WO2020129533A1 - 共焦点センサ - Google Patents

共焦点センサ Download PDF

Info

Publication number
WO2020129533A1
WO2020129533A1 PCT/JP2019/045611 JP2019045611W WO2020129533A1 WO 2020129533 A1 WO2020129533 A1 WO 2020129533A1 JP 2019045611 W JP2019045611 W JP 2019045611W WO 2020129533 A1 WO2020129533 A1 WO 2020129533A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
wavelength
lens
light
diffractive lens
Prior art date
Application number
PCT/JP2019/045611
Other languages
English (en)
French (fr)
Inventor
久康 森野
潤 ▲高▼嶋
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US17/294,693 priority Critical patent/US11965729B2/en
Priority to KR1020217012442A priority patent/KR102556921B1/ko
Priority to EP19897739.9A priority patent/EP3901568B1/en
Priority to CN201980057877.5A priority patent/CN112654832A/zh
Publication of WO2020129533A1 publication Critical patent/WO2020129533A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Definitions

  • the present disclosure relates to confocal sensors.
  • chromatic aberration is generated along the optical axis by a confocal optical system for light emitted from a light source, and utilizing the fact that the wavelength of condensed light changes according to the distance to an object,
  • a confocal sensor that measures the distance to an object is used.
  • Patent Document 1 describes an apparatus including means for generating a polychromatic light beam and at least one lens that focuses light rays of respective wavelengths at respective focal points.
  • illumination light from a light source is imaged from a disc having a predetermined pattern portion onto a sample through an objective lens, and light from the sample is again imaged from the objective lens through a disc.
  • a confocal height measuring device consisting of a confocal microscope for obtaining an observation image of a sample by injecting into There is described a confocal height measuring device that corrects height information obtained by a confocal microscope using position correction data in the optical axis direction due to at least one of the above.
  • the measurement range of the conventional confocal sensor may be limited to a range of several mm from the front surface of the sensor head around a point of several tens mm.
  • the present invention provides a confocal sensor having a wider measurement range.
  • a confocal sensor a light source that emits light of a plurality of wavelengths, chromatic aberration is generated along the optical axis direction to the light, the light to the object without passing through another lens. Based on the wavelength of the reflected light, a diffractive lens that collects light, a pinhole that reflects the light that is focused and reflected by the object, and that passes through the reflected light that is collected by the diffractive lens. And a measuring unit for measuring the distance to the diffractive lens, and the distance from the pinhole to the diffractive lens is variable.
  • the measurable range can be changed and the distance to the object can be measured in a wider range.
  • a mechanism for continuously changing the distance from the pinhole to the diffractive lens may be further provided.
  • the measurement range can be continuously changed by continuously changing the distance from the pinhole to the diffractive lens.
  • a plurality of types of holders that house the diffractive lenses in different positions may be replaceable.
  • the measurement range can be changed stepwise by replacing a plurality of types of holders.
  • the measuring unit may measure the distance from the diffractive lens to the object according to the nonlinear relationship between the wavelength of the reflected light and the distance from the diffractive lens to the object.
  • the measurement range can be expanded as compared with the case of using the linear relationship.
  • the wavelength of the reflected light is represented by ⁇
  • the distance from the diffractive lens to the object is represented by L 1
  • the distance from the pinhole to the diffractive lens is represented by L 2
  • the non-linear relationship between the wavelength of the reflected light and the distance from the diffractive lens to the object can be changed, and the measurement range can be further improved. Can be expanded.
  • the measuring unit may measure the distance from the diffractive lens to the object in accordance with the nonlinear relationship estimated based on the measured value of the wavelength of the reflected light and the distance from the diffractive lens to the object. Good.
  • the nonlinear relationship between the wavelength of the reflected light and the distance from the diffractive lens to the object can be corrected based on the actual measurement value, and the distance from the diffractive lens to the object can be measured more accurately. can do.
  • the measuring unit may determine whether or not the object is located within a predetermined range based on the wavelength.
  • an input unit that receives an input of the required wavelength resolution, and an output unit that outputs the range of the distance from the diffraction lens satisfying the wavelength resolution to the object and the distance from the pinhole to the diffraction lens are further provided. May be.
  • a confocal sensor having a wider measurement range is provided.
  • FIG. 1 It is a figure showing an outline of a confocal sensor concerning an embodiment of the present invention. It is a figure which shows the relationship between the distance from the diffraction lens of a confocal sensor which concerns on this embodiment to a target object, and the wavelength of reflected light. It is a flow chart which shows the initialization processing of the confocal sensor concerning this embodiment. It is a figure which shows the outline which determines whether the target object is located in a predetermined range by the confocal sensor concerning this embodiment. It is a figure which shows the relationship between the distance from a diffraction lens to an object, and the wavelength of reflected light, and a determination result by the confocal sensor concerning this embodiment.
  • FIG. 1 is a diagram showing an outline of a confocal sensor 1 according to an embodiment of the present invention.
  • the confocal sensor 1 according to this embodiment is a device that measures the position of the object 200, and includes a light source 10, a first optical fiber 11, a second optical fiber 12, a third optical fiber 13, an optical coupler 20, and a spectroscope. 30, a measuring unit 40 and a sensor head 100 are provided.
  • the light source 10 emits light of a plurality of wavelengths.
  • the light source 10 may emit white light and outputs the light to the first optical fiber 11.
  • the light source 10 may adjust the amount of white light based on a command from the measurement unit 40.
  • the first optical fiber 11 may be any optical fiber, for example, a gradient index fiber having a core diameter of 50 ⁇ m.
  • the first optical fiber 11 may be connected to a fiber having a smaller core diameter before being connected to the optical coupler 20.
  • the optical coupler 20 connects the first optical fiber 11, the second optical fiber 12, and the third optical fiber 13, transmits light from the first optical fiber 11 to the second optical fiber 12, and transmits the light from the second optical fiber 12 to the second optical fiber 12. 3 Light is transmitted to the optical fiber 13.
  • the sensor head 100 is connected to the second optical fiber 12 and has a diffractive lens 130 that causes chromatic aberration in the optical axis direction with respect to the light and focuses the light on the object 200 without passing through another lens.
  • a diffractive lens 130 that causes chromatic aberration in the optical axis direction with respect to the light and focuses the light on the object 200 without passing through another lens.
  • the first wavelength light 210 having a relatively long focal length and the second wavelength light 220 having a relatively short focal length are illustrated.
  • the light 210 of the first wavelength is focused on the object 200, but the light 220 of the second wavelength is focused in front of the object 200.
