WO2021135878A1 - 一种活性炭吸音材料、发声装置以及电子设备 - Google Patents

一种活性炭吸音材料、发声装置以及电子设备 Download PDF

Info

Publication number
WO2021135878A1
WO2021135878A1 PCT/CN2020/134912 CN2020134912W WO2021135878A1 WO 2021135878 A1 WO2021135878 A1 WO 2021135878A1 CN 2020134912 W CN2020134912 W CN 2020134912W WO 2021135878 A1 WO2021135878 A1 WO 2021135878A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
sound
absorbing material
carbon sound
hydrophobic layer
Prior art date
Application number
PCT/CN2020/134912
Other languages
English (en)
French (fr)
Inventor
潘泉泉
姚阳阳
牟雅静
李春
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021135878A1 publication Critical patent/WO2021135878A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/002Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising natural stone or artificial stone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic

Definitions

  • the present invention relates to the technical field of material preparation. More specifically, the present invention relates to an activated carbon sound-absorbing material, a sound generating device and an electronic device.
  • a sound generating device usually includes a housing and a speaker unit arranged in an inner cavity of the housing, and the space of the inner cavity of the housing is divided into a front sound cavity and a rear sound cavity by the speaker unit.
  • a sound-absorbing material is usually arranged in the rear acoustic cavity. The sound-absorbing material can absorb part of the sound energy, which is equivalent to expanding the volume of the rear acoustic cavity, thereby achieving the effect of reducing the resonance frequency F0 of the sound generating device.
  • Traditional sound-absorbing materials are foamed foams, such as polyurethane and melamine. With the increasingly thinner and lighter electronic equipment, the volume of the acoustic cavity is continuously compressed. Traditional foam-type foam sound-absorbing materials are difficult to reduce the resonant frequency F0 of the sounding device to the required value, which cannot guarantee the middle of the sounding device. Low frequency sound quality.
  • porous non-foaming material is filled into the rear acoustic cavity of the sounding device, and the porous non-foaming material is used to rapidly adsorb and desorb the gas in the rear acoustic cavity, which can increase the resonance space virtually. Large, can effectively reduce the resonant frequency F0 of the sound device.
  • porous non-foaming materials are widely used, such as activated carbon materials and zeolite materials with a high silicon-to-aluminum ratio. Activated carbon material is easy to absorb water and easily affects the reduction of the resonance frequency F0 of the sound generating device. Zeolite materials with a high silicon-to-aluminum ratio have higher requirements for the types and grades of synthetic raw materials, the synthesis process and the post-treatment process are more complicated, the output rate is lower, and the production cost is higher.
  • An object of the present invention is to provide a new technical solution for activated carbon sound-absorbing material, sound generating device and electronic equipment.
  • an activated carbon sound-absorbing material comprising an activated carbon particle core and a hydrophobic layer coated on the outer surface of the activated carbon particle core; wherein the hydrophobic layer is in the activated carbon sound-absorbing material
  • the mass proportion is 1-50wt%
  • the material of the hydrophobic layer is any one of zeolite material, aerogel material, and porous organic polymer material;
  • the activated carbon sound-absorbing material has a loose pore structure inside, and the pore structure includes nano-scale micropores and mesopores; the activated carbon sound-absorbing material is in a granular shape with a particle size of 100-1000 ⁇ m.
  • the activated carbon particle core material includes carbon element, hydrogen element and oxygen element;
  • the mass ratio of the activated carbon particle core in the activated carbon sound-absorbing material is 50-99 wt%.
  • the activated carbon particle core contains a chaotic layer structure formed by random accumulation of molecular fragments of two-dimensional graphite layers and/or three-dimensional graphite crystallites.
  • the thickness of the hydrophobic layer is 0.1-10 ⁇ m.
  • the thickness of the hydrophobic layer is 2-6 ⁇ m.
  • the pore diameter of the micropore is 0.5-2 nm, and the pore diameter of the mesopore is 2-3.5 nm.
  • the cumulative pore volume of the activated carbon sound-absorbing material is 0.6-5 cm 3 /g.
  • the bulk density of the activated carbon sound-absorbing material is 0.05-0.8 g/cm 3 .
  • a sound generating device includes:
  • a vibration component, the vibration component is arranged in the housing;
  • the above-mentioned activated carbon sound-absorbing material is arranged in the accommodating cavity.
  • an electronic device is provided.
  • the electronic equipment includes the sound emitting device as described above.
  • the activated carbon sound-absorbing material provided by the embodiment of the present invention has the characteristics of simple preparation process and easy realization, does not increase production cost, and has a high output rate. Filling the activated carbon sound-absorbing material into the sound-generating device can well reduce the resonance frequency F0 of the sound-generating device and improve the mid- and low-frequency sound quality of the sound-generating device, so that the sound-generating device can have good acoustic performance.
  • the technical task to be achieved or the technical problem to be solved by the present invention is never thought of or unexpected by those skilled in the art, so the present invention is a new technical solution.
  • Fig. 1 is a cross-sectional view of activated carbon particles in an embodiment of the present disclosure.
  • Fig. 2 is a cross-sectional view of a sound generating device applied to sound-absorbing particles in an embodiment of the present disclosure.
  • 1-sound-absorbing material 11-activated carbon particle core, 12-hydrophobic layer, 2-shell, 21-front acoustic cavity, 22-rear acoustic cavity, 3-vibration component.
  • an activated carbon sound-absorbing material is provided.
  • the activated carbon sound-absorbing material is amorphous activated carbon sound-absorbing particles containing a hydrophobic layer, which can be used in a variety of different types of sound-generating devices, can achieve the effect of reducing the resonance frequency of the sound-generating device, and can well improve the mid- and low-frequency sound quality of the sound-generating device.
  • An activated carbon sound-absorbing material provided by an embodiment of the present invention includes an activated carbon particle core 11 and a hydrophobic layer 12 coated on the outer surface of the activated carbon particle core 11.
  • the mass ratio of the activated carbon particle core 11 in the activated carbon sound-absorbing material is 50-99 wt%
  • the mass ratio of the hydrophobic layer 12 in the activated carbon sound-absorbing material is 1-50 wt%.
  • the material of the hydrophobic layer 12 is any one of zeolite material, aerogel material, and porous organic polymer material.
  • the activated carbon sound-absorbing material has a loose pore structure inside, and the pore structure includes nano-scale micropores and mesopores.
  • the activated carbon sound-absorbing material is granular in appearance, and its particle size ranges from 100 ⁇ m to 1000 ⁇ m.
  • the activated carbon sound-absorbing material provided by the present invention has simple preparation process, easy realization, no increase in production cost, and relatively high output rate, is very suitable for mass production in industry, and is very suitable for popularization and application.
  • activated carbon particles are used as the inner core and the outer surface of the inner core 11 of the activated carbon particles is coated with a waterproof layer. Since the activated carbon particle core 11 contains a chaotic layer structure formed by the random accumulation of molecular fragments of two-dimensional graphite layers and/or three-dimensional graphite crystallites, the formed activated carbon sound-absorbing material also has a corresponding chaotic layer structure and has a chaotic layer structure inside. Loose pore structure.
  • the resonance frequency F0 of the sound-generating device can be effectively reduced, the mid-low frequency sound quality of the sound-generating device is improved, and the sound-generating device can have a good acoustic effect.
