WO2020134000A1 - 谐振电路和滤波器 - Google Patents

谐振电路和滤波器 Download PDF

Info

Publication number
WO2020134000A1
WO2020134000A1 PCT/CN2019/094211 CN2019094211W WO2020134000A1 WO 2020134000 A1 WO2020134000 A1 WO 2020134000A1 CN 2019094211 W CN2019094211 W CN 2019094211W WO 2020134000 A1 WO2020134000 A1 WO 2020134000A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
planar spiral
sub
spiral coil
along
Prior art date
Application number
PCT/CN2019/094211
Other languages
English (en)
French (fr)
Inventor
何成功
戴立杰
左成杰
何军
Original Assignee
安徽安努奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201822217838.2U external-priority patent/CN209088902U/zh
Priority claimed from CN201811612983.9A external-priority patent/CN109462383B/zh
Application filed by 安徽安努奇科技有限公司 filed Critical 安徽安努奇科技有限公司
Publication of WO2020134000A1 publication Critical patent/WO2020134000A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the embodiments of the present application relate to the technical field of electronic components, for example, to a resonance circuit and a filter.
  • Resonant circuits are commonly used in integrated circuits, which usually include inductive components and capacitive components. If you want to balance the miniaturization of the resonant circuit and the electrical performance of the resonant circuit itself, you need to improve multiple electronic components in the resonant circuit, so how to take into account the resonance The miniaturization of electronic components in the circuit and the electrical performance of the electronic components themselves have become an urgent problem to be solved.
  • the present application provides a resonant circuit and a filter to achieve the miniaturization of the inductance element in the resonant circuit and obtain a larger inductance value per unit area.
  • an embodiment of the present application provides a resonance circuit, including:
  • the inductance element includes at least two planar spiral coils, at least two planar spiral coils are arranged along the axial direction of the planar spiral coil, and adjacent planar spiral coils in the at least two planar spiral coils are electrically connected to form a multi-layer spiral Inductance element, the inductance element includes a first end portion and a second end portion located at both ends of the winding of the multilayer spiral structure; and
  • the capacitive element includes a first electrode and a second electrode that are arranged oppositely.
  • the second electrode includes a first sub-electrode and a second sub-electrode.
  • the first end of the inductive element is electrically connected to the first sub-electrode of the capacitive element.
  • the second end of the element is electrically connected to the second sub-electrode of the capacitive element;
  • the vertical projection of at least two planar spiral coils along the axial direction of the planar spiral coil can be combined into a closed figure.
  • the vertical projection of the planar spiral coil along the axial direction of the planar spiral coil includes a notch, and at least another vertical projection of the planar spiral coil along the axial direction of the planar spiral coil surrounds the notch.
  • the number of turns of at least one planar spiral coil is greater than one.
  • the second electrode along the initial winding direction of the inductance element from the first end to the second end, the second electrode includes a first sub-electrode and a second sub-electrode in sequence.
  • the resonant circuit includes at least two metal layers and at least one insulating layer stacked along the axial direction of the planar spiral coil, any metal layer forms a planar spiral coil, and the planar spiral coil in the adjacent metal layer Electrically connected through vias in the insulating layer between adjacent metal layers.
  • the thickness of any insulating layer is greater than the thickness of any metal layer.
  • the first electrode and the second electrode of the capacitor element are located in adjacent metal layers, and along the axial direction of the planar spiral coil, the insulating layer between the first electrode and the second electrode forms the insulation of the capacitor element Medium layer.
  • the first sub-electrode, the first end and the second end of the capacitor are located on different layers, and the second sub-electrode, the first end and the second end of the capacitor are located on different layers Floor;
  • the first end is electrically connected to the first sub-electrode through a via in the insulating layer between the first end and the first sub-electrode, and the second end is located at the second end
  • the via in the insulating layer between the second sub-electrodes is electrically connected to the second sub-electrode.
  • the first electrode of the capacitor element is a full-surface electrode.
  • an embodiment of the present application further provides a filter, including any resonant circuit provided in the first aspect.
  • the resonant circuit and filter provided by the present application include at least two planar spiral coils arranged by an inductance element, at least two planar spiral coils are arranged along an axial direction of the planar spiral coil, and adjacent planes among the at least two planar spiral coils
  • the spiral coil is electrically connected to form a multi-layer spiral-shaped inductance element.
  • the inductance element includes a first end portion and a second end portion located at the two ends of the winding of the multi-layer spiral structure; Two electrodes, the second electrode includes a first sub-electrode and a second sub-electrode, the first end of the inductance element is electrically connected to the first sub-electrode of the capacitance element, the second end of the inductance element and the second sub-electrode of the capacitance element Electrical connection; and in the above inductance element, the structure of the inductance element is such that the vertical projection of at least two planar spiral coils along the axial direction of the planar spiral coil can be combined into a closed figure, so that the magnetic flux of the inductance element can be completely taken by its own planar spiral coil Surrounded by it to avoid leakage of magnetic flux, it is conducive to miniaturization of the inductance element in the resonant circuit, and is conducive to obtaining a larger inductance value per unit area.
  • FIG. 1 is a three-dimensional structural schematic diagram of a resonant circuit provided by an embodiment of the present application.
  • FIG. 2 is a schematic top view of a resonant circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the top structure of a resonant circuit.
  • FIG. 4 is a schematic structural diagram of a capacitive element provided by an embodiment of the present application.