  • the light reflected on the surface of the object 200 is condensed by the diffraction lens 130 and returned to the pinhole 120 which is the core of the second optical fiber 12.
  • the pinhole 120 focuses and reflects the light on the object 200 of the light, and transmits the light reflected by the diffractive lens 130.
  • the light 210 of the first wavelength is focused at the pinhole 120 provided on the end face of the second optical fiber 12, so most of it is incident on the second optical fiber 12, but the light of other wavelengths. Are not focused at the pinhole 120, and most of them do not enter the second optical fiber 12.
  • the reflected light that has entered the second optical fiber 12 is transmitted to the third optical fiber 13 via the optical coupler 20 and input to the spectroscope 30.
  • the reflected light that has entered the second optical fiber 12 is also transmitted to the first optical fiber 11 via the optical coupler 20, but is terminated by the light source 10.
  • the spectroscope 30 is connected to the third optical fiber 13, and reflects the reflected light reflected by the object 200 and collected by the sensor head 100 via the second optical fiber 12, the optical coupler 20, and the third optical fiber 13. Then, the spectrum of the reflected light is measured.
  • the spectroscope 30 includes a first lens 31 that collects the reflected light emitted from the third optical fiber 13, a diffraction grating 32 that separates the reflected light, and a second lens 33 that collects the separated reflected light. It includes a light receiving element 34 that receives the reflected light, and a read circuit 35 that reads out a light receiving signal from the light receiving element 34. The readout circuit 35 reads out the wavelength and the amount of the received light based on the light receiving signal from the light receiving element 34.
  • the measuring unit 40 measures the distance L1 from the diffractive lens 130 to the object 200 based on the wavelength of the reflected light.
  • the reading circuit 35 reads the light 210 of the first wavelength as a peak, and the measuring unit 40 calculates the position corresponding to the first wavelength.
  • the distance L2 from the pinhole 120 to the diffractive lens 130 is variable.
  • the distance L2 from the pinhole 120 to the diffractive lens 130 is fixed, and since the chromatic aberration is linearly corrected by another lens, it is not supposed to change the distance L2, and the confocal sensor 1 is measured.
  • the range could not be arbitrarily expanded or reduced.
  • the measurable range can be changed because the distance L2 from the pinhole 120 to the diffractive lens 130 is variable, and the object 200 can be extended in a wider range. The distance can be measured.
  • the sensor head 100 has a mechanism for continuously changing the distance L2 from the pinhole 120 to the diffraction lens 130.
  • the sensor head 100 includes a variable mechanism 150 that continuously moves the diffraction lens 130 in the direction along the optical axis.
  • the variable mechanism 150 may have a means for reading the position of the diffractive lens 130, and the distance L2 from the pinhole 120 to the diffractive lens 130 or the distance L3 from the diffractive lens 130 to the entire surface of the sensor head 100 is set to the measuring unit 40. You may transmit.
  • the variable mechanism 150 By continuously changing the distance L2 from the pinhole 120 to the diffractive lens 130 by the variable mechanism 150, the measurement range can be continuously changed.
  • FIG. 2 is a diagram showing the relationship between the distance L1 from the diffraction lens 130 of the confocal sensor 1 according to this embodiment to the object 200 and the wavelength of reflected light.
  • the distance L1 from the diffractive lens 130 to the object 200 is shown on the vertical axis in mm, and the wavelength of the reflected light is shown on the horizontal axis in nm.
  • the case where the distance L2 from the pinhole 120 to the diffractive lens 130 is 36 mm is shown by a solid line
  • the longer the wavelength of the reflected light the shorter the corresponding distance L1. It can also be read that the change in the distance L1 when the wavelength of the reflected light changes by one unit increases as the wavelength of the reflected light decreases. Furthermore, it can be read that the change in the distance L1 when the wavelength of the reflected light changes by one unit increases as the distance L2 from the pinhole 120 to the diffractive lens 130 decreases.
  • the measurement unit 40 of the confocal sensor 1 determines the distance from the diffraction lens 130 to the object 200 according to the nonlinear relationship between the wavelength of the reflected light and the distance L1 from the diffraction lens 130 to the object 200. You may measure.
  • the nonlinear relationship between the wavelength of the reflected light and the distance L1 from the diffraction lens 130 to the object 200 may be corrected by another lens to form a linear relationship. With such a correction, the resolution of the distance L1 can be made almost independent of the wavelength.
  • the measurement range is limited to a narrow range.
  • the confocal sensor 1 uses a non-linear relationship between the wavelength of the reflected light and the distance L1 to expand the measurement range particularly in a short wavelength region as compared with the case where a linear relationship is used.
  • the measurement range of the confocal sensor 1 can be widened.
  • the wavelength of the reflected light is represented by ⁇
  • the distance from the diffraction lens 130 to the object 200 is represented by L1
  • the distance from the pinhole 120 to the diffraction lens 130 is represented by L2
  • the reference wavelength ⁇ 0 is related.
  • the focal length of the diffractive lens 130 is represented by f 0
  • the nonlinearity with the distance L1 from the diffractive lens 130 to the object 200 is represented by the following mathematical expression (2).
  • the measurement range can be expanded.
  • FIG. 3 is a flowchart showing an initial setting process of the confocal sensor 1 according to this embodiment. The process shown in the figure is performed before the confocal sensor 1 measures the distance.
  • the position of the object 200 or the diffractive lens 130 is adjusted so that the confocal sensor 1 outputs the distance corresponding to the reference wavelength (or the reference wavelength set at the time of adjustment) (S10).
  • the reference wavelength and the focal length corresponding to the reference wavelength are determined at the design stage.
  • the object 200 is moved by a known amount while the diffraction lens 130 is fixed (S11).
  • the confocal sensor 1 stores the relationship between the wavelength of the reflected light detected in this case and the distance (S12).
  • the distance to the target object 200 is calculated by adding (or subtracting) the distance moved by the target object 200 to the distance corresponding to the reference wavelength.
  • the relationship between the wavelength of the reflected light detected by the confocal sensor 1 and the distance has been measured in the predetermined wavelength range (S13). For example, whether or not the measurement is completed may be determined depending on whether or not the object 200 is moved by a plurality of predetermined known amounts.
  • the object 200 When the measurement has not been completed for the predetermined wavelength range (S13: NO), the object 200 is moved by a known amount (S11), and the relationship between the wavelength of the detected reflected light and the distance is stored (S12). repeat.
