WO2020133795A1 - Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 - Google Patents
Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 Download PDFInfo
- Publication number
- WO2020133795A1 WO2020133795A1 PCT/CN2019/081982 CN2019081982W WO2020133795A1 WO 2020133795 A1 WO2020133795 A1 WO 2020133795A1 CN 2019081982 W CN2019081982 W CN 2019081982W WO 2020133795 A1 WO2020133795 A1 WO 2020133795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- heterostructure
- face
- polyhedral
- reaction
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 82
- 239000010949 copper Substances 0.000 claims abstract description 52
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000006243 chemical reaction Methods 0.000 claims abstract description 37
- 239000003054 catalyst Substances 0.000 claims abstract description 21
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 14
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 11
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- BTOOAFQCTJZDRC-UHFFFAOYSA-N 1,2-hexadecanediol Chemical compound CCCCCCCCCCCCCCC(O)CO BTOOAFQCTJZDRC-UHFFFAOYSA-N 0.000 claims abstract description 8
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims abstract description 8
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims abstract description 8
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000005642 Oleic acid Substances 0.000 claims abstract description 8
- 239000000446 fuel Substances 0.000 claims abstract description 8
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims abstract description 8
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims abstract description 8
- 230000009467 reduction Effects 0.000 claims abstract description 8
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 claims abstract description 6
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 9
- MBUJACWWYFPMDK-UHFFFAOYSA-N pentane-2,4-dione;platinum Chemical compound [Pt].CC(=O)CC(C)=O MBUJACWWYFPMDK-UHFFFAOYSA-N 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 4
- QNZRVYCYEMYQMD-UHFFFAOYSA-N copper;pentane-2,4-dione Chemical compound [Cu].CC(=O)CC(C)=O QNZRVYCYEMYQMD-UHFFFAOYSA-N 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- DLAPQHBZCAAVPQ-UHFFFAOYSA-N iron;pentane-2,4-dione Chemical compound [Fe].CC(=O)CC(C)=O DLAPQHBZCAAVPQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000010992 reflux Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 7
- 238000006555 catalytic reaction Methods 0.000 abstract description 4
- CDVAIHNNWWJFJW-UHFFFAOYSA-N 3,5-diethoxycarbonyl-1,4-dihydrocollidine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C CDVAIHNNWWJFJW-UHFFFAOYSA-N 0.000 abstract 1
- 238000009833 condensation Methods 0.000 abstract 1
- 230000005494 condensation Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 26
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 11
- 229910005335 FePt Inorganic materials 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8906—Iron and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/90—Other crystal-structural characteristics not specified above
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
- C01P2006/17—Pore diameter distribution
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/04—Nanocrystalline
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
Definitions
- the invention belongs to the field of nanotechnology and catalysis, and specifically relates to Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles, a preparation method thereof, and application as an oxygen reduction catalyst in a fuel cell.
- FePt alloy nanoparticles have significant application prospects in the fields of electrochemical oxygen reduction (ORR) and high-density magnetic recording.
- ORR electrochemical oxygen reduction
- the performance of nanoparticles depends on the composition and structure of the material.
- proton exchange membrane fuel cell As a new type of electrochemical energy conversion device, proton exchange membrane fuel cell has the advantages of high energy conversion efficiency, cleanness, low emissions and renewable fuel.
- the cathode catalytic reaction (oxygen reduction reaction) kinetics of proton exchange membrane fuel cells is slow, requiring a high-load precious metal platinum (Pt) catalyst to keep its cost high (accounting for more than 50% of the entire stack cost),
- Pt precious metal platinum
- the FePt nanoparticles synthesized by chemical method have a face-centered cubic phase structure, which needs to be annealed at a temperature greater than 550°C to obtain a more excellent face-centered tetragonal phase structure FePt. This process is called phase transformation.
- heat treatment can introduce problems such as particle agglomeration or even sintering, which is detrimental to the performance of nanoparticles.
- the ORR reaction is essentially heterogeneous catalysis and surface reaction, and research shows that the high crystal face of the Pt-based alloy nanostructure has higher ORR catalytic activity. Therefore, the shape and exposed surface of FePt nanoparticles play an important role in ORR.
