WO2020133795A1 - Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 - Google Patents

Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 Download PDF

Info

Publication number
WO2020133795A1
WO2020133795A1 PCT/CN2019/081982 CN2019081982W WO2020133795A1 WO 2020133795 A1 WO2020133795 A1 WO 2020133795A1 CN 2019081982 W CN2019081982 W CN 2019081982W WO 2020133795 A1 WO2020133795 A1 WO 2020133795A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
heterostructure
face
polyhedral
reaction
Prior art date
Application number
PCT/CN2019/081982
Other languages
English (en)
French (fr)
Inventor
王浩
陈旭
汪汉斌
吴天赐
万厚钊
马国坤
张军
Original Assignee
湖北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北大学 filed Critical 湖北大学
Priority to US16/967,417 priority Critical patent/US11020727B2/en
Publication of WO2020133795A1 publication Critical patent/WO2020133795A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal

Definitions

  • the invention belongs to the field of nanotechnology and catalysis, and specifically relates to Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles, a preparation method thereof, and application as an oxygen reduction catalyst in a fuel cell.
  • FePt alloy nanoparticles have significant application prospects in the fields of electrochemical oxygen reduction (ORR) and high-density magnetic recording.
  • ORR electrochemical oxygen reduction
  • the performance of nanoparticles depends on the composition and structure of the material.
  • proton exchange membrane fuel cell As a new type of electrochemical energy conversion device, proton exchange membrane fuel cell has the advantages of high energy conversion efficiency, cleanness, low emissions and renewable fuel.
  • the cathode catalytic reaction (oxygen reduction reaction) kinetics of proton exchange membrane fuel cells is slow, requiring a high-load precious metal platinum (Pt) catalyst to keep its cost high (accounting for more than 50% of the entire stack cost),
  • Pt precious metal platinum
  • the FePt nanoparticles synthesized by chemical method have a face-centered cubic phase structure, which needs to be annealed at a temperature greater than 550°C to obtain a more excellent face-centered tetragonal phase structure FePt. This process is called phase transformation.
  • heat treatment can introduce problems such as particle agglomeration or even sintering, which is detrimental to the performance of nanoparticles.
  • the ORR reaction is essentially heterogeneous catalysis and surface reaction, and research shows that the high crystal face of the Pt-based alloy nanostructure has higher ORR catalytic activity. Therefore, the shape and exposed surface of FePt nanoparticles play an important role in ORR.
  • the object of the present invention is to provide Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles, and preparation methods and applications thereof.
  • heterostructure phase polyhedral nanoparticles characterized by being composed of three elements of Fe, Pt and Cu, with a heterostructure phase coexisting face-centered cubic and face-centered tetragonal, the heterostructure phase is A face-centered tetragonal phase shell and a face-centered cubic phase core with a high crystal face index, and the surface of the polyhedral particles have 1 to 2 atomic layers rich in Pt; the diameter distribution of the nanoparticles is 4.5 to 14.5 nm, and the average size is 8.4 nm.
  • the second object of the present invention is to provide the above-mentioned preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles, the method comprising the following steps:
  • step (1) Add oleylamine and oleic acid to the reaction precursor solution obtained in step (1) according to the ratio, continue to stir at 80 ⁇ 120 °C until the solution is completely mixed, and continue to pass nitrogen into the reaction system;
  • step (3) Slowly heat the solution obtained by mixing in step (2) to a temperature of 320-330°C, condense and reflux the reaction for 3 hours, and control the whole reaction process to be carried out under stirring and nitrogen ventilation;
  • the liquid cetyl amine in step (1) is prepared by melting solid cetyl amine, and the melting temperature is 60-100°C, preferably 80°C.
  • the molar ratio of the iron acetylacetonate, copper acetylacetone, and platinum acetylacetone in step (1) is 1:1:2.
  • the dosage ratio of cetylamine to platinum acetylacetonate in step (1) is 50 ml: 1 mmol.
  • the molar ratio of platinum acetylacetonate to 1,2-hexadecanediol in step (1) is 4:15.
  • the molar ratio of oleylamine to platinum acetylacetonate in step (2) is 20:1: the molar ratio of oleylamine to oleic acid is 1:1.
  • the solvent for cleaning the product in step (4) is a mixed solution of absolute ethanol and n-hexane in a volume ratio of 1:1.
  • the third object of the present invention is to provide the application of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles synthesized by the above method, which can be used as an oxygen reduction catalyst in fuel cells.
  • An oxygen reduction catalyst comprising the Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles described above in the present invention.
