WO2020133359A1 - 一种节温器总成与一种发动机冷却系统 - Google Patents

一种节温器总成与一种发动机冷却系统 Download PDF

Info

Publication number
WO2020133359A1
WO2020133359A1 PCT/CN2018/125359 CN2018125359W WO2020133359A1 WO 2020133359 A1 WO2020133359 A1 WO 2020133359A1 CN 2018125359 W CN2018125359 W CN 2018125359W WO 2020133359 A1 WO2020133359 A1 WO 2020133359A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation
thermostat
water
small
thermostat assembly
Prior art date
Application number
PCT/CN2018/125359
Other languages
English (en)
French (fr)
Inventor
张威
李建文
成敬敏
王洪忠
宁大伟
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to PCT/CN2018/125359 priority Critical patent/WO2020133359A1/zh
Publication of WO2020133359A1 publication Critical patent/WO2020133359A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the present application relates to the technical field of engine cooling systems, in particular to a thermostat assembly and an engine cooling system.
  • the thermostat is a valve that controls the flow path of the coolant.
  • the conventional thermostat assembly is usually provided with a water inlet interface, a large circulation water outlet interface and a small circulation water outlet interface on the housing.
  • the working principle of the conventional thermostat is: when the temperature of the cooling water is low, the cooling water of the cooling system comes out of the internal water passage 01 of the engine, enters the thermostat 03 through the engine outlet pipe 02, and then, The thermostat 03 is adjusted for small cycle cooling. After the thermostat 03 cooling water flows out through the small circulation pipe 04 and the water pump 05, it then flows through the water pump outlet pipe 06 back to the engine internal water circuit 01 for heat exchange to achieve Quick warm-up; when the temperature of the cooling water is high, the cooling water of the cooling system is adjusted by the thermostat 03 for large circulation, and the cooling water of the thermostat 03 flows out through the large circulation pipe 07 to dissipate heat through the radiator 08 or the heat exchanger.
  • the purpose of the present application is to provide a thermostat assembly, which can reduce the number of pipes in the cooling system, make the cooling system layout more concise, and reduce the difficulty of layout of the whole machine.
  • Another object of the present application is to provide an engine cooling system including the thermostat assembly.
  • a thermostat assembly includes a thermostat housing.
  • the thermostat housing is provided with a main water inlet interface, a small circulation water outlet interface and a large circulation water outlet interface.
  • the thermostat housing is also opened There is a large-circulation water inlet interface, an internal pipeline is provided inside the thermostat housing, and the large-circulation water inlet interface communicates with the small-circulation water outlet interface through the internal pipeline.
  • the internal pipeline includes a first internal pipeline connecting the total inlet port and the small circulation outlet port, and a second interior connecting the large circulation inlet port and the small circulation outlet port
  • the first internal pipeline and the second internal pipeline are integrally connected.
  • the large-circulation water outlet interface and the large-circulation water inlet interface are arranged side by side on the same side of the thermostat housing.
  • the caliber of the large-circulation water outlet and the large-circulation water inlet are equal.
  • the thermostat assembly provided in this application includes a thermostat housing.
  • the thermostat housing is provided with a main water inlet, a small circulation water outlet and a large circulation water outlet.
  • the thermostat housing is also provided with a large Circulation water inlet interface, the internal pipe of the thermostat housing is provided with an internal pipeline, and the large circulation water inlet interface communicates with the small circulation water outlet interface through the internal pipeline.
  • the cooling system performs a small cycle
  • the cooling water enters the thermostat assembly from the main inlet port, and then enters the water pump through the small circulation outlet port.
  • the cooling system enters the water circulation cycle, the cooling water enters the thermostat assembly and enters the heat dissipation equipment through the large circulation outlet interface. After the heat dissipation, it enters the thermostat assembly through the large circulation inlet interface, and finally the small circulation outlet interface Enter the water pump.
  • this application adds a large circulation water inlet to the thermostat housing.
  • the internal pipeline of the thermostat assembly can still be borrowed, so that the thermostat is in a large cycle or small
  • the common interface can be used to communicate with the pump during circulation.
  • This solution integrates the thermostat housing with part of the cooling pipeline, which not only reduces the number of pipelines in the cooling system, but also indirectly reduces the number of inlet ports of the pump.
  • the large circulation pipeline only exists in the thermostat assembly and Between the heat dissipation equipment, the cooling system layout is more concise, which greatly reduces the difficulty of the layout of the whole machine. At the same time, the sealing position of the whole machine is reduced, the cost is reduced, and the reliability of the whole machine is improved.
  • the present application also provides an engine cooling system, which includes an internal water circuit of the engine, a heat dissipation device, a water pump, and the thermostat assembly described above.
  • the large-circulation water outlet of the thermostat assembly passes through a large-circulation water outlet pipe Is connected to the water inlet of the heat dissipation equipment, and the water outlet of the heat dissipation equipment is connected to the large circulation water inlet of the thermostat assembly through a large circulation return water pipeline.
  • the small circulation water outlet interface communicates with the water pump through a general circulation pipeline.
  • the derivation process of the beneficial effects produced by the engine cooling system is substantially similar to the derivation process of the beneficial effects brought by the above thermostat assembly, so this article will not repeat them here.
