WO2020133969A1 - 显示装置及其显示面板、oled阵列基板 - Google Patents

显示装置及其显示面板、oled阵列基板 Download PDF

Info

Publication number
WO2020133969A1
WO2020133969A1 PCT/CN2019/092568 CN2019092568W WO2020133969A1 WO 2020133969 A1 WO2020133969 A1 WO 2020133969A1 CN 2019092568 W CN2019092568 W CN 2019092568W WO 2020133969 A1 WO2020133969 A1 WO 2020133969A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled
pixels
pixel
column
display area
Prior art date
Application number
PCT/CN2019/092568
Other languages
English (en)
French (fr)
Inventor
张露
楼均辉
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2020133969A1 publication Critical patent/WO2020133969A1/zh
Priority to US17/038,517 priority Critical patent/US11302759B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes

Definitions

  • the present application relates to the technical field of OLED display equipment, in particular to a display device, a display panel thereof, and an OLED array substrate.
  • the present application provides a display device suitable for a full screen, its display panel, and an OLED array substrate, changes the driving method of the transparent display area, solves the problems of inconsistent and unsynchronized display images, and provides a higher quality full screen.
  • a first aspect of the present application provides an OLED array substrate including a display driving chip and a display area.
  • the display area includes: a non-transparent display area and a transparent display area; the non-transparent display area includes a plurality of first OLED pixels arranged in an array.
  • the transparent display area includes a group of at least one column of second OLED pixels. For the group of at least one column of second OLED pixels, the driving mode is active, and the plurality of first OLED pixels pass through the Display driver chip control.
  • a second aspect of the present application provides a display panel including the OLED array substrate of the first aspect.
  • a third aspect of the present application provides a display device including the display panel of the second aspect described above.
  • the reason why the display of the transparent display area and the non-transparent display area are not synchronized is that the transparent display area and the non-transparent display area respectively use respective display drivers to provide switching signals and/or data signals, and are not related to each other.
  • This application sets the driving method of the second OLED pixel of the transparent display area to be active, which is consistent with the driving method of the first OLED pixel of the non-transparent display area; and uses the same display driving chip to drive the transparent display area on the same OLED array substrate Of the second OLED pixel and the first OLED pixel of the non-transparent display area, that is, several of the data signal channels in the display driver chip are provided to the first OLED pixel, and several are provided to each column of the second OLED pixel; all data signals The data of the channel corresponds to a frame of the display area. In this way, each data signal channel in the display driver chip is correlated to achieve consistent images and drive synchronization.
  • FIG. 1 is a top view of the OLED array substrate in the first embodiment of the present application.
  • FIG. 2 is a cross-sectional view along the line AA in FIG. 1;
  • FIG. 3 is a schematic diagram of an actively driven circuit of the second OLED pixel in each column of the transparent display area
  • Figure 4 is a GIP circuit structure and timing diagram
  • FIG. 5 is a schematic diagram of another actively driven circuit of the second OLED pixel in each column of the transparent display area
  • FIG. 6 is a circuit diagram and a timing diagram of a pixel driving circuit having a function of compensating for the threshold voltage of a driving transistor
  • FIG. 7 is a top view of the OLED array substrate in the second embodiment of the present application.
  • FIG. 8 is a schematic diagram of an actively driven circuit of the second OLED pixel in each column of the transparent display area
  • FIG. 9 is a schematic diagram of another active driving circuit of the first OLED pixel and the second OLED pixel in the OLED array substrate;
  • FIG. 10 is a top view of the OLED array substrate in the third embodiment of the present application.
  • FIG. 11 is a top view of the OLED array substrate in the fourth embodiment of the present application.
  • FIG. 13 is a schematic diagram of an actively driven circuit of second OLED pixels in two rows and columns in a transparent display area
  • FIG. 14 is a schematic diagram of another actively driven circuit of the second OLED pixel in two rows and columns of the transparent display area;
  • 16 is a schematic diagram of an actively driven circuit of second OLED pixels in two columns and rows of a transparent display area
  • 17 is a schematic circuit diagram of an active driving type of second OLED sub-pixels in two columns and rows of a transparent display area
  • FIG. 18 is a top view of an OLED array substrate in a seventh embodiment of this application.
  • Non-transparent display area 10a Transparent display area 10b
  • the second OLED pixels 13, 13', 13" the first electrode 131
  • Driving transistor X2 storage capacitor C, storage capacitor C
  • the first transistor T1, the second transistor T2 are connected to The first transistor T1 and the first transistor T1
  • the third transistor T3, the fourth transistor T4, and the fourth transistor T4 are the third transistor T3, the fourth transistor T4, and the fourth transistor T4
  • FIG. 1 is a plan view of an organic light-emitting diode (OLED) array substrate in the first embodiment of the present application;
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • OLED organic light-emitting diode
  • the OLED array substrate 1 includes a display area 10 and a display driving chip 12, the display area 10 includes a non-transparent display area 10a and a transparent display area 10b; the display driving chip 12 includes a plurality of data signal channels.
  • the non-transparent display area 10a includes first OLED pixels 11 arranged in an array.
  • the first OLED pixels include: a block-shaped first electrode, an OLED light emitting structure, and a second electrode from bottom to top.
  • the first OLED pixels 11 in each column correspond to at least one data signal channel of the display driving chip 12. In the embodiment of the present application, each column of the first OLED pixels 11 corresponds to multiple data signal channels of the display driving chip 12.
  • the transparent display area 10b includes second OLED pixels 13 in one row and multiple columns.
  • Each column of second OLED pixels 13 includes a first electrode extending in the column direction, a plurality of OLED light-emitting structures spaced apart from each other on the first electrode, and a second electrode on the plurality of light-emitting structures.
  • the transparent display area 10b has a display function; when the second OLED pixels 13 in each column is not driven, the transparent display area 10b has a light transmission function.
  • the second OLED pixels 13 in each column correspond to at least one data signal channel of the same display driving chip 12.
  • the first OLED pixels 11 in each column and the second OLED pixels 13 in each column correspond to multiple data signal channels, and the data output through the multiple data signal channels corresponds to one frame of the display area 10.
  • the second OLED pixel 13 includes a first electrode 131, an OLED light emitting structure 133 and a second electrode 132 extending in the column direction from bottom to top.
  • the plurality of OLED light emitting structures 133 are separated by the pixel definition layer 14.
  • the bottom-up structure in the first OLED pixel 11 is the same as the structure of the second OLED pixel 13. In other alternatives, there may be no pixel definition layer between the OLED light emitting structures 133.
  • the difference between the second OLED pixel 13 and the first OLED pixel 11 is that in each column of the second OLED pixel 13, the first electrode 131 and the OLED light emitting structure 133 penetrate the transparent display area 10b, for example, extend from the top to the bottom of the transparent display area 10b end.
  • the second electrodes 132 in each column of the second OLED pixels 13 may penetrate the transparent display area 10b, for example, extend from the top to the bottom of the transparent display area 10b.
  • the second electrodes 132 of the second OLED pixels 13 in each column are connected as a surface electrode.
  • the second electrode of each first OLED pixel and the second electrode of each second OLED pixel are connected as a one-sided electrode.
  • the second OLED pixels 13 in all columns of the transparent display area 10b are pixels of the same color.
  • the second OLED pixels 13 in all columns of the transparent display area 10b may be any one of red pixels, green pixels, blue pixels, yellow pixels, and the like. In other words, when the transparent display area 10b performs a display function, the area emits monochrome light.
  • the first electrodes of the same-color pixels in each column in the second-row pixel in one row are connected to the The drain of the driving transistor, the gate of the driving transistor corresponds to a data signal channel of the display driving chip, and the source of the driving transistor is connected to a power supply voltage.
  • the first electrode of each pixel may be connected to the drain of a driving transistor in a pixel driving circuit, and the gate of each driving transistor corresponds to one data of the display driving chip In the signal channel, the source of each driving transistor is connected to the same or different power supply voltage.
  • the number of driving transistors in the former pixel driving circuit is small and the area is small.
  • the number of data signal channels is small, the number of connection traces is small, and the area is small.
  • the first electrodes of the same-color pixels in all rows in one column are connected to the drains of the driving transistors in the same pixel driving circuit,
  • the gate of the driving transistor corresponds to the same data signal channel of the display driving chip, and the source of the driving transistor is connected to the same power supply voltage.
  • the first electrodes of two rows of pixels of the same color may be connected to the drain of a driving transistor in the same pixel driving circuit, and the gate of the driving transistor corresponds to the same data signal channel of the display driving chip.
  • the source of the transistor corresponds to the same power supply voltage.
  • the transparent display area when the transparent display area performs the display function, the transparent display area emits monochromatic light, such as red light, blue light, green light, etc.
  • the first electrode 131 and the OLED light emitting structure 133 in the second OLED pixel 13 may also be completely the same as the first OLED pixel 11, and both are arranged in an array.
  • the first electrode 131 of the second OLED pixel 13 and the OLED light-emitting structure 133 are arranged to penetrate through the transparent display area 10b (for example, extending from the top to the bottom of the transparent display area 10b) Columns, relative to a number of row-column units distributed in an array, can reduce the boundary of the pattern film layer and improve the diffraction problem when transmitting light.
  • a group of at least one column of second OLED pixels is arranged in any of the following ways: one row with multiple columns; multiple rows with multiple columns.
  • Multi-row multi-column includes the case of two-row multi-column. When there are two-row multi-column, the color of the second OLED pixels in two rows in one column is the same.
  • the light emission driving method of the second OLED pixels 13 in each column of the transparent display area 10b is described below.
  • Active driving OLED Active Matrix OLED, AMOLED
  • AMOLED Active Matrix OLED
  • TFT Thin Film Transistor
  • AMOLED uses an independent thin film electric transistor to control each pixel to emit light, and each pixel can emit light continuously.
  • the row selection signal of the thin film electric transistor array can be derived from a GIP (Gate-drive-Ic (integrated, circuit)-in Panel) circuit, and the column selection signal can be derived from a display driver integrated chip (DDIC, Display Driver Ic Chip).
  • the display driver integrated chip is simply referred to as a display driver chip or DDIC in this context.
  • FIG. 3 is a schematic diagram of an actively driven circuit of the second OLED pixel in each column of the transparent display area.
  • the first electrode of the second OLED pixel 13 in each column is connected to the drain of the same drive transistor in the pixel drive circuit, and the second electrode is grounded; the gate of the drive transistor corresponds to the same data signal of the display drive chip aisle.
  • the pixel driving circuit includes a switching transistor X1, a driving transistor X2, and a storage capacitor C.
  • the data line can be connected to a data signal channel (that is, the source line) of DDIC; the scan line can be connected to a scan signal channel of the GIP circuit.
  • the remaining data channels of the display driving chip may be provided to each column of the first OLED pixels 11 of the non-transparent display area 10a, that is, each column of the first OLED pixels 11 occupies one data signal channel.
  • the remaining scanning signal channels of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a, that is, each row of the first OLED pixels 11 occupies one scanning signal channel.
  • the R/G/B data signal in the data signal channel is used to control the gate of the driving transistor X2, so as to control the amount of current flowing from the power supply voltage VDD to the first electrode of each column of the transparent display area 10b.
  • the remaining data signal channels of the display driver chip may be provided to each column of the first OLED pixels 11 of the non-transparent display area 10a; each column of the first OLED pixels 11 occupies one data signal channel.
  • each column of second OLED pixels 13 occupying one data signal channel of the display driver chip may be shared with a column of first OLED pixels 11 in the non-transparent display area 10a; each column of first OLED pixels 11 occupies one data signal aisle.
  • there is a data signal channel in the display driver chip that is simultaneously provided to one column of first OLED pixels 11 and multiple columns of second OLED pixels 13.
  • each column of the first OLED pixels 11 occupies one data signal channel.
  • the latter solution requires fewer data signal channels of the display driver chip.
  • the data of the multiple data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10a corresponds to one frame of the display area 10.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10a and the second OLED pixels 13 in the column of the transparent display area 10b correspond to one frame of the display panel.
  • One frame of the image corresponding to the display area 10 means that within one image refresh period, the data of each data channel is processed by processing one image.
  • the remaining scanning signal channels of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a; in another alternative, the second OLED pixels 13 of each column of the transparent display area 10b The first OLED pixels 11 in a row of the transparent display area 10a share a scanning signal channel.
  • Figure 4 is a GIP circuit structure and timing diagram.
  • the GIP circuit includes a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, and a fifth transistor T5.