  • the invention synthesizes in one step a heterostructure phase with an average size of 8.4 nm, having a face-centered cubic phase and a face-centered tetragonal phase coexisting through a method of Cu-doped organic solvent synthesis, and the facet-centered tetragon with a high crystal plane index Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles with phase shell and face-centered cubic phase core, and 1 to 2 atomic layers rich in Pt and high ORR catalytic performance on the surface of the polyhedral particles.
  • the Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticle oxygen reduction catalyst, preparation method and application thereof have the following beneficial effects compared with the prior art:
  • the nanoparticle structure synthesized in the present invention is a heterostructure phase in which the fcc and fct phases coexist, the bulk phase is mainly face-centered cubic, and the exposed surface is face-centered tetragonal phase (111), (110) and (001) crystals
  • the surface, the (111) crystal plane is dominant; the particle surface has a Pt-rich layer with a thickness of one or two atomic layers. Therefore, the nanoparticles synthesized in the present invention are low-Pt alloy nanoparticles with a structure and shape conducive to ORR catalysis.
  • the Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles synthesized in the present invention have excellent ORR performance, and the half-wave potential is 0.80V, which is higher than that of the commercial Pt/C catalyst under the same test conditions (half-wave potential is 0.75V). The voltage is reduced by 50mV.
  • the mass activity of the synthesized Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles is 10.9 times that of commercial Pt/C.
  • the synthesis method of the present invention is simple and easy to operate, and has a wide range of raw material sources and low cost, which is beneficial to large-scale production and has potential application value in the fields of electrocatalysis, high-density magnetic recording, and the like.
  • Figure 1 (a) and (b) are the low magnification STEM graph and particle size statistical graph of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention;
  • Example 2 is a high-resolution STEM diagram of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention
  • FIG. 3 is an exposed crystal plane analysis diagram of a single Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticle prepared in Example 1 of the present invention
  • Example 5 is a comparison graph of ORR polarization curves of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention and a commercial Pt/C catalyst;
  • Example 6 is a comparison chart of the mass activity of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention and a commercial Pt/C catalyst.
  • the preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles of this embodiment includes the following steps:
  • step (2) Take 20ml of the liquid hexadecylamine solvent melted in step (1), place it in a four-necked glass flask, and then pour high-purity nitrogen into the flask for 30min, and then successively add 0.2mmol of iron acetylacetonate , 0.2 mmol of copper acetylacetonate, 0.4 mmol of platinum acetylacetone, and 1.5 mmol of 1,2-hexadecanediol were added to the hexadecylamine solvent, and finally stirred at 80°C for 10 min to completely dissolve the solid raw materials , The whole stirring process is carried out under the condition of passing nitrogen to obtain the reaction precursor solution;
  • step (3) Add 8 mmol of oleylamine and 8 mmol of oleic acid to the reaction precursor solution obtained in step (2), continue to stir at 80°C until the solution is completely mixed, and continue to pass nitrogen into the reaction system;
  • step (3) After the step (3) is uniformly mixed, the resulting solution is slowly heated to a temperature of 320° C., condensed and refluxed for 3 hours, and the whole reaction process is controlled under stirring and nitrogen flow conditions;
  • FIG. 1 is a low-resolution STEM graph and particle size statistical analysis graph of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles synthesized in this example. It can be seen from FIG. 1 that the nanoparticles synthesized in this example have a uniform size, a diameter of 4.5 to 14.5 nm, and an average size of 8.4 nm.
  • FIG. 2 is a high-resolution STEM diagram and crystal structure analysis of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles synthesized in this example. It can be seen from FIG. 2 that the obtained particle body phase is mainly face-centered cubic structure, the particles have obvious surface crystal planes exposed, and part of the particle surfaces have characteristic crystal planes (001) and (110) with a face-centered tetragonal structure. The results show that the synthesized Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles are heterohedral polyhedral particles with partially transformed fcc and fct.
  • FIG. 3 is a high-resolution STEM diagram and surface exposed crystal plane analysis diagram of single Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles of the product synthesized in this example. The results show that the exposed crystal planes are (001), (110) and (111) crystal planes with face-centered tetragonal phase.
