WO2022007333A1 - 声学调节材料、填充方法、发声装置及电子设备 - Google Patents

声学调节材料、填充方法、发声装置及电子设备 Download PDF

Info

Publication number
WO2022007333A1
WO2022007333A1 PCT/CN2020/136714 CN2020136714W WO2022007333A1 WO 2022007333 A1 WO2022007333 A1 WO 2022007333A1 CN 2020136714 W CN2020136714 W CN 2020136714W WO 2022007333 A1 WO2022007333 A1 WO 2022007333A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
acoustic
thermoplastic elastomer
expandable thermoplastic
adjustment material
Prior art date
Application number
PCT/CN2020/136714
Other languages
English (en)
French (fr)
Inventor
潘泉泉
姚阳阳
凌风光
李春
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022007333A1 publication Critical patent/WO2022007333A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to the technical field of electro-acoustic conversion, and more particularly, to an acoustic adjustment material for a sound-generating device, a filling method, a sound-generating device and electronic equipment.
  • a sound-generating device such as a receiver or a speaker, usually includes a housing and a sound-generating unit accommodated in the housing.
  • the sound-generating unit divides the cavity in the casing into a front acoustic cavity and a rear acoustic cavity.
  • the front acoustic cavity is communicated with the sound outlet hole, and the sound waves generated by the sounding unit are radiated from the front acoustic cavity.
  • the rear acoustic cavity is communicated with the sounding unit.
  • the vibrating airflow on the opposite side of the sound wave can radiate into the rear acoustic cavity.
  • the rear cavity is used to adjust the low frequency effect of the sound-generating device.
  • sound-absorbing particles are usually filled in the rear acoustic cavity.
  • the sound-absorbing particles can adsorb and desorb the vibrating gas, so that the low-frequency effect of the sound-emitting device is better.
  • the sound-absorbing particles will collide with each other, resulting in fragmentation.
  • crushing will generate dust, and the dust will enter the sound-emitting unit, which will cause the sound-emitting unit to work abnormally.
  • the fragmentation of the sound-absorbing particles will increase the F0 of the sound-generating device, resulting in poorer low-frequency effects.
  • Chinese utility model patent ZL201921855579.4 discloses a filler for a loudspeaker, the filler includes an expandable filler and an acoustic filler, wherein the expandable filler can be permanently expanded from a first size to a second size when the expansion is triggered, and the acoustic filler Plays a fixed role, improves the sound quality in different directions, and can reduce the movement of the acoustic filler to avoid flow noise (paragraph 0007).
  • the expandable filler permanently expands from the initial first size to the fixed second size when the expansion is triggered, and the size does not change any more. Suitability of fillers.
  • An object of the present invention is to provide a new technical solution for the acoustic adjustment material of the sound generating device.
  • an acoustic adjustment material includes: an expandable thermoplastic elastomer filler and an acoustic improvement filler, and the expandable thermoplastic elastomer filler is foamed under a triggered condition to become a foam filler, so as to improve the acoustic performance of the acoustic improvement filler.
  • the movement is buffered, and the expanded volume of the expandable thermoplastic elastomer filler after foaming varies with temperature and/or foaming time.
  • the type of the expandable thermoplastic elastomer filler is one or more of polyolefin thermoplastic elastomer, thermoplastic vulcanizate, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer and styrene block copolymer . .
  • the acoustic-improving filler is a material with acoustic properties made of one or more of activated carbon, zeolite powder, silica, porous alumina, molecular sieve, and metal-organic framework material.
  • the expandable thermoplastic elastomer filler is in the form of particles, flakes or blocks.
  • the density of the expandable thermoplastic elastomer filler is 0.005g/mL-0.8g/mL.
  • the expandable thermoplastic elastomer filler is granular, and after foaming, the physical size of the expandable thermoplastic elastomer filler is 0.1 mm-23 mm.
  • the expandable thermoplastic elastomer filler includes a thermoplastic elastomer material and a blowing agent mixed together, wherein the blowing agent includes a low-boiling alkane and the like.
  • the expandable thermoplastic elastomer filler is triggered by at least one of thermal radiation, optical radiation, and electromagnetic radiation.
  • the expandable thermoplastic elastomer filler accounts for 0.01%-40% of the total volume of the acoustic adjustment material; after foaming, the volume of the foam filler accounts for 0.05% of the total volume of the acoustic adjustment material -65%.
  • the expandable thermoplastic elastomer filler accounts for 0.1%-20% of the total volume of the acoustic adjustment material; after foaming, the volume of the foam filler accounts for 5% of the total volume of the acoustic adjustment material -60%.
  • the foam filler formed by the expandable thermoplastic elastomer filler forms a buffer for the acoustic improving filler.
  • the expandable thermoplastic elastomer filler is triggered by a physical foaming method or a chemical foaming method.
  • the volume of the expandable thermoplastic elastomer filler is increased by 2-140 times.
  • the volume of the expandable thermoplastic elastomer filler is increased by 3-110 times.
  • the foaming process of the expandable thermoplastic elastomer filler includes a first foaming stage and a second foaming stage, the first foaming stage obtains a first foam buffer filler, and the second foaming The foam stage results in a second foam cushioning filler.
  • the volume of the second foam buffer filler is 1-25 times the volume of the first foam buffer filler.
  • a sound producing device includes a housing, a sound-generating unit, and the above-mentioned acoustic adjustment material.
  • the interior of the housing forms a cavity, the cavity includes a rear sound cavity, the sound-generating unit is arranged in the cavity, and the sound-generating The monomer is communicated with the rear acoustic cavity, the rear acoustic cavity includes a filling area, and the acoustic adjustment material is arranged in the filling area.
  • the filling rate of the acoustic adjustment material in the filling area is 50%-95%.
  • both the expandable thermoplastic elastomer filler and the acoustic-improving filler are granular materials
  • the expandable thermoplastic elastomer filler and the acoustic improving filler are mixed and filled in the filling area.
  • both the expandable thermoplastic elastomer filler and the acoustically improving filler are bulk materials
  • the expandable thermoplastic elastomer filler and the acoustic improving filler are alternately arranged; or the bulk expandable thermoplastic elastomer filler and the bulk acoustic improving filler in the same layer are distributed in an array, and the expandable thermoplastic elastomer Body filler and acoustic-improving filler are staggered.
  • the expandable thermoplastic elastomer filler forms a lattice structure, and the acoustic improvement filler is filled in the gaps formed by the expandable thermoplastic elastomer filler; or the acoustic improvement filler forms a lattice structure, The expandable thermoplastic elastomer filler is filled in the gap formed by the acoustic improving filler.
  • a filling method of an acoustic adjustment material of a sound generating device is provided.
  • the acoustic adjustment material is arranged in the filling area of the rear acoustic cavity of the sound generating device in any of the following ways:
  • the acoustic adjustment material is granular, and the expandable thermoplastic elastomer filler is first filled into the filling area, and then the acoustic improvement filler is filled into the filling area;
  • the acoustic adjustment material is in granular form, and the acoustic improvement filler is first filled into the filling area, and then the expandable thermoplastic elastomer filler is filled into the filling area;
  • the acoustic adjustment material is granular, and the expandable thermoplastic elastomer filler and the acoustic improvement filler are mixed first, and then the mixed expandable thermoplastic elastomer filler and the acoustic improvement filler are filled into the filling area;
  • the expandable thermoplastic elastomer filler is disposed on at least one wall of the filling area to form an expandable thermoplastic elastomer filler layer, and then the acoustic improving filler is filled into the filling area.
  • an electronic device includes the above-mentioned sound generating device.
  • the acoustic modulating material includes an expandable thermoplastic elastomer filler and an acoustic improving filler.
  • the foaming of the expandable thermoplastic elastomer filler becomes a foamed body foam, and the foamed body foam provides a buffering effect on the flow and collision of the acoustically improved filler.
  • the expandable thermoplastic elastomer filler greatly reduces the risk of crushing of the acoustic-improving filler, and improves the durability and service life of the acoustic-modulating material.
  • FIG. 1 is a schematic diagram of an unfoamed state of a granular acoustic adjustment material according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a foamed state of a granular acoustic adjustment material according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of an unfoamed state of a bulk acoustic adjustment material according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a foamed state of a block acoustic adjustment material according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an unfoamed state of the bulk acoustic modulation material distributed in an array according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an unfilled state of the acoustic adjustment material of the grid structure according to an embodiment of the present disclosure.
  • 11 shell; 12: sounding monomer; 13: gap; 14: expandable thermoplastic elastomer filler; 15: acoustic improvement filler; 16: rear acoustic cavity.
  • the acoustic adjustment material for a sound generating device.
  • the acoustic adjustment material includes: expandable thermoplastic elastomer filler 14 and acoustic improvement filler 15 .
  • the expandable thermoplastic elastomer filler 14 is foamed under the condition of being triggered to become a foam filler, so as to buffer the movement of the acoustic improvement filler 15, and the expandable thermoplastic elastomer filler 14 is foamed
  • the volume varies with temperature and/or foaming time.
  • the degree of cushioning of the expandable thermoplastic elastomer filler 14 during movement and collision can be flexibly controlled by the foaming temperature and time of the expandable thermoplastic elastomer filler 14.
  • the temperature increases, the damping of the expandable thermoplastic elastomer filler 14 increases, and the buffering capacity of the expandable thermoplastic elastomer filler 14 increases.
  • the higher the temperature the larger the volume of the foam cushioning filler; under the set temperature, the longer the foaming time, the larger the volume of the foam cushioning filler.
  • the foam filler When the sound-generating device is impacted by an external force, the foam filler provides a buffer force for the flow and collision of the acoustic-improving filler, thereby reducing the collision probability of the acoustic-improving filler. In this way, the risk of crushing of the acoustically-improving filler is greatly reduced, and the durability and service life of the acoustically-modifying material is improved.
  • the expandable thermoplastic elastomer filler 14 refers to a thermoplastic elastomer material that can foam under a set trigger condition. In an untriggered condition, the expandable thermoplastic elastomer filler 14 has a smaller volume. This enables the material to be easily filled into a given cavity (eg, the filling area of the rear acoustic cavity). The material foams under triggered conditions, providing cushioning when the acoustically-improving filler collides.
  • the type of the expandable thermoplastic elastomer filler is one or more of polyolefin thermoplastic elastomer, thermoplastic vulcanizate, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer and styrene block copolymer. All of the above materials can be triggered by thermal radiation to foam. Moreover, at different trigger temperatures, the volume after foaming is different, and the volume will change with the temperature change during the application process.
  • the acoustic-improving filler 15 refers to a porous material capable of adsorbing and desorbing vibrating gas.
  • acoustic adjustment materials include acoustic performance materials made of one or more of activated carbon, zeolite powder, silica, porous alumina, molecular sieves, metal-organic framework materials, and the like.
  • the acoustic improving filler 15 may be in the form of granules, flakes, blocks, and the like.
  • the expandable thermoplastic elastomer filler is spherical, quasi-spherical, rod-shaped, cylindrical, square or radial.
  • the above shape has good filling effect and high filling rate.
  • the acoustic adjustment material includes the expandable thermoplastic elastomer filler 14 and the acoustic improvement filler 15 .
  • the expandable thermoplastic elastomer filler 14 is foamed under the condition of being triggered to become a foam filler, so as to buffer the movement of the acoustic improvement filler 15 .
  • the acoustic-improving filler 15 is less likely to collide. In this way, the expandable thermoplastic elastomer filler 14 greatly reduces the risk of crushing of the acoustic improvement filler 15, and improves the durability and service life of the acoustic adjustment material.
  • the expandable thermoplastic elastomer filler 14 forms cells after foaming.
  • the expandable thermoplastic elastomer material has elasticity, and the cells can change the volume according to the change of the external pressure, so as to form a buffering effect on the movement of the acoustic improvement filler 15 .
  • the expandable thermoplastic elastomer filler 14 can effectively buffer the flow and collision of the acoustic improvement filler 15 .
  • the expandable thermoplastic elastomer filler 14 can effectively buffer the vibration of the acoustic adjustment material when the sound generating device operates at high power.