  • the diameters of the large-circulation water outlet pipeline and the large-circulation water return pipeline are equal.
  • Figure 1 is a schematic diagram of the layout structure of the thermostat and each water channel in the existing engine cooling system
  • FIG. 2 is a schematic diagram of the layout structure of the thermostat and each water channel of the engine cooling system in a specific embodiment of the present application;
  • FIG. 3 is a schematic diagram of the flow direction of the small circulating water of the thermostat assembly in the specific embodiment of the present application;
  • FIG. 4 is a schematic diagram of the flow direction of the large circulating water of the thermostat assembly in the specific embodiment of the present application;
  • FIG. 5 is a general schematic diagram of the cooling water flow direction of the thermostat assembly in a specific embodiment of the present application.
  • FIG. 6 is a schematic diagram of the external structure of the thermostat assembly in a specific embodiment of the present application.
  • FIG. 7 is a lateral cross-sectional view of a small cycle state of a thermostat assembly in a specific embodiment of this application;
  • FIG. 8 is a longitudinal cross-sectional view of a small cycle state of a thermostat assembly in a specific embodiment of this application;
  • FIG. 9 is a transverse cross-sectional view of the thermostat assembly in a specific embodiment of the present application in a large cycle state
  • FIG. 10 is a longitudinal cross-sectional view of the thermostat assembly in a specific embodiment of the present application in a large-cycle state.
  • 01-engine internal water circuit 02-engine outlet pipe, 03-thermostat, 04-small circulation pipe, 05-water pump, 06-water pump outlet pipe, 07-large circulation pipe, 08-radiator;
  • 1- engine internal water circuit 2- engine water outlet pipe, 3-thermostat assembly, 4- total circulation pipe, 5-water pump, 6-water pump outlet pipe, 7-large circulation water outlet pipe, 8-radiation equipment, 9-large circulation return water pipeline, 10-thermostat core, 11-first internal pipeline, 12-second internal pipeline, 13-thermostat housing, 14-total inlet port, 15-small circulation Water outlet, 16-large circulation water outlet, 17-large circulation water inlet, 18-large circulation chamber, 19-small circulation chamber.
  • the present application provides a thermostat assembly, including a thermostat housing 13, the thermostat housing 13 is provided with a general inlet port 14, a small circulation outlet port 15 and a large Circulation water outlet 16, the thermostat housing 13 is also provided with a large circulation water inlet 17, the thermostat housing 13 is provided with an internal pipeline, the large circulation water inlet 17 is connected to the small circulation water through the internal pipeline Interface 15.
  • the layout of the thermostat assembly in the engine cooling system is as follows: the main water inlet 14 is connected to the internal water circuit 1 of the engine through the engine water outlet pipe 2, and the cooling water enters the thermostat through the main water inlet 14.
  • the large circulation water outlet 16 is connected to the water inlet of the heat dissipation device 8 through the large circulation water outlet pipe 7, and the water outlet of the heat dissipation equipment 8 is connected to the large circulation water inlet 17 through the large circulation return water pipe 9, and the large circulation water outlet pipe 7 is connected to The liquid in the large circulation return water pipeline 9 flows in the opposite direction, thereby forming a large circulation pipeline between the thermostat assembly 3 and the heat sink 8.
  • the thermostat assembly 3 is provided with an internal pipeline, and the large-circulation inlet port 17 is connected to the small-circulation outlet port 15 through the internal pipeline.
  • the cooling water also passes through the small-circulation outlet port 15 flows out, and the small circulation water outlet 15 is connected to the water pump 5 through the main circulation pipe 4, and the water pump 5 is connected to the internal water circuit 1 of the engine through the water outlet pipe 6, so as to realize the return of cooling water.
  • the internal pipeline in this solution includes a first internal pipeline that connects the main inlet 14 and the small circulation outlet 15, and a second interior that connects the large circulation inlet 17 and the small circulation outlet 15
  • the pipeline and the internal pipeline of the thermostat assembly 3 can be designed as an integrally connected pipeline or as two separate pipelines.
  • the first internal pipeline and the second internal pipeline are integrally connected.
  • the large circulation pipe and the small circulation pipe merge inside the thermostat assembly 3 and circulate to the water pump 5 through a common water channel to circulate, which can further improve the integration of the thermostat assembly 3 and simplify the thermostat assembly.
  • 3 pipeline structure design design.
  • the large circulation water outlet 16 and the large circulation water inlet 17 are arranged side by side on the same side of the thermostat housing 13.
  • the large circulation water outlet pipe 7 and the large circulation water return pipe 9 between the thermostat assembly 3 and the heat dissipation device 8 can be arranged in parallel at adjacent positions.
  • the piping form and the layout space are consistent, and the layout is very Convenient, thereby saving the layout space of the whole machine and reducing the difficulty of the whole machine layout.
  • the caliber of the large-circulation water outlet port 16 and the large-circulation water inlet port 17 are equal. In this way, the specifications and structures of the two sections of the large-circulation water outlet pipeline 7 and the large-circulation return water pipeline 9 are the same, which can further reduce the number of parts and production and assembly process steps.
  • the cooling water from the engine water outlet pipe 2 enters the thermostat assembly 3 from the general water inlet 14 through the large circulation water outlet 16 and
  • the large-circulation water outlet pipe 7 enters the heat dissipation device 8. After heat dissipation, it enters the thermostat assembly 3 through the large-circulation return water pipe 9 and the large-circulation water inlet port 17, and converges to the second internal pipe 12, and finally passes through the small circulation
