WO2020130098A1 - 封止組成物及び半導体装置 - Google Patents
封止組成物及び半導体装置 Download PDFInfo
- Publication number
- WO2020130098A1 WO2020130098A1 PCT/JP2019/049924 JP2019049924W WO2020130098A1 WO 2020130098 A1 WO2020130098 A1 WO 2020130098A1 JP 2019049924 W JP2019049924 W JP 2019049924W WO 2020130098 A1 WO2020130098 A1 WO 2020130098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- mass
- sealing composition
- inorganic filler
- chain hydrocarbon
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
Definitions
- the present disclosure relates to a sealing composition and a semiconductor device.
- a semiconductor encapsulation in which (A) an epoxy resin, (B) a curing agent, and (D) an inorganic filler containing spherical alumina and spherical silica are essential components
- An epoxy resin composition for use wherein the spherical alumina is (d1) a first spherical alumina having an average particle diameter of 40 ⁇ m or more and 70 ⁇ m or less, and (d2) a second spherical alumina having an average particle diameter of 10 ⁇ m or more and 15 ⁇ m or less.
- the spherical silica includes (d3) a first spherical silica having an average particle diameter of 4 ⁇ m or more and 8 ⁇ m or less and (d4) a second spherical silica having an average particle diameter of 0.05 ⁇ m or more and 1.0 ⁇ m or less.
- Patent Document 1 Japanese Patent Laid-Open No. 2006-273920
- a sealing composition that can obtain a cured product having high thermal conductivity and improved fluidity, and a semiconductor device using the sealing composition.
- the present invention includes the following embodiments.
- ⁇ 3> The encapsulating composition according to ⁇ 1> or ⁇ 2>, in which the content of the inorganic filler is 78% by volume or more based on the entire encapsulating composition.
- ⁇ 4> The encapsulating composition according to any one of ⁇ 1> to ⁇ 3>, wherein the curing agent contains a polyfunctional phenol resin curing agent.
- ⁇ 5> The encapsulating composition according to any one of ⁇ 1> to ⁇ 4>, in which the curing agent contains a triphenylmethane type phenol resin.
- ⁇ 6> ⁇ 1> to ⁇ 5>, wherein the chain hydrocarbon group has at least one functional group selected from the group consisting of a (meth)acryloyl group, an epoxy group, and an alkoxy group.
- Sealing composition ⁇ 7> The encapsulating composition according to any one of ⁇ 1> to ⁇ 6>, in which the chain hydrocarbon group has a (meth)acryloyl group.
- a semiconductor device comprising: a semiconductor element; and a cured product of the encapsulating composition according to any one of ⁇ 1> to ⁇ 7>, which is obtained by encapsulating the semiconductor element.
- a sealing composition that can obtain a cured product having high thermal conductivity and improved fluidity, and a semiconductor device using the sealing composition.
- each component may include a plurality of types of corresponding substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
- a plurality of types of particles corresponding to each component may be included.
- the particle size of each component means a value for a mixture of the plurality of types of particles present in the composition unless otherwise specified.
- the “(meth)acryloyl group” means at least one of an acryloyl group and a methacryloyl group
- “(meth)acryl” means at least one of acryl and methacryl
- “(meth)acrylate” is an acrylate. And at least one of methacrylate.
- the encapsulating composition of the present disclosure includes an epoxy resin, a curing agent, an inorganic filler containing silica particles having a specific surface area of 100 m 2 /g or more, and a chain hydrocarbon group having 6 or more carbon atoms bonded to a silicon atom. And a silane compound having the above structure.
- silica particles having a specific surface area of 100 m 2 /g or more are referred to as “specific silica particles”
- a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom is referred to as “specific silane compound” There is.
- the sealing composition of the present disclosure contains the above-mentioned specific silane compound, it is possible to obtain a cured product having high thermal conductivity and improve fluidity at the same time.
- a highly filled inorganic filler can provide a cured product with high thermal conductivity.
- the thermal conductivity of the cured product is less likely to increase, and the thermal conductivity May be saturated.
- the encapsulating composition of the present disclosure by containing the specific silane compound, as compared with the case of not containing the specific silane compound, the flowability is high, and by increasing the filling amount of the inorganic filler, The thermal conductivity of the cured product can be increased.
- the inclusion of the specific silane compound improves the dispersibility of the inorganic filler in the encapsulating composition, thereby improving the fluidity of the encapsulating composition and the inorganic filler. It is considered that the function of improving the thermal conductivity due to is likely to be exhibited. From the above, it is assumed that the encapsulating composition of the present disclosure can achieve both a cured product having high thermal conductivity and an improvement in fluidity.
- the sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler, and may contain other components as necessary.
- the sealing composition of the present disclosure contains an epoxy resin.
- the type of epoxy resin is not particularly limited, and known epoxy resins can be used. Specific examples of the epoxy resin are selected from the group consisting of phenol compounds (phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, etc.) and naphthol compounds ( ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene, etc.).
- At least one of the above and an aldehyde compound are condensed or co-condensed in the presence of an acidic catalyst to obtain an epoxidized novolak resin (phenol novolac type epoxy resin).
- Orthocresol novolac type epoxy resin and the like at least one diglycidyl selected from the group consisting of bisphenol (bisphenol A, bisphenol AD, bisphenol F, bisphenol S, etc.) and biphenol (alkyl-substituted or unsubstituted biphenol, etc.) Ether; epoxidized product of phenol/aralkyl resin; epoxidized product of addition product or polyaddition product of phenol compound and at least one selected from the group consisting of dicyclopentadiene and terpene compound; polybasic acid (phthalic acid, dimer acid) Etc.) and glycidyl ester type epoxy resin obtained by the reaction of epichlorohydrin; glycidyl amine type epoxy resin obtained by the reaction of polyamine (diaminodiphenylmethane, isocyanuric acid, etc.) and epichlorohydrin; Olefin bond is oxidized with peracid (peracetic acid, etc.)
- the epoxy resin has a high purity and that the amount of hydrolyzable chlorine is small.
- the amount of hydrolyzable chlorine is preferably 500 ppm or less on a mass basis.
- the amount of hydrolyzable chlorine is a value determined by potentiometric titration after dissolving 1 g of a sample epoxy resin in 30 mL of dioxane, adding 5 mL of 1N-KOH methanol solution and refluxing for 30 minutes.
- the melting point or softening point of the epoxy resin is preferably 50° C. or higher from the viewpoint of moldability of the sealing composition, and 50° C. to 150° C. from the viewpoint of achieving both moldability and kneading property of the sealing composition.
- the temperature is preferably 0°C, more preferably 60°C to 130°C, even more preferably 70°C to 120°C.
- the melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC)
- the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234:1986.
- the epoxy group equivalent of the epoxy resin is not particularly limited and is preferably less than 300 g/eq, more preferably 120 g/eq to 270 g/eq, and more preferably 150 g/eq to 240 from the viewpoint of moldability. /Eq is more preferable.
- the "epoxy group equivalent" is to measure the epoxy resin to be measured, dissolve it in a solvent such as methyl ethyl ketone, add acetic acid and tetraethylammonium bromide acetic acid solution, and then perform potentiometric titration with a perchloric acid acetic acid standard solution. Measured by An indicator may be used for this titration.
- the epoxy resin has at least two epoxy groups in the molecule.
- the number of epoxy groups contained in one molecule of the epoxy resin is not particularly limited and may be 2 to 8, preferably 2 to 6, more preferably 2 to 3, and particularly preferably 2.
