WO2022007335A1 - 声学调节材料、发声装置及电子设备 - Google Patents

声学调节材料、发声装置及电子设备 Download PDF

Info

Publication number
WO2022007335A1
WO2022007335A1 PCT/CN2020/136722 CN2020136722W WO2022007335A1 WO 2022007335 A1 WO2022007335 A1 WO 2022007335A1 CN 2020136722 W CN2020136722 W CN 2020136722W WO 2022007335 A1 WO2022007335 A1 WO 2022007335A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
acoustic
expandable
foaming
adjustment material
Prior art date
Application number
PCT/CN2020/136722
Other languages
English (en)
French (fr)
Inventor
潘泉泉
凌风光
李春
张成飞
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022007335A1 publication Critical patent/WO2022007335A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present application relates to the technical field of electro-acoustic conversion, and in particular, the present application relates to an acoustic adjustment material for a sound-generating device, a sound-generating device, and an electronic device.
  • a sound-generating device such as a receiver or a speaker, usually includes a housing and a sound-generating unit accommodated in the housing.
  • the sound-generating unit divides the cavity in the casing into a front acoustic cavity and a rear acoustic cavity.
  • the front acoustic cavity is communicated with the sound outlet hole, and the sound waves generated by the sounding unit are radiated from the front acoustic cavity.
  • the rear acoustic cavity is communicated with the sounding unit.
  • the vibrating airflow on the opposite side of the sound wave can radiate into the rear acoustic cavity.
  • the rear cavity is used to adjust the low frequency effect of the sound-generating device.
  • sound-absorbing particles are usually filled in the rear acoustic cavity.
  • the sound-absorbing particles can adsorb and desorb the vibrating gas, so that the low-frequency effect of the sound-emitting device is better.
  • the sound-absorbing particles will collide with each other, resulting in fragmentation.
  • crushing will generate dust, and the dust will enter the sound-emitting unit, which will cause the sound-emitting unit to work abnormally.
  • the fragmentation of the sound-absorbing particles will increase the F0 of the sound-generating device, resulting in poorer low-frequency effects.
  • Chinese Utility Model Patent Application No. 201921855579.4 discloses a filler for a loudspeaker, the filler includes an expandable filler and an acoustic filler, wherein the expandable filler can permanently expand from a first size to a second size when the expansion is triggered.
  • Acoustic fillers play a fixed role, improving the sound quality of the speaker in different directions and avoiding the generation of flow noise.
  • the expandable filler of this application permanently expands from an initial first size to a fixed second size when the expansion is triggered, the expandable filler does not change under the condition of the second size, and the size of the expandable filler during use of the speaker It is also constant, and the expansion degree of the expandable filler cannot be effectively adjusted according to different environmental conditions of loudspeaker use, which limits the applicability of the expandable filler.
  • Embodiments of the present application provide an acoustic adjustment material, a sound generating device, and an electronic device, so as to solve the problem of low applicability of existing acoustic adjustment materials.
  • an acoustic adjustment material for a sound generating device including:
  • the expandable cushioning filler foams under the condition of being triggered to become foam cushioning filler, so as to provide a cushioning effect to the acoustically improving filler when moving and colliding, the The volume of the expandable buffer filler after foaming varies with temperature and/or foaming time. When the temperature increases and/or the time increases, the damping of the expandable buffer filler increases, and the expandable buffer filler increases. The buffer capacity of the filler is enhanced;
  • the expandable buffer filler has a layered structure.
  • the expandable buffer filler is a single-layer monolithic material or a one-layer structure composed of a combination of a plurality of tiny expandable buffer fillers.
  • the thickness of the expandable buffer filler after foaming is in the range of 0.01-5 mm.
  • the density range of the expandable buffer filler after foaming is 0.01-2 g/mL.
  • the expandable buffer filler includes a high molecular polymer filler and a foaming agent mixed together.
  • the acoustic-improving filler is a material with acoustic properties made of one or more of activated carbon, zeolite powder, silica, porous alumina, molecular sieve, and metal-organic framework material.
  • the expandable buffer filler is triggered by at least one of thermal radiation, optical radiation, and electromagnetic radiation.
  • the expandable buffer filler accounts for 0.01%-35% of the total volume of the acoustic adjustment material; after foaming, the volume of the foam cushion filler accounts for 0.05% of the total volume of the acoustic adjustment material- 65%.
  • the expandable buffer filler is triggered by a physical foaming method or a chemical foaming method.
  • the volume of the foam buffer filler is 2-200 times the volume of the expandable buffer filler.
  • the foaming process of the expandable buffer filler includes a first foaming stage and a second foaming stage, the first foaming stage obtains a first foam buffer filler, and the second foaming stage A second foam cushioning filler is obtained.
  • the volume of the second foam buffer filler is 1-25 times the volume of the first foam buffer filler.
  • an embodiment of the present application provides a sound-generating device, including a housing, a sound-generating unit, and the acoustic adjustment material described in the first aspect, the interior of the housing forms a cavity, and the cavity includes a rear acoustic cavity The sound-generating unit is arranged in the cavity, the sound-generating unit is communicated with the rear acoustic cavity, the rear acoustic cavity includes a filling area, and the acoustic adjustment material is arranged in the filling area.
  • the filling rate of the acoustic adjustment material in the filling area is 50%-95%.
  • the expandable buffer filler is pasted on at least one inner wall of the filling area.
  • an embodiment of the present application provides an electronic device, including the sound producing device described in the second aspect.
  • the embodiment of the present application provides an acoustic adjustment material for a sound-generating device, including an expandable buffer filler and an acoustic improvement filler, and the expandable buffer filler foams under a triggered condition to become a foam buffer filler , so as to provide a buffering effect to the acoustically improved filler when it moves and collides, and the foamed volume of the expandable buffering filler varies with temperature and foaming time.
  • the foaming temperature and time of the expandable cushioning filler are used to control the degree of cushioning the expandable cushioning filler provides to the acoustically improved filler when it moves and collides.
  • FIG. 1 is a schematic structural diagram of an unfoamed state of an acoustic adjustment material for a sound-generating device provided by an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a foamed state of an acoustic adjustment material for a sound-generating device provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of another acoustic adjustment material for a sound-generating device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • an embodiment of the present application provides an acoustic adjustment material for a sound-generating device, including an expandable buffer filler 14 and an acoustic improvement filler 15 , and the expandable buffer filler 14 is triggered when the Foaming is carried out at the bottom to become a foam buffer filler, so as to provide a buffer effect for the acoustic improvement filler 15 when moving and colliding, and the foamed volume of the expandable buffer filler 14 varies with temperature and/or foaming time. and change.
  • the expandable buffer filler 14 when the expandable buffer filler 14 is foamed, the damping of the expandable buffer filler increases when the temperature and/or time increases, and the expandable buffer filler 14 has an increased damping effect.
  • the buffering capacity is enhanced, and the expandable buffer filler 14 is a layered structure, which can be a single layer of an integral material layer or a multi-layer material layer, or a layered structure formed by bonding and combining a plurality of tiny expandable buffer fillers.
  • the hairy buffer filler 14 can be spherical, spherical, rod-shaped, cylindrical, square or radial.
  • the expandable buffer packing 14 When the sounding device is impacted by an external force, the expandable buffer packing 14 is foamed under the condition of being triggered to become a foamed buffering filler, and the foamed buffering filler provides buffering force for the flow and collision of the acoustically improved filler.
  • the collision rate of the acoustic-improving filler is reduced. In this way, the risk of crushing of the acoustically-improving filler is greatly reduced, and the durability and service life of the acoustically-modifying material is improved.
  • the expandable buffer filler 14 forms cells after foaming.
  • the expandable material has elasticity, and the cells can change the volume according to the change of the external pressure, so as to form a buffering effect on the movement of the acoustic improvement filler 15 .
  • the expandable buffer filler 14 can effectively buffer the flow and collision of the acoustic improvement filler 15 .
  • the expandable buffer filler 14 can effectively buffer the vibration of the acoustic adjustment material.
  • the cells provide buffer force for the acoustic improvement filler 15, and the gas in the cells is stagnant and compressed, so that the external energy is consumed and dissipated.
  • the cells gradually terminate the impact load with a small negative acceleration, so the expandable buffer filler 14 has a good shockproof effect.
  • different triggering temperatures enable the expandable buffer filler 14 to change the volume of foaming, thereby adapting to different application environments, which makes the acoustic adjustment material more weather-resistant and adaptable.
  • the expandable buffer filler 14 refers to a material that can foam under a set trigger condition. In an untriggered condition, the expandable buffer filler 14 has a smaller volume. This enables the material to be easily filled into a given cavity (eg, the filling area of the rear acoustic cavity). The material foams under triggered conditions, providing cushioning when the acoustically-improving filler collides.
  • the thickness of the expandable buffer filler 14 after foaming is in the range of 0.01-25 mm, preferably 0.1-5 mm.
  • the expandable buffer filler 14 has a good buffer effect on the acoustic improvement filler 15, and the foam cell has a good buffer effect.
  • the thickness of the expandable buffer filler 14 is moderate, and it will not block the airflow channel of the acoustic improvement filler 15, and the acoustic adjustment material has a good adsorption and desorption effect on the vibrating airflow.
  • the expandable buffer filler 14 when the expandable buffer filler 14 is in a layered shape, the fluidity of these materials is good, and the filling in the cavity is easy.
  • the layered expandable buffer filler 14 can be directly filled into the filling area of the rear acoustic cavity 13 of the sound generating device.
  • the layered expandable buffer filler 14 is prepared into a predetermined shape and then filled into the filling area of the rear acoustic cavity 13 of the sound generating device.
  • the acoustic improvement filler 15 is prepared into a set three-dimensional structure, and the expandable buffer filler 14 is filled into the gaps of the three-dimensional structure.
  • the density of the expandable buffer filler 14 after foaming is in the range of 0.01-1.2 g/mL, preferably 0.05-1 g/mL.