  • FIG. 1 is a three-dimensional structural schematic diagram of a resonant circuit provided by an embodiment of the application
  • FIG. 2 is a top structural schematic diagram of a resonant circuit provided by an embodiment of the application. 1 and 2, the resonance circuit includes: an inductance element 100 and a capacitance element 200;
  • the inductance element 100 includes at least two planar spiral coils, at least two planar spiral coils are arranged along the axial direction x of the planar spiral coil, and any two adjacent planar spiral coils among the at least two planar spiral coils are electrically connected to form a multi-layer spiral Inductance element 100 in the shape of an inductance element 100 including a first end portion 110 and a second end portion 120 located at the two ends of the winding (spiral) of the multilayer spiral structure;
  • the capacitive element 200 includes a first electrode (not shown in FIGS. 1 and 2) and a second electrode that are oppositely arranged, the second electrode includes a first sub-electrode 221 and a second sub-electrode 222, and a first end of the inductive element 100 110 is electrically connected to the first sub-electrode 221 of the capacitive element 200, and the second end 120 of the inductive element 100 is electrically connected to the second sub-electrode 222 of the capacitive element 200;
  • the vertical projection of at least two planar spiral coils along the planar spiral coil axis x can be combined into a closed pattern.
  • FIG. 1 and FIG. 2 schematically illustrate the inductance element 100 including the first planar spiral coil 130 and the second planar spiral coil 140 as an example.
  • a plurality of planar spiral coils are arranged along the axial direction x of the planar spiral coil to form a multilayer spiral-shaped inductance element 100.
  • the area occupied by the projection of the multilayer spiral inductance element 100 is the same as the projection area of the planar spiral coil (the number of which is at least one) forming the largest projection area.
  • the structure in which the inductance element 100 is provided is a structure in which a plurality of planar spiral coils are arranged along the axial direction x of the planar spiral coil, and the same inductance can be obtained by increasing the number of layers of the planar spiral coils while reducing the projected area of the planar spiral coils along the axial direction x Value of inductive components. Therefore, the multi-layer spiral structure can achieve miniaturization of the inductance element 100.
  • the inductance element 100 includes a first end 110 and a second end 120 located at the two ends of the winding of the multi-layer spiral structure. The first end 110 and the second end 120 serve as the leading end of the inductance element 100 , Can be used to connect the capacitive element 200 in the resonant circuit.
  • the first end portion 110 and the second end portion 120 may be in the same layer as any planar spiral coil, and the resonance circuit shown in FIGS. 1 and 2 schematically shows the first end portion 110 and the second end portion 120 and The case where the first planar spiral coil 130 is in the same layer.
  • the inductance element 100 is a kind of energy storage element. According to the principle of electromagnetic induction, the inductance element 100 realizes the functions of choke and filtering through storage and conversion between electrical energy and magnetic energy.
  • the magnitude of the inductance of the inductive element 100 can be regarded as quantifying the magnitude of this energy conversion capability. This capability is related to the change of the magnetic field of the magnetic field where the inductance element 100 is located. Therefore, the change of the magnetic flux will cause a corresponding change in the inductance value of the inductance element 100, that is, the inductance value of the inductance element 100 is affected by the inductance element 100 itself.
  • FIG. 3 is a schematic diagram of the top structure of a resonant circuit.
  • the vertical projection of the first planar spiral coil 130 and the second planar spiral coil 140 along the planar spiral coil axis x does not form a closed pattern, and the first planar spiral coil 130 and the first The magnetic flux of the two-plane spiral coil 140 may leak from the unclosed portion of the vertical projection of the inductive element 100 along the axial direction x of the planar spiral coil, causing the inductance of the inductive element 100 to decrease.
  • the resonance circuit provided in this embodiment, referring to FIG. 2, at least two planar spiral coils (such as the first planar spiral coil 130 and the second planar spiral coil 140 in FIG.
  • the inductance element 100 can have a larger inductance value under the same area, that is, the inductance value per unit area of the inductance element 100 can be increased.
  • the resonance circuit since a plurality of planar spiral coils are arranged along the axial direction x of the planar spiral coil, adjacent planar spiral coils are correspondingly electrically connected to form a structure of a multilayer spiral inductance element 100, along the plane In the axial x direction of the spiral coil, the area occupied by the projection of the spiral inductance element 100 is the same as the projection area of the planar spiral coil (the number of which is at least one) forming the largest projection area.
  • the inductance element 100 adopts a multi-layer spiral structure, which is beneficial to the miniaturization of the inductance element 100.
  • FIG. 1 and FIG. 2 only schematically show the shape of the planar spiral coil winding structure.
  • the planar spiral coil winding structure may also have other shapes, such as a standard circle, etc. Be specific.
  • the resonant circuit provided in this embodiment includes at least two planar spiral coils arranged by an inductance element, at least two planar spiral coils are arranged along the axial direction of the planar spiral coil, and adjacent planar spiral coils are electrically connected to form a multi-layer spiral inductance Element, the inductance element includes a first end and a second end located at the two ends of the winding of the multi-layer spiral structure; the provided capacitance element includes a first electrode and a second electrode disposed oppositely, and the second electrode includes a first sub-electrode And the second sub-electrode, the first end of the inductance element is electrically connected to the first sub-electrode of the capacitance element, the second end of the inductance element is electrically connected to the second sub-electrode of the capacitance element; and the structure in which the inductance element is provided is at least The vertical projection of the two planar spiral coils along the axial direction of the planar spiral coil can be combined into a