  • the parameter that defines the nonlinear relationship between the wavelength and the distance is determined (S14). That is, the parameters (L2, ⁇ 0 , f 0 ) that specify the nonlinear relationship between the wavelength ⁇ of the reflected light and the distance L1 from the diffractive lens 130 to the target object 200, which is represented by Expression (2), are determined.
  • Such processing may be repeated by changing the distance L2 from the pinhole 120 to the diffractive lens 130. With the above, the process for initial setting is completed.
  • the measurement unit 40 causes the diffractive lens 130 to detect the object 200 according to the nonlinear relationship estimated based on the measured value of the wavelength of the reflected light and the distance from the diffractive lens 130 to the object 200.
  • the distance to may be measured.
  • the non-linear relationship between the wavelength of the reflected light and the distance from the diffractive lens 130 to the object 200 can be corrected based on the measured value, and the distance from the diffractive lens 130 to the object 200 can be more accurately determined. Can be measured.
  • FIG. 4 is a diagram showing an outline of determining whether the object 200 is located within a predetermined range by the confocal sensor 1 according to the present embodiment.
  • the figure shows a case where the sensor head 100 determines whether the workpiece transferred by the conveyor 300 is located within a predetermined range.
  • seven works transferred by the conveyor 300 are illustrated.
  • the workpieces are numbered from 0 to 6 in order from the downstream side of the conveyor 300.
  • the “predetermined range” in this example is the range shown as “OK” in the figure, which is the central band of the conveyor 300.
  • the range corresponding to the side band of the conveyor 300 indicated by “NG” in the figure is outside the “predetermined range”.
  • the distance L2 from the pinhole 120 of the confocal sensor 1 to the diffractive lens 130 is adjusted so that at least the range indicated as "OK" is included in the measurement range. To do. Then, the initial setting described below is performed, and the measuring unit 40 of the confocal sensor 1 determines whether or not the target object is located within a predetermined range based on the wavelength of the reflected light.
  • FIG. 5 is a diagram showing the relationship between the distance L1 from the diffraction lens 130 to the object 200 and the wavelength of the reflected light and the determination result by the confocal sensor 1 according to the present embodiment.
  • the distance L1 from the diffractive lens 130 to the object 200 is shown on the vertical axis in mm, and the wavelength of the reflected light is shown on the horizontal axis in nm.
  • measurement points p0 to p6 are shown in order from the downstream of the conveyor 300, corresponding to the works with numbers 0 to 6. Further, in the figure, the wavelength range corresponding to the range indicated by "OK” and the wavelength range corresponding to the range indicated by "NG” are illustrated.
  • the works corresponding to the measurement points p0, p3, p4 and p6 are located within a predetermined range.
  • the works corresponding to the measurement points p1, p2, and p5 are not located within the predetermined range.
  • the measuring unit 40 may compare the measured wavelength with the upper and lower limits of the wavelength range corresponding to the predetermined range to determine whether or not the object is located within the predetermined range. In this way, it is possible to determine whether the position of the object is appropriate.
  • FIG. 6 is a flowchart showing an initial setting process of the confocal sensor 1 according to this embodiment. The process shown in the figure is performed before it is determined whether the target object is located within a predetermined range.
  • the conveyor 300 is moved to flow the sample work.
  • the sample work is placed in a range (OK range) shown as “OK” in FIG. 4 or a range (NG range) shown as “NG”.
  • a sample placed in the OK range is called an OK sample, and a sample placed in the NG range is called an NG sample.
  • the confocal sensor 1 stores the wavelength when the OK sample is measured (S21) and the wavelength when the NG sample is measured (S22).
  • the wavelength of the reflected light detected by the confocal sensor 1 is associated with OK or NG (S23). For example, it may be determined whether or not the measurement is completed depending on whether or not the measurement has been completed for a plurality of predetermined samples.
  • FIG. 7 is a diagram showing an outline of a case where the first holder 160a is attached to the sensor head 100a according to the modified example of the present embodiment.
  • FIG. 8 is a diagram showing an outline of a case where the second holder 160b is attached to the sensor head 100a according to the modified example of the present embodiment.
  • a plurality of types of holders first holder 160a and second holder 160b that house the diffractive lens 130 at different positions can be replaced.
  • the distance from the diffractive lens 130 to the object 200 is L1a
  • the distance from the pinhole 120 to the diffractive lens 130 is L2a
  • the distance L2a from the pinhole 120 to the diffractive lens 130 is known as a design value of the first holder 160a.
  • the measurement unit 40 calculates the distance L1a from the diffractive lens 130 to the object 200 according to the mathematical expression (2) when the distance from the pinhole 120 to the diffractive lens 130 is L2a.
  • the distance L3a from the diffraction lens 130 to the front surface of the sensor head 100a may be subtracted from the distance L1a from the diffraction lens 130 to the target object 200. ..
  • the distance L3a from the diffractive lens 130 to the front surface of the sensor head 100a is a value obtained by subtracting the distance L2a from the pinhole 120 to the diffractive lens 130 from the total length L of the sensor head 100a.
  • the distance from the diffractive lens 130 to the object 200 is L1b
  • the distance from the pinhole 120 to the diffractive lens 130 is L2b
  • the distance L2b from the pinhole 120 to the diffractive lens 130 is known as a design value of the first holder 160a.
  • the measurement unit 40 calculates the distance L1b from the diffractive lens 130 to the object 200 according to the mathematical expression (2) when the distance from the pinhole 120 to the diffractive lens 130 is L2b.
  • the distance L3b from the diffraction lens 130 to the front surface of the sensor head 100a may be subtracted from the distance L1b from the diffraction lens 130 to the target object 200. ..
  • FIG. 9 is a diagram showing the relationship between the wavelength resolution of the confocal sensor 1 according to this embodiment and the distance L1 from the diffraction lens 130 to the object 200.
  • the wavelength resolution is shown on the vertical axis in units of mm/nm
  • the distance L1 from the diffraction lens 130 to the object 200 is shown on the horizontal axis in units of mm.
  • the case where the distance L2 from the pinhole 120 to the diffractive lens 130 is 36 mm is shown by a solid line
  • the wavelength resolution means that the better the resolution is, the more accurately the distance to the object 200 can be measured.
  • the longer the distance L1 from the diffractive lens 130 to the object 200 the larger the value of the wavelength resolution (the lower the resolution).
  • the distance L1 from the diffractive lens 130 to the object 200 is fixed, it can be read that the longer the distance L2 from the pinhole 120 to the diffractive lens 130, the smaller the wavelength resolution value (the higher the resolution).
