WO2020133089A1 - 筒式发射的折叠翼无人机及其发射方法 - Google Patents

筒式发射的折叠翼无人机及其发射方法 Download PDF

Info

Publication number
WO2020133089A1
WO2020133089A1 PCT/CN2018/124452 CN2018124452W WO2020133089A1 WO 2020133089 A1 WO2020133089 A1 WO 2020133089A1 CN 2018124452 W CN2018124452 W CN 2018124452W WO 2020133089 A1 WO2020133089 A1 WO 2020133089A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
tail
folding
full
fuselage
Prior art date
Application number
PCT/CN2018/124452
Other languages
English (en)
French (fr)
Inventor
昌敏
Original Assignee
西北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西北工业大学 filed Critical 西北工业大学
Publication of WO2020133089A1 publication Critical patent/WO2020133089A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/56Folding or collapsing to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/30Parts of fuselage relatively movable to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/28Collapsible or foldable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Launching or towing gear
    • B64F1/06Launching or towing gear using catapults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/70Transport or storage specially adapted for UAVs in containers

Definitions

  • the invention belongs to the technical field of folding-wing unmanned aerial vehicles, in particular to a barrel-launched folding-wing unmanned aerial vehicle and its launching method.
  • the folding-wing UAV can fold each component through the folding mechanism, effectively reduce its space size, and realize the launch or delivery of multiple weapon platforms. Through organic combination with ammunition technology, it can perform single or multiple tasks such as reconnaissance and damage assessment, communication relay, target indication, and precision strike. It has the characteristics of low cost, high cost-effective ratio, small size, and strong stealth capability. Compared with traditional unmanned aerial vehicles, folding-wing unmanned aerial vehicles can be launched or dropped by a variety of weapon platforms, can be equipped to various military services, can quickly enter the combat area, strong penetration ability, flexible tactical use; compared to conventional ammunition, its The blanking time is long and the scope of action is large, and hidden and time-sensitive targets can be discovered and attacked.
  • the present invention provides a barrel-launched folding-wing UAV and its launching method, which can effectively solve the above problems.
  • the invention provides a barrel-launched folding-wing unmanned aerial vehicle, including: a folding-wing unmanned aerial vehicle (7) and a launching cylinder (6); when the barrel is mounted, the folding-wing unmanned aerial vehicle (7) is completely Folded state and arranged inside the launching cylinder (6); when the launching cylinder (6) launches the folding wing drone (7), the folding wing drone (7) is launched from the Popped out of the barrel (6), after the gradually expanded variant process, climb into the fully deployed cruise mission state;
  • the folding wing UAV (7) includes a fuselage (1), a Z-shaped folding elastic wing (2), a left full-motion flat tail (3A), a right full-motion flat tail (3B), and a full-motion vertical tail ( 4) and foldable propeller assembly (5);
  • the fuselage (1) is a cylindrical structure, and the bottom of the fuselage (1) is cut flat to form a setting plane for placing the folded Z-shaped folding elastic wings (2); 1) The left and right sides of the tail part contract to form a conical-shaped constriction section (15); the left and right sides of the end of the constriction section (15) are used to place the folded foldable propeller assembly (5) Setting surface; the right side of the front end of the contraction section is cut flat to form a vertical surface (16) for placing the folded full-motion vertical tail (4); the upper surface of the contraction section (15) is formed Left and right symmetrical left-cut flat inclined plane (17) and right-cut flat inclined plane (18), the left cut flat inclined plane (17) is used to place the folded left full-motion flat tail (3A); the right cut flat inclined plane (18) Used to place the folded right full-motion flat tail (3B);
  • the zigzag folding wing (2) includes a middle wing section (23), a left outer main wing (24A), a left outer aileron (24B), a right outer main wing (25A) and a right outer aileron (25B);
  • the center of the middle wing section (23) is foldably installed at the center of the bottom of the fuselage (1) through the middle wing folding mechanism (21); the left side of the middle wing section (23) passes through the left outer main wing folding mechanism ( 22A)
  • the left outer main wing (24A) is foldably mounted; the right side of the middle wing section (23) is foldably mounted on the right outer main wing (25A) through the right outer main wing folding mechanism (22B);
  • the left outer The main wing (24A) and the right outer main wing (25A) are symmetrical with respect to the left and right sides of the middle wing section (23); when the Z-shaped folding elastic wing (2) is in a folded state, the Z-shaped The folding
  • the right outer main wing (25A) is installed with the right outer aileron (25B) in an area from 0.7 to 1 along the chord direction; one end of the right outer aileron (25B) passes through the rotating shaft (28) of the right outer main wing control surface
  • the right outer main wing (25A) is rotatably connected; a right outer aileron deflecting steering gear (26B) is installed on the right outer main wing (25A), and the right outer aileron deflecting steering gear (26B) is deflected by the right outer aileron
  • the steering linkage (27) of the steering gear is connected to the right outer aileron (25B), thereby driving the right outer aileron (25B) to deflect around the right outer main wing control surface rotation axis (28); the left outer main wing (24A) )
  • the left full-motion flat tail (3A) can be foldably installed above the left side of the tail of the fuselage (1) by a left flat-tail folding mechanism;
  • the right full-motion flat tail (3B) can be folded by a right flat-tail folding mechanism (31) Installed above the right side of the tail of the fuselage (1), the left full-motion flat tail (3A) and the right full-motion flat tail (3B) have a certain dihedral angle, which is beneficial to improve the folding state of the barrel Space utilization;
  • the full-motion vertical tail (4) is foldably installed at the rear of the fuselage (1) through a vertical-tail folding mechanism (41), and the full-motion vertical tail (4) is located on the right full-motion flat tail (4) 3B) in front; wherein, the number of the full-motion vertical tail (4) is set to one or two; when the full-motion vertical tail (4) is set one, the full-motion vertical tail (4) is located at The left or right side of the rear of the fuselage (1); when two full-motion vertical tails (4) are provided, the full-motion vertical tails (4) are respectively located on the left side of the rear of the fuselage (1) Side and right;
  • the foldable propeller assembly (5) is installed in the middle of the rear end surface of the fuselage (1), and includes a propeller clamp (53) and left propeller blades (51A) symmetrically installed on the left and right sides of the propeller clamp (53) And the right blade (51B); the left blade (51A) and the right blade (51B) are antisymmetric structures; wherein, the blade clamp (53) is connected to the fuselage through a drive shaft (54) (1) Internal drive motor connection, the drive motor drives the paddle clamp (53) to rotate through the drive shaft (54); the left blade (51A) is foldable by the left blade folding mechanism (52A) It is installed at the left end of the paddle clamp (53); the right blade (51B) is foldably installed at the right end of the paddle clamp (53) through a right blade folding mechanism (52B).
  • the fuselage (1) adopts a modular design, and a load cabin (11), a power supply cabin (12), an inertial navigation cabin (13) and a power cabin (14) are arranged in order from head to tail;
  • the load compartment (11) is used to carry the seeker and the warhead to complete precision strike missions, and can also be equipped with reconnaissance and communication equipment to complete reconnaissance and damage assessment, air vigilance, and communication relay tasks;
  • the power supply compartment ( 12) It is used to carry energy supply equipment, and then provide the required energy to the foldable propeller assembly (5) and the electronic equipment in the load compartment (11);
  • the inertial navigation module (13) is an inertial navigation device compartment , Gyroscope and accelerometer equipment are arranged;
  • the power cabin (14) is arranged with power equipment to drive the foldable propeller assembly (5).
  • the middle wing section (23) is a rectangular wing section with the same length as the fuselage (1);
  • the middle wing folding mechanism (21) is a square rotating mechanism, including a middle wing drive spring (20A) and the center wing mandrel (20B) are torsion springs or spiral springs.
  • the left outer main wing (24A) and the right outer main wing (25A) are rectangular wing sections mounted on the outer side of the bottom of the middle wing section (23), and the extension is the middle wing section (23) Half the length, the chord length is less than the chord length of the middle wing section (23).
  • the left outer main wing folding mechanism (22A) and the right outer main wing folding mechanism (22B) are circular rotating mechanisms.
  • the left full-motion flat tail (3A) and the right full-motion flat tail (3B) have a symmetrical structure on the left and right sides
  • the right full-motion flat tail (3B) includes a right flat tail folding mechanism (31) and a flat tail Rotating shaft (32), horizontal tail deflection steering gear (33), horizontal tail control surface rotating shaft (34), horizontal tail control surface (35) and flat tail rotation limiter (36);
  • the right horizontal tail folding mechanism (31) passes the A flat tail rotation shaft (32) is connected to the fuselage (1) for controlling the folding and unfolding of the right full-motion flat tail (3B);
  • the flat tail rotation stopper (36) is used for controlling the right full tail
  • the flat tail control surface (35) is connected to the flat tail deflection servo (33) through the flat tail control surface rotation shaft (34), and the flat tail deflection servo (33) is installed at
  • the flat tail control surface rotation shaft (34) controls the deflection of the flat tail control surface (35).
  • the full-motion vertical tail (4) includes a vertical tail folding mechanism (41), a vertical tail rotation axis (42), a vertical tail deflection steering gear (43), a vertical tail control surface rotating shaft (44), a vertical tail control A plane (45) and a vertical tail rotation limiter (46);
  • the vertical tail folding mechanism (41) is connected to the fuselage (1) through the vertical tail rotation shaft (42) and is used to control the full Folding and unfolding of the vertical tail (4);
  • the vertical tail deflection steering gear (43) is installed on the vertical tail folding mechanism (41), and the vertical tail is controlled by the vertical tail control surface rotating shaft (44)
  • the deflection of the control surface (45); the vertical tail rotation limiter (46) is used to control the rotation angle of the full-motion vertical tail (4).
  • the launching cylinder (6) includes a dust cover (61), a launching cylinder bracket (62), a bullet cylinder (63), a piston boosting device (64), a gas generator (65) and a launching cylinder base ( 66);
  • the head of the cartridge (63) is mounted with the dust cover (61); the outer part of the cartridge (63) is mounted with the launching tube bracket (62); the tail of the cartridge (63) is mounted
  • the launch cylinder base (66); the gas generator (65) is installed on the launch cylinder base (66); the piston boosting device (64) is installed at the gas outlet of the gas generator (65);
  • the folding-wing unmanned aerial vehicle (7) is arranged in front of the piston boosting device (64).
  • the invention also provides a launching method of a barrel-type folding wing UAV, which includes the following steps:
  • Step 1 The folding wing unmanned aerial vehicle (7) is in a completely folded state and placed in the launch cylinder (6);
  • the folding wing UAV (7) is in a fully folded state, which means:
  • the left outer main wing (24A) is folded around the left outer main wing folding mechanism (22A) directly below the middle wing section (23), and the right outer main wing (25A) is folded around the right outer main wing folding mechanism (22B) Folded directly under the middle wing section (23), the middle wing section (23) rotates around the middle wing folding mechanism (21) to directly under the fuselage (1), at this time, the Z-shaped folding elastic wing ( 2) Folded into a small straight wing with the same length as the fuselage (1) and parallel to the axis of the fuselage (1);
  • the left full-motion flat tail (3A) and the right full-motion flat tail (3B) are folded on the left-cut flat slope (17) of the fuselage (1) by a left flat-tail folding mechanism;
  • the right full-motion flat tail (3B) is folded on the right cut flat slope (18) of the fuselage (1) by the right flat tail folding mechanism (31);
  • the full-motion vertical tail (4) is folded on the vertical plane (16) on the right side of the fuselage (1) by a vertical tail folding mechanism (41);
  • the left blade (51A) is folded on the left side of the tail of the fuselage (1) by the left blade folding mechanism (52A); its right blade (51B) is passed through the right blade
  • the leaf folding mechanism (52B) is folded on the right side of the tail of the fuselage (1);
  • the tail By designing the bottom of the fuselage (1), the tail to shrink, and the upper surface of the tail to be cut into left and right inclined planes (17) and right inclined plane (18), when the folding wing UAV (7 ) After being fully folded, the radial maximum dimension does not exceed the diameter of the launching cylinder (6) and the length does not exceed the length of the launching cylinder (6), therefore, it can be completely accommodated in the launching cylinder (6) Inside