  • a vertical projection of a planar spiral coil along the axial direction x of the planar spiral coil includes a notch 160, and at least another planar spiral coil is perpendicular to the axial direction x of the planar spiral coil The projection surrounds the notch 160.
  • the inductance element 100 includes a plurality of planar spiral coils, adjacent planar spiral coils are electrically connected to form a multilayer spiral inductance element 100, each planar spiral coil includes a start end and a termination, and the gap may be between a planar spiral coil start end and a termination 2, referring to FIG. 2, the first planar spiral coil 130 includes a notch 160.
  • When current flows into the first planar spiral coil 130 it can flow in from the beginning of the first planar spiral coil 130 and out from the terminal of the first planar spiral coil 130 , And then flows into the beginning of the second planar spiral coil 140 to ensure the normal flow of current in the inductive element 100.
  • the magnetic flux not surrounded by the first planar helical coil 130 can be surrounded by the second planar helical coil 140 without leakage of magnetic flux, and the inductance of the inductance element 100 is not reduced, which is beneficial to improve the inductance of the inductance element 100 Sense value.
  • the vertical projection of the first planar spiral coil 130 and the second planar spiral coil 140 along the axial direction of the planar spiral coil x does not form a closed pattern, and the magnetic flux will leak through the gap 160 from the unclosed pattern, causing wear.
  • the magnetic flux passing through each planar spiral coil is reduced, so that the inductance of the inductance element 100 is reduced. Therefore, compared to the structure of the resonant circuit shown in FIG.
  • the resonant circuit provided in this embodiment has a longer winding length of the first planar spiral coil 130 and the second planar spiral coil 140, but does not change the area occupied by the planar spiral coil Size, so that the projection of the first planar spiral coil 130 and the second planar spiral coil 140 along the planar spiral coil axis x can form a closed pattern to prevent leakage of magnetic flux, so the same area can be achieved, so that the inductance element 100 has A large inductance value is beneficial to obtain a larger inductance value per unit area.
  • Table 1 is the simulation results of the inductive element 100 in the structure of the resonant circuit shown in FIGS. 2 and 3 at the L-band used in microwave communication at the frequency point of 1 GHz and the frequency point of 2 GHz.
  • Table 2 is the comparison of FIGS. 2 and 3 Another simulation result of the simulation of the inductance element 100 in the structure of the resonance circuit shown at the frequency point of 1 GHz and the frequency point of 2 GHz used in microwave communication.
  • this embodiment provides the connection method of the inductive element 100 and the capacitive element 200 in the resonance circuit, which can be Under the condition that the inductance element 100 occupies the same area, the inductance value of the inductance element 100 is increased without affecting the Q value of the inductance element 100.
  • FIGS. 1 and 2 only take the inductance structure including two planar spiral coils as an example for schematic description.
  • the inductance structure includes multiple planar spiral coils
  • multiple planar spiral coils may be provided along the planar spiral coil axis
  • the vertical projection to x overlaps the gap structure, so that the magnetic flux passing through the planar spiral structure of the inductance element is enclosed within the structure of the inductance element, preventing leakage of the magnetic flux.
  • the number of turns of at least one planar spiral coil is greater than one.
  • FIGS. 1 and 2 schematically show a case where the inductance element 100 includes two planar spiral coils, and the number of turns of the two planar spiral coils is greater than one.
  • the number of turns of at least one planar spiral coil is greater than 1, so that the vertical projection of the planar spiral coil greater than 1 along the axial direction of the planar spiral coil x can cover the vertical projection of the other planar spiral coils along the axial direction of the planar spiral coil as much as possible. Helps prevent leakage of magnetic flux.
  • the first planar spiral coil 130 has a notch 160. Since the number of turns of the second planar spiral coil 140 is greater than 1, the notch 160 can be surrounded by the second planar spiral coil 140, as compared to FIG.
  • the number of turns of the first planar helical coil 130 and the second planar helical coil 140 are both less than 1, and the gap 160 of the projection of the first planar helical coil 130 along the axis x of the planar helical coil cannot be captured by the second planar helical coil 140
  • the structure surrounded by the projection of the axial direction x of the planar spiral coil can make the magnetic flux not surrounded by the first planar spiral coil 130 surrounded by the second planar spiral coil 140 without leakage of magnetic flux and without inductance components
  • the decrease in the inductance value of 100 is beneficial to increase the inductance value of the inductive element 100 per unit area.
  • the second electrode along the initial winding direction x′ of the inductive element 100 from the first end 110 to the second end 120, the second electrode includes a first sub-electrode 221 and a second sub Electrode 222.
  • the first The two electrodes include a first sub-electrode 221 and a second sub-electrode 222 in this order.
  • FIG. 2 shows the case where the first end 110 and the second end 120 are arranged in the same layer as the first planar spiral coil 130, one end of the first planar spiral coil 130 can be used as the first end 110, and the first end 110 It is electrically connected to the first sub-electrode 221, and the second end 120 is electrically connected to the second sub-electrode 222, so that the vertical projection of the first planar spiral coil 130 and the second planar spiral coil 140 along the axial direction x of the planar spiral coil constitutes The closed pattern; and in the structure shown in FIG.
  • the second electrode sequentially includes the second sub-electrode 222 and the first sub Electrode 221, the first end 110 is electrically connected to the second sub-electrode 222, the second end 120 is electrically connected to the first sub-electrode 221, the first planar spiral coil 130 and the second planar spiral coil 140 are along the axis of the planar spiral coil
  • the vertical projection to x does not form a closed figure, which will cause magnetic flux leakage and reduce the inductance value.