  • the cells provide buffer force for the acoustic improvement filler 15, and the gas in the cells is stagnant and compressed, so that the external energy is consumed and dissipated.
  • the cells gradually terminate the impact load with a small negative acceleration, so the expandable thermoplastic elastomer filler 14 has a good shockproof effect.
  • the different triggering temperatures enable the expandable thermoplastic elastomer filler 14 to change the volume of foaming, thereby adapting to different application environments, which makes the acoustic adjustment material more weather-resistant and adaptable.
  • the expandable thermoplastic elastomer filler is triggered by a physical foaming method or a chemical foaming method.
  • the physical foaming method refers to a method in which bubbles are generated in the thermoplastic elastomer through the volatile matter of the thermoplastic elastomer or the volatile matter dispersed in the thermoplastic elastomer during the molding process.
  • an inert gas can be dissolved in the thermoplastic elastomer under a set pressure, and then triggered by a decompression method to release the gas, thereby forming bubbles in the thermoplastic elastomer.
  • a low-boiling alkane is first added to the thermoplastic elastomer, and then triggered by heating to volatilize the low-boiling alkane, thereby forming bubbles in the thermoplastic elastomer.
  • the low-boiling alkane includes at least one of petroleum ether, butane, pentane, and the like. All of these materials can volatilize under heating, thereby forming bubbles inside the thermoplastic elastomer. Multiple air bubbles form foam.
  • the chemical foaming method refers to: using a chemical method to generate gas to foam the thermoplastic elastomer: heating the chemical foaming agent added to the thermoplastic elastomer to decompose it, releasing gas and foaming.
  • the foaming agent may be, but not limited to, ammonium carbonate, sodium bicarbonate, ammonium chloride, urea, and the like.
  • the above-mentioned blowing agent can be decomposed under heating, thereby generating gas and forming bubbles in the thermoplastic elastomer.
  • the foam may be formed by utilizing the gas released by the chemical reaction between the components of the thermoplastic elastomer.
  • the volume of expansion is different. For example, the higher the trigger temperature, the greater the volume expansion, and the lower the trigger temperature, the lower the volume expansion.
  • the expandable thermoplastic elastomer filler 14 includes an expandable thermoplastic elastomer material and a blowing agent mixed together, wherein the blowing agent includes a low boiling alkane.
  • the blowing agent includes a low boiling alkane.
  • low boiling alkanes have a boiling point of 30°C to 40°C.
  • a foaming agent may be added to the expandable thermoplastic elastomer material, so that the foaming agent penetrates into the expandable thermoplastic elastomer material.
  • the low-boiling alkane includes at least one of petroleum ether, butane, pentane, and the like. All of these materials can volatilize under set trigger conditions, thereby forming cells inside the expandable thermoplastic elastomer material. A plurality of cells form a foam.
  • foaming agents are not limited to the above embodiments, and those skilled in the art can select them according to actual needs.
  • the expandable thermoplastic elastomer filler 14 is at least one of high molecular polymers such as expandable TPEE and expandable TPU. All the above-mentioned expandable thermoplastic elastomer fillers 14 can foam in volume under a set trigger condition, thereby buffering the movement of the acoustically improved fillers 15 .
  • expandable TPEE includes TPEE and a blowing agent mixed together.
  • the expandable TPEE filler has the characteristics of light weight, no water absorption, anti-aging, strong corrosion performance, strong toughness, non-toxic and non-polluting.
  • the expandable thermoplastic elastomer filler 14 is granular or lamellar. The flow of these materials is good and filling in the cavity is easy.
  • the expandable thermoplastic elastomer filler 14 in granular or lamellar form is prepared into a predetermined shape, and then filled into the filling area of the rear acoustic cavity 16 of the sound generating device.
  • one of the expandable thermoplastic elastomer filler 14 and the acoustic-improving filler 15 is prepared into a set three-dimensional structure, and the other is filled into the gaps of the three-dimensional structure in the form of particles or sheets.
  • the expandable thermoplastic elastomer filler 14 is in the form of particles. After foaming, the physical size of the expandable thermoplastic elastomer filler 14 is 0.1 mm-25 mm.
  • the expandable thermoplastic elastomer filler 14 has a good cushioning effect on the acoustic improving filler 15, and the cell has a good cushioning effect.
  • the size of the particles is moderate and will not block the airflow channel of the acoustic improving filler 15, and the acoustic adjusting material has good adsorption and desorption effects on the vibrating airflow.
  • the expandable thermoplastic elastomer filler is granular, and after foaming, the physical size of the expandable thermoplastic elastomer filler 14 is 0.5 mm-2 mm. Within this range, the foaming effect of the foamable thermoplastic elastomer filler 14 is better for the cushioning effect of the acoustic-improving filler.
  • the density of the expandable thermoplastic elastomer filler 14 is 0.2 g/mL-1.5 g/mL. Within this density range, the overall density of the acoustic adjustment material is small, which makes the overall weight of the sound emitting device light.
  • the density of the expandable thermoplastic elastomer filler 14 is 0.5 g/mL-1.2 g/mL, and within this range, the acoustic adjustment material has little effect on the overall weight of the sound-generating device.
  • the expandable thermoplastic elastomer filler after foaming, has a density of 0.005 g/mL to 0.8 g/mL. Within this range, the foam filler has good cushioning effect on the acoustic-improving filler, high structural strength, and good durability.
  • the density of the expandable thermoplastic elastomer filler is 0.01 g/mL-0.08 g/mL. Within this range, the cushioning effect of the foam filler for the acoustic-improving filler is better.
  • the expandable thermoplastic elastomer filler 14 is triggered by at least one of thermal radiation, optical radiation, and electromagnetic radiation. Under the above radiation conditions, the foaming agent in the expandable thermoplastic elastomer filler 14 volatilizes and becomes larger in volume, forming cells in the expandable thermoplastic elastomer material, thereby enabling the foaming of the expandable thermoplastic elastomer material.
  • the volume of the expandable thermoplastic elastomer filler 14 can be increased to an appropriate value. If the trigger time is too short, the foaming multiple of the expandable thermoplastic elastomer filler 14 is small. , it does not play the role of buffering the acoustic improvement filler 15 .
  • the volume of the expandable thermoplastic elastomer filler 14 can be increased to an appropriate value.
  • the cells in the expandable thermoplastic elastomer filler 14 are not ruptured.
  • the foaming agent in the expandable thermoplastic elastomer filler 14 is triggered by means of ultraviolet irradiation.
  • the blowing agent increases in volume, thereby forming cells within the expandable thermoplastic elastomer filler.
  • the acoustic modulation material is heated under the action of an alternating magnetic field.
  • the blowing agent volatilizes, thereby forming cells within the expandable thermoplastic elastomer filler 14 .
  • the above triggering method is easy to operate and has strong controllability of the size of the cells.
  • the triggering method of the expandable thermoplastic elastomer filler 14 is not limited to the above-mentioned embodiment, and those skilled in the art can choose according to actual needs.
  • the expandable thermoplastic elastomer filler before foaming, accounts for 0.01%-40% of the total volume of the acoustic adjustment material; after foaming, the expandable thermoplastic elastomer filler 14 accounts for the acoustic adjustment material.
  • the volume ratio of the conditioning material is 0.05%-65%.
  • the proportion of the acoustic improvement filler is large, which can ensure that the acoustic improvement filler is uniformly dispersed in the cavity.
  • the expandable thermoplastic elastomer filler 14 can form a channel after foaming, so that the vibrating gas can easily enter and exit the acoustic adjustment material.
  • the sound absorption effect of the acoustic adjustment material is significantly improved.
  • the acoustic improvement filler 15 Due to the cushioning effect of the expandable thermoplastic elastomer filler 14, the acoustic improvement filler 15 has a good shape-retaining effect and good durability.
  • the expandable thermoplastic elastomer filler accounts for 0.1%-20% of the total volume of the acoustic adjustment material; after foaming, the volume of the foam filler accounts for 5%- 60%. Within this range, the sound absorption effect of the acoustic adjustment material is better and the durability is better.
  • the mass of the expandable thermoplastic elastomer filler 14 accounts for 0.1%-20% of the total mass of the acoustic adjustment material. Within this range, less expandable thermoplastic elastomer filler 14 is required to achieve a higher filling rate in the cavity.
  • the mass of the expandable thermoplastic elastomer filler 14 accounts for 1%-5% of the total mass of the acoustic adjustment material. Within this range, the durability of the acoustic adjustment material is good, and the effect of adsorbing and desorbing the vibrating gas is good.
  • the foaming process of the expandable thermoplastic elastomer filler 14 includes a first foaming stage and a second foaming stage, the first foaming stage obtains a first foam filler, and the The second foaming stage yields a second foam filler.
  • the cushioning effect of the expandable thermoplastic elastomer filler 14 can be flexibly controlled through the staged foaming of the expandable thermoplastic elastomer filler 14 .
  • the foamable volume of the expandable thermoplastic elastomer 14 varies with different temperatures and/or foaming times.
  • the first foam buffer filler will undergo a second-stage foaming process with the change of use temperature.
  • foaming Volume is different.
  • the first foam buffer filler occupies the volume of the back cavity, it has a certain inhibitory effect on the acoustic improvement effect.
  • the expandable thermoplastic elastomer 14 is foamed in the first stage, and the first foam cushioning filler provides a certain cushioning effect.
  • the adhesive of the acoustic improvement filler will age, the strength will deteriorate, and the acoustic improvement filler will be easily broken.
  • the expandable thermoplastic elastomer 14 is also more likely to continue foaming, further improving the damping characteristics of the surface of the first foam cushioning filler, providing a buffer for the collision of the acoustic improvement filler, thereby reducing the breakage of the acoustic improvement filler .
  • the acoustic-improving filler adhesive will slowly age over time, resulting in a loss of strength.
  • the volume of the first foam buffer filler is also slowly changing, the surface damping properties are increased, and the buffer capacity is enhanced.
  • the expandable thermoplastic elastomer 14 can undergo the second-stage foaming change, The damping is enhanced and the cushioning effect is improved, which effectively avoids the fragile phenomenon caused by the weakening of the acoustic improvement filler.
  • the foamed volume of the expandable thermoplastic elastomer filler 14 varies with the foaming temperature and/or foaming time.
  • the foaming temperature and/or foaming time Within a certain temperature range, when the temperature increases, the The damping of the expandable thermoplastic elastomer filler is increased, and the buffering capacity of the expandable thermoplastic elastomer filler is enhanced; within a certain temperature range, when the time increases, the damping of the expandable thermoplastic elastomer filler increases, the said expandable thermoplastic elastomer filler is increased.
  • the cushioning capacity of the expandable thermoplastic elastomer filler is enhanced. Therefore, the degree of foaming of the expandable thermoplastic elastomer filler 14 can be controlled by the foaming temperature and/or the foaming time.
  • the expandable thermoplastic elastomer filler 14 When the expandable thermoplastic elastomer filler 14 is used in the sound-emitting device, if the expandable thermoplastic elastomer filler 14 has been foamed to the maximum foamed volume, the strength of the acoustic improvement filler 15 will be weakened during long-term high-temperature use, and still There is a risk of breakage.
  • the expandable thermoplastic elastomer filler 14 is subjected to the first foaming stage to obtain the first foam filler, and the first foam filler is not foamed to the maximum foaming volume, then the expandable thermoplastic elastomer filler 14 is applied to In the sound-generating device, during the long-term high-temperature use of the sound-generating device, the expandable thermoplastic elastomer filler 14 will undergo a second foaming stage at high temperature. After the volume of the thermoplastic elastomer filler 14 increases, it can further buffer the acoustic improvement filler 15 , thereby ensuring the service life of the acoustic improvement filler 15 .
  • the expandable thermoplastic elastomer filler 14 may frequently undergo multiple high-temperature foaming processes. Therefore, the second foaming stage here not only refers to a foaming stage, but also includes Multiple foaming stages. For example, when the sound-generating device operates for a long time and with high power, a relatively high temperature will be generated inside the sound-generating device. At this time, the expandable thermoplastic elastomer filler 14 can proceed to the foaming stage. In operation, the expandable thermoplastic elastomer filler 14 undergoes multiple foaming processes.
  • the volume of the second foam filler is 1-25 times the volume of the first foam filler.
  • the volume of the expandable thermoplastic elastomer filler 14 can be further increased after continuing to undergo the second stage of foaming .