- the object of the present invention is to provide Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles, and preparation methods and applications thereof.
- heterostructure phase polyhedral nanoparticles characterized by being composed of three elements of Fe, Pt and Cu, with a heterostructure phase coexisting face-centered cubic and face-centered tetragonal, the heterostructure phase is A face-centered tetragonal phase shell and a face-centered cubic phase core with a high crystal face index, and the surface of the polyhedral particles have 1 to 2 atomic layers rich in Pt; the diameter distribution of the nanoparticles is 4.5 to 14.5 nm, and the average size is 8.4 nm.
- the second object of the present invention is to provide the above-mentioned preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles, the method comprising the following steps:
- step (1) Add oleylamine and oleic acid to the reaction precursor solution obtained in step (1) according to the ratio, continue to stir at 80 ⁇ 120 °C until the solution is completely mixed, and continue to pass nitrogen into the reaction system;
- step (3) Slowly heat the solution obtained by mixing in step (2) to a temperature of 320-330°C, condense and reflux the reaction for 3 hours, and control the whole reaction process to be carried out under stirring and nitrogen ventilation;
- the liquid cetyl amine in step (1) is prepared by melting solid cetyl amine, and the melting temperature is 60-100°C, preferably 80°C.
- the molar ratio of the iron acetylacetonate, copper acetylacetone, and platinum acetylacetone in step (1) is 1:1:2.
- the dosage ratio of cetylamine to platinum acetylacetonate in step (1) is 50 ml: 1 mmol.
- the molar ratio of platinum acetylacetonate to 1,2-hexadecanediol in step (1) is 4:15.
- the molar ratio of oleylamine to platinum acetylacetonate in step (2) is 20:1: the molar ratio of oleylamine to oleic acid is 1:1.
- the solvent for cleaning the product in step (4) is a mixed solution of absolute ethanol and n-hexane in a volume ratio of 1:1.
- the third object of the present invention is to provide the application of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles synthesized by the above method, which can be used as an oxygen reduction catalyst in fuel cells.
- An oxygen reduction catalyst comprising the Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles described above in the present invention.
- the invention synthesizes in one step a heterostructure phase with an average size of 8.4 nm, having a face-centered cubic phase and a face-centered tetragonal phase coexisting through a method of Cu-doped organic solvent synthesis, and the facet-centered tetragon with a high crystal plane index Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles with phase shell and face-centered cubic phase core, and 1 to 2 atomic layers rich in Pt and high ORR catalytic performance on the surface of the polyhedral particles.
- the Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticle oxygen reduction catalyst, preparation method and application thereof have the following beneficial effects compared with the prior art:
- the nanoparticle structure synthesized in the present invention is a heterostructure phase in which the fcc and fct phases coexist, the bulk phase is mainly face-centered cubic, and the exposed surface is face-centered tetragonal phase (111), (110) and (001) crystals
- the surface, the (111) crystal plane is dominant; the particle surface has a Pt-rich layer with a thickness of one or two atomic layers. Therefore, the nanoparticles synthesized in the present invention are low-Pt alloy nanoparticles with a structure and shape conducive to ORR catalysis.
- the Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles synthesized in the present invention have excellent ORR performance, and the half-wave potential is 0.80V, which is higher than that of the commercial Pt/C catalyst under the same test conditions (half-wave potential is 0.75V). The voltage is reduced by 50mV.
- the mass activity of the synthesized Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles is 10.9 times that of commercial Pt/C.
- the synthesis method of the present invention is simple and easy to operate, and has a wide range of raw material sources and low cost, which is beneficial to large-scale production and has potential application value in the fields of electrocatalysis, high-density magnetic recording, and the like.
- Figure 1 (a) and (b) are the low magnification STEM graph and particle size statistical graph of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention;
- Example 2 is a high-resolution STEM diagram of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention
- FIG. 3 is an exposed crystal plane analysis diagram of a single Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticle prepared in Example 1 of the present invention
- Example 5 is a comparison graph of ORR polarization curves of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention and a commercial Pt/C catalyst;
- Example 6 is a comparison chart of the mass activity of Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles prepared in Example 1 of the present invention and a commercial Pt/C catalyst.