  • the density of the expandable buffer filler 14 when not foamed, is 0.2 g/mL to 1.5 g/mL. Within this density range, the overall density of the acoustic adjustment material is small, which makes the overall weight of the sound emitting device light. After foaming, the density of the expandable buffer filler may preferably be 0.01 g/mL, 0.04 g/mL, 0.08 g/mL, and the like. Within this range, the foam cushioning filler has good cushioning effect on the acoustic improvement filler, high structural strength and good durability.
  • the expandable buffer filler 14 includes a high molecular polymer filler and a foaming agent mixed together.
  • the polymer fillers include expandable polyolefin fillers, expandable thermoplastic elastomer fillers, expandable TPEE, expandable TPU, and the like.
  • the molecular chain of the expandable polyolefin filler contains olefin links, and the molecular structures of the olefin links include -CH2-CH2-, -CH(R)-CH2- and -CH(R)-CH(R )- at least one of wherein R is alkyl or aryl.
  • the expandable polyolefin filler is composed of ethylene, propylene, butene, pentene, hexene, polystyrene, polystyrene (ie PS), polystyrene foam (ie EPS), acrylonitrile-butadiene
  • ethylene-styrene block copolymer ie ABS
  • styrene-butadiene-styrene block copolymer ie SBS
  • the type of the expandable thermoplastic elastomer filler is one or more of polyolefin thermoplastic elastomer, thermoplastic vulcanizate, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer and styrene block copolymer. All of the above materials can be triggered by thermal radiation to foam. Moreover, at different trigger temperatures, the volume after foaming is different, and the volume will change with the temperature change during the application process. Expandable TPEE filler has the characteristics of light weight, no water absorption, anti-aging, strong corrosion performance, strong toughness, non-toxic and non-polluting.
  • the expandable buffer filler 14 is a multi-layer material layer
  • different polymer fillers can be used between the layers.
  • a polymer filler with strong foaming ability is used for the layer close to the acoustic improvement filler 15.
  • the layer away from the acoustic-improving filler 15 uses a polymer filler with weak foaming ability to give full play to the combined advantages of a variety of polymer fillers.
  • the blowing agent comprises a low boiling alkane.
  • the low boiling point alkane has a boiling point of 30°C to 40°C.
  • the expandable buffer filler and foaming agent are mixed together to prepare.
  • the process of this method is simple, and the expandable buffer filler 14 can be formed in one reaction. It is also possible to add a foaming agent to the expandable buffer filler, so that the foaming agent penetrates into the expandable material.
  • the low-boiling alkane includes at least one of petroleum ether, butane, pentane, and the like. All of these materials can be volatilized under a set trigger condition, thereby forming cells inside the expandable material. A plurality of cells form a foam.
  • foaming agents are not limited to the above embodiments, and those skilled in the art can select them according to actual needs.
  • the acoustic improving filler 15 is a material with acoustic properties made of one or more of activated carbon, zeolite powder, silica, porous alumina, molecular sieve, and metal-organic framework material.
  • the acoustic improving filler 15 refers to a porous material capable of adsorbing and desorbing vibration gas.
  • acoustic adjustment materials include acoustic performance materials made of one or more of activated carbon, zeolite powder, silica, porous alumina, molecular sieves, metal-organic framework materials, and the like.
  • the acoustic improving filler 15 may be in the form of granules, flakes, blocks, and the like.
  • the expandable buffer filler 14 is triggered by at least one of thermal radiation, optical radiation, and electromagnetic radiation.
  • the foaming agent in the expandable buffer filler 14 volatilizes and becomes larger in volume, forming cells in the expandable material, thereby enabling the foaming of the expandable material.
  • the volume of the expandable buffer filler 14 can be increased to an appropriate value. If the trigger time is too short, the foaming multiple of the expandable buffer filler 14 is small and cannot be achieved. The effect of the cushioning acoustic improvement filler 15 is improved.
  • the volume of the expandable buffer filler 14 can be increased to an appropriate value, and the higher the temperature, the more likely the cell rupture will occur; on the contrary, the lower the triggering temperature, the more likely the expandable buffer filler 14 will be.
  • the foaming agent in the expandable buffer filler 14 is triggered by means of ultraviolet irradiation.
  • the blowing agent is heated, the volume becomes larger, thereby forming cells in the expandable buffer filler.
  • the acoustic modulation material is heated under the action of an alternating magnetic field.
  • the blowing agent volatilizes, thereby forming cells within the expandable buffer filler 14 .
  • the above triggering method is easy to operate and has strong controllability of the size of the cells.
  • the triggering method of the expandable buffer filler 14 is not limited to the above-mentioned embodiment, and those skilled in the art can select according to actual needs.
  • the expandable cushioning filler 14 accounts for 0.01%-35% of the total volume of the acoustic adjustment material, preferably 0.1%-20%; after foaming, the volume of the foam cushioning filler accounts for the volume of the acoustic adjustment material 0.05%-65% of the total volume of the material, preferably 5%-60%.
  • the proportion of the acoustic improvement filler is large, which can ensure that the acoustic improvement filler is uniformly dispersed in the cavity.
  • the smaller the proportion of the filler 14 in the acoustic adjustment material the less the cushioning effect can be achieved.
  • the expandable buffer filler 14 can form a channel after foaming, so that the vibrating gas can easily enter and exit the acoustic adjustment material, so the acoustic adjustment The sound absorption effect of the material is significantly improved.
  • the acoustic improvement filler 15 Due to the cushioning effect of the expandable cushioning filler 14, the acoustic improvement filler 15 has a good shape-retaining effect and good durability.
  • the mass of the expandable buffer filler 14 accounts for 0.1%-20% of the total mass of the acoustic adjustment material. Within this range, only less expandable buffer filler 14 is required to achieve a higher filling rate in the cavity.
  • the mass ratio occupied by the expandable buffer filler 14 is relatively low, the effect of adsorbing and desorbing the vibrating gas by the acoustic adjustment material will not be affected.
  • the mass of the expandable buffer filler 14 accounts for 1%-5% of the total mass of the acoustic adjustment material. Within this range, the durability of the acoustic adjustment material is good, and the effect of adsorbing and desorbing the vibrating gas is good.
  • the expandable buffer filler is triggered by a physical foaming method or a chemical foaming method.
  • the physical foaming method refers to a method in which the volatile components dispersed in the expandable buffer filler are volatilized under conditions such as light or heat to generate bubbles.
  • the inert gas can be dissolved in the expandable buffer filler under a set pressure, and then triggered by a decompression method to release the gas, thereby forming bubbles in the expandable buffer filler .
  • low-boiling alkanes are first added to the expandable buffer packing, and then triggered by heating to volatilize the low-boiling alkanes, thereby forming air bubbles in the expandable buffer packing.
  • the low-boiling alkane includes at least one of petroleum ether, butane, pentane, and the like. All of these materials can volatilize under heating, thereby forming air bubbles inside the expandable buffer filler. Multiple air bubbles form foam.
  • the chemical foaming method refers to: using chemical methods to generate gas to foam the expandable buffer filler: heating the chemical foaming agent added to the expandable buffer filler to decompose it, releasing gas and foaming.
  • the foaming agent may be, but not limited to, ammonium carbonate, sodium bicarbonate, ammonium chloride, urea, and the like.
  • the above-mentioned blowing agent can be decomposed under heating to generate gas and form bubbles in the expandable buffer filler.
  • the volume of expansion is different. For example, within a certain range, the higher the trigger temperature is, the larger the volume expansion is, and the lower the trigger temperature is, the smaller the volume expansion is.
  • the volume of the foam buffer filler is 2-200 times the volume of the expandable buffer filler.
  • the foaming process of the expandable buffer filler 14 includes a first foaming stage and a second foaming stage, the first foaming stage obtains a first foam buffer filler, and the second foaming stage to obtain a second foam cushioning padding.
  • the cushioning effect of the expandable cushioning filler 14 can be flexibly controlled through the staged foaming of the expandable cushioning filler.
  • the volume of the expandable buffer filler 14 after foaming varies with the foaming temperature and foaming time. Specifically, see Table 1. Within a certain temperature range, specifically 80-110° C., it can be expanded when the temperature increases. The foaming volume of the expandable buffer filler 14 is significantly increased, which can reach dozens or even hundreds of times of the initial volume, and the damping of the expandable buffer filler 14 also increases accordingly, and the expandable buffer filler 14 can improve the acoustic effect of the filler 15 It has a strong buffering effect; within a certain foaming time range, specifically 10-30min, when the time increases, the foaming volume of the expandable buffer filler 14 increases, and the damping of the expandable buffer filler 14 also increases.
  • the degree of foaming of the expandable buffer filler 14 can be controlled by the foaming temperature and time.
  • the foaming temperature of the expandable buffer filler 14 can also be lower than 80°C, for example, the foaming is performed at 70°C, 60°C or lower temperature, but the foaming of the expandable buffer filler 14 is performed at a lower temperature.
  • the volume is small and can not achieve a good buffer effect; and the foaming time of the expandable buffer filler 14 can also be greater than 30min, such as 1h, 2h, 3h or longer.
  • the foaming degree of the expandable buffer filler 14 needs to be comprehensively controlled according to the foaming temperature and foaming time.
  • the expandable cushioning filler 14 When the expandable cushioning filler 14 is applied to the sound-generating device, if the expandable cushioning filler 14 has been foamed to the maximum foaming volume, the strength of the acoustic improving filler 15 will be weakened during long-term high-temperature use, and there is still a risk of breakage . If the first foam buffer filler is obtained by passing the expandable buffer filler 14 through the first foaming stage, and the first foam buffer filler is not foamed to the maximum foaming volume, then the expandable buffer filler 14 is applied to the sound generating device During the long-term high-temperature use of the sound-emitting device, the expandable buffer filler 14 will undergo a second foaming stage at a high temperature.
  • the expandable buffer filler 14 can continue to foam, and the volume of the expandable buffer filler 14 increases. When the size is large, it can further buffer the acoustic improvement filler 15 to ensure the service life of the acoustic improvement filler 15 .
  • the expandable buffer filler 14 may frequently undergo multiple high-temperature foaming processes. Therefore, the second foaming stage here not only refers to a foaming stage, but also can Includes multiple foaming stages. For example, when the sound-generating device is operated for a long time and with high power, a higher temperature will be generated inside the sound-generating device. At this time, the expandable buffer filler 14 can go through the foaming stage. The expandable buffer filler 14 will undergo multiple foaming processes.