  • the water outlet 15 and the general circulation pipeline 4 enter the water pump 5.
  • the first internal pipeline 11 and the second internal pipeline 12 are connected as a whole, so that the cooling water of the large circulation or the small circulation finally merges together, and then flows out to the main circulation pipe through the small circulation water outlet 15 In the way 4, therefore, this solution integrates the large circulation pipe and the small circulation pipe with the thermostat housing 13 into one body, which greatly simplifies the structure of the thermostat assembly 3.
  • the present application adds a large-circulation water inlet 17 to the thermostat housing 13.
  • the internal pipeline of the thermostat assembly 3 can still be borrowed, so that the thermostat is not Whether it is a cycle or a small cycle, it can communicate with the water pump 5 using a common interface.
  • This solution integrates the thermostat housing 13 with part of the cooling pipeline, which not only reduces the number of pipelines in the cooling system, but also indirectly reduces the number of inlet ports of the water pump 5.
  • the large circulation pipeline only exists in the thermostat.
  • Cheng 3 and the heat dissipation equipment 8 the cooling system layout is more concise, greatly reducing the difficulty of layout of the whole machine. At the same time, the sealing position of the whole machine is reduced, the cost is reduced, and the reliability of the whole machine is improved.
  • the bold arrows in FIGS. 7 and 8 represent the small circulating flow direction of the cooling water.
  • the wall of the water retaining tube of the thermostat core 10 is pressed by the spring and closes the large circulation cavity 18, the small circulation cavity 19 communicates with the cavity where the thermostat core 10 is located, and the thermostat vent valve is always open It can avoid the air resistance and affect heat exchange in the waterway.
  • the cooling water enters the thermostat assembly through the main water inlet 14 and then merges into the first internal pipeline 11 through the small circulation chamber 19, finally, the cooling water circulates from the small The water outlet 15 flows out of the thermostat assembly 3.
  • the large circulation chamber 18 is in a closed state, and the cooling water will not flow from the large circulation outlet 16 to the large circulation pipeline.
  • the bold arrows in FIGS. 9 and 10 represent the large circulating flow direction of the cooling water.
  • the cooling system performs a large cycle
  • the water retaining wall of the thermostat core 10 is pushed open by the heated wax pack against the spring force, so that the large circulation cavity 18 communicates with the cavity where the thermostat core 10 is located, and at the same time closes the small circulation cavity 19
  • the cooling water enters the thermostat assembly through the main inlet port 14 and then flows out of the thermostat housing 13 from the large circulation outlet port 16 through the large circulation chamber 18, then the cooling water flows into the heat dissipation through the large circulation outlet pipe 7
  • the equipment 8 dissipates heat, and the cooled cooling water flows back to the large-circulation water inlet 17 through the large-circulation return water pipe 9 and finally merges into the second internal piping 12 to flow out of the thermostat assembly 3 from the small-circulation water outlet 15.
  • the small circulation chamber 19 is in a closed state.
  • thermostat structure, interface layout and thermostat housing 13 in this solution can adopt a variety of structural designs, as long as the above pipeline design and circulation method are satisfied, and will not be repeated in this article.
  • thermostat in this solution may use a wax thermostat, or a thermostat with electric control or electronic control, etc., which will not be repeated in this article.
  • the heat dissipation device 8 in this solution may use an existing radiator or a heat exchanger, and a heat dissipation device that satisfies the engine cooling system may be used, and details are not described herein again.
  • the cooling system with the thermostat assembly of general structure requires the pump to be equipped with a large circulating water inlet and a small circulating water inlet.
  • the total circulation pipe 4 between the thermostat assembly 3 and the water pump 5 is a small circulation pipe when the cooling system is in a small circulation state; it is a large circulation pipe when the cooling system is in a large circulation state Circulation line.
  • the present application also provides an engine cooling system, including an internal water circuit of the engine 1, a heat dissipation device 8, a water pump 5, and the thermostat assembly 3 as described above.
  • the thermostat assembly 3 has a large cycle
  • the water outlet 16 is connected to the water inlet of the heat dissipation device 8 through the large circulation water outlet pipe 7, and the water outlet of the heat dissipation equipment 8 is connected to the large circulation water inlet 17 of the thermostat assembly 3 through the large circulation return water pipe 9 to save temperature
  • the small circulation water outlet 15 of the device assembly 3 communicates with the water pump 5 through the general circulation pipeline 4.
  • the first internal pipeline 11 and the second internal pipeline 12 are connected as a whole, so that the cooling water of the large circulation or the small circulation finally merges together, and then flows out to the main circulation pipe through the small circulation water outlet 15 In the way 4, therefore, this solution integrates the large circulation pipe and the small circulation pipe with the thermostat housing 13 into one body, which greatly simplifies the structure of the thermostat assembly 3.
  • the diameters of the large circulation water outlet pipe 7 and the large circulation water return pipe 9 are equal. It is further preferred that the two large circulation pipes have the same specifications and are arranged adjacent to each other, so that the piping arrangement of the cooling system can be further simplified and the number of parts can be reduced.
  • the derivation process of the beneficial effects produced by the engine cooling system is substantially similar to the derivation process of the beneficial effects brought by the above thermostat assembly, so this article will not repeat them here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