  • the physical size of the expandable thermoplastic elastomer filler 14 can be equal to the physical size of the acoustic improvement filler 15, so that the expandable thermoplastic elastomer filler 14 and the acoustic improvement filler 15 can be mixed uniformly;
  • the physical size of the expandable thermoplastic elastomer filler 14 is larger or smaller than the physical size of the acoustic-improving filler 15 , which facilitates increasing the filling amount of the acoustic-modulating material.
  • the volume of the expandable thermoplastic elastomer filler 14 is significantly increased, and the density is significantly reduced, which can provide a significant buffering effect on the acoustic-improving filler 15 when it moves and collides.
  • a sound producing device includes a housing 11 , a sound-generating unit 12 and the acoustic adjustment material of the sound-generating device provided by the present disclosure.
  • the interior of the housing 11 forms a cavity.
  • the cavity includes a rear acoustic cavity 16 .
  • the rear acoustic cavity 16 includes the filling area.
  • the filling area may be the entire rear acoustic cavity 16 , or may be a part of the space of the rear acoustic cavity 16 .
  • the sounding unit 12 is arranged in the cavity.
  • the sound generating unit 12 communicates with the rear sound cavity 16 .
  • the acoustic adjustment material is disposed within the filling zone.
  • the sounding device has the characteristics of good sounding effect, good low frequency effect and good durability.
  • the fill rate of the acoustic modulating material in the filling zone is 55%-95% in an untriggered condition.
  • the foaming of the expandable thermoplastic elastomer filler 14 can provide a buffering effect on the flow and collision of the acoustically improved filler.
  • the filling rate of the acoustic adjustment material in the filling area is 60%-85% under the condition of not being triggered.
  • the acoustic adjustment material can better play a buffering role, and can provide buffers for the flow and collision of the acoustic improvement filler, and prevent the acoustic improvement filler from breaking.
  • the expandable thermoplastic elastomer filler 14 and the acoustic improving filler 15 are both bulk materials.
  • the expandable thermoplastic elastomer filler 14 and the acoustic improvement filler 15 are alternately arranged.
  • the expandable thermoplastic elastomer filler 14 can effectively squeeze the acoustic improvement filler 15 in the arrangement direction of the two fillers, so that the acoustic improvement filler 15 can effectively cushion.
  • the bulk expandable thermoplastic elastomer filler 14 and the bulk acoustic improving filler 15 in the same layer are distributed in an array, and the expandable thermoplastic elastomer filler 14 and the acoustic improving The fillers 15 are staggered.
  • the expandable thermoplastic elastomer filler 14 can effectively squeeze the acoustic improvement filler 15 in all directions in the same layer, thereby effectively buffering the movement of the acoustic improvement filler 15 .
  • the expandable thermoplastic elastomer filler 14 forms a lattice structure.
  • the acoustic improvement filler 15 is filled in the gap 13 formed by the expandable thermoplastic elastomer filler 14 .
  • the acoustic improving filler 15 forms a grid structure.
  • the expandable thermoplastic elastomer filler 14 is filled in the gap 13 formed by the acoustic improving filler 15 .
  • the grid cells of the grid structure are rectangular, circular, elliptical, triangular, or rhombic.
  • the grid structure makes the structure of the acoustic adjustment material regular, and the stability and consistency of the adsorption and desorption of the vibrating gas are good.
  • the shell 11 When filling, the shell 11 is opened, and the grid structure is first placed in the filling area; then, the acoustic improvement filler 15 or the expandable thermoplastic elastomer filler 14 is filled in the gap 13 formed by the grid structure; then Next, the casing 11 is closed; finally, the expandable thermoplastic elastomer filler 14 is foamed by means of heat radiation or the like.
  • All of the above filling methods can realize the foaming of the expandable thermoplastic elastomer filler 14 after triggering, thereby squeezing the acoustic improving filler 15 and forming a buffering effect.
  • the volume of the expandable thermoplastic elastomer filler increases by a factor of 2-140. In this way, the cushioning effect of the foam filler on the acoustic improving filler 15 is good.
  • the volume of the expandable thermoplastic elastomer filler increases by 3-110 times.
  • the cushioning force of the foam filler is moderate, and the cushioning effect is better.
  • a filling method of an acoustic adjustment material is provided.
  • the acoustic adjustment material is arranged in the filling area of the rear acoustic cavity of the sound generating device in any of the following ways:
  • the acoustic modulating material is disposed within the filling zone in any of the following ways:
  • the acoustic adjustment material is in the form of particles.
  • the expandable thermoplastic elastomer filler 14 is first filled into the filling area, and then the acoustic improving filler 15 is filled into the filling area.
  • the housing 11 is provided with a filling hole. During filling, the granules are filled from the filling hole into the filling zone. It is possible that the acoustic improving filler 15 employs particles of different physical sizes.
  • the expandable thermoplastic elastomer filler 14 also uses particles of different physical sizes, so that the filling rate of the acoustic modulation material in the filling area is high.
  • both the acoustic improving filler 15 and the expandable thermoplastic elastomer filler 14 use particles of the same physical size, so as to ensure the consistency of the acoustic adjustment material.
  • the acoustic modulation material is in granular form.
  • the acoustic improvement filler 15 is first filled into the filling area, and then the expandable thermoplastic elastomer filler 14 is filled into the filling area. Likewise, during filling, the granules are filled from the filling hole into the filling zone. It is possible that the acoustic improving filler 15 employs particles of different physical sizes.
  • the expandable thermoplastic elastomer filler 14 also uses particles of different physical sizes, so that the filling rate of the acoustic modulation material in the filling area is high.
  • the acoustic modulation material is in granular form.
  • the expandable thermoplastic elastomer filler 14 and the acoustic improvement filler 15 are mixed first, and then the mixed expandable thermoplastic elastomer filler 14 and the acoustic improvement filler 15 are filled into the filling area.
  • the granules are filled from the filling hole into the filling zone.
  • the acoustic improving filler 15 employs particles of different physical sizes.
  • the expandable thermoplastic elastomer filler 14 also uses particles of different physical sizes, so that the filling rate of the acoustic modulation material in the filling area is high.
  • the expandable thermoplastic elastomer filler 14 is disposed on at least one wall of the filling area to form an expandable thermoplastic elastomer filler layer; then, the acoustic improvement is Filler 15 is filled into the filling zone.
  • the acoustic modulation material may be in granular or lamellar form.
  • the expandable thermoplastic elastomer filler 14 is bonded to at least one wall of the filling zone using an adhesive.
  • the acoustic improving filler 15 is then filled into the filling zone.
  • the expandable thermoplastic elastomer filler 14 in the wall portion is foamed, so as to squeeze the acoustic improvement filler 15 to buffer the movement of the acoustic improvement filler 15 .
  • the foamed expandable thermoplastic elastomer filler 14 has a buffering effect on the acoustic improvement filler 15 .
  • expandable thermoplastic elastomer filler layers are formed on two opposite wall portions of the cavity. Under the condition of being triggered, the expandable thermoplastic elastomer filler 14 of the two wall parts is foamed, so that the acoustic improvement filler 15 is squeezed in two opposite directions, which makes the foam filler cushion the acoustic improvement filler 15 The effect is better.
  • the foamed expandable thermoplastic elastomer filler layer forms a cushioning effect on the opposite sides of the acoustic improvement filler 15, which makes the acoustic adjustment material more durable.
  • an expandable thermoplastic elastomer filler layer is formed on all walls of the cavity. In this way, the expandable thermoplastic elastomer filler layer forms a cushioning effect in any direction of the acoustic improving filler 15, which makes the acoustic adjusting material more durable.
  • an electronic device can be, but are not limited to, mobile phones, tablet computers, smart watches, game consoles, learning machines, and the like.
  • the electronic device includes the sound generating device of the embodiment of the present disclosure.
  • the electronic device is characterized by good acoustics.
  • the acoustic adjustment material includes acoustic improvement filler 15 and expandable TPEE filler.
  • the material of the acoustic-improving filler 15 is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the mass fraction of expandable polyTPEE filler is 4%.
  • the sound generating device is a miniature speaker module.
  • the volume of the rear acoustic cavity 16 of the micro speaker module is 0.4cc.
  • the acoustic adjustment material is mixed and filled into the rear acoustic cavity 16 .
  • the micro speaker module is placed in an oven and heated at a temperature of 110° C. for 20 minutes to foam the expandable TPEE filler.
  • the foam buffer filler After foaming, the foam buffer filler has a physical size of 1.4 mm and a density of 0.09 g/mL, and the volume of the foam buffer filler accounts for 27% of the volume of the acoustic material filling mixture.
  • the acoustic tuning material and speaker module are consistent with the embodiment.
  • the expandable TPEE filler was not triggered.
  • the material of the acoustic adjustment material is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the sound generating device is a miniature speaker module. This module is the same model as the module used in the embodiment.
  • the acoustic adjustment material is filled into the rear acoustic cavity 16 .
  • F0 test Test the frequency response curves of the three micro-speaker modules respectively, and obtain the F0 of the three micro-speaker modules.
  • the acoustic adjustment materials of the three miniature speaker modules are taken out, and the particle integrity of the acoustic improvement filler 15 is observed.
  • the acoustic adjustment material includes acoustic improvement filler 15 and expandable TPEE filler.
  • the material of the acoustic-improving filler 15 is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the mass fraction of expandable TPEE filler is 10%.
  • the sound generating device is a miniature speaker module.
  • the volume of the rear acoustic cavity 16 of the micro speaker module is 0.4cc.
  • the acoustic adjustment material is mixed and filled into the rear acoustic cavity 16 .
  • the micro speaker module is placed in an oven and heated at a temperature of 110° C. for 20 minutes to foam the expandable TPEE filler.
  • the foamed foam buffer filler has a physical size of 0.36 mm, a density of 0.1 g/mL, and the volume of the foam buffer filler accounts for 25% of the volume of the acoustic material filling mixture.
  • the acoustic tuning material and speaker module are consistent with the embodiment.
  • the expandable TPEE filler was not triggered.
  • the material of the acoustic adjustment material is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the sound generating device is a miniature speaker module. This module is the same model as the module used in the embodiment.
  • the acoustic adjustment material is filled into the rear acoustic cavity 16 .
  • F0 test Test the frequency response curves of the three micro-speaker modules respectively, and obtain the F0 of the three micro-speaker modules.
  • the acoustic adjustment materials of the three miniature speaker modules are taken out, and the particle integrity of the acoustic improvement filler 15 is observed.
  • the acoustic adjustment material includes acoustic improvement filler 15 and expandable TPEE filler.
  • the material of the acoustic improvement filler 15 is molecular sieve. Molecular sieves are granular, with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL. The mass fraction of expandable TPEE filler is 1.7%.
  • the sound generating device is a miniature speaker module.
  • the volume of the rear acoustic cavity 16 of the micro speaker module is 0.4cc.
  • the acoustic adjustment material is mixed and filled into the rear acoustic cavity 16 .
  • the micro speaker module is placed in an oven and heated at a temperature of 110° C. for 20 minutes to foam the expandable TPEE filler.
  • the physical size of the foamed cushioning filler becomes 20 mm, the density is 0.07 g/mL, and the volume of the foamed cushioning filler accounts for 55% of the volume of the acoustic material filling mixture.
  • the acoustic tuning material and speaker module are consistent with the embodiment.
  • the expandable TPEE filler was not triggered.
  • the material of the acoustic adjustment material is molecular sieve.
  • Molecular sieves are granular, with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the sound generating device is a miniature speaker module. This module is the same model as the module used in the embodiment.
  • the acoustic adjustment material is filled into the rear acoustic cavity 16 .
  • F0 test Test the frequency response curves of the three micro-speaker modules respectively, and obtain the F0 of the three micro-speaker modules.
  • the acoustic adjustment materials of the three miniature speaker modules are taken out, and the particle integrity of the acoustic improvement filler 15 is observed.
  • the F0 of the speaker of Example 3 is basically the same as that of Comparative Example 5 and Comparative Example 6. This shows that although the foam buffer filler occupies part of the volume in the back cavity in this Example 3, it does not cause the adsorption and desorption effects of the acoustic adjustment material to the vibration gas to deteriorate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种声学调节材料、发声装置、填充方法及电子设备,声学调节材料包括:可发性热塑性弹性体填料和声学改善填料,所述可发性热塑性弹性体填料在被触发的条件下进行发泡,成为泡沫体填料,以对所述声学改善填料在移动碰撞时提供缓冲作用,所述可发性热塑性弹性体填料发泡后的体积随温度和/或发泡时间的变化而变化。通过这种方式,大大降低了声学改善填料破碎的风险,提高了声学调节材料的耐用性和使用寿命。