  • Step 2 The soldier carries the launching barrel (6) on which the folding-wing unmanned aerial vehicle (7) is placed to the launching site, and installs the launching barrel (6) according to the required launching angle;
  • Step 3 Start the gas generator (65) of the launching cylinder (6).
  • the gas generator (65) generates high-pressure gas, and the folding-wing unmanned aerial vehicle (7) is removed from the launching cylinder (7) through a piston booster (64) 6) pop up;
  • Step 4 after the folding-wing unmanned aerial vehicle (7) is ejected from the launching cylinder (6), after a gradually expanded variant process, it climbs into a fully deployed cruise mission state to complete the launching process;
  • the axial direction of the fuselage (1) is taken as the X axis
  • the Z axis is in the symmetry plane of the zigzag folded wing (2), perpendicular to the X axis, and the direction perpendicular to the X-Z plane is taken as the Y axis;
  • the wing segment (23) is rotated clockwise in the XY plane by the middle wing folding mechanism (21), and at the same time, the left outer main wing (24A) passes the left outer main wing folding mechanism (22A ) Rotate counterclockwise in the XY plane.
  • the right outer main wing (25A) rotates counterclockwise in the XY plane through the right outer main wing folding mechanism (22B), passing the left outer main wing (24A), the middle wing section (23) and the right After the outer main wing (25A) forms a Z-shaped intermediate state, the center wing section (23), the left outer main wing (24A) and the right outer main wing (25A) continue to rotate until the middle wing section (23) rotates to the fuselage (23) 1)
  • the vertical position, the left outer main wing (24A) rotates to the position collinear with the middle wing section (23), and the right outer main wing (25A) rotates to the position collinear with the middle wing section (23), at this time Z
  • the folding wing (2) of the shape is expanded into a large wing that is twice the length of the fuselage (1) and perpendicular to the fuselage (1);
  • the left full motion flat tail (3A) and the right full motion flat tail (3B) are rotated counterclockwise in the XY plane by the left flat tail folding mechanism until the axis of the left full motion flat tail (3A) is The axis of the fuselage (1) is vertical; meanwhile, the right full-motion flat tail (3B) is rotated clockwise in the XY plane by the right flat-tail folding mechanism (31) until the axis of the right full-motion flat tail (3B) is equal to the The axis of the fuselage (1) is vertical;
  • the full-motion vertical tail (4) is rotated clockwise in the XZ plane by the vertical tail folding mechanism (41) until the axis of the full-motion vertical tail (4) and the fuselage (1 ) Until the axis is vertical;
  • the left blade (51A) is rotated counterclockwise in the XY plane by the left blade folding mechanism (52A), while the right blade (51B) is passed by the right blade folding mechanism (52B) Rotate clockwise in the XY plane until the left blade (51A), paddle clamp (53), and right blade (51B) form a straight line.
  • the invention provides a barrel-launched folding-wing unmanned aerial vehicle and its launching method. It has good aerodynamic characteristics in cruise state, small space in the barrel-mounted state, light weight, can be carried by a single soldier, and is easy to operate.
  • FIG. 1 is a schematic structural diagram of a folding-wing UAV provided by the present invention in a cruising mission state;
  • FIG. 2 is a schematic structural view of one side of a folding-wing UAV provided by the present invention in a folded state
  • FIG. 3 is a schematic structural view of the other side of the folding-wing UAV provided by the present invention when it is in a folded state;
  • FIG. 4 is a schematic diagram of the arrangement of the folding-wing UAV provided in the launch cylinder according to the present invention.
  • FIG. 5 is a schematic diagram of the variation process of the present invention from the folded state to the cruise mission state after launching from the barrel;
  • FIG. 6 is a schematic diagram of the relative position of the installation of the components of the rear part of the body of the present invention.
  • FIG. 7 is a schematic view of the layout of the internal loading space of the fuselage 1 of the present invention under one orientation
  • FIG. 8 is a schematic diagram of the layout of the internal loading space of the fuselage 1 of the present invention under another orientation
  • FIG. 9 is a schematic view of the layout of the Z-shaped folding wing 2 of the present invention.
  • FIG. 10 is a perspective view of the middle wing section 23 of the Z-shaped folding elastic wing 2 of the present invention.
  • FIG. 11 is a plan view of the middle wing section 23 of the Z-shaped folding elastic wing 2 of the present invention.
  • FIG. 12 is a bottom view of the right outer main wing 25A of the Z-shaped folding elastic wing 2 of the present invention.
  • FIG. 13 is a cross-sectional view along A-A of FIG. 12;
  • FIG. 14 is a bottom view of the right outer main wing 25A of the Z-shaped folding elastic wing 2 of the present invention.
  • 16 is a plan view of the full-motion flat tail 3 of the present invention.
  • 17 is a bottom view of the full-motion flat tail 3 of the present invention.
  • 19 is a left side view of the full motion vertical tail 4 of the present invention.
  • FIG. 20 is a schematic diagram of the foldable propeller assembly 5 of the present invention in a folded state
  • 21 is a schematic diagram of the foldable propeller assembly 5 of the present invention in an intermediate state
  • FIG. 22 is a schematic view of the foldable propeller assembly 5 of the present invention when fully expanded
  • FIG. 23 is a diagram showing the change process of the foldable propeller assembly 5 of the present invention from the folded state to the fully expanded state;
  • 24 is a schematic diagram of a barrel launch application scenario of the present invention.
  • FIG. 25 is a schematic diagram of the application scenario of the airdrop launch of the present invention.
  • 2Z-shaped folding elastic wing 20A middle wing drive spring; 20B middle wing mandrel; 21 middle wing folding mechanism; 22A left outer main wing folding mechanism; 22B right outer main wing folding mechanism; 23 middle wing section; 24A left outer main wing; 24B Left outer aileron; 25A right outer aileron; 25B right outer aileron; 26A left outer aileron deflection servo; 26B right outer aileron deflection servo; 27 right outer aileron deflection servo drive link; 28 right outer aileron Control surface rotation axis;
  • the invention provides a barrel-launched folding-wing unmanned aerial vehicle and its launching method. It has good aerodynamic characteristics in cruise state, small space in the barrel-mounted state, light weight, can be carried by a single soldier, and is easy to operate.
  • the barrel-launched folding-wing UAV includes: folding-wing UAV 7 and launching cylinder 6; when the cylinder is mounted, the folding-wing UAV 7 is in a fully folded state and is arranged inside the launching cylinder 6, as shown in the figure 4 is the state diagram when the folding-wing UAV 7 is installed inside the launching cylinder 6; when the launching cylinder 6 launches the folding-wing UAV 7, the folding-wing UAV 7 is ejected from the launching cylinder 6 After the expanded variant process, the climb enters a fully deployed cruise mission state.
  • 1 is a schematic structural view of a folding-wing UAV provided by the present invention in a cruising mission state; FIG.
  • FIG. 2 is a structural schematic view of a side of a folding-wing UAV provided by the present invention in a folded state
  • FIG. 3 is a view of the present invention Schematic diagram of the other side of the folding wing UAV provided in the folded state.
  • FIG. 5 is a schematic diagram of the variation process from the folded state to the cruising mission state after the invention is launched from the barrel.
  • the folding-wing UAV 7 includes a fuselage 1, a Z-shaped folding elastic wing 2, a left full-motion flat tail 3A, a right full-motion flat tail 3B, a full-motion vertical tail 4 and a foldable propeller assembly 5.
  • the folding mechanism that connects the fuselage 1 and each component realizes the folding and unfolding of each mechanism, and completes the transformation process of the folding-wing UAV from the canned standby state to the cruise mission state.
  • the fuselage 1 is a cylindrical structure, and the bottom of the fuselage 1 is cut flat to form a setting plane for placing the folded zigzag folding wing 2 to ensure the radial direction of the whole machine after folding
  • the maximum size does not exceed the diameter of the launch cylinder; the left and right sides of the tail of the fuselage 1 are contracted to form a conical-shaped constriction section 15; the left and right sides of the end of the constriction section 15 are used to place the folded foldable propeller assembly 5 Set the surface; the right side of the front end of the contraction section is cut flat to form a vertical surface 16 for placing the folded full-motion vertical tail 4; the upper surface of the contraction section 15 forms a left and right symmetric left cut flat bevel 17 and a right cut flat
  • the intersection of the inclined plane 18, the left-cut flat inclined plane 17 and the right-cut flat inclined plane 18 is the axis of the fuselage 1, from the axis of the fuselage to the left, the height of the left-cut flat inclined plane 17 gradually becomes
  • the space utilization of the tail section of the fuselage can be increased, and at the same time, it can be used to place the fully-fledged flat tail after folding. Satisfy the space size constraints of the cartridge state.
  • the fuselage 1 adopts a modular design. With reference to FIGS. 7-8, four compartments of a load compartment 11, a power supply compartment 12, an inertial navigation module 13 and a power compartment 14 are arranged in order from the head to the rear; among them, the load compartment 11 It is used to carry seekers and warheads to complete precision strike missions. It can also be equipped with reconnaissance and communication equipment to complete reconnaissance and damage assessment, air vigilance, communication relay and other tasks; the power supply cabin 12 is used to carry batteries and other energy supplies.
  • the inertial navigation module 13 is an inertial navigation device compartment, equipped with devices such as gyroscopes and accelerometers;
  • the power compartment 14 is arranged to drive
  • the power equipment of the foldable propeller assembly 5 includes driving motors, electronic governors and other equipment.
  • the zigzag folding wing 2 is located in the lower middle of the fuselage 1, referring to FIG. 9, including the middle wing section 23, the left outer main wing 24A, the left outer aileron 24B, the right outer main wing 25A and the right outer aileron 25B; the middle wing section 23
  • the left outer main wing 24A and the left outer aileron 24B are three-stage lifting surfaces; the left outer aileron 24B and the right outer aileron 25B are two control surfaces.
  • the middle wing section 23 is a rectangular wing section with the same length as the length of the fuselage 1; the center of the middle wing section 23 is foldably installed at the center of the bottom of the fuselage 1 through the middle wing folding mechanism 21 ;
  • the middle wing folding mechanism 21 is a square rotating mechanism, including a middle wing drive spring 20A and a middle wing mandrel 20B, which can be implemented by a torsion spring structure or a planar scroll spring and other structures, through the rotation control of the middle wing folding mechanism 21 The folding and unfolding of the wing section 23.
  • the left side of the middle wing section 23 can be foldably installed with the left outer main wing 24A through the left outer main wing folding mechanism 22A; the right side of the middle wing section 23 can be foldably installed with the right outer main wing 25A through the right outer main wing folding mechanism 22B; the left outer main wing 24A and right
  • the outer main wing 25A is symmetrical with respect to the left and right planes of the middle wing section 23; wherein, the left outer main wing 24A and the right outer main wing 25A are rectangular wing sections installed outside the bottom of the middle wing section 23, and the length of the middle wing section 23 is extended In half, the chord length is slightly smaller than the chord length of the mid-wing section 23.
  • the left outer main wing folding mechanism 22A and the right outer main wing folding mechanism 22B are circular rotating mechanisms.
  • the left outer main wing 24A and the right outer main wing 25A rotate to the cruising mission state through the outer main wing folding mechanism to achieve a large aspect ratio and high lift-to-drag ratio cruise; in the barrel mounted state, the left outer main wing 24A and the right outer main wing The 25A rotates to the folded state through the outer main wing folding mechanism to achieve barrel launch.
  • the zigzag folding wing 2 When the zigzag folding wing 2 is in the folded state, the zigzag folding wing 2 is folded into a small straight wing that is equal to the length of the fuselage 1 and parallel to the axis of the fuselage 1; when the zigzag is folded When the wing 2 is in the state of a cruising mission, the Z-shaped folded wing 2 is expanded into a large straight wing that is twice the length of the fuselage 1 and perpendicular to the fuselage 1;
  • the left outer main wing 24A and the right outer main wing 25A are connected to the center wing section 23 through the outer main wing folding mechanism, and are symmetrical about the fuselage axis.