  • the preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles of this embodiment includes the following steps:
  • step (2) Take 100 ml of the liquid hexadecylamine solvent melted in step (1), place it in a four-necked glass flask, and then pour high purity nitrogen into the flask for 30 min, and then successively add 1 mmol of iron acetylacetonate, Copper acetylacetonate 1 mmol, platinum acetylacetone 2 mmol, 1,2-hexadecanediol 7.5 mmol were added to the cetylamine solvent, and finally stirred at 100° C. for 10 min to completely dissolve the solid raw materials and stir the whole The process is carried out under the condition of passing nitrogen to obtain the reaction precursor solution;
  • step (3) Add 40 mmol of oleylamine and 40 mmol of oleic acid to the reaction precursor solution obtained in step (2), continue stirring at 100° C. until the solution is completely mixed, and continue to purge nitrogen into the reaction system;
  • step (3) After the step (3) is uniformly mixed, the resulting solution is slowly heated to a temperature of 325° C., condensed and refluxed for 3 hours, and the whole reaction process is controlled under stirring and nitrogen flow conditions;
  • the preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles of this embodiment includes the following steps:
  • step (2) Take 40 ml of the liquid hexadecylamine solvent melted in step (1), place it in a four-necked glass flask, and then pour high purity nitrogen into the flask for 30 min, and then successively add 0.4 mmol of iron acetylacetonate , Copper acetylacetonate 0.40 mmol, platinum acetylacetone 0.8 mmol, 1,2-hexadecanediol 3 mmol was added to the hexadecylamine solvent, and finally stirred at 120 °C for 10 min to completely dissolve the solid raw materials, The whole stirring process is carried out under the condition of passing nitrogen to obtain the reaction precursor solution;
  • step (3) Add 16 mmol of oleylamine and 16 mmol of oleic acid to the reaction precursor solution obtained in step (2), continue stirring at 120°C until the solution is completely mixed, and continue to pass nitrogen gas into the reaction system;
  • step (3) After the step (3) is uniformly mixed, the resulting solution is slowly heated to a temperature of 330° C., condensed and refluxed for 3 hours, and the whole reaction process is controlled under stirring and nitrogen flow conditions;
  • Example 2 Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles prepared in the above Example 2 and Example 3 were tested, and their STEM, particle size statistical analysis, crystal structure analysis and single Fe
  • the high resolution STEM and surface exposed crystal plane analysis results of 43.4 Pt 52.3 Cu 4.3 nanoparticles are basically consistent with the test results of the product obtained in Example 1.
  • the Fe 43.4 Pt 52.3 Cu 4.3 heterostructured polyhedral nanoparticles prepared in Example 1 above were used to prepare an ORR catalyst.
  • the method includes the following steps:
  • step (2) Take 1 ml of the dispersion obtained in step (1), vacuum dry to obtain a powder, and test XRF to obtain a granular component.
  • step (3) Take 0.1 to 0.5 ml of the dispersion liquid obtained in step (1) and dilute to 2 ml with hexane.
  • step (3) Add 1 to 3 mg of Cabot carbon black to the dilution liquid obtained in step (3), disperse it ultrasonically for 1 h, and load the nanoparticles on the carbon black.
  • the obtained catalyst is subjected to electrochemical performance test, and the electrochemical test method is as follows:
  • the equipment uses Chenhua CHI 760 electrochemical workstation and PINE rotating disk electrode.
  • a three-electrode test system is used.
  • the Ag/AgCl electrode is the reference electrode
  • platinum is the counter electrode
  • the catalyst material is applied to a 5mm diameter glassy carbon electrode as the working electrode.
  • 0.5mM H 2 SO 4 was used as the electrolyte.
  • the cyclic voltammetry scanning speed is 50mV/s
  • the polarization curve scanning speed is 5mV/s
  • the rotating electrode speed is 1600r/min.
  • Figure 4 is a comparison graph of the cyclic voltammetry curves of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles and commercial Pt/C in 0.5mM H 2 SO 4 electrolyte saturated with argon, with a scanning speed of 50mV/s.
  • Fig. 5 is a comparison graph of linear scanning voltammetry curves of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles and commercial Pt/C in 0.5mM H 2 SO 4 electrolyte saturated with oxygen, the scanning speed is 5mV/s, and the rotating disk electrode speed is 1600r/min.
  • Figure 6 shows the calculation results of the mass activity of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles and commercial Pt/C at different electrode potentials. It can be seen from FIG. 6 that the Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles synthesized in the present invention have more excellent mass activity than Pt/C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和作为高效燃料电池氧还原催化剂的应用。异质结构相多面体纳米颗粒,由Fe、Pt、Cu三种元素组成,具有高晶面指数面心四方相壳层与面心立方相核结构,且表面有1~2个原子层富Pt的表面,颗粒直径为8.4nm。本发明是将十六烷基胺、乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂、1,2-十六烷二醇均匀混合后,加入油胺和油酸,在320~330℃条件下冷凝回流反应制得。本发明合成的纳米颗粒具有优异的ORR性能,半波电势较Pt/C高50mV、半波电势下质量活性为Pt/C的10.9倍,在电催化、高密度磁记录等领域有潜在的应用价值。