  • the expandable buffer filler 14 when the expandable buffer filler 14 is applied to the sound generating device, it is generally filled into the filling area of the rear sound cavity.
  • the rear acoustic cavity is used as the main space for the sound-generating device to adjust the low-frequency effect.
  • the volume of the expandable buffer filler 14 becomes larger after foaming, which will inevitably occupy a larger volume of the rear acoustic cavity, thereby affecting the low-frequency effect of the sound-generating device. Therefore, when filling the expandable buffer filler 14, the expandable buffer filler 14 can only be passed through the first foaming stage. At this time, the volume of the expandable buffer filler 14 has been significantly increased, but the rear acoustic cavity is not affected. The volume causes a very large occupancy.
  • the expandable buffer filler 14 can also provide a buffering effect; and in the actual use of the sound-generating device, when the sound-generating device is in a high temperature environment or during long-term high-power use In the middle, the adhesive of the acoustic improvement filler 15 will age, and the strength of the adhesive will be greatly reduced after aging, which will cause the possibility of the acoustic improvement filler 15 colliding with each other and breaking.
  • the second-stage foaming is carried out at the next stage, and the volume of the expandable buffer filler 14 will be further increased after the second-stage foaming, and the damping characteristics of the expandable buffer filler 14 are enhanced, which can more effectively improve the movement of the filler 15 for acoustics. It plays a buffering role, reducing or even avoiding the damage of the acoustic improvement filler 15 due to collision.
  • the adhesive aging process of the acoustic improvement filler 15 and the second-stage foaming process of the expandable buffer filler 14 will continue to occur during the long-term use of the sound-emitting device, that is, the continuous second-stage foaming of the expandable buffer filler 14
  • the problem of collision and crushing of the acoustic improvement filler 15 caused by the aging of the adhesive can be continuously improved and solved, so as to improve the sound producing effect and service life of the sound producing device.
  • the volume of the second foam buffer filler is 1-25 times the volume of the first foam buffer filler.
  • the volume of the expandable buffer filler 14 can be further increased after continuing to undergo the second stage of foaming.
  • the damping characteristics and damping performance of the buffer packing 14 are further increased.
  • the second-stage foaming is performed under the foaming conditions of 80-100° C. and 1-6 h,
  • the volume of the expandable buffer filler 14 can also be increased several times, and the second-stage foaming process can occur many times during the use of the sound-generating device.
  • the embodiment of the present application further provides a sound-generating device, which includes a housing 11, a sound-generating unit 12, and an acoustic adjustment material of the sound-generating device.
  • the interior of the housing 11 forms a cavity, and the cavity includes a rear acoustic cavity 13.
  • the sound-generating unit 12 is arranged in the cavity, the sound-generating unit 12 is communicated with the rear acoustic cavity 13, the rear acoustic cavity 13 includes a filling area, and the acoustic adjustment material is arranged in the filling area. area.
  • the sounding device has the characteristics of good sounding effect, good low frequency effect and good durability.
  • the expandable buffer filler 14 is integrally provided in a single layer on the bottom surface of the rear acoustic cavity 13 .
  • the volume of the expandable cushioning filler 14 increases after foaming, which can form a cushioning effect on the movement of the acoustically improving filler 15 .
  • the expandable buffer filler 14 may also be a layered structure formed by bonding a plurality of spherical granular materials, and the expandable buffer filler 14 is arranged on the bottom surface of the rear acoustic cavity 13 .
  • the filling rate of the acoustic adjustment material in the filling area is 50%-95%.
  • the foaming of the expandable buffer filler 14 can provide a buffer effect on the flow and collision of the acoustic improvement filler.
  • the filling rate of the acoustic adjustment material in the filling area is 60%-85% under the condition of not being triggered. Within this range, after being triggered, the acoustic adjustment material can better play a buffering role, and can provide buffers for the flow and collision of the acoustic improvement filler, and prevent the acoustic improvement filler from breaking.
  • the expandable buffer filler 14 is pasted on at least one inner wall of the filling area.
  • the expandable buffer filler 14 on the inner wall foams, so as to squeeze the acoustic improvement filler 15 to cushion the movement of the acoustic improvement filler 15 .
  • the foamed expandable buffer filler 14 has a buffering effect on the acoustic improvement filler 15 .
  • expandable buffer filler layers are formed on two opposite wall portions of the cavity. Under the condition of being triggered, the expandable cushioning filler 14 on the two walls is foamed, so as to form two opposite directions of extrusion for the acoustic improvement filler 15, which makes the foam cushioning filler have a cushioning effect on the acoustic improvement filler 15. better.
  • the foamed expandable buffer filler layer forms a buffer effect on the opposite sides of the acoustic improvement filler 15, which makes the acoustic adjustment material more durable.
  • an expandable buffer filler layer is formed on all the walls of the cavity. In this way, the expandable buffer filler layer forms a buffer effect in any direction of the acoustic improvement filler 15, which makes the acoustic adjustment material more durable.
  • the present application also provides a method for filling the acoustic adjustment material, comprising:
  • the expandable buffer filler 14 is a layered structure
  • the expandable buffer filler 14 is arranged on at least one wall of the filling area, and then the acoustic improving filler 15 is filled into the filling area.
  • the casing 11 is provided with a filling hole. During filling, the granules are filled from the filling hole into the filling zone. It is possible that the acoustic improving filler 15 employs particles of different physical sizes. So that the filling rate of the acoustic adjustment material in the filling area is high. Alternatively, the acoustic-improving filler 15 uses particles of the same physical size to ensure the consistency of the acoustic-modulating material.
  • Embodiments of the present application also provide an electronic device, including the sound producing device.
  • the electronic device may be, but not limited to, a mobile phone, a tablet computer, a smart watch, a game console, a learning machine, etc.
  • the electronic device has the characteristics of good acoustic effect.
  • the acoustic adjustment material includes acoustic improvement filler 15 and expandable EPS filler.
  • the material of the acoustic-improving filler 15 is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the mass fraction of expandable EPS filler is 4%.
  • the sound generating device is a miniature speaker module.
  • the volume of the rear acoustic cavity 13 of the micro speaker module is 0.4cc.
  • the acoustic adjustment material is mixed and filled into the rear acoustic cavity 13 .
  • the micro speaker module was placed in an oven and heated at 110°C for 20 minutes to foam the expandable EPS filler.
  • the foamed filler has a physical size of 1.4 mm and a density of 0.09 g/mL, and the volume of the foamed filler accounts for 27% of the volume of the acoustic material filling mixture.
  • the acoustic tuning material and speaker module are consistent with the embodiment.
  • the expandable EPS filler was not triggered.
  • the material of the acoustic adjustment material is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the sound generating device is a miniature speaker module. This module is the same model as the module used in the embodiment.
  • the acoustic adjustment material is filled into the rear acoustic cavity 13 .
  • F0 test Test the frequency response curves of the three micro-speaker modules respectively, and obtain the F0 of the three micro-speaker modules.
  • the acoustic adjustment materials of the three miniature speaker modules are taken out, and the particle integrity of the acoustic improvement filler 15 is observed.
  • the acoustic adjustment material includes acoustic improvement filler 15 and expandable EPS filler.
  • the material of the acoustic-improving filler 15 is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the mass fraction of expandable EPS filler is 10%.
  • the sound generating device is a miniature speaker module.
  • the volume of the rear acoustic cavity 13 of the micro speaker module is 0.4cc.
  • the acoustic adjustment material is mixed and filled into the rear acoustic cavity 13 .
  • the micro speaker module was placed in an oven and heated at 110°C for 20 minutes to foam the expandable EPS filler.
  • the foamed filler has a physical size of 0.36 mm, a density of 0.1 g/mL, and the volume of the foamed filler accounts for 25% of the volume of the acoustic material filling mixture.
  • the acoustic tuning material and speaker module are consistent with the embodiment.
  • the expandable EPS filler was not triggered.
  • the material of the acoustic adjustment material is zeolite.
  • the zeolite is granular with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the sound generating device is a miniature speaker module. This module is the same model as the module used in the embodiment.
  • the acoustic adjustment material is filled into the rear acoustic cavity 13 .
  • F0 test Test the frequency response curves of the three micro-speaker modules respectively, and obtain the F0 of the three micro-speaker modules.
  • the acoustic adjustment materials of the three miniature speaker modules are taken out, and the particle integrity of the acoustic improvement filler 15 is observed.
  • the acoustic adjustment material includes acoustic improvement filler 15 and expandable EPS filler.
  • the material of the acoustic improvement filler 15 is molecular sieve. Molecular sieves are granular, with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL. The mass fraction of expandable EPS filler is 1.7%.
  • the sound generating device is a miniature speaker module.
  • the volume of the rear acoustic cavity 13 of the micro speaker module is 0.4cc.
  • the acoustic adjustment material is mixed and filled into the rear acoustic cavity 13 .
  • the micro speaker module was placed in an oven and heated at 110°C for 20 minutes to foam the expandable EPS filler.
  • the physical size of the foamed filler becomes 20 mm, the density is 0.07 g/mL, and the volume of the foamed filler accounts for 55% of the volume of the acoustic material filling mixture.
  • the acoustic tuning material and speaker module are consistent with the embodiment.
  • the expandable EPS filler was not triggered.
  • the material of the acoustic adjustment material is molecular sieve.
  • Molecular sieves are granular, with a physical size of 0.3mm-0.5mm and a density of 0.5g/mL.
  • the sound generating device is a miniature speaker module. This module is the same model as the module used in the embodiment.
  • the acoustic adjustment material is filled into the rear acoustic cavity 13 .
  • F0 test Test the frequency response curves of the three micro-speaker modules respectively, and obtain the F0 of the three micro-speaker modules.
  • the acoustic adjustment materials of the three miniature speaker modules are taken out, and the particle integrity of the acoustic improvement filler 15 is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Inorganic Chemistry (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