  • the right outer main wing 25A is a rectangular wing section installed outside the bottom of the middle wing section 23, and the right outer aileron 25B is installed in the area along the chord direction 0.7-1; one end of the right outer aileron 25B passes through the right
  • the outer main wing control surface rotating shaft 28 is rotatably connected with the right outer main wing 25A; the right outer aileron deflection steering gear 26B is installed on the right outer main wing 25A, and the right outer aileron deflection steering gear 26B drives the connecting rod 27 through the right outer aileron deflection steering gear 27 Connected to the right outer aileron 25B, and then drives the right outer aileron 25B to deflect around the right outer main wing control surface rotation axis 28; the left outer main wing 24A is provided with a deflectable left outer aileron 24B, and used to drive the left outer aileron 24B to deflect Left
  • the left full-motion flat tail 3A can be foldably installed on the left side of the rear of the fuselage 1 through the left flat tail folding mechanism;
  • the right full-motion flat tail 3B can be foldably installed on the right side of the rear of the fuselage 1 through the right flat tail folding mechanism 31;
  • the flat tail 3A and the right full-motion flat tail 3B have a certain dihedral angle, which is beneficial to improve the space utilization of the folded state in the tube;
  • the left full motion flat tail 3A and the right full motion flat tail 3B are symmetrical structures on the left and right sides, referring to FIGS. 15-17, only the right full motion flat tail 3B is taken as an example to introduce its structure:
  • the right full motion flat tail 3B including the right flat tail folding Mechanism 31, horizontal tail rotation shaft 32, horizontal tail deflection steering gear 33, horizontal tail control surface rotation shaft 34, flat tail control surface 35 and flat tail rotation limiter 36;
  • the right flat tail folding mechanism 31 is connected to the fuselage 1 through the flat tail rotation shaft 32 for Control the folding and unfolding of the right full-motion flat tail 3B;
  • the flat tail rotation limiter 36 is used to control the rotation angle of the right full-motion flat tail 3B;
  • the flat tail control surface 35 is connected to the flat tail deflection servo 33 through the flat tail control surface rotation shaft 34, and the flat tail deflection rudder
  • the machine 33 is mounted on the right flat tail folding mechanism 31, and the flat tail control surface rotation shaft 34 controls the deflection of the flat tail control
  • a full-motion vertical tail 4 is provided, which can be foldably installed on the rear right side of the fuselage 1 through a vertical tail folding mechanism 41, and the full-motion vertical tail 4 is located in front of the right full-motion flat tail 3B; in actual application , When one full-motion vertical tail 4 is set, it can also be foldably installed at the rear left side of the fuselage 1; the full-motion vertical tail 4 can also be set at the left and right sides of the rear of the fuselage 1, respectively;
  • the full-motion vertical tail 4 includes a vertical tail folding mechanism 41, a vertical tail rotation shaft 42, a vertical tail deflection steering gear 43, a vertical tail control surface rotating shaft 44, a vertical tail control surface 45, and a vertical tail rotation limit
  • the vertical tail folding mechanism 41 is connected to the fuselage 1 through the vertical tail rotating shaft 42 for controlling the folding and unfolding of the full-motion vertical tail 4;
  • the vertical tail deflecting steering gear 43 is installed on the vertical tail folding mechanism 41 through the vertical tail
  • the tail control surface rotating shaft 44 controls the deflection of the vertical tail control surface 45;
  • the vertical tail rotation limiter 46 is used to control the rotation angle of the full-motion vertical tail 4.
  • the foldable propeller assembly 5 is installed in the middle of the rear end surface of the fuselage 1, including the paddle clamp 53 and the left blade 51A and the right blade 51B symmetrically mounted on the left and right sides of the paddle clamp 53; the left blade 51A and the right blade 51B are antisymmetric structures; wherein, the paddle clamp 53 is a one-piece member, and the paddle clamp 53 is connected to the drive motor inside the fuselage 1 through the drive shaft 54, and the drive motor drives the paddle clamp 53 to rotate through the drive shaft 54;
  • the left blade 51A is foldably mounted on the left end of the paddle clamp 53 through the left blade folding mechanism 52A;
  • the right blade 51B is foldably mounted on the right end of the paddle clamp 53 through the right blade folding mechanism 52B.
  • the left blade folding mechanism 52A and the right blade folding mechanism 52B are both realized by a blade rotating shaft, and the blade rotating shaft is a bearing component, which can realize free rotation of the blade around the shaft.
  • the left blade 51A and the right blade 51B are folded and placed on the side of the rear of the fuselage 1 to meet the space size constraints, and can be automatically unscrewed around the rotation axis of the respective blades under the rotation of the motor after the launch or airdrop.
  • the various folding mechanisms involved in this application including the center wing folding mechanism, the left outer main wing folding mechanism, the right outer main wing folding mechanism, the left flat tail folding mechanism, the right flat tail folding mechanism, the vertical tail folding mechanism, the left
  • the paddle folding mechanism and the right blade folding mechanism can be implemented by any form of folding mechanism in the prior art, as long as the relevant components can be rotated around the fuselage under the action of each folding mechanism, so as to achieve the folding of the relevant components
  • this application does not limit the specific form of the folding mechanism used.
  • the launching cylinder 6 includes a dust cover 61, a launching cylinder bracket 62, a bomb cylinder 63, a piston boosting device 64, a gas generator 65, and a launching cylinder base 66;
  • a dust cover 61 is installed on the head of the cartridge 63.
  • the dust cover 61 is a rubber plug cover to prevent dust, gravel, etc. from entering the cartridge 63 to affect the launch;
  • the launcher bracket 62 is installed outside the cartridge 63, and the launcher bracket 62 can Folded and folded for transportation by soldiers;
  • the launcher base 66 is installed at the rear of the cartridge 63;
  • a gas generator 65 is installed above the launcher base 66;
  • a piston boosting device 64 is installed at the outlet end of the gas generator 65; the piston boosts In front of the device 64, a folding-wing UAV 7 is provided.
  • the firing angle of the firing barrel 6 (the angle between the axis of the barrel and the horizontal plane) is about 60°, and has the characteristics of simple structure, small weight, and maneuverability.
  • the launching cylinder 6 pushes the piston boosting device 64 through the high-pressure gas generated by the combustion of the fuel in the gas generator 65 to eject the folding-wing UAV 7 at high speed to complete the launch.
  • the invention also provides a launching method of a barrel-type folding wing UAV, which includes the following steps:
  • Step 1 The folding-wing UAV 7 is in a fully folded state and placed in the launch tube 6;
  • the folding wing UAV 7 is in a fully folded state, which means:
  • the left outer main wing 24A is folded around the left outer main wing folding mechanism 22A directly under the middle wing section 23, and the right outer main wing 25A is folded around the right outer main wing folding mechanism 22B right under the middle wing section 23 ,
  • the center wing section 23 rotates around the center wing folding mechanism 21 directly below the fuselage 1, and at this time, the zigzag folding wing 2 is folded into a small one that is equal to the length of the fuselage 1 and parallel to the axis of the fuselage 1 Font wing;
  • the left full-motion flat tail 3A is folded to the left cut flat slope 17 of the fuselage 1 by the left flat tail folding mechanism;
  • the right full-motion flat tail 3B is folded to the fuselage by the right flat tail folding mechanism 31 1's right cut flat bevel 18;
  • the full-motion vertical tail 4 is folded on the vertical plane 16 on the right side of the fuselage 1 by the vertical tail folding mechanism 41;
  • the bottom of the fuselage 1 By designing the bottom of the fuselage 1 to be flat, the tail to shrink, and the upper surface of the tail to be cut into left and right inclined planes 17 and 18, when the folding wing UAV 7 is fully folded, its radial maximum size It does not exceed the diameter of the launching cylinder 6 and the length does not exceed the length of the launching cylinder 6, so it can be completely accommodated in the cylinder of the launching cylinder 6;
  • Step 2 After the soldier launches the launch tube 6 with the folding wing UAV 7 on its back to the launch site, install the launch tube 6 according to the required launch angle;
  • Step 3 the gas generator 65 of the launching cylinder 6 is started, the gas generator 65 generates high-pressure gas, and the folding-wing UAV 7 is ejected from the launching cylinder 6 through the piston boosting device 64;
  • Step 4 After the winged unmanned aerial vehicle 7 is ejected from the launch cylinder 6, after a gradually expanded variant process, it climbs into a fully deployed cruise mission state to complete the launch process;
  • the axial direction of the fuselage 1 is taken as the X axis
  • the Z axis is in the symmetry plane of the zigzag folded wing 2 and is perpendicular to the X axis
  • the direction perpendicular to the X-Z plane is taken as the Y axis;
  • the left outer main wing 24A rotates counterclockwise in the XY plane by the left outer main wing folding mechanism 22A
  • the right outer main wing 25A rotates counterclockwise in the XY plane by the right outer main wing folding mechanism 22B.
  • the middle wing section 23, and the right outer main wing 25A form a zigzag intermediate state
  • the outer main wing 24A and the right outer main wing 25A continue to rotate until the center wing section 23 rotates to a position perpendicular to the fuselage 1, the left outer main wing 24A rotates to a position collinear with the center wing section 23, and the right outer main wing 25A rotates to the middle Up to the position where the wing segments 23 are collinear, at this time, the zigzag folded wing 2 is expanded into a large straight wing that is twice the length of the fuselage 1 and perpendicular to the fuselage 1;
  • the left full motion flat tail 3A and the right full motion flat tail 3B For the left full motion flat tail 3A and the right full motion flat tail 3B, the left full motion flat tail 3A is rotated counterclockwise in the XY plane by the left flat tail folding mechanism until the axis of the left full motion flat tail 3A is perpendicular to the axis of the fuselage 1; , The right full-motion flat tail 3B rotates clockwise in the XY plane by the right flat-tail folding mechanism 31 until the axis of the right full-motion flat tail 3B is perpendicular to the axis of the fuselage 1;
  • the full motion vertical tail 4 is rotated clockwise in the XZ plane by the vertical tail folding mechanism 41 until the axis of the full motion vertical tail 4 is perpendicular to the axis of the fuselage 1;
  • the left blade 51A rotates counterclockwise in the XY plane by the left blade folding mechanism 52A, and at the same time, the right blade 51B rotates clockwise in the XY plane by the right blade folding mechanism 52B until The left blade 51A, the blade clamp 53 and the right blade 51B form a straight line.
  • FIG. 24 is a schematic diagram of the barrel launch application scenario of the present invention.
  • the folding-wing UAV 7 can be placed in the launch barrel 6 and penetrated into the launch site via a single man’s backpack, and the launch barrel 6 is installed and started by simple operation.
  • the gas generator 65 uses high-pressure gas to eject the folding-wing UAV 7 from the launching cylinder 6.
  • the folding wing UAV 7 can quickly pass through the folding mechanism after being popped out to complete the process of changing from the canister state to the cruise mission state, and climb into the cruise mission state to carry out reconnaissance, search, precision strike and other tasks.
  • the folding-wing UAV 7 can use the launching cylinder 6 to realize the launching of the barrel, and it can also be carried by the airborne platform to realize the launching of the airdrop.
  • 25 is a schematic diagram of an airdrop launch application scenario of the present invention.
  • the folded-wing UAV 7 occupies a very small space in the folded state, and a large number of onboard transportation platforms can be realized for transportation. When the airborne transportation platform reaches the target drop location, it can be used once sexually release one or more folding-wing drones 7 to perform missions.
  • the folding-wing UAV 7 enters the state of cruise missions through variants, forming a single multi-batch or cluster formation attack type to enhance the combat effectiveness of the folding-wing UAV 7 and better complete the air-to-ground reconnaissance, Search, precise strike and other tasks.
  • the invention provides a folding-wing UAV that can be launched and air-dropped in a barrel type, and the folding and unfolding of the projectile wings and the control surface are controlled by a rotating folding mechanism to realize the folding state and the mission status of the folding-wing UAV
  • the rapid switching of the device has the characteristics of simple structure, light weight, and strong project achievability.
  • the present invention effectively improves the space utilization rate and patrol efficiency of the present invention by using Z-shaped folding elastic wings with small space occupation in the folded state, large wing area and large aspect ratio in the expanded state, etc.
  • the aerodynamic performance of the flying mission is provided.