  • the activated carbon sound-absorbing material provided by the present invention has a granular appearance, and the particle size of the particles ranges from 100 ⁇ m to 1000 ⁇ m. Since the volume of the sounding device itself is relatively small, the subsequent acoustic cavity is usually narrower. Therefore, the size of the sound-absorbing material should also be reasonably controlled to facilitate the smooth filling of the sound-absorbing material into the sound generating device. Specifically, if the particle size of the sound-absorbing material is large, it is not conducive to filling the sound-absorbing material into the corresponding sound generating device. The invention controls the particle size of the activated carbon sound-absorbing material to be 100 ⁇ m-1000 ⁇ m through screening.
  • the particle size of the particles is distributed in a small interval, which reduces the difficulty of preparation, is easy to control, and is convenient for large-scale production. Moreover, this range is very beneficial to the filling of activated carbon sound-absorbing materials, and also makes the prepared activated carbon sound-absorbing materials suitable for most sound generating devices, and has strong versatility.
  • the particle size of the activated carbon sound-absorbing material ranges from 100 ⁇ m to 1000 ⁇ m.
  • the particle size of the sound-absorbing material itself will affect the packing density of the particles, which in turn will affect the effect of reducing the resonance frequency F0 of the sound-generating device.
  • the pore size of the isolation mesh used to encapsulate the sound-absorbing material is usually about 50 ⁇ m. Therefore, when the particle size of the activated carbon sound-absorbing material is less than 50 ⁇ m, the activated carbon sound-absorbing material particles are too small and easy to leak out , which in turn will affect the sounding unit in the sounding device.
  • the particle size of the activated carbon sound-absorbing material is greater than 1000 ⁇ m, because the volume of the activated carbon sound-absorbing material particles is relatively large, the gap between the particles will increase significantly. When it is placed in a sounding device, the packing density of the particles will be significantly reduced. Correspondingly, in the unit volume of the sound cavity behind the sound device, the amount of activated carbon sound-absorbing material that can be filled will relatively decrease. Therefore, the material that can produce the virtual expansion effect is reduced, and the effect of reducing the resonance frequency F0 will be weakened.
  • an excessively large particle size can easily lead to uneven heating of activated carbon sound-absorbing materials during the carbonization process, imperfect pore structure formed, and reduced cumulative pore volume, resulting in the formation of activated carbon sound-absorbing materials for gas adsorption capacity and equivalent expansion
  • the ability shows different degrees of reduction, which ultimately leads to a poor effect of reducing the resonant frequency F0.
  • the particle size of the activated carbon sound-absorbing material is designed to range from 100 ⁇ m to 1000 ⁇ m.
  • the usual filling requirements are also met.
  • the sound-absorbing material is not easy to wear even if it is continuously working in the rear acoustic cavity of the sound generating device, can be used for a long time, and has the characteristics of good stability.
  • the particle size of the activated carbon sound-absorbing material is controlled to be 100 ⁇ m-1000 ⁇ m.
  • the particle size of the sound-absorbing material will affect its own bulk density, and the size of the bulk density will affect the performance of air absorption.
  • the bulk density refers to the volume of particles packed into a container according to a certain method in a natural and loose state, including the volume of the particles and the volume of the voids between the particles. In other words, in a unit volume, the bulk density determines the amount of sound-absorbing material filled, and the amount of sound-absorbing material filled is related to the adsorption performance. If the particle size of the sound-absorbing material is too small, the bulk density will increase significantly.
  • the mass of the sound-absorbing material that can be filled is relatively reduced, which will cause the performance of reducing the resonance frequency to be weakened. If the particle size of the sound-absorbing material is too large, the bulk density will be significantly reduced. Under a certain volume, an excessively large packing density will reduce the energy of the sound waves consumed when the sound-absorbing material particles in the space are forced to vibrate, which is equivalent to a decrease in the air acoustic compliance (Cma) in the volume of the rear acoustic cavity of the sound generating device. This will also cause a decrease in the performance of reducing the resonance frequency.
  • Cma air acoustic compliance
  • the bulk density of the activated carbon sound-absorbing material can range, for example, from 0.05 to 0.8 g/cm 3 . It should be noted that for the specific bulk density, those skilled in the art can also appropriately adjust the particle shape and carbon content of the activated carbon sound-absorbing material, which is not limited by the present invention.
  • the activated carbon sound-absorbing material provided by the present invention includes an activated carbon particle core 11 and a hydrophobic layer 12 coated on the outer surface of the activated carbon particle core 11.
  • the activated carbon particle core 11 is a porous adsorption material formed by carbonization and activation of a carbon-containing material at a high temperature, and it has good adsorption performance. Further improve the material's ability to absorb and release air.
  • the active carbon particle core 11 material includes three main elements: carbon, hydrogen, and oxygen. The carbon element is used to provide support to form a frame and pore structure.
  • the mass ratio of the hydrophobic layer 12 in the activated carbon sound absorbing material is 1-50%, and the mass ratio of the activated carbon particle core 11 in the activated carbon sound absorbing material is 50-99%.
  • the thickness of the hydrophobic layer 12 may range from 0.1 ⁇ m to 10 ⁇ m, for example. More preferably, the thickness of the hydrophobic layer 12 is in the range of 2-6 ⁇ m.
  • the hydrophobic layer 12 in the present invention can effectively prevent the activated carbon particles as the core from adsorbing a large amount of water, which is beneficial to reduce the water absorption rate and avoid affecting the performance of the sound-absorbing material after being made into a sound-absorbing material.
  • the material of the hydrophobic layer 12 can be, for example, any one of zeolite material, aerogel material, and porous organic polymer material, which can reduce the water absorption rate of the formed material to less than 5%. For details, see Table 1 to Table 3 as shown below.
  • the hydrophobic layer is the relevant performance table of the zeolite material
  • Mass of zeolite coating 0 0.1 ⁇ 5 5 ⁇ 20 20 ⁇ 40 30 ⁇ 50 Zeolite coating thickness (um) 0 0.1 ⁇ 2 2 ⁇ 4 2 ⁇ 6 4 ⁇ 10
  • the hydrophobic layer is the relevant performance table of the aerogel material
  • the hydrophobic layer is a porous organic polymer material related performance table
  • the material of the hydrophobic layer 12 when it is a zeolite material, aerogel material or a porous organic polymer material will follow
  • the increase in the mass proportion of the coating layer and the thicker thickness can reduce the resonance frequency, especially the water absorption rate can be significantly reduced, even the lowest can be reduced to 2%.
  • the thickness of the hydrophobic layer 12 ranges from 2 ⁇ m to 6 ⁇ m, the water absorption rate of the material can be reduced to less than 5%.
  • the activated carbon sound-absorbing material provided by the present invention does have good effects in reducing resonance frequency and water absorption.
  • the activated carbon particle core 11 contains a two-dimensional graphite layer and/or three-dimensional graphite crystallites, which makes the formed activated carbon sound-absorbing material contain a two-dimensional graphite layer and/or three-dimensional graphite crystallites. That is, the activated carbon sound-absorbing particles include a two-dimensional graphite layer structure and/or a disordered layer structure formed by random accumulation of molecular fragments of three-dimensional graphite crystallites, and the activated carbon sound-absorbing particles have a loose pore structure inside, and the pore structure includes Nano-scale micropores and mesopores. Wherein, the pore diameter of the mesopore is larger than the pore diameter of the micropore. The pore structure in the activated carbon sound-absorbing material can quickly absorb and release air.
  • the two-dimensional graphite layer and/or three-dimensional graphite microcrystalline structure contained in the activated carbon sound-absorbing material it mainly affects the pore structure formed in the material.