一种节温器总成以及发动机冷却系统,节温器总成包括节温器壳体(13),节温器壳体(13)上开设有总进水接口(14)、小循环出水接口(15)和大循环出水接口(16),节温器壳体(13)上还开设有大循环进水接口(17),节温器壳体(13)内部设有内部管路,大循环进水接口(17)通过内部管路连通于小循环出水接口(15)。在节温器壳体(13)上增设有大循环进水接口(17),当冷却系统处于大循环时,可以借用节温器总成的内部管路,使得节温器无论处于大循环还是小循环时均能够使用共同的接口与水泵(5)连通。将节温器壳体(13)与部分冷却管路集成,不但减少了冷却系统中管路的数量,而且间接减少了水泵(5)进水接口的数量,使冷却系统布置更加简洁,大大降低整机布置难度。

Description

一种节温器总成与一种发动机冷却系统 技术领域
本申请涉及发动机冷却系统技术领域,尤其涉及一种节温器总成与一种发动机冷却系统。
背景技术
发动机整体尺寸趋于紧凑,冷却系统中管路较多,布置困难。节温器是控制冷却液流动路径的阀门。目前,常规的节温器总成通常在壳体上布置有进水接口、大循环出水接口以及小循环出水接口。
如图1所示,目前,常规节温器工作原理为:冷却水温度较低时,冷却系统的冷却水从发动机内部水路01出来后经发动机出水管02进入到节温器03中,然后,通过节温器03调节进行小循环冷却,节温器03的冷却水流出经小循环管路04和水泵05后,再经水泵出水管06流回到发动机内部水路01中进行热交换,以实现快速暖机;冷却水温度较高时,冷却系统的冷却水通过节温器03调节进行大循环,节温器03的冷却水流出经大循环管路07通过散热器08或热交换器散热,将热量带到外界,使冷却系统温度保持在一定范围内,实现热量传递的动态平衡。冷却水在大小循环间切换时,总会有一路水管闲置,而系统中需要另外一条水路联通以进行大循环或小循环,给整机冷却液管路的布置带来不便。
因此,如何简化冷却系统管路、降低整机布置难度,是本领域技术人员目前亟待解决的技术问题。
发明内容
有鉴于此,本申请的目的在于提供一种节温器总成,该节温器总成能够减少冷却系统中的管路数量,使冷却系统布置更加简洁,降低整机布置难度。本申请的另一个目的是提供一种包括该节温器总成的发动机冷却系统。
为了实现上述目的,本申请提供了如下技术方案:
一种节温器总成,包括节温器壳体,所述节温器壳体上开设有总进水接口、小循环出水接口和大循环出水接口,所述节温器壳体上还开设有大循环进水接口,所述节温器壳体内部设有内部管路,所述大循环进水接口通过所述内部管路连通于所述小循环出水接口。
优选地,所述内部管路包括连通所述总进水接口和所述小循环出水接口的第一内部管路,以及连通所述大循环进水接口和所述小循环出水接口的第二内部管路,所述第一内部管路和所述第二内部管路连通为一体。
优选地,所述大循环出水接口与所述大循环进水接口并排布置在所述节温器壳体的同一侧。
优选地,所述大循环出水接口与所述大循环进水接口的口径相等。
本申请提供的节温器总成,包括节温器壳体,节温器壳体上开设有总进水接口、小循环出水接口和大循环出水接口,节温器壳体上还开设有大循环进水接口,节温器壳体内部设有内部管路,大循环进水接口通过内部管路连通于小循环出水接口。当冷却系统进行小循环时,冷却水从总进水接口进入节温器总成内部,再经小循环出水接口进入水泵。当冷却系统进水大循环时,冷却水进入节温器总成后经大循环出水接口进入散热设备,散热后再经大循环进水接口进入节温器总成内部,最终由小循环出水接口进入水泵。
可见,本申请在节温器壳体上增设有大循环进水接口,当冷却系统处于大循环时,仍然可以借用节温器总成的内部管路,使得节温器无论处于大循环还是小循环时均能够使用共同的接口与水泵连通。本方案将节温器壳体与部分冷却管路集成,不但减少了冷却系统中管路的数量,而且间接减少了水泵进水接口的数量,大循环管路仅仅存在于节温器总成和散热设备之间,使冷却系统布置更加简洁,大大降低整机布置难度。同时,减少了整机密封位置,降低成本,提升整机可靠性。
本申请还提供了一种发动机冷却系统,包括发动机内部水路、散热设备、水泵以及如上所述的节温器总成,所述节温器总成的所述大循环出水接口通过大循环出水管路与所述散热设备的进水口连通,所述散热设备的出水口通过大循环回水管路与所述节温器总成的所述大循环进水接口连通,所述节温器总成 的所述小循环出水接口通过总循环管路与所述水泵连通。
该发动机冷却系统产生的有益效果的推导过程与上述节温器总成带来的有益效果的推导过程大体类似,故本文不再赘述。
优选地,所述大循环出水管路与所述大循环回水管路的管径相等。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的发动机冷却系统中的节温器与各水路布置结构示意图;
图2为本申请具体实施例中发动机冷却系统的节温器与各水路布置结构示意图;