- the preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles of this embodiment includes the following steps:
- step (2) Take 20ml of the liquid hexadecylamine solvent melted in step (1), place it in a four-necked glass flask, and then pour high-purity nitrogen into the flask for 30min, and then successively add 0.2mmol of iron acetylacetonate , 0.2 mmol of copper acetylacetonate, 0.4 mmol of platinum acetylacetone, and 1.5 mmol of 1,2-hexadecanediol were added to the hexadecylamine solvent, and finally stirred at 80°C for 10 min to completely dissolve the solid raw materials , The whole stirring process is carried out under the condition of passing nitrogen to obtain the reaction precursor solution;
- step (3) Add 8 mmol of oleylamine and 8 mmol of oleic acid to the reaction precursor solution obtained in step (2), continue to stir at 80°C until the solution is completely mixed, and continue to pass nitrogen into the reaction system;
- step (3) After the step (3) is uniformly mixed, the resulting solution is slowly heated to a temperature of 320° C., condensed and refluxed for 3 hours, and the whole reaction process is controlled under stirring and nitrogen flow conditions;
- FIG. 1 is a low-resolution STEM graph and particle size statistical analysis graph of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles synthesized in this example. It can be seen from FIG. 1 that the nanoparticles synthesized in this example have a uniform size, a diameter of 4.5 to 14.5 nm, and an average size of 8.4 nm.
- FIG. 2 is a high-resolution STEM diagram and crystal structure analysis of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles synthesized in this example. It can be seen from FIG. 2 that the obtained particle body phase is mainly face-centered cubic structure, the particles have obvious surface crystal planes exposed, and part of the particle surfaces have characteristic crystal planes (001) and (110) with a face-centered tetragonal structure. The results show that the synthesized Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles are heterohedral polyhedral particles with partially transformed fcc and fct.
- FIG. 3 is a high-resolution STEM diagram and surface exposed crystal plane analysis diagram of single Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles of the product synthesized in this example. The results show that the exposed crystal planes are (001), (110) and (111) crystal planes with face-centered tetragonal phase.
- the preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles of this embodiment includes the following steps:
- step (2) Take 100 ml of the liquid hexadecylamine solvent melted in step (1), place it in a four-necked glass flask, and then pour high purity nitrogen into the flask for 30 min, and then successively add 1 mmol of iron acetylacetonate, Copper acetylacetonate 1 mmol, platinum acetylacetone 2 mmol, 1,2-hexadecanediol 7.5 mmol were added to the cetylamine solvent, and finally stirred at 100° C. for 10 min to completely dissolve the solid raw materials and stir the whole The process is carried out under the condition of passing nitrogen to obtain the reaction precursor solution;
- step (3) Add 40 mmol of oleylamine and 40 mmol of oleic acid to the reaction precursor solution obtained in step (2), continue stirring at 100° C. until the solution is completely mixed, and continue to purge nitrogen into the reaction system;
- step (3) After the step (3) is uniformly mixed, the resulting solution is slowly heated to a temperature of 325° C., condensed and refluxed for 3 hours, and the whole reaction process is controlled under stirring and nitrogen flow conditions;
- the preparation method of Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles of this embodiment includes the following steps:
- step (2) Take 40 ml of the liquid hexadecylamine solvent melted in step (1), place it in a four-necked glass flask, and then pour high purity nitrogen into the flask for 30 min, and then successively add 0.4 mmol of iron acetylacetonate , Copper acetylacetonate 0.40 mmol, platinum acetylacetone 0.8 mmol, 1,2-hexadecanediol 3 mmol was added to the hexadecylamine solvent, and finally stirred at 120 °C for 10 min to completely dissolve the solid raw materials, The whole stirring process is carried out under the condition of passing nitrogen to obtain the reaction precursor solution;
- step (3) Add 16 mmol of oleylamine and 16 mmol of oleic acid to the reaction precursor solution obtained in step (2), continue stirring at 120°C until the solution is completely mixed, and continue to pass nitrogen gas into the reaction system;
- step (3) After the step (3) is uniformly mixed, the resulting solution is slowly heated to a temperature of 330° C., condensed and refluxed for 3 hours, and the whole reaction process is controlled under stirring and nitrogen flow conditions;
- Example 2 Fe 43.4 Pt 52.3 Cu 4.3 heterostructure phase polyhedral nanoparticles prepared in the above Example 2 and Example 3 were tested, and their STEM, particle size statistical analysis, crystal structure analysis and single Fe
- the high resolution STEM and surface exposed crystal plane analysis results of 43.4 Pt 52.3 Cu 4.3 nanoparticles are basically consistent with the test results of the product obtained in Example 1.