  • the confocal sensor 1 includes an input unit that receives an input of a wavelength resolution required by a user, a distance L1 from the diffraction lens 130 satisfying the required wavelength resolution to the object 200, and a distance L2 from the pinhole 120 to the diffraction lens 130. And an output unit for outputting the range of.
  • the input unit may be composed of, for example, a push button, and the output unit may be composed of, for example, a 7-segment display unit or a liquid crystal display device.
  • the confocal sensor 1 stores the relationship shown in FIG. 9 in the storage unit, and the distance L1 from the diffraction lens 130 satisfying the required wavelength resolution to the object 200 and the distance L2 from the pinhole 120 to the diffraction lens 130.
  • the range may be calculated. With this, it is possible to grasp in what range the diffraction lens 130 can be moved or the positional relationship between the object 200 and the sensor head 100 can be changed while realizing the required wavelength resolution. ..
  • the confocal sensor 1 receives an input of a wavelength resolution requested by the user and an input of linearity requested by the user, and the distance from the diffraction lens 130 satisfying the requested wavelength resolution and the requested linearity to the object 200.
  • the range of the distance L2 from L1 and the pinhole 120 to the diffractive lens 130 may be output.
  • the confocal sensor 1 stores the relationship shown in FIG. 9 in the storage unit, and the distance L1 from the diffractive lens 130 to the object 200 satisfying the required wavelength resolution and the required linearity and the pinhole 120 to the diffractive lens.
  • the range of the distance L2 to 130 may be calculated. As a result, it is possible to determine in what range the diffraction lens 130 can be moved and the positional relationship between the object 200 and the sensor head 100 can be changed while realizing the required wavelength resolution and the required linearity. You can figure it out.
  • the user adjusts the distance L1 from the diffractive lens 130 to the object 200 and the distance L2 from the pinhole 120 to the diffractive lens 130 with reference to the output values of L1 and L2 to obtain the distance to the object 200. Measure. Thereby, for example, when performing control such that the sensor head 100 is gradually brought closer to the object 200, it is possible to perform adjustment from coarse adjustment to high precision.
  • FIG. 10 is a flowchart showing a distance calculation process of the confocal sensor 1 according to this embodiment.
  • the confocal sensor 1 receives an input of the wavelength resolution required by the user (S30). Further, the confocal sensor 1 receives an input of linearity requested by the user (S31).
  • the confocal sensor 1 calculates the range of the distance L1 from the diffractive lens 130 to the object 200 and the distance L2 from the pinhole 120 to the diffractive lens 130 that satisfy the required wavelength resolution and the required linearity (S32). ). Finally, the confocal sensor 1 outputs the calculated range of the distance L1 from the diffraction lens 130 to the object 200 and the calculated distance L2 from the pinhole 120 to the diffraction lens 130 (S33). With the above, the distance calculation process ends.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

測定範囲がより広い共焦点センサを提供する。共焦点センサ1は、複数の波長の光を出射する光源10と、光に対して光軸方向に沿って色収差を生じさせ、他のレンズを介さずに光を対象物200に集光する回折レンズ130と、光のうち、対象物200において合焦して反射し、回折レンズ130で集光された反射光を通過させるピンホール120と、反射光の波長に基づいて、回折レンズ130から対象物200までの距離を測定する測定部40と、を備え、ピンホール120から回折レンズ130までの距離L2は可変である。

Description

共焦点センサ
 本開示は、共焦点センサに関する。