Abstract

一种筒式发射的折叠翼无人机及其发射方法,筒式发射的折叠翼无人机包括:折叠翼无人机(7)和发射筒(6);在筒装状态时,折叠翼无人机(7)处于完全折叠状态并设置于发射筒(6)的内部;发射筒(6)发射折叠翼无人机(7)时,折叠翼无人机(7)被从发射筒(6)中弹出,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态,折叠翼无人机(7)包括机身(1)、Z字型折叠弹翼(2)、左全动平尾(3A)、右全动平尾(3B)、全动垂尾(4)和可折叠螺旋桨组件(5)。该无人机通过使用具有在折叠状态下占用空间小且在展开状态下机翼面积大、展弦比大等特点的Z字型折叠弹翼,有效提升了无人机的空间利用率和巡飞任务状态下的气动性能。

Description

筒式发射的折叠翼无人机及其发射方法 技术领域
本发明属于折叠翼无人机技术领域,具体涉及一种筒式发射的折叠翼无人机及其发射方法。
背景技术
折叠翼无人机能够通过折叠机构将各部件折叠,有效减小其空间尺寸,实现多种武器平台发射或投放。通过和弹药技术的有机结合,可执行侦察与毁伤评估、通信中继、目标指示、精确打击等单一或多项任务,具有成本低,效费比高,尺寸小,隐身能力强等特点。相比传统无人机,折叠翼无人机可由多种武器平台发射或投放,可配装到各军兵种,能快速进入作战区域,突防能力强,战术使用灵活;相比常规弹药,其留空时间长,作用范围大,可发现并攻击隐蔽的时间敏感目标。
传统的折叠翼无人机多采用X型翼或串列翼布局型式。X型翼布局飞行器有效装载空间相对较小;而串列翼布局飞行器的前后翼气动干扰现象比较严重。
发明内容
针对现有技术存在的缺陷,本发明提供一种筒式发射的折叠翼无人机及其发射方法,可有效解决上述问题。
本发明采用的技术方案如下:
本发明提供一种筒式发射的折叠翼无人机,包括:折叠翼无人机(7)和发射筒(6);在筒装状态时,所述折叠翼无人机(7)处于完全折叠状态并设置于所述发射筒(6)的内部;所述发射筒(6)发射所述折叠翼无人机(7)时,所述折叠翼无人机(7)被从所述发射筒(6)中弹出,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态;
其中,所述折叠翼无人机(7)包括机身(1)、Z字型折叠弹翼(2)、左全动平尾(3A)、右全动平尾(3B)、全动垂尾(4)和可折叠螺旋桨组件(5);
所述机身(1)为圆柱状结构,所述机身(1)的底部切平形成用于放置折叠后的所述Z字型折叠弹翼(2)的设置平面;所述机身(1)尾部的左右两侧面 收缩,形成类圆台形的收缩段(15);所述收缩段(15)的末端的左右两侧面为用于放置折叠后的所述可折叠螺旋桨组件(5)的设置面;所述收缩段的前端的右侧面切平,形成用于放置折叠后的所述全动垂尾(4)的垂直面(16);所述收缩段(15)的上表面形成左右对称的左切平斜面(17)和右切平斜面(18),所述左切平斜面(17)用于放置折叠后的所述左全动平尾(3A);所述右切平斜面(18)用于放置折叠后的所述右全动平尾(3B);
所述Z字型折叠弹翼(2)包括中翼段(23)、左外主翼(24A)、左外副翼(24B)右外主翼(25A)和右外副翼(25B);所述中翼段(23)的中心通过中翼折叠机构(21)可折叠安装在所述机身(1)底部的中心位置;所述中翼段(23)的左侧通过左外主翼折叠机构(22A)可折叠安装所述左外主翼(24A);所述中翼段(23)的右侧通过右外主翼折叠机构(22B)可折叠安装所述右外主翼(25A);所述左外主翼(24A)和所述右外主翼(25A)相对于所述中翼段(23)左右面对称;当所述Z字型折叠弹翼(2)处于折叠状态时,所述Z字型折叠弹翼(2)折叠为展长与所述机身(1)长度等同、平行于所述机身(1)轴线的小一字型机翼;当所述Z字型折叠弹翼(2)处于巡飞任务状态下时,所述Z字型折叠弹翼(2)展开成展长为2倍机身(1)的长度、垂直于机身(1)的大一字型机翼;
所述右外主翼(25A)在沿弦向0.7~1区域安装所述右外副翼(25B);所述右外副翼(25B)的一端通过右外主翼操纵面转轴(28)与所述右外主翼(25A)可转动连接;所述右外主翼(25A)上安装右外副翼偏转舵机(26B),所述右外副翼偏转舵机(26B)通过右外副翼偏转舵机驱动连杆(27)与所述右外副翼(25B)连接,进而驱动所述右外副翼(25B)绕右外主翼操纵面转轴(28)偏转;所述左外主翼(24A)设置可偏转的所述左外副翼(24B)、以及用于驱动所述左外副翼(24B)偏转的左外副翼偏转舵机(26A);所述左外副翼(24B)和所述右外副翼(25B),相对于所述Z字型折叠弹翼(2)的中心位置左右面对称;
所述左全动平尾(3A)通过左平尾折叠机构可折叠安装在所述机身(1)的尾部左侧上方;所述右全动平尾(3B)通过右平尾折叠机构(31)可折叠安装在所述机身(1)的尾部右侧上方,所述左全动平尾(3A)和所述右全动平尾(3B)存在一定的下反角,进而有利于提高筒内折叠态的空间利用率;
所述全动垂尾(4)通过垂尾折叠机构(41)可折叠安装在所述机身(1)的后方,并且,所述全动垂尾(4)位于所述右全动平尾(3B)的前方;其中,所述全动垂尾(4)的设置数量为一个或两个;当所述全动垂尾(4)设置一个时,所述全动垂尾(4)位于所述机身(1)后方的左侧或右侧;当所述全动垂尾(4)设置两个时,所述全动垂尾(4)分别位于所述机身(1)后方的左侧和右侧;
所述可折叠螺旋桨组件(5)安装于所述机身(1)的后端面中部,包括桨夹(53)以及对称安装于所述桨夹(53)左右两侧的左桨叶(51A)和右桨叶(51B);所述左桨叶(51A)和所述右桨叶(51B)为反对称结构;其中,所述桨夹(53)通过驱动轴(54)与所述机身(1)内部的驱动电机连接,所述驱动电机通过所述驱动轴(54)带动所述桨夹(53)旋转;所述左桨叶(51A)通过左桨叶折叠机构(52A)可折叠安装在所述桨夹(53)的左端;所述右桨叶(51B)通过右桨叶折叠机构(52B)可折叠安装在所述桨夹(53)的右端。
优选的,所述机身(1)采用模块化设计,从头部到尾部依次布置有载荷舱(11)、动力电源舱(12)、惯导舱(13)和动力舱(14);其中,所述载荷舱(11)用于搭载导引头以及战斗部完成精确打击任务,也可选择搭载侦察、通信设备完成侦察与毁伤评估、空中警戒,通讯中继任务;所述动力电源舱(12)用于搭载能量供应设备,进而向所述可折叠螺旋桨组件(5)、所述载荷舱(11)内电子设备提供所需的能量;所述惯导舱(13)为惯性导航装置舱,布置有陀螺仪和加速度计设备;所述动力舱(14)布置有用以驱动所述可折叠螺旋桨组件(5)的动力设备。
优选的,所述中翼段(23)为一个展长与所述机身(1)长度等长的矩形翼段;所述中翼折叠机构(21)为方形旋转机构,包括中翼驱动簧(20A)与中翼芯轴(20B),为扭簧或者涡卷簧。
优选的,所述左外主翼(24A)和所述右外主翼(25A)为安装于所述中翼段(23)底部外侧的矩形翼段,其展长为所述中翼段(23)展长的一半,弦长小于所述中翼段(23)的弦长。
优选的,所述左外主翼折叠机构(22A)和所述右外主翼折叠机构(22B) 为圆形旋转机构。
优选的,所述左全动平尾(3A)和所述右全动平尾(3B)为左右面对称结构,对于所述右全动平尾(3B),包括右平尾折叠机构(31)、平尾旋转轴(32)、平尾偏转舵机(33)、平尾操纵面转轴(34)、平尾操纵面(35)和平尾旋转限位器(36);所述右平尾折叠机构(31)通过所述平尾旋转轴(32)与所述机身(1)连接,用于控制所述右全动平尾(3B)的折叠与展开;所述平尾旋转限位器(36)用于控制所述右全动平尾(3B)的旋转角度;所述平尾操纵面(35)通过所述平尾操纵面转轴(34)与所述平尾偏转舵机(33)连接,所述平尾偏转舵机(33)安装于所述右平尾折叠机构(31)上,通过所述平尾操纵面转轴(34)控制所述平尾操纵面(35)的偏转。
优选的,所述全动垂尾(4)包括垂尾折叠机构(41)、垂尾旋转轴(42)、垂尾偏转舵机(43)、垂尾操纵面转轴(44)、垂尾操纵面(45)和垂尾旋转限位器(46);所述垂尾折叠机构(41)通过所述垂尾旋转轴(42)与所述机身(1)连接,用于控制所述全动垂尾(4)的折叠与展开;所述垂尾偏转舵机(43)安装在所述垂尾折叠机构(41)上,通过所述垂尾操纵面转轴(44)控制所述垂尾操纵面(45)的偏转;所述垂尾旋转限位器(46)用于控制所述全动垂尾(4)的旋转角度。
优选的,所述发射筒(6)包括防尘盖(61)、发射筒支架(62)、弹筒(63),活塞助推装置(64)、燃气发生器(65)以及发射筒底座(66);
所述弹筒(63)的头部安装所述防尘盖(61);所述弹筒(63)的外部安装所述发射筒支架(62);所述弹筒(63)的尾部安装所述发射筒底座(66);所述发射筒底座(66)上面安装所述燃气发生器(65);所述燃气发生器(65)的出气口端安装所述活塞助推装置(64);所述活塞助推装置(64)的前面设置所述折叠翼无人机(7)。
本发明还提供一种筒式发射的折叠翼无人机的发射方法,包括以下步骤:
步骤1,折叠翼无人机(7)处于完全折叠状态,并放置于发射筒(6)内;
其中,折叠翼无人机(7)处于完全折叠状态,是指:
对于Z字型折叠弹翼(2),左外主翼(24A)绕左外主翼折叠机构(22A) 折叠到中翼段(23)的正下方,右外主翼(25A)绕右外主翼折叠机构(22B)折叠到中翼段(23)的正下方,中翼段(23)绕中翼折叠机构(21)旋转到机身(1)的正下方,此时,Z字型折叠弹翼(2)折叠为展长与机身(1)长度等同、平行于所述机身(1)轴线的小一字型机翼;
对于左全动平尾(3A)和右全动平尾(3B),所述左全动平尾(3A)通过左平尾折叠机构折叠于所述机身(1)的左切平斜面(17);所述右全动平尾(3B)通过右平尾折叠机构(31)折叠于所述机身(1)的右切平斜面(18);
对于全动垂尾(4),所述全动垂尾(4)通过垂尾折叠机构(41)折叠于所述机身(1)右侧面的垂直面(16);