- the epoxy group is a part of at least one selected from the group consisting of glycidyl group, glycidyloxy group, glycidyloxycarbonyl group, epoxycycloalkyl group (epoxycyclopentyl group, epoxycyclohexyl group, epoxycyclooctyl group, etc.). May be contained in the molecule of the first epoxy resin.
- the epoxy resin preferably has, in the molecule, a divalent linking group represented by the following general formula (1) in addition to two or more epoxy groups.
- a divalent linking group represented by the following general formula (1) in addition to two or more epoxy groups.
- * represents a bond
- R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aromatic group having 4 to 18 carbon atoms. Indicates.
- R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, and further preferably a methyl group.
- R 5 to R 8 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, and further preferably a hydrogen atom.
- the content of the epoxy resin in the sealing composition is preferably 2.5% by mass to 6% by mass, more preferably 2.8% by mass to 5.5% by mass, and 3.0% by mass. % To 5.0 mass% is more preferable.
- the content of the epoxy resin in the sealing composition excluding the inorganic filler is preferably 40% by mass to 70% by mass, more preferably 45% by mass to 64% by mass, and 48% by mass to 55% by mass. More preferably, it is mass %.
- the sealing composition of the present disclosure contains a curing agent.
- the type of curing agent is not particularly limited, and known curing agents can be used.
- the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, and a blocked isocyanate curing agent.
- the curing agent is preferably a phenol curing agent, an amine curing agent, and an acid anhydride curing agent, and more preferably a phenol curing agent, from the viewpoint of obtaining a sealing composition having excellent reflow resistance while maintaining fluidity.
- the curing agent may be used alone or in combination of two or more.
- phenol curing agents include phenol resins having two or more phenolic hydroxyl groups in one molecule, polyhydric phenol compounds, and the like.
- examples of the phenol curing agent include polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, At least one phenolic compound selected from the group consisting of phenol compounds such as phenylphenol and aminophenol, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene; and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde, A novolak type phenol resin obtained by condensation or co-condensation of an aralkyl type phenol resin (phenol aralkyl resin, a phenol
- Naphthol aralkyl resin, etc. para-xylylene-modified phenol resin; meta-xylylene-modified phenol resin; melamine-modified phenol resin; terpene-modified phenol resin; Cyclopentadiene-type naphthol resin; cyclopentadiene-modified phenol resin; polycyclic aromatic ring-modified phenol resin; biphenyl-type phenol resin; the phenolic compound and an aromatic aldehyde compound such as benzaldehyde and salicylaldehyde are condensed under an acidic catalyst or Examples thereof include a triphenylmethane type phenol resin obtained by cocondensation; a phenol resin obtained by copolymerizing two or more of these. These phenol resins and polyhydric phenol compounds may be used alone or in combination of two or more.
- the phenol curing agent is preferably a polyfunctional phenol resin curing agent, of which a novolac type phenol resin, an aralkyl type phenol resin, and a triphenylmethane type phenol resin are preferable, and a triphenylmethane type phenol resin is more preferable.
- the "multifunctional phenol resin curing agent” is a curing agent which is a phenol resin having three or more functional groups (that is, hydroxyl groups) in one molecule.
- triphenylmethane type phenol resin examples include a phenol resin represented by the following general formula (2).
- R 11 to R 15 each independently represent a monovalent organic group having 1 to 18 carbon atoms
- b 1 to b 2 each independently represent an integer of 0 to 4
- b3 represents an integer of 0 to 3
- b4 to b5 each independently represents an integer of 0 to 4
- n represents 0 to 10.
- the monovalent organic group having 1 to 18 carbon atoms represented by R 11 to R 15 in the general formula (2) includes a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
- B1 to b5 in the general formula (2) are preferably integers of 0 to 1, more preferably 0, and n in the general formula (2) is preferably 1 to 7 More preferably, it is -5.
- the functional group equivalent of the curing agent is not particularly limited and is preferably 70 g/eq to 500 g/eq, more preferably 70 g/eq to 300 g/eq, and more preferably 80 g/eq to 250 g from the viewpoint of moldability. /Eq is more preferable.
- the functional group equivalent is a value measured according to JIS K 0070:1992.
- the softening point or melting point of the curing agent is preferably 40° C. to 180° C. from the viewpoint of moldability and reflow resistance, and the softening point or melting point from the viewpoint of handleability during production of the sealing composition. Is more preferably 50° C. to 130° C., further preferably 55° C. to 100° C.
- the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
- the mixing ratio of the epoxy resin and the curing agent is such that the equivalent of the functional group of the curing agent (for example, a phenolic hydroxyl group in the case of a phenol resin) is equal to one equivalent of the epoxy group of the epoxy resin from the viewpoint of suppressing each unreacted component.
- the curing agent so as to be 0.5 equivalent to 1.5 equivalents, and particularly preferable to add the curing agent so as to be 0.7 equivalent to 1.2 equivalents. ..
- the sealing composition of the present disclosure contains at least specific silica particles (that is, silica particles having a specific surface area of 100 m 2 /g or more) as an inorganic filler, and if necessary, a filler other than the specific silica particles (hereinafter, “silica particles”). Other fillers) may also be included.
- specific silica particles that is, silica particles having a specific surface area of 100 m 2 /g or more
- sica particles a filler other than the specific silica particles
- Other fillers may also be included.
- the sealing composition preferably contains the specific silica particles and another filler as the inorganic filler.
- the specific surface area of the specific silica particles is 100 m 2 /g or more, and preferably 150 m 2 /g to 300 m 2 /g, and 170 m 2 /g to 270 m 2 /g from the viewpoint of suppressing the burr. Is more preferable, and 190 m 2 /g to 230 m 2 /g is further preferable.
- the specific surface area (that is, BET specific surface area) of the inorganic filler can be measured from the nitrogen adsorption capacity according to JIS Z 8830:2013.
- QUANTACHROME company AUTOSORB-1 (trade name) can be used.
- the measurement cell charged with 0.05 g of the measurement sample was depressurized to 10 Pa or less by a vacuum pump, heated at 110° C., held for 3 hours or more, and then kept at room temperature (vacuum) while maintaining the depressurized state. Cool naturally to 25°C).
- the evaluation temperature is set to 77K, and the evaluation pressure range is measured as relative pressure (equilibrium pressure to saturated vapor pressure) of less than 1.
- the content of the specific silica particles is preferably 0.15% by mass to 1.0% by mass, and 0.3% by mass, based on the whole inorganic filler contained in the encapsulating composition, from the viewpoint of the burr suppression and the moldability. % To 0.8 mass% is more preferable, and 0.4 mass% to 0.7 mass% is further preferable.
- Other fillers may be used alone or in combination of two or more.
- the case where two or more kinds of other fillers are used in combination includes the case where two or more kinds of inorganic fillers having different components, average particle diameters, shapes, etc. are used.
- the shape of the other filler is not particularly limited, and examples thereof include powder, sphere, and fiber. From the viewpoint of fluidity during molding of the encapsulating composition and mold abrasion resistance, the other fillers are preferably spherical in shape.
- the other filler preferably contains alumina from the viewpoint of high thermal conductivity. All of the other fillers may be alumina, or alumina and a filler other than alumina may be used in combination. Fillers other than alumina include silica having a specific surface area of less than 100 m 2 /g (spherical silica, crystalline silica, etc.), zircon, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, Examples thereof include boron nitride, beryllia and zirconia. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide and zinc borate.