  • the first clock signal line XCK is connected to the gate of the first transistor T1 and the gate of the third transistor T3, and the second clock signal line CK is connected to the source of the second transistor T2.
  • the first gate line Vgh connects the source of the fourth transistor T4 and the source of the fifth transistor T5, and the second gate line Vgl connects the source of the third transistor T3.
  • the OLED array substrate 1 may include a multi-level GIP circuit, for example, an n+1-level GIP circuit, where n is an integer greater than 1.
  • the source of the first transistor T1 of the n-th stage GIP circuit is connected to an input signal line Gn, which is the input signal of the n-th stage circuit.
  • the drain of the second transistor T2 of the nth stage GIP circuit is connected to the output signal line of the nth stage circuit, and the output signal of the nth stage GIP circuit serves as the input signal Gn+1 of the n+1th stage GIP circuit.
  • the first gate line Vgh is high level
  • the second gate line Vgl is low level
  • the first clock signal line XCK and the second clock signal line CK output high and low respectively Digital signals with opposite levels.
  • the first clock signal line XCK jumps to a low level
  • the first-stage GIP circuit input signal line G1 inputs a low level
  • the second clock signal line CK jumps to a low level
  • the first-stage GIP circuit outputs Low level, as the input signal G2 of the second stage GIP circuit, and so on, the output signal of the nth stage circuit as the input signal of the n+1th stage circuit.
  • the power supply voltage VDD in the above pixel driving circuit is preferably adjustable to change the luminous brightness of the second OLED pixel 13 of the transparent display area 10b so as to be close to that of the first OLED pixel 11 of the non-transparent display area 10a Luminous brightness.
  • the power supply voltage VDD in the pixel driving circuit corresponding to the second OLED pixel 13 may be shared with the pixel driving circuit corresponding to the first OLED pixel 11.
  • the power supply voltage VDD may be derived from the display driver chip or the power supply chip.
  • the power supply voltage VDD in the pixel drive circuit corresponding to the second OLED pixel 13 is not shared with the power supply voltage in the pixel drive circuit corresponding to the first OLED pixel 11.
  • the power voltage VDD corresponding to the second OLED pixel 13 may be derived from a power chip.
  • FIG. 5 is a schematic diagram of another actively driven circuit of the second OLED pixel in each column of the transparent display area.
  • the first electrodes of the second OLED pixels 13 in each column are connected to the drains of the drive transistors in different pixel drive circuits, and the second electrodes are grounded; the gate of each drive transistor corresponds to one data of the display drive chip Signal channel.
  • the pixel driving circuit includes a transistor array.
  • the transistor array includes a plurality of transistor units, and each transistor unit includes: a switching transistor X1, a driving transistor X2, and a storage capacitor C.
  • the data line in each transistor unit can be connected to one data signal channel of the DDIC; each scanning line of each transistor unit can be connected to one scanning signal channel of the GIP circuit. In other words, each transistor unit occupies multiple data signal channels of the display driver chip and one scan signal channel of the GIP circuit.
  • the remaining data signal channels of the display driver chip may be provided to each column of the first OLED pixels in the non-transparent display area 10a 11.
  • a row of second OLED pixels 13 occupying the data signal channel of the display driver chip may be shared with a row of first OLED pixels 11 in the non-transparent display area 10a.
  • each data signal channel of the display driver chip exists At least one such data signal channel, at least one such data signal channel is simultaneously provided to a column of first OLED pixels 11 and a column of second OLED pixels 13.
  • each column of the first OLED pixels 11 occupies one data signal channel.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10a corresponds to one frame of the display area 10.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10 a and the second OLED pixels 13 in the respective column of the transparent display area 10 b correspond to one frame of the display area 10.
  • the remaining scanning signal channels of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a.
  • each column of second OLED pixels 13 in the transparent display area 10b and a row of first OLED pixels 11 in the non-transparent display area 10a share one scanning signal channel.
  • the pixel driving circuit may also be a pixel driving circuit that compensates the threshold voltage of the driving transistor, such as 7T1C and 6T1C.
  • Figure 6 shows the 7T1C pixel drive circuit, which is divided into three working stages: reset, compensation, and light emission.
  • the working principle is: in the compensation stage, the threshold voltage Vth of the driving transistor is stored in its gate-source voltage Vgs, and in the final light-emission stage, the voltage Vgs-Vth is converted into current, because Vgs already contains Vth, so it is converted into At the time of current, the influence of Vth is cancelled, thereby achieving the consistency of the current.
  • the above circuit can improve the lifespan and display uniformity of the second OLED pixel 13.
  • the first electrode corresponding to the second OLED pixel 13 is connected to the drain of the same driving transistor in the pixel driving circuit, the gate of the driving transistor corresponds to a data signal channel of the display driving chip, and the source is connected to a power voltage Situation:
  • the data line signal VDATA of the above pixel driving circuit can come from a data signal of the display driving chip; the signals of the scanning lines Gn-1 and Gn can come from the two rows of scanning signals of the GIP circuit, and the emission signal EM can be emitted from one row of the GIP circuit Signal, the initial signal INIT can come from the display driver chip.
  • the remaining data signal channels of the display driving chip may be provided to the first OLED pixels 11 of each column of the non-transparent display area 10a.
  • the first OLED pixels 11 of each column occupy one data signal channel.
  • each column of second OLED pixels 13 occupying one data signal channel of the display driver chip can be shared with a column of first OLED pixels 11 of the non-transparent display area 10a, in other words, in each data signal channel of the display driver chip
  • one data signal channel is provided to one column of first OLED pixels 11 and multiple columns of second OLED pixels 13 at the same time.
  • each column of the first OLED pixels 11 occupies one data signal channel.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10 a corresponds to a frame of the display area 10.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10 a and the second OLED pixels 13 in the respective column of the transparent display area 10 b correspond to one frame of the display area 10.
  • the remaining scanning signal channels of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a, that is, each row of the first OLED pixels 11 occupies two scans For signal channels, the first OLED pixels 11 in two adjacent rows can share any one of the scanning signal channels.
  • the transparent display area 10b and the row of first OLED pixels 11 in the non-transparent display area 10a share two scanning signal channels.
  • the remaining emission signal EM channels of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a, that is, each row of the first OLED pixels 11 occupies one row of emission Signal EM channel.
  • the transparent display area 10b and the row of first OLED pixels 11 in the non-transparent display area 10a share a row of emission signal EM channels.
  • the initial signals INIT of each second OLED pixel 13 of each column of the transparent display area 10b and each first OLED pixel 11 of the non-transparent display area 10a may be shared.
  • the first electrode corresponding to the second OLED pixel 13 in each column is connected to the drain of the driving transistor in the corresponding pixel driving circuit, the gate of each driving transistor corresponds to a data signal channel of the display driving chip, and the source of each driving transistor
  • the data line signal VDATA of the pixel driving circuit of the second OLED pixels 13 in each column may be a data signal from the display driving chip (DDIC); the signals of the scanning lines Gn-1, Gn It can come from the two-line scan signal of the GIP circuit, the emission signal EM can come from the one-line emission signal of the GIP circuit, and the initial signal INIT can come from the display driver chip.
  • the data line signal VDATA of the pixel driving circuit of the second-column second OLED pixels 13 may come from a plurality of data signals of the display driving chip (DDIC); the signals of the scanning lines Gn-1 and Gn may come from the two rows of scanning signals of the GIP circuit, and emit The signal EM can come from a row of GIP circuit transmit signals.
  • DDIC display driving chip
  • the remaining data signal channels of the display driving chip may be provided to each column of the first OLED pixels 11 of the non-transparent display area 10a, and each column of the first OLED pixels 11 occupies one data signal channel.
  • one data signal channel corresponding to one column of second OLED pixels 13 in multiple columns of second OLED pixels 13 may be shared with one column of first OLED pixels 11 in the non-transparent display area 10a.
  • each column of the first OLED pixels 11 occupies one data signal channel.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10 a corresponds to a frame of the display area 10.
  • the data of the data signal channels corresponding to the first OLED pixels 11 in each column of the non-transparent display area 10 a and the second OLED pixels 13 in the respective column of the transparent display area 10 b correspond to one frame of the display area 10.
  • the remaining row scanning signals of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a, that is, each row of the first OLED pixels 11 occupies two scanning signal channels, and the two adjacent rows share one Scan the signal channel.
  • each column of second OLED pixels 13 in the transparent display area 10b and a row of first OLED pixels 11 in the non-transparent display area 10a share one scanning signal channel.
  • the pixel driving circuit and the wiring corresponding to the second OLED pixels 13 in each column are arranged in the border area of the OLED array substrate 1.
  • the non-transparent display area 10a or the transition area between the transparent display area 10b and the non-transparent display area 10a may also be provided.
  • the above-mentioned solutions can reduce the graphic film layer of the transparent display area 10b, thereby reducing the diffraction problem in the light transmission mode.
  • the embodiment shown in FIG. 3 has the advantages that the number of channels for the data signal and the scan signal is small, and the number of connection traces is small, and the occupied area is small.
  • the OLED array substrate 2 shown in FIG. 7 is substantially the same as the OLED array substrate 1 shown in FIG. 1, except that the second OLED pixels 13 in each column have sub-pixels of different colors in the same row, that is, three adjacent columns
  • the sub-pixels in the same row have different colors, and these different-color sub-pixels form a pixel unit.
  • a row of red sub-pixels, a row of green sub-pixels, and a row of blue sub-pixels form a pixel unit.
  • the sub-pixels in the pixel unit may also have colors other than red, green, and blue.
  • the pixel unit in the transparent display area can be regarded as a pixel unit in a row with several columns and two rows with several columns.
  • the transparent display area performs a display function, each sub-pixel in each pixel unit Glow, the display effect is closer to that of the non-transparent display area.
  • the pixel driving circuit may include a transistor array.
  • the transistor array includes a plurality of transistor cells.
  • Each transistor unit may include a switching transistor X1, a driving transistor X2, and a storage capacitor C.
  • each transistor unit can be connected to one data signal channel of the display driver chip (DDIC); each scan line in each transistor unit can be connected to one scan signal channel of the GIP circuit. In other words, it occupies three data signal channels of the display driver chip and one scan signal channel of the GIP circuit.
  • DDIC display driver chip
  • the remaining scanning signal channels of the GIP circuit may be provided to the first OLED pixels 11 of each row of the non-transparent display area 10a, that is, each row of the first OLED pixels 11 occupies one scanning signal channel.
  • the aforementioned power supply voltage VDD is preferably adjustable to change the luminous brightness and gray scale of the second OLED pixel 13 of the transparent display area 10b so as to be close to the luminous brightness and gray scale of the first OLED pixel 11 of the non-transparent display area 10a.
  • the power supply voltage VDD in the pixel driving circuit corresponding to the second OLED pixel 13 may be shared with the power supply voltage VDD in the pixel driving circuit corresponding to the first OLED pixel 11.
  • the power supply voltage VDD may be derived from the display driver chip or the power supply chip.
  • the power supply voltage VDD in the pixel drive circuit corresponding to the second OLED pixel 13 is not shared with the power supply voltage in the pixel drive circuit corresponding to the first OLED pixel 11.
  • the power voltage VDD corresponding to the second OLED pixel 13 is derived from the power chip
  • the power voltage VDD corresponding to the first OLED pixel 11 is derived from the display driver chip.
  • the remaining data signal channels of the display driver chip may be provided to the first OLED pixels 11 of each column of the non-transparent display area 10a; in another alternative, the same-color sub-pixels in the second OLED pixel 13 are occupied
  • One data signal channel of the display driver chip can be shared with a row of first OLED pixels 11 in the non-transparent display area 10a, in other words, there are at least one display driver chip that is simultaneously provided to one row of first OLED pixels 11 and multiple rows of second OLED pixels 13 data signal channels.
  • the display driver chip 12 provides the data signal channels of the same-color OLED pixels, such as red sub-pixels, of each column of the transparent display area 10b in common to:
  • the transparent display area 10b is adjacent to the transparent display area 10b The leftmost red sub-pixel of the row directly facing 10b.
  • the green, blue and red sub-pixels are shared in the same way.
  • the data signal channels of the rightmost red sub-pixel of the row may also be shared. The above method of sharing the data signal channel can save the number of channels on the display driver chip.
  • each column of second OLED sub-pixels 13 in the transparent display area 10b and a row of first OLED pixels 11 in the non-transparent display area 10a share a scanning signal channel.
  • the first electrodes corresponding to the same-color sub-pixels 13 of each column of each pixel unit are connected to the drains of different drive transistors, the gate of each drive transistor corresponds to a data signal channel of the display drive chip, and each drive transistor Source corresponds to the same or different power supply voltage.