对于可折叠螺旋桨组件(5),其左桨叶(51A)通过左桨叶折叠机构(52A)折叠于所述机身(1)的尾部左侧面;其右桨叶(51B)通过右桨叶折叠机构(52B)折叠于所述机身(1)的尾部右侧面;
通过对所述机身(1)进行底部切平、尾部收缩、尾部上表面切成左切平斜面(17)和右切平斜面(18)的设计,当所述折叠翼无人机(7)处于完全折叠状态后,其径向最大尺寸不超过所述发射筒(6)的直径,长度不超过所述发射筒(6)的长度,因此,可完全收纳于所述发射筒(6)的筒内;
步骤2,单兵背负放置有所述折叠翼无人机(7)的发射筒(6)到达发射地点后,按所需的发射角度安装所述发射筒(6);
步骤3,启动发射筒(6)的燃气发生器(65),燃气发生器(65)产生高压气体,通过活塞助推装置(64)将所述折叠翼无人机(7)从发射筒(6)中弹出;
步骤4,所述折叠翼无人机(7)在从所述发射筒(6)中弹出后,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态,完成发射过程;
具体的,以机身(1)的轴向为X轴,Z轴在Z字型折叠弹翼(2)的对称面内,垂直于X轴,以与X-Z平面垂直的方向为Y轴;
当折叠翼无人机(7)被从所述发射筒(6)中弹出后,在各个折叠机构的作用下,从折叠状态逐渐展开,直到形成完全展开状态,其变体过程为:
对于Z字型折叠弹翼(2),其中翼段(23)通过中翼折叠机构(21)在XY 平面中进行顺时针旋转,同时,左外主翼(24A)通过左外主翼折叠机构(22A)在XY平面中进行逆时针旋转,右外主翼(25A)通过右外主翼折叠机构(22B)在XY平面中进行逆时针旋转,经过左外主翼(24A)、中翼段(23)和右外主翼(25A)形成Z字型的中间状态后,中翼段(23)、左外主翼(24A)和右外主翼(25A)继续旋转,直到中翼段(23)旋转到与机身(1)垂直的位置、左外主翼(24A)旋转到与中翼段(23)共线的位置、右外主翼(25A)旋转到与中翼段(23)共线的位置为止,此时Z字型折叠弹翼(2)展开成展长为2倍机身(1)的长度、垂直于机身(1)的大一字型机翼;
对于左全动平尾(3A)和右全动平尾(3B),左全动平尾(3A)通过左平尾折叠机构在XY平面中进行逆时针旋转,直到左全动平尾(3A)的轴线与所述机身(1)的轴线垂直为止;同时,右全动平尾(3B)通过右平尾折叠机构(31)在XY平面中进行顺时针旋转,直到右全动平尾(3B)的轴线与所述机身(1)的轴线垂直为止;
对于全动垂尾(4),全动垂尾(4)通过垂尾折叠机构(41)在XZ平面中进行顺时针旋转,直到全动垂尾(4)的轴线与所述机身(1)的轴线垂直为止;
对于可折叠螺旋桨组件(5),左桨叶(51A)通过左桨叶折叠机构(52A)在XY平面中进行逆时针旋转,同时,右桨叶(51B)通过右桨叶折叠机构(52B)在XY平面中进行顺时针旋转,直到左桨叶(51A)、桨夹(53)和右桨叶(51B)形成一字型为止。
本发明提供的筒式发射的折叠翼无人机及其发射方法具有以下优点:
本发明提供一种筒式发射的折叠翼无人机及其发射方法,具有巡航状态气动特性好,筒装状态占用空间小、重量轻,可由单兵背负携带,便于操作等特点。
附图说明
图1为本发明提供的折叠翼无人机在巡飞任务状态时的结构示意图;
图2为本发明提供的折叠翼无人机在折叠状态时一侧的结构示意图;
图3为本发明提供的折叠翼无人机在折叠状态时另一侧的结构示意图;
图4为本发明提供的折叠翼无人机在发射筒内的布置示意图;
图5为本发明从筒内发射后,从折叠状态到巡飞任务状态的变体过程示意图;
图6为本发明的机体尾部各部件安装相对位置示意图;
图7为本发明机身1内部装载空间在一个方位下的布置示意图;
图8为本发明机身1内部装载空间在另一个方位下的布置示意图;
图9为本发明的Z字型折叠弹翼2布局形式示意图;
图10为本发明Z字型折叠弹翼2的中翼段23轴测图;
图11为本发明Z字型折叠弹翼2的中翼段23俯视图;
图12为本发明Z字型折叠弹翼2的右外主翼25A的仰视图;
图13为图12沿A-A剖视图;
图14为本发明Z字型折叠弹翼2的右外主翼25A的仰视图;
图15为本发明全动平尾3的轴测图;
图16为本发明全动平尾3的俯视图;
图17为本发明全动平尾3的仰视图;
图18为本发明全动垂尾4的轴测图;
图19为本发明全动垂尾4的左视图;
图20为本发明可折叠螺旋桨组件5在折叠状态下的示意图;
图21为本发明可折叠螺旋桨组件5在中间状态下的示意图;
图22为本发明可折叠螺旋桨组件5在完全展开下的示意图;
图23为本发明可折叠螺旋桨组件5由折叠状态到完全展开状态的变化过程图;
图24为本发明筒式发射应用场景示意图;
图25为本发明空投发射应用场景示意图;
其中:
1机身;11载荷舱;12动力电源舱;13惯导舱;14动力舱;15收缩段;16垂直面;17左切平斜面;18右切平斜面;
2Z字型折叠弹翼;20A中翼驱动簧;20B中翼芯轴;21中翼折叠机构;22A左外主翼折叠机构;22B右外主翼折叠机构;23中翼段;24A左外主翼;24B左 外副翼;25A右外主翼;25B右外副翼;26A左外副翼偏转舵机;26B右外副翼偏转舵机;27右外副翼偏转舵机驱动连杆;28右外主翼操纵面转轴;
3A左全动平尾;3B右全动平尾;31右平尾折叠机构;32平尾旋转轴;33平尾偏转舵机;34平尾操纵面转轴;35平尾操纵面;36旋转限位器;
4全动垂尾;41垂尾折叠机构;42垂尾旋转轴;43垂尾偏转舵机;44垂尾操纵面转轴;45垂尾操纵面;46垂尾旋转限位器;
5可折叠螺旋桨组件;51A左桨叶;51B右桨叶;52A左桨叶折叠机构;52B右桨叶折叠机构;53桨夹;54驱动轴;
6发射筒;防尘盖61;发射筒支架62;弹筒63;活塞助推装置64;燃气发生器65;发射筒底座66;
7折叠翼无人机。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
为了克服传统折叠翼无人机空间利用率低、气动干扰现象严重等缺点。本发明提供一种筒式发射的折叠翼无人机及其发射方法,具有巡航状态气动特性好,筒装状态占用空间小、重量轻,可由单兵背负携带,便于操作等特点。
筒式发射的折叠翼无人机,包括:折叠翼无人机7和发射筒6;在筒装状态时,折叠翼无人机7处于完全折叠状态并设置于发射筒6的内部,如图4,即为折叠翼无人机7设置于发射筒6的内部时的状态图;发射筒6发射折叠翼无人机7时,折叠翼无人机7被从发射筒6中弹出,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态。参考图1为本发明提供的折叠翼无人机在巡飞任务状态时的结构示意图;图2为本发明提供的折叠翼无人机在折叠状态时一侧的结构示意图;图3为本发明提供的折叠翼无人机在折叠状态时另一侧的结构示意图。图5为本发明从筒内发射后,从折叠状态到巡飞任务状态的变体过程示意图。
下面分别对折叠翼无人机7和发射筒6的结构详细介绍:
(一)折叠翼无人机7
折叠翼无人机7包括机身1、Z字型折叠弹翼2、左全动平尾3A、右全动平尾3B、全动垂尾4和可折叠螺旋桨组件5。通过连接机身1和各部件的折叠机构实现各机构的折叠与展开,完成折叠翼无人机从筒装待机状态到巡飞任务状态的变体过程。
(1)机身
参考图6和图1,机身1为圆柱状结构,机身1的底部切平形成用于放置折叠后的Z字型折叠弹翼2的设置平面,以保证全机在折叠后的径向最大尺寸不超过发射筒的直径;机身1尾部的左右两侧面收缩,形成类圆台形的收缩段15;收缩段15的末端的左右两侧面为用于放置折叠后的可折叠螺旋桨组件5的设置面;收缩段的前端的右侧面切平,形成用于放置折叠后的全动垂尾4的垂直面16;收缩段15的上表面形成左右对称的左切平斜面17和右切平斜面18,左切平斜面17和右切平斜面18的相交线为机身1的轴线,从机身的轴线向左,左切平斜面17的高度逐渐变低;从机身的轴线向右,右切平斜面18的高度逐渐变低;左切平斜面17与左全动平尾3A的底面倾斜度一致,用于放置折叠后的左全动平尾3A;右切平斜面18与右全动平尾3B的底面倾斜度一致,用于放置折叠后的右全动平尾3B;也就是说,当左全动平尾3A折叠于左切平斜面17时,左全动平尾3A的底面刚好与左切平斜面17的表面接触;同样的,当右全动平尾3B折叠于右切平斜面18时,右全动平尾3B的底面刚好与右切平斜面18的表面接触。通过设置两个对称的切平斜面,而非一个与切平斜面的低位置相平齐的平面,可增大机身尾段的空间利用率,同时用以安置折叠后的全动平尾,以满足筒装状态的空间尺寸约束。
机身1采用模块化设计,参考图7-图8,从头部到尾部依次布置有载荷舱11、动力电源舱12、惯导舱13和动力舱14四个舱段;其中,载荷舱11用于搭载导引头以及战斗部完成精确打击任务,也可选择搭载侦察、通信设备完成侦察与毁伤评估、空中警戒,通讯中继等多项任务;动力电源舱12用于搭载电池等能量供应设备,进而向可折叠螺旋桨组件5、载荷舱11内电子设备等提供所需的能量;惯导舱13为惯性导航装置舱,布置有陀螺仪和加速度计等设备;动力舱14布置有用以驱动可折叠螺旋桨组件5的动力设备,包括驱动电机、电子调速器等设备。
(2)Z字型折叠弹翼
Z字型折叠弹翼2位于机身1下方中部,参考图9,包括中翼段23、左外主翼24A、左外副翼24B、右外主翼25A和右外副翼25B;中翼段23、左外主翼24A和左外副翼24B为三段升力面;左外副翼24B和右外副翼25B为两个操纵面。
参考图10和图11,中翼段23为一个展长与机身1长度等长的矩形翼段;中翼段23的中心通过中翼折叠机构21可折叠安装在机身1底部的中心位置;其中,中翼折叠机构21为方形旋转机构,包括中翼驱动簧20A与中翼芯轴20B,可采用扭簧结构或平面涡卷弹簧等结构实现,通过中翼折叠机构21的旋转控制中翼段23的折叠与展开。