  • the more the content of the above two structures in the material the more uniform the pore structure and the smaller the pore size of the pore structure after the material is processed through the carbonization process, so that the prepared activated carbon sound-absorbing material can produce a good reduction in the resonance frequency Effect.
  • the valence electrons of carbon have sp2 hybrid orbitals and sp3 hybrid orbitals to form a hexagonal carbon network plane.
  • the particles accumulated in this random form can form a dense and abundant pore structure. On the one hand, it is more conducive to the performance of activated carbon sound-absorbing materials to absorb and release air. On the other hand, the structure uniformity and stability of the activated carbon sound-absorbing particles can be improved, and the structural strength of the activated carbon sound-absorbing particles can be improved.
  • the activated carbon sound-absorbing material itself may have one or more of spherical, quasi-spherical, sheet-shaped, and rod-shaped structures. Those skilled in the art can make adjustments flexibly according to the actual situation, and there is no limitation on this.
  • the pore diameter of the micropores is 0.5-2 nm, and the pore diameter of the mesopores is 2-3.5 nm.
  • the pore size of the micropores is limited to a smaller size, so that the formed particles can contain a sufficient and large number of micropores. On the one hand, it increases the overall cumulative pore volume of the particles, and on the other hand, it can increase the adsorption capacity of the particles to air molecules. A large number of small pores can absorb a large number of air molecules and improve the acoustic performance of the activated carbon sound-absorbing material.
  • the purpose of limiting the pore size of the mesopores within the above range is that when air molecules need to be quickly sucked into or released from the micropores, the mesopores provide sufficient flow space for the air molecules to allow the air molecules to move quickly. Reduce air clogging of micropores. On the other hand, if the pore size of the mesopores is too large, the cumulative pore volume of the particles will be reduced, and the ability of the particles to absorb air will decrease.
  • the cumulative pore volume of the activated carbon sound-absorbing material ranges from 0.6 to 5 cm 3 /g.
  • the cumulative pore volume of activated carbon sound-absorbing materials will significantly affect the effect of reducing the resonance frequency.
  • the particle size, cumulative pore volume and specific surface area of activated carbon sound-absorbing materials are related.
  • the particle size of the activated carbon sound-absorbing material is large, the particles are susceptible to uneven heating during the carbonization process, and the formed pore structure is imperfect. As a result, air molecules cannot enter and exit smoothly in the pore structure, and the cumulative pore volume becomes smaller.
  • the specific surface area will also decrease accordingly.
  • the particle size of the activated carbon sound-absorbing material is too small, the particle strength is low and it is easily broken. For example, when the cumulative pore volume is less than 0.6 cm 3 /g, the ability of the activated carbon sound-absorbing material to adsorb and desorb air molecules is significantly reduced.
  • the low pore volume prevents air molecules from flowing in and out of the activated carbon sound-absorbing particles smoothly, and the particles cannot absorb a large amount of air molecules.
  • the cumulative pore volume increases to 0.6 cm 3 /g, the content of mesopores increases, which makes the particles meet the need for rapid in and out of air molecules.
  • the response speed of the adsorption and desorption of air molecules is obviously increased, and the equivalent expansion magnification of the rear acoustic cavity is significantly increased.
  • the cumulative pore volume continues to increase, the content of micropores increases correspondingly, and the amount of air molecules adsorbed by the particles also increases significantly. This can better reduce the resonant frequency.
  • the two ensure the transmission, storage and convection of gas.
  • the inventor of the present invention has verified that the activated carbon sound-absorbing material of the present invention is filled into the rear acoustic cavity of the sound generating device, and its absorption and release effect of air is equivalent to expanding the volume of the rear acoustic cavity, which can expand the volume of the rear acoustic cavity. N times, where N>1.
  • the particles of the sound-absorbing material will be forced to vibrate to consume the energy of the sound wave. This effect is equivalent to an increase in the acoustic compliance of the air in the volume of the rear acoustic cavity, thereby reducing the resonance frequency.
  • the activated carbon sound-absorbing material provided by the present invention can be applied to different types of sound-producing devices such as earphones, earpieces, speakers, sound boxes and the like.
  • Putting the activated carbon sound-absorbing material into the rear acoustic cavity of the sound device is equivalent to virtually expanding the volume of the rear acoustic cavity, and also equivalent to increasing the damping of the sound device, thereby reducing the resonance intensity.
  • the resonance frequency of the sound emitting device can be reduced, and the effect of improving the acoustic performance of the sound emitting device can be achieved.
  • the activated carbon sound-absorbing material provided by the present invention can repeatedly perform the adsorption and desorption of air molecules, and will not cause performance degradation due to repeated adsorption and desorption of air molecules. That is, the activated carbon sound-absorbing material provided by the present invention can be used repeatedly for a long time, has a long service life, and can save costs.
  • the invention provides an activated carbon sound-absorbing material for reducing the resonance frequency of a sound generating device.
  • the activated carbon sound-absorbing material is usually filled in the rear acoustic cavity of the sound device.
  • the sound emitting device usually includes a front sound cavity and a rear sound cavity, and the activated carbon sound-absorbing material is filled in the rear sound cavity of the sound device, specifically located in a special filling area.
  • the activated carbon sound-absorbing material in a loosely piled shape will absorb and release the gas with the regular change of the pressure in the rear acoustic cavity, thereby achieving the effect of increasing the volume of the rear acoustic cavity and reducing the resonance frequency.
  • the sound generating device includes: a housing with a receiving cavity formed in the housing; a vibration assembly 3, where the vibration assembly 3 is arranged In the accommodating cavity, the accommodating cavity is divided into a front acoustic cavity 21 and a rear acoustic cavity 22; as in the above-mentioned sound-absorbing material 1, the sound-absorbing material 1 is arranged in the rear acoustic cavity 22.
  • the sound absorbing material 1 may be granular.
  • the sound absorbing material 1 is placed in the containing cavity provided in the sound emitting device.
  • the sound absorbing material 1 can be encapsulated in the containing cavity by a mesh cloth.
  • the vibrating component 3 is used to produce sound in the sound generating device. During the occurrence of the vibrating component 3, the sound-absorbing material 1 in the accommodating cavity will absorb and release the gas that changes due to sound in the sound generating device, so as to achieve the enlarged acoustic cavity 22 The volume, the effect of reducing the resonance frequency.
  • the sound-absorbing material 1 provided by the present disclosure can be applied to different types of sound-producing devices such as earphones, earpieces, speakers, and sound boxes.
  • Putting the sound-absorbing material 1 into the rear acoustic cavity 22 of the sound generating device is equivalent to virtually expanding the volume of the rear acoustic cavity 22, and also equivalent to increasing the damping of the sound generating device, thereby reducing the resonance intensity.
  • the resonance frequency of the sound emitting device can be reduced, and the effect of improving the acoustic performance of the sound emitting device can be achieved.
  • an electronic device is also provided.
  • the electronic equipment includes the sound emitting device as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Ceramic Engineering (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种活性炭吸音材料、发声装置以及电子设备。其中,所述活性炭吸音材料包括活性炭粒子内核(11)和包覆在所述活性炭粒子内核(11)外表面上的疏水层(12);其中,所述疏水层(12)在所述活性炭吸音材料中的质量占比为1-50wt%;所述疏水层(12)的材质为沸石材料、气凝胶材料、多孔有机聚合物材料中的任意一种;所述活性炭吸音材料内部具有疏松的孔道结构,所述孔道结构包括纳米级的微孔和介孔;所述活性炭吸音材料呈颗粒状,其粒径为100-1000μm。上述吸音材料能用于降低发声装置的谐振频率。