提供声学调节材料、发声装置及电子设备。声学调节材料包括可发性缓冲填料和声学改善填料,可发性缓冲填料在被触发的条件下进行发泡,成为泡沫体缓冲填料,以对声学改善填料在移动碰撞时提供缓冲作用,可发性缓冲填料发泡后的体积随温度和/或发泡时间的变化而变化。通过可发性缓冲填料发泡的温度和时间灵活控制其对声学改善填料在移动碰撞时的缓冲程度。在发声装置工作过程中,可发性缓冲填料降低了声学改善填料破碎的风险,提高了声学调节材料的耐用性和使用寿命。

Description

声学调节材料、发声装置及电子设备 技术领域
本申请涉及电声转换技术领域,具体地,本申请涉及一种用于发声装置的声学调节材料、发声装置及电子设备。
背景技术
发声装置例如受话器或者扬声器,通常包括壳体、收容在所述壳体内的发声单体。发声单体将壳体内的腔体分隔为前声腔和后声腔。前声腔与出声孔连通,发声单体产生的声波从前声腔辐射出。后声腔与发声单体连通。声波相对侧的振动气流能够辐射到后声腔内。后声腔用于调节发声装置的低频效果。
为了更好地调节低频效果,通常在后声腔内填充有吸音颗粒。吸音颗粒能够吸附、脱附振动气体,从而使得发声装置的低频效果更好。然而,在工作过程中,吸音颗粒会相互碰撞,而导致破碎。一方面,破碎会产生粉尘,粉尘进入发声单体,会造成发声单体工作不正常。另一方面,吸音颗粒破碎会使得发声装置的F0升高,造成低频效果变差。
申请号为201921855579.4的中国实用新型专利公开了一种用于扬声器的填料,该填料包括可膨胀填料和声学填料,其中可膨胀填料可以在膨胀触发时从第一尺寸永久膨胀至第二尺寸,对声学填料起到固定作用,改善了扬声器不同方向的声音质量,避免了流噪的产生。但该申请的可膨胀填料在膨胀触发时从初始的第一尺寸永久膨胀至固定的第二尺寸,可膨胀填料在第二尺寸条件下不再变化,而且在扬声器使用过程中可膨胀填料的尺寸也是恒定的,无法根据不同的扬声器使用环境条件对可膨胀填料的膨胀程度进行有效调节,限制了可膨胀填料的适用性。
发明内容
本申请实施例提供一种声学调节材料、发声装置及电子设备,以解决现有声学调节材料适用性低的问题。
为了解决上述问题,本申请实施例采用下述技术方案:
第一方面,本申请实施例提供了一种用于发声装置的声学调节材料,包括:
可发性缓冲填料和声学改善填料,所述可发性缓冲填料在被触发的条件下进行发泡,成为泡沫体缓冲填料,以对所述声学改善填料在移动碰撞时提供缓冲作用,所述可发性缓冲填料发泡后的体积随温度和/或发泡时间的变化而变化,温度升高和/或时间增加时所述可发性缓冲填料的阻尼增大,所述可发性缓冲填料的缓冲能力增强;
所述可发性缓冲填料为层状结构。
可选地,所述可发性缓冲填料由单一层整体材料或由多个微小可发性缓冲填料组合构成的一层结构。
可选地,所述可发性缓冲填料发泡后的厚度范围为0.01~5mm。
可选地,所述可发性缓冲填料发泡后的密度范围为0.01~2g/mL。
可选地,所述可发性缓冲填料包括混合在一起的高分子聚合物填料和发泡剂。
可选地,所述声学改善填料为活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料中的一种或多种制成的具有声学性能的材料。
可选地,通过热辐射、光辐射、电磁辐射中的至少一种使所述可发性缓冲填料触发。
可选地,发泡前,所述可发性缓冲填料占声学调节材料的总体积的0.01%-35%;发泡后,泡沫体缓冲填料的体积占声学调节材料的总体积的0.05%-65%。
可选地,采用物理发泡法或者化学发泡法对所述可发性缓冲填料进行触发。
可选地,所述泡沫体缓冲填料的体积为所述可发性缓冲填料体积的2-200倍。
可选地,所述可发性缓冲填料的发泡过程包括第一发泡阶段和第二发泡阶段,所述第一发泡阶段得到第一泡沫体缓冲填料,所述第二发泡阶段得到第二泡沫体缓冲填料。
可选地,所述第二泡沫体缓冲填料的体积为所述第一泡沫体缓冲填料体积的1-25倍。
第二方面,本申请实施例提供了一种发声装置,包括壳体、发声单体和第一方面所述的声学调节材料,所述壳体的内部形成腔体,所述腔体包括后声腔,所述发声单体设置在所述腔体内,所述发声单体与所述后声腔连通,所述后声腔包括灌装区,所述声学调节材料设置在所述灌装区内。
可选地,发泡前,所述声学调节材料在所述灌装区内的填充率为50%-95%。
可选地,所述可发性缓冲填料粘贴于所述灌装区的至少一个内壁上。
第三方面,本申请实施例提供了一种电子设备,包括如第二方面所述的发声装置。
本申请实施例采用的技术方案能够达到以下有益效果:
本申请实施例提供了一种用于发声装置的声学调节材料,包括可发性缓冲填料和声学改善填料,所述可发性缓冲填料在被触发的条件下进行发泡,成为泡沫体缓冲填料,以对所述声学改善填料在移动碰撞时提供缓冲作用,所述可发性缓冲填料发泡后的体积随温度和发泡时间的变化而变化。本申请实施例通过所述可发性缓冲填料发泡的温度和时间来控制其对所述声学改善填料在移动碰撞时的缓冲程度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种用于发声装置的声学调节材料未发泡状态的结构示意图;
图2为本申请实施例提供的一种用于发声装置的声学调节材料发泡状态的结构示意图;
图3为本申请实施例提供的另一种用于发声装置的声学调节材料的结构示意图。
附图标记说明:
11-壳体;12-发声单体;13-后声腔;14-可发性缓冲填料;15-声学改善填料。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
以下结合附图,详细说明本申请各个实施例公开的技术方案。
参照图1至图3,本申请实施例提供了一种用于发声装置的声学调节材料,包括可发性缓冲填料14和声学改善填料15,所述可发性缓冲填料14在被触发的条件下进行发泡,成为泡沫体缓冲填料,以对所述声学改善填料15在移动碰撞时提供缓冲作用,所述可发性缓冲填料14发泡后的体积随温度和/或发泡时间的变化而变化。在一定温度和时间范围内,所述可发性缓冲填料14发泡时,温度升高和/或时间增加时所述可发性缓冲填料的阻尼增大,所述可发性缓冲填料14的缓冲能力增强,所述可发性缓冲填料14为层状结构,具体可以为单一层整体材料层或多层材料层,或者由多个微小可发性缓冲填料粘接组合成层状结构,可发性缓冲填料14可以为球形、类球形、棒状、圆柱状、方块状或辐射状。
在发声装置受外力冲击时,可发性缓冲填料14在被触发的条件下进行发泡成为泡沫体缓冲填料,泡沫体缓冲填料为声学改善填料的流动、碰撞提供缓冲力,在发声装置工作过程中,降低了声学改善填料的碰撞率。通过这种方式,大大降低了声学改善填料破碎的风险,提高了声学调节材料的耐用性和使用寿命。
此外,可发性缓冲填料14在发泡后,形成泡孔。可发性材料具有弹性,泡孔能根据外部压力的变化而改变体积,从而对声学改善填料15的运动形成缓冲作用。通过这种方式,可发性缓冲填料14能够有效地缓冲声学改善填料15的流动、碰撞。尤其是,发声装置在大功率工作时,可发性缓冲填料14能有效地缓冲声学调节材料的振动。
此外,在发声装置受外力冲击时,泡孔为声学改善填料15提供缓冲力,泡孔中的气体通过滞流和压缩,使外来的能量被消耗、散逸。泡孔以较小的负加速度,逐步终止冲击载荷,因此,可发性缓冲填料14具有良好的防震效果。
此外,触发温度不同使得可发性缓冲填料14能改变发泡的体积,从而适应不同的应用环境,这使得声学调节材料的耐候性、适应性更强。
可发性缓冲填料14是指在设定的触发条件下,能发生发泡的材料。在未被触发的条件下,可发性缓冲填料14具有较小的体积。这使得该材料能被容易地填充到设定的腔体(例如,后声腔的灌装区)内。在被触发的条件下该材料发泡,从而为声学改善填料碰撞时提供缓冲。
可选地,所述可发性缓冲填料14发泡后的厚度范围为0.01~25mm,优选0.1-5mm。
具体地,在该尺寸范围内,可发性缓冲填料14对声学改善填料15的缓冲效果良好,泡孔的缓冲效果良好。此外,可发性缓冲填料14的厚度大小适中,并且不会堵塞声学改善填料15的气流通道,声学调节材料对振动气流的吸附、脱附效果良好。
具体地,所述可发性缓冲填料14为层状时,这些材料的流动性良好,在腔体中的填充容易。在填充时,可以将层状的可发性缓冲填料14直接填充到发声装置的后声腔13的灌装区内。也可以是,将层状的可发性缓冲填料14制备成设定的形状,然后填充到发声装置的后声腔13的灌装区中。还可以是,声学改善填料15制备成设定的三维结构,可发性缓冲填料14填充到三维结构的间隙内。
可选地,所述可发性缓冲填料14发泡后的密度范围为0.01~1.2g/mL,优选0.05-1g/mL。
具体地,在未发泡时,可发性缓冲填料14的密度为0.2g/mL-1.5g/mL。在该密度范围内,声学调节材料的整体的密度小,这样使得发声装置的整体的重量轻。在发泡后,所述可发性缓冲填料的密度可以优先选择0.01g/mL、0.04g/mL、0.08g/mL等。在该范围内,泡沫体缓冲填料对于声学改善填料的缓冲效果良好,结构强度高,耐用性良好。
可选地,所述可发性缓冲填料14包括混合在一起的高分子聚合物填料和发泡剂。
具体地,所述高分子聚合物填料包括可发性聚烯烃填料、可发性热塑性弹性体填料、可发性TPEE、可发性TPU等。所述可发性聚烯烃填料的 分子链中含有烯烃链节,所述烯烃链节的分子结构包括-CH2-CH2-、-CH(R)-CH2-和-CH(R)-CH(R)-中的至少一种,其中R为烷基或芳香基。例如,所述可发性聚烯烃填料由乙烯、丙烯、丁烯、戊烯、己烯、聚苯乙烯、聚苯乙烯(即PS)、聚苯乙烯泡沫(即EPS)、丙烯腈-丁二烯-苯乙烯嵌段共聚物(即ABS)和苯乙烯-丁二烯-苯乙烯嵌段共聚物(即SBS)中一种或多种聚合而成。上述材料均能在热辐射的条件下被触发,从而发泡。并且,在不同的触发温度下,发泡后的体积不同,并随应用过程中温度的变化,体积会发生变化。所述可发性热塑性弹性体填料的种类为聚烯烃热塑性弹性体、热塑性硫化胶、热塑性聚氨酯弹性体、热塑性聚酯弹性体和苯乙烯嵌段共聚物中的一种或多种。上述材料均能在热辐射的条件下被触发,从而发泡。并且,在不同的触发温度下,发泡后的体积不同,并随应用过程中温度的变化,体积会发生变化。可发性TPEE填料具有质量轻、不吸水、抗老化、腐蚀性能强、韧性强、无毒无污染的特点。