- the content rate of the inorganic filler (for example, when the inorganic filler contains the specific silica particles and the other filler, the content rate of the whole inorganic filler including the specific silica particles and the other filler) is hygroscopicity, From the viewpoints of reduction of expansion coefficient, improvement of strength and solder heat resistance, it is preferably 60% by volume or more, more preferably 70% by volume or more, and 75% by volume or more with respect to the entire sealing composition. It is more preferable that there is. From the viewpoint of high thermal conductivity, the content of the inorganic filler is preferably 78% by volume or more, more preferably 80% by volume or more, based on the whole sealing composition.
- the content of the inorganic filler is preferably 95% by volume or less, more preferably 90% by volume or less, and more preferably 85% by volume or less. More preferably, it is not more than volume %.
- the content of the inorganic filler is preferably 78% by volume to 90% by volume, more preferably 78% by volume to 85% by volume, and more preferably 80% by volume from the viewpoint of achieving both high thermal conductivity and moldability of the sealing composition. It is more preferably ⁇ 85% by volume.
- the average particle diameter of the inorganic filler (for example, when the inorganic filler contains the specific silica particles and the other filler, the average particle diameter of the entire inorganic filler including the specific silica particles and the other filler) is 4 ⁇ m or more.
- the thickness is preferably 100 ⁇ m, more preferably 7 ⁇ m to 70 ⁇ m, and further preferably 7 ⁇ m to 40 ⁇ m.
- the thermal conductivity of the cured product of the sealing composition tends to increase as the average particle size of the inorganic filler increases.
- the average particle size of the inorganic filler can be measured by the following method.
- the inorganic filler to be measured is added to the solvent (pure water) together with 1% to 8% by mass of the surfactant within the range of 1% to 5% by mass, and the ultrasonic cleaning machine of 110 W is used for 30 seconds to 5%. Vibrate for minutes to disperse the inorganic filler. About 3 mL of the dispersion liquid is injected into the measuring cell and measurement is performed at 25°C. A laser diffraction type particle size distribution meter (LA920, Horiba, Ltd.) is used as a measuring device, and the particle size distribution based on volume is measured. The average particle diameter is obtained as the particle diameter (D50%) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution.
- the refractive index of alumina is used as the refractive index. When the inorganic filler is a mixture of alumina and another inorganic filler, the refractive index of alumina is used as the refractive index.
- the specific surface area of the inorganic filler (for example, when the inorganic filler contains specific silica particles and other fillers, the specific surface area of the entire inorganic filler including the specific silica particles and other fillers) is determined by fluidity and molding. in terms of gender, it is preferably 0.7m 2 /g ⁇ 4.0m 2 / g, more preferably 0.9m 2 /g ⁇ 3.0m 2 / g, 1.0m 2 / g More preferably, it is about 2.5 m 2 /g.
- the fluidity of the sealing composition tends to increase as the specific surface area of the inorganic filler decreases.
- the sealing composition of the present disclosure contains a specific silane compound (that is, a silane compound having a structure in which a chain hydrocarbon group having 6 or more carbon atoms is bonded to a silicon atom).
- the specific silane compound has a structure in which a chain hydrocarbon group having 6 or more carbon atoms (hereinafter, a chain hydrocarbon group having 6 or more carbon atoms is also referred to as a chain hydrocarbon group) is bonded to a silicon atom.
- the chain hydrocarbon group may be branched or may have a substituent.
- carbon number of a chain hydrocarbon group means carbon number which does not contain carbon of a branch or a substituent.
- the chain hydrocarbon group may or may not contain an unsaturated bond, and preferably does not contain an unsaturated bond.
- the specific silane compound is considered to function as a coupling agent for the inorganic filler in the sealing composition.
- the number of chain hydrocarbon groups bonded to a silicon atom in the specific silane compound may be 1 to 4, preferably 1 to 3, more preferably 1 or 2, and 1 Is more preferable.
- the atom or atomic group other than the chain hydrocarbon group bonded to the silicon atom is not particularly limited and is independent of each other. Further, it may be a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group, an aryl group, an aryloxy group or the like. Among them, it is preferable that one or more alkoxys are bonded to the silicon atom in the specific silane compound in addition to the chain hydrocarbon group, and one chain hydrocarbon group and three alkoxy groups Is more preferably bonded to a silicon atom.
- the carbon number of the chain hydrocarbon group of the specific silane compound is 6 or more, preferably 7 or more, and more preferably 8 or more from the viewpoint of suppressing the viscosity.
- the upper limit of the number of carbon atoms of the chain hydrocarbon group of the specific silane compound is not particularly limited, and is preferably 12 or less, and more preferably 11 or less from the viewpoint of dispersibility in resin, physical property balance of the cured product, and the like. More preferably, it is even more preferably 10 or less.
- the substituent is not particularly limited.
- the substituent may be present at the end of the chain hydrocarbon group or may be present at the side chain of the chain hydrocarbon group.
- the chain hydrocarbon group preferably has at least one functional group (hereinafter, also referred to as “specific functional group”) selected from the group consisting of (meth)acryloyl group, epoxy group, and alkoxy group, ) It is more preferable to have at least one functional group selected from the group consisting of an acryloyl group and an epoxy group, and it is more preferable to have a (meth)acryloyl group.
- the specific functional group may be present at the end of the chain hydrocarbon group or may be present in the side chain of the chain hydrocarbon group. From the viewpoint of suppressing the viscosity, the specific functional group is preferably present at the end of the chain hydrocarbon group.
- the (meth)acryloyl group may be directly bonded to the chain hydrocarbon group or may be bonded via another atom or atomic group. ..
- the chain hydrocarbon group may have a (meth)acryloyloxy group.
- the chain hydrocarbon group preferably has a methacryloyloxy group.
- the chain hydrocarbon group has an epoxy group
- the epoxy group may be bonded directly to the chain hydrocarbon group or may be bonded via another atom or atomic group.
- the chain hydrocarbon group may have a glycidyloxy group, an alicyclic epoxy group, or the like.
- the chain hydrocarbon group preferably has a glycidyloxy group.
- the alkoxy group may be directly bonded to the chain hydrocarbon group, or may be bonded via another atom or atomic group, and the chain hydrocarbon group may be bonded. It is preferred that it is directly bonded to.
- the alkoxy group is not particularly limited and may be a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group and the like.
- the chain hydrocarbon group preferably has a methoxy group from the viewpoint of easy availability.
- the equivalent (molecular weight/number of functional groups) of at least one functional group selected from the group consisting of (meth)acryloyl group, epoxy group, and alkoxy group in the specific silane compound is not particularly limited. From the viewpoint of lowering the viscosity of the sealing composition, it is preferably 200 g/eq to 420 g/eq, more preferably 210 g/eq to 405 g/eq, and further preferably 230 g/eq to 390 g/eq. More preferable.
- silane compounds include hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, 6-glycidoxyhexyltrimethoxysilane, 7-glycid Xyheptyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane, 6-(meth)acryloxyhexyltrimethoxysilane, 7-(meth)acryloxyheptyltrimethoxysilane, 8-(meth)acryloxyoctyltrimethoxysilane Examples thereof include silane and decyltrimethoxysilane.
- 8-glycidoxyoctyltrimethoxysilane and 8-methacryloxyoctyltrimethoxysilane are preferable as the specific silane compound from the viewpoint of lowering the viscosity of the sealing composition.
- the specific silane compounds may be used alone or in combination of two or more.
- the specific silane compound may be synthesized or a commercially available one may be used.
- Specific commercially available silane compounds include KBM-3063 (hexyltrimethoxysilane), KBE-3063 (hexyltriethoxysilane), KBE-3083 (octyltriethoxysilane), and KBM-4803 (manufactured by Shin-Etsu Chemical Co., Ltd.). 8-glycidoxyoctyltrimethoxysilane), KBM-5803 (8-methacryloxyoctyltrimethoxysilane), KBM-3103C (decyltrimethoxysilane) and the like can be mentioned.