Description

声学调节材料、填充方法、发声装置及电子设备 技术领域
本发明涉及电声转换技术领域,更具体地,涉及一种发声装置的声学调节材料、填充方法、发声装置及电子设备。
背景技术
发声装置例如受话器或者扬声器,通常包括壳体、收容在所述壳体内的发声单体。发声单体将壳体内的腔体分隔为前声腔和后声腔。前声腔与出声孔连通,发声单体产生的声波从前声腔辐射出。后声腔与发声单体连通。声波相对侧的振动气流能够辐射到后声腔内。后声腔用于调节发声装置的低频效果。
为了更好地调节低频效果,通常在后声腔内填充有吸音颗粒。吸音颗粒能够吸附、脱附振动气体,从而使得发声装置的低频效果更好。
然而,在工作过程中,吸音颗粒会相互碰撞,而导致破碎。一方面,破碎会产生粉尘,粉尘进入发声单体,会造成发声单体工作不正常。另一方面,吸音颗粒破碎会使得发声装置的F0升高,造成低频效果变差。
中国实用新型专利ZL201921855579.4公开了一种用于扬声器的填料,该填料包括可膨胀填料和声学填料,其中可膨胀填料可以在膨胀触发时从第一尺寸永久膨胀至第二尺寸,对声学填料起到固定作用,改善不同方向的声音质量,并且可以减小声学填料的移动,以免产生流噪(0007段)。但该可膨胀填料在膨胀触发时从初始的第一尺寸永久膨胀至固定的第二尺寸,尺寸不再变化,无法根据不同的使用环境条件对于膨胀填料的膨胀程度进行有效调节,降低了可膨胀填料的适用性。
因此,需要提供一种新的技术方案,以解决上述技术问题。
发明内容
本发明的一个目的是提供一种发声装置的声学调节材料的新技术方案。
根据本发明的第一方面,提供了一种声学调节材料。该声学调节材料包括:可发性热塑性弹性体填料和声学改善填料,所述可发性热塑性弹性体填料在被触发的条件下进行发泡,成为泡沫体填料,以对所述声学改善填料的运动进行缓冲,所述可发性热塑性弹性体填料发泡后的体积随温度和/或发泡时间的变化而变化。可选地,所述可发性热塑性弹性体填料的种类为聚烯烃热塑性弹性体、热塑性硫化胶、热塑性聚氨酯弹性体、热塑性聚酯弹性体和苯乙烯嵌段共聚物中的一种或多种。。
可选地,所述声学改善填料为活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料中的一种或多种制成的具有声学性能的材料。
可选地,所述可发性热塑性弹性体填料为颗粒状、片状或者块状。
可选地,在发泡后,所述可发性热塑性弹性体填料的密度为0.005g/mL-0.8g/mL。
可选地,所述可发性热塑性弹性体填料为颗粒状,在发泡后,所述可发性热塑性弹性体填料的物理尺寸为0.1mm-23mm。
可选地,所述可发性热塑性弹性体填料包括混合在一起的热塑性弹性体材料和发泡剂,其中,所述发泡剂包括低沸点的烷烃等。
可选地,通过热辐射、光辐射、电磁辐射中的至少一种使所述可发性热塑性弹性体填料触发。
可选地,发泡前,所述可发性热塑性弹性体填料占声学调节材料的总体积的0.01%-40%;发泡后,泡沫体填料的体积占声学调节材料的总体积的0.05%-65%。
可选地,发泡前,所述可发性热塑性弹性体填料占声学调节材料的总体积的0.1%-20%;发泡后,泡沫体填料的体积占声学调节材料的总体积的5%-60%。
可选地,在发泡后,所述可发性热塑性弹性体填料形成的泡沫体填料对所述声学改善填料形成缓冲。
可选地,采用物理发泡法或者化学发泡法对所述可发性热塑性弹性体填料进行触发。
可选地,发泡后,所述可发性热塑性弹性体填料的体积增大2-140倍。
可选地,发泡后,所述可发性热塑性弹性体填料的体积增大3-110倍。
可选地,所述可发性热塑性弹性体填料的发泡过程包括第一发泡阶段和第二发泡阶段,所述第一发泡阶段得到第一泡沫体缓冲填料,所述第二发泡阶段得到第二泡沫体缓冲填料。
可选地,所述第二泡沫体缓冲填料的体积为所述第一泡沫体缓冲填料体积的1-25倍。根据本公开的第二方面,提供了一种发声装置。该发声装置包括壳体、发声单体和上述的声学调节材料,所述壳体的内部形成腔体,所述腔体包括后声腔,所述发声单体设置在所述腔体内,所述发声单体与所述后声腔连通,所述后声腔包括灌装区,所述声学调节材料设置在所述灌装区内。
可选地,发泡前,所述声学调节材料在所述灌装区内的填充率为50%-95%。
可选地,所述可发性热塑性弹性体填料和所述声学改善填料均为颗粒状材料,
所述可发性热塑性弹性体填料与所述声学改善填料混合填充于灌装区内。
可选地,所述可发性热塑性弹性体填料和所述声学改善填料均为块状材料,
所述可发性热塑性弹性体填料与所述声学改善填料交替设置;或者在同一层的块状的可发性热塑性弹性体填料和块状的声学改善填料呈阵列分布,并且可发性热塑性弹性体填料和声学改善填料交错设置。
可选地,所述可发性热塑性弹性体填料形成格栅结构,所述声学改善填料填充在所述可发性热塑性弹性体填料形成的间隙内;或者所述声学改善填料形成格栅结构,所述可发性热塑性弹性体填料填充在所述声学改善填料形成的间隙内。
根据本公开的第三方面,提供了一种发声装置的声学调节材料的填充 方法。声学调节材料以下列任意方式设置在所述发声装置的后声腔的灌装区内:
所述声学调节材料为颗粒状,先将可发性热塑性弹性体填料填充到所述灌装区内,再将声学改善填料填充到所述灌装区内;
所述声学调节材料为颗粒状,先将声学改善填料填充到所述灌装区内,再将可发性热塑性弹性体填料填充到所述灌装区内;
所述声学调节材料为颗粒状,先将可发性热塑性弹性体填料和声学改善填料进行混合,再将混合后的可发性热塑性弹性体填料和声学改善填料填充到灌装区内;
先将可发性热塑性弹性体填料设置在所述灌装区的至少一个壁部,以形成可发性热塑性弹性体填料层,然后将声学改善填料填充到所述灌装区内。
根据本公开的第四方面,提供了一种电子设备。该电子设备包括上述的发声装置。
根据本公开的一个实施例,声学调节材料包括可发性热塑性弹性体填料和声学改善填料。在被触发后,可发性热塑性弹性体填料的发泡,成为发泡体泡沫,发泡体泡沫对声学改善填料的流动、碰撞提供缓冲作用。在发声装置工作过程中,可发性热塑性弹性体填料大大降低了声学改善填料破碎的风险,提高了声学调节材料的耐用性和使用寿命。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是根据本公开实施例的颗粒状声学调节材料未发泡状态的示意图。
图2是根据本公开实施例的颗粒状声学调节材料发泡状态的示意图。
图3是根据本公开实施例的块状声学调节材料未发泡状态的示意图。
图4是根据本公开实施例的块状声学调节材料发泡状态的示意图。
图5是根据本公开实施例的阵列分布的块状声学调节材料未发泡状态的示意图。
图6是根据本公开实施例的格栅结构声学调节材料未填充状态的示意图。
附图标记说明:
11:壳体;12:发声单体;13:间隙;14:可发性热塑性弹性体填料;15:声学改善填料;16:后声腔。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本公开的一个实施例,提供了一种发声装置的声学调节材料。如图1-图2所示,该声学调节材料包括:可发性热塑性弹性体填料14和声学改善填料15。所述可发性热塑性弹性体填料14在被触发的条件下进行发泡,成为泡沫体填料,以对所述声学改善填料15的运动进行缓冲,所述可发性热塑性弹性体填料14发泡的体积随温度和/或发泡时间的变化而变化。
可以通过所述可发性热塑性弹性体填料14发泡的温度和时间来灵活 控制其对所述声学改善填料15在移动碰撞时的缓冲程度。所述可发性热塑性弹性体填料14发泡时,温度升高,所述可发性热塑性弹性体填料14的阻尼增大,所述可发性热塑性弹性体填料14的缓冲能力增强。在设定的时间内,温度越高则泡沫体缓冲填料体积越大;在设定的温度下,发泡时间越长则泡沫体缓冲填料体积越大。
在发声装置受外力冲击时,泡沫体填料为声学改善填料的流动、碰撞提供缓冲力,降低了声学改善填料的碰撞几率。通过这种方式,大大降低了声学改善填料破碎的风险,提高了声学调节材料的耐用性和使用寿命。
可发性热塑性弹性体填料14是指在设定的触发条件下,能发生发泡的热塑性弹性体材料。在未被触发的条件下,可发性热塑性弹性体填料14具有较小的体积。这使得该材料能被容易地填充到设定的腔体(例如,后声腔的灌装区)内。在被触发的条件下该材料发泡,从而为声学改善填料碰撞时提供缓冲。
所述可发性热塑性弹性体填料的种类为聚烯烃热塑性弹性体、热塑性硫化胶、热塑性聚氨酯弹性体、热塑性聚酯弹性体和苯乙烯嵌段共聚物中的一种或多种。上述材料均能在热辐射的条件下被触发,从而发泡。并且,在不同的触发温度下,发泡后的体积不同,并随应用过程中温度的变化,体积会发生变化。