另外,在可发性缓冲填料14为多层材料层时,各层之间可以采用不同高分子聚合物填料,比如靠近声学改善填料15的所在层使用发泡能力强的高分子聚合物填料,远离声学改善填料15的所在层使用发泡能力弱的高分子聚合物填料,充分发挥多种高分子聚合物填料的组合优势。
本领域技术人员可以根据实际需要选择发泡剂的种类、用量等。
可选地,所述发泡剂包括低沸点的烷烃。
具体地,低沸点的烷烃的沸点为30℃-40℃。在制备时,在高压或者高温反应釜中,将可发性缓冲填料和发泡剂混合在一起制备而成。该方法的工艺简单,一次反应就能形成可发性缓冲填料14。也可以是,在可发性缓冲填料中加入发泡剂,使发泡剂渗入可发性材料中。
低沸点的烷烃包括石油醚、丁烷、戊烷等中的至少一种。这些材料均能在设定的触发条件下挥发,从而在可发性材料的内部形成泡孔。多个泡孔形成泡沫。当然,发泡剂的种类不限于上述实施例,本领域技术人员可以根据实际需要进行选择。
可选地,所述声学改善填料15为活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料中的一种或多种制成的具有声学性能的材料。
具体地,声学改善填料15是指能够吸附和脱附振动气体的多孔材料。例如,声学调节材料包括活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料等其中一种或多种制成的声学性能材料。声学改善填料15可以为颗粒状、片状、块状等。
可选地,通过热辐射、光辐射、电磁辐射中的至少一种使所述可发性缓冲填料14触发。
具体地,上述辐射条件下,可发性缓冲填料14内的发泡剂挥发并且体积变大,在可发性材料内形成泡孔,从而使得可发性材料的发泡。
在相同温度条件下,在一定的触发时间下,可发性缓冲填料14的体积可增大至适当值,触发时间过短,则可发性缓冲填料14的发泡的倍数小,起不到缓冲声学改善填料15的作用。
在相同触发时间下,在一定的触发温度下,可发性缓冲填料14的体积可增大至适当值,温度越高越容易发生泡孔破裂;反之,触发温度越低,则可发性缓冲填料14的发泡体积越小,起不到缓冲声学改善填料15的作用。
在进行光辐射时,采用紫外线照射的方式触发可发性缓冲填料14内的发泡剂。发泡剂在受热条件下,体积变大,从而在可发性缓冲填料内形成泡孔。
在进行电磁辐射时,在交变磁场的作用下,声学调节材料被加热。发泡剂挥发,从而在可发性缓冲填料14内形成泡孔。上述触发方式的操作简单,泡孔大小的可控性强。
当然,可发性缓冲填料14的触发方式不限于上述实施例,本领域技术人员可以根据实际需要进行选择。
可选地,发泡前,所述可发性缓冲填料14占声学调节材料的总体积的 0.01%-35%,优选0.1%-20%;发泡后,泡沫体缓冲填料的体积占声学调节材料的总体积的0.05%-65%,优选5%-60%。
具体地,发泡前,在上述比例范围内,声学改善填料所占的比例大,能保证声学改善填料在腔体内均匀地分散。可发性缓冲填料14在声学调节材料中的所占比例越大,会使得声学改善填料15的填充量减小,降低声学调节材料的吸附、脱附振动气体的效果;反之,可发性缓冲填料14在声学调节材料中的所占比例越小,则无法起到缓冲的效果。
在上述体积比范围内,尽管声学改善填料15的填充量相对降低了,但可发性缓冲填料14在发泡后能够形成通道,从而使得振动气体容易进、出声学调节材料,故声学调节材料的吸音效果显著提高。
由于可发性缓冲填料14的缓冲作用,故声学改善填料15的保形效果良好,耐用性良好。
可选地,所述可发性缓冲填料14质量占声学调节材料总质量的0.1%-20%。在该范围内,仅需较少的可发性缓冲填料14就能够实现腔体内较高的填充率。
此外,由于可发性缓冲填料14所占的质量比例较低,故声学调节材料的吸附、脱附振动气体的效果不会受到影响。优选地,可发性缓冲填料14质量占声学调节材料总质量的1%-5%。在该范围内,声学调节材料的耐用性良好,吸附、脱附振动气体的效果良好。
可选地,采用物理发泡法或者化学发泡法对所述可发性缓冲填料进行触发。
具体地,物理发泡法是指:分散在可发性缓冲填料中的挥发分在光照或受热等条件下挥发产生气泡的方法。
例如,物理发泡法,可以是,先将惰性气体在设定压强下溶于可发性缓冲填料中,再经过减压方式进行触发,释放出气体,从而在可发性缓冲填料中形成气泡。
也可以是,先在可发性缓冲填料中添加低沸点的烷烃,然后采用加热 的方式进行触发,以使低沸点的烷烃挥发,从而在可发性缓冲填料中形成气泡。低沸点的烷烃包括石油醚、丁烷、戊烷等中的至少一种。这些材料均能在加热条件下挥发,从而在可发性缓冲填料的内部形成气泡。多个气泡形成泡沫。
化学发泡法是指:利用化学方法产生气体来使可发性缓冲填料发泡:对加入可发性缓冲填料中的化学发泡剂进行加热使其分解,释放出气体而发泡。其中,发泡剂可以是但不限于碳酸铵、碳酸氢钠、氯化铵、尿素等。上述发泡剂在加热的条件下能够分解,从而产生气体,在可发性缓冲填料内形成气泡。
也可以是,利用可发性缓冲填料的组分之间相互发生化学反应释放出的气体而发泡。
在不同的触发条件下,膨胀的体积不同。例如,在一定范围内,触发温度越高则体积膨胀越大,触发温度越低则体积膨胀越小。发泡剂的浓度越大,则体积膨胀越大;发泡剂的浓度越小,则体积膨胀越小。
可选地,所述泡沫体缓冲填料的体积为所述可发性缓冲填料体积的2-200倍。
可选地,所述可发性缓冲填料14的发泡过程包括第一发泡阶段和第二发泡阶段,所述第一发泡阶段得到第一泡沫体缓冲填料,所述第二发泡阶段得到第二泡沫体缓冲填料。可以通过可发性缓冲填料14的阶段发泡来灵活控制可发性缓冲填料14的缓冲效果。
可发性缓冲填料14发泡后的体积随发泡温度和发泡时间的变化而变化,具体地,参见表1,在一定温度范围内,具体为80-110℃,温度升高时可发性缓冲填料14的发泡体积显著增大,可以达到初始体积的几十倍甚至上百倍,可发性缓冲填料14的阻尼也随之增大,可发性缓冲填料14可以对声学改善填料15起到强有力的缓冲作用;在一定发泡时间范围内,具体为10-30min,时间增长时可发性缓冲填料14的发泡体积增大,可发性缓冲填料14的阻尼也随之增大,可发性缓冲填料14的缓冲能力也同时得到 增强。所以,可以通过发泡温度和时间来控制可发性缓冲填料14的发泡程度。另外,可发性缓冲填料14的发泡温度也可以低于80℃,比如在70℃、60℃或者更低温度条件下进行发泡,但温度较低时可发性缓冲填料14的发泡体积较小,不能够达到很好的缓冲效果;而可发性缓冲填料14的发泡时间也可以大于30min,比如1h、2h、3h或者更长时间条件下进行发泡,但发泡时间过长一方面会消耗过多的设备、电力等资源,另一方面增加了发泡工艺的复杂性,所以可发性缓冲填料14的发泡程度需要根据发泡温度和发泡时间综合控制。
表1-可发性材料第一发泡阶段的体积随温度变化数据
Figure PCTCN2020136722-appb-000001
在可发性缓冲填料14应用于发声装置中时,如果可发性缓冲填料14已经发泡至最大发泡体积,声学改善填料15在长期高温使用过程中强度会变弱,仍然存在破碎的风险。如果将可发性缓冲填料14经过第一发泡阶段得到第一泡沫体缓冲填料,第一泡沫体缓冲填料未发泡至最大发泡体积,这时将可发性缓冲填料14应用于发声装置中,发声装置在长期高温使用过程中,可发性缓冲填料14会在高温下经历第二发泡阶段,这时可发性缓冲填料14还可以继续发泡,可发性缓冲填料14体积增大后还可以对声学改善填料15起到进一步的缓冲,保证了声学改善填料15的使用寿命。具体地,发声装置在长期高频率使用过程中,可发性缓冲填料14可能会频繁经历多次的高温发泡过程,所以,这里的第二发泡阶段不仅仅指一个发泡阶段,还可以包括多个发泡阶段。比如发声装置在长时间、大功率运行时,发声装置内部会产生的较高的温度,这时可发性缓冲填料14便可以进行发 泡阶段,在发声装置多次长时间、大功率运行时可发性缓冲填料14会经历多次的发泡过程。
另外,可发性缓冲填料14在应用于发声装置中时,一般被填充到后声腔的灌装区内。而后声腔作为发声装置调节低频效果的主要空间,可发性缓冲填料14在发泡后体积变大,必然会占据后声腔较大体积,进而影响发声装置的低频效果。所以在对可发性缓冲填料14进行装填时,可以仅仅让可发性缓冲填料14经过第一发泡阶段,这时可发性缓冲填料14的体积已经显著增大,但又没有对后声腔的体积造成非常大的占用。这时在声学改善填料15在移动碰撞过程中,可发性缓冲填料14同样可以提供缓冲的作用;而在发声装置的实际使用过程中,当发声装置处在高温环境下或者长期高功率使用过程中,声学改善填料15的胶粘剂会发生老化,胶粘剂老化后强度大大降低,就会造成声学改善填料15相互碰撞和破碎的可能,可发性缓冲填料14这时可以在发声装置内部产生高温的环境下进行第二阶段发泡,可发性缓冲填料14经历第二阶段发泡后体积会进一步增大,同时可发性缓冲填料14的阻尼特性增强,可以更加有效地对声学改善填料15的运动起到缓冲作用,减少甚至避免声学改善填料15由于碰撞带来的损坏。而声学改善填料15的胶粘剂老化过程和可发性缓冲填料14的第二阶段发泡过程会在发声装置的长期使用过程中不断出现,也就是可发性缓冲填料14不断的第二阶段发泡可以对胶粘剂老化带来的声学改善填料15碰撞破碎问题进行不断的改善和解决,以提高发声装置的发声效果和使用寿命。
可选地,所述第二泡沫体缓冲填料的体积为所述第一泡沫体缓冲填料体积的1-25倍。
具体地,可发性缓冲填料14在经过第一阶段发泡后,如果未达到最大发泡体积,继续经历第二阶段发泡后可发性缓冲填料14的体积可以进一步增大,可发性缓冲填料14的阻尼特性和缓冲性能也就进一步增加。在一种具体的实施方式中,参见表2,可发性缓冲填料14在经历第一阶段发泡后,再在80-100℃和1-6h的发泡条件下进行第二阶段发泡,可发性缓冲填料14 的体积还可以增大数倍,而且第二阶段发泡过程可以在发声装置使用过程中多次发生。