  • the pixel driving circuit may include a transistor array. Each transistor unit may include a switching transistor X1, a driving transistor X2, and a storage capacitor C.
  • the data lines in each transistor unit can be connected to the three data signal channels of the display driver chip (DDIC); each scanning line in each transistor unit can be connected to a row of scanning signals of the GIP circuit. In other words, it occupies multiple data signal channels of the display driver chip and one scan signal channel of the GIP circuit.
  • the remaining data signal channels of the display driver chip may be provided to the first OLED pixels 11 of each column of the non-transparent display area 10a; in another alternative, the second OLED same-color sub-pixels 13 of each column occupy the display driver
  • Each data signal channel of the chip may be shared with a column of same-color sub-pixels in a pixel unit of the non-transparent display area 10a.
  • the data signal channels provided by the display driver chip 12 to a column of sub-pixels in the transparent display area 10b are shared by: in the non-transparent display area 10a, the same-color sub-pixels adjacent to the transparent display area 10b and directly facing the column of sub-pixels.
  • the pixel driving circuit connected to the first electrode corresponding to the same-color sub-pixel of each column of each pixel unit may be a pixel driving circuit such as 6T1C, 7T1C, etc. in addition to the above 2T1C.
  • the signal of the data line of each specific pixel driving circuit may come from one or more columns of source signals of the display driving chip (DDIC); the signal of the scanning line may come from the scanning signal of the GIP circuit.
  • the data corresponding to the data signal channels of the first OLED pixels 11 in each column of the non-transparent display area 10a and the second OLED pixels 13 in each column of the transparent display area 10b correspond to a frame of the display area 10.
  • the data line signal VDATA of the above pixel driving circuit can be derived from three or more data signal channels of the display driver chip (DDIC); the signals of the scanning lines Gn-1, Gn, Gn+1, etc. can be sourced
  • the transmission signal EM may be derived from a transmission signal channel of the GIP circuit
  • the initial signal INIT may be derived from the display driving chip.
  • FIG. 10 is a top view of the OLED array substrate in the third embodiment of the present application.
  • the OLED array substrate 3 in this embodiment is substantially the same as the OLED array substrates 1 and 2 in the previous embodiment, except that the length of the second OLED pixels 13 in each column in the column direction is not exactly the same And/or set location is not exactly the same.
  • the second OLED pixels 13' in a certain column can extend in the column direction within a certain section in the middle of the transparent display area 10b; the second OLED pixels 13' in a certain column (for example, the second column) are self-transparent
  • the top of the display area 10b extends down to the middle; the second OLED pixels 13' of a certain column (for example, the third column) extend from the middle to the bottom.
  • the advantage is that, in the previous scheme, different driving currents are applied to the first electrodes only, and/or different sub-pixels of different colors are used to implement different patterns, and the second OLED pixels 13' in each column can also be combined.
  • the structure forms various patterns.
  • the second OLED pixels 13' of each column in the above arrangement manner may have the same color, that is, the transparent display area 10b is displayed in monochrome; or may have different colors, that is, the transparent display area 10b is displayed in color.
  • FIG. 11 is a top view of an OLED array substrate in a fourth embodiment of the present application.
  • the OLED array substrate 4 in this embodiment is substantially the same as the OLED array substrates 1, 2, and 3 in the foregoing embodiments, and the difference is only that: the second OLED pixels in a certain column, a certain column, or all columns 13" is a gourd shape in the column direction.
  • the first electrode corresponding to the second OLED pixel 13" in a certain column, some columns, or all columns 13" is a gourd shape in the column direction.
  • the above structure can further reduce the diffraction phenomenon during light transmission.
  • the second OLED pixels 13" in each column of the above shape may be pixels of the same color, that is, the transparent display area 10b is displayed in monochrome; or may be pixels of different colors, that is, the transparent display area 10b is displayed in color.
  • FIG. 12 is a top view of an OLED array substrate in a fifth embodiment of the present application.
  • the structure of the OLED array substrate 5 in this embodiment is substantially the same as that of the OLED array substrate 1 in the foregoing embodiment, and the only difference is that the second OLED pixels 13 are two rows and multiple columns.
  • FIG. 13 is a schematic circuit diagram of an active driving type of second OLED pixels in two rows and columns in a transparent display area.
  • the first electrodes corresponding to the same-color pixels in the first row and each column are connected to the drain of the first driving transistor in the first pixel driving circuit, and the gate of the first driving transistor corresponds to the first data of the display driving chip
  • the source of the first driving transistor is connected to the first power supply voltage
  • the first electrode corresponding to the same-color pixels in the second row and each column is connected to the drain of the second driving transistor in the second pixel driving circuit
  • the gate corresponds to the second data signal channel of the display driving chip
  • the source of the second driving transistor is connected to the second power supply voltage.
  • the same-color pixels in each column of the first row and the same-color pixels in each column of the second row correspond to the same scan signal. In this way, the second OLED pixels of the transparent display area are simultaneously turned on.
  • the pixel driving circuit in FIG. 13 takes 2T1C as an example, and in other alternatives, it may also be a pixel driving circuit such as 3T1C, 6T1C, 7T1C.
  • FIG. 14 is a schematic diagram of another active driving type circuit of the second OLED pixel with two rows and multiple columns in the transparent display area.
  • the first electrode corresponding to the same-color pixels in each column of the first row is connected to the drain of a driving transistor in a pixel driving circuit, and the gate of the driving transistor corresponds to a data signal channel of the display driving chip.
  • the source of the transistor is connected to a power supply voltage;
  • the first electrode corresponding to the same-color pixels in the second row and each column is also connected to the drain of a driving transistor in a pixel driving circuit, and the gate of the driving transistor corresponds to a data signal of the display driving chip Channel, the source of the driving transistor is connected to a power supply voltage.
  • the pixel driving circuit in FIG. 14 takes 2T1C as an example, and in other optional solutions, it may also be a pixel driving circuit such as 3T1C, 6T1C, 7T1C, or the like.
  • the driving of two rows of second OLED pixels 13 in this embodiment is equivalent to the driving of two rows of second OLED pixels 13 in the previous embodiment.
  • the difference is that the pixels in the upper and lower rows can share data signals when driving.
  • the colors of the pixels in the upper and lower rows in one column are preferably the same.
  • the pixels in the two rows can correspond to one data signal or can share one column of data signals.
  • the same-color pixels in each column of the first row and the same-color pixels in each column of the second row correspond to the same scan signal.
  • the second OLED pixels 13 of the transparent display area are turned on at the same time.
  • “row” and “column” belong to relative concepts.
  • the arrangement of the second OLED pixels of “one row and multiple columns” according to the above-mentioned embodiments is a setting situation of the second OLED pixels of “more rows and one column” that can be directly derived or inferred.
  • a person skilled in the art may also adjust the number of second OLED pixels in rows/columns in practical applications based on the embodiments of the present application, for example, according to the above-described embodiment, the setting of the second OLED pixels in “one row with multiple columns” is adjusted to “multiple "Multiple rows and multiple columns” setting of second OLED pixels and "One row and one column” setting of second OLED pixels.
  • the "multiple rows and one column” second OLED pixels and the "one row and one column” second OLED pixels are taken as examples for detailed description.
  • the OLED array substrate 6 in this embodiment includes a display area 10 and a display driving chip 12, the display area 10 includes a non-transparent display area 10a and a transparent display area 10b; the display driving chip 12 includes a plurality of data signal channels .
  • the non-transparent display area 10a includes first OLED pixels 11 arranged in an array.
  • the first OLED pixels include: a block-shaped first electrode, an OLED light emitting structure, and a second electrode from bottom to top.
  • the first OLED pixels 11 in each column correspond to at least one data signal channel of the display driving chip 12.
  • the transparent display area 10b includes two columns and multiple rows of second OLED pixels 13.
  • Each column of second OLED pixels 13 includes a first electrode extending in a row direction, a plurality of OLED light-emitting structures spaced apart from each other on the first electrode, and a second electrode on the plurality of light-emitting structures.
  • the transparent display area 10b has a display function; when the second OLED pixels in two columns and each row are not driven, the transparent display area 10b has a light transmission function.
  • the second OLED pixels in two columns and rows correspond to at least one data signal channel of the same display driving chip.
  • the multiple data signal channels corresponding to the first OLED pixels 11 of each row and the second OLED pixels 13 of each row correspond to a frame of the display area 10 by the data output through the multiple data signal channels.
  • the difference is that the second OLED pixels 13 are distributed in two columns and multiple rows.
  • the first electrode corresponding to each second OLED pixel 13 extends in the row direction.
  • FIG. 16 is a schematic circuit diagram of an active driving type of two columns and multiple rows of second OLED pixels in a transparent display area.
  • the first electrodes corresponding to the same-color pixels in the same row and row are connected to the drain of the driving transistor in the same pixel driving circuit
  • the gate of the driving transistor corresponds to the same data signal channel of the display driving chip
  • the driving transistor The source of is connected to a supply voltage.
  • the transparent display area occupies two data signal channels.
  • the first electrodes corresponding to the same-color pixels in a column and each row are connected to the drains of the driving transistors in a pixel driving circuit, the gate of each driving transistor corresponds to a data signal channel of the display driving chip, and each driving transistor The source of the is connected to a power supply voltage; the first electrodes corresponding to the same-color pixels in all rows of two columns can also be connected to the drain of the driving transistor in the same pixel driving circuit, and the gate of the driving transistor corresponds to the same data signal channel of the display driving chip , The source of the driving transistor is connected to a power supply voltage.
  • one or more rows of second OLED pixels may also share the same data signal channel of the display driving chip with a row of first OLED pixels.
  • the second OLED pixels are arranged in the form of several rows in one column and several rows in two columns, which can reduce the boundary of the graphic film layer and improve the diffraction problem during light transmission, so the imaging effect of the light sensor under the transparent display area good.
  • the pixel driving circuit in FIG. 16 takes 2T1C as an example, and in other optional solutions, it may also be a pixel driving circuit such as 3T1C, 6T1C, 7T1C, or the like.
  • FIG. 17 is a schematic circuit diagram of an active driving type of two columns and multiple rows of second OLED pixels in a transparent display area.
  • the first electrodes corresponding to the same-color sub-pixels in each row of each pixel unit (which is formed by three rows and two columns of sub-pixels) are connected to the driving transistors in the same pixel driving circuit. Drain, the gate of each driving transistor corresponds to a data signal channel of the display driving chip.
  • the first electrodes corresponding to the same-color sub-pixels in each row of each pixel unit are connected to the drains of driving transistors in different pixel driving circuits, and the gates of each driving transistor correspond to A data signal channel of the display driving chip, the source of each driving transistor is connected to a power supply voltage.
  • the first electrodes corresponding to the same-color sub-pixels in each row of each pixel unit are connected to the drain of the driving transistor in the same pixel driving circuit, and the gate of each driving transistor The pole corresponds to a data signal channel of the display driving chip, and the source of each driving transistor is connected to a power supply voltage.
  • the pixel unit in the transparent display area can be regarded as a pixel unit with several rows in one column and several rows in two columns. In this way, when the transparent display area performs the display function, each pixel unit Each sub-pixel emits light, and the display effect is closer to that of the non-transparent display area.
  • the pixel driving circuit in FIG. 17 takes 2T1C as an example, and in other alternatives, it may also be a pixel driving circuit such as 3T1C, 6T1C, and 7T1C.
  • FIG. 18 is a top view of an OLED array substrate in a seventh embodiment of this application.
  • the difference between the OLED array substrate 7 in this embodiment and the OLED array substrate 6 in FIG. 15 is that the second OLED pixels in one column are omitted, while the second OLED pixels in the other column extend in the row direction.
  • the structure of the second OLED pixel in this embodiment please refer to the structure of the second OLED pixel in FIG. 15; for the pixel driving circuit in this embodiment, it is sufficient to omit the above-mentioned set of pixel driving circuits in FIGS. 16 to 17.
  • An embodiment of the present application further provides a display panel provided with an encapsulation layer on the above-mentioned OLED array substrate.
  • the display panel can also be provided with a touch layer thereon for use as a touch panel.
  • the display panel can also be integrated and assembled with other components as a semi-finished product to form a display device such as a mobile phone, a tablet computer, or a car display screen.
  • a light sensor is correspondingly disposed below the transparent display area 10b of the display panel, and the light sensor includes one or a combination of a camera, an iris recognition sensor, and a fingerprint recognition sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种显示装置及其显示面板、OLED阵列基板。作为一个示例,OLED阵列基板包括显示驱动芯片和显示区,显示区包括非透明显示区以及透明显示区。非透明显示区包括阵列式排布的多个第一OLED像素。透明显示区包括一组至少一列的第二OLED像素;对于一组至少一列的第二OLED像素而言,驱动方式为主动式,且与多个第一OLED像素通过显示驱动芯片控制。