声学改善填料15是指能够吸附和脱附振动气体的多孔材料。例如,声学调节材料包括活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料等其中一种或多种制成的声学性能材料。声学改善填料15可以为颗粒状、片状、块状等。
可选地,所述可发性热塑性弹性体填料为球形、类球形、棒状、圆柱状、方块状或者辐射状。上述形状的填充效果好,填充率高。
在本公开实施例中,声学调节材料包括可发性热塑性弹性体填料14和声学改善填料15。所述可发性热塑性弹性体填料14在被触发的条件下进行发泡,成为泡沫体填料,以对所述声学改善填料15的运动进行缓冲。在发声装置工作过程中,声学改善填料15不易发生碰撞。通过这种方式,所述可发性热塑性弹性体填料14大大降低了声学改善填料15破碎的风险, 提高了声学调节材料的耐用性和使用寿命。
此外,可发性热塑性弹性体填料14在发泡后,形成泡孔。可发性热塑性弹性体材料具有弹性,泡孔能根据外部压力的变化而改变体积,从而对声学改善填料15的运动形成缓冲作用。通过这种方式,可发性热塑性弹性体填料14能够有效地缓冲声学改善填料15的流动、碰撞。
尤其是,发声装置在大功率工作时,可发性热塑性弹性体填料14能有效地缓冲声学调节材料的振动。
此外,在发声装置受外力冲击时,泡孔为声学改善填料15提供缓冲力,泡孔中的气体通过滞流和压缩,使外来的能量被消耗、散逸。泡孔以较小的负加速度,逐步终止冲击载荷,因此,可发性热塑性弹性体填料14具有良好的防震效果。
此外,触发温度不同使得可发性热塑性弹性体填料14能改变发泡的体积,从而适应不同的应用环境,这使得声学调节材料的耐候性、适应性更强。
可选地,采用物理发泡法或者化学发泡法对所述可发性热塑性弹性体填料进行触发。物理发泡法是指:通过成型过程中热塑性弹性体的挥发分或分散在热塑性弹性体中的挥发分使热塑性弹性体产生气泡的方法。
例如,物理发泡法,可以是,先将惰性气体在设定压强下溶于热塑性弹性体中,再经过减压方式进行触发,释放出气体,从而在热塑性弹性体中形成气泡。
也可以是,先在热塑性弹性体中添加低沸点的烷烃,然后采用加热的方式进行触发,以使低沸点的烷烃挥发,从而在热塑性弹性体中形成气泡。低沸点的烷烃包括石油醚、丁烷、戊烷等中的至少一种。这些材料均能在加热条件下挥发,从而在热塑性弹性体的内部形成气泡。多个气泡形成泡沫。
化学发泡法是指:利用化学方法产生气体来使热塑性弹性体发泡:对加入热塑性弹性体中的化学发泡剂进行加热使其分解,释放出气体而发泡。其中,发泡剂可以是但不限于碳酸铵、碳酸氢钠、氯化铵、尿素等。上述发泡剂在加热的条件下能够分解,从而产生气体,在热塑性弹性体内形成 气泡。
也可以是,利用热塑性弹性体的组分之间相互发生化学反应释放出的气体而发泡。
在不同的触发条件下,膨胀的体积不同。例如,触发温度越高则体积膨胀越大,触发温度越低则体积膨胀越小。发泡剂的浓度越大,则体积膨胀越大;发泡剂的浓度越小,则体积膨胀越小。
在一个例子中,所述可发性热塑性弹性体填料14包括混合在一起的可发性热塑性弹性体材料和发泡剂,其中,所述发泡剂包括低沸点的烷烃。例如,低沸点的烷烃的沸点为30℃-40℃。在制备时,在高压反应釜中,将热塑性弹性体材料和发泡剂混合在一起制备而成。该方法的工艺简单,一次反应就能形成可发性热塑性弹性体填料14。
也可以是,将可发性热塑性弹性体材料中加入发泡剂,使发泡剂渗入可发性热塑性弹性体材料中。
低沸点的烷烃包括石油醚、丁烷、戊烷等中的至少一种。这些材料均能在设定的触发条件下挥发,从而在可发性热塑性弹性体材料的内部形成泡孔。多个泡孔形成泡沫。
当然,发泡剂的种类不限于上述实施例,本领域技术人员可以根据实际需要进行选择。
在一个例子中,所述可发性热塑性弹性体填料14为可发性TPEE、可发性TPU等高分子聚合物中的至少一种。上述可发性热塑性弹性体填料14均能在设定的触发条件下体积发生发泡,从而缓冲声学改善填料15的运动。
例如,可发性TPEE包括混合在一起的TPEE和发泡剂。
其中,可发性TPEE填料具有质量轻、不吸水、抗老化、腐蚀性能强、韧性强、无毒无污染的特点。
本领域技术人员可以根据实际需要选择发泡剂的种类、用量等。
在一个例子中,所述可发性热塑性弹性体填料14为颗粒状或者片层状。这些材料的流动性良好,在腔体中的填充容易。
可以是,将颗粒状或者片层状的可发性热塑性弹性体填料14直接填充到发声装置的后声腔16的灌装区内。
也可以是,将颗粒状或者片层状的可发性热塑性弹性体填料14,制备成设定的形状,然后填充到发声装置的后声腔16的灌装区中。
还可以是,可发性热塑性弹性体填料14和声学改善填料15中的一种制备成设定的三维结构,另一种以颗粒状或者片层状填充到三维结构的间隙内。
在一个例子中,所述可发性热塑性弹性体填料14为颗粒状。在发泡后,所述可发性热塑性弹性体填料14的物理尺寸为0.1mm-25mm。
在该尺寸范围内,可发性热塑性弹性体填料14对声学改善填料15的缓冲效果良好,泡孔的缓冲效果良好。
此外,颗粒的大小适中,并且不会堵塞声学改善填料15的气流通道,声学调节材料对振动气流的吸附、脱附效果良好。
进一步地,所述可发性热塑性弹性体填料为颗粒状,在发泡后,所述可发性热塑性弹性体填料14的物理尺寸为0.5mm-2mm。在该范围内,可发性热塑性弹性体填料14形成泡孔对声学改善填料的缓冲效果更加良好。
在一个例子中,声学改善填料在未发泡时,所述可发性热塑性弹性体填料14的密度为0.2g/mL-1.5g/mL。在该密度范围内,声学调节材料的整体的密度小,这样使得发声装置的整体的重量轻。
优选地,可发性热塑性弹性体填料14的密度为0.5g/mL-1.2g/mL,在该范围内,声学调节材料对发声装置的整体重量影响小。
在一个例子中,在发泡后,所述可发性热塑性弹性体填料的密度为0.005g/mL-0.8g/mL。在该范围内,泡沫体填料对于声学改善填料的缓冲效果良好,结构强度高,耐用性良好。
优选地,所述可发性热塑性弹性体填料的密度为0.01g/mL-0.08g/mL。在该范围内,泡沫体填料对于声学改善填料的缓冲效果更加良好。
在一个例子中,通过热辐射、光辐射、电磁辐射中的至少一种使所述可发性热塑性弹性体填料14触发。上述辐射条件下,可发性热塑性弹性体填料14内的发泡剂挥发并且体积变大,在可发性热塑性弹性体材料内形成泡孔,从而使得可发性热塑性弹性体材料的发泡。
在相同温度条件下,在一定的触发时间下,可发性热塑性弹性体填料 14的体积可增大至适当值,触发时间过短,则可发性热塑性弹性体填料14的发泡的倍数小,起不到缓冲声学改善填料15的作用。
在相同触发时间下,在一定的触发温度下,可发性热塑性弹性体填料14的体积可增大至适当值,温度越高越容易发生泡孔破裂;反之,触发温度越低,则可发性热塑性弹性体填料14的发泡体积越小,起不到缓冲声学改善填料15的作用。
此外,可发性热塑性弹性体填料14内的泡孔不会生破裂。
在进行光辐射时,采用紫外线照射的方式触发可发性热塑性弹性体填料14内的发泡剂。发泡剂在受热条件下,体积变大,从而在可发性热塑性弹性体填料内形成泡孔。
在进行电磁辐射时,在交变磁场的作用下,声学调节材料被加热。发泡剂挥发,从而在可发性热塑性弹性体填料14内形成泡孔。
上述触发方式的操作简单,泡孔大小的可控性强。
当然,可发性热塑性弹性体填料14的触发方式不限于上述实施例,本领域技术人员可以根据实际需要进行选择。
在一个例子中,发泡前,所述可发性热塑性弹性体填料占声学调节材料的总体积的0.01%-40%;发泡后,所述可发性热塑性弹性体填料14占所述声学调节材料的体积比为0.05%-65%。
发泡前,在上述比例范围内,声学改善填料所占的比例大,能保证声学改善填料在腔体内均匀地分散。
可发性热塑性弹性体填料14在声学调节材料中的所占比例越大,会使得声学改善填料15的填充量减小,降低声学调节材料的吸附、脱附振动气体的效果;反之,可发性热塑性弹性体填料14在声学调节材料中的所占比例越小,则无法起到缓冲的效果。
在上述体积比范围内,尽管声学改善填料15的填充量相对降低了,但可发性热塑性弹性体填料14在发泡后能够形成通道,从而使得振动气体容易进、出声学调节材料,故声学调节材料的吸音效果显著提高。
由于可发性热塑性弹性体填料14的缓冲作用,故声学改善填料15的保形效果良好,耐用性良好。
进一步地,发泡前,所述可发性热塑性弹性体填料占声学调节材料的总体积的0.1%-20%;发泡后,泡沫体填料的体积占声学调节材料的总体积的5%-60%。在该范围内,声学调节材料的吸音效果更加良好耐用性良好。
在一个例子中,可发性热塑性弹性体填料14质量占声学调节材料总质量的0.1%-20%。在该范围内,仅需较少的可发性热塑性弹性体填料14就能够实现腔体内较高的填充率。