  • the vertical projection of the first planar spiral coil 130 and the second planar spiral coil 140 along the axial direction x of the planar spiral coil forms a closed figure, and the magnetic flux not surrounded by the first planar spiral coil 130 is blocked by the second Surrounded by the planar spiral coil 140, there is no leakage of magnetic flux, and the inductance of the inductance element 100 is not reduced, which is beneficial to increase the inductance of the inductance element 100.
  • the resonant circuit includes at least two metal layers and at least one insulating layer stacked along the axial direction of the planar spiral coil, and any metal layer forms a planar spiral coil with adjacent metal layers
  • the planar spiral coil in is electrically connected through vias in the insulating layer between adjacent metal layers.
  • the resonant circuit includes a first metal layer 13 forming a first planar spiral coil 130, a second metal layer 14 forming a second planar spiral coil 140, a first sub-electrode 221 and a second sub-electrode 222 forming a capacitive element
  • the third metal layer 22, and the first insulating layer 15 between the first metal layer 13 and the second metal layer 14, and the second insulating layer 17 between the first metal layer 13 and the third metal layer 22 are taken as examples Schematic illustration.
  • the first planar spiral coil 130 may be electrically connected to the second planar spiral coil 140 through the via 150 in the first insulating layer 15 between the first metal layer 13 and the second metal layer 14.
  • the via 150 may be a metalized via.
  • An insulating layer is provided between adjacent metal layers, which can avoid electrical insulation between the positions of the planar spiral coils in multiple metal layers that do not require electrical connection.
  • the planar spiral coils in the adjacent metal layers are electrically connected through the vias in the insulating layer between the adjacent metal layers, the vias can be etched in the insulating layer, and the vias can be filled with metal material to realize the metal in the adjacent metal layer The electrical connection of the structure.
  • the use of metal materials to form inductive components, compared to multi-layer ceramic capacitors (Multi-layer Ceramic Capacitors, MLCC) is conducive to improving the Q value of inductive components.
  • the parasitic capacitance between the multiple planar spiral coils can be reduced by increasing the thickness of the insulating layer.
  • Each metal layer and insulating layer can be made by semiconductor technology, which is beneficial to improve the accuracy of inductance and capacitance.
  • the thickness b of any insulating layer is greater than the thickness a of any metal layer.
  • the thickness b of the insulating layer is greater than the thickness a of the metal layer, which can have a higher mutual inductance between different planar spiral coils, while greatly reducing the parasitic capacitance between the two metal layers, and each layer of metal
  • the layer and the insulating layer can be made by a semiconductor process, which is beneficial to improve the accuracy of inductance and capacitance.
  • FIG. 4 is a schematic structural diagram of a capacitive element provided by an embodiment of the present application.
  • the first electrode 210 and the second electrode 220 of the capacitive element 200 are respectively located in adjacent metal layers, along the axial direction of the planar spiral coil, between the first electrode 210 and the second electrode 220
  • the insulating layer 16 forms an insulating dielectric layer of the capacitor 200.
  • the first sub-electrode 221 and the first end 110 and the second end 120 of the capacitive element 200 are located on different layers, and the second sub-electrode of the capacitive element 200 222 and the first end 110 and the second end 120 are located in different layers;
  • the first end 110 is electrically connected to the first sub-electrode 221 through the via 170 in the insulating layer 17 between the first end 110 and the first sub-electrode 221
  • the second end 120 is electrically connected to the second sub-electrode 222 through the via 170 in the insulating layer 17 between the second end 120 and the second sub-electrode 222.
  • first end 110 and the second end 120 can be disposed on the same metal layer as a planar spiral coil, the first sub-electrode 221 and the first end 110 and the second end 120 are located on different layers. As shown in FIG. 1, both the first end portion 110 and the second end portion 120 may be located in the first metal layer 13, and the second end portion 120 may pass through the first end located between the first metal layer 13 and the second metal layer 14
  • the via 150 in the insulating layer 15 is connected to one end of the second planar spiral coil 140.
  • the first sub-electrode 221 is electrically connected to the first end 110 through the via 170 in the insulating layer between the first end 110 and the first sub-electrode 221, which can ensure that the first sub-electrode 221 and the first end 110 is reliably connected, and can prevent the first sub-electrode 221 from being erroneously connected to the planar spiral coil of the metal layer where the first end 110 and the second end 120 are located, which affects the resonant circuit; similarly, the second sub-electrode 222 is The first end 110 and the second end 120 are located in different layers, and the second sub-electrode 222 passes through the via 170 and the second end 120 in the insulating layer between the second end 120 and the second sub-electrode 222 Electrical connection can not only ensure the reliable connection of the second sub-electrode 222 and the second end 120, but also prevent the second sub-electrode 222 from being erroneously connected to the planar spiral coil of the metal layer where
  • the first electrode 210 of the capacitive element 200 is a full-surface electrode.
  • the first electrode 210 of the capacitive element 200 is provided as a full-surface electrode, and the second electrode 220 is provided as a discrete first sub-electrode 221 and second sub-electrode 222.
  • the first sub-electrode 221 and second sub-electrode 222 The circuit elements are connected so that the entire capacitive element 200 forms a series structure.
  • the capacitance formed by the first sub-electrode 221 and the first electrode 210, and the capacitance formed by the second sub-electrode 222 and the first electrode 210 can be used.
  • the electrodes 210 are electrically connected to form a series structure, so that the withstand voltage value of the capacitive element can be improved.
  • An embodiment of the present application further provides a filter including the resonant circuit provided in the above embodiment, and thus has the beneficial effects described in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