Description

一种活性炭吸音材料、发声装置以及电子设备 技术领域
本发明涉及材料制备技术领域,更具体地,本发明涉及一种活性炭吸音材料、发声装置以及电子设备。
背景技术
随着电声技术的快速发展,各种电声产品层出不穷。发声装置作为一种将电信号转换为声音信号的能量转换器,是电声产品中不可缺少的器件。如今,发声装置已被应用于手机、平板电脑、笔记本电脑、VR设备、AR设备、智能手表以及智能穿戴等各种不同类型的终端电子设备中,其应用非常广泛。
就现有技术而言,发声装置通常包括外壳和设置在外壳内腔中的扬声器单体,由扬声器单体将外壳内腔的空间分隔为前声腔和后声腔。为了改善发声装置的声学性能,例如降低发声装置的谐振频率F0等,通常会在后声腔内设置吸音材料。吸音材料能够吸收掉部分声能,等效于扩大了后声腔容积,从而达到降低发声装置谐振频率F0的效果。传统的吸音材料为发泡类泡棉,例如聚氨酯、三聚氰胺等。而随着电子设备的日益轻薄化,其后声腔的体积被不断的压缩,传统的发泡类泡棉吸音材料难以使发声装置的谐振频率F0降到要求值,这就无法保证发声装置的中低频音质。
近年来,技术人员们经研究发现,将多孔性非发泡材料填充到发声装置的后声腔内,利用多孔性非发泡材料对后声腔气体快速吸附-脱附性质,能使谐振空间虚拟增大,可以有效降低发声装置的谐振频率F0。目前,应用较多的多孔性非发泡材料例如有活性炭材料、高硅铝比的沸石材料等。活性炭材料易吸水,容易影响到发声装置谐振频率F0的降低。高硅铝比的沸石材料对合成原料种类和等级要求较高,合成工艺和后处理工艺都比较复杂,产出率较低,制作成本较高。
因此,有必要研究一种新的吸音材料,以解决现有技术中存在的问题。
发明内容
本发明的一个目的是提供一种活性炭吸音材料、发声装置以及电子设备的新技术方案。
根据本发明的第一方面,提供了一种活性炭吸音材料,包括活性炭粒子内核和包覆在所述活性炭粒子内核外表面上的疏水层;其中,所述疏水层在所述活性炭吸音材料中的质量占比为1-50wt%;
所述疏水层的材质为沸石材料、气凝胶材料、多孔有机聚合物材料中的任意一种;
所述活性炭吸音材料内部具有疏松的孔道结构,所述孔道结构包括纳米级的微孔和介孔;所述活性炭吸音材料呈颗粒状,其粒径为100-1000μm。
可选地,所述活性炭粒子内核材料包括炭元素、氢元素和氧元素;
所述活性炭粒子内核在所述活性炭吸音材料中的质量占比为50-99wt%。
可选地,所述活性炭粒子内核含有由二维石墨层和/或三维石墨微晶的分子碎片无规则的堆积形成的乱层结构。
可选地,所述疏水层的厚度为0.1-10μm。
可选地,所述疏水层的厚度为2-6μm。
可选地,所述微孔的孔径为0.5-2nm,所述介孔的孔径为2-3.5nm。
可选地,所述活性炭吸音材料的累积孔容积为0.6-5cm 3/g。
可选地,所述活性炭吸音材料的堆积密度为0.05-0.8g/cm 3
根据本发明的第二方面,提供了一种发声装置。所述发声装置包括:
壳体,所述壳体中形成有容纳腔;
振动组件,所述振动组件设置在所述壳体中;
所述容纳腔中设置有如上所述的活性炭吸音材料。
根据本发明的第三方面,提供了一种电子设备。所述电子设备包括如上所述的发声装置。
本发明实施例提供的一种活性炭吸音材料,其具有制备工艺简单、易 于实现的特点,还不会增加生产成本,且产出率较高。将该活性炭吸音材料填充到发声装置内,能够很好地降低发声装置的谐振频率F0,改善发声装置的中低频音质,以使发声装置能够具有良好的声学性能。本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本公开一个实施例中的活性炭粒子的剖视图。
图2是本公开一个实施例中的吸音颗粒所应用的发声装置的剖面图。
图中,1-吸音材料,11-活性炭粒子内核,12-疏水层,2-壳体,21-前声腔,22-后声腔,3-振动组件。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步 讨论。
根据本发明的一个实施例,提供了一种活性炭吸音材料。该活性炭吸音材料为含有疏水层的无定型活性炭吸音粒子,可应用在多种不同类型的发声装置内,能够达到降低发声装置谐振频率F0的效果,能良好的改善发声装置的中低频音质。
本发明实施例提供的一种活性炭吸音材料,如图1所示,其包括有活性炭粒子内核11,以及包覆在所述活性炭粒子内核11外表面上的疏水层12。其中,所述活性炭粒子内核11在所述活性炭吸音材料中的质量占比为50-99wt%,所述疏水层12在所述活性炭吸音材料中的质量占比为1-50wt%。所述疏水层12的材质为沸石材料、气凝胶材料、多孔有机聚合物材料中的任意一种。所述活性炭吸音材料内部具有疏松的孔道结构,所述孔道结构包括纳米级的微孔和介孔。所述活性炭吸音材料从外观上看呈颗粒状,其粒径范围为100μm-1000μm。
本发明提供的活性炭吸音材料,其制备工艺流程较为简单、易于实现,且不会增加生产成本,产出率也比较高,非常适合在工业上大批量生产,很适合推广应用。本发明中,特别地,将活性炭粒子作为内核并在活性炭粒子内核11的外表面包覆了防水层。由于活性炭粒子内核11含有由二维石墨层和/或三维石墨微晶的分子碎片无规则的堆积形成的乱层结构,因此所形成的活性炭吸音材料也具有相应的乱层结构,且在内部具有疏松的孔道结构。将本发明提供的活性炭吸音材料应用于发声装置后,可以有效降低发声装置的谐振频率F0,改善发声装置的中低频音质,能使发声装置具有良好的声学效果。