此外,由于可发性热塑性弹性体填料14所占的质量比例较低,故声学调节材料的吸附、脱附振动气体的效果不会受到影响。
进一步地,可发性热塑性弹性体填料14质量占声学调节材料总质量的1%-5%。在该范围内,声学调节材料的耐用性良好,吸附、脱附振动气体的效果良好。
在一个具体的例子中,所述可发性热塑性弹性体填料14的发泡过程包括第一发泡阶段和第二发泡阶段,所述第一发泡阶段得到第一泡沫体填料,所述第二发泡阶段得到第二泡沫体填料。可以通过可发性热塑性弹性体填料14的阶段发泡来灵活控制可发性热塑性弹性体填料14的缓冲效果。
在触发条件下,所述可发性热塑性弹性体14随不同温度和/或发泡时间发泡的体积不同。发泡后在应用中,第一泡沫体缓冲填料会随使用温度的变化进行第二阶段的发泡过程,在第二阶段的发泡过程中,随不同温度和/或发泡时间,发泡体积不同。在发泡后,因为第一泡沫体缓冲填料占据后腔容积,所以其对于声学改善效果有一定的抑制作用。
因此,在装填初期,所述可发性热塑性弹性体14进行第一阶段发泡,第一泡沫体缓冲填料提供一定的缓冲效果。在实际应用过程中,如果遇到高温环境下发声装置高功率运行,在发声音装置处于高功率运作时,声学改善填料的胶黏剂会老化,强度变差,声学改善填料容易破碎。而在该条件下所述可发性热塑性弹性体14也更容易继续发泡,进一步提高第一泡沫体缓冲填料表面的阻尼特性,为声学改善填料的碰撞提供缓冲,从而减少声学改善填料的破碎。
即使在正常环境下,随着使用时间的延长,声学改善填料的胶粘剂也会慢慢发生老化,从而造成强度降低。而在此过程中,第一泡沫体缓冲填 料体积也在缓慢的变化,表面阻尼特性增加,缓冲能力增强,在此条件下,可发性热塑性弹性体14可进行第二阶段的发泡变化,阻尼增强,缓冲效果提升,有效避免了声学改善填料强度变差造成的易碎现象。
具体地,参见表1,所述可发性热塑性弹性体填料14发泡后的体积随发泡温度和/或发泡时间的变化而变化,在一定温度范围内,温度升高时所述可发性热塑性弹性体填料的阻尼增大,所述可发性热塑性弹性体填料的缓冲能力增强;在一定温度范围内,时间增长时所述可发性热塑性弹性体填料的阻尼增大,所述可发性热塑性弹性体填料的缓冲能力增强。所以,可以通过发泡温度和/或发泡时间控制所述可发性热塑性弹性体填料14的发泡程度。
表1-可发性材料第一发泡阶段的体积随温度变化数据
Figure PCTCN2020136714-appb-000001
在可发性热塑性弹性体填料14应用于发声装置中时,如果可发性热塑性弹性体填料14已经发泡至最大发泡体积,声学改善填料15在长期高温使用过程中强度会变弱,仍然存在破碎的风险。如果将可发性热塑性弹性体填料14经过第一发泡阶段得到第一泡沫体填料,第一泡沫体填料未发泡至最大发泡体积,这时将可发性热塑性弹性体填料14应用于发声装置中,发声装置在长期高温使用过程中,可发性热塑性弹性体填料14会在高温下经历第二发泡阶段,这时可发性热塑性弹性体填料14还可以继续发泡,可发性热塑性弹性体填料14体积增大后还可以对声学改善填料15起到进一步的缓冲,保证了声学改善填料15的使用寿命。
发声装置在长期高频率使用过程中,可发性热塑性弹性体填料14可能会频繁经历多次的高温发泡过程,所以,这里的第二发泡阶段不仅仅指一个发泡阶段,还可以包括多个发泡阶段。比如发声装置在长时间、大功率 运行时,发声装置内部会产生的较高的温度,这时可发性热塑性弹性体填料14便可以进行发泡阶段,在发声装置多次长时间、大功率运行时可发性热塑性弹性体填料14会经历多次的发泡过程。
可选地,所述第二泡沫体填料的体积为所述第一泡沫体填料体积的1-25倍。
具体地,可发性热塑性弹性体填料14在经过第一阶段发泡后,如果未达到最大发泡体积,继续经历第二阶段发泡后可发性热塑性弹性体填料14的体积可以进一步增大。
在一种具体的实施方式中,参见表2,所述可发性热塑性弹性体填料14在80~100℃范围内时,发泡的体积随温度的升高而增大
表2-可发性材料第二发泡阶段的体积随温度变化数据
Figure PCTCN2020136714-appb-000002
具体地,在发泡前,可发性热塑性弹性体填料14的物理尺寸可以与声学改善填料15物理尺寸相当,这样便于可发性热塑性弹性体填料14与声学改善填料15混合均匀;也可以是可发性热塑性弹性体填料14的物理尺寸大于或小于声学改善填料15的物理尺寸,这样便于提高声学调节材料的填充量。发泡后,可发性热塑性弹性体填料14的体积显著增大,密度明显减小,可以对声学改善填料15在移动碰撞时提供显著的缓冲作用。
根据本公开的另一个实施例,提供了一种发声装置。该发声装置包括壳体11、发声单体12和本公开提供的发声装置的声学调节材料。所述壳体11的内部形成腔体。所述腔体包括后声腔16。后声腔16包括灌装区。灌装区可以是整个的后声腔16,也可以是后声腔16的一部分空间。所述发声单体12设置在所述腔体内。所述发声单体12与所述后声腔16连通。所述声学调节材料设置在所述灌装区内。
该发声装置具有发声效果良好、低频效果好、耐用性良好的特点。
在一个例子中,在未被触发的条件下,所述声学调节材料在所述灌装区内的填充率为55%-95%。在该比例范围内,利用可发性热塑性弹性体填料14的发泡,能够对声学改善填料的流动、碰撞提供缓冲作用。
优选地,在未被触发的条件下,所述声学调节材料在所述灌装区内的填充率为60%-85%。在该范围内,在被触发后,声学调节材料可以更好的发挥缓冲作用,能够对声学改善填料的流动、碰撞提供缓冲,防止声学改善填料出现破碎。
在一个例子中,如图3-图4所示,所述可发性热塑性弹性体填料14和所述声学改善填料15均为块状材料。所述可发性热塑性弹性体填料14与所述声学改善填料15交替设置。在该例子中,在两种填料的排列方向上可发性热塑性弹性体填料14能够有效地挤压声学改善填料15,从而使得声学改善填料15能有效地缓冲。
在一个例子中,如图5所示,在同一层的块状的可发性热塑性弹性体填料14和块状的声学改善填料15呈阵列分布,并且可发性热塑性弹性体填料14和声学改善填料15交错设置。
在该例子中,在发泡状态下,可发性热塑性弹性体填料14能够在同一层各个方向有效地挤压声学改善填料15,从而有效地缓冲声学改善填料15的运动。
在一个例子中,如图6所示,所述可发性热塑性弹性体填料14形成格栅结构。所述声学改善填料15填充在所述可发性热塑性弹性体填料14形成的间隙13内。
或者,声学改善填料15形成格栅结构。可发性热塑性弹性体填料14填充在声学改善填料15形成的间隙13内。
例如,格栅结构的网格单元呈矩形、圆形、椭圆形、三角形或者菱形等。格栅结构使得声学调节材料的结构规整,吸附、脱附振动气体的稳定性、一致性良好。
在填充时,壳体11被打开,先将格栅结构放置到灌装区内;然后,将声学改善填料15或者可发性热塑性弹性体填料14填充在格栅结构形成 的间隙13内;接下来,将壳体11封闭;最后,采用热辐射等方式使可发性热塑性弹性体填料14发泡。
上述填充方式,均能实现在触发后,可发性热塑性弹性体填料14的发泡,进而挤压声学改善填料15,并形成缓冲的效果。
在一个例子中,发泡后,可发性热塑性弹性体填料的体积增大2-140倍。这样,泡沫体填料对于声学改善填料15的缓冲效果良好。
优选地,发泡后,可发性热塑性弹性体填料的体积增大3-110倍。在该范围内,泡沫体填料的缓冲力适中,缓冲效果更佳良好。
根据本公开的另一个实施例,提供了一种声学调节材料的填充方法。声学调节材料以下列任意方式设置在所述发声装置的后声腔的灌装区内:
在一个例子中,所述声学调节材料以下列任意方式设置在所述灌装区内:
例如,如图1-图2所示,所述声学调节材料为颗粒状。先将所述可发性热塑性弹性体填料14填充到所述灌装区内,再将所述声学改善填料15填充到所述灌装区内。在该例子中,在壳体11上开设有灌装孔。在进行灌装时,颗粒料从灌装孔被灌装到灌装区内。可以是,声学改善填料15采用不同物理尺寸的颗粒。可发性热塑性弹性体填料14也采用不同物理尺寸的颗粒,以使得声学调节材料在灌装区内的填充率高。
也可以是,声学改善填料15和可发性热塑性弹性体填料14均采用相同物理尺寸的颗粒,以保证声学调节材料的一致性。
例如,所述声学调节材料为颗粒状。先将所述声学改善填料15填充到所述灌装区内,再将所述可发性热塑性弹性体填料14填充到所述灌装区内。同样地,在进行灌装时,颗粒料从灌装孔被灌装到灌装区内。可以是,声学改善填料15采用不同物理尺寸的颗粒。可发性热塑性弹性体填料14也采用不同物理尺寸的颗粒,以使得声学调节材料在灌装区内的填充率高。
例如,所述声学调节材料为颗粒状。先将所述可发性热塑性弹性体填料14和所述声学改善填料15进行混合,再将混合后的所述可发性热塑性弹性体填料14和所述声学改善填料15填充到所述灌装区内。