- the Fe 43.4 Pt 52.3 Cu 4.3 heterostructured polyhedral nanoparticles prepared in Example 1 above were used to prepare an ORR catalyst.
- the method includes the following steps:
- step (2) Take 1 ml of the dispersion obtained in step (1), vacuum dry to obtain a powder, and test XRF to obtain a granular component.
- step (3) Take 0.1 to 0.5 ml of the dispersion liquid obtained in step (1) and dilute to 2 ml with hexane.
- step (3) Add 1 to 3 mg of Cabot carbon black to the dilution liquid obtained in step (3), disperse it ultrasonically for 1 h, and load the nanoparticles on the carbon black.
- the obtained catalyst is subjected to electrochemical performance test, and the electrochemical test method is as follows:
- the equipment uses Chenhua CHI 760 electrochemical workstation and PINE rotating disk electrode.
- a three-electrode test system is used.
- the Ag/AgCl electrode is the reference electrode
- platinum is the counter electrode
- the catalyst material is applied to a 5mm diameter glassy carbon electrode as the working electrode.
- 0.5mM H 2 SO 4 was used as the electrolyte.
- the cyclic voltammetry scanning speed is 50mV/s
- the polarization curve scanning speed is 5mV/s
- the rotating electrode speed is 1600r/min.
- Figure 4 is a comparison graph of the cyclic voltammetry curves of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles and commercial Pt/C in 0.5mM H 2 SO 4 electrolyte saturated with argon, with a scanning speed of 50mV/s.
- Fig. 5 is a comparison graph of linear scanning voltammetry curves of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles and commercial Pt/C in 0.5mM H 2 SO 4 electrolyte saturated with oxygen, the scanning speed is 5mV/s, and the rotating disk electrode speed is 1600r/min.
- Figure 6 shows the calculation results of the mass activity of Fe 43.4 Pt 52.3 Cu 4.3 nanoparticles and commercial Pt/C at different electrode potentials. It can be seen from FIG. 6 that the Fe 43.4 Pt 52.3 Cu 4.3 polyhedral nanoparticles synthesized in the present invention have more excellent mass activity than Pt/C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
Claims (9)
- Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒,其特征在于:是由Fe、Pt、Cu三种元素组成,具有面心立方与面心四方共存的异质结构相,异质结构相为高晶面指数的面心四方相壳层和面心立方相核,且多面体颗粒表面有1~2个原子层富Pt;所述纳米颗粒的直径分布为4.5~14.5nm,平均尺寸8.4nm。
- 权利要求1所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:所述方法包括如下步骤:(1)取适量液态十六烷基胺溶剂,置于四口玻璃烧瓶中,然后向所述烧瓶中通入高纯氮气20~40min,再将乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂、1,2-十六烷二醇依次加入到所述烧瓶中,最后在80~120℃条件下搅拌至原料全部溶解,整个搅拌过程均在通氮气条件下进行,得到反应前驱体溶液;(2)按配比向步骤(1)所得反应前驱体溶液中加入油胺和油酸,继续在80~120℃条件下搅拌至溶液完全混合均匀,并持续向反应体系中通氮气;(3)将步骤(2)混合均匀所得溶液缓慢加热至温度为320~330℃,冷凝回流反应3h,控制整个反应过程在搅拌和通氮气条件下进行;(4)反应结束后,停止加热,将反应体系温度自然冷却至80℃,将所得产物取出,离心、清洗2~4次,得到洗净的黑色残留产物,即本发明所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