本发明提供的活性炭吸音材料,外貌形态呈颗粒状,其颗粒的粒径范围为100μm-1000μm。由于发声装置本身的体积是比较小的,其后声腔通常更为狭小。因此,对于吸音材料的尺寸也应当合理的进行控制,以方便将吸音材料顺利的灌装到发声装置的内部。具体地,若吸音材料的颗粒粒径较大,则不利于将吸音材料灌装到相应的发声装置内。本发明通过筛选,将活性炭吸音材料的颗粒粒径控制在100μm-1000μm。颗粒的粒径尺寸分布在较小的区间内,降低了制备的难度,且易控制,便于规模化的生产。而且,在 这一范围内非常有利于对活性炭吸音材料的灌装,也使得制备出的活性炭吸音材料能够适用于大多数的发声装置,具有较强的通用性。
本发明中,所述活性炭吸音材料的粒径范围为100μm-1000μm。具体来说,吸音材料自身的粒径尺寸对颗粒的堆积密度会产生影响,进而会影响到降低发声装置谐振频率F0的效果。实际上,在大多数发声装置中,用来封装吸音材料的隔离网布的孔径尺寸通常在50μm左右,因此当活性炭吸音材料的颗粒粒径<50μm时,活性炭吸音材料颗粒过小,很容易漏出,进而会影响到发声装置内的发声单体。这不仅会严重影响降低谐振频率的效果,还有可能对发声装置的可靠性造成一定的影响。当活性炭吸音材料的颗粒粒径>1000μm时,由于活性炭吸音材料颗粒的体积相对较大,会造成颗粒与颗粒之间的间隙明显增大。当将其放置于发声装置中时,颗粒的堆积密度会明显的降低。相应地,在发声装置后声腔的单位体积内,能够填充的活性炭吸音材料的量就会相对下降。因此,能够产生虚拟扩容效果的物质减少,降低谐振频率F0的效果就会被削弱。此外,过大的粒径尺寸非常容易导致活性炭吸音材料在碳化过程中受热不均匀、形成的孔道结构不完善,累积孔容积变小,导致形成的活性炭吸音材料对气体的吸附能力、等效扩容能力呈现出不同程度的降低,最终导致降低谐振频率F0的效果较差。
因此,本发明中设计活性炭吸音材料的颗粒粒径尺寸范围在100μm-1000μm。在基本达到降低谐振频率F0的性能要求的基础上,也满足了通常的灌装要求。同时,在该粒径范围内,吸音材料在发声装置的后声腔内即使连续工作也不易磨损,可以长期使用,具有稳定性好的特点。
需要说明的是,本领域技术人员可以根据具体需要对活性炭吸音材料的颗粒粒径尺寸进行合理的调节,对此不作限制。通过对活性炭吸音材料的颗粒尺寸进行调整,有助于使降低发声装置谐振频率F0的性能达到最优水平。
本发明中,将活性炭吸音材料的颗粒粒径控制在100μm-1000μm。吸音材料的粒径尺寸会影响到其自身的堆积密度,而堆积密度的大小则会影响到吸收空气的性能的发挥。其中,所述堆积密度是指颗粒在自然、松散状态下,按一定方法装入容器的容积,包括颗粒体积和颗粒之间空隙的体积。也就是说,在单位体积内,堆积密度决定着灌装吸音材料的多少,而灌装吸音材料的多少 与吸附性能有关。若吸音材料的粒径过小,则会造成堆积密度明显增大。在一定的体积下,所能填充的吸音材料的质量相对减小,这会造成降低谐振频率的性能减弱。若吸音材料的粒径过大,则会造成堆积密度明显降低。在一定的体积下,过大的堆积密度会导致空间中的吸音材料颗粒受迫振动时消耗的声波的能量减少,等效于发声装置的后声腔容积中空气声顺性(Cma)减小,这也会造成降低谐振频率的性能减弱。
在本发明中,所述活性炭吸音材料的堆积密度范围例如可以为0.05-0.8g/cm 3。需要说明的是,对于具体堆积密度的大小,本领域技术人员还可以通过活性炭吸音材料的颗粒形状、碳含量等因素进行适当的调节,本发明对此不作限制。
本发明提供的活性炭吸音材料,其包括活性炭粒子内核11以及包覆在所述活性炭粒子内核11外表面上的疏水层12。具体地,活性炭粒子内核11是以含炭为主的物质经高温碳化和活化而成的多孔性吸附材料,它具有良好的吸附性能。进一步提高了材料对空气的吸收、释放能力。并且,活性炭粒子内核11材料包括碳、氢、氧三种主要元素。其中的碳元素用于提供支撑,进而形成框架、孔道结构。
所述疏水层12在所述活性炭吸音材料中的质量占比为1-50%,所述活性炭粒子内核11在所述活性炭吸音材料中的质量占比为50-99%。
并且,所述疏水层12的厚度范围例如可以为0.1μm-10μm。而更为优选地是,所述疏水层12的厚度范围为2-6μm。本发明中的疏水层12可以有效防止作为内核的活性炭粒子吸附大量的水分,有利于降低吸水率,避免制成吸音材料后影响吸音材料的性能。所述疏水层12的材质例如可以为沸石材料、气凝胶材料、多孔有机聚合物材料中的任意一种,能使形成的材料吸水率降至5%以内。具体可参见如下所示的表1-表3。
表1疏水层为沸石材料的相关性能表格
沸石包覆层质量(wt%) 0 0.1~5 5~20 20~40 30~50
沸石包覆层厚度(um) 0 0.1~2 2~4 2~6 4~10
F0降低效果(Hz) 170 165 160 158 150
吸水率(%) 35% 24% 16% 5% 2%
表2疏水层为气凝胶材料的相关性能表格
Figure PCTCN2020134912-appb-000001
表3疏水层为多孔有机聚合物材料的相关性能表格
Figure PCTCN2020134912-appb-000002
由表1-表3可以看出:当在活性炭粒子内核11的外表面包覆疏水层12时,疏水层12材料无论是沸石材料、气凝胶材料或是多孔有机聚合物材料,都会随着包覆层质量占比的增加以及厚度的增厚,能使谐振频率降低,特别是还能使吸水率明显的下降,甚至最低可以降至2%。其中,当所述疏水层12的厚度范围为2μm-6μm时,能使材料的吸水率下降至5%以内。
由此可见,本发明提供的活性炭吸音材料确实在降低谐振频率和吸水率等方面具有良好的效果。
其中,所述活性炭粒子内核11含有二维石墨层和/或三维石墨微晶,这使得形成的活性炭吸音材料含有二维石墨层和/或三维石墨微晶。即,所述活性炭吸音粒子包括二维石墨层结构和/或三维石墨微晶的分子碎片无规则堆积形成的乱层结构,且所述活性炭吸音粒子内部具有疏松的孔道结构,所述孔道结构包括纳米级的微孔和介孔。其中,所述介孔的孔径大于微孔的孔径。活性炭吸音材料中的孔道结构能够对空气产生快速吸收和释放的作用。