图3为本申请具体实施例中节温器总成小循环水流向示意图;
图4为本申请具体实施例中节温器总成大循环水流向示意图;
图5为本申请具体实施例中节温器总成冷却水流动方向总示意图;
图6为本申请具体实施例中的节温器总成外部结构示意图;
图7为本申请具体实施例中的节温器总成小循环状态横向剖视图;
图8为本申请具体实施例中的节温器总成小循环状态纵向剖视图;
图9为本申请具体实施例中的节温器总成大循环状态横向剖视图;
图10为本申请具体实施例中的节温器总成大循环状态纵向剖视图。
图1中:
01-发动机内部水路、02-发动机出水管、03-节温器、04-小循环管路、05-水泵、06-水泵出水管、07-大循环管路、08-散热器;
图2至图10中:
1-发动机内部水路、2-发动机出水管、3-节温器总成、4-总循环管路、5-水泵、6-水泵出水管、7-大循环出水管路、8-散热设备、9-大循环回水管路、10-节温器芯、11-第一内部管路、12-第二内部管路、13-节温器壳体、14-总进 水接口、15-小循环出水接口、16-大循环出水接口、17-大循环进水接口、18-大循环腔、19-小循环腔。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图2至图10,本申请提供了一种节温器总成,包括节温器壳体13,节温器壳体13上开设有总进水接口14、小循环出水接口15和大循环出水接口16,节温器壳体13上还开设有大循环进水接口17,节温器壳体13内部设有内部管路,大循环进水接口17通过内部管路连通于小循环出水接口15。
具体的,该节温器总成在发动机冷却系统中的布置情况如下:总进水接口14通过发动机出水管2连接于发动机内部水路1,冷却水通过总进水接口14进入节温器内部。大循环出水接口16通过大循环出水管路7连接于散热设备8的进水口,散热设备8的出水口通过大循环回水管路9连接于大循环进水接口17,大循环出水管路7与大循环回水管路9内的液体流向相反,从而形成节温器总成3与散热设备8之间的大循环管路。节温器总成3设有内部管路,大循环进水接口17通过内部管路连通于小循环出水接口15,节温器总成3内部进行小循环时,冷却水也通过小循环出水接口15流出,小循环出水接口15再通过总循环管路4连接于水泵5,水泵5通过水泵出水管6连接于发动机内部水路1,从而实现冷却水的回水。
需要说明的是,本方案中的内部管路包括连通总进水接口14和小循环出水接口15的第一内部管路,以及连通大循环进水接口17和小循环出水接口15的第二内部管路,节温器总成3的内部管路可以设计为一体式连通的管路,也可以设计为两条分隔的管路。优选地,第一内部管路和第二内部管路连通为一体。如此设置,大循环管路与小循环管路在节温器总成3内部汇合,通过共同的水路流向水泵5进行循环,可以进一步提高节温器总成3的集成度,简化节温器总 成3的管路结构设计。
优选地,大循环出水接口16与大循环进水接口17并排布置在节温器壳体13的同一侧。如此设置,节温器总成3与散热设备8之间的大循环出水管路7和大循环回水管路9就可以并列布置在相邻的位置,管路形式和布置空间一致,布置起来非常方便,从而节省整机布置空间,降低整机布置难度。
进一步优选地,大循环出水接口16与大循环进水接口17的口径相等。如此设置,使得大循环出水管路7和大循环回水管路9这两段管路的规格结构相同,从而可以进一步减少零部件数量及生产装配工艺步骤。
如图2、图3和图6所示,当冷却系统进行小循环时,来自发动机出水管2的冷却水从总进水接口14进入节温器总成3内部,汇流到第一内部管路11,最后经小循环出水接口15和总循环管路4进入水泵5。
如图2、图4和图6所示,当冷却系统进水大循环时,来自发动机出水管2的冷却水从总进水接口14进入节温器总成3后经大循环出水接口16和大循环出水管路7进入散热设备8,散热后再经大循环回水管路9和大循环进水接口17进入节温器总成3内部,汇流到第二内部管路12,最终经由小循环出水接口15和总循环管路4进入水泵5。
如图5所示,第一内部管路11和第二内部管路12连通为一体,使得大循环或小循环的冷却水最终汇合到一起后,再经过小循环出水接口15流出到总循环管路4中,因此,本方案使大循环管路和小循环管路与节温器壳体13集成为一体,极大地简化了节温器总成3的结构。
可见,本申请在节温器壳体13上增设有大循环进水接口17,当冷却系统处于大循环时,仍然可以借用节温器总成3的内部管路,使得节温器无论处于大循环还是小循环时均能够使用共同的接口与水泵5连通。本方案将节温器壳体13与部分冷却管路集成,不但减少了冷却系统中管路的数量,而且间接减少了水泵5进水接口的数量,大循环管路仅仅存在于节温器总成3和散热设备8之间,使冷却系统布置更加简洁,大大降低整机布置难度。同时,减少了整机密封位置,降低成本,提升整机可靠性。