谐振电路和滤波器,包括:至少两个平面螺旋线圈(130,140)电连接形成的多层螺旋状的电感元件(100),以及绕线最两端的第一端部(110)和第二端部(120);电容元件(200)包括第一电极(210)和包括第一子电极(221)和第二子电极(222)的第二电极(220),第一端部(110)与第一子电极(221)连接,第二端部(120)与第二子电极(222)连接;至少存在两个平面螺旋线圈(130,140)沿平面螺旋线圈轴向的垂直投影形成封闭图形。

Description

谐振电路和滤波器
本申请要求在2018年12月27日提交中国专利局、申请号为201811612983.9,201822217838.2的中国专利申请的优先权,上述申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子元件技术领域,例如涉及一种谐振电路和滤波器。
背景技术
随着用户对电子产品小型化要求的提高,电子产品的集成度逐渐提高,这就对电子产品中所包含的电子元件的尺寸提出了更高的要求。
谐振电路普遍应用于集成电路,其通常包括电感元件以及电容元件,想要兼顾谐振电路的小型化以及谐振电路本身的电学性能,需要对谐振电路中的多个电子元件进行改进,因此如何兼顾谐振电路中电子元件的小型化以及电子元件本身的电学性能成为亟待解决的问题。
发明内容
本申请提供一种谐振电路和滤波器,以实现谐振电路中电感元件的小型化,在单位面积内获得更大的电感值。
第一方面,本申请实施例提供了一种谐振电路,包括:
电感元件,电感元件包括至少两个平面螺旋线圈,至少两个平面螺旋线圈沿平面螺旋线圈的轴向排列,所述至少两个平面螺旋线圈中相邻的平面螺旋线圈电连接形成多层螺旋状的电感元件,电感元件包括位于多层螺旋状结构的绕线最两端的第一端部和第二端部;和
电容元件,电容元件包括相对设置的第一电极和第二电极,第二电极包括第一子电极和第二子电极,电感元件的第一端部与电容元件的第一子电极电连接,电感元件的第二端部与电容元件的第二子电极电连接;
其中,在所述电感元件中,至少两个平面螺旋线圈沿平面螺旋线圈轴向的垂直投影能够组合成封闭图形。
在一实施例中,平面螺旋线圈沿平面螺旋线圈轴向的垂直投影包括一个缺口,至少有另外一个平面螺旋线圈沿平面螺旋线圈轴向的垂直投影包围缺口。
在一实施例中,至少一个平面螺旋线圈的圈数大于1。
在一实施例中,沿电感元件由第一端部至第二端部的起始绕线方向,第二电极依次包括第一子电极和第二子电极。
在一实施例中,谐振电路包括沿平面螺旋线圈轴向层叠设置的至少两层金属层和至少一层绝缘层,任一金属层均形成一平面螺旋线圈,相邻金属层中的平面螺旋线圈通过位于相邻金属层之间绝缘层中的过孔电连接。
在一实施例中,沿平面螺旋线圈轴向,任一绝缘层的厚度均大于任一金属层的厚度。
在一实施例中,电容元件的第一电极和第二电极分别位于相邻的金属层,沿平面螺旋线圈的轴向,位于第一电极与第二电极之间的绝缘层形成电容元件的绝缘介质层。
在一实施例中,电容元件的第一子电极与第一端部和第二端部均位于不同膜层,电容元件的第二子电极与第一端部和第二端部均位于不同膜层;
沿平面螺旋线圈轴向,第一端部通过位于第一端部与第一子电极之间的绝缘层中的过孔与第一子电极电连接,第二端部通过位于第二端部与第二子电极之间的绝缘层中的过孔与第二子电极电连接。
在一实施例中,电容元件的第一电极为整面状电极。
第二方面,本申请实施例还提供了一种滤波器,包括任一种第一方面提供的谐振电路。
本申请提供的谐振电路和滤波器,通过设置电感元件包括至少两个平面螺旋线圈,至少两个平面螺旋线圈沿平面螺旋线圈的轴向排列,所述至少两个平面螺旋线圈中相邻的平面螺旋线圈电连接形成多层螺旋状的电感元件,电感元件包括位于多层螺旋状结构的绕线最两端的第一端部和第二端部;设置电容元件包括相对设置的第一电极和第二电极,第二电极包括第一子电极和第二子电极,电感元件的第一端部与电容元件的第一子电极电连接,电感元件的第二端部与电容元件的第二子电极电连接;以及在上述电感元件中,设置电感元件的结构为至少两个平面螺旋线圈沿平面螺旋线圈轴向的垂直投影能够组合成封闭图形,使得电感元件的磁通量能够完全被自身的平面螺旋线圈所包围,避免磁通量泄露,有利于实现谐振电路中电感元件的小型化,有利于在单位面积内获 得更大的电感值。
附图说明
图1为本申请一实施例提供的一种谐振电路的立体结构示意图。
图2为本申请一实施例提供的一种谐振电路的俯视结构示意图。
图3为一种谐振电路的俯视结构示意图。
图4为本申请一实施例提供的一种电容元件的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请一实施例提供的一种谐振电路的立体结构示意图,图2为本申请一实施例提供的一种谐振电路的俯视结构示意图。参考图1和图2,该谐振电路包括:电感元件100和电容元件200;
电感元件100包括至少两个平面螺旋线圈,至少两个平面螺旋线圈沿平面螺旋线圈的轴向x排列,上述至少两个平面螺旋线圈中任意两个相邻的平面螺旋线圈电连接形成多层螺旋状的电感元件100,电感元件100包括位于多层螺旋状结构的绕线(螺旋线)最两端的第一端部110和第二端部120;
电容元件200包括相对设置的第一电极(图1和图2中未示出)和第二电极,第二电极包括第一子电极221和第二子电极222,电感元件100的第一端部110与电容元件200的第一子电极221电连接,电感元件100的第二端部120与电容元件200的第二子电极222电连接;
在电感元件100中,至少两个平面螺旋线圈沿平面螺旋线圈轴向x的垂直投影能够组合成封闭图形。
图1和图2以电感元件100包括第一平面螺旋线圈130和第二平面螺旋线圈140为例进行了示意性说明。参考图1和图2,多个平面螺旋线圈沿平面螺旋 线圈的轴向x排列,形成多层螺旋状的电感元件100。沿平面螺旋线圈的轴向x方向,多层螺旋状的电感元件100的投影所占用的面积大小与形成最大投影面积的平面螺旋线圈(数量为至少一个)的投影面积大小相同。设置电感元件100的结构为多个平面螺旋线圈沿平面螺旋线圈的轴向x排列的结构,可以通过增加平面螺旋线圈的层数,同时缩小平面螺旋线圈沿轴向x的投影面积来获得相同电感值的电感元件。因此,利用多层螺旋状结构可以实现电感元件100的小型化。其中,电感元件100包括位于多层螺旋状结构的绕线的最两端的第一端部110和第二端部120,该第一端部110和第二端部120作为电感元件100的引出端,可用于连接谐振电路中电容元件200。其中,第一端部110和第二端部120可以与任一平面螺旋线圈同层,图1和图2所示谐振电路示意性地示出了第一端部110和第二端部120与第一平面螺旋线圈130同层的情况。