对于活性炭吸音材料中含有的二维石墨层和/或三维石墨微晶两种结构,其主要影响材料中所形成的孔道结构。上述两种结构在材料中的含量越多,材料经过碳化工艺的加工工序后,形成的孔道结构越均匀、孔道结构的孔径越小,进而使得制备出的活性炭吸音材料能够产生良好的降低谐振频率的效果。二维石墨层结构和三维石墨微晶的边缘上都存在大量不规则的键。不规则的键能够在二维石墨层结构和三维石墨微晶之间形成紧密连接,交织形成孔道结构。碳的价电子具有sp2杂化轨道和sp3杂化轨道,进而形成六角碳网平面。以这种无规则的形式堆积形成的颗粒能够形成细密的、丰富的孔道结构。一方面更有利于活性炭吸音材料发挥吸收、释放空气的性能。另一方面,能够提高活性炭吸音粒子的结构均一性和稳定性,提高活性炭吸音粒子的结构强度。
可选地是,所述活性炭吸音材料本身可以呈球形、类球形、片形、棒形结构中的一种或多种。本领域技术人员可以根据实际情况灵活的进行调整,对此不作限制。
对于所述活性炭吸音材料中具有的包括微孔和介孔的孔道结构,其中,微孔的孔径为0.5-2nm,介孔的孔径为2-3.5nm。将微孔的孔径限制在了一个较小的尺寸,使得形成的粒子中能够包含充分、大量的微孔。这一方面增加粒子的总体累积孔容积,另一方面可以提高粒子对空气分子的吸附能力。大量孔径细小的微孔能够吸附大量空气分子,提高所制成的活性炭吸音材料的声学性能。将介孔的孔径范围限制在上述范围内,目的是为了在空气分子需要快速吸入微孔或者快速从微孔中释放时,介孔给空气分子提供足够的流动空间, 使空气分子能够快速移动,降低空气阻塞微孔的情况。另一方面,若介孔的孔径过大,会降低粒子的累积孔容积,造成粒子吸收空气的性能下降。
在本发明中,所述活性炭吸音材料的累积孔容积范围为0.6-5cm 3/g。活性炭吸音材料的累积孔容积会显著影响到降低谐振频率的效果。
实际上,活性炭吸音材料的粒径尺寸、累积孔容积与比表面积是相关的。当活性炭吸音材料的粒子粒径尺寸较大时,粒子在碳化过程中易受热不均匀,形成的孔道结构不完善,因而造成空气分子无法在孔道结构中顺畅的进出,其累积孔容积变小,比表面积也会随之下降。当活性炭吸音材料的粒子粒径尺寸过小时,粒子强度低、易破碎。例如,当累积孔容积小于0.6cm 3/g时,活性炭吸音材料对空气分子的吸附、脱附能力明显降低。较低的孔容积造成空气分子无法顺畅的进出活性炭吸音粒子,粒子也无法大量吸收空气分子。而当累积孔容积升高至0.6cm 3/g后,介孔的含量上升,这使得粒子满足了使空气分子快速进出的需要。对空气分子进行吸附、脱附的响应速度明显上升,对于后声腔的等效扩容倍率明显上升。累积孔容积继续升高后,微孔的含量也相应上升,粒子吸附空气分子的量也显著上升。由此能够更好的起到降低谐振频率的作用。
在本发明提供的活性炭吸音材料中,由于介孔和微孔之间是相互贯通的,二者保证了气体的传输、储存和对流。
经本发明的发明人验证,将本发明的活性炭吸音材料填充到发声装置的后声腔内,其通过对空气的吸收释放作用能等效于扩大了后声腔的容积,可以使后声腔的容积扩大N倍,其中,N>1。在发声装置的后声腔内,吸音材料的粒子受迫振动会消耗掉声波的能量,这种效果等效于后声腔的容积中的空气声顺性增加,从而降低了谐振频率。
本发明提供的活性炭吸音材料可应用于例如耳机、听筒、扬声器、音箱等不同类型的发声装置中。将活性炭吸音材料放入发声装置的后声腔中,相当于虚拟扩大了后声腔的体积,还等效于增大发声装置的阻尼,从而减小共振强度。最终能降低发声装置的谐振频率,进而达到改善发声装置的声学性能的效果。
此外,本发明提供的活性炭吸音材料对空气分子的吸附、脱附作用能够 反复执行,不会因反复吸附脱附空气分子而出现性能降低的现象。即,本发明提供的活性炭吸音材料可以反复长期使用,使用寿命较长,能节省成本。
本发明提供了一种用于降低发声装置谐振频率的活性炭吸音材料。为了降低发声装置的谐振频率,以实现更好的声学性能,通常将该活性炭吸音材料灌装在发声装置的后声腔中。在一个具体的例子中,发声装置通常包括前声腔和后声腔,活性炭吸音材料被填充在发声装置的后声腔中,具体位于专门的填充区。当发声装置工作时,呈松散堆积状的活性炭吸音材料会随着后声腔内压强的规律性变化而实现对气体的吸附、释放作用,从而达到增大后声腔体积,降低谐振频率的效果。
根据本发明的一个实施例,提供了一种发声装置,如图2所示,该发声装置包括:壳体,所述壳体内形成有容纳腔;振动组件3,所述振动组件3设置在所述容纳腔内,将所述容纳腔分为前声腔21和后声腔22;如上述的吸音材料1,所述吸音材料1设置在所述后声腔22内。
在该实施例中,吸音材料1可以是颗粒状。将吸音材料1放置在发声装置中设置的容纳腔内。可以通过网布将吸音材料1封装在容纳腔内。振动组件3用于在发声装置中发声,在振动组件3发生的过程中,容纳腔内的吸音材料1会对发声装置内因声音而变化的气体实现吸附、释放作用,从而达到增大后声腔22体积,降低谐振频率的效果。
本公开提供的吸音材料1可应用于例如耳机、听筒、扬声器、音箱等不同类型的发声装置中。将吸音材料1放入发声装置的后声腔22中,相当于虚拟扩大了后声腔22的体积,还等效于增大发声装置的阻尼,从而减小共振强度。最终能降低发声装置的谐振频率,进而达到改善发声装置的声学性能的效果。
根据本发明的又一实施例,还提供了一种电子设备。所述电子设备包括如上所述的发声装置。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求 来限定。