Description

Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒及其制备方法和应用 技术领域
本发明属于纳米技术与催化领域,具体涉及Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒及其制备方法和作为氧还原催化剂在燃料电池中的应用。
背景技术
FePt合金纳米颗粒在电化学氧还原(ORR)和高密度磁记录领域有重大的应用前景。纳米颗粒的性能取决于材料的成分和结构。质子交换膜燃料电池作为一种新型电化学能源转换器件,具有能量转换效率高、清洁、低排放和燃料可再生的优点。但是,质子交换膜燃料电池的阴极催化反应(氧还原反应)动力学缓慢,需要高载量的贵金属铂(Pt)催化剂而使其成本居高不下(占整个电池堆成本的50%以上),而且还存在Pt溶解、团聚和中毒问题,成为燃料电池大规模商业化的挑战。低Pt催化剂的策略,包括Pt基合金和核壳结构等,可以有效提升催化剂的活性、稳定性并降低Pt用量。其中,面心四方结构(face-centered tetragonal,fct)的硬磁FePt合金纳米颗粒表现出比面心立方结构(face-centered cubic,fcc)软磁FePt或纯Pt更优异的催化活性及稳定性。然而,fct-FePt合金及其核壳结构纳米颗粒的合成往往存在化学反应复杂、高温退火等严苛步骤多、颗粒易团聚等问题,同时关于Pt基合金催化剂催化机理的研究也不充分。
通常采用化学法合成的FePt纳米颗粒为面心立方相结构,需要通过大于550℃条件下退火处理得到性能更优异的面心四方相结构FePt,该过程称为相转变。然而,热处理会引入颗粒团聚甚至烧结等问题,对纳米颗粒的性能不利。ORR反应本质上是异相催化和表面反应,并且研究表明Pt基合金纳米结构的高晶面具有更高的ORR催化活性。因此FePt纳米颗粒的形状和暴露表面对ORR具有重要作用。
基于上述理由,特提出本申请。
发明内容
针对现有技术存在的不足,本发明的目的在于提供Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒及其制备方法和应用。
为了实现本发明的上述第一个目的,本发明采用的技术方案如下:
Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒,其特征在于:是由Fe、Pt、Cu三种元素组成,具有面心立方与面心四方共存的异质结构相,异质结构相为高晶面指数的面心四方相壳层和面心立方相核,且多面体颗粒表面有1~2个原子层富Pt;所述纳米颗粒的直径分布为4.5~14.5nm,平均尺寸8.4nm。
本发明的第二个目的在于提供上述所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,所述方法包括如下步骤:
(1)取适量液态十六烷基胺溶剂,置于四口玻璃烧瓶中,然后向所述烧瓶中通入高纯氮气20~40min,再将乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂、1,2-十六烷二醇依次加入到所述烧瓶中,最后在80~120℃条件下搅拌至原料全部溶解,整个搅拌过程均在通氮气条件下进行,得到反应前驱体溶液;
(2)按配比向步骤(1)所得反应前驱体溶液中加入油胺和油酸,继续在80~120℃条件下搅拌至溶液完全混合均匀,并持续向反应体系中通氮气;
(3)将步骤(2)混合均匀所得溶液缓慢加热至温度为320~330℃,冷凝回流反应3h,控制整个反应过程在搅拌和通氮气条件下进行;
(4)反应结束后,停止加热,将反应体系温度自然冷却至80℃,将所得产物取出,离心、清洗2~4次,得到洗净的黑色残留产物,即本发明所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
进一步地,上述技术方案,步骤(1)所述液态十六烷基胺是由固态十六烷基胺融化制得,融化温度为60~100℃,优选为80℃。
进一步地,上述技术方案,步骤(1)所述乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂的摩尔比为1:1:2。
进一步地,上述技术方案,步骤(1)所述十六烷基胺与乙酰丙酮铂的用量比为50ml:1mmol。
进一步地,上述技术方案,步骤(1)所述乙酰丙酮铂与1,2-十六烷二醇的摩尔比为4:15。
进一步地,上述技术方案,步骤(2)所述油胺与乙酰丙酮铂的摩尔比为20:1:所述油胺与油酸的摩尔比为1:1。
进一步地,上述技术方案,步骤(4)所述产物清洗用溶剂为体积比1:1的无水乙醇和正己烷的混合溶液。
本发明第三个目的在于提供上述方法合成的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的应用,可作为氧还原催化剂应用于燃料电池。
一种氧还原催化剂,所述催化剂包括本发明上述所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
本发明通过Cu掺杂有机溶剂合成的方法一步合成了平均尺寸为8.4nm、具有面心 立方相与面心四方相共存的异质结构相、异质结构相为高晶面指数的面心四方相壳层和面心立方相核,且多面体颗粒表面有1~2个原子层富Pt和高ORR催化性能的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒。
与现有技术相比,本发明涉及的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒氧还原催化剂及其制备方法和应用具有如下有益效果:
(1)本发明合成的纳米颗粒结构为fcc与fct相共存的异质结构相,体相以面心立方为主,暴露表面为面心四方相(111),(110)和(001)晶面,(111)晶面占优;颗粒表面具有厚度为一两个原子层的富Pt层,因此,本发明合成的纳米颗粒为结构、形状有利于ORR催化的低Pt合金纳米颗粒。
(2)本发明合成的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒具有优异的ORR性能,半波电势为0.80V,比相同测试条件下的商业Pt/C催化剂的(半波电势为0.75V)极化电压降低了50mV。另外,半波电势条件下,本发明合成的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒的质量活性为商业Pt/C的10.9倍。
(3)本发明合成方法简单易操作,且原料来源广泛,成本低,有利于大规模生产,在电催化、高密度磁记录等领域有潜在的应用价值。
附图说明
图1中(a)、(b)分别是本发明实施例1制得的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒的低倍率STEM图和粒径统计图;
图2是本发明实施例1制得的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒的高分辨STEM图;
图3是本发明实施例1制得的单颗Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒的暴露晶面分析图;
图4中(a)、(b)分别是本发明实施例1制得的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒和商业Pt/C催化剂的循环伏安曲线图;
图5是本发明实施例1制得的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒和商业Pt/C催化剂的ORR极化曲线对比图;
图6是本发明实施例1制得的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒和商业Pt/C催化剂的质量活性对比图。
具体实施方式
下面结合附图和具体实施案例对本发明作进一步详细说明。本实施案例在以本发明技术为前提下进行实施,现给出详细的实施方式和具体的操作过程来说明本发明具有创造性,但本发明的保护范围不限于以下的实施案例。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。
实施例1
本实施例的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,所述方法包括如下步骤:
(1)将固体状态的十六烷基胺在80℃条件下融化成液体;
(2)取20ml步骤(1)融化后的液体状十六烷基胺溶剂,置于四口玻璃烧瓶中,然后向所述烧瓶中通入高纯氮气30min,再依次将乙酰丙酮铁0.2mmol、乙酰丙酮铜0.2mmol、乙酰丙酮铂0.4mmol、1,2-十六烷二醇1.5mmol加入到所述十六烷基胺溶剂中,最后在80℃条件下搅拌10min,使固体原料全部溶解,整个搅拌过程均在通氮气条件下进行,得到反应前驱体溶液;
(3)向步骤(2)所得反应前驱体溶液中加入8mmol油胺和8mmol油酸,继续在80℃条件下搅拌至溶液完全混合均匀,并持续向反应体系中通氮气;
(4)将步骤(3)混合均匀后所得溶液缓慢加热至温度为320℃,冷凝回流反应3h,控制整个反应过程在搅拌和通氮气条件下进行;
(5)反应结束后,停止加热,使反应溶液在室温条件下自然冷却,当温度降至80℃时,向所得产物中加入由体积比1:1的无水乙醇和正己烷组成的混合溶剂50ml,然后均等分装转移倒入离心管中,以5000r/min的速度离心,移去离心所得的黄褐色上清液,再分别向离心管均等加入与上述配比相同的混合溶剂,进行离心分离,以同样方式重复操作3次,直至上清液为无色透明,即可得到洗净的黑色残留产物,即本发明所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
下面对本实施例制得的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的各项测试结果 进行具体分析:
图1为本实施例合成的Fe 43.4Pt 52.3Cu 4.3纳米颗粒的低分辨率STEM图和粒径统计分析图。由图1可知,本实施例合成的纳米颗粒尺寸均匀,直径为4.5~14.5nm,平均尺寸为8.4nm。
图2为本实施例合成的Fe 43.4Pt 52.3Cu 4.3纳米颗粒的高分辨率STEM图和晶体结构分析。由图2可知,所得颗粒体相以面心立方结构为主,颗粒具有明显的表面晶面暴露,部分颗粒表面具有面心四方结构的特征晶面(001)和(110)。表明所合成的Fe 43.4Pt 52.3Cu 4.3纳米颗粒为部分相变的fcc与fct共存的异质结构相多面体颗粒。
图3为本实施例合成的产物的单个Fe 43.4Pt 52.3Cu 4.3纳米颗粒的高分辨STEM图和表面暴露晶面分析图。结果表明,表面暴露晶面为面心四方相的(001),(110)和(111)晶面。
实施例2
本实施例的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,所述方法包括如下步骤:
(1)将固体状态的十六烷基胺在60℃条件下融化成液体;
(2)取100ml步骤(1)融化后的液体状十六烷基胺溶剂,置于四口玻璃烧瓶中,然后向所述烧瓶中通入高纯氮气30min,再依次将乙酰丙酮铁1mmol、乙酰丙酮铜1mmol、乙酰丙酮铂2mmol、1,2-十六烷二醇7.5mmol加入到所述十六烷基胺溶剂中,最后在100℃条件下搅拌10min,使固体原料全部溶解,整个搅拌过程均在通氮气条件下进行,得到反应前驱体溶液;
