特征在于,所述粘接剂中掺有助剂,所述助剂中含有掺杂元素。
  6. 根据权利要求1-5任意之一所述的扬声器模组,其特征在于,所述掺杂元素包括稀土元素。
  7. 根据权利要求1-6任意之一所述的扬声器模组,其特征在于,所述非发泡吸音颗粒(1)的比表面积范围为250-500m2/g。
  8. 根据权利要求1-7任意之一所述的扬声器模组,其特征在于,所述大孔的孔径大于0.1微米,大孔的孔径局部峰值范围为0.1-25微米。
  9. 根据权利要求1-8任意之一所述的扬声器模组,其特征在于,所述沸石原粉微粒(11)之间存在二级孔道(3),所述二级孔道(3)的直径大于100纳米,所述二级孔道(3)的孔径局部峰值范围为0.1-25微米。
  10. 根据权利要求1-9任意之一所述的扬声器模组,其特征在于,所述非发泡吸音颗粒(1)呈球形或类球形结构,非发泡吸音颗粒(1)的长宽比小于1.5,粒径范围为0.15-0.45mm。
PCT/CN2016/111110 2016-08-31 2016-12-20 扬声器模组 WO2018040393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610782558.9A CN106231511A (zh) 2016-08-31 2016-08-31 扬声器模组
CN201610782558.9 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040393A1 true WO2018040393A1 (zh) 2018-03-08

Family

ID=58073029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111110 WO2018040393A1 (zh) 2016-08-31 2016-12-20 扬声器模组

Country Status (2)

Country Link
CN (1) CN106231511A (zh)
WO (1) WO2018040393A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217805A1 (zh) * 2021-04-14 2022-10-20 歌尔股份有限公司 发声器件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231511A (zh) * 2016-08-31 2016-12-14 歌尔股份有限公司 扬声器模组
CN106162468A (zh) * 2016-08-31 2016-11-23 歌尔股份有限公司 扬声器模组
CN106210999A (zh) * 2016-08-31 2016-12-07 歌尔股份有限公司 扬声器模组
CN107046665B (zh) * 2017-03-30 2019-10-22 歌尔股份有限公司 复合陶瓷吸音件和发声装置模组
CN106875934A (zh) * 2017-03-30 2017-06-20 歌尔股份有限公司 金属有机框架吸音件和发声装置模组
CN115806739A (zh) * 2022-11-30 2023-03-17 镇江贝斯特新材料股份有限公司 一种多孔声学增容材料及其制备方法和扬声器、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046104A (en) * 1989-11-30 1991-09-03 Cambridge Soundworks, Inc. Loudspeaker system
CN105142074A (zh) * 2015-08-19 2015-12-09 歌尔声学股份有限公司 扬声器模组
CN105516880A (zh) * 2015-12-01 2016-04-20 歌尔声学股份有限公司 吸音材料制备方法、吸音材料以及扬声器
CN105872920A (zh) * 2016-04-19 2016-08-17 碗海鹰 一种用于扬声器的吸音材料
CN106231511A (zh) * 2016-08-31 2016-12-14 歌尔股份有限公司 扬声器模组
CN106231515A (zh) * 2016-09-06 2016-12-14 歌尔股份有限公司 扬声器模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565463B2 (en) * 2007-06-12 2013-10-22 Panasonic Corporation Loudspeaker system
EP2424270B1 (en) * 2010-08-23 2014-05-21 Knowles Electronics Asia PTE. Ltd. Loudspeaker system with improved sound
CN102390843B (zh) * 2011-08-02 2013-05-01 复旦大学 三维连通多级孔道结构沸石分子筛材料及其制备方法
US8687836B2 (en) * 2012-08-31 2014-04-01 Bose Corporation Loudspeaker system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046104A (en) * 1989-11-30 1991-09-03 Cambridge Soundworks, Inc. Loudspeaker system
CN105142074A (zh) * 2015-08-19 2015-12-09 歌尔声学股份有限公司 扬声器模组
CN105516880A (zh) * 2015-12-01 2016-04-20 歌尔声学股份有限公司 吸音材料制备方法、吸音材料以及扬声器
CN105872920A (zh) * 2016-04-19 2016-08-17 碗海鹰 一种用于扬声器的吸音材料
CN106231511A (zh) * 2016-08-31 2016-12-14 歌尔股份有限公司 扬声器模组
CN106231515A (zh) * 2016-09-06 2016-12-14 歌尔股份有限公司 扬声器模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217805A1 (zh) * 2021-04-14 2022-10-20 歌尔股份有限公司 发声器件

Also Published As

Publication number Publication date
CN106231511A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018040393A1 (zh) 扬声器模组
WO2018040394A1 (zh) 扬声器模组
WO2018040392A1 (zh) 扬声器模组
WO2018045668A1 (zh) 扬声器模组
CN108298559B (zh) 分子筛及应用该分子筛的吸音材料和扬声器
CN106792389B (zh) 发声装置的吸音件及其制备方法和发声装置模组
WO2021135878A1 (zh) 一种活性炭吸音材料、发声装置以及电子设备
WO2021135871A1 (zh) 吸音材料制备方法、吸音材料、发声装置以及电子设备
WO2022007333A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
CN109448688A (zh) 一种活性炭吸音材料和发声装置
WO2022007335A1 (zh) 声学调节材料、发声装置及电子设备
WO2020134376A1 (zh) 吸音材料及扬声器箱
CN109660924A (zh) 活性炭吸音颗粒和发声装置
WO2022007332A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
CN109511056A (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
WO2022007334A1 (zh) 用于发声装置的声学调节材料、发声装置、填充方法及电子设备
CN109511057A (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511058A (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109874089B (zh) 二氧化硅气凝胶吸音材料和发声装置
CN109640237A (zh) 一种活性炭吸音材料和发声装置
WO2024103562A1 (zh) 吸音材料、发声装置和电子设备
CN106817665A (zh) 沸石颗粒及其制作方法
CN109935224A (zh) 用于降低发声装置谐振频率的活性炭吸音材料和发声装置
CN206413183U (zh) 发声装置的吸音件和发声装置模组
JP2017123647A (ja) 空気吸着剤を備えるマイクロスピーカー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914954

Country of ref document: EP

Kind code of ref document: A1