中翼段23的左侧通过左外主翼折叠机构22A可折叠安装左外主翼24A;中翼段23的右侧通过右外主翼折叠机构22B可折叠安装右外主翼25A;左外主翼24A和右外主翼25A相对于中翼段23左右面对称;其中,左外主翼24A和右外主翼25A为安装于中翼段23底部外侧的矩形翼段,其展长为中翼段23展长的一半,弦长略小于中翼段23的弦长。左外主翼折叠机构22A和右外主翼折叠机构22B为圆形旋转机构。在飞行中,左外主翼24A与右外主翼25A通过外主翼折叠机构旋转至巡飞任务状态,实现大展弦比、高升阻比巡航;在筒装状态下,左外主翼24A与右外主翼25A通过外主翼折叠机构旋转至折叠状态,实现筒装发射。
当Z字型折叠弹翼2处于折叠状态时,Z字型折叠弹翼2折叠为展长与机身1长度等同、平行于机身1轴线的小一字型机翼;当Z字型折叠弹翼2处于巡飞任务状态下时,Z字型折叠弹翼2展开成展长为2倍机身1的长度、垂直于机身1的大一字型机翼;
左外主翼24A与右外主翼25A通过外主翼折叠机构实现和中翼段23的连接,并关于机身轴线对称。
参考图12-图14,右外主翼25A为一个安装在中翼段23底部外侧的矩形翼段,在沿弦向0.7~1区域安装右外副翼25B;右外副翼25B的一端通过右外主翼操纵面转轴28与右外主翼25A可转动连接;右外主翼25A上安装右外副翼偏转舵机26B,右外副翼偏转舵机26B通过右外副翼偏转舵机驱动连杆27与右外副翼25B连接,进而驱动右外副翼25B绕右外主翼操纵面转轴28偏转;左外主翼24A设置可偏转的左外副翼24B、以及用于驱动左外副翼24B偏转的左外副翼偏转舵机26A;左 外副翼24B和右外副翼25B,相对于Z字型折叠弹翼2的中心位置左右面对称;
(3)左全动平尾和右全动平尾
左全动平尾3A通过左平尾折叠机构可折叠安装在机身1的尾部左侧上方;右全动平尾3B通过右平尾折叠机构31可折叠安装在机身1的尾部右侧上方;左全动平尾3A和右全动平尾3B存在一定的下反角,进而有利于提高筒内折叠态的空间利用率;
左全动平尾3A和右全动平尾3B为左右面对称结构,参考图15-图17,仅以右全动平尾3B为例,介绍其结构:对于右全动平尾3B,包括右平尾折叠机构31、平尾旋转轴32、平尾偏转舵机33、平尾操纵面转轴34、平尾操纵面35和平尾旋转限位器36;右平尾折叠机构31通过平尾旋转轴32与机身1连接,用于控制右全动平尾3B的折叠与展开;平尾旋转限位器36用于控制右全动平尾3B的旋转角度;平尾操纵面35通过平尾操纵面转轴34与平尾偏转舵机33连接,平尾偏转舵机33安装于右平尾折叠机构31上,通过平尾操纵面转轴34控制平尾操纵面35的偏转。
(4)全动垂尾
在附图中,全动垂尾4设置一个,通过垂尾折叠机构41可折叠安装在机身1的后方右侧,并且,全动垂尾4位于右全动平尾3B的前方;实际应用中,全动垂尾4设置一个时,也可以可折叠安装在机身1的后方左侧;全动垂尾4也可以设置,分别位于机身1后方的左侧和右侧;
参考图18-图19,全动垂尾4包括垂尾折叠机构41、垂尾旋转轴42、垂尾偏转舵机43、垂尾操纵面转轴44、垂尾操纵面45和垂尾旋转限位器46;垂尾折叠机构41通过垂尾旋转轴42与机身1连接,用于控制全动垂尾4的折叠与展开;垂尾偏转舵机43安装在垂尾折叠机构41上,通过垂尾操纵面转轴44控制垂尾操纵面45的偏转;垂尾旋转限位器46用于控制全动垂尾4的旋转角度。
(5)可折叠螺旋桨组件
参考图20-图23,可折叠螺旋桨组件5安装于机身1的后端面中部,包括桨夹53以及对称安装于桨夹53左右两侧的左桨叶51A和右桨叶51B;左桨叶51A和右桨叶51B为反对称结构;其中,桨夹53为一条形部件,桨夹53通过驱动轴54与机身1内部的驱动电机连接,驱动电机通过驱动轴54带动桨夹53旋转;左桨叶51A 通过左桨叶折叠机构52A可折叠安装在桨夹53的左端;右桨叶51B通过右桨叶折叠机构52B可折叠安装在桨夹53的右端。其中,左桨叶折叠机构52A和右桨叶折叠机构52B均采用桨叶转轴实现,桨叶转轴为一轴承部件,可使桨叶实现绕轴自由旋转。在筒装状态下,左桨叶51A和右桨叶51B折叠放置在机身1尾部侧方以满足空间尺寸约束,在发射或空投后可在电机旋转带动下绕各自桨叶转轴自动旋开。
需要强调的是,对于本申请涉及到的各种折叠机构,包括中翼折叠机构、左外主翼折叠机构、右外主翼折叠机构、左平尾折叠机构、右平尾折叠机构、垂尾折叠机构、左桨叶折叠机构和右桨叶折叠机构,可以采用现有技术中任何形式的折叠机构实现,只要能够实现在各个折叠机构的作用下,相关部件可以绕机身旋转,从而实现相关部件的折叠即可,本申请对采用的折叠机构的具体形式并不限制。
(二)发射筒
参考图4,发射筒6包括防尘盖61、发射筒支架62、弹筒63,活塞助推装置64、燃气发生器65以及发射筒底座66;
弹筒63的头部安装防尘盖61,的防尘盖61为一橡胶塞盖,防止尘土砂砾等进入弹筒63影响发射;弹筒63的外部安装发射筒支架62,发射筒支架62可折叠收放,以便单兵背负运输;弹筒63的尾部安装发射筒底座66;发射筒底座66上面安装燃气发生器65;燃气发生器65的出气口端安装活塞助推装置64;活塞助推装置64的前面设置折叠翼无人机7。
发射筒6的发射倾角(炮筒轴线与水平面夹角)约60°,具有结构简单,重量小,单兵可操作等特点。发射筒6通过燃气发生器65中燃料燃烧产生的高压气体来推动活塞助推装置64将折叠翼无人机7高速弹出,完成发射。
本发明还提供一种筒式发射的折叠翼无人机的发射方法,包括以下步骤:
步骤1,折叠翼无人机7处于完全折叠状态,并放置于发射筒6内;
其中,折叠翼无人机7处于完全折叠状态,是指:
对于Z字型折叠弹翼2,左外主翼24A绕左外主翼折叠机构22A折叠到中翼段23的正下方,右外主翼25A绕右外主翼折叠机构22B折叠到中翼段23的 正下方,中翼段23绕中翼折叠机构21旋转到机身1的正下方,此时,Z字型折叠弹翼2折叠为展长与机身1长度等同、平行于机身1轴线的小一字型机翼;
对于左全动平尾3A和右全动平尾3B,左全动平尾3A通过左平尾折叠机构折叠于机身1的左切平斜面17;右全动平尾3B通过右平尾折叠机构31折叠于机身1的右切平斜面18;
对于全动垂尾4,全动垂尾4通过垂尾折叠机构41折叠于机身1右侧面的垂直面16;
对于可折叠螺旋桨组件5,其左桨叶51A通过左桨叶折叠机构52A折叠于机身1的尾部左侧面;其右桨叶51B通过右桨叶折叠机构52B折叠于机身1的尾部右侧面;
通过对机身1进行底部切平、尾部收缩、尾部上表面切成左切平斜面17和右切平斜面18的设计,当折叠翼无人机7处于完全折叠状态后,其径向最大尺寸不超过发射筒6的直径,长度不超过发射筒6的长度,因此,可完全收纳于发射筒6的筒内;
步骤2,单兵背负放置有折叠翼无人机7的发射筒6到达发射地点后,按所需的发射角度安装发射筒6;
步骤3,启动发射筒6的燃气发生器65,燃气发生器65产生高压气体,通过活塞助推装置64将折叠翼无人机7从发射筒6中弹出;
步骤4,折叠翼无人机7在从发射筒6中弹出后,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态,完成发射过程;
具体的,以机身1的轴向为X轴,Z轴在Z字型折叠弹翼2的对称面内,垂直于X轴,以与X-Z平面垂直的方向为Y轴;
当折叠翼无人机7被从发射筒6中弹出后,在各个折叠机构的作用下,其从折叠状态逐渐展开,直到形成完全展开状态,其变体过程为:
对于Z字型折叠弹翼2,其中翼段23通过中翼折叠机构21在XY平面中进行顺时针旋转,同时,左外主翼24A通过左外主翼折叠机构22A在XY平面中进行逆时针旋转,右外主翼25A通过右外主翼折叠机构22B在XY平面中进行逆时针旋转,经过左外主翼24A、中翼段23和右外主翼25A形成Z字型的中间 状态后,中翼段23、左外主翼24A和右外主翼25A继续旋转,直到中翼段23旋转到与机身1垂直的位置、左外主翼24A旋转到与中翼段23共线的位置、右外主翼25A旋转到与中翼段23共线的位置为止,此时Z字型折叠弹翼2展开成展长为2倍机身1的长度、垂直于机身1的大一字型机翼;
对于左全动平尾3A和右全动平尾3B,左全动平尾3A通过左平尾折叠机构在XY平面中进行逆时针旋转,直到左全动平尾3A的轴线与机身1的轴线垂直为止;同时,右全动平尾3B通过右平尾折叠机构31在XY平面中进行顺时针旋转,直到右全动平尾3B的轴线与机身1的轴线垂直为止;
对于全动垂尾4,全动垂尾4通过垂尾折叠机构41在XZ平面中进行顺时针旋转,直到全动垂尾4的轴线与机身1的轴线垂直为止;
对于可折叠螺旋桨组件5,左桨叶51A通过左桨叶折叠机构52A在XY平面中进行逆时针旋转,同时,右桨叶51B通过右桨叶折叠机构52B在XY平面中进行顺时针旋转,直到左桨叶51A、桨夹53和右桨叶51B形成一字型为止。
实际应用中,图24为本发明筒式发射应用场景示意图,折叠翼无人机7可放置在发射筒6内,经由单兵背负穿插渗透到发射地点,通过简易操作安装好发射筒6,启动燃气发生器65,利用高压气体将折叠翼无人机7从发射筒6中弹出。折叠翼无人机7在弹出后可迅速通过折叠机构,完成从筒装状态到巡飞任务状态的变体过程,并爬升进入巡飞任务状态,展开侦察、搜索、精确打击等任务。
折叠翼无人机7除了可利用发射筒6实现筒装发射之外,还可以通过空中载运平台搭载实现空投发射。图25为本发明空投发射应用场景示意图,折叠翼无人机7在折叠状态下占用空间极小,可以通过空中运载平台实现较大数量搭载运输,当空中载运平台到达目标投放地点后,可一次性释放一架或者多架折叠翼无人机7前往执行任务。折叠翼无人机7通过变体进入巡飞任务状态,组成单架多批次或者集群编队攻击型式,以增强折叠翼无人机7的作战效能,更好地完成对空对地的侦察、搜索、精确打击等任务。
本发明提供的一种可以筒式发射和空投的折叠翼无人机,通过旋转折叠机构来控制弹翼及操纵面的折叠与展开,实现折叠翼无人机筒装折叠状态与巡飞任务状态的快速切换,具有结构简单,重量轻,工程可实现性较强的特点。同 时,本发明通过使用具有在折叠状态下占用空间小且在展开状态下机翼面积大、展弦比大等特点的Z字型折叠弹翼,有效提升了本发明的空间利用率和在巡飞任务状态的气动性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (9)