(3)向步骤(2)所得反应前驱体溶液中加入40mmol油胺和40mmol油酸,继续在100℃条件下搅拌至溶液完全混合均匀,并持续向反应体系中通氮气;
(4)将步骤(3)混合均匀后所得溶液缓慢加热至温度为325℃,冷凝回流反应3h,控制整个反应过程在搅拌和通氮气条件下进行;
(5)反应结束后,停止加热,使反应溶液在室温条件下自然冷却,当温度降至80℃时,向所得产物中加入由体积比1:1的无水乙醇和正己烷组成的混合溶剂250ml,然后均等分装转移倒入离心管中,以4000r/min的速度离心,移去离心所得的黄褐色上清液,再分别向离心管均等加入与上述配比相同的混合溶剂,进行离心分离,以同样方式重复操作3次,直至上清液为无色透明,即可得到洗净的黑色残留产物,即本发明所述 的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
实施例3
本实施例的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,所述方法包括如下步骤:
(1)将固体状态的十六烷基胺在100℃条件下融化成液体;
(2)取40ml步骤(1)融化后的液体状十六烷基胺溶剂,置于四口玻璃烧瓶中,然后向所述烧瓶中通入高纯氮气30min,再依次将乙酰丙酮铁0.4mmol、乙酰丙酮铜0.40mmol、乙酰丙酮铂0.8mmol、1,2-十六烷二醇3mmol加入到所述十六烷基胺溶剂中,最后在120℃条件下搅拌10min,使固体原料全部溶解,整个搅拌过程均在通氮气条件下进行,得到反应前驱体溶液;
(3)向步骤(2)所得反应前驱体溶液中加入16mmol油胺和16mmol油酸,继续在120℃条件下搅拌至溶液完全混合均匀,并持续向反应体系中通氮气;
(4)将步骤(3)混合均匀后所得溶液缓慢加热至温度为330℃,冷凝回流反应3h,控制整个反应过程在搅拌和通氮气条件下进行;
(5)反应结束后,停止加热,使反应溶液在室温条件下自然冷却,当温度降至80℃时,向所得产物中加入由体积比1:1的无水乙醇和正己烷组成的混合溶剂100ml,然后均等分装转移倒入离心管中,以5000r/min的速度离心,移去离心所得的黄褐色上清液,再分别向离心管均等加入与上述配比相同的混合溶剂,进行离心分离,以同样方式重复操作4次,直至上清液为无色透明,即可得到洗净的黑色残留产物,即本发明所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
采用实施例1相同的测试方法对上述实施例2、实施例3制得的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒进行测试,其STEM、粒径统计分析、晶体结构分析以及单个Fe 43.4Pt 52.3Cu 4.3纳米颗粒的高分辨STEM和表面暴露晶面分析结果均与实施例1所得产物的测试结果基本一致。
应用实施例1
将上述实施例1制得的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒应用于制备ORR催化剂,所述方法包括如下步骤:
(1)将实施例1中得到的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒粉末分散至10ml己烷中,超声10min至分散均匀,获得Fe 43.4Pt 52.3Cu 4.3分散液。
(2)取1ml步骤(1)所得分散液,真空干燥得到粉末,测试XRF得到颗粒成分。
(3)取0.1~0.5ml步骤(1)所得分散液,用己烷稀释至2ml。
(4)向步骤(3)所得稀释液中加入卡伯特炭黑1~3mg,超声分散1h,将纳米颗粒担载至炭黑上。
(5)以5000r/min的速度离心并去上清后,加入异丙醇和稀释Nafion混合液(体积比20:1)至体系为1ml,超声10min至均匀混合,得ORR催化剂滴液。
将所得催化剂进行电化学性能测试,电化学测试方法如下:
设备用辰华CHI 760电化学工作站和PINE旋转圆盘电极。电化学测试采用三电极测试体系,Ag/AgCl电极为参比电极,铂为对电极,催化剂材料涂附至5mm直径的玻璃炭电极作为工作电极。电解液采用0.5mM H 2SO 4。循环伏安法扫描速度为50mV/s,极化曲线扫描速度为5mV/s,旋转电极转速为1600r/min。
图4为Fe 43.4Pt 52.3Cu 4.3纳米颗粒和商业Pt/C在氩气饱和的0.5mM H 2SO 4电解液的循环伏安曲线对比图,扫描速度为50mV/s。图5为Fe 43.4Pt 52.3Cu 4.3纳米颗粒和商业Pt/C在氧气饱和的0.5mM H 2SO 4电解液的线性扫描伏安曲线对比图,扫描速度为5mV/s,旋转圆盘电极转速为1600r/min。由图4、图5测试结果可以看出,Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒具有优异的ORR性能,半波电势为0.80V,比相同测试条件下的商业Pt/C催化剂的(半波电势为0.75V)极化电压降低了50mV。半波电势条件下Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒的质量活性为商业Pt/C的10.9倍。
图6为Fe 43.4Pt 52.3Cu 4.3纳米颗粒和商业Pt/C在不同电极电势下的质量活性计算结果。由图6可以看出,本发明合成的Fe 43.4Pt 52.3Cu 4.3多面体纳米颗粒具有比Pt/C更优异的质量活性。