Description

显示装置及其显示面板、OLED阵列基板 技术领域
本申请涉及OLED显示设备技术领域,尤其涉及一种显示装置及其显示面板、OLED阵列基板。
背景技术
随着显示装置的快速发展,用户对屏幕占比的要求越来越高,全面屏显示受到业界越来越多的关注。由于屏幕上方需要安装摄像头、传感器、听筒等元件,因此屏幕上方通常会预留一部分区域用于安装上述元件,例如苹果手机iphoneX的前刘海区域,影响了屏幕的整体一致性。
发明内容
本申请提供一种适用于全面屏的显示装置及其显示面板、OLED阵列基板,改变透明显示区的驱动方式,解决显示画面不一致、不同步的问题,提供一种质量更高的全面屏。
本申请的第一方面提供一种OLED阵列基板,该OLED阵列基板包括显示驱动芯片和显示区。所述显示区包括:非透明显示区以及透明显示区;所述非透明显示区包括阵列式排布的多个第一OLED像素。所述透明显示区包括一组至少一列的第二OLED像素,对于所述一组至少一列的第二OLED像素而言,驱动方式为主动式,且与所述多个第一OLED像素通过所述显示驱动芯片控制。
本申请的第二方面提供一种显示面板,包括上述第一方面的OLED阵列基板。
本申请的第三方面提供一种显示装置,包括上述第二方面的显示面板。
透明显示区与非透明显示区显示不同步的原因在于:透明显示区与非透明显示区分别采用各自的显示驱动器提供开关信号和/或数据信号,各自互不关联。
本申请将透明显示区的第二OLED像素的驱动方式设置为主动式,与非透明显示区的第一OLED像素的驱动方式一致;且采用同一显示驱动芯片驱动同一OLED阵列基板上的透明显示区的第二OLED像素以及非透明显示区的第一OLED像素,即显示驱动芯片中的数据信号通道中的若干条提供给第一OLED像素,若干条提供给各列第二OLED像素;所有数据信号通道的数据对应显示区的一帧画面。如此,利用显示驱动芯片中的各数据信号通道关联,实现画面一致、驱动同步。
附图说明
图1是本申请第一实施例中的OLED阵列基板的俯视图;
图2是沿着图1中的AA直线的剖视图;
图3是透明显示区各列第二OLED像素的一种主动驱动式的电路示意图;
图4是一种GIP电路结构及时序图;
图5是透明显示区各列第二OLED像素的另一种主动驱动式的电路示意图;
图6是具有对驱动晶体管的阈值电压进行补偿功能的一种像素驱动电路的电路图以及时序图;
图7是本申请第二实施例中的OLED阵列基板的俯视图;
图8是透明显示区各列第二OLED像素的一种主动驱动式的电路示意图;
图9是OLED阵列基板中第一OLED像素与第二OLED像素的另一种主动驱动式的电路示意图;
图10是本申请第三实施例中的OLED阵列基板的俯视图;
图11是本申请第四实施例中的OLED阵列基板的俯视图;
图12是本申请第五实施例中的OLED阵列基板的俯视图;
图13是透明显示区两行各列第二OLED像素的一种主动驱动式的电路示意图;
图14是透明显示区两行各列第二OLED像素的另一种主动驱动式的电路示意图;
图15是本申请第六实施例中的OLED阵列基板的俯视图;
图16是透明显示区两列各行第二OLED像素的一种主动驱动式的电路示意图;
图17是透明显示区两列各行第二OLED子像素的一种主动驱动式的电路示意图;
图18是本申请第七实施例中的OLED阵列基板的俯视图。
为方便理解本申请,以下列出本申请中出现的所有附图标记:
OLED阵列基板1、2、3、4、5、6、7       显示区10
非透明显示区10a                       透明显示区10b
第一OLED像素11                        显示驱动芯片12
第二OLED像素13、13'、13"              第一电极131
第二电极132                           OLED发光结构133
像素定义层14                          开关晶体管X1
驱动晶体管X2                          存储电容C
第一晶体管T1                          第二晶体管T2
第三晶体管T3                          第四晶体管T4
第五晶体管T5                          第一时钟信号线XCK
第二时钟信号线CK                      第一栅极线Vgh
第二栅极线Vgl
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。
图1是本申请第一实施例中的有机发光二极管(Organic Light-Emitting Diode,OLED)阵列基板的俯视图;图2是沿着图1中的AA直线的剖视图。
参照图1与图2所示,该OLED阵列基板1包括显示区10和显示驱动芯片12,显示区10包括非透明显示区10a与透明显示区10b;显示驱动芯片12包括多个数据信号通道。
其中,非透明显示区10a包括阵列式排布的第一OLED像素11,第一OLED像素自下而上包括:块状第一电极、OLED发光结构以及第二电极。各列第一OLED像素11对应显示驱动芯片12的至少一个数据信号通道。在本申请实施例中,各列第一OLED像素11对应显示驱动芯片12的多个数据信号通道。
在本实施例中,透明显示区10b包括一行多列的第二OLED像素13。各列第二OLED像素13包括:沿列方向延伸的第一电极、位于第一电极上多个彼此分隔的OLED发光结构以及位于多个发光结构上的第二电极。各列第二OLED像素13被驱动时,透明显示区10b具有显示功能;各列第二OLED像素13未被驱动时,透明显示区10b具有透光功能。各列第二OLED像素13对应同一显示驱动芯片12的至少一个数据信号通道。各列第一OLED像素11与各列第二OLED像素13对应多个数据信号通道,通过多个数据信号通道输出的数据对应显示区10的一帧画面。
参照图2所示,第二OLED像素13自下而上包括:沿列方向延伸的第一电极131、OLED发光结构133以及第二电极132。多个OLED发光结构133由像素定义层14隔开。第一OLED像素11中自下而上的结构与第二OLED像素13的结构相同。其它可选方案中,OLED发光结构133之间也可以无像素定义层。
第二OLED像素13与第一OLED像素11的区别在于:每列第二OLED像素13中,第一电极131与OLED发光结构133贯穿透明显示区10b,例如自透明显示区10b的顶端延伸至底端。每列第二OLED像素13中的第二电极132可以贯穿透明显示区10b,例如自透明显示区10b的顶端延伸至底端。在一示例中,如图2所示,各列第二OLED像素13的第二电极132连成一面电极。在另一示例中,各个第一OLED像素的第二电极与各个第二OLED像素的第二电极连接成一面电极。
图1与图2中,透明显示区10b的所有列第二OLED像素13为同色像素。可选方案中,透明显示区10b的所有列第二OLED像素13可以为红色像素、绿色像素、蓝色像素、黄色像素等中的任一种像素。换言之,透明显示区10b执行显示功能时,该区域为单色发光。
在一行所有列或两行所有列的第二OLED像素为同色像素的情况下:在一可选方案中,一行第二OLED像素中各列同色像素的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,该驱动晶体管的源极连接一电源电压。另一可选方案中,一行各列同色像素中,每个像素的第一电极可以连接至一个像素驱动电路中的驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,每一驱动晶体管的源极连接同一或不同电源电压。相对于后者方案,前者像素驱动电路中的驱动晶体管数目少、所占面积少;另外,对数据信号通道的数目要求少,连接走线数目也少、占用面积少。
在一列所有行或两列所有行第二OLED像素为同色像素的情况下:在一可选方案中,一列所有行同色像素的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的同一数据信号通道,该驱动晶体管的源极连接同一电源电压。其它可选方案中,也可以两列所有行同色像素的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的同一数据信号通道,该驱动晶体管的源极对应同一电源电压。
对于上述两种情况下的方案,透明显示区执行显示功能时,该透明显示区为单色发光,例如发红光、蓝光、绿光等。
其它可选方案中,第二OLED像素13中的第一电极131、OLED发光结构133也可以与第一OLED像素11完全相同,都设置为阵列式。在本申请实施例的透明显示区10b 中,第二OLED像素13的第一电极131、OLED发光结构133设置为贯穿透明显示区10b(例如自透明显示区10b的顶端延伸至底端)的若干列,相对于阵列式分布的若干行列单元,可以减少图形膜层的交界,改善透光时的衍射问题。
,在一个可选方案中,一组至少一列的第二OLED像素按照以下任一种方式排布:一行多列;多行多列。多行多列包括两行多列的情形,当为两行多列时,一列中的两行第二OLED像素的颜色相同。
以下介绍透明显示区10b的各列第二OLED像素13的发光驱动方式。
主动驱动式OLED(Active Matrix OLED,AMOLED),也称有源驱动式中,包括薄膜晶体管(Thin Film Transistor,TFT)阵列,每一薄膜晶体管单元包含存储电容。AMOLED是采用独立的薄膜电晶体管控制每个像素发光,且每个像素可以连续发光。换言之,每个第二OLED像素13的寻址直接受控于薄膜晶体管阵列。薄膜电晶体管阵列的行选择信号可以来源于GIP(Gate-drive-Ic(integrated circuit)-in Panel)电路、列选择信号可以来源于显示驱动集成芯片(DDIC,Display Driver Ic Chip)。显示驱动集成芯片在上下文中被简称为显示驱动芯片或DDIC。
图3是透明显示区各列第二OLED像素的一种主动驱动式的电路示意图。参照图3所示,各列第二OLED像素13的第一电极连接至像素驱动电路中的同一驱动晶体管的漏极,第二电极接地;该驱动晶体管的栅极对应显示驱动芯片的同一数据信号通道。图3中,像素驱动电路包括一开关晶体管X1、一驱动晶体管X2以及一存储电容C。该数据线可以接入DDIC的一个数据信号通道(即source线);扫描线可以接入GIP电路的一个扫描信号通道。显示驱动芯片的其余数据通道可以提供给非透明显示区10a的各列第一OLED像素11,即每列第一OLED像素11占据一个数据信号通道。GIP电路的其余扫描信号通道可以提供给非透明显示区10a的各行第一OLED像素11,即每行第一OLED像素11占据一个扫描信号通道。利用数据信号通道中的R/G/B数据信号控制驱动晶体管X2的栅极,从而实现控制电源电压VDD流向透明显示区10b每一列第一电极的电流大小。
一个可选方案中,显示驱动芯片的其余数据信号通道可以提供给非透明显示区10a的各列第一OLED像素11;每列第一OLED像素11占据一个数据信号通道。
另一个可选方案中,各列第二OLED像素13占用显示驱动芯片的一个数据信号通道可以与非透明显示区10a的一列第一OLED像素11共用;每列第一OLED像素11占据一个数据信号通道。换言之,显示驱动芯片中存在一个同时提供给一列第一OLED像素11与多列第二OLED像素13的数据信号通道。此外,每列第一OLED像素11占据一个数据信号通道。
在上述两个可选方案中,后一种方案对显示驱动芯片的数据信号通道数目要求少。
对于数据信号通道共用的情况,非透明显示区10a各列第一OLED像素11对应的多个数据信号通道的数据对应显示区10的一帧画面。对于数据信号通道不共用的情况,非透明显示区10a各列第一OLED像素11与透明显示区10b各列第二OLED像素13总共对应的数据信号通道的数据对应显示面板的一帧画面。对应显示区10的一帧画面是指:在一个图像刷新周期内,各数据通道的数据由对一副图像处理得来。
一个可选方案中,GIP电路的其余扫描信号通道可以提供给非透明显示区10a的各行第一OLED像素11;另一个可选方案中,透明显示区10b的各列第二OLED像素13与非透明显示区10a的一行第一OLED像素11共用一个扫描信号通道。