  1. 一种筒式发射的折叠翼无人机,其特征在于,包括:折叠翼无人机(7)和发射筒(6);在筒装状态时,所述折叠翼无人机(7)处于完全折叠状态并设置于所述发射筒(6)的内部;所述发射筒(6)发射所述折叠翼无人机(7)时,所述折叠翼无人机(7)被从所述发射筒(6)中弹出,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态;
    其中,所述折叠翼无人机(7)包括机身(1)、Z字型折叠弹翼(2)、左全动平尾(3A)、右全动平尾(3B)、全动垂尾(4)和可折叠螺旋桨组件(5);
    所述机身(1)为圆柱状结构,所述机身(1)的底部切平形成用于放置折叠后的所述Z字型折叠弹翼(2)的设置平面;所述机身(1)尾部的左右两侧面收缩,形成类圆台形的收缩段(15);所述收缩段(15)的末端的左右两侧面为用于放置折叠后的所述可折叠螺旋桨组件(5)的设置面;所述收缩段的前端的右侧面切平,形成用于放置折叠后的所述全动垂尾(4)的垂直面(16);所述收缩段(15)的上表面形成左右对称的左切平斜面(17)和右切平斜面(18),所述左切平斜面(17)用于放置折叠后的所述左全动平尾(3A);所述右切平斜面(18)用于放置折叠后的所述右全动平尾(3B);
    所述Z字型折叠弹翼(2)包括中翼段(23)、左外主翼(24A)、左外副翼(24B)右外主翼(25A)和右外副翼(25B);所述中翼段(23)的中心通过中翼折叠机构(21)可折叠安装在所述机身(1)底部的中心位置;所述中翼段(23)的左侧通过左外主翼折叠机构(22A)可折叠安装所述左外主翼(24A);所述中翼段(23)的右侧通过右外主翼折叠机构(22B)可折叠安装所述右外主翼(25A);所述左外主翼(24A)和所述右外主翼(25A)相对于所述中翼段(23)左右面对称;当所述Z字型折叠弹翼(2)处于折叠状态时,所述Z字型折叠弹翼(2)折叠为展长与所述机身(1)长度等同、平行于所述机身(1)轴线的小一字型机翼;当所述Z字型折叠弹翼(2)处于巡飞任务状态下时,所述Z字型折叠弹翼(2)展开成展长为2倍机身(1)的长度、垂直于机身(1)的大一字型机翼;
    所述右外主翼(25A)在沿弦向0.7~1区域安装所述右外副翼(25B);所述右外副翼(25B)的一端通过右外主翼操纵面转轴(28)与所述右外主翼(25A)可转动连接;所述右外主翼(25A)上安装右外副翼偏转舵机(26B),所述右外 副翼偏转舵机(26B)通过右外副翼偏转舵机驱动连杆(27)与所述右外副翼(25B)连接,进而驱动所述右外副翼(25B)绕右外主翼操纵面转轴(28)偏转;所述左外主翼(24A)设置可偏转的所述左外副翼(24B)、以及用于驱动所述左外副翼(24B)偏转的左外副翼偏转舵机(26A);所述左外副翼(24B)和所述右外副翼(25B),相对于所述Z字型折叠弹翼(2)的中心位置左右面对称;
    所述左全动平尾(3A)通过左平尾折叠机构可折叠安装在所述机身(1)的尾部左侧上方;所述右全动平尾(3B)通过右平尾折叠机构(31)可折叠安装在所述机身(1)的尾部右侧上方,所述左全动平尾(3A)和所述右全动平尾(3B)存在一定的下反角,进而有利于提高筒内折叠态的空间利用率;
    所述全动垂尾(4)通过垂尾折叠机构(41)可折叠安装在所述机身(1)的后方,并且,所述全动垂尾(4)位于所述右全动平尾(3B)的前方;其中,所述全动垂尾(4)的设置数量为一个或两个;当所述全动垂尾(4)设置一个时,所述全动垂尾(4)位于所述机身(1)后方的左侧或右侧;当所述全动垂尾(4)设置两个时,所述全动垂尾(4)分别位于所述机身(1)后方的左侧和右侧;
    所述可折叠螺旋桨组件(5)安装于所述机身(1)的后端面中部,包括桨夹(53)以及对称安装于所述桨夹(53)左右两侧的左桨叶(51A)和右桨叶(51B);所述左桨叶(51A)和所述右桨叶(51B)为反对称结构;其中,所述桨夹(53)通过驱动轴(54)与所述机身(1)内部的驱动电机连接,所述驱动电机通过所述驱动轴(54)带动所述桨夹(53)旋转;所述左桨叶(51A)通过左桨叶折叠机构(52A)可折叠安装在所述桨夹(53)的左端;所述右桨叶(51B)通过右桨叶折叠机构(52B)可折叠安装在所述桨夹(53)的右端。
  2. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述机身(1)采用模块化设计,从头部到尾部依次布置有载荷舱(11)、动力电源舱(12)、惯导舱(13)和动力舱(14);其中,所述载荷舱(11)用于搭载导引头以及战斗部完成精确打击任务,也可选择搭载侦察、通信设备完成侦察与毁伤评估、空中警戒,通讯中继任务;所述动力电源舱(12)用于搭载能量供应设备,进而向所述可折叠螺旋桨组件(5)、所述载荷舱(11)内电子设备提供 所需的能量;所述惯导舱(13)为惯性导航装置舱,布置有陀螺仪和加速度计设备;所述动力舱(14)布置有用以驱动所述可折叠螺旋桨组件(5)的动力设备。
  3. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述中翼段(23)为一个展长与所述机身(1)长度等长的矩形翼段;所述中翼折叠机构(21)为方形旋转机构,包括中翼驱动簧(20A)与中翼芯轴(20B)。
  4. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述左外主翼(24A)和所述右外主翼(25A)为安装于所述中翼段(23)底部外侧的矩形翼段,其展长为所述中翼段(23)展长的一半,弦长小于所述中翼段(23)的弦长。
  5. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述左外主翼折叠机构(22A)和所述右外主翼折叠机构(22B)为圆形旋转机构。
  6. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述左全动平尾(3A)和所述右全动平尾(3B)为左右面对称结构,对于所述右全动平尾(3B),包括右平尾折叠机构(31)、平尾旋转轴(32)、平尾偏转舵机(33)、平尾操纵面转轴(34)、平尾操纵面(35)和平尾旋转限位器(36);所述右平尾折叠机构(31)通过所述平尾旋转轴(32)与所述机身(1)连接,用于控制所述右全动平尾(3B)的折叠与展开;所述平尾旋转限位器(36)用于控制所述右全动平尾(3B)的旋转角度;所述平尾操纵面(35)通过所述平尾操纵面转轴(34)与所述平尾偏转舵机(33)连接,所述平尾偏转舵机(33)安装于所述右平尾折叠机构(31)上,通过所述平尾操纵面转轴(34)控制所述平尾操纵面(35)的偏转。
  7. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述全动垂尾(4)包括垂尾折叠机构(41)、垂尾旋转轴(42)、垂尾偏转舵机(43)、垂尾操纵面转轴(44)、垂尾操纵面(45)和垂尾旋转限位器(46);所述垂尾折叠机构(41)通过所述垂尾旋转轴(42)与所述机身(1)连接,用于控制所述全动垂尾(4)的折叠与展开;所述垂尾偏转舵机(43)安装在所述垂尾折叠机构(41)上,通过所述垂尾操纵面转轴(44)控制所述垂尾操纵面(45)的 偏转;所述垂尾旋转限位器(46)用于控制所述全动垂尾(4)的旋转角度。
  8. 根据权利要求1所述的筒式发射的折叠翼无人机,其特征在于,所述发射筒(6)包括防尘盖(61)、发射筒支架(62)、弹筒(63),活塞助推装置(64)、燃气发生器(65)以及发射筒底座(66);
    所述弹筒(63)的头部安装所述防尘盖(61);所述弹筒(63)的外部安装所述发射筒支架(62);所述弹筒(63)的尾部安装所述发射筒底座(66);所述发射筒底座(66)上面安装所述燃气发生器(65);所述燃气发生器(65)的出气口端安装所述活塞助推装置(64);所述活塞助推装置(64)的前面设置所述折叠翼无人机(7)。
  9. 一种权利要求1-8任一项所述的筒式发射的折叠翼无人机的发射方法,其特征在于,包括以下步骤:
    步骤1,折叠翼无人机(7)处于完全折叠状态,并放置于发射筒(6)内;
    其中,折叠翼无人机(7)处于完全折叠状态,是指:
    对于Z字型折叠弹翼(2),左外主翼(24A)绕左外主翼折叠机构(22A)折叠到中翼段(23)的正下方,右外主翼(25A)绕右外主翼折叠机构(22B)折叠到中翼段(23)的正下方,中翼段(23)绕中翼折叠机构(21)旋转到机身(1)的正下方,此时,Z字型折叠弹翼(2)折叠为展长与机身(1)长度等同、平行于所述机身(1)轴线的小一字型机翼;
    对于左全动平尾(3A)和右全动平尾(3B),所述左全动平尾(3A)通过左平尾折叠机构折叠于所述机身(1)的左切平斜面(17);所述右全动平尾(3B)通过右平尾折叠机构(31)折叠于所述机身(1)的右切平斜面(18);
    对于全动垂尾(4),所述全动垂尾(4)通过垂尾折叠机构(41)折叠于所述机身(1)右侧面的垂直面(16);
    对于可折叠螺旋桨组件(5),其左桨叶(51A)通过左桨叶折叠机构(52A)折叠于所述机身(1)的尾部左侧面;其右桨叶(51B)通过右桨叶折叠机构(52B)折叠于所述机身(1)的尾部右侧面;
    通过对所述机身(1)进行底部切平、尾部收缩、尾部上表面切成左切平斜面(17)和右切平斜面(18)的设计,当所述折叠翼无人机(7)处于完全折叠 状态后,其径向最大尺寸不超过所述发射筒(6)的直径,长度不超过所述发射筒(6)的长度,因此,可完全收纳于所述发射筒(6)的筒内;
    步骤2,单兵背负放置有所述折叠翼无人机(7)的发射筒(6)到达发射地点后,按所需的发射角度安装所述发射筒(6);
    步骤3,启动发射筒(6)的燃气发生器(65),燃气发生器(65)产生高压气体,通过活塞助推装置(64)将所述折叠翼无人机(7)从发射筒(6)中弹出;
    步骤4,所述折叠翼无人机(7)在从所述发射筒(6)中弹出后,经过逐渐展开的变体过程后,爬升进入完全展开的巡飞任务状态,完成发射过程;
    具体的,以机身(1)的轴向为X轴,Z轴在Z字型折叠弹翼(2)的对称面内,垂直于X轴,以与X-Z平面垂直的方向为Y轴;
    当折叠翼无人机(7)被从所述发射筒(6)中弹出后,在各个折叠机构的作用下,从折叠状态逐渐展开,直到形成完全展开状态,其变体过程为:
    对于Z字型折叠弹翼(2),其中翼段(23)通过中翼折叠机构(21)在XY平面中进行顺时针旋转,同时,左外主翼(24A)通过左外主翼折叠机构(22A)在XY平面中进行逆时针旋转,右外主翼(25A)通过右外主翼折叠机构(22B)在XY平面中进行逆时针旋转,经过左外主翼(24A)、中翼段(23)和右外主翼(25A)形成Z字型的中间状态后,中翼段(23)、左外主翼(24A)和右外主翼(25A)继续旋转,直到中翼段(23)旋转到与机身(1)垂直的位置、左外主翼(24A)旋转到与中翼段(23)共线的位置、右外主翼(25A)旋转到与中翼段(23)共线的位置为止,此时Z字型折叠弹翼(2)展开成展长为2倍机身(1)的长度、垂直于机身(1)的大一字型机翼;
    对于左全动平尾(3A)和右全动平尾(3B),左全动平尾(3A)通过左平尾折叠机构在XY平面中进行逆时针旋转,直到左全动平尾(3A)的轴线与所述机身(1)的轴线垂直为止;同时,右全动平尾(3B)通过右平尾折叠机构(31)在XY平面中进行顺时针旋转,直到右全动平尾(3B)的轴线与所述机身(1)的轴线垂直为止;
    对于全动垂尾(4),全动垂尾(4)通过垂尾折叠机构(41)在XZ平面中 进行顺时针旋转,直到全动垂尾(4)的轴线与所述机身(1)的轴线垂直为止;
    对于可折叠螺旋桨组件(5),左桨叶(51A)通过左桨叶折叠机构(52A)在XY平面中进行逆时针旋转,同时,右桨叶(51B)通过右桨叶折叠机构(52B)在XY平面中进行顺时针旋转,直到左桨叶(51A)、桨夹(53)和右桨叶(51B)形成一字型为止。
PCT/CN2018/124452 2018-12-26 2018-12-27 筒式发射的折叠翼无人机及其发射方法 WO2020133089A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811601135.8A CN109436296B (zh) 2018-12-26 2018-12-26 筒式发射的折叠翼无人机及其发射方法
CN201811601135.8 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020133089A1 true WO2020133089A1 (zh) 2020-07-02