Claims (9)

  1. Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒,其特征在于:是由Fe、Pt、Cu三种元素组成,具有面心立方与面心四方共存的异质结构相,异质结构相为高晶面指数的面心四方相壳层和面心立方相核,且多面体颗粒表面有1~2个原子层富Pt;所述纳米颗粒的直径分布为4.5~14.5nm,平均尺寸8.4nm。
  2. 权利要求1所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:所述方法包括如下步骤:
    (1)取适量液态十六烷基胺溶剂,置于四口玻璃烧瓶中,然后向所述烧瓶中通入高纯氮气20~40min,再将乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂、1,2-十六烷二醇依次加入到所述烧瓶中,最后在80~120℃条件下搅拌至原料全部溶解,整个搅拌过程均在通氮气条件下进行,得到反应前驱体溶液;
    (2)按配比向步骤(1)所得反应前驱体溶液中加入油胺和油酸,继续在80~120℃条件下搅拌至溶液完全混合均匀,并持续向反应体系中通氮气;
    (3)将步骤(2)混合均匀所得溶液缓慢加热至温度为320~330℃,冷凝回流反应3h,控制整个反应过程在搅拌和通氮气条件下进行;
    (4)反应结束后,停止加热,将反应体系温度自然冷却至80℃,将所得产物取出,离心、清洗2~4次,得到洗净的黑色残留产物,即本发明所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
  3. 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述液态十六烷基胺是由固态十六烷基胺融化制得,融化温度为60~100℃。
  4. 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂的摩尔比为1:1:2。
  5. 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述十六烷基胺与乙酰丙酮铂的用量比为50ml:1mmol。
  6. 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述乙酰丙酮铂与1,2-十六烷二醇的摩尔比为4:15。
  7. 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(2)所述油胺与乙酰丙酮铂的摩尔比为20:1;所述油胺与油酸的摩尔比为1:1。
  8. 权利要求1所述Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒作为氧还原催化剂在燃料电池中的应用。
  9. 一种氧还原催化剂,其特征在于:所述催化剂包括权利要求1所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
PCT/CN2019/081982 2018-12-25 2019-04-10 Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 WO2020133795A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/967,417 US11020727B2 (en) 2018-12-25 2019-04-10 Fe43.4Pt52.3Cu4.3 polyhedron nanoparticle with heterogeneous phase structure, preparing method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811590383.7 2018-12-25
CN201811590383.7A CN109439953B (zh) 2018-12-25 2018-12-25 Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020133795A1 true WO2020133795A1 (zh) 2020-07-02

Family

ID=65535324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081982 WO2020133795A1 (zh) 2018-12-25 2019-04-10 Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用

Country Status (3)