图4是一种GIP电路结构及时序图。参照图4所示,GIP电路包括第一晶体管T1、 第二晶体管T2、第三晶体管T3、第四晶体管T4和第五晶体管T5。第一时钟信号线XCK连接第一晶体管T1的栅极和第三晶体管T3的栅极,第二时钟信号线CK连接第二晶体管T2的源极。第一栅极线Vgh连接第四晶体管T4的源极和第五晶体管T5的源极,第二栅极线Vgl连接第三晶体管T3的源极。OLED阵列基板1中可以包括多级GIP电路,例如,n+1级GIP电路,n为大于1的整数。第n级GIP电路的第一晶体管T1的源极连接一输入信号线Gn,为第n级电路的输入信号。第n级GIP电路的第二晶体管T2的漏极连接第n级电路的输出信号线,并且,第n级GIP电路的输出信号作为第n+1级GIP电路的输入信号Gn+1。
参照图4中的GIP电路驱动的波形图,第一栅极线Vgh为高电平,第二栅极线Vgl为低电平,第一时钟信号线XCK和第二时钟信号线CK分别输出高低电平相反的数字信号。在第一时钟信号线XCK跳变为低电平时,第1级GIP电路输入信号线G1级输入一低电平,在第二时钟信号线CK跳变为低电平时,第1级GIP电路输出低电平,作为第2级GIP电路的输入信号G2,并以此类推,第n级电路的输出信号作为第n+1级电路的输入信号。
在具体实施过程中,上述像素驱动电路中的电源电压VDD优选可调,以改变透明显示区10b的第二OLED像素13的发光亮度,使其接近非透明显示区10a的第一OLED像素11的发光亮度。
一个可选方案中,第二OLED像素13对应的像素驱动电路中的电源电压VDD可以共用给第一OLED像素11对应的像素驱动电路。上述电源电压VDD可以来源于显示驱动芯片,也可以来源于电源芯片。
另一个可选方案中,第二OLED像素13对应的像素驱动电路中的电源电压VDD与第一OLED像素11对应的像素驱动电路中的电源电压不共用。上述第二OLED像素13对应的电源电压VDD可以来源于电源芯片。
图5是透明显示区各列第二OLED像素的另一种主动驱动式的电路示意图。参照图5所示,各列第二OLED像素13的第一电极连接至不同像素驱动电路中的驱动晶体管的漏极,第二电极接地;每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道。图5中,像素驱动电路包括一晶体管阵列,该晶体管阵列包括多个晶体管单元,每个晶体管单元包括:一开关晶体管X1、一驱动晶体管X2以及一存储电容C。每个晶体管单元中的数据线可以接入DDIC的一个数据信号通道;各晶体管单元的各个扫描线可以接入GIP电路的一个扫描信号通道。换言之,各晶体管单元占据显示驱动芯片的多个数据信号通道,以及占据GIP电路的一个扫描信号通道。
一个可选方案中,除上述第二OLED像素13中各晶体管单元占据的多个数据信号通道之外,显示驱动芯片的其余数据信号通道可以提供给非透明显示区10a的各列第一OLED像素11。另一个可选方案中,一列第二OLED像素13占用显示驱动芯片的数据信号通道可以共用给非透明显示区10a的一列第一OLED像素11,换言之,显示驱动芯片的各个数据信号通道中,存在至少一个这样的数据信号通道,至少一个这样的数据信号通道同时提供给一列第一OLED像素11与一列第二OLED像素13。此外,每列第一OLED像素11占据一个数据信号通道。
对于数据信号通道充分共用的情况,非透明显示区10a各列第一OLED像素11对应的数据信号通道的数据对应显示区10的一帧画面。对于数据信号通道不共用的情况,非透明显示区10a各列第一OLED像素11与透明显示区10b各列第二OLED像素13总共对应的数据信号通道的数据对应显示区10的一帧画面。
一个可选方案中,除上述各晶体管单元占据的一个扫描信号通道之外,GIP电路的 其余扫描信号通道可以提供给非透明显示区10a的各行第一OLED像素11。另一个可选方案中,透明显示区10b的各列第二OLED像素13与非透明显示区10a的一行第一OLED像素11共用一个扫描信号通道。
图6是具有对驱动晶体管的阈值电压进行补偿功能的一种像素驱动电路的电路图以及时序图。在具体实施过程中,像素驱动电路除了上述的2T1C,即2个薄膜晶体管和一个电容器,还可以为7T1C、6T1C等对驱动晶体管的阈值电压进行补偿的像素驱动电路。图6所示为7T1C像素驱动电路,该电路分为三个工作阶段:复位、补偿、发光。工作原理为:在补偿阶段把驱动晶体管的阈值电压Vth先存储在它的栅源电压Vgs内,在最后发光阶段,把电压Vgs-Vth转换为电流,因为Vgs已经包含了Vth,因而在转化成电流时就把Vth的影响抵消了,从而实现了电流的一致性。上述电路可以提高第二OLED像素13的寿命以及显示均匀性。
针对各列第二OLED像素13对应的第一电极连接至像素驱动电路中的同一驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,源极连接一电源电压的情况:上述像素驱动电路的数据线信号VDATA可以来自显示驱动芯片的一个数据信号;扫描线Gn-1、Gn的信号可以来自GIP电路的两行扫描信号,发射信号EM可以来自GIP电路的一行发射信号,初始信号INIT可以来自显示驱动芯片。
一个可选方案中,显示驱动芯片的其余数据信号通道可以提供给非透明显示区10a的各列第一OLED像素11。每列第一OLED像素11占据一个数据信号通道。
另一个可选方案中,各列第二OLED像素13占用显示驱动芯片的一个数据信号通道可以共用给非透明显示区10a的一列第一OLED像素11,换言之,显示驱动芯片的各个数据信号通道中,存在将一个数据信号通道同时提供给一列第一OLED像素11与多列第二OLED像素13的情况。此外,每列第一OLED像素11占据一个数据信号通道。
对于数据信号通道共用的情况,非透明显示区10a各列第一OLED像素11对应的数据信号通道的数据对应显示区10的一帧画面。对于数据信号通道不共用的情况,非透明显示区10a各列第一OLED像素11与透明显示区10b各列第二OLED像素13总共对应的数据信号通道的数据对应显示区10的一帧画面。
一个可选方案中,针对具有补偿功能的像素驱动电路,GIP电路的其余扫描信号通道可以提供给非透明显示区10a的各行第一OLED像素11,即每行第一OLED像素11占据两个扫描信号通道,相邻两行第一OLED像素11可共用其中任一个扫描信号通道。另一个可选方案中,透明显示区10b与非透明显示区10a的一行第一OLED像素11共用两个扫描信号通道。
一个可选方案中,针对具有补偿功能的像素驱动电路,GIP电路的其余发射信号EM通道可以提供给非透明显示区10a的各行第一OLED像素11,即每行第一OLED像素11占据一行发射信号EM通道。另一个可选方案中,透明显示区10b的与非透明显示区10a的一行第一OLED像素11共用一行发射信号EM通道。
透明显示区10b的各列第二OLED像素13与非透明显示区10a的各个第一OLED像素11的初始信号INIT可以共用。
在各列第二OLED像素13对应的第一电极连接至相应的像素驱动电路中的驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,各驱动晶体管的源极连接同一或不同电源电压的情况下,上述每列第二OLED像素13的像素驱动电路的数据线信号VDATA可以来自显示驱动芯片(DDIC)的一个数据信号;扫描线Gn-1、Gn的信号可以来自GIP电路的两行扫描信号,发射信号EM可以来自GIP电 路的一行发射信号,初始信号INIT可以来自显示驱动芯片。多列第二OLED像素13的像素驱动电路的数据线信号VDATA可以来自显示驱动芯片(DDIC)的多个数据信号;扫描线Gn-1、Gn的信号可以来自GIP电路的两行扫描信号,发射信号EM可以来自GIP电路的一行发射信号。
一个可选方案中,显示驱动芯片的其余数据信号通道可以提供给非透明显示区10a的各列第一OLED像素11,每列第一OLED像素11占据一个数据信号通道。
另一个可选方案中,多列第二OLED像素13中的一列第二OLED像素13对应的一个数据信号通道可以共用给非透明显示区10a的一列第一OLED像素11。换言之,显示驱动芯片中存在多个这样的数据通道:每个数据通道被同时提供给一列第一OLED像素11与一列第二OLED像素13。此外,每列第一OLED像素11占据一个数据信号通道。
对于数据信号通道共用的情况,非透明显示区10a各列第一OLED像素11对应的数据信号通道的数据对应显示区10的一帧画面。对于数据信号通道不共用的情况,非透明显示区10a各列第一OLED像素11与透明显示区10b各列第二OLED像素13总共对应的数据信号通道的数据对应显示区10的一帧画面。
一个可选方案中,GIP电路的其余行扫描信号可以提供给非透明显示区10a的各行第一OLED像素11,即每行第一OLED像素11占据两个扫描信号通道,相邻两行共用一个扫描信号通道。
另一个可选方案中,透明显示区10b的各列第二OLED像素13与非透明显示区10a的一行第一OLED像素11共用一个扫描信号通道。
图3与图5所示的实施例中,各列第二OLED像素13对应的像素驱动电路以及走线设置在OLED阵列基板1的边框区。其它可选方案中,也可以设置在非透明显示区10a,或设置在透明显示区10b与非透明显示区10a之间的过渡区(图中未示出)。相对于设置在透明显示区10b的方案,上述这些方案能减少透明显示区10b的图形膜层,从而降低透光模式下的衍射问题。
图3所示的实施例与图5所示的实施例相比,好处在于:对数据信号、扫描信号的通道数目要求少,且连接走线数目也少、占用面积少。
图7是本申请第二实施例中的OLED阵列基板的俯视图。图7所示的OLED阵列基板2与图1所示的OLED阵列基板1大致相同,区别仅在于:各列第二OLED像素13在同一行具有不同颜色的子像素,也即,相邻三列的且在同一行中的子像素具有不同的颜色,这些不同颜色的子像素形成一像素单元。例如,相邻的一列红色子像素、一列绿色子像素、一列蓝色子像素形成一像素单元。其它可选方案中,像素单元中的子像素也可以具有红、绿、蓝外的其它颜色。与非透明显示区的像素单元相比,透明显示区的像素单元可以看成一行若干列、两行若干列的像素单元,如此,透明显示区执行显示功能时,各个像素单元内的各个子像素发光,显示效果与非透明显示区的显示效果更接近。
第二OLED像素13的具体结构请参照前述实施例中的具体结构,以下重点介绍不同颜色与同色的子像素分别对应的驱动方式的不同之处。
图8是透明显示区各列第二OLED子像素的一种主动驱动式的电路示意图。参照图8所示,各像素单元的同色子像素的第一电极连接至同一驱动晶体管的漏极;该驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道;该驱动晶体管的源极对应一电源电压。图8中,像素驱动电路可以包括晶体管阵列。该晶体管阵列包括多个晶体管单元。每一晶体管单元可以包括:一开关晶体管X1、一驱动晶体管X2以及一存储电容C。每 一晶体管单元中的数据线可以接入显示驱动芯片(DDIC)的一个数据信号通道;各个晶体管单元中的各扫描线可以接入GIP电路的一个扫描信号通道。换言之,占据显示驱动芯片的三个数据信号通道,以及占据GIP电路的一个扫描信号通道。
GIP电路的其余扫描信号通道可以提供给非透明显示区10a的各行第一OLED像素11,即每行第一OLED像素11占据一个扫描信号通道。
上述电源电压VDD优选可调,以改变透明显示区10b的第二OLED像素13的发光亮度以及灰阶,使其接近非透明显示区10a的第一OLED像素11的发光亮度及灰阶。
一个可选方案中,第二OLED像素13对应的像素驱动电路中的电源电压VDD可以与第一OLED像素11对应的像素驱动电路中的电源电压VDD共用。上述电源电压VDD可以来源于显示驱动芯片,也可以来源于电源芯片。
另一个可选方案中,第二OLED像素13对应的像素驱动电路中的电源电压VDD与第一OLED像素11对应的像素驱动电路中的电源电压不共用。例如,上述第二OLED像素13对应的电源电压VDD来源于电源芯片,而第一OLED像素11对应的电源电压VDD来源于显示驱动芯片。
一个可选方案中,显示驱动芯片的其余数据信号通道可以提供给非透明显示区10a的各列第一OLED像素11;另一个可选方案中,在第二OLED像素13中的同色子像素占用显示驱动芯片的一个数据信号通道可以与非透明显示区10a的一列第一OLED像素11共用,换言之,显示驱动芯片中,存在至少一个同时提供给一列第一OLED像素11与多列第二OLED像素13的数据信号通道。