- 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述液态十六烷基胺是由固态十六烷基胺融化制得,融化温度为60~100℃。
- 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述乙酰丙酮铁、乙酰丙酮铜、乙酰丙酮铂的摩尔比为1:1:2。
- 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述十六烷基胺与乙酰丙酮铂的用量比为50ml:1mmol。
- 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(1)所述乙酰丙酮铂与1,2-十六烷二醇的摩尔比为4:15。
- 根据权利要求2所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒的制备方法,其特征在于:步骤(2)所述油胺与乙酰丙酮铂的摩尔比为20:1;所述油胺与油酸的摩尔比为1:1。
- 权利要求1所述Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒作为氧还原催化剂在燃料电池中的应用。
- 一种氧还原催化剂,其特征在于:所述催化剂包括权利要求1所述的Fe 43.4Pt 52.3Cu 4.3异质结构相多面体纳米颗粒。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/967,417 US11020727B2 (en) | 2018-12-25 | 2019-04-10 | Fe43.4Pt52.3Cu4.3 polyhedron nanoparticle with heterogeneous phase structure, preparing method and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811590383.7 | 2018-12-25 | ||
CN201811590383.7A CN109439953B (zh) | 2018-12-25 | 2018-12-25 | Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020133795A1 true WO2020133795A1 (zh) | 2020-07-02 |
Family
ID=65535324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/081982 WO2020133795A1 (zh) | 2018-12-25 | 2019-04-10 | Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11020727B2 (zh) |
CN (1) | CN109439953B (zh) |
WO (1) | WO2020133795A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113560592A (zh) * | 2021-07-16 | 2021-10-29 | 山西医科大学 | 一种金-钯纳米异质结构材料的微观形貌控制方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109439953B (zh) * | 2018-12-25 | 2020-03-24 | 湖北大学 | Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 |
CN110560704B (zh) * | 2019-10-11 | 2021-10-22 | 东北大学 | 一种掺杂低熔点元素诱导合成fct-FePt纳米粒子的方法 |
CN113134604B (zh) * | 2021-03-31 | 2023-01-17 | 湖北大学 | PdxPt(50-x)Bi50三元合金纳米颗粒及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005009653A1 (ja) * | 2003-07-30 | 2005-02-03 | Dowa Mining Co., Ltd. | 磁性合金粒子の集合体 |
CN102218543A (zh) * | 2011-05-20 | 2011-10-19 | 湖北大学 | 一步合成面心四方结构FePt纳米粒子的方法及其产品 |
CN104157384A (zh) * | 2013-05-15 | 2014-11-19 | 北京大学 | 基于铂化铁纳米颗粒构建纳米异质结构的方法 |
CN105727993A (zh) * | 2016-01-20 | 2016-07-06 | 湖北大学 | 一种fct相FePtCu三元合金纳米颗粒催化剂及其合成方法 |
CN109439953A (zh) * | 2018-12-25 | 2019-03-08 | 湖北大学 | Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3901827A (en) * | 1972-09-27 | 1975-08-26 | Exxon Research Engineering Co | Multimetallic catalysts |
JP4164338B2 (ja) * | 2002-11-15 | 2008-10-15 | 富士通株式会社 | 合金ナノパーティクルの製造方法 |
JP4810360B2 (ja) * | 2006-08-31 | 2011-11-09 | 石福金属興業株式会社 | 磁性薄膜 |
KR100823505B1 (ko) * | 2006-11-20 | 2008-04-21 | 삼성에스디아이 주식회사 | 연료 전지용 촉매, 이의 제조방법, 이를 포함하는 연료전지용 막-전극 어셈블리 및 연료전지 시스템 |
-
2018
- 2018-12-25 CN CN201811590383.7A patent/CN109439953B/zh active Active
-
2019
- 2019-04-10 US US16/967,417 patent/US11020727B2/en active Active
- 2019-04-10 WO PCT/CN2019/081982 patent/WO2020133795A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005009653A1 (ja) * | 2003-07-30 | 2005-02-03 | Dowa Mining Co., Ltd. | 磁性合金粒子の集合体 |