Country Link
US (1) US11020727B2 (zh)
CN (1) CN109439953B (zh)
WO (1) WO2020133795A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560592A (zh) * 2021-07-16 2021-10-29 山西医科大学 一种金-钯纳米异质结构材料的微观形貌控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439953B (zh) * 2018-12-25 2020-03-24 湖北大学 Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用
CN110560704B (zh) * 2019-10-11 2021-10-22 东北大学 一种掺杂低熔点元素诱导合成fct-FePt纳米粒子的方法
CN113134604B (zh) * 2021-03-31 2023-01-17 湖北大学 PdxPt(50-x)Bi50三元合金纳米颗粒及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009653A1 (ja) * 2003-07-30 2005-02-03 Dowa Mining Co., Ltd. 磁性合金粒子の集合体
CN102218543A (zh) * 2011-05-20 2011-10-19 湖北大学 一步合成面心四方结构FePt纳米粒子的方法及其产品
CN104157384A (zh) * 2013-05-15 2014-11-19 北京大学 基于铂化铁纳米颗粒构建纳米异质结构的方法
CN105727993A (zh) * 2016-01-20 2016-07-06 湖北大学 一种fct相FePtCu三元合金纳米颗粒催化剂及其合成方法
CN109439953A (zh) * 2018-12-25 2019-03-08 湖北大学 Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901827A (en) * 1972-09-27 1975-08-26 Exxon Research Engineering Co Multimetallic catalysts
JP4164338B2 (ja) * 2002-11-15 2008-10-15 富士通株式会社 合金ナノパーティクルの製造方法
JP4810360B2 (ja) * 2006-08-31 2011-11-09 石福金属興業株式会社 磁性薄膜
KR100823505B1 (ko) * 2006-11-20 2008-04-21 삼성에스디아이 주식회사 연료 전지용 촉매, 이의 제조방법, 이를 포함하는 연료전지용 막-전극 어셈블리 및 연료전지 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009653A1 (ja) * 2003-07-30 2005-02-03 Dowa Mining Co., Ltd. 磁性合金粒子の集合体
CN102218543A (zh) * 2011-05-20 2011-10-19 湖北大学 一步合成面心四方结构FePt纳米粒子的方法及其产品
CN104157384A (zh) * 2013-05-15 2014-11-19 北京大学 基于铂化铁纳米颗粒构建纳米异质结构的方法
CN105727993A (zh) * 2016-01-20 2016-07-06 湖北大学 一种fct相FePtCu三元合金纳米颗粒催化剂及其合成方法
CN109439953A (zh) * 2018-12-25 2019-03-08 湖北大学 Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MU, YUPING ET AL.: "One-Step Preparation of fct-Structure FePt Nanoparticles by Doping Cu", METALLIC FUNCTIONAL MATERIALS, vol. 21, no. 1, 28 February 2014 (2014-02-28), DOI: 20190919172316 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560592A (zh) * 2021-07-16 2021-10-29 山西医科大学 一种金-钯纳米异质结构材料的微观形貌控制方法
CN113560592B (zh) * 2021-07-16 2023-05-12 山西医科大学 一种金-钯纳米异质结构材料的微观形貌控制方法

Also Published As

Publication number Publication date
US20210053035A1 (en) 2021-02-25
CN109439953A (zh) 2019-03-08
CN109439953B (zh) 2020-03-24
US11020727B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020133795A1 (zh) Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用
CN113600209B (zh) 制备高分散碳载Pt基有序合金催化剂的方法及催化剂
US11524280B2 (en) Low-platinum catalyst based on nitride nanoparticles and preparation method thereof
CN113113621B (zh) 有序低铂合金催化剂的制备方法和应用
CN101728526B (zh) 一种锂离子电池负极材料及其制备方法
CN113206259B (zh) 一种结构有序铂基金属间纳米晶及制备与应用
CN110518257A (zh) 一种碳载过渡金属@Pt核壳结构催化剂的制备方法
CN113594483B (zh) PtCo金属间化合物催化剂的制备方法以及燃料电池
CN110265667A (zh) 一种应用于氧还原的新型纳米复合催化剂及其制备方法
Guo et al. Coupling fine Pt nanoparticles and Co-Nx moiety as a synergistic bi-active site catalyst for oxygen reduction reaction in acid media
WO2021018268A1 (zh) 一种碳负载纳米银催化剂的制备方法
CN108155392A (zh) 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法
CN110911700A (zh) 催化剂及其制备方法和应用
CN109499602B (zh) 一种系统化调控负载型铁原子团簇原子个数的合成方法
CN115440954A (zh) 一种硅碳多孔负极材料及其制备方法和应用
Wang et al. Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au-Fe bond to boost oxygen reduction reaction activity and durability
CN114784300A (zh) 铁镍基或铁钴基莫特-肖特基电催化剂及制备方法和应用
CN107369839B (zh) 氧化钌-硅藻土复合负载燃料电池催化剂的制备方法
CN1937293A (zh) 一种催化剂在高温质子交换膜燃料电池中的应用
CN106935872B (zh) 一种沉淀剂改性的燃料电池阳极催化剂的制备方法
CN108091838B (zh) 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法
CN114497603B (zh) 一种燃料电池用催化剂及其制备方法和燃料电池
CN106299313B (zh) 一种锂离子电极复合纳米材料及其制备方法
CN114530608A (zh) 一种燃料电池用催化剂及其制备方法和燃料电池
Yang et al. Ordered intermetallic compounds combining precious metals and transition metals for electrocatalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905737

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19905737

Country of ref document: EP

Kind code of ref document: A1