Claims (10)

  1. 一种活性炭吸音材料,其特征在于:包括活性炭粒子内核和包覆在所述活性炭粒子内核外表面上的疏水层;其中,所述疏水层在所述活性炭吸音材料中的质量占比为1-50wt%;
    所述疏水层的材质为沸石材料、气凝胶材料、多孔有机聚合物材料中的任意一种;
    所述活性炭吸音材料内部具有疏松的孔道结构,所述孔道结构包括纳米级的微孔和介孔;所述活性炭吸音材料呈颗粒状,其粒径为100-1000μm。
  2. 根据权利要求1所述的活性炭吸音材料,其特征在于:所述活性炭粒子内核材料包括炭元素、氢元素和氧元素;
    所述活性炭粒子内核在所述活性炭吸音材料中的质量占比为50-99wt%。
  3. 根据权利要求1所述的活性炭吸音材料,其特征在于:所述活性炭粒子内核含有由二维石墨层和/或三维石墨微晶的分子碎片无规则的堆积形成的乱层结构。
  4. 根据权利要求1所述的活性炭吸音材料,其特征在于:所述疏水层的厚度为0.1-10μm。
  5. 根据权利要求4所述的活性炭吸音材料,其特征在于:所述疏水层的厚度为2-6μm。
  6. 根据权利要求1所述的活性炭吸音材料,其特征在于:所述微孔的孔径为0.5-2nm,所述介孔的孔径为2-3.5nm。
  7. 根据权利要求1所述的活性炭吸音材料,其特征在于:所述活性炭吸音材料的累积孔容积为0.6-5cm 3/g。
  8. 根据权利要求1所述的活性炭吸音材料,其特征在于:所述活性炭吸音材料的堆积密度为0.05-0.8g/cm 3
  9. 一种发声装置,其特征在于:包括:
    壳体,所述壳体中形成有容纳腔;
    振动组件,所述振动组件设置在所述壳体中;
    所述容纳腔中设置有权利要求1-8任意之一所述的活性炭吸音材料。
  10. 一种电子设备,其特征在于:包括如权利要求9所述的发声装置。
PCT/CN2020/134912 2020-01-02 2020-12-09 一种活性炭吸音材料、发声装置以及电子设备 WO2021135878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010003096.2A CN111179897A (zh) 2020-01-02 2020-01-02 一种活性炭吸音材料、发声装置以及电子设备
CN202010003096.2 2020-01-02

Publications (1)

Publication Number Publication Date
WO2021135878A1 true WO2021135878A1 (zh) 2021-07-08

Family

ID=70652570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134912 WO2021135878A1 (zh) 2020-01-02 2020-12-09 一种活性炭吸音材料、发声装置以及电子设备

Country Status (2)

Country Link
CN (1) CN111179897A (zh)
WO (1) WO2021135878A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980733B (zh) * 2019-12-09 2022-01-07 歌尔股份有限公司 活性炭吸音颗粒以及发声装置
CN111182419B (zh) * 2020-01-02 2022-01-07 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111179897A (zh) * 2020-01-02 2020-05-19 歌尔股份有限公司 一种活性炭吸音材料、发声装置以及电子设备
CN111147987B (zh) * 2020-01-02 2022-01-07 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111163395B (zh) * 2020-01-02 2022-01-07 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN212519305U (zh) * 2020-06-29 2021-02-09 瑞声科技(新加坡)有限公司 扬声器箱
CN113816765A (zh) * 2021-09-25 2021-12-21 深圳职业技术学院 沸石吸音材料及其制备方法和用途