CN102218543A (zh) * | 2011-05-20 | 2011-10-19 | 湖北大学 | 一步合成面心四方结构FePt纳米粒子的方法及其产品 |
CN104157384A (zh) * | 2013-05-15 | 2014-11-19 | 北京大学 | 基于铂化铁纳米颗粒构建纳米异质结构的方法 |
CN105727993A (zh) * | 2016-01-20 | 2016-07-06 | 湖北大学 | 一种fct相FePtCu三元合金纳米颗粒催化剂及其合成方法 |
CN109439953A (zh) * | 2018-12-25 | 2019-03-08 | 湖北大学 | Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
MU, YUPING ET AL.: "One-Step Preparation of fct-Structure FePt Nanoparticles by Doping Cu", METALLIC FUNCTIONAL MATERIALS, vol. 21, no. 1, 28 February 2014 (2014-02-28), DOI: 20190919172316 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113560592A (zh) * | 2021-07-16 | 2021-10-29 | 山西医科大学 | 一种金-钯纳米异质结构材料的微观形貌控制方法 |
CN113560592B (zh) * | 2021-07-16 | 2023-05-12 | 山西医科大学 | 一种金-钯纳米异质结构材料的微观形貌控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210053035A1 (en) | 2021-02-25 |
CN109439953A (zh) | 2019-03-08 |
CN109439953B (zh) | 2020-03-24 |
US11020727B2 (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020133795A1 (zh) | Fe43.4Pt52.3Cu4.3异质结构相多面体纳米颗粒及其制备方法和应用 | |
CN113600209B (zh) | 制备高分散碳载Pt基有序合金催化剂的方法及催化剂 | |
US11524280B2 (en) | Low-platinum catalyst based on nitride nanoparticles and preparation method thereof | |
CN113113621B (zh) | 有序低铂合金催化剂的制备方法和应用 | |
CN101728526B (zh) | 一种锂离子电池负极材料及其制备方法 | |
CN113206259B (zh) | 一种结构有序铂基金属间纳米晶及制备与应用 | |
CN110518257A (zh) | 一种碳载过渡金属@Pt核壳结构催化剂的制备方法 | |
CN113594483B (zh) | PtCo金属间化合物催化剂的制备方法以及燃料电池 | |
CN110265667A (zh) | 一种应用于氧还原的新型纳米复合催化剂及其制备方法 | |
Guo et al. | Coupling fine Pt nanoparticles and Co-Nx moiety as a synergistic bi-active site catalyst for oxygen reduction reaction in acid media | |
WO2021018268A1 (zh) | 一种碳负载纳米银催化剂的制备方法 | |
CN108155392A (zh) | 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法 | |
CN110911700A (zh) | 催化剂及其制备方法和应用 | |
CN109499602B (zh) | 一种系统化调控负载型铁原子团簇原子个数的合成方法 | |
CN115440954A (zh) | 一种硅碳多孔负极材料及其制备方法和应用 | |
Wang et al. | Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au-Fe bond to boost oxygen reduction reaction activity and durability | |
CN114784300A (zh) | 铁镍基或铁钴基莫特-肖特基电催化剂及制备方法和应用 | |
CN107369839B (zh) | 氧化钌-硅藻土复合负载燃料电池催化剂的制备方法 | |
CN1937293A (zh) | 一种催化剂在高温质子交换膜燃料电池中的应用 | |
CN106935872B (zh) | 一种沉淀剂改性的燃料电池阳极催化剂的制备方法 | |
CN108091838B (zh) | 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法 | |
CN114497603B (zh) | 一种燃料电池用催化剂及其制备方法和燃料电池 | |
CN106299313B (zh) | 一种锂离子电极复合纳米材料及其制备方法 | |
CN114530608A (zh) | 一种燃料电池用催化剂及其制备方法和燃料电池 | |
Yang et al. | Ordered intermetallic compounds combining precious metals and transition metals for electrocatalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19905737 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19905737 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19905737 Country of ref document: EP Kind code of ref document: A1 |