图9是OLED阵列基板中第一OLED像素与第二OLED像素的另一种主动驱动式的电路示意图。参照图9所示,显示驱动芯片12提供给透明显示区10b的各列同色OLED像素例如红色子像素的数据信号通道共用给:非透明显示区10a中,临近透明显示区10b且与透明显示区10b正对的该行最左边红色子像素。绿色子像素、蓝色子像素与红色子像素的共用方式相同。其它可选方案中,也可以共用正对的该行最右边红色子像素的数据信号通道。上述共用数据信号通道的方式可以节省显示驱动芯片上的通道数目。
一个可选方案中,透明显示区10b的各列第二OLED子像素13与非透明显示区10a的一行第一OLED像素11共用一个扫描信号通道。
其它可选方案中,各像素单元的各列同色子像素13对应的第一电极连接至不同驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,各驱动晶体管的源极对应同一或不同电源电压。像素驱动电路可以包括晶体管阵列。每一晶体管单元可以包括:一开关晶体管X1、一驱动晶体管X2以及一存储电容C。各个晶体管单元中的数据线可以接入显示驱动芯片(DDIC)的三个数据信号通道;各晶体管单元中的各扫描线可以接入GIP电路的一行扫描信号。换言之,占据显示驱动芯片的多个数据信号通道,以及占据GIP电路的一个扫描信号通道。
一个可选方案中,显示驱动芯片的其余数据信号通道可以提供给非透明显示区10a的各列第一OLED像素11;另一个可选方案中,各列第二OLED同色子像素13占用显示驱动芯片的各个数据信号通道可以分别共用给非透明显示区10a的一个像素单元内的一列同色子像素。在一个示例中,显示驱动芯片12提供给透明显示区10b的一列子像素的数据信号通道共用给:非透明显示区10a中,临近透明显示区10b且与该列子像素正对的同色子像素。
在具体实施过程中,各像素单元的各列同色子像素对应的第一电极连接的像素驱动电路,除了上述的2T1C,还可以为6T1C、7T1C等像素驱动电路。上述各具体像素驱 动电路的数据线的信号可以来自显示驱动芯片(DDIC)的一列或多列源极信号;扫描线的信号可以来自GIP电路的扫描信号。
非透明显示区10a中各列第一OLED像素11与透明显示区10b中各列第二OLED像素13总共对应的数据信号通道的数据对应显示区10的一帧画面。
在具体实施过程中,上述像素驱动电路的数据线信号VDATA可以来源于显示驱动芯片(DDIC)的三个或多个数据信号通道;扫描线Gn-1、Gn、Gn+1等的信号可以来源于GIP电路的多个扫描信号通道,发射信号EM可以来源于GIP电路的一个发射信号通道,初始信号INIT可以来源于显示驱动芯片。
图10是本申请第三实施例中的OLED阵列基板的俯视图。参照图10所示,本实施例中的OLED阵列基板3与前述实施例中的OLED阵列基板1、2大致相同,区别仅在于:各列第二OLED像素13在列方向上的长度不完全相同和/或设置的位置不完全相同。也就是说,某列(例如第一列)第二OLED像素13'可以在透明显示区10b的中部某一段内沿列方向延伸;某列(例如第二列)第二OLED像素13'自透明显示区10b的顶端向下延伸至中部;某列(例如第三列)第二OLED像素13'自中部延伸至底端。好处在于:不同于前述方案中仅通过采用第一电极上施加不同大小的驱动电流,和/或对不同颜色的子像素施加驱动电流以实现不同图案,各列第二OLED像素13'还可以结合结构形成各种图案。
上述设置方式的各列第二OLED像素13'可以具有相同颜色,即透明显示区10b单色显示;也可以具有不同颜色,即透明显示区10b彩色显示。
图11是本申请第四实施例中的OLED阵列基板的俯视图。参照图11所示,本实施例中的OLED阵列基板4与前述实施例中的OLED阵列基板1、2、3大致相同,区别仅在于:某一列、某几列或所有列的第二OLED像素13"在列方向上呈葫芦状。换言之,某一列、某几列或所有列的第二OLED像素13"对应的第一电极、OLED发光结构在列方向上呈葫芦状。上述结构相对于直角矩形、圆角矩形能进一步降低透光时的衍射现象。
上述形状的各列第二OLED像素13"可以为同色的像素,即透明显示区10b单色显示;也可以为不同颜色的像素,即透明显示区10b彩色显示。
图12是本申请第五实施例中的OLED阵列基板的俯视图。参照图12所示,本实施例中的OLED阵列基板5与前述实施例中的OLED阵列基板1结构大致相同,区别仅在于:第二OLED像素13为两行多列。
两行多列第二OLED像素13的结构可以参照前述实施例一至四中的结构。
图13是透明显示区两行各列第二OLED像素的一种主动驱动式的电路示意图。与图3相比,第一行各列同色像素对应的第一电极连接至第一像素驱动电路中的第一驱动晶体管的漏极,第一驱动晶体管的栅极对应显示驱动芯片的第一数据信号通道,第一驱动晶体管的源极连接第一电源电压;第二行各列同色像素对应的第一电极连接至第二像素驱动电路中的第二驱动晶体管的漏极,第二驱动晶体管的栅极对应显示驱动芯片的第二数据信号通道,第二驱动晶体管的源极连接第二电源电压。此外,第一行各列同色像素与第二行各列同色像素对应同一扫描信号。这样,透明显示区的第二OLED像素为同时打开。
图13中的像素驱动电路以2T1C为例,其它可选方案中,也可以为3T1C、6T1C、7T1C等像素驱动电路。
图14是透明显示区两行多列第二OLED像素的另一种主动驱动式的电路示意图。与图5相比,第一行每列同色像素对应的第一电极连接至一像素驱动电路中的驱动晶体 管的漏极,该驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,该驱动晶体管的源极连接一电源电压;第二行每列同色像素对应的第一电极也连接至一像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,该驱动晶体管的源极连接一电源电压。
图14中的像素驱动电路以2T1C为例,其它可选方案中,也可以为3T1C、6T1C、7T1C等像素驱动电路。
参照图13与图14的同色像素驱动方式,本实施例中的两行第二OLED像素13的驱动相当于前一实施例中的两个一行第二OLED像素13的驱动。区别在于:上下两行的像素在驱动时,可以共用数据信号。
在两行多列第二OLED像素为多个颜色的像素的情况下,一列中上下两行的像素的颜色优选相同,此时两行的像素可以分别对应一数据信号,也可以共用一列数据信号。此外,第一行各列同色像素与第二行各列同色像素对应同一扫描信号。换言之,透明显示区的第二OLED像素13同时打开。
在本申请实施例中,“行”和“列”属于相对概念。在对OLED阵列基板的布置过程中,因面对OLED阵列基板的位置和/或角度发生变化而导致“行”和“列”的相对位置发生变化是可能的。根据上述实施例的“一行多列”第二OLED像素的设置是能够直接得出或推断出“多行一列”的第二OLED像素的设置情形。此外,本领域技术人员还可以基于本申请实施例在实际应用中调整行/列的第二OLED像素的数量,例如根据上述实施例的“一行多列”第二OLED像素的设置调整成“多行多列”第二OLED像素的设置、“一行一列”第二OLED像素的设置。在下面实施例中以“多行一列”第二OLED像素和一行一列”第二OLED像素为例做详细说明。
图15是本申请第六实施例中的OLED阵列基板的俯视图。参照图15所示,本实施例中的OLED阵列基板6包括显示区10和显示驱动芯片12,显示区10包括非透明显示区10a与透明显示区10b;显示驱动芯片12包括多个数据信号通道。
其中,非透明显示区10a包括阵列式排布的第一OLED像素11,第一OLED像素自下而上包括:块状第一电极、OLED发光结构以及第二电极。各列第一OLED像素11对应显示驱动芯片12的至少一个数据信号通道。
在本实施例中,透明显示区10b包括两列多行的第二OLED像素13。各列第二OLED像素13包括:沿行方向延伸的第一电极、位于第一电极上多个彼此分隔的OLED发光结构以及位于多个发光结构上的第二电极。两列多行的第二OLED像素被驱动时,透明显示区10b具有显示功能;两列各行第二OLED像素未被驱动时,透明显示区10b具有透光功能。两列各行第二OLED像素对应同一显示驱动芯片的至少一个数据信号通道。各行第一OLED像素11与各行第二OLED像素13对应的多个数据信号通道,通过多个数据信号通道输出的数据对应显示区10的一帧画面。
与前述实施例五中的OLED阵列基板5相比,区别在于:第二OLED像素13呈两列多行分布。
每一个第二OLED像素13对应的第一电极沿行方向延伸。
图16是透明显示区两列多行第二OLED像素的一种主动驱动式的电路示意图。参照图16所示,同一列的行同色像素对应的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的同一数据信号通道,该驱动晶体管的源极连接一电源电压。换言之,该透明显示区占据了两个数据信号通道。
其它可选方案中,一列各行同色像素对应的第一电极连接至一个像素驱动电路 中的驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,每一驱动晶体管的源极连接一电源电压;也可以两列所有行同色像素对应的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,该驱动晶体管的栅极对应显示驱动芯片的同一数据信号通道,该驱动晶体管的源极连接一电源电压。
此外,一列第二OLED像素中,一行或多行第二OLED像素也可以与一行第一OLED像素共用显示驱动芯片的同一数据信号通道。
在一可选方案中,第二OLED像素设置为一列若干行、两列若干行的形式,能够减少图形膜层的交界,改善透光时的衍射问题,因而透明显示区下的光传感器成像效果佳。
图16中的像素驱动电路以2T1C为例,其它可选方案中,也可以为3T1C、6T1C、7T1C等像素驱动电路。
图17是透明显示区两列多行第二OLED像素的一种主动驱动式的电路示意图。参照图17所示,在一列第二OLED像素中,各像素单元(其由三行两列的子像素形成)的各行同色子像素对应的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道。在一可选方案中,在一列第二OLED像素中,各像素单元的各行同色子像素对应的第一电极连接至不同像素驱动电路中的驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,每一驱动晶体管的源极连接一电源电压。在另一可选方案中,在两列第二OLED像素中,各像素单元的各行同色子像素对应的第一电极连接至同一像素驱动电路中的驱动晶体管的漏极,每一驱动晶体管的栅极对应显示驱动芯片的一个数据信号通道,每一驱动晶体管的源极连接一电源电压。
通过上述方式,与非透明显示区的像素单元相比,透明显示区的像素单元可以看成一列若干行、两列若干行的像素单元,如此,透明显示区执行显示功能时,各个像素单元内的各个子像素发光,显示效果与非透明显示区的显示效果更接近。
图17中的像素驱动电路以2T1C为例,其它可选方案中,也可以为3T1C、6T1C、7T1C等像素驱动电路。
图18是本申请第七实施例中的OLED阵列基板的俯视图。参照图18所示,本实施例中的OLED阵列基板7与图15中的OLED阵列基板6的区别在于,省略一列的第二OLED像素,同时将另一列的第二OLED像素沿行方向延伸。对应地,本实施例的第二OLED像素的结构请参照图15中的第二OLED像素的结构;本实施例的像素驱动电路,省略上述图16至17中的一套像素驱动电路即可。
本申请实施例还提供一种在上述的OLED阵列基板上设置有封装层的显示面板。显示面板除了作为显示器件使用外,还可以在其上设置触控层,作为触控面板用。显示面板也可以作为半成品与其它部件集成、装配在一起形成如手机、平板电脑、车载显示屏等的显示装置。
显示装置中,显示面板的透明显示区10b的下方对应设置光传感器,光传感器包括:摄像头、虹膜识别传感器以及指纹识别传感器中的一种或组合。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (20)