- the content of the specific silane compound in the sealing composition is not particularly limited.
- the content of the specific silane compound may be 0.01 parts by mass or more and may be 0.02 parts by mass or more with respect to 100 parts by mass of the inorganic filler. Further, the content of the specific silane compound is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less with respect to 100 parts by mass of the inorganic filler.
- the content of the specific silane compound is 0.01 part by mass or more based on 100 parts by mass of the inorganic filler, a composition having high fluidity tends to be obtained.
- the content of the specific silane compound is preferably 0.05 parts by mass to 2.0 parts by mass, and 0.1 parts by mass, with respect to 100 parts by mass of the inorganic filler, from the viewpoint of achieving both fluidity and moldability of the package. It is more preferably to 1.5 parts by mass, still more preferably 0.2 parts to 1.0 parts by mass.
- the content of the specific silane compound is preferably 3% by mass or less, more preferably 2% by mass or less, further preferably 1% by mass or less, based on the whole sealing composition, to exert its effect. From the viewpoint, it is preferably 0.1% by mass or more, more preferably 0.15% by mass or more, and further preferably 0.2% by mass or more.
- the sealing composition may further contain other coupling agent in addition to the specific silane compound.
- the other coupling agent is not particularly limited as long as it is a compound generally used in a sealing composition using an epoxy resin.
- Other coupling agents include silane compounds (excluding specific silane compounds) such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, and vinylsilane, titanium compounds, aluminum chelate compounds, aluminum/zirconium compounds, etc. Examples of known coupling agents include The other coupling agents may be used alone or in combination of two or more.
- the total content of the specific silane compound and the other coupling agent is 0.01 parts by mass or more based on 100 parts by mass of the inorganic filler. Or may be 0.02 parts by mass or more. Moreover, the total content of the specific silane compound and the other coupling agent is preferably 5 parts by mass or less, and more preferably 2.5 parts by mass or less, relative to 100 parts by mass of the inorganic filler. When the total content of the specific silane compound and the other coupling agent is 0.01 parts by mass or more based on 100 parts by mass of the inorganic filler, a composition having high fluidity tends to be obtained.
- the moldability of the package tends to be further improved.
- the total content of the specific silane compound and the other coupling agent is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the inorganic filler from the viewpoint of achieving both fluidity and moldability of the package. Is preferred, 0.1 part by mass to 1.5 parts by mass is more preferred, and 0.2 part by mass to 1.0 part by mass is even more preferred.
- the total content of the specific silane compound and the other coupling agent is preferably 3% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less, based on the entire sealing composition. From the viewpoint of exerting the effect, it is preferably 0.1% by mass or more, more preferably 0.15% by mass or more, and further preferably 0.2% by mass or more.
- the sealing composition contains a coupling agent other than the specific silane compound, from the viewpoint of satisfactorily exerting the action of the specific silane compound, other coupling with respect to the total amount of the specific silane compound and the other coupling agent.
- the content of the agent is preferably 90% by mass or less, more preferably 70% by mass or less, further preferably 50% by mass or less, particularly preferably 40% by mass or less, and 20% by mass. % Or less is extremely preferable, and 10% by mass or less is most preferable.
- the sealing composition may further contain a curing accelerator.
- the type of curing accelerator is not particularly limited, and known curing accelerators can be used. Specific examples of the curing accelerator include 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene and 5,6-dibutyl.
- Cycloamidine compounds such as amino-1,8-diaza-bicyclo[5.4.0]undecene-7; cycloamidine compounds with maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone
- quinone compounds compounds having ⁇ bond such as diazophenylmethane, phenol resin, etc., having intramolecular polarization; benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, etc.
- Tertiary amine compounds Tertiary amine compounds; derivatives of tertiary amine compounds; imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole; derivatives of imidazole compounds; tributylphosphine, methyldiphenylphosphine, triphenyl Organic phosphine compounds such as phosphine, tris(4-methylphenyl)phosphine, diphenylphosphine and phenylphosphine; maleic anhydride, the above quinone compound, diazophenylmethane, phenol resin and other compounds having a ⁇ bond are added to the organic phosphine compound.
- imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole
- derivatives of imidazole compounds tributylphosphine, methyldiphenylphos
- a phosphorus compound having an intramolecular polarization such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate; Derivatives of tetraphenylboron salts; adducts of phosphine compounds such as triphenylphosphonium-triphenylborane, N-methylmorpholine tetraphenylphosphonium-tetraphenylborate and tetraphenylboron salts; and the like.
- the curing accelerator may be used alone or in combination of two or more.
- the curing accelerator is preferably a phosphorus-based curing accelerator, and among them, an organic phosphine compound, an adduct of an organic phosphine compound, and an adduct of a phosphine compound and a tetraphenylboron salt are more preferable, and an organic phosphine compound and An adduct of an organic phosphine compound is more preferable, and a compound obtained by adding a quinone compound to an organic phosphine compound is particularly preferable.
- the “phosphorus curing accelerator” is a curing accelerator having a phosphorus atom.
- the content of the curing accelerator is preferably 0.1% by mass to 8% by mass based on the total amount of the epoxy resin and the curing agent.
- the sealing composition may further contain an ion trap agent.
- the ion trap agent that can be used in the present disclosure is not particularly limited as long as it is an ion trap agent that is generally used in the encapsulating material used for manufacturing semiconductor devices.
- Examples of the ion trapping agent include compounds represented by the following general formula (3) or the following general formula (4).
- Ion trap agents are available as commercial products.
- DHT-4A Chemical Industry Co., Ltd., trade name
- IXE500 trade name, Toagosei Co., Ltd.
- ion trapping agents other than the above include hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, and the like.
- the ion trap agents may be used alone or in combination of two or more.
- the content of the ion trap agent is preferably 1 part by mass or more based on 100 parts by mass of the epoxy resin from the viewpoint of realizing sufficient moisture resistance reliability. .. From the viewpoint of sufficiently exerting the effect of other components, the content of the ion trap agent is preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
- the average particle size of the ion trap agent is preferably 0.1 ⁇ m to 3.0 ⁇ m, and the maximum particle size is preferably 10 ⁇ m or less.
- the average particle size of the ion trap agent can be measured in the same manner as in the case of the inorganic filler.
- the sealing composition may further contain a release agent.
- the type of release agent is not particularly limited, and known release agents can be used. Specifically, examples of the release agent include higher fatty acids, carnauba wax, montan wax, polyethylene wax and the like.
- the release agent may be used alone or in combination of two or more.
- the content of the release agent is preferably 10% by mass or less based on the total amount of the epoxy resin and the curing agent, and from the viewpoint of exerting the effect. Is preferably 0.5% by mass or more.
- the sealing composition may contain a colorant (carbon black or the like). Further, the sealing composition may contain a modifier (silicone, silicone rubber, etc.). Each of the colorant and the modifier may be used alone or in combination of two or more.
- the conductive particles When conductive particles such as carbon black are used as the colorant, the conductive particles preferably have a content of particles having a particle diameter of 10 ⁇ m or more of 1% by mass or less.
- the content of the conductive particles is preferably 3% by mass or less based on the total amount of the epoxy resin and the curing agent.
- the sealing composition may further contain other additives, if necessary.
- Other additives include flame retardants, anion exchangers, plasticizers and the like.
- the method for producing the sealing composition is not particularly limited, and a known method can be used.