表2-可发性材料第二发泡阶段的体积随温度变化数据
Figure PCTCN2020136722-appb-000002
本申请实施例还提供了一种发声装置,包括壳体11、发声单体12和所述的发声装置的声学调节材料,所述壳体11的内部形成腔体,所述腔体包括后声腔13,所述发声单体12设置在所述腔体内,所述发声单体12与所述后声腔13连通,所述后声腔13包括灌装区,所述声学调节材料设置在所述灌装区内。
该发声装置具有发声效果良好、低频效果好、耐用性良好的特点。
具体地,参见图1,可发性缓冲填料14呈单一层整体状设置于所述后声腔13的底面。参见图2,可发性缓冲填料14发泡后体积增大,可以对声学改善填料15的运动形成缓冲作用。参见图3,可发性缓冲填料14也可以是多个球形颗粒状材料粘接成的层状结构,可发性缓冲填料14设置于所述后声腔13的底面。
可选地,发泡前,所述声学调节材料在所述灌装区内的填充率为50%-95%。
具体地,利用可发性缓冲填料14的发泡,能够对声学改善填料的流动、碰撞提供缓冲作用。优选地,在未被触发的条件下,所述声学调节材料在所述灌装区内的填充率为60%-85%。在该范围内,在被触发后,声学调节材料可以更好的发挥缓冲作用,能够对声学改善填料的流动、碰撞提供缓冲,防止声学改善填料出现破碎。
可选地,所述可发性缓冲填料14粘贴于所述灌装区的至少一个内壁 上。
在被触发的条件下,内壁上的可发性缓冲填料14发泡,从而对声学改善填料15形成挤压,以缓冲声学改善填料15的运动。发泡后的可发性缓冲填料14对声学改善填料15起到缓冲的作用。
具体地,在腔体的相对的两个壁部形成可发性缓冲填料层。在被触发的条件下,两个壁部的可发性缓冲填料14发泡,从而对声学改善填料15形成相向的两个方向的挤压,这使得泡沫体缓冲填料对声学改善填料15缓冲效果更加优良。此外,发泡后可发性缓冲填料层在声学改善填料15的相对的两侧形成缓冲作用,这使得声学调节材料的耐用性更好。
进一步地,在腔体的所有壁部均形成可发性缓冲填料层。通过这种方式,可发性缓冲填料层在声学改善填料15的任意方向形成缓冲作用,这使得声学调节材料的耐用性更加良好。
本申请还提供了一种所述声学调节材料的填充方法,包括:
所述可发性缓冲填料14为层状结构,
先将可发性缓冲填料14设置在所述灌装区的至少一个壁部,然后将声学改善填料15填充到所述灌装区内。
具体地,壳体11上开设有灌装孔。在进行灌装时,颗粒料从灌装孔被灌装到灌装区内。可以是,声学改善填料15采用不同物理尺寸的颗粒。以使得声学调节材料在灌装区内的填充率高。也可以是,声学改善填料15采用相同物理尺寸的颗粒,以保证声学调节材料的一致性。
本申请实施例还提供了一种电子设备,包括所述的发声装置。
具体地,电子设备可以是但不限于手机、平板电脑、智能手表、游戏机、学习机等,该电子设备具有声学效果良好的特点。
<实施例1>
声学调节材料包括声学改善填料15和可发性EPS填料。其中,声学改善填料15的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度 为0.5g/mL。可发性EPS填料质量分数为4%。
发声装置为微型扬声器模组。微型扬声器模组的后声腔13的容积为0.4cc。将声学调节材料混合后灌装到后声腔13内。
在灌装完成后,将微型扬声器模组放置到烘箱中,在110℃温度下,加热20分钟,以使可发性EPS填料发泡。
发泡后的发泡体填料,物理尺寸为1.4mm,密度0.09g/mL,发泡体填料的体积占比声学材料填充混合物体积的27%。
<对比例1>
在该例子中,声学调节材料以及扬声器模组与实施例一致。其中,可发性EPS填料未被触发。
<对比例2>
声学调节材料的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。
发声装置为微型扬声器模组。该模组与实施例中采用的模组型号相同。将声学调节材料灌装到后声腔13内。
<测试项>
1、F0测试:分别测试三个微型扬声器模组的频响曲线,并获取三个微型扬声器模组的F0。
2、可靠性测试:在相同的功率下,三个微型扬声器模组工作100小时。然后,再次测试三个微型扬声器模组的F0。
在测试完成后,将三个微型扬声器模组的声学调节材料取出,观察声学改善填料15的颗粒完整性。
<测试结果>
表3-三种微型扬声器模组的F0对比表
声学调节材料 对比例2 对比例1 实施例1
微型扬声器模组F0 781Hz 784Hz 786Hz
由表3可见,三个微型扬声器的F0相差很小。这表明,在该实施例1虽然发泡体填料后占据后腔中部分体积,但并没有造成声学调节材料对振动气体的吸附、脱附效果变差。
表4-两种微型扬声器模组的可靠性对比表
Figure PCTCN2020136722-appb-000003
由表4可见,在进行可靠性测试后,该实施例1的微型扬声器模组的F0变化很小,并且颗粒状态无变化。而对比例2的微型扬声器模组的F0出现了显著的增加,并且颗粒严重破碎。
这表明,由于声学调节材料的颗粒无变化,故使得该实施例采用的声学调节材料的可靠性显著优于对比例2中采用的声学调节材料。
<实施例2>
声学调节材料包括声学改善填料15和可发性EPS填料。其中,声学改善填料15的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。可发性EPS填料质量分数为10%。
发声装置为微型扬声器模组。微型扬声器模组的后声腔13的容积为0.4cc。将声学调节材料混合后灌装到后声腔13内。
在灌装完成后,将微型扬声器模组放置到烘箱中,在110℃温度下,加热20分钟,以使可发性EPS填料发泡。
发泡后的发泡体填料,物理尺寸为0.36mm,密度0.1g/mL,发泡体填料的体积占比声学材料填充混合物体积的25%。
<对比例3>
在该例子中,声学调节材料以及扬声器模组与实施例一致。其中,可发性EPS填料未被触发。
<对比例4>
声学调节材料的材质为沸石。沸石为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。
发声装置为微型扬声器模组。该模组与实施例中采用的模组型号相同。将声学调节材料灌装到后声腔13内。
<测试项>
1、F0测试:分别测试三个微型扬声器模组的频响曲线,并获取三个微型扬声器模组的F0。
2、可靠性测试:在相同的功率下,三个微型扬声器模组工作100小时。然后,再次测试三个微型扬声器模组的F0。
在测试完成后,将三个微型扬声器模组的声学调节材料取出,观察声学改善填料15的颗粒完整性。
<测试结果>
表5-三种微型扬声器模组的F0对比表
声学调节材料 对比例4 对比例3 实施例2
微型扬声器模组F0 781Hz 783Hz 785Hz
由表5可见,三个微型扬声器的F0相差很小。这表明,在该实施例2虽然发泡后占据腔体部分体积,但并没有造成声学调节材料对振动气体的吸附、脱附效果变差。
表6-两种微型扬声器模组的可靠性对比表
Figure PCTCN2020136722-appb-000004
由表6可见,在进行可靠性测试后,该实施例2的微型扬声器模组的F0变化6Hz,而对比例4的微型扬声器模组的F0变化137Hz。
这表明,由于声学调节材料的颗粒无变化,故使得该实施例采用的声学调节材料的可靠性显著优于对比例4中采用的声学调节材料。
<实施例3>
声学调节材料包括声学改善填料15和可发性EPS填料。其中,声学改善填料15的材质为分子筛。分子筛为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。可发性EPS填料质量分数为1.7%。
发声装置为微型扬声器模组。微型扬声器模组的后声腔13的容积为0.4cc。将声学调节材料混合后灌装到后声腔13内。
在灌装完成后,将微型扬声器模组放置到烘箱中,在110℃温度下,加热20分钟,以使可发性EPS填料发泡。
发泡后的发泡体填料,物理尺寸变为20mm,密度0.07g/mL,发泡体填料的体积占比声学材料填充混合物体积的55%。
<对比例5>
在该例子中,声学调节材料以及扬声器模组与实施例一致。其中,可发性EPS填料未被触发。
<对比例6>
声学调节材料的材质为分子筛。分子筛为颗粒状,物理尺寸为0.3mm-0.5mm,密度为0.5g/mL。
发声装置为微型扬声器模组。该模组与实施例中采用的模组型号相同。将声学调节材料灌装到后声腔13内。
<测试项>
1、F0测试:分别测试三个微型扬声器模组的频响曲线,并获取三个微型扬声器模组的F0。
2、可靠性测试:在相同的功率下,三个微型扬声器模组工作100小时。然后,再次测试三个微型扬声器模组的F0。
在测试完成后,将三个微型扬声器模组的声学调节材料取出,观察声学改善填料15的颗粒完整性。
<测试结果>
表7-三种微型扬声器模组的F0对比表
声学调节材料 对比例6 对比例5 实施例3
微型扬声器模组F0 781Hz 785Hz 786Hz
由表7可见,实施例3扬声器的F0较对比例5和对比例6基本相同。这表明,这表明,在该实施例3虽然发泡体填料占据后腔中部分体积,但并没有造成声学调节材料对振动气体的吸附、脱附效果变差。
表8-两种微型扬声器模组的可靠性对比表
Figure PCTCN2020136722-appb-000005
由表8可见,在进行可靠性测试后,该实施例3的微型扬声器模组的F0变化很小,并且颗粒状态无变化。而对比例6的微型扬声器模组的F0出现了显著的增加,并且颗粒严重破碎。
这表明,由于声学调节材料的颗粒无变化,故使得该实施例采用的声学调节材料的可靠性显著优于对比例6中采用的声学调节材料。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (16)