Family

ID=65537526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124452 WO2020133089A1 (zh) 2018-12-26 2018-12-27 筒式发射的折叠翼无人机及其发射方法

Country Status (2)

Country Link
CN (1) CN109436296B (zh)
WO (1) WO2020133089A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124567A (zh) * 2020-08-31 2020-12-25 中国航天空气动力技术研究院 一种可承受高速气流吹袭的折叠螺旋桨
CN113306710A (zh) * 2021-07-28 2021-08-27 西安羚控电子科技有限公司 一种管式发射复合翼无人机及实现横滚动作的方法
CN115320824A (zh) * 2022-06-28 2022-11-11 西安羚控电子科技有限公司 一种展开方法
CN116300442A (zh) * 2023-02-27 2023-06-23 西北工业大学 一种高海况有限舵面条件下串行干扰快速抑制方法
CN117125248A (zh) * 2023-10-24 2023-11-28 西安羚控电子科技有限公司 一种飞行装置机翼及v尾飞行装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941422A (zh) * 2019-03-22 2019-06-28 北京理工大学 一种折叠翼弹载无人机的气动外形结构及控制方法
CN110027703B (zh) * 2019-05-24 2024-04-12 广东电网有限责任公司 一种无人机电动折叠飞行桨
CN111891335B (zh) * 2020-08-04 2022-03-18 中国电子科技集团公司第四十一研究所 一种紧凑型折叠机翼展开锁定机构
CN112061375B (zh) * 2020-08-24 2022-09-09 西北工业大学 一种高强度的机翼折叠机构
CN112265631B (zh) * 2020-10-16 2022-07-12 中国空气动力研究与发展中心 一种可变展弦比模块化拼装的盒式折叠翼无人机布局
CN112550694B (zh) * 2020-12-08 2023-05-05 清华大学 一种基于混合电推进系统的垂直起降倾转动力翼飞机
CN113173247B (zh) * 2021-05-07 2022-12-09 北京航空航天大学 一种使用柔性翼面的仿生折叠无人机
CN113212735B (zh) * 2021-05-24 2022-09-02 中国人民解放军国防科技大学 一种空射无人机
CN113120251B (zh) * 2021-05-24 2023-01-31 中国人民解放军国防科技大学 一种空射无人机发射筒
CN114248906B (zh) * 2021-11-14 2022-06-21 北京工业大学 一种飞行器机翼折叠装置
CN114148506B (zh) * 2021-12-06 2023-10-13 浙江大学 一种可折叠式变体无人机及其控制方法
CN114275144B (zh) * 2021-12-30 2022-11-11 哈尔滨工业大学 一种用于机翼展开时序控制的机械式联动装置
CN114348237A (zh) * 2021-12-31 2022-04-15 洛阳瑞极光电科技有限公司 一种小型航空器折叠翼面弹出口的封闭和锁定机构
CN115924070B (zh) * 2022-11-28 2023-08-11 西北工业大学 一种筒式发射布撒可折叠单舵面飞行器及其设计方法
CN115817872A (zh) * 2022-12-16 2023-03-21 南京理工大学 一种具有重心调节功能的可变气动布局飞行器
CN115991294B (zh) * 2023-03-22 2023-06-30 西安羚控电子科技有限公司 一种全动垂尾的操纵机构、全动垂尾及无人机
CN116573158A (zh) * 2023-05-15 2023-08-11 南京理工大学 基于气体燃料的高低压室折叠翼无人机弹射试验装置
CN116729657B (zh) * 2023-07-19 2024-02-02 西北工业大学 一种垂直冷发射折叠翼无人机翼面有序展开机构及方法
CN117775339A (zh) * 2024-02-28 2024-03-29 成都金支点科技有限公司 一种可折叠方向舵的伺服控制机构及无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596722A (zh) * 2009-09-09 2012-07-18 威罗门飞行公司 用于远程工作的无人驾驶航空飞行器的带有便携式rf透明发射管的抑制爆炸声的发射器的系统和设备
US20140252156A1 (en) * 2011-10-25 2014-09-11 Eads Deutschland Gmbh High Altitude Aircraft, Aircraft Unit and Method for Operating an Aircraft Unit
CN204822082U (zh) * 2015-07-08 2015-12-02 中国电子科技集团公司第二十七研究所 一种小型筒式发射无人机及发射装置
CN107380402A (zh) * 2017-02-24 2017-11-24 南京柯尔航空科技有限公司 一种折叠翼无人机
CN206939051U (zh) * 2017-06-13 2018-01-30 昆明鞘翼科技有限公司 一种仿甲虫鞘翅的机翼
CN107651168A (zh) * 2017-09-30 2018-02-02 肇庆高新区国专科技有限公司 一种无人机机翼折叠机构以及折叠方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004270608C1 (en) * 2003-02-21 2013-01-10 Aai Corporation Lightweight air vehicle and pneumatic launcher
KR20140044952A (ko) * 2012-07-12 2014-04-16 한국항공우주산업 주식회사 접이식 날개를 구비한 저가형 고속 무인 항공기
CN103587686B (zh) * 2013-12-02 2016-06-22 哈尔滨工业大学 弹射折叠翼飞行机器人
CN105035321B (zh) * 2015-07-08 2017-05-24 中国电子科技集团公司第二十七研究所 一种小型筒式发射无人机及发射装置
CN106143911B (zh) * 2016-07-13 2018-08-10 西藏长源动力科技有限公司 一种单兵携带、可筒式存储和发射的可折叠无人机
CN209274879U (zh) * 2018-12-26 2019-08-20 西北工业大学 筒式发射的折叠翼无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596722A (zh) * 2009-09-09 2012-07-18 威罗门飞行公司 用于远程工作的无人驾驶航空飞行器的带有便携式rf透明发射管的抑制爆炸声的发射器的系统和设备
US20140252156A1 (en) * 2011-10-25 2014-09-11 Eads Deutschland Gmbh High Altitude Aircraft, Aircraft Unit and Method for Operating an Aircraft Unit
CN204822082U (zh) * 2015-07-08 2015-12-02 中国电子科技集团公司第二十七研究所 一种小型筒式发射无人机及发射装置
CN107380402A (zh) * 2017-02-24 2017-11-24 南京柯尔航空科技有限公司 一种折叠翼无人机
CN206939051U (zh) * 2017-06-13 2018-01-30 昆明鞘翼科技有限公司 一种仿甲虫鞘翅的机翼
CN107651168A (zh) * 2017-09-30 2018-02-02 肇庆高新区国专科技有限公司 一种无人机机翼折叠机构以及折叠方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124567A (zh) * 2020-08-31 2020-12-25 中国航天空气动力技术研究院 一种可承受高速气流吹袭的折叠螺旋桨
CN113306710A (zh) * 2021-07-28 2021-08-27 西安羚控电子科技有限公司 一种管式发射复合翼无人机及实现横滚动作的方法
CN115320824A (zh) * 2022-06-28 2022-11-11 西安羚控电子科技有限公司 一种展开方法
CN115320824B (zh) * 2022-06-28 2023-05-02 西安羚控电子科技有限公司 一种用于折叠翼飞行装置机翼的展开方法
CN116300442A (zh) * 2023-02-27 2023-06-23 西北工业大学 一种高海况有限舵面条件下串行干扰快速抑制方法
CN116300442B (zh) * 2023-02-27 2023-10-13 西北工业大学 一种高海况有限舵面条件下串行干扰快速抑制方法
CN117125248A (zh) * 2023-10-24 2023-11-28 西安羚控电子科技有限公司 一种飞行装置机翼及v尾飞行装置

Also Published As

Publication number Publication date
CN109436296A (zh) 2019-03-08
CN109436296B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2020133089A1 (zh) 筒式发射的折叠翼无人机及其发射方法
US6923404B1 (en) Apparatus and methods for variable sweep body conformal wing with application to projectiles, missiles, and unmanned air vehicles
EP3225541B1 (en) Weight-shifting coaxial helicopter
EP3560820B1 (en) Aerial vehicle with deployable components
US6260797B1 (en) Transformable gun launched aero vehicle
CN209274879U (zh) 筒式发射的折叠翼无人机
US9004393B2 (en) Supersonic hovering air vehicle
US8157203B2 (en) Methods and apparatus for transforming unmanned aerial vehicle
EP1476354B1 (en) Convertible vertical take-off and landing miniature aerial vehicle
US6142421A (en) Vehicle refueling system
US9975633B1 (en) Collapsible ducted fan unmanned aerial system
US20070215751A1 (en) Asymmetrical VTOL UAV
GB2498185A (en) Grenade launched aerial surveillance vehicle
CN110871882A (zh) 一种筒式无人机
CN111056015A (zh) 一种多旋翼巡飞弹
CN212340051U (zh) 一种多联装筒射巡飞弹及系统
CN113371182A (zh) 一种筒式发射的侦察攻击旋翼无人机
CN109515732B (zh) 一种基于筒式发射的组合式飞行器
RU2378156C2 (ru) Летательный аппарат
CN108313281B (zh) 一种可变构型无人机
CN110940236B (zh) 一种非瞄准智能巡飞弹
CN113232854B (zh) 一种应用于弹道发射的分布式无人飞行平台及发射方法
CN111156865A (zh) 一种共轴多旋翼巡飞弹
CN110595293B (zh) 一种固定翼-旋翼复合无人机的工作方法
CN1523318A (zh) 末敏弹药和飞行器用的气动十字旋翼和环形尾翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944260

Country of ref document: EP

Kind code of ref document: A1