  1. 一种有机发光二极管OLED阵列基板,包括:
    显示驱动芯片;和
    显示区,包括:
    非透明显示区,包括阵列式排布的多个第一OLED像素;以及
    透明显示区,包括一组至少一列的第二OLED像素;对于所述一组至少一列的第二OLED像素而言,驱动方式为主动式,且与所述多个第一OLED像素通过所述显示驱动芯片控制。
  2. 根据权利要求1所述的OLED阵列基板,其中,
    各列所述第二OLED像素包括:沿列方向延伸的第一电极、位于所述第一电极上的多个彼此分隔的OLED发光结构以及位于所述OLED发光结构上的第二电极;
    各列所述第二OLED像素被驱动时,所述透明显示区具有显示功能;各列所述第二OLED像素未被驱动时,所述透明显示区具有透光功能;
    各列所述第二OLED像素与各列所述第一OLED像素对应所述显示驱动芯片的多个数据信号通道,通过所述多个数据信号通道输出的数据对应所述显示区的一帧画面。
  3. 根据权利要求1所述的OLED阵列基板,其中,所述一组至少一列的第二OLED像素按照以下任一种方式排布:
    一行多列;
    多行多列;所述多行多列包括两行多列的情形,当为两行多列时,一列中的两行第二OLED像素的颜色相同。
  4. 根据权利要求1所述的OLED阵列基板,其中,
    所述第二OLED像素对应的像素驱动电路设置在非透明显示区、边框区、以及所述透明显示区与所述非透明显示区之间的过渡区中的至少一个区域。
  5. 根据权利要求1所述的OLED阵列基板,其中,
    所述OLED阵列基板包括一像素驱动电路,
    所述第二OLED像素为同色像素,所述同色像素的第一电极连接至同一所述像素驱动电路中的驱动晶体管的漏极,所述驱动晶体管的栅极对应显示驱动芯片的同一数据信号通道,所述驱动晶体管的源极对应一电源电压。
  6. 根据权利要求1所述的OLED阵列基板,其中,
    所述OLED阵列基板包括多个像素驱动电路,;
    各列所述第二OLED像素在同一行中为不同颜色的像素,一行中不同颜色的各列像素形成一像素单元,在一行所述第二OLED像素中,各像素单元的各列同色子像素分别对应的第一电极各自连接至同一或不同像素驱动电路中的驱动晶体管的漏极,每一所述驱动晶体管的栅极对应所述显示驱动芯片的一个数据信号通道,每一所述驱动晶体管的源极对应一电源电压。
  7. 根据权利要求1所述的OLED阵列基板,其中,一列所述第二OLED像素与一列所述第一OLED像素共用所述显示驱动芯片的同一数据信号通道。
  8. 根据权利要求1所述的OLED阵列基板,其中,一列所述第二OLED像素与一列所述第一OLED像素分别对应所述显示驱动芯片的不同数据信号通道。
  9. 根据权利要求1所述的OLED阵列基板,其中,一行所述第二OLED像素与一行所述第一OLED像素共用一个扫描信号通道。
  10. 根据权利要求5所述的OLED阵列基板,其中,所述电源电压可调。
  11. 根据权利要求1所述的OLED阵列基板,其中,所述第二OLED像素对应的像素驱动电路具有对驱动晶体管的阈值电压进行补偿功能。
  12. 根据权利要求1所述的OLED阵列基板,其中,所述第二OLED像素对应的像素驱动电路中的开关信号来源于GIP电路的至少一个扫描信号通道,所述第一OLED 像素对应的像素驱动电路中的开关信号来源于所述GIP电路的至少一个扫描信号通道。
  13. 根据权利要求1所述的OLED阵列基板,其中,各列所述第二OLED像素的第二电极为面电极。
  14. 据权利要求1所述的OLED阵列基板,其中,各个所述第一OLED像素的第二电极与各个所述第二OLED像素的第二电极连接成一面电极。
  15. 据权利要求1所述的OLED阵列基板,其中,各列所述第二OLED像素的第二电极为面电极,各个所述第一OLED像素的第二电极与各个所述第二OLED像素的第二电极连接成一面电极。
  16. 根据权利要求1所述的OLED阵列基板,其中,各列所述第二OLED像素对应的第一电极在所述OLED阵列基板所在平面的投影的形状为圆形、椭圆形、哑铃形、葫芦形和矩形中任一种或组合。
  17. 根据权利要求1所述的OLED阵列基板,其中,
    当所述一组多列第二OLED像素为一行多列第二OLED像素时,各列所述第二OLED像素对应的第一电极以及发光结构在所述透明显示区的中部一区段内沿列方向延伸,或自所述透明显示区的顶端向下延伸至中部、底端,或自所述透明显示区的中部延伸至底端。
  18. 根据权利要求1所述的OLED阵列基板,其中,
    当一组多列第二OLED像素为两行多列第二OLED像素时,第一行各列第二OLED像素对应的第一电极以及发光结构在所述透明显示区的中上部一区段内沿列方向延伸、或自所述透明显示区的顶端向下延伸至中上部、中部或自中上部延伸至中部;第二行各列第二OLED像素对应的第一电极以及发光结构在所述透明显示区的中下部一区段内沿列方向延伸、或自所述透明显示区的底端向上延伸至中下部、中部,或自中下部延伸至中部。
  19. 一种显示面板,其中,包括权利要求1所述的OLED阵列基板。
  20. 一种显示装置,其中,包括权利要求19所述的显示面板。
PCT/CN2019/092568 2018-12-28 2019-06-24 显示装置及其显示面板、oled阵列基板 WO2020133969A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/038,517 US11302759B2 (en) 2018-12-28 2020-09-30 Display device having pixels in a transparent display area and OLED array substrate thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811630050.2A CN110767698B (zh) 2018-12-28 2018-12-28 显示装置及其显示面板、oled阵列基板
CN201811630050.2 2018-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/038,517 Continuation US11302759B2 (en) 2018-12-28 2020-09-30 Display device having pixels in a transparent display area and OLED array substrate thereof