下面结合图7至图10来详细介绍一下该节温器总成在小循环和大循环状态 下的工作过程:
如图7和图8所示,图7和图8中的粗线箭头代表冷却水的小循环流向。当冷却系统进行小循环时,节温器芯10的挡水筒壁被弹簧压着并封闭大循环腔18,小循环腔19与节温器芯10所在腔连通,节温器放气阀常通可避免水路中产生气阻和影响换热,冷却水经总进水接口14进入节温器总成之后,再进经小循环腔19汇合到第一内部管路11中,最后,冷却水从小循环出水接口15流出节温器总成3。在此过程中,大循环腔18处于封闭状态,冷却水也不会从大循环出水接口16流到大循环管路中。
如图9和图10所示,图9和图10中的粗线箭头代表冷却水的大循环流向。当冷却系统进行大循环时,节温器芯10的挡水筒壁被受热后的蜡包克服弹簧力顶开,使得大循环腔18与节温器芯10所在腔连通,同时封闭小循环腔19,冷却水经总进水接口14进入节温器总成之后,再经过大循环腔18从大循环出水接口16流出节温器壳体13,然后,冷却水经大循环出水管路7流入散热设备8进行散热,散热后的冷却水通过大循环回水管路9回流到大循环进水接口17,最后汇合到第二内部管路12,从小循环出水接口15流出节温器总成3。在此过程中,小循环腔19处于封闭状态。
需要说明的是,本方案中的节温器结构形式、接口布置形式以及节温器壳体13可以采用多种结构设计,只要满足上述管路设计以及循环方式即可,本文不再赘述。
另外,本方案中的节温器可以选用蜡式节温器,也可以选用电动控制或电子控制的节温器等,本文不再一一赘述。
本方案中的散热设备8可以选用现有的散热器或热交换器,选用满足发动机冷却系统的散热设备即可,本文不再赘述。
本方案具有以下有益效果:
1)、当节温器总成3处于大循环时,节温器总成3与散热设备之间的大循环出水管路7和大循环回水管路9布置在相邻的位置,节省整机布置空间。并且这两段大循环管路的规格结构相同,因此,可以减少零部件数量及生产装配工艺步骤;
2)、具有一般结构节温器总成的冷却系统,需要水泵设置有大循环进水接口和小循环进水接口。而在本发明中,节温器总成3与水泵5之间的总循环管路4,在冷却系统处于小循环状态时,是小循环管路;在冷却系统处于大循环状态时,是大循环管路。节温器总成3与水泵5之间只有一个水路,而对于水泵5,则是减少了一个进水接口,因此,本方案使水泵5的结构得到极大的简化;
3)、本方案还减少了整机密封位置,降低了成本,提升了整机可靠性。
如图2所示,本申请还提供了一种发动机冷却系统,包括发动机内部水路1、散热设备8、水泵5以及如上所述的节温器总成3,节温器总成3的大循环出水接口16通过大循环出水管路7与散热设备8的进水口连通,散热设备8的出水口通过大循环回水管路9与节温器总成3的大循环进水接口17连通,节温器总成3的小循环出水接口15通过总循环管路4与水泵5连通。
如图2、图3和图6所示,当冷却系统进行小循环时,来自发动机内部水路1的冷却水经发动机出水管2从总进水接口14进入节温器总成3内部,汇流到第一内部管路11,最后经小循环出水接口15和总循环管路4进入水泵5,水泵5最后将冷却水经水泵出水管6泵回到发动机内部水路1中,从而完成了冷却水的小循环过程。
如图2、图4和图6所示,当冷却系统进水大循环时,来自发动机内部水路1的冷却水经发动机出水管2从总进水接口14进入节温器总成3后,经大循环出水接口16和大循环出水管路7进入散热设备8,冷却水与外界经过热交换后,再经大循环回水管路9和大循环进水接口17进入节温器总成3内部,汇流到第二内部管路12,最终经由小循环出水接口15和总循环管路4进入水泵5,水泵5最后将冷却水经水泵出水管6泵回到发动机内部水路1中,从而完成了冷却水的大循环过程。
如图5所示,第一内部管路11和第二内部管路12连通为一体,使得大循环或小循环的冷却水最终汇合到一起后,再经过小循环出水接口15流出到总循环管路4中,因此,本方案使大循环管路和小循环管路与节温器壳体13集成为一体,极大地简化了节温器总成3的结构。
优选地,在上述发动机冷却系统中,大循环出水管路7与大循环回水管路9 的管径相等。进一步优选地,这两条大循环管路的规格相同,且相邻布置,从而可以进一步简化冷却系统的管路布置,减少零部件数量。
该发动机冷却系统产生的有益效果的推导过程与上述节温器总成带来的有益效果的推导过程大体类似,故本文不再赘述。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本方案。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本方案的精神或范围的情况下,在其它实施例中实现。因此,本方案将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