- a sealing composition can be prepared by thoroughly mixing a mixture of raw materials in a predetermined amount with a mixer or the like, kneading the mixture with a heat roll, an extruder, or the like, and then cooling, pulverizing, or the like.
- the state of the sealing composition is not particularly limited and may be powdery, solid, liquid or the like.
- the hardness of the cured product obtained at the time indicated by Shore D is preferably 70 or more, and 74 or more. It is more preferable, and it is more preferable that it is 76 or more.
- the hot hardness is in the above range, the continuous moldability becomes good when the semiconductor element is sealed by the transfer molding method.
- a semiconductor device of the present disclosure includes a semiconductor element and a cured product of the sealing composition of the present disclosure obtained by sealing the semiconductor element.
- the method of sealing the semiconductor element with the sealing composition is not particularly limited, and a known method can be applied.
- a transfer molding method or the like is generally used, but a compression molding method, an injection molding method, a compression molding method or the like may be used.
- the semiconductor device of the present disclosure is suitable as an IC (Integrated Circuit, integrated circuit), an LSI (Large-Scale Integration, large-scale integrated circuit), or the like.
- Examples 1 to 5 and Comparative Examples 1 to 5 The components shown below were premixed (dry blended) at the compounding ratios (parts by mass) shown in Tables 1 and 2, then kneaded with a biaxial kneader and cooled and pulverized to produce a powdery sealing composition.
- the details of the components shown in Tables 1 and 2 are as follows.
- Inorganic filler filler I1 silica particles, spherical, specific surface area “190 to 210 m 2 /g”, specific silica particles filler I2: alumina particles, spherical, average particle diameter “0.7 ⁇ m”
- Filler I3 Alumina particles, spherical, average particle size “10 ⁇ m”
- the sealing composition obtained above was molded by a transfer molding machine under the conditions of a mold temperature of 175° C., a molding pressure of 6.9 MPa and a curing time of 90 seconds, and a disk shape having a diameter of 50 mm and a thickness of 3 mm was formed. A test piece was prepared. Immediately after molding, the hardness at the time of heating was measured using a Shore D type hardness meter (Kobunshi Keiki Co., Ltd., Asker, type D durometer).
- the curability was evaluated based on the gel time measured as follows using a gelation tester. Place 0.5 g of the sealing composition obtained above on a hot plate heated to 175° C., and use a jig to rotate the sample at 2.0 cm to 2 rpm at a rotation speed of 20 rpm to 25 rpm. It was spread evenly in a circle of 0.5 cm. After the sample was placed on the hot plate, the time until the sample became less viscous and became a gel state and peeled from the hot plate was measured, and this was measured as gel time (sec). The results are shown in Tables 1 and 2. When the same amount of catalyst is used with respect to 100 parts by mass of epoxy, the shorter the gel time, the better the curability.
- Disc flow (DF) The sealing composition obtained above was passed through a two-stage sieve (upper stage: 2.38 mm, lower stage: 0.5 mm), and 7 g of the sample remaining in the lower stage was weighed. The sealing composition was placed on a smooth mold heated to 180° C., and similarly, 8 kg of a smooth mold heated to 180° C. was placed on the sample and left for 60 seconds. After that, the average value (mm) of the diameter (mm) and the minor axis (mm) of the obtained disk-shaped molded product was obtained, and the average value (mm) was defined as the disc flow (DF). The results are shown in Tables 1 and 2. The longer the disc flow, the better the fluidity.
- Thermal conductivity Using the sealing composition obtained above, a transfer molding machine was used to prepare a test piece for thermal conductivity evaluation under the conditions of a mold temperature of 175° C. to 180° C., a molding pressure of 7 MPa, and a curing time of 300 seconds. Next, the thermal diffusivity of the molded test piece in the thickness direction was measured. The thermal diffusivity was measured by the laser flash method (apparatus: LFA467 nanoflash, NETZSCH). The pulsed light irradiation was performed under the conditions of a pulse width of 0.31 (ms) and an applied voltage of 247V. The measurement was performed at an ambient temperature of 25°C ⁇ 1°C.
- the “average particle diameter of filler” means the volume-based average particle diameter of the whole inorganic filler used
- the “filler content” is the whole inorganic filler used for the whole sealing composition. Means the content rate of.