Publications (1)

Publication Number Publication Date
WO2020133969A1 true WO2020133969A1 (zh) 2020-07-02

Family

ID=69328975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092568 WO2020133969A1 (zh) 2018-12-28 2019-06-24 显示装置及其显示面板、oled阵列基板

Country Status (3)

Country Link
US (1) US11302759B2 (zh)
CN (1) CN110767698B (zh)
WO (1) WO2020133969A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115116393A (zh) * 2020-07-20 2022-09-27 武汉天马微电子有限公司 一种显示面板及显示装置
CN116741094A (zh) * 2023-06-28 2023-09-12 惠科股份有限公司 显示面板、显示驱动方法及显示装置
CN116741094B (zh) * 2023-06-28 2024-06-07 惠科股份有限公司 显示面板、显示驱动方法及显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823210B (zh) * 2021-08-19 2023-06-27 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN114424850B (zh) * 2022-01-25 2023-08-29 业成科技(成都)有限公司 智能显示头盔

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370574A1 (en) * 2015-06-17 2016-12-22 Samsung Display Co., Ltd. Display device and method of driving the same
CN107634083A (zh) * 2016-07-19 2018-01-26 三星显示有限公司 显示设备
CN108122951A (zh) * 2016-11-29 2018-06-05 乐金显示有限公司 超高密度透明平板显示器
CN108899348A (zh) * 2018-07-09 2018-11-27 京东方科技集团股份有限公司 透明显示基板及其驱动方法和透明显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510144B2 (ja) * 2016-03-28 2019-05-08 アップル インコーポレイテッドApple Inc. 発光ダイオードディスプレイ
CN107425040B (zh) 2017-06-29 2019-10-18 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
CN108257514A (zh) * 2017-09-30 2018-07-06 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN108389879B (zh) * 2017-09-30 2021-06-15 云谷(固安)科技有限公司 显示屏以及电子设备
CN108376696B (zh) * 2017-09-30 2020-08-25 云谷(固安)科技有限公司 终端及显示屏
CN112908238B (zh) * 2017-10-27 2023-06-23 武汉天马微电子有限公司 一种显示面板和电子设备
CN109872670B (zh) * 2017-12-05 2021-11-05 京东方科技集团股份有限公司 显示屏、显示装置、显示电路及其亮度补偿方法
CN108648679B (zh) * 2018-05-18 2020-06-26 京东方科技集团股份有限公司 显示面板的驱动方法及装置、显示设备
US10707281B2 (en) * 2018-08-10 2020-07-07 Au Optronics Corporation Display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370574A1 (en) * 2015-06-17 2016-12-22 Samsung Display Co., Ltd. Display device and method of driving the same
CN107634083A (zh) * 2016-07-19 2018-01-26 三星显示有限公司 显示设备
CN108122951A (zh) * 2016-11-29 2018-06-05 乐金显示有限公司 超高密度透明平板显示器
CN108899348A (zh) * 2018-07-09 2018-11-27 京东方科技集团股份有限公司 透明显示基板及其驱动方法和透明显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115116393A (zh) * 2020-07-20 2022-09-27 武汉天马微电子有限公司 一种显示面板及显示装置
CN115116393B (zh) * 2020-07-20 2024-05-28 武汉天马微电子有限公司 一种显示面板及显示装置
CN116741094A (zh) * 2023-06-28 2023-09-12 惠科股份有限公司 显示面板、显示驱动方法及显示装置
CN116741094B (zh) * 2023-06-28 2024-06-07 惠科股份有限公司 显示面板、显示驱动方法及显示装置

Also Published As

Publication number Publication date
US11302759B2 (en) 2022-04-12
US20210013272A1 (en) 2021-01-14
CN110767698A (zh) 2020-02-07
CN110767698B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US20240071308A1 (en) Display device and pixel circuit thereof
CN110268465B (zh) 像素电路、显示面板及像素电路的驱动方法
US11380262B2 (en) Display device having a transparent display area for display and light transmitting functions
WO2019062579A1 (zh) 像素电路及其驱动方法、显示装置
JP6159965B2 (ja) 表示パネル、表示装置ならびに電子機器
TWI508044B (zh) 顯示裝置及電子設備及顯示面板之驅動方法
US20160307510A1 (en) Pixel structure, display panel and display apparatus
CN110767829B (zh) 显示装置及其显示面板、oled透明基板、oled基板
US11302759B2 (en) Display device having pixels in a transparent display area and OLED array substrate thereof
WO2019184391A1 (zh) 像素电路及其驱动方法、显示面板
JP2014032367A (ja) 表示パネル、表示装置ならびに電子機器
KR20200135524A (ko) 픽셀 구동 회로 및 그 구동 방법, 및 디스플레이 패널
KR20140085158A (ko) 유기발광 표시장치
WO2020238490A1 (zh) 像素电路、显示基板、显示装置及驱动方法
WO2019174228A1 (zh) 像素电路及其驱动方法、显示面板
CN111430433B (zh) 显示面板及显示装置
WO2021023201A1 (zh) 像素阵列、阵列基板及显示装置
KR102414594B1 (ko) 전계발광표시장치 및 이의 구동방법
KR102604731B1 (ko) 표시 장치
KR102577468B1 (ko) 픽셀 회로와 이를 이용한 표시장치
US11823616B2 (en) Display device
US20230061191A1 (en) Display panel and display device including the same
KR20200074522A (ko) 디스플레이 장치, 데이터 구동 회로 및 구동 방법
JP7362889B2 (ja) 表示装置
KR102491625B1 (ko) 표시 패널과 이를 포함하는 표시 장치 및 표시 장치의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905298

Country of ref document: EP

Kind code of ref document: A1