  1. 一种节温器总成,包括节温器壳体(13),所述节温器壳体(13)上开设有总进水接口(14)、小循环出水接口(15)和大循环出水接口(16),其特征在于,所述节温器壳体(13)上还开设有大循环进水接口(17),所述节温器壳体(13)内部设有内部管路,所述大循环进水接口(17)通过所述内部管路连通于所述小循环出水接口(15)。
  2. 根据权利要求1所述的节温器总成,其特征在于,所述内部管路包括连通所述总进水接口(14)和所述小循环出水接口(15)的第一内部管路(11),以及连通所述大循环进水接口(17)和所述小循环出水接口(15)的第二内部管路(12),所述第一内部管路(11)和所述第二内部管路(12)连通为一体。
  3. 根据权利要求1所述的节温器总成,其特征在于,所述大循环出水接口(16)与所述大循环进水接口(17)并排布置在所述节温器壳体(13)的同一侧。
  4. 根据权利要求3所述的节温器总成,其特征在于,所述大循环出水接口(16)与所述大循环进水接口(17)的口径相等。
  5. 一种发动机冷却系统,包括发动机内部水路(1)、节温器总成(3)、散热设备(8)以及水泵(5),其特征在于,所述节温器总成(3)为权利要求1至4中任一项所述的节温器总成,所述节温器总成(3)的所述大循环出水接口(16)通过大循环出水管路(7)与所述散热设备(8)的进水口连通,所述散热设备(8)的出水口通过大循环回水管路(9)与所述节温器总成(3)的所述大循环进水接口(17)连通,所述节温器总成(3)的所述小循环出水接口(15)通过总循环管路(4)与所述水泵(5)连通。
  6. 根据权利要求5所述的发动机冷却系统,其特征在于,所述大循环出水管路(7)与所述大循环回水管路(9)的管径相等。
PCT/CN2018/125359 2018-12-29 2018-12-29 一种节温器总成与一种发动机冷却系统 WO2020133359A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125359 WO2020133359A1 (zh) 2018-12-29 2018-12-29 一种节温器总成与一种发动机冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125359 WO2020133359A1 (zh) 2018-12-29 2018-12-29 一种节温器总成与一种发动机冷却系统