同样地,在进行灌装时,颗粒料从灌装孔被灌装到灌装区内。可以是, 声学改善填料15采用不同物理尺寸的颗粒。可发性热塑性弹性体填料14也采用不同物理尺寸的颗粒,以使得声学调节材料在灌装区内的填充率高。
例如,如图3-图4所示,先将可发性热塑性弹性体填料14设置在灌装区的至少一个壁部,以形成可发性热塑性弹性体填料层;然后,将所述声学改善填料15填充到所述灌装区内。
在该例子中,声学调节材料可以是颗粒状或者片层状。采用粘结剂将可发性热塑性弹性体填料14粘结在灌装区的至少一个壁部。然后将声学改善填料15填充到灌装区内。在被触发的条件下,壁部的可发性热塑性弹性体填料14发泡,从而对声学改善填料15形成挤压,以缓冲声学改善填料15的运动。发泡后的可发性热塑性弹性体填料14对声学改善填料15起到缓冲的作用。
可选地,在腔体的相对的两个壁部形成可发性热塑性弹性体填料层。在被触发的条件下,两个壁部的可发性热塑性弹性体填料14发泡,从而对声学改善填料15形成相向的两个方向的挤压,这使得泡沫体填料对声学改善填料15缓冲效果更加优良。
此外,发泡后可发性热塑性弹性体填料层在声学改善填料15的相对的两侧形成缓冲作用,这使得声学调节材料的耐用性更好。
进一步地,在腔体的所有壁部均形成可发性热塑性弹性体填料层。通过这种方式,可发性热塑性弹性体填料层在声学改善填料15的任意方向形成缓冲作用,这使得声学调节材料的耐用性更加良好。
根据本公开的又一个实施例,提供了一种电子设备。电子设备可以是但不限于手机、平板电脑、智能手表、游戏机、学习机等。
该电子设备包括本公开实施例的发声装置。该电子设备具有声学效果良好的特点。
<实施例1>
声学调节材料包括声学改善填料15和可发性TPEE填料。其中,声学改善填料15的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。可发性聚TPEE填料质量分数为4%。
发声装置为微型扬声器模组。微型扬声器模组的后声腔16的容积为0.4cc。将声学调节材料混合后灌装到后声腔16内。
在灌装完成后,将微型扬声器模组放置到烘箱中,在110℃温度下,加热20分钟,以使可发性TPEE填料发泡。
发泡后的泡沫体缓冲填料,物理尺寸为1.4mm,密度0.09g/mL,泡沫体缓冲填料的体积占比声学材料填充混合物体积的27%。
<对比例1>
在该例子中,声学调节材料以及扬声器模组与实施例一致。其中,可发性TPEE填料未被触发。
<对比例2>
声学调节材料的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。
发声装置为微型扬声器模组。该模组与实施例中采用的模组型号相同。将声学调节材料灌装到后声腔16内。
<测试项>
1、F0测试:分别测试三个微型扬声器模组的频响曲线,并获取三个微型扬声器模组的F0。
2、可靠性测试:在相同的功率下,三个微型扬声器模组工作100小时。然后,再次测试三个微型扬声器模组的F0。
在测试完成后,将三个微型扬声器模组的声学调节材料取出,观察声学改善填料15的颗粒完整性。
<测试结果>
表1-三种微型扬声器模组的F0对比表
  对比例2 对比例1 实施例1
微型扬声器模组F0 781Hz 784Hz 786Hz
由表1可见,三个微型扬声器的F0相差很小。这表明,在该实施例1虽然泡沫体缓冲填料后占据后腔中部分体积,但并没有造成声学调节材料对振动气体的吸附、脱附效果变差。
表2-两种微型扬声器模组的可靠性对比表
Figure PCTCN2020136714-appb-000003
由表2可见,在进行可靠性测试后,该实施例1的微型扬声器模组的F0变化很小,并且颗粒状态无变化。而对比例2的微型扬声器模组的F0出现了显著的增加,并且颗粒严重破碎。
这表明,由于声学调节材料的颗粒无变化,故使得该实施例采用的声学调节材料的可靠性显著优于对比例2中采用的声学调节材料。
<实施例2>
声学调节材料包括声学改善填料15和可发性TPEE填料。其中,声学改善填料15的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。可发性TPEE填料质量分数为10%。
发声装置为微型扬声器模组。微型扬声器模组的后声腔16的容积为0.4cc。将声学调节材料混合后灌装到后声腔16内。
在灌装完成后,将微型扬声器模组放置到烘箱中,在110℃温度下,加热20分钟,以使可发性TPEE填料发泡。
发泡后的泡沫体缓冲填料,物理尺寸为0.36mm,密度0.1g/mL,泡沫体缓冲填料的体积占比声学材料填充混合物体积的25%。
<对比例3>
在该例子中,声学调节材料以及扬声器模组与实施例一致。其中,可发性TPEE填料未被触发。
<对比例4>
声学调节材料的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。
发声装置为微型扬声器模组。该模组与实施例中采用的模组型号相同。将声学调节材料灌装到后声腔16内。
<测试项>
1、F0测试:分别测试三个微型扬声器模组的频响曲线,并获取三个微型扬声器模组的F0。
2、可靠性测试:在相同的功率下,三个微型扬声器模组工作100小时。然后,再次测试三个微型扬声器模组的F0。
在测试完成后,将三个微型扬声器模组的声学调节材料取出,观察声学改善填料15的颗粒完整性。
<测试结果>
表3-三种微型扬声器模组的F0对比表
声学调节材料 对比例4 对比例3 实施例2
微型扬声器模组F0 781Hz 783Hz 785Hz
由表3可见,三个微型扬声器的F0相差很小。这表明,在该实施例2虽然发泡后占据腔体部分体积,但并没有造成声学调节材料对振动气体的吸附、脱附效果变差。
表4-两种微型扬声器模组的可靠性对比表
Figure PCTCN2020136714-appb-000004
由表4可见,在进行可靠性测试后,该实施例2的微型扬声器模组的F0变化6Hz,而对比例4的微型扬声器模组的F0变化137Hz。
这表明,由于声学调节材料的颗粒无变化,故使得该实施例采用的声学调节材料的可靠性显著优于对比例4中采用的声学调节材料。
<实施例3>
声学调节材料包括声学改善填料15和可发性TPEE填料。其中,声学改善填料15的材质为分子筛。分子筛为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。可发性TPEE填料质量分数为1.7%。
发声装置为微型扬声器模组。微型扬声器模组的后声腔16的容积为0.4cc。将声学调节材料混合后灌装到后声腔16内。
在灌装完成后,将微型扬声器模组放置到烘箱中,在110℃温度下,加热20分钟,以使可发性TPEE填料发泡。
发泡后的泡沫体缓冲填料,物理尺寸变为20mm,密度0.07g/mL,泡沫体缓冲填料的体积占比声学材料填充混合物体积的55%。
<对比例5>
在该例子中,声学调节材料以及扬声器模组与实施例一致。其中,可发性TPEE填料未被触发。
<对比例6>
声学调节材料的材质为分子筛。分子筛为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。
发声装置为微型扬声器模组。该模组与实施例中采用的模组型号相同。将声学调节材料灌装到后声腔16内。
<测试项>
1、F0测试:分别测试三个微型扬声器模组的频响曲线,并获取三个微型扬声器模组的F0。
2、可靠性测试:在相同的功率下,三个微型扬声器模组工作100小时。然后,再次测试三个微型扬声器模组的F0。
在测试完成后,将三个微型扬声器模组的声学调节材料取出,观察声学改善填料15的颗粒完整性。
<测试结果>
表5-三种微型扬声器模组的F0对比表
声学调节材料 对比例6 对比例5 实施例3
微型扬声器模组F0 781Hz 785Hz 786Hz
由表5可见,实施例3扬声器的F0较对比例5和对比例6基本相同。这表明,这表明,在该实施例3虽然泡沫体缓冲填料占据后腔中部分体积,但并没有造成声学调节材料对振动气体的吸附、脱附效果变差。
表6-两种微型扬声器模组的可靠性对比表
Figure PCTCN2020136714-appb-000005
由表6可见,在进行可靠性测试后,该实施例3的微型扬声器模组的F0变化很小,并且颗粒状态无变化。而对比例6的微型扬声器模组的F0出现了显著的增加,并且颗粒严重破碎。
这表明,由于声学调节材料的颗粒无变化,故使得该实施例采用的声学调节材料的可靠性显著优于对比例6中采用的声学调节材料。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求 来限定。