 従来、光源から出射された光に対して共焦点光学系によって光軸に沿って色収差を生じさせ、集光される光の波長が対象物までの距離に応じて変化することを利用して、対象物までの距離を測定する共焦点センサが用いられている。
 下記特許文献1には、多色光ビームを生成する手段と、それぞれの焦点にそれぞれの波長の光線を集束させる少なくとも1つのレンズとを含む装置が記載されている。
 また、下記特許文献2には、光源からの照明光を、所定のパターン部を有するディスクから対物レンズを介して試料に結像し、試料からの光を再び対物レンズからディスクを介して撮像手段に入射して試料の観察画像を得る共焦点顕微鏡からなる共焦点高さ測定装置であって、対物レンズの光軸に対するディスクの傾きと試料を載置するステージの傾きと対物レンズの像面湾曲との少なくとも一つに起因する光軸方向の位置補正データを使用して共焦点顕微鏡により得られた高さ情報を補正する共焦点高さ測定装置が記載されている。
米国特許第4585349号明細書 特開2004-286608号公報
 従来の共焦点センサを用いることで、数nmの分解能で対象物までの距離を測定することができる。しかしながら、従来の共焦点センサの測定範囲は、センサヘッドの前面から数十mmの点を中心とする前後数mmの範囲に限られることがある。
 そこで、本発明は、測定範囲がより広い共焦点センサを提供する。
 本開示の一態様に係る共焦点センサは、複数の波長の光を出射する光源と、光に対して光軸方向に沿って色収差を生じさせ、他のレンズを介さずに光を対象物に集光する回折レンズと、光のうち、対象物において合焦して反射し、回折レンズで集光された反射光を通過させるピンホールと、反射光の波長に基づいて、回折レンズから対象物までの距離を測定する測定部と、を備え、ピンホールから回折レンズまでの距離は可変である。
 この態様によれば、ピンホールから回折レンズまでの距離が可変であることで、測定可能な範囲を変化させることができ、より広い範囲で対象物までの距離を測定することができる。
 上記態様において、ピンホールから回折レンズまでの距離を連続的に変化させる機構をさらに備えてもよい。
 この態様によれば、ピンホールから回折レンズまでの距離を連続的に変化させることで、測定範囲を連続的に変化させることができる。
 上記態様において、回折レンズをそれぞれ異なる位置に収容する複数種類のホルダを付け替え可能であってもよい。
 この態様によれば、複数種類のホルダを付け替えることで、測定範囲を段階的に変化させることができる。
 上記態様において、測定部は、反射光の波長と、回折レンズから対象物までの距離との非線形な関係に従って、回折レンズから対象物までの距離を測定してもよい。
 この態様によれば、反射光の波長と、回折レンズから対象物までの距離との非線形な関係を利用することで、線形な関係を利用する場合よりも測定範囲を広げることができる。
 上記態様において、反射光の波長をλと表し、回折レンズから対象物までの距離をLと表し、ピンホールから回折レンズまでの距離をLと表し、基準波長λに関する回折レンズの焦点距離をfと表すとき、非線形な関係は、
Figure JPOXMLDOC01-appb-M000002
 と表されてもよい。
 この態様によれば、ピンホールから回折レンズまでの距離を変化させることで、反射光の波長と、回折レンズから対象物までの距離との非線形な関係を変化させることができ、測定範囲をより広げることができる。
 上記態様において、測定部は、反射光の波長と、回折レンズから対象物までの距離との実測値に基づいて推定された非線形な関係に従って、回折レンズから対象物までの距離を測定してもよい。
 この態様によれば、反射光の波長と、回折レンズから対象物までの距離との非線形な関係を実測値に基づいて補正することができ、回折レンズから対象物までの距離をより正確に測定することができる。
 上記態様において、測定部は、波長に基づいて、対象物が所定の範囲内に位置しているか否かを判定してもよい。
 この態様によれば、対象物の位置が適切であるか否かを判定することができる。
 上記態様において、要求される波長分解能の入力を受け付ける入力部と、波長分解能を満たす回折レンズから対象物までの距離及びピンホールから回折レンズまでの距離の範囲を出力する出力部と、をさらに備えてもよい。
 この態様によれば、要求された波長分解能を実現しながら、どのような範囲で回折レンズを動かしたり、対象物とセンサヘッドの位置関係を変化させたりすることができるのかを把握することができる。
 本発明によれば、測定範囲がより広い共焦点センサが提供される。
本発明の実施形態に係る共焦点センサの概要を示す図である。 本実施形態に係る共焦点センサの回折レンズから対象物までの距離と、反射光の波長との関係を示す図である。 本実施形態に係る共焦点センサの初期設定処理を示すフローチャートである。 本実施形態に係る共焦点センサにより対象物が所定の範囲内に位置するか判定する概要を示す図である。 本実施形態に係る共焦点センサにより回折レンズから対象物までの距離と反射光の波長との関係及び判定結果を示す図である。 本実施形態に係る共焦点センサの初期設定処理を示すフローチャートである。 本実施形態の変形例に係るセンサヘッドに第1ホルダを取り付けた場合の概要を示す図である。 本実施形態の変形例に係るセンサヘッドに第2ホルダを取り付けた場合の概要を示す図である。 本実施形態に係る共焦点センサの波長分解能と、回折レンズから対象物までの距離との関係を示す図である。 本実施形態に係る共焦点センサの距離算出処理を示すフローチャートである。
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」と表記する。)を、図面に基づいて説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
 [構成例]
 図1は、本発明の実施形態に係る共焦点センサ1の概要を示す図である。本実施形態に係る共焦点センサ1は、対象物200の位置を計測する装置であり、光源10、第1光ファイバ11、第2光ファイバ12、第3光ファイバ13、光カプラ20、分光器30、測定部40及びセンサヘッド100を備える。
 光源10は、複数の波長の光を出射する。光源10は、白色光を出射するものであってよく、光を第1光ファイバ11に出力する。光源10は、測定部40の指令に基づいて、白色光の光量を調整してもよい。第1光ファイバ11は、任意の光ファイバであってよく、例えばコア径が50μmの屈折率分布型ファイバであってよい。第1光ファイバ11は、光カプラ20に接続される手前でコア径がより細いファイバに連結されてよい。
 光カプラ20は、第1光ファイバ11、第2光ファイバ12及び第3光ファイバ13を接続し、第1光ファイバ11から第2光ファイバ12へ光を伝送し、第2光ファイバ12から第3光ファイバ13へ光を伝送する。
 センサヘッド100は、第2光ファイバ12に接続され、光に対して光軸方向に沿って色収差を生じさせ、他のレンズを介さずに光を対象物200に集光する回折レンズ130とを収容する。本例では、焦点距離が比較的長い第1波長の光210と、焦点距離が比較的短い第2波長の光220を図示している。本例の場合、第1波長の光210は、対象物200において合焦するが、第2波長の光220は、対象物200の手前で焦点を結ぶ。
 対象物200の表面で反射した光は、回折レンズ130で集光されて、第2光ファイバ12のコアであるピンホール120に返送される。ピンホール120は、光のうち、対象物200において合焦して反射し、回折レンズ130で集光された反射光を通過させる。反射光のうち第1波長の光210は、第2光ファイバ12の端面に設けられたピンホール120で合焦するため、そのほとんどが第2光ファイバ12に入射するが、その他の波長の光は、ピンホール120で焦点が合わず、そのほとんどが第2光ファイバ12に入射しない。第2光ファイバ12に入射した反射光は、光カプラ20を経由して第3光ファイバ13に伝送され、分光器30に入力される。なお、第2光ファイバ12に入射した反射光は、光カプラ20を経由して第1光ファイバ11にも伝送されるが、光源10にて終端される。