  1. 一种声学调节材料,其特征在于,包括:
    可发性缓冲填料和声学改善填料,所述可发性缓冲填料在被触发的条件下进行发泡,成为泡沫体缓冲填料,以对所述声学改善填料在移动碰撞时提供缓冲作用,所述可发性缓冲填料发泡后的体积随温度和/或发泡时间的变化而变化,温度升高和/或时间增加时所述可发性缓冲填料的阻尼增大,所述可发性缓冲填料的缓冲能力增强;
    所述可发性缓冲填料为层状结构。
  2. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性缓冲填料由单一层整体材料或由多个微小可发性缓冲填料组合构成的一层结构。
  3. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性缓冲填料发泡后的厚度范围为0.01~5mm。
  4. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性缓冲填料发泡后的密度范围为0.01~1.2g/mL。
  5. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性缓冲填料包括混合在一起的高分子聚合物填料和发泡剂。
  6. 根据权利要求1所述的声学调节材料,其特征在于,所述声学改善填料为活性炭、沸石粉、二氧化硅、多孔氧化铝、分子筛、金属-有机框架材料中的一种或多种制成的具有声学性能的材料。
  7. 根据权利要求1所述的声学调节材料,其特征在于,通过热辐射、光辐射、电磁辐射中的至少一种使所述可发性缓冲填料触发。
  8. 根据权利要求1所述的声学调节材料,其特征在于,发泡前,所述可发性缓冲填料占声学调节材料的总体积的0.01%-35%;发泡后,泡沫体缓冲填料的体积占声学调节材料的总体积的0.05%-65%。
  9. 根据权利要求1所述的声学调节材料,其特征在于,采用物理发泡 法或者化学发泡法对所述可发性缓冲填料进行触发。
  10. 根据权利要求1所述的声学调节材料,其特征在于,所述泡沫体缓冲填料的体积为所述可发性缓冲填料体积的2-200倍。
  11. 根据权利要求1所述的声学调节材料,其特征在于,所述可发性缓冲填料的发泡过程包括第一发泡阶段和第二发泡阶段,所述第一发泡阶段得到第一泡沫体缓冲填料,所述第二发泡阶段得到第二泡沫体缓冲填料。
  12. 根据权利要求11所述的声学调节材料,其特征在于,所述第二泡沫体缓冲填料的体积为所述第一泡沫体缓冲填料体积的1-25倍。
  13. 一种发声装置,其特征在于,包括壳体、发声单体和如权利要求1-12中的任一项所述的声学调节材料,所述壳体的内部形成腔体,所述腔体包括后声腔,所述发声单体设置在所述腔体内,所述发声单体与所述后声腔连通,所述后声腔包括灌装区,所述声学调节材料设置在所述灌装区内。
  14. 根据权利要求13所述的发声装置,其特征在于,发泡前,所述声学调节材料在所述灌装区内的填充率为50%-95%。
  15. 根据权利要求13所述的发声装置,其特征在于,所述可发性缓冲填料粘贴于所述灌装区的至少一个内壁上。
  16. 一种电子设备,其特征在于,包括如权利要求13-15任一项所述的发声装置。
PCT/CN2020/136722 2020-07-10 2020-12-16 声学调节材料、发声装置及电子设备 WO2022007335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010659950.0 2020-07-10
CN202010659950.0A CN111534018A (zh) 2020-07-10 2020-07-10 声学调节材料、发声装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022007335A1 true WO2022007335A1 (zh) 2022-01-13