电感元件100是种储能元件,根据电磁感应原理,电感元件100通过对电能和磁能之间的存储和转换来实现扼流和滤波等作用。电感元件100的感值大小可以视作对这种能量转换能力的大小进行了量化。这种能力与电感元件100所在磁场的磁场变化有关系,所以磁通量的变化会引起电感元件100的感值的相应变化,即电感元件100的感值大小受到电感元件100本身磁通量大小的影响。
图3为一种谐振电路的俯视结构示意图。在图3所示结构中,第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈轴向x的垂直投影未形成封闭图形,穿过电感元件100的第一平面螺旋线圈130和第二平面螺旋线圈140的磁通量会从电感元件100沿平面螺旋线圈轴向x的垂直投影中未封闭的部分泄露掉,造成电感元件100的感值降低。而本实施例提供的谐振电路中,可以参见图2,设置至少存在两个平面螺旋线圈(如图2中第一平面螺旋线圈130和第二平面螺旋线圈140)沿平面螺旋线圈轴向x的垂直投影形成封闭图形,可以使得第一平面螺旋线圈130未包围住的磁通量被第二平面螺旋线圈140所包围,而不会像图3所示结构中存在磁通量泄露的问题,所以与图3所示的谐振电路的结构相比,可以实现在相同面积下,使电感元件100具有较大的感值,即提 高电感元件100单位面积下的感值。并且本实施例提供的谐振电路中,因采用了多个平面螺旋线圈沿平面螺旋线圈的轴向x排列,相邻平面螺旋线圈对应电连接形成多层螺旋状的电感元件100的结构,沿平面螺旋线圈的轴向x方向,螺旋状的电感元件100的投影所占用的面积大小与形成最大投影面积的平面螺旋线圈(数量为至少一个)的投影面积大小相同。电感元件100采用多层螺旋状结构,有利于电感元件100的小型化。
需要说明的是,图1和图2只是示意性地示出了平面螺旋线圈绕线结构的形状,平面螺旋线圈绕线结构还可以是其他形状,例如标准的圆形等,本申请在此不做具体限定。
本实施例提供的谐振电路,通过设置电感元件包括至少两个平面螺旋线圈,至少两个平面螺旋线圈沿平面螺旋线圈的轴向排列,相邻平面螺旋线圈对应电连接形成多层螺旋状的电感元件,电感元件包括位于多层螺旋状结构的绕线最两端的第一端部和第二端部;设置电容元件包括相对设置的第一电极和第二电极,第二电极包括第一子电极和第二子电极,电感元件的第一端部与电容元件的第一子电极电连接,电感元件的第二端部与电容元件的第二子电极电连接;以及设置电感元件的结构为至少存在两个平面螺旋线圈沿平面螺旋线圈轴向的垂直投影能够组合成封闭图形,使得电感元件的磁通量能够完全被自身的平面螺旋线圈所包围,避免磁通量泄露,有利于实现谐振电路中电感元件的小型化,有利于在单位面积内获得更大的电感值。
结合图1,继续参考图2,在一实施例中,一平面螺旋线圈沿平面螺旋线圈轴向x的垂直投影包括一个缺口160,至少有另外一个平面螺旋线圈沿平面螺旋线圈轴向x的垂直投影包围缺口160。
电感元件100包括多个平面螺旋线圈,相邻平面螺旋线圈电连接形成多层螺旋状的电感元件100,每个平面螺旋线圈包括始端和终端,该缺口可以是一个平面螺旋线圈始端和终端之间的缺口,参考图2,第一平面螺旋线圈130包括一个缺口160,电流流入第一平面螺旋线圈130时,可从第一平面螺旋线圈130的始端流入,从第一平面螺旋线圈130的终端流出,然后流入第二平面螺旋线圈 140的始端,保证电流在电感元件100中的正常流动。图2中第一平面螺旋线圈130的缺口160被第二平面螺旋线圈140所包围,即第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈轴向x的垂直投影形成封闭图形,可以使得第一平面螺旋线圈130未包围住的磁通量被第二平面螺旋线圈140所包围,不会出现磁通的泄露,不会使电感元件100的感值降低,进而有利于提高电感元件100的感值。而图3所示结构中,第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈轴向x的垂直投影未形成封闭图形,磁通量会从未封闭图形的缺口160中泄露,造成穿过每一个平面螺旋线圈的磁通量减少,使得电感元件100的感值降低。所以本实施例提供的谐振电路,与图3所示的谐振电路的结构相比,第一平面螺旋线圈130和第二平面螺旋线圈140的绕线长度增长,但是不改变平面螺旋线圈占用面积的大小,使得第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈轴向x的投影能够形成封闭图形,以防止磁通量的泄露,因此可以实现在相同面积下,使电感元件100具有较大的感值,即有利于在单位面积内获得更大的电感值。
表1是对图2和图3所示谐振电路的结构中电感元件100在微波通信所用L波段为1GHz频率点处和2GHz频率点处进行仿真的仿真结果,表2是对图2和图3所示谐振电路的结构中电感元件100在微波通信所用L波段为1GHz频率点处和2GHz频率点处进行仿真的另一仿真结果。
表1
Figure PCTCN2019094211-appb-000001
表2
Figure PCTCN2019094211-appb-000002
根据以上仿真结果,不难看出,相比于图3所示谐振电路中电感元件100和电容元件200的连接方式,本实施例提供谐振电路中电感元件100与电容元件200的连接方式,可以在电感元件100占用相同面积的条件下,增大电感元件100的感值且不影响电感元件100的Q值。
需要说明的是,图1和图2仅以电感结构包括两个平面螺旋线圈为例进行示意性说明,当电感结构包括多个平面螺旋线圈时,可以设置多个平面螺旋线圈沿平面螺旋线圈轴向x的垂直投影相互覆盖缺口的结构,进而使得穿过电感元件的平面螺旋结构的磁通被包围在电感元件的结构内,防止磁通的泄露。
继续参考图1和图2,在一实施例中,至少一个平面螺旋线圈的圈数大于1。图1和图2是示意性的示出了电感元件100包括两个平面螺旋线圈,且两个平面螺旋线圈的圈数均大于1的情况。