 分光器30は、第3光ファイバ13に接続され、対象物200で反射されてセンサヘッド100により集光された反射光を、第2光ファイバ12、光カプラ20及び第3光ファイバ13を介して取得し、反射光のスペクトルを計測する。分光器30は、第3光ファイバ13から出射された反射光を集める第1レンズ31と、反射光を分光する回折格子32と、分光された反射光を集める第2レンズ33と、分光された反射光を受光する受光素子34と、受光素子34による受光信号を読み出す読出回路35と、を含む。読出回路35は、受光素子34による受光信号に基づいて、受光した光の波長及び光量を読み出す。
 測定部40は、反射光の波長に基づいて、回折レンズ130から対象物200までの距離L1を測定する。本例の場合、読出回路35によって、第1波長の光210がピークとして読みだされ、測定部40は、第1波長に対応する位置を算出する。
 本実施形態に係る共焦点センサ1では、ピンホール120から回折レンズ130までの距離L2は可変である。従来、ピンホール120から回折レンズ130までの距離L2は固定されており、他のレンズによって色収差を線形に補正するため、距離L2を変化させることは想定されておらず、共焦点センサ1の測定範囲を任意に拡大又は縮小することはできなかった。本実施形態に係る共焦点センサ1によれば、ピンホール120から回折レンズ130までの距離L2が可変であることで、測定可能な範囲を変化させることができ、より広い範囲で対象物200までの距離を測定することができる。
 センサヘッド100は、ピンホール120から回折レンズ130までの距離L2を連続的に変化させる機構を備える。具体的には、センサヘッド100は、回折レンズ130を光軸に沿った方向に連続的に移動させる可変機構150を備える。可変機構150は、回折レンズ130の位置を読み取る手段を有してもよく、ピンホール120から回折レンズ130までの距離L2又は回折レンズ130からセンサヘッド100の全面までの距離L3を測定部40に伝送してもよい。可変機構150によってピンホール120から回折レンズ130までの距離L2を連続的に変化させることで、測定範囲を連続的に変化させることができる。
 図2は、本実施形態に係る共焦点センサ1の回折レンズ130から対象物200までの距離L1と、反射光の波長との関係を示す図である。同図では、回折レンズ130から対象物200までの距離L1をmmの単位で縦軸に示し、反射光の波長をnmの単位で横軸に示している。また、同図では、ピンホール120から回折レンズ130までの距離L2が36mmの場合を実線で示し、L2=37mmの場合を破線で示し、L2=38mmの場合を一点鎖線で示し、L2=39mmの場合を二点鎖線で示し、L2=40mmの場合を点線で示し、L2=41mmの場合を長破線で示している。
 同図によれば、反射光の波長が長くなるほど、対応する距離L1は短くなることが読み取れる。また、反射光の波長が一単位変化した場合の距離L1の変化は、反射光の波長が短くなるほど大きくなることが読み取れる。さらに、反射光の波長が一単位変化した場合の距離L1の変化は、ピンホール120から回折レンズ130までの距離L2が短くなるほど大きくなることが読み取れる。
 本実施形態に係る共焦点センサ1の測定部40は、反射光の波長と、回折レンズ130から対象物200までの距離L1との非線形な関係に従って、回折レンズ130から対象物200までの距離を測定してよい。従来、共焦点センサでは、反射光の波長と、回折レンズ130から対象物200までの距離L1との非線形な関係を他のレンズによって補正して、線形な関係とすることがある。そのような補正により、距離L1の分解能が波長にほとんど依存しないようにすることができる。しかしながら、反射光の波長と、距離L1との対応関係が線形である場合、測定範囲が狭い範囲に限られてしまう。本実施形態に係る共焦点センサ1は、反射光の波長と、距離L1との非線形な関係を利用することで、線形な関係を利用する場合よりも、特に短波長領域での測定範囲を広げて、共焦点センサ1の測定範囲をより広くすることができる。
 より具体的には、反射光の波長をλと表し、回折レンズ130から対象物200までの距離をL1と表し、ピンホール120から回折レンズ130までの距離をL2と表し、基準波長λに関する回折レンズ130の焦点距離をfと表すとき、回折レンズ130から対象物200までの距離L1との非線形は、以下の数式(2)で表される。
Figure JPOXMLDOC01-appb-M000003
 このように、ピンホール120から回折レンズ130までの距離を変化させることで、反射光の波長λと、回折レンズ130から対象物200までの距離L1との非線形な関係を変化させることができ、測定範囲をより広げることができる。
 図3は、本実施形態に係る共焦点センサ1の初期設定処理を示すフローチャートである。同図に示す処理は、共焦点センサ1により距離を測定する前に行われる。
 はじめに、共焦点センサ1によって基準波長(又は調整時点での設定における基準波長)に対応する距離が出力されるように、対象物200又は回折レンズ130の位置を調整する(S10)。ここで、基準波長及びそれに対応する焦点距離は、設計段階で定められているものとする。
 その後、回折レンズ130を固定したまま、対象物200を既知の量だけ移動させる(S11)。共焦点センサ1は、この場合に検出される反射光の波長と、距離の関係を記憶する(S12)。ここで、対象物200までの距離は、基準波長に対応する距離に対象物200を移動させた距離を加算(又は減算)することで算出される。
 そして、所定の波長範囲について、共焦点センサ1により検出される反射光の波長と距離の関係を測定完了したか判定する(S13)。例えば、予め定めた複数の既知の量だけ対象物200を移動させたか否かによって、測定完了であるかを判定してよい。
 所定の波長範囲について測定完了していない場合(S13:NO)、対象物200を既知の量だけ移動させ(S11)、検出される反射光の波長と、距離の関係を記憶する処理(S12)を繰り返す。一方、所定の波長範囲について測定完了した場合(S13:YES)、波長と距離の非線形関係を定めるパラメータを決定する(S14)。すなわち、数式(2)で表される、反射光の波長λと回折レンズ130から対象物200までの距離L1との非線形な関係を特定するパラメータ(L2、λ、f)を決定する。
 このような処理を、ピンホール120から回折レンズ130までの距離L2を変えて繰り返してもよい。以上により、初期設定のための処理が終了する。
 以上の処理を行って、測定部40は、反射光の波長と、回折レンズ130から対象物200までの距離との実測値に基づいて推定された非線形な関係に従って、回折レンズ130から対象物200までの距離を測定してもよい。これにより、反射光の波長と、回折レンズ130から対象物200までの距離との非線形な関係を実測値に基づいて補正することができ、回折レンズ130から対象物200までの距離をより正確に測定することができる。
 図4は、本実施形態に係る共焦点センサ1により対象物200が所定の範囲内に位置するか判定する概要を示す図である。同図では、センサヘッド100によって、コンベア300によって移送されるワークが所定の範囲に位置しているか判定する場合を示している。同図では、コンベア300によって移送される7つのワークを図示している。ワークには、コンベア300の下流から順に、0から6までの数字が付されている。本例における「所定の範囲」は、同図において「OK」と示した範囲であり、コンベア300の中央帯である。一方、同図において「NG」と示したコンベア300の側帯にあたる範囲は、「所定の範囲」外である。
 ワークが所定の範囲内に位置するか判定するにあたって、共焦点センサ1のピンホール120から回折レンズ130までの距離L2を調整し、少なくとも「OK」と示した範囲が測定範囲に含まれるようにする。そして、後述する初期設定を行い、共焦点センサ1の測定部40によって、反射光の波長に基づいて、対象物が所定の範囲内に位置しているか否かを判定する。
 図5は、本実施形態に係る共焦点センサ1により回折レンズ130から対象物200までの距離L1と反射光の波長との関係及び判定結果を示す図である。同図では、回折レンズ130から対象物200までの距離L1をmmの単位で縦軸に示し、反射光の波長をnmの単位で横軸に示している。
 同図では、コンベア300の下流から順に、0から6までの数字が付されたワークに対応して、測定点p0からp6を図示している。また、同図では、「OK」と示した範囲に対応する波長範囲と、「NG」と示した範囲に対応する波長範囲とを図示している。
 同図によれば、測定点p0、p3、p4及びp6に対応するワークは、所定の範囲内に位置している。一方、測定点p1、p2及びp5に対応するワークは、所定の範囲内に位置していない。