Family

ID=71971142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136722 WO2022007335A1 (zh) 2020-07-10 2020-12-16 声学调节材料、发声装置及电子设备

Country Status (2)

Country Link
CN (1) CN111534018A (zh)
WO (1) WO2022007335A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534018A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置及电子设备
CN111560133A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534017A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111560145A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534058A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534019A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN217721400U (zh) * 2022-04-29 2022-11-01 瑞声光电科技(常州)有限公司 扬声器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040211934A1 (en) * 2003-04-24 2004-10-28 Lestarge Kevin J. Compositions for acoustic-damping coatings
CN111163392A (zh) * 2018-11-08 2020-05-15 苹果公司 包括声学活性珠粒和可膨胀填料的声学填料
CN111534019A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534058A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534018A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置及电子设备
CN111534017A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111560133A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111560145A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040211934A1 (en) * 2003-04-24 2004-10-28 Lestarge Kevin J. Compositions for acoustic-damping coatings
CN111163392A (zh) * 2018-11-08 2020-05-15 苹果公司 包括声学活性珠粒和可膨胀填料的声学填料
CN111534019A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111534058A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111534018A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置及电子设备
CN111534017A (zh) * 2020-07-10 2020-08-14 歌尔股份有限公司 声学调节材料、发声装置、填充方法及电子设备
CN111560133A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备
CN111560145A (zh) * 2020-07-10 2020-08-21 歌尔股份有限公司 声学调节材料、填充方法、发声装置及电子设备

Also Published As

Publication number Publication date
CN111534018A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2022007336A1 (zh) 声学调节材料、发声装置、填充方法及电子设备
WO2022007335A1 (zh) 声学调节材料、发声装置及电子设备
WO2022007334A1 (zh) 用于发声装置的声学调节材料、发声装置、填充方法及电子设备
WO2022007333A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
WO2022007331A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
WO2022007332A1 (zh) 声学调节材料、填充方法、发声装置及电子设备
WO2018040394A1 (zh) 扬声器模组
WO2020108256A1 (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
WO2020108252A1 (zh) 活性炭吸音颗粒和发声装置
WO2021135871A1 (zh) 吸音材料制备方法、吸音材料、发声装置以及电子设备
WO2020108253A1 (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511057B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
WO2020108254A1 (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
WO2018040392A1 (zh) 扬声器模组
WO2018040393A1 (zh) 扬声器模组
CN109640237A (zh) 一种活性炭吸音材料和发声装置
WO2018045668A1 (zh) 扬声器模组
CN111179897A (zh) 一种活性炭吸音材料、发声装置以及电子设备
WO2021208474A1 (zh) 扬声器振膜以及发声装置
CN111770399A (zh) 扬声器箱
CN114505062A (zh) 气体吸附材料及其制备方法和应用该气体吸附材料的扬声器箱
WO2023206714A1 (zh) 扬声器
WO2023020311A1 (zh) 一种可膨胀声学增强件及其制作方法与应用
CN210112267U (zh) 一种发声装置
CN113903320A (zh) 吸音材料及应用该吸音材料的扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944095

Country of ref document: EP

Kind code of ref document: A1