- the increase rate of the thermal conductivity with respect to the increase of the filler content is low, and the thermal conductivity is saturated, whereas the sealing compositions of Examples 1 to 3 are used. It can be seen that in the sealing composition, the thermal conductivity increases as the filler content increases.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Sealing Material Composition (AREA)
- Epoxy Resins (AREA)
Abstract
Description
例えば、無機充填材を高充填させることで、封止材の高熱伝導化が可能になる。
<1>
エポキシ樹脂と、
硬化剤と、
比表面積が100m2/g以上のシリカ粒子を含む無機充填材と、
炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物と、
を含有する封止組成物。
<2>
封止組成物を、硬化温度175℃及び硬化時間90秒の条件で加熱硬化したときに得られる硬化物のショアDで示される熱時硬度が70以上である<1>に記載の封止組成物。
<3>
前記無機充填材の含有率は、封止組成物全体に対して78体積%以上である<1>又は<2>に記載の封止組成物。
<4>
前記硬化剤は、多官能フェノール樹脂硬化剤を含有する<1>~<3>のいずれか1つに記載の封止組成物。
<5>
前記硬化剤は、トリフェニルメタン型フェノール樹脂を含有する<1>~<4>のいずれか1つに記載の封止組成物。
<6>
前記鎖状炭化水素基が、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基からなる群より選択される少なくとも1つの官能基を有する、<1>~<5>のいずれか1つに記載の封止組成物。
<7>
前記鎖状炭化水素基が、(メタ)アクリロイル基を有する、<1>~<6>のいずれか1つに記載の封止組成物。
<8>
半導体素子と、前記半導体素子を封止してなる<1>~<7>のいずれか1つに記載の封止組成物の硬化物と、を含む半導体装置。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。
本開示の封止組成物は、エポキシ樹脂と、硬化剤と、比表面積が100m2/g以上のシリカ粒子を含む無機充填材と、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物と、を含有する。
以下、比表面積が100m2/g以上のシリカ粒子を「特定シリカ粒子」、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物を「特定シラン化合物」と称する場合がある。
一般的に、無機充填材を高充填させることで、熱伝導性の高い硬化物が得られる。しかし、無機充填材の充填量を上げていくと、流動性が下がりやすくなることに加え、無機充填材の充填量をさらに上げても硬化物の熱伝導性が上昇しにくくなり、熱伝導性が飽和状態となることがある。これに対して、本開示の封止組成物では、上記特定シラン化合物を含有することにより、特定シラン化合物を含有しない場合に比べて、流動性が高く、無機充填材の充填量を上げることで硬化物の熱伝導性を高くすることができる。その理由は定かではないが、特定シラン化合物を含有することにより、封止組成物内における無機充填材の分散性が向上することで、封止組成物の流動性が向上すると共に、無機充填材による熱伝導性向上の機能が発揮されやすくなると考えられる。以上のことから、本開示の封止組成物は熱伝導性の高い硬化物を得ることと流動性の向上とが両立できると推測される。
本開示の封止組成物は、エポキシ樹脂を含有する。エポキシ樹脂の種類は特に限定されず、公知のエポキシ樹脂を使用することができる。
エポキシ樹脂の具体例としては、フェノール化合物(フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等)及びナフトール化合物(α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等)からなる群より選択される少なくとも1種と、アルデヒド化合物(ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等)と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);ビスフェノール(ビスフェノールA、ビスフェノールAD、ビスフェノールF、ビスフェノールS等)及びビフェノール(アルキル置換又は非置換のビフェノール等)からなる群より選択される少なくとも1種のジグリシジルエーテル;フェノール・アラルキル樹脂のエポキシ化物;フェノール化合物とジシクロペンタジエン及びテルペン化合物からなる群より選択される少なくとも1種との付加物又は重付加物のエポキシ化物;多塩基酸(フタル酸、ダイマー酸等)とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;ポリアミン(ジアミノジフェニルメタン、イソシアヌル酸等)とエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂;オレフィン結合を過酸(過酢酸等)で酸化して得られる線状脂肪族エポキシ樹脂;脂環族エポキシ樹脂;などが挙げられる。エポキシ樹脂は、1種類を単独で使用しても、2種類以上を併用してもよい。
ここで、エポキシ樹脂の融点は示差走査熱量測定(DSC)で測定される値とし、エポキシ樹脂の軟化点はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。
上記「エポキシ基当量」は、測定対象となるエポキシ樹脂を秤量してメチルエチルケトン等の溶剤に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。この滴定には、指示薬を用いてもよい。
なお、上記エポキシ基は、グリシジル基、グリシジルオキシ基、グリシジルオキシカルボニル基、エポキシシクロアルキル基(エポキシシクロペンチル基、エポキシシクロヘキシル基、エポキシシクロオクチル基等)からなる群より選択される少なくとも一種の一部として、第1のエポキシ樹脂の分子中に含まれていてもよい。
なお、下記一般式(1)中、*は結合部を示し、R1~R8は、それぞれ独立に、水素原子、炭素数1~12のアルキル基、又は炭素数4~18の芳香族基を示す。
また、前記一般式(1)中、R5~R8は、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましく、水素原子がさらに好ましい。
無機充填材を除く封止組成物に占めるエポキシ樹脂の含有率は、40質量%~70質量%であることが好ましく、45質量%~64質量%であることがより好ましく、48質量%~55質量%であることがさらに好ましい。
本開示の封止組成物は、硬化剤を含有する。硬化剤の種類は特に限定されず、公知の硬化剤を使用することができる。
硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、流動性を維持しつつ耐リフロー性に優れる封止組成物を得る観点から、フェノール硬化剤、アミン硬化剤、及び酸無水物硬化剤が好ましく、フェノール硬化剤がより好ましい。硬化剤は1種類を単独で使用しても、2種類以上を併用してもよい。
ここで、「多官能フェノール樹脂硬化剤」は1分子中に官能基(すなわち水酸基)を3以上有するフェノール樹脂である硬化剤である。
一般式(2)中のb1~b5は、0~1の整数であることが好ましく、0であることがより好ましい
一般式(2)中のnは、1~7であることが好ましく、2~5であることがより好ましい。
硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。
本開示の封止組成物は、無機充填材として、特定シリカ粒子(すなわち、比表面積が100m2/g以上のシリカ粒子)を少なくとも含み、必要に応じて特定シリカ粒子以外の充填材(以下「他の充填材」ともいう)を含んでもよい。
封止組成物が特定シリカ粒子を含むことにより、例えば、トランスファーモールド法により半導体素子の封止を行った場合におけるバリの発生が抑制される。
封止組成物は、無機充填材として、特定シリカ粒子と他の充填材とを含むことが好ましい。
無機充填材の比表面積(すなわち、BET比表面積)は、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、QUANTACHROME社:AUTOSORB-1(商品名)を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行うことが好ましい。
前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
他の充填材を2種類以上併用する場合としては、成分、平均粒子径、形状等が異なる無機充填材を2種類以上用いる場合が挙げられる。
他の充填材の形状は特に制限されず、粉状、球状、繊維状等が挙げられる。封止組成物の成形時の流動性及び金型摩耗性の点からは、他の充填材の形状は球状であることが好ましい。
アルミナ以外の他の充填材としては、比表面積が100m2/g未満のシリカ(球状シリカ、結晶シリカ等)、ジルコン、酸化マグネシウム、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化ホウ素、ベリリア、ジルコニアなどが挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、硼酸亜鉛等が挙げられる。
また、無機充填材の含有率は、高熱伝導性の観点から、封止組成物の全体に対して78体積%以上であることが好ましく、80体積%以上であることがより好ましい。無機充填材の含有率は、封止組成物の成形性の観点から、封止組成物の全体に対して95体積%以下であることが好ましく、90体積%以下であることがより好ましく、85体積%以下であることがさらに好ましい。無機充填材の含有率は、高熱伝導性と封止組成物の成形性とを両立する観点から、78体積%~90体積%が好ましく、78体積%~85体積%がより好ましく、80体積%~85体積%がさらに好ましい。
封止組成物の硬化物の熱伝導率は、無機充填材の平均粒子径が大きくなる程、高くなる傾向にある。
無機充填材の平均粒子径は、以下の方法により測定することができる。
封止組成物の流動性は、無機充填材の比表面積が小さくなる程、高くなる傾向にある。
本開示の封止組成物は、特定シラン化合物(すなわち、炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物)を含有する。