至少一个平面螺旋线圈的圈数大于1,可以使得该圈数大于1的平面螺旋线圈沿平面螺旋线圈轴向x的垂直投影尽可能覆盖其它平面螺旋线圈沿平面螺旋线圈轴向的垂直投影,更加有利于防止磁通的泄露。例如可以参见图2,第一平面螺旋线圈130具有缺口160,由于第二平面螺旋线圈140的圈数大于1,该缺口160可以被第二平面螺旋线圈140所包围,相比于图3所示结构第一平面螺旋线圈130和第二平面螺旋线圈140的圈数都小于1,第一平面螺旋线圈130在沿平面螺旋线圈的轴向x的投影的缺口160无法被第二平面螺旋线圈140在沿平面螺旋线圈的轴向x的投影包围的结构,可以使得第一平面螺旋线圈130未包围住的磁通量被第二平面螺旋线圈140所包围,不会出现磁通的泄露,不会使电感元件100的感值降低,有利于提高单位面积下电感元件100的感值。
继续参考图2,在一实施例中,沿电感元件100由第一端部110至第二端部 120的起始绕线方向x’,第二电极依次包括第一子电极221和第二子电极222。
沿电感元件100第一端部110至第二端部120的起始绕线方向x’,即沿电感元件100第一端部110至第二端部120的起始绕线的切线方向,第二电极依次包括第一子电极221和第二子电极222。图2示出了第一端部110和第二端部120与第一平面螺旋线圈130同层设置的情况,第一平面螺旋线圈130的一端可作为第一端部110,第一端部110与第一子电极221电连接,第二端部120与第二子电极222电连接,进而使得第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈的轴向x的垂直投影构成封闭图形;而图3所示结构中,沿电感元件100由第一端部110至第二端部120的起始绕线方向x’,第二电极依次包括第二子电极222和第一子电极221,第一端部110与第二子电极222电连接,第二端部120与第一子电极221电连接,第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈的轴向x的垂直投影未构成封闭图形,因而会造成磁通泄露,造成感值降低。在图2所示结构中,第一平面螺旋线圈130和第二平面螺旋线圈140沿平面螺旋线圈的轴向x的垂直投影构成封闭图形,第一平面螺旋线圈130未包围住的磁通量被第二平面螺旋线圈140所包围,不会出现磁通的泄露,不会使电感元件100的感值降低,有利于提高电感元件100的感值。
继续参考图1,在一实施例中,谐振电路包括沿平面螺旋线圈轴向层叠设置的至少两层金属层和至少一层绝缘层,任一金属层均形成一平面螺旋线圈,相邻金属层中的平面螺旋线圈通过位于相邻金属层之间绝缘层中的过孔电连接。
其中,图1以谐振电路包括形成第一平面螺旋线圈130的第一金属层13、形成第二平面螺旋线圈140的第二金属层14、形成电容元件第一子电极221和第二子电极222的第三金属层22,以及第一金属层13与第二金属层14之间的第一绝缘层15、第一金属层13与第三金属层22之间的第二绝缘层17为例进行了示意性说明。其中,第一平面螺旋线圈130可以通过位于第一金属层13与第二金属层14之间的第一绝缘层15中的过孔150与第二平面螺旋线圈140电连接。过孔150可以为金属化过孔。相邻的金属层之间设置绝缘层,可以避免多 个金属层内的平面螺旋线圈之间无需电连接的位置电绝缘。相邻金属层中的平面螺旋线圈通过位于相邻金属层之间绝缘层中的过孔电连接,可以在绝缘层中刻蚀出过孔,用金属材料填充过孔实现相邻金属层中金属结构的电连接。采用金属材料形成电感元件,相对于片式多层陶瓷电容器(Multi-layer Ceramic Capacitors,MLCC)有利于提高电感元件的Q值。并且,可以通过增加绝缘层的厚度减小多个平面螺旋线圈之间的寄生电容。每层金属层和绝缘层可采用半导体工艺制成,有利于提高电感和电容精度。
继续参考图1,在一实施例中,沿平面螺旋线圈轴向,任一绝缘层的厚度b均大于任一金属层的厚度a。
沿平面螺旋线圈轴向,绝缘层的厚度b大于金属层的厚度a,可以使不同平面螺旋线圈之间具有较高的互感,同时大幅降低两层金属层之间的寄生电容,且每层金属层和绝缘层可采用半导体工艺制成,有利于提高电感和电容精度。
图4为本申请一实施例提供的一种电容元件的结构示意图。参考图4,在一实施例中,电容元件200的第一电极210和第二电极220分别位于相邻金属层,沿平面螺旋线圈的轴向,位于第一电极210与第二电极220之间的绝缘层16形成电容元件200的绝缘介质层。
继续参考图1,结合图4,在一实施例中,电容元件200的第一子电极221与第一端部110和第二端部120均位于不同膜层,电容元件200的第二子电极222与第一端部110和第二端部120均位于不同膜层;
沿平面螺旋线圈轴向x,第一端部110通过位于第一端部110与第一子电极221之间的绝缘层17中的过孔170与第一子电极221电连接,第二端部120通过位于第二端部120与第二子电极222之间的绝缘层17中的过孔170与第二子电极222电连接。
因第一端部110和第二端部120可以与一平面螺旋线圈设置在相同金属层,第一子电极221与第一端部110和第二端部120位于不同膜层。如图1所示,第一端部110与第二端部120都可以位于第一金属层13,第二端部120可通过位于第一金属层13与第二金属层14之间的第一绝缘层15中的过孔150与第二 平面螺旋线圈140的一端连接。第一子电极221通过位于第一端部110与第一子电极221之间的绝缘层中的过孔170与第一端部110电连接,既可以保证第一子电极221与第一端部110可靠连接,又可以防止第一子电极221与第一端部110和第二端部120所在金属层的平面螺旋线圈误连接,给谐振电路带来影响;同样的,第二子电极222与第一端部110和第二端部120位于不同膜层,第二子电极222通过位于第二端部120与第二子电极222之间的绝缘层中的过孔170与第二端部120电连接,既可以保证第二子电极222与第二端部120可靠连接,又可以防止第二子电极222与第一端部110和第二端部120所在金属层的平面螺旋线圈误连接,给谐振电路带来影响。
继续参考图4,在一实施例中,电容元件200的第一电极210为整面状电极。
将电容元件200的第一电极210设置为整面状电极,第二电极220设置为分立的第一子电极221和第二子电极222,通过第一子电极221和第二子电极222与其他电路元件连接,使得整个电容元件200形成串联结构。即通过将第一电极210设置为一块完整的面状电极,第一子电极221和第一电极210所构成的电容,与第二子电极222和第一电极210所构成的电容可以利用第一电极210电连接,形成串联结构,从而可以提高电容元件的耐压值。
本申请实施例还提供了一种滤波器,该滤波器包括上述实施例提供的谐振电路,因此具备上述实施例所述的有益效果。