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267581A (ja) * 2008-04-23 2009-11-12 Panasonic Corp スピーカ装置
US20110048844A1 (en) * 2009-09-01 2011-03-03 Nxp B.V. Acoustic material
CN105516880A (zh) * 2015-12-01 2016-04-20 歌尔声学股份有限公司 吸音材料制备方法、吸音材料以及扬声器
CN109257689A (zh) * 2018-08-09 2019-01-22 瑞声科技(新加坡)有限公司 一种吸音材料表面处理剂及其处理方法
CN109448688A (zh) * 2018-11-29 2019-03-08 歌尔股份有限公司 一种活性炭吸音材料和发声装置
CN109511056A (zh) * 2018-11-29 2019-03-22 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511057A (zh) * 2018-11-29 2019-03-22 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511058A (zh) * 2018-11-29 2019-03-22 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109640237A (zh) * 2018-11-29 2019-04-16 歌尔股份有限公司 一种活性炭吸音材料和发声装置
CN109660924A (zh) * 2018-11-29 2019-04-19 歌尔股份有限公司 活性炭吸音颗粒和发声装置
CN111135772A (zh) * 2020-01-02 2020-05-12 歌尔股份有限公司 吸音材料制备方法、吸音材料、发声装置以及电子设备
CN111147987A (zh) * 2020-01-02 2020-05-12 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111163395A (zh) * 2020-01-02 2020-05-15 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111163403A (zh) * 2020-01-02 2020-05-15 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111179897A (zh) * 2020-01-02 2020-05-19 歌尔股份有限公司 一种活性炭吸音材料、发声装置以及电子设备
CN111182419A (zh) * 2020-01-02 2020-05-19 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805487B1 (ko) * 2011-09-23 2017-12-08 대우조선해양 주식회사 선박용 펀넬파이프 및 이를 포함하는 펀넬구조
CN104994461B (zh) * 2015-07-03 2019-07-05 歌尔股份有限公司 吸音颗粒及其加工方法和扬声器模组及其封装方法
CN110012383A (zh) * 2019-03-14 2019-07-12 歌尔股份有限公司 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN109935224A (zh) * 2019-03-14 2019-06-25 歌尔股份有限公司 用于降低发声装置谐振频率的活性炭吸音材料和发声装置
CN110117193B (zh) * 2019-05-20 2022-02-15 中国建筑材料科学研究总院有限公司 疏水性陶粒轻集料的制备方法、由该方法制备的疏水性陶粒轻集料及其应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267581A (ja) * 2008-04-23 2009-11-12 Panasonic Corp スピーカ装置
US20110048844A1 (en) * 2009-09-01 2011-03-03 Nxp B.V. Acoustic material
CN105516880A (zh) * 2015-12-01 2016-04-20 歌尔声学股份有限公司 吸音材料制备方法、吸音材料以及扬声器
CN109257689A (zh) * 2018-08-09 2019-01-22 瑞声科技(新加坡)有限公司 一种吸音材料表面处理剂及其处理方法
CN109448688A (zh) * 2018-11-29 2019-03-08 歌尔股份有限公司 一种活性炭吸音材料和发声装置
CN109511056A (zh) * 2018-11-29 2019-03-22 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511057A (zh) * 2018-11-29 2019-03-22 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511058A (zh) * 2018-11-29 2019-03-22 歌尔股份有限公司 无定型活性炭粒子和吸音颗粒以及发声装置
CN109640237A (zh) * 2018-11-29 2019-04-16 歌尔股份有限公司 一种活性炭吸音材料和发声装置
CN109660924A (zh) * 2018-11-29 2019-04-19 歌尔股份有限公司 活性炭吸音颗粒和发声装置
CN111135772A (zh) * 2020-01-02 2020-05-12 歌尔股份有限公司 吸音材料制备方法、吸音材料、发声装置以及电子设备
CN111147987A (zh) * 2020-01-02 2020-05-12 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111163395A (zh) * 2020-01-02 2020-05-15 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111163403A (zh) * 2020-01-02 2020-05-15 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备
CN111179897A (zh) * 2020-01-02 2020-05-19 歌尔股份有限公司 一种活性炭吸音材料、发声装置以及电子设备
CN111182419A (zh) * 2020-01-02 2020-05-19 歌尔股份有限公司 吸音颗粒、发声装置以及电子设备

Also Published As

Publication number Publication date
CN111179897A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021135878A1 (zh) 一种活性炭吸音材料、发声装置以及电子设备
WO2021135871A1 (zh) 吸音材料制备方法、吸音材料、发声装置以及电子设备
WO2021135877A1 (zh) 吸音颗粒、发声装置以及电子设备
CN109448688B (zh) 一种活性炭吸音材料和发声装置
WO2021135875A1 (zh) 吸音颗粒、发声装置以及电子设备
CN109660924B (zh) 活性炭吸音颗粒和发声装置
CN109511057B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109511056B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN111182419B (zh) 吸音颗粒、发声装置以及电子设备
CN111163403B (zh) 吸音颗粒、发声装置以及电子设备
CN109511058B (zh) 无定型活性炭粒子和吸音颗粒以及发声装置
CN109640237B (zh) 一种活性炭吸音材料和发声装置
CN106162468A (zh) 扬声器模组
CN109874089B (zh) 二氧化硅气凝胶吸音材料和发声装置
WO2018176664A1 (zh) 金属有机框架吸音件和发声装置模组
WO2018040392A1 (zh) 扬声器模组
WO2018040393A1 (zh) 扬声器模组
CN109935224A (zh) 用于降低发声装置谐振频率的活性炭吸音材料和发声装置
CN114495883A (zh) 吸音材料块及其制备方法和应用该吸音材料块的扬声器箱
CN109963243A (zh) 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN110012383A (zh) 用于降低发声装置谐振频率的活性炭吸音颗粒和发声装置
CN110980733B (zh) 活性炭吸音颗粒以及发声装置
CN109678392B (zh) 二氧化硅气凝胶吸音材料和发声装置
CN110047459A (zh) 用于降低发声装置谐振频率的活性炭吸音材料和发声装置
CN109922414A (zh) 用于降低发声装置谐振频率的活性炭吸音材料和发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909434

Country of ref document: EP

Kind code of ref document: A1