 測定部40は、測定された波長と、所定の範囲に対応する波長範囲の上限及び下限を比較して、対象物が所定の範囲内に位置しているか否かを判定してよい。このようにして、対象物の位置が適切であるか否かを判定することができる。
 図6は、本実施形態に係る共焦点センサ1の初期設定処理を示すフローチャートである。同図に示す処理は、対象物が所定の範囲内に位置しているか否かを判定する前に行われる。
 はじめに、OK範囲が測定範囲となるように、ピンホール120から回折レンズ130までの距離L2を調整し、回折レンズ130を固定する(S20)。その後、コンベア300を動かして、サンプルワークを流す。サンプルワークは、図4において「OK」と示した範囲(OK範囲)に置かれたり、「NG」と示した範囲(NG範囲)に置かれたりする。OK範囲に置かれたサンプルをOKサンプルと呼び、NG範囲に置かれたサンプルをNGサンプルと呼ぶ。
 共焦点センサ1は、OKサンプルを測定した場合の波長を記憶し(S21)、NGサンプルを測定した場合の波長を記憶する(S22)。
 そして、所定の波長範囲について、共焦点センサ1により検出される反射光の波長とOK又はNGの対応付けが完了したか判定する(S23)。例えば、予め定めた複数のサンプルについて測定を終えたか否かによって、測定完了であるかを判定してよい。
 所定の波長範囲について測定完了していない場合(S23:NO)、OKサンプルを測定した場合の波長を記憶する処理(S21)と、NGサンプルを測定した場合の波長を記憶する処理(S22)とを繰り返す。一方、所定の波長範囲について測定完了した場合(S23:YES)、波長に基づいて、対象物がOK範囲内に位置しているか否かを判定するためのパラメータを決定する。以上により、初期設定のための処理が終了する。
 図7は、本実施形態の変形例に係るセンサヘッド100aに第1ホルダ160aを取り付けた場合の概要を示す図である。また、図8は、本実施形態の変形例に係るセンサヘッド100aに第2ホルダ160bを取り付けた場合の概要を示す図である。変形例に係るセンサヘッド100aは、回折レンズ130をそれぞれ異なる位置に収容する複数種類のホルダ(第1ホルダ160a及び第2ホルダ160b)を付け替え可能である。
 第1ホルダ160aをセンサヘッド100aに取り付けた場合、回折レンズ130から対象物200までの距離はL1aであり、ピンホール120から回折レンズ130までの距離はL2aである。ここで、ピンホール120から回折レンズ130までの距離L2aは、第1ホルダ160aの設計値として既知である。測定部40は、ピンホール120から回折レンズ130までの距離がL2aである場合の数式(2)に従って、回折レンズ130から対象物200までの距離L1aを算出する。なお、センサヘッド100aの前面から対象物200までの距離を算出する場合、回折レンズ130から対象物200までの距離L1aから、回折レンズ130からセンサヘッド100aの前面までの距離L3aを減算すればよい。ここで、回折レンズ130からセンサヘッド100aの前面までの距離L3aは、センサヘッド100aの全長Lから、ピンホール120から回折レンズ130までの距離L2aを減算した値である。
 第2ホルダ160bをセンサヘッド100aに取り付けた場合、回折レンズ130から対象物200までの距離はL1bであり、ピンホール120から回折レンズ130までの距離はL2bである。ここで、ピンホール120から回折レンズ130までの距離L2bは、第1ホルダ160aの設計値として既知である。測定部40は、ピンホール120から回折レンズ130までの距離がL2bである場合の数式(2)に従って、回折レンズ130から対象物200までの距離L1bを算出する。なお、センサヘッド100aの前面から対象物200までの距離を算出する場合、回折レンズ130から対象物200までの距離L1bから、回折レンズ130からセンサヘッド100aの前面までの距離L3bを減算すればよい。
 このように、複数種類のホルダを付け替えることで、測定範囲を段階的に変化させることができる。本例の場合、L2a<L2bであるから、第1ホルダ160aを取り付けた場合、第2ホルダ160bを取り付けた場合よりも測定範囲が広くなる。一方、第2ホルダ160bを取り付けた場合、第1ホルダ160aを取り付けた場合よりも低波長領域において測定精度が高くなる。
 図9は、本実施形態に係る共焦点センサ1の波長分解能と、回折レンズ130から対象物200までの距離L1との関係を示す図である。同図では、波長分解能をmm/nmの単位で縦軸に示し、回折レンズ130から対象物200までの距離L1をmmの単位で横軸に示している。また、同図では、ピンホール120から回折レンズ130までの距離L2が36mmの場合を実線で示し、L2=37mmの場合を破線で示し、L2=38mmの場合を一点鎖線で示し、L2=39mmの場合を二点鎖線で示し、L2=40mmの場合を点線で示し、L2=41mmの場合を長破線で示している。波長分解能は、分解能が良いほど対象物200までの距離をより高精度で測定できることを意味する。
 同図によれば、回折レンズ130から対象物200までの距離L1が長くなるほど、波長分解能の値が大きくなる(分解能が低くなる)ことが読み取れる。また、回折レンズ130から対象物200までの距離L1を固定した場合、ピンホール120から回折レンズ130までの距離L2が長くなるほど、波長分解能の値が小さくなる(分解能が高くなる)ことが読み取れる。
 共焦点センサ1は、ユーザが要求する波長分解能の入力を受け付ける入力部と、要求された波長分解能を満たす回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2の範囲を出力する出力部とをさらに備えてもよい。入力部は、例えばプッシュボタンで構成されてよく、出力部は、例えば7セグメント表示部や液晶表示装置で構成されてよい。共焦点センサ1は、図9に示す関係性を記憶部に記憶して、要求された波長分解能を満たす回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2の範囲を算出してよい。これにより、要求された波長分解能を実現しながら、どのような範囲で回折レンズ130を動かしたり、対象物200とセンサヘッド100の位置関係を変化させたりすることができるのかを把握することができる。
 また、共焦点センサ1は、ユーザが要求する波長分解能の入力及びユーザが要求するリニアリティの入力を受け付けて、要求された波長分解能及び要求されたリニアリティを満たす回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2の範囲を出力してよい。共焦点センサ1は、図9に示す関係性を記憶部に記憶して、要求された波長分解能及び要求されたリニアリティを満たす回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2の範囲を算出してよい。これにより、要求された波長分解能及び要求されたリニアリティを実現しながら、どのような範囲で回折レンズ130を動かしたり、対象物200とセンサヘッド100の位置関係を変化させたりすることができるのかを把握することができる。
 ユーザは、出力されたL1及びL2の値を参考にして、回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2を調整して、対象物200までの距離の測定を行う。これにより、例えば、センサヘッド100を対象物200に徐々に近づけていくような制御の際に、粗い調整から高精度な調整をすることができる。
 図10は、本実施形態に係る共焦点センサ1の距離算出処理を示すフローチャートである。はじめに、共焦点センサ1は、ユーザが要求する波長分解能の入力を受け付ける(S30)。また、共焦点センサ1は、ユーザが要求するリニアリティの入力を受け付ける(S31)。
 その後、共焦点センサ1は、要求された波長分解能及び要求されたリニアリティを満たす回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2の範囲を算出する(S32)。最後に、共焦点センサ1は、算出された回折レンズ130から対象物200までの距離L1及びピンホール120から回折レンズ130までの距離L2の範囲を出力する(S33)。以上により、距離算出処理が終了する。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 [附記1]