Claims (20)

  1. 一种声学调节材料,其特征在于,包括:可发性热塑性弹性体填料和声学改善填料,所述可发性热塑性弹性体填料在被触发的条件下进行发泡,成为泡沫体填料,以对所述声学改善填料在移动碰撞时提供缓冲作用,所述可发性热塑性弹性体填料发泡后的体积随温度和/或发泡时间的变化而变化,温度升高时所述可发性热塑性弹性体填料的阻尼增大,缓冲能力增强。
  2. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性热塑性弹性体填料的种类为聚烯烃热塑性弹性体、热塑性硫化胶、热塑性聚氨酯弹性体、热塑性聚酯弹性体和苯乙烯嵌段共聚物中的一种或多种。
  3. 根据权利要求1所述的声学调节材料,其特征在于,所述声学改善填料为活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料中的一种或多种制成的具有声学性能的材料。
  4. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性热塑性弹性体填料为颗粒状、片状或块状。
  5. 根据权利要求1所述的声学调节材料,其特征在于,在发泡后,所述可发性热塑性弹性体填料的密度为0.005g/mL-0.8g/mL。
  6. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性热塑性弹性体填料为颗粒状,在发泡后,所述可发性热塑性弹性体填料的物理尺寸为0.1mm-23mm。
  7. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性热塑性弹性体填料包括混合在一起的热塑性弹性体材料和发泡剂,其中,所述发泡剂包括低沸点的烷烃。
  8. 根据权利要求1所述的声学调节材料,其特征在于,通过热辐射、光辐射、电磁辐射中的至少一种使所述可发性热塑性弹性体填料触发。
  9. 根据权利要求1所述的声学调节材料,其特征在于,发泡前,所述可发性热塑性弹性体填料占声学调节材料的总体积的0.01%-40%;发泡后,泡沫体填料的体积占声学调节材料的总体积的0.05%-65%。
  10. 根据权利要求1所述的声学调节材料,其特征在于,发泡前,所述可发性热塑性弹性体填料占声学调节材料的总体积的0.1%-20%;发泡后,泡沫体填料的体积占声学调节材料的总体积的5%-60%。
  11. 根据权利要求1-10中任一项所述的声学调节材料,其特征在于,采用物理发泡法或者化学发泡法对所述可发性热塑性弹性体填料进行触发。
  12. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性热塑性弹性体填料的发泡过程包括第一发泡阶段和第二发泡阶段,所述第一发泡阶段得到第一泡沫体缓冲填料,所述第二发泡阶段得到第二泡沫体缓冲填料。
  13. 根据权利要求12所述的声学调节材料,其特征在于,所述第二泡沫体缓冲填料的体积为所述第一泡沫体缓冲填料体积的1-25倍。
  14. 一种发声装置,其特征在于,包括壳体、发声单体和如权利要求1-13中的任一项所述的声学调节材料,所述壳体的内部形成腔体,所述腔体包括后声腔,所述发声单体设置在所述腔体内,所述发声单体与所述后声腔连通,所述后声腔包括灌装区,所述声学调节材料设置在所述灌装区内。
  15. 根据权利要求14所述的发声装置,其特征在于,发泡前,所述声学调节材料在所述灌装区内的填充率为50%-95%。
  16. 根据权利要求14所述的发声装置,其特征在于,所述可发性热塑性弹性体填料和所述声学改善填料均为颗粒状材料,
    所述可发性热塑性弹性体填料与所述声学改善填料混合填充于灌装区内。
  17. 根据权利要求14所述的发声装置,其特征在于,所述可发性热塑性弹性体填料和所述声学改善填料均为块状材料,
    所述可发性热塑性弹性体填料与所述声学改善填料交替设置;或者在同一层的块状的可发性热塑性弹性体填料和块状的声学改善填料呈阵列分布,并且可发性热塑性弹性体填料和声学改善填料交错设置。
  18. 根据权利要求14所述的发声装置,其特征在于,所述可发性热塑性弹性体填料形成格栅结构,所述声学改善填料填充在所述可发性热塑性弹性体填料形成的间隙内;或者
    所述声学改善填料形成格栅结构,所述可发性热塑性弹性体填料填充在所述声学改善填料形成的间隙内。
  19. 一种发声装置的声学调节材料的填充方法,其特征在于,如权利要求1-13中的任一项所述声学调节材料以下列任意方式设置在所述发声装置的后声腔的灌装区内:
    所述声学调节材料为颗粒状,先将可发性热塑性弹性体填料填充到所述灌装区内,再将声学改善填料填充到所述灌装区内;
    所述声学调节材料为颗粒状,先将声学改善填料填充到所述灌装区内,再将可发性热塑性弹性体填料填充到所述灌装区内;
    所述声学调节材料为颗粒状,先将可发性热塑性弹性体填料和声学改善填料进行混合,再将混合后的可发性热塑性弹性体填料和声学改善填料 填充到灌装区内;
    先将可发性热塑性弹性体填料设置在所述灌装区的至少一个壁部,以形成可发性热塑性弹性体填料层,然后将声学改善填料填充到所述灌装区内。
  20. 一种电子设备,其特征在于,包括如权利要求14-18任一项所述的发声装置。
PCT/CN2020/136714 2020-07-10 2020-12-16 声学调节材料、填充方法、发声装置及电子设备 WO2022007333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010660089.X 2020-07-10
CN202010660089.XA CN111534058A (zh) 2020-07-10 2020-07-10 声学调节材料、填充方法、发声装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022007333A1 true WO2022007333A1 (zh) 2022-01-13

Family

ID=71971138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136714 WO2022007333A1 (zh) 2020-07-10 2020-12-16 声学调节材料、填充方法、发声装置及电子设备

Country Status (2)

Country Link
CN (1) CN111534058A (zh)
WO (1) WO2022007333A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534019A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111560145A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534058A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534017A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534018A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置及电子设备
CN111560133A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN114885269A (zh) * 2021-08-19 2022-08-09 镇江贝斯特新材料有限公司 一种可膨胀声学增强件及其制作方法与应用
CN217721400U (zh) * 2022-04-29 2022-11-01 瑞声光电科技(常州)有限公司 扬声器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040211934A1 (en) * 2003-04-24 2004-10-28 Lestarge Kevin J. Compositions for acoustic-damping coatings
CN106046483A (zh) * 2016-06-27 2016-10-26 湖北祥源新材科技股份有限公司 吸音隔热聚烯烃发泡片材及其制备方法
CN107223148A (zh) * 2015-02-11 2017-09-29 普立万公司 声音阻尼热塑性弹性体制品
CN111163392A (zh) * 2018-11-08 2020-05-15 苹果公司 包括声学活性珠粒和可膨胀填料的声学填料
CN111534017A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534058A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534019A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534018A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置及电子设备
CN111560145A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111560133A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040211934A1 (en) * 2003-04-24 2004-10-28 Lestarge Kevin J. Compositions for acoustic-damping coatings
CN107223148A (zh) * 2015-02-11 2017-09-29 普立万公司 声音阻尼热塑性弹性体制品
CN106046483A (zh) * 2016-06-27 2016-10-26 湖北祥源新材科技股份有限公司 吸音隔热聚烯烃发泡片材及其制备方法
CN111163392A (zh) * 2018-11-08 2020-05-15 苹果公司 包括声学活性珠粒和可膨胀填料的声学填料
CN111534017A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534058A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534019A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534018A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置及电子设备
CN111560145A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111560133A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备

Also Published As

Publication number Publication date
CN111534058A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2022007333A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
WO2022007336A1 (zh) 声学调节材料、发声装置、填充方法及电子设备
WO2022007332A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
WO2022007335A1 (zh) 声学调节材料、发声装置及电子设备
WO2022007334A1 (zh) 用于发声装置的声学调节材料、发声装置、填充方法及电子设备
WO2022007331A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
WO2018040394A1 (zh) 扬声器模组
CN210579179U (zh) 音频扬声器、填料和可膨胀材料
CN109448688B (zh) 一种活性炭吸音材料和发声装置
CN109660924B (zh) 活性炭吸音颗粒和发声装置
CN109511057B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511056B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511058B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
WO2021135871A1 (zh) 吸音材料制备方法、吸音材料、发声装置以及电子设备
WO2018040392A1 (zh) 扬声器模组
WO2020108255A1 (zh) 一种活性炭吸音材料和发声装置
CN111179897A (zh) 一种活性炭吸音材料、发声装置以及电子设备
WO2018045668A1 (zh) 扬声器模组
US20230234021A1 (en) Gas adsorbent, preparation method of same, and speaker box using same
JP7367170B1 (ja) スピーカ
CN210112267U (zh) 一种发声装置
CN116723443A (zh) 吸音件及发声装置
CN113903320A (zh) 吸音材料及应用该吸音材料的扬声器
CN114885269A (zh) 一种可膨胀声学增强件及其制作方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944093

Country of ref document: EP

Kind code of ref document: A1