Publications (1)

Publication Number Publication Date
WO2020133359A1 true WO2020133359A1 (zh) 2020-07-02

Family

ID=71129523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125359 WO2020133359A1 (zh) 2018-12-29 2018-12-29 一种节温器总成与一种发动机冷却系统

Country Status (1)

Country Link
WO (1) WO2020133359A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047150A1 (en) * 2001-09-11 2003-03-13 Bong-Sang Lee Engine cooling system
CN101029591A (zh) * 2007-02-12 2007-09-05 潍柴动力股份有限公司 多功能水泵
CN201588688U (zh) * 2009-11-17 2010-09-22 浙江吉利汽车研究院有限公司 一种汽车发动机冷却系统
CN204299669U (zh) * 2014-11-08 2015-04-29 福田雷沃国际重工股份有限公司 一种节温器总成
CN204783230U (zh) * 2015-06-02 2015-11-18 潍柴动力股份有限公司 一种发动机冷却系统
JP2016211482A (ja) * 2015-05-12 2016-12-15 いすゞ自動車株式会社 エンジンの冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047150A1 (en) * 2001-09-11 2003-03-13 Bong-Sang Lee Engine cooling system
CN101029591A (zh) * 2007-02-12 2007-09-05 潍柴动力股份有限公司 多功能水泵
CN201588688U (zh) * 2009-11-17 2010-09-22 浙江吉利汽车研究院有限公司 一种汽车发动机冷却系统
CN204299669U (zh) * 2014-11-08 2015-04-29 福田雷沃国际重工股份有限公司 一种节温器总成
JP2016211482A (ja) * 2015-05-12 2016-12-15 いすゞ自動車株式会社 エンジンの冷却装置
CN204783230U (zh) * 2015-06-02 2015-11-18 潍柴动力股份有限公司 一种发动机冷却系统

Similar Documents

Publication Publication Date Title
JP6635747B2 (ja) 統合egrクーラー
JP2016145568A (ja) 統合egrクーラー及びこれを含む統合egrクーリングシステム
CN201103451Y (zh) 一种柴油机冷却系统循环系统
WO2021077965A1 (zh) 用于cpu散热器热交换的冷却装置
CN210512762U (zh) 一种散热器的导流管
WO2022057378A1 (zh) 一种具有自动排气功能的车用冷却系统
US11026346B2 (en) Water-replenishing and gas-removing structure for water cooling device
WO2020133359A1 (zh) 一种节温器总成与一种发动机冷却系统
CN104454214A (zh) 发动机冷却系统及车辆
JP4184129B2 (ja) 二重管
CN215872417U (zh) 一种内外双循环系统的液冷机箱
CN106016882B (zh) 一种防干燥自动水冷降温结构
CN203670719U (zh) 变速器润滑油外接冷却装置
CN210217889U (zh) 高低温共用溢水罐的冷却循环系统及车辆
TWM561391U (zh) 水冷裝置之充水除氣結構
CN107777861A (zh) 一种模具内置水循环系统
CN107809879A (zh) 一种散热机构及具有热源的设备
TWI651040B (zh) 水冷裝置之充水除氣結構
CN105756764B (zh) 一种发动机冷却系统
CN206246207U (zh) 发动机冷却水泵
CN212082101U (zh) 一种导热油回收利用设备
CN218805331U (zh) 流道板壳体、热管理系统及车辆
CN213583874U (zh) 球阀、燃料电池系统以及车辆
CN213039343U (zh) 发动机机油冷却结构、发动机以及车辆
CN212257567U (zh) 一种氢能源汽车燃料电池热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944786

Country of ref document: EP

Kind code of ref document: A1