特定シラン化合物は、炭素数6以上の鎖状炭化水素基(以下、炭素数6以上の鎖状炭化水素基を、単に鎖状炭化水素基ともいう)がケイ素原子に結合した構造を有する。鎖状炭化水素基は分岐していてもよく、置換基を有していてもよい。なお、本開示において、鎖状炭化水素基の炭素数とは、分岐又は置換基の炭素を含まない炭素数を意味する。鎖状炭化水素基は、不飽和結合を含んでいても含んでいなくてもよく、不飽和結合を含まないことが好ましい。
特定シラン化合物は、封止組成物において、無機充填材のカップリング剤として機能すると考えられる。
また、特定シラン化合物の含有率は、封止組成物の全体に対して3質量%以下であることが好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましく、その効果を発揮させる観点からは、0.1質量%以上であることが好ましく、0.15質量%以上であることがより好ましく、0.2質量%以上がさらに好ましい。
(他のカップリング剤)
封止組成物は、前記特定シラン化合物に加えて、他のカップリング剤をさらに含有してもよい。他のカップリング剤としては、エポキシ樹脂を用いた封止組成物に一般に使用されているものであれば特に制限はない。他のカップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物(特定シラン化合物を除く)、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。他のカップリング剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
また、特定シラン化合物及び他のカップリング剤の合計含有率は、封止組成物の全体に対して3質量%以下であることが好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましく、その効果を発揮させる観点からは、0.1質量%以上であることが好ましく、0.15質量%以上であることがより好ましく、0.2質量%以上がさらに好ましい。
封止組成物は、硬化促進剤をさらに含有してもよい。硬化促進剤の種類は特に制限されず、公知の硬化促進剤を使用することができる。
硬化促進剤としては、具体的には、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物;3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物;イミダゾール化合物の誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩;テトラフェニルボロン塩の誘導体;トリフェニルホスホニウム-トリフェニルボラン、N-メチルモルホリンテトラフェニルホスホニウム-テトラフェニルボレート等のホスフィン化合物とテトラフェニルボロン塩との付加物;などが挙げられる。硬化促進剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
なお、「リン系硬化促進剤」はリン原子を有する硬化促進剤である。
封止組成物は、イオントラップ剤をさらに含有してもよい。
本開示において使用可能なイオントラップ剤は、半導体装置の製造用途に用いられる封止材において、一般的に使用されているイオントラップ剤であれば特に制限されるものではない。イオントラップ剤としては、下記一般式(3)又は下記一般式(4)で表される化合物等が挙げられる。
(一般式(3)中、aは0<a≦0.5であり、uは正数である。)
BiOb(OH)c(NO3)d (4)
(一般式(4)中、bは0.9≦b≦1.1、cは0.6≦c≦0.8、dは0.2≦d≦0.4である。)
イオントラップ剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
封止組成物は、離型剤をさらに含有してもよい。離型剤の種類は特に制限されず、公知の離型剤を使用することができる。具体的には、離型剤としては、高級脂肪酸、カルナバワックス、モンタンワックス、ポリエチレン系ワックス等が挙げられる。離型剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
封止組成物が離型剤を含有する場合、離型剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下であることが好ましく、その効果を発揮させる観点からは、0.5質量%以上であることが好ましい。
封止組成物は、着色剤(カーボンブラック等)を含有してもよい。また、封止組成物は、改質剤(シリコーン、シリコーンゴム等)を含有してもよい。着色剤及び改質剤は、それぞれ、1種類を単独で使用しても、2種類以上を併用してもよい。
封止組成物が導電性粒子を含有する場合、導電性粒子の含有率は、エポキシ樹脂と硬化剤の合計量に対して3質量%以下であることが好ましい。
封止組成物は、必要に応じて、さらにその他添加剤を含んでもよい。
その他添加剤としては、難燃剤、陰イオン交換体、可塑剤等が挙げられる。また、封止組成物には、必要に応じて当技術分野で周知の各種添加剤を添加してもよい。
封止組成物の作製方法は特に制限されず、公知の方法により行うことができる。例えば、所定の配合量の原材料の混合物をミキサー等によって充分混合した後、熱ロール、押出機等によって混練し、冷却、粉砕等の処理を経ることによって封止組成物を作製することができる。封止組成物の状態は特に制限されず、粉末状、固体状、液体状等であってよい。
封止組成物を、硬化温度175℃及び硬化時間90秒の条件で加熱硬化したときに得られる硬化物のショアDで示される熱時硬度は、70以上であることが好ましく、74以上であることがより好ましく、76以上であることがさらに好ましい。
上記熱時硬度が上記範囲であることにより、トランスファーモールド法により半導体素子の封止を行った場合における連続成形性が良好となる。
本開示の半導体装置は、半導体素子と、前記半導体素子を封止してなる本開示の封止組成物の硬化物と、を含む。
下記に示す成分を表1及び表2に示す配合割合(質量部)で予備混合(ドライブレンド)した後、二軸ニーダーで混練し、冷却粉砕して粉末状の封止組成物を製造した。
なお、表1及び表2に示す成分の詳細は以下の通りである。
エポキシ樹脂A1:三菱ケミカル株式会社、品名「YX4000H」、エポキシ基当量「192g/eq」、軟化点「107℃」、ビフェニル型エポキシ樹脂、前記一般式(1)で表される2価の連結基を有するエポキシ樹脂
(B)硬化剤
硬化剤B1:トリフェニルメタン型フェノール樹脂、エア・ウォーター株式会社、品名「HE910-09」、水酸基当量「104g/eq」、軟化点「80℃」、前記一般式(2)で表されるフェノール樹脂
(C)硬化促進剤
硬化促進剤C1:リン系硬化促進剤(トリブチルホスフィンとベンゾキノンの付加物)
(D)カップリング剤
カップリング剤D1:3-メタクリロキシプロピルトリメトキシシラン、信越化学工業株式会社、品名「KBM-503」炭素数3の炭化水素基を有するシラン化合物
カップリング剤D2:8-メタクリロキシオクチルトリメトキシシラン、信越化学工業株式会社、品名「KBM-5803」、炭素数8の鎖状炭化水素基を有するシラン化合物
離型剤E1:モンタンワックス、クラリアント社、品名「HW-E」
(F)着色剤
顔料F1:カーボンブラック、三菱ケミカル株式会社、商品名「MA600」
(G)添加剤
添加剤G1:トリフェニルホスフィンオキシド
(H)改質剤
改質剤H1:シリコーン、東レ・ダウコーニング株式会社、品名「BY16-876」
フィラI1:シリカ粒子、球状、比表面積「190~210m2/g」、特定シリカ粒子
フィラI2:アルミナ粒子、球状、平均粒子径「0.7μm」
フィラI3:アルミナ粒子、球状、平均粒子径「10μm」
実施例及び比較例で作製した封止組成物の特性を、次の特性試験により評価した。評価結果を下記表1及び表2に示す。
上記で得られた封止組成物を用いて、トランスファ成形機により、金型温度175℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、直径50mm×厚み3mmの円板形状である試験片を作製した。成形後直ちにショアD型硬度計(高分子計器株式会社、アスカー、タイプDデュロメータ)を用いて熱時硬度を測定した。
硬化性は、ゲル化試験機を用いて以下のようにして測定されたゲルタイムに基づいて評価した。
上記で得られた封止組成物0.5gを175℃に熱した熱板上に乗せ、治具を用いて20回転/分~25回転/分の回転速度で、試料を2.0cm~2.5cmの円状に均一に広げた。試料を熱板に乗せてから、試料の粘性がなくなり、ゲル状態となって熱板から剥がれるようになるまでの時間を計測し、これをゲルタイム(sec)として測定した。
結果を表1及び表2に示す。エポキシ100質量部に対して同じ触媒量を用いた場合に、ゲルタイムの短いものほど、硬化性に優れる。
上記で得られた封止組成物を、2段篩(上段:2.38mm、下段:0.5mm)に通し、下段に残った試料を7g秤量した。その封止組成物を180℃に熱した平滑な金型の上に置き、同様に180℃に熱した8kgの平滑な金型を試料の上に置いて60秒放置した。その後、得られた円板状成形品の直径(mm)と短径(mm)の平均値(mm)を求め、その平均値(mm)をディスクフロー(DF)とした。
結果を表1及び表2に示す。ディスクフローの長いものほど、流動性に優れる。
上記で得られた封止組成物15gをプレス熱板上の180℃の金型上に乗せ、硬化時間90秒で成形した。成形後、金型に作製された50μm、30μm、20μm、10μm、5μm及び2μmのスリットで一番長く封止組成物が流れた部分の長さを、ノギスを用いて測定し、この測定値をバリ長さとした。
その結果、実施例1~5のいずれにおいても、バリ長さが10mm以下であり、バリの発生が抑制されていることが分かった。
上記で得られた封止組成物を用いて、トランスファ成形機により、金型温度175℃~180℃、成形圧力7MPa、硬化時間300秒の条件で熱伝導率評価用の試験片を作製した。次いで、成形した試験片について、厚さ方向の熱拡散率を測定した。熱拡散率の測定はレーザーフラッシュ法(装置:LFA467 nanoflash、NETZSCH社)にて行った。パルス光照射は、パルス幅0.31(ms)、印加電圧247Vの条件で行った。測定は雰囲気温度25℃±1℃で行った。また上記試験片の密度は電子比重計(AUX220、株式会社島津製作所)を用いて測定した。比熱は、各材料の比熱の文献値と配合比率より算出した封止組成物の理論比熱を用いた。
次いで、式(5)を用いて比熱及び密度を熱拡散率に乗算することによって,熱伝導率の値を得た。
λ=α×Cp×ρ・・・式(5)
(式(5)中、λは熱伝導率(W/(m・K))、αは熱拡散率(m2/s)、Cpは比熱(J/(kg・K))、ρは密度(kg/m3)をそれぞれ示す。)
結果を表1及び表2に示す。