Claims (9)

  1. 一种谐振电路,包括:
    电感元件,所述电感元件包括至少两个平面螺旋线圈,所述至少两个平面螺旋线圈沿所述平面螺旋线圈的轴向排列,所述至少两个平面螺旋线圈中相邻的所述平面螺旋线圈电连接形成多层螺旋状的所述电感元件,所述电感元件包括位于多层螺旋状结构的绕线最两端的第一端部和第二端部;和
    电容元件,所述电容元件包括相对设置的第一电极和第二电极,所述第二电极包括第一子电极和第二子电极,所述电感元件的第一端部与所述电容元件的第一子电极电连接,所述电感元件的第二端部与所述电容元件的第二子电极电连接;
    其中,在所述电感元件中,至少两个所述平面螺旋线圈沿所述平面螺旋线圈轴向的垂直投影能够组合成封闭图形。
  2. 根据权利要求1所述的谐振电路,其中,一所述平面螺旋线圈沿所述平面螺旋线圈轴向的垂直投影包括一个缺口,至少有另外一个所述平面螺旋线圈沿所述平面螺旋线圈轴向的垂直投影包围所述缺口。
  3. 根据权利要求1所述的谐振电路,其中,至少一个所述平面螺旋线圈的圈数大于1。
  4. 根据权利要求1所述的谐振电路,其中,沿所述电感元件由所述第一端部至所述第二端部的起始绕线方向,所述第二电极依次包括第一子电极和第二子电极。
  5. 根据权利要求1所述的谐振电路,其中,所述电感元件包括沿所述平面螺旋线圈轴向层叠设置的至少两层金属层和至少一层绝缘层,任一所述金属层均形成一所述平面螺旋线圈,相邻所述金属层中的所述平面螺旋线圈通过位于相邻所述金属层之间绝缘层中的过孔电连接。
  6. 根据权利要求5所述的谐振电路,其中,沿所述平面螺旋线圈轴向,任一所述绝缘层的厚度均大于任一所述金属层的厚度。
  7. 根据权利要求5所述的谐振电路,其中,所述电容元件的所述第一电极和所述第二电极分别位于相邻的金属层,沿所述平面螺旋线圈的轴向,位于所述第一电极与所述第二电极之间的绝缘层形成所述电容元件的绝缘介质层。
  8. 根据权利要求5所述的谐振电路,其中,所述电容元件的所述第一子电 极与所述第一端部和所述第二端部均位于不同膜层,所述电容元件的所述第二子电极与所述第一端部和所述第二端部均位于不同膜层;
    沿所述平面螺旋线圈轴向,所述第一端部通过位于所述第一端部与所述第一子电极之间的绝缘层中的过孔与所述第一子电极电连接,所述第二端部通过位于所述第二端部与所述第二子电极之间的绝缘层中的过孔与所述第二子电极电连接。
  9. 一种滤波器,包括如权利要求1-8任一项所述的谐振电路。
PCT/CN2019/094211 2018-12-27 2019-07-01 谐振电路和滤波器 WO2020134000A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201822217838.2 2018-12-27
CN201811612983.9 2018-12-27
CN201822217838.2U CN209088902U (zh) 2018-12-27 2018-12-27 一种谐振电路和滤波器
CN201811612983.9A CN109462383B (zh) 2018-12-27 2018-12-27 一种谐振电路和滤波器

Publications (1)

Publication Number Publication Date
WO2020134000A1 true WO2020134000A1 (zh) 2020-07-02

Family

ID=71125897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094211 WO2020134000A1 (zh) 2018-12-27 2019-07-01 谐振电路和滤波器

Country Status (1)

Country Link
WO (1) WO2020134000A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133809A (en) * 1996-04-22 2000-10-17 Murata Manufacturing Co., Ltd. LC filter with a parallel ground electrode
CN101521087A (zh) * 2008-11-17 2009-09-02 深圳振华富电子有限公司 一种电感器及其制造方法
CN201307489Y (zh) * 2008-10-28 2009-09-09 深圳振华富电子有限公司 叠层片式线圈集成件
CN101556860A (zh) * 2008-04-10 2009-10-14 财团法人工业技术研究院 含有电感与电容并联的电路元件
CN102637505A (zh) * 2012-05-02 2012-08-15 深圳顺络电子股份有限公司 一种高自谐振频率和高品质因素的叠层电感
CN103296003A (zh) * 2013-05-29 2013-09-11 上海宏力半导体制造有限公司 电容结构及其形成方法
CN103370834A (zh) * 2011-07-14 2013-10-23 株式会社村田制作所 无线通信器件
CN105576715A (zh) * 2014-11-01 2016-05-11 松下知识产权经营株式会社 送电装置、搭载有送电装置的车辆以及无线电力传输系统
CN109462383A (zh) * 2018-12-27 2019-03-12 安徽安努奇科技有限公司 一种谐振电路和滤波器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133809A (en) * 1996-04-22 2000-10-17 Murata Manufacturing Co., Ltd. LC filter with a parallel ground electrode
CN101556860A (zh) * 2008-04-10 2009-10-14 财团法人工业技术研究院 含有电感与电容并联的电路元件
CN201307489Y (zh) * 2008-10-28 2009-09-09 深圳振华富电子有限公司 叠层片式线圈集成件
CN101521087A (zh) * 2008-11-17 2009-09-02 深圳振华富电子有限公司 一种电感器及其制造方法
CN103370834A (zh) * 2011-07-14 2013-10-23 株式会社村田制作所 无线通信器件
CN102637505A (zh) * 2012-05-02 2012-08-15 深圳顺络电子股份有限公司 一种高自谐振频率和高品质因素的叠层电感
CN103296003A (zh) * 2013-05-29 2013-09-11 上海宏力半导体制造有限公司 电容结构及其形成方法
CN105576715A (zh) * 2014-11-01 2016-05-11 松下知识产权经营株式会社 送电装置、搭载有送电装置的车辆以及无线电力传输系统
CN109462383A (zh) * 2018-12-27 2019-03-12 安徽安努奇科技有限公司 一种谐振电路和滤波器

Similar Documents

Publication Publication Date Title
KR101983150B1 (ko) 적층형 인덕터 및 그 제조 방법
CN107039146B (zh) 绕线式电感器
JP5955691B2 (ja) パワーインダクタ及びその製造方法
TWI287239B (en) Symmetric three-dimension type inductor
JP4971432B2 (ja) 誘導素子及び誘導素子を製造するための方法
KR101532171B1 (ko) 인덕터 및 그 제조 방법
JP2013102127A (ja) 積層型インダクタ及びその製造方法
US20180197674A1 (en) Inductor component
US9479136B2 (en) Electronic component
JP5540912B2 (ja) 積層型フィルタ
JP2012256757A (ja) Lc複合部品及びlc複合部品の実装構造
CN109462383B (zh) 一种谐振电路和滤波器
JP2006339617A (ja) 電子部品
US9787276B2 (en) Electronic component
KR101532148B1 (ko) 적층형 인덕터
US9634633B2 (en) Electronic component
US20130321115A1 (en) Multilayered-type inductor and method of manufacturing the same
WO2020134000A1 (zh) 谐振电路和滤波器
US6528859B2 (en) Foil wound low profile L-C power processor
TW200428421A (en) Inductor formed between two layout layers
JP2018206997A (ja) Lc複合部品
JP4693588B2 (ja) バンドパスフィルタ
JP2012182286A (ja) コイル部品
KR101994724B1 (ko) 적층형 인덕터 및 그 제조방법
US20230412137A1 (en) Multilayer lc filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902443

Country of ref document: EP

Kind code of ref document: A1