表1及び表2の評価結果から明らかなように、特定シラン化合物を含有する実施例1~5の封止組成物は、特定シラン化合物を含有しない比較例1~5の封止組成物に比較して、流動性が高く、また熱伝導率の高い硬化物が得られている。また、比較例1~5の封止組成物においては、フィラ含有率の増加に対する熱伝導率の上昇率が低く、熱伝導性が飽和状態となっているのに対し、実施例1~3の封止組成物においては、フィラ含有率の増加に伴って熱伝導率が高くなっていることが分かる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
Claims (8)
- エポキシ樹脂と、
硬化剤と、
比表面積が100m2/g以上のシリカ粒子を含む無機充填材と、
炭素数6以上の鎖状炭化水素基がケイ素原子に結合した構造を有するシラン化合物と、
を含有する封止組成物。 - 封止組成物を、硬化温度175℃及び硬化時間90秒の条件で加熱硬化したときに得られる硬化物のショアDで示される熱時硬度が70以上である請求項1に記載の封止組成物。
- 前記無機充填材の含有率は、封止組成物全体に対して78体積%以上である請求項1又は請求項2に記載の封止組成物。
- 前記硬化剤は、多官能フェノール樹脂硬化剤を含有する請求項1~請求項3のいずれか1項に記載の封止組成物。
- 前記硬化剤は、トリフェニルメタン型フェノール樹脂を含有する請求項1~請求項4のいずれか1項に記載の封止組成物。
- 前記鎖状炭化水素基が、(メタ)アクリロイル基、エポキシ基、及びアルコキシ基からなる群より選択される少なくとも1つの官能基を有する、請求項1~請求項5のいずれか1項に記載の封止組成物。
- 前記鎖状炭化水素基が、(メタ)アクリロイル基を有する、請求項1~請求項6のいずれか1項に記載の封止組成物。
- 半導体素子と、前記半導体素子を封止してなる請求項1~請求項7のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980083407.6A CN113195586A (zh) | 2018-12-21 | 2019-12-19 | 密封组合物及半导体装置 |
JP2020561522A JP7415950B2 (ja) | 2018-12-21 | 2019-12-19 | 封止組成物及び半導体装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018239254 | 2018-12-21 | ||
JP2018-239254 | 2018-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020130098A1 true WO2020130098A1 (ja) | 2020-06-25 |
Family
ID=71102836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/049924 WO2020130098A1 (ja) | 2018-12-21 | 2019-12-19 | 封止組成物及び半導体装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7415950B2 (ja) |
CN (1) | CN113195586A (ja) |
TW (1) | TWI835960B (ja) |
WO (1) | WO2020130098A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002020586A (ja) * | 2000-07-05 | 2002-01-23 | Shin Etsu Chem Co Ltd | エポキシ樹脂組成物 |
JP2004217515A (ja) * | 2002-12-27 | 2004-08-05 | Tokuyama Corp | シリカ微粒子 |
JP2004300212A (ja) * | 2003-03-28 | 2004-10-28 | Sumitomo Bakelite Co Ltd | エポキシ樹脂組成物及び半導体装置 |
JP2005068330A (ja) * | 2003-08-26 | 2005-03-17 | Matsushita Electric Works Ltd | 熱硬化性樹脂組成物 |
JP2009097014A (ja) * | 2007-09-27 | 2009-05-07 | Hitachi Chem Co Ltd | 封止用液状樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ |
JP2018188667A (ja) * | 2011-04-01 | 2018-11-29 | 日立化成株式会社 | 圧縮成形用固形封止樹脂組成物及び半導体装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101432331A (zh) * | 2006-04-26 | 2009-05-13 | 积水化学工业株式会社 | 光半导体用热固化性组合物、光半导体元件用固晶材料、光半导体元件用底填材料、光半导体元件用密封剂及光半导体元件 |
CN106833470A (zh) * | 2017-02-24 | 2017-06-13 | 厦门安耐伟业新材料有限公司 | 密封胶及其制备方法、使用方法 |
-
2019
- 2019-12-19 CN CN201980083407.6A patent/CN113195586A/zh active Pending
- 2019-12-19 WO PCT/JP2019/049924 patent/WO2020130098A1/ja active Application Filing
- 2019-12-19 JP JP2020561522A patent/JP7415950B2/ja active Active
- 2019-12-20 TW TW108147087A patent/TWI835960B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002020586A (ja) * | 2000-07-05 | 2002-01-23 | Shin Etsu Chem Co Ltd | エポキシ樹脂組成物 |
JP2004217515A (ja) * | 2002-12-27 | 2004-08-05 | Tokuyama Corp | シリカ微粒子 |
JP2004300212A (ja) * | 2003-03-28 | 2004-10-28 | Sumitomo Bakelite Co Ltd | エポキシ樹脂組成物及び半導体装置 |
JP2005068330A (ja) * | 2003-08-26 | 2005-03-17 | Matsushita Electric Works Ltd | 熱硬化性樹脂組成物 |
JP2009097014A (ja) * | 2007-09-27 | 2009-05-07 | Hitachi Chem Co Ltd | 封止用液状樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ |
JP2018188667A (ja) * | 2011-04-01 | 2018-11-29 | 日立化成株式会社 | 圧縮成形用固形封止樹脂組成物及び半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
TW202035546A (zh) | 2020-10-01 |
TWI835960B (zh) | 2024-03-21 |
JPWO2020130098A1 (ja) | 2021-11-04 |
CN113195586A (zh) | 2021-07-30 |
JP7415950B2 (ja) | 2024-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6551499B2 (ja) | コンプレッション成形用半導体封止樹脂材料及び半導体装置 | |
TW201920450A (zh) | 環氧樹脂組成物及電子零件裝置 | |
TW202120580A (zh) | 環氧樹脂組成物、電子零件裝置、及電子零件裝置的製造方法 | |
JP2024144537A (ja) | 成形用樹脂組成物及び電子部品装置 | |
TWI733821B (zh) | 密封組成物及半導體裝置 | |
JP7505661B2 (ja) | 成形用樹脂組成物及び電子部品装置 | |
JP7501818B2 (ja) | 成形用樹脂組成物及び電子部品装置 | |
TWI797222B (zh) | 密封組成物及半導體裝置 | |
JP2020139042A (ja) | 封止組成物及び半導体装置 | |
JP7392659B2 (ja) | 封止組成物及び半導体装置 | |
WO2019035431A1 (ja) | 封止用樹脂組成物、封止用樹脂組成物の製造方法、半導体装置及び半導体装置の製造方法 | |
WO2019131096A1 (ja) | ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 | |
JP7415950B2 (ja) | 封止組成物及び半導体装置 | |
JP7263765B2 (ja) | 封止組成物及び半導体装置 | |
TWI855015B (zh) | 密封組成物及半導體裝置 | |
JP7571815B2 (ja) | 封止組成物及び半導体装置 | |
TW202043321A (zh) | 密封組成物及半導體裝置 | |
WO2019035430A1 (ja) | 封止用樹脂組成物、半導体装置及び半導体装置の製造方法 | |
JP2024055627A (ja) | 成形用樹脂組成物及び電子部品装置 | |
WO2024111461A1 (ja) | 成形用樹脂組成物及び電子部品装置 | |
KR102668756B1 (ko) | 밀봉 조성물 및 그의 제조 방법 그리고 반도체 장치 | |
WO2024111575A1 (ja) | 成形用樹脂組成物及び電子部品装置 | |
TW202436581A (zh) | 密封組成物及其製造方法以及半導體裝置 | |
JP2022011184A (ja) | 封止用樹脂組成物及び電子部品装置 | |
JP2024081461A (ja) | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19901090 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020561522 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.10.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19901090 Country of ref document: EP Kind code of ref document: A1 |