 複数の波長の光を出射する光源(10)と、
 前記光に対して光軸方向に沿って色収差を生じさせ、他のレンズを介さずに前記光を対象物(200)に集光する回折レンズ(130)と、
 前記光のうち、前記対象物(200)において合焦して反射し、前記回折レンズ(130)で集光された反射光を通過させるピンホール(120)と、
 前記反射光の波長に基づいて、前記回折レンズ(130)から前記対象物(200)までの距離を測定する測定部(40)と、を備え、
 前記ピンホール(120)から前記回折レンズ(130)までの距離は可変である、
 共焦点センサ(1)。

Claims (8)

  1.  複数の波長の光を出射する光源と、
     前記光に対して光軸方向に沿って色収差を生じさせ、他のレンズを介さずに前記光を対象物に集光する回折レンズと、
     前記光のうち、前記対象物において合焦して反射し、前記回折レンズで集光された反射光を通過させるピンホールと、
     前記反射光の波長に基づいて、前記回折レンズから前記対象物までの距離を測定する測定部と、を備え、
     前記ピンホールから前記回折レンズまでの距離は可変である、
     共焦点センサ。
  2.  前記ピンホールから前記回折レンズまでの距離を連続的に変化させる機構をさらに備える、
     請求項1に記載の共焦点センサ。
  3.  前記回折レンズをそれぞれ異なる位置に収容する複数種類のホルダを付け替え可能である、
     請求項1に記載の共焦点センサ。
  4.  前記測定部は、前記反射光の波長と、前記回折レンズから前記対象物までの距離との非線形な関係に従って、前記回折レンズから前記対象物までの距離を測定する、
     請求項1から3のいずれか一項に記載の共焦点センサ。
  5.  前記反射光の波長をλと表し、前記回折レンズから前記対象物までの距離をLと表し、前記ピンホールから前記回折レンズまでの距離をLと表し、基準波長λに関する前記回折レンズの焦点距離をfと表すとき、前記非線形な関係は、
    Figure JPOXMLDOC01-appb-M000001
     と表される、
     請求項4に記載の共焦点センサ。
  6.  前記測定部は、前記反射光の波長と、前記回折レンズから前記対象物までの距離との実測値に基づいて推定された前記非線形な関係に従って、前記回折レンズから前記対象物までの距離を測定する、
     請求項4又は5に記載の共焦点センサ。
  7.  前記測定部は、前記波長に基づいて、前記対象物が所定の範囲内に位置しているか否かを判定する、
     請求項1から6のいずれか一項に記載の共焦点センサ。
  8.  要求される波長分解能の入力を受け付ける入力部と、
     前記波長分解能を満たす前記回折レンズから前記対象物までの距離及び前記ピンホールから前記回折レンズまでの距離の範囲を出力する出力部と、をさらに備える、
     請求項1から7のいずれか一項に記載の共焦点センサ。
PCT/JP2019/045611 2018-12-20 2019-11-21 共焦点センサ WO2020129533A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/294,693 US11965729B2 (en) 2018-12-20 2019-11-21 Confocal sensor
KR1020217012442A KR102556921B1 (ko) 2018-12-20 2019-11-21 공초점 센서
EP19897739.9A EP3901568B1 (en) 2018-12-20 2019-11-21 Confocal sensor
CN201980057877.5A CN112654832A (zh) 2018-12-20 2019-11-21 共焦传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018238524A JP6986235B2 (ja) 2018-12-20 2018-12-20 共焦点センサ
JP2018-238524 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129533A1 true WO2020129533A1 (ja) 2020-06-25

Family

ID=71100424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045611 WO2020129533A1 (ja) 2018-12-20 2019-11-21 共焦点センサ

Country Status (7)

Country Link
US (1) US11965729B2 (ja)
EP (1) EP3901568B1 (ja)
JP (1) JP6986235B2 (ja)
KR (1) KR102556921B1 (ja)
CN (1) CN112654832A (ja)
TW (1) TWI724668B (ja)
WO (1) WO2020129533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194897A4 (en) * 2020-09-02 2024-01-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISTANCE MEASURING DEVICE, DISTANCE MEASURING METHOD, CAMERA AND ELECTRONIC DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585349A (en) 1983-09-12 1986-04-29 Battelle Memorial Institute Method of and apparatus for determining the position of a device relative to a reference
JP2004286608A (ja) 2003-03-24 2004-10-14 Olympus Corp 共焦点高さ測定装置
JP2005214905A (ja) * 2004-01-30 2005-08-11 Sunx Ltd 変位センサ及び変位測定方法
JP2008286624A (ja) * 2007-05-17 2008-11-27 Omron Corp 計測装置
JP2012208102A (ja) * 2011-03-14 2012-10-25 Omron Corp 共焦点計測装置
JP2014153092A (ja) * 2013-02-05 2014-08-25 Canon Inc 測定装置および物品の製造方法
JP2018119907A (ja) * 2017-01-27 2018-08-02 レーザーテック株式会社 測定面調整方法、膜厚測定方法及び膜厚測定装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113240A (ja) * 1995-10-16 1997-05-02 Agency Of Ind Science & Technol 光透過物質の三次元情報の検出方法及び装置
US6313915B1 (en) * 1998-08-27 2001-11-06 Murata Manufacturing Co., Ltd. Displacement measuring method and apparatus
US6628385B1 (en) * 1999-02-05 2003-09-30 Axon Instruments, Inc. High efficiency, large field scanning microscope
US6548796B1 (en) * 1999-06-23 2003-04-15 Regents Of The University Of Minnesota Confocal macroscope
US6657216B1 (en) 2002-06-17 2003-12-02 Nanometrics Incorporated Dual spot confocal displacement sensor
JP4027866B2 (ja) 2003-09-04 2007-12-26 アオイ電子株式会社 位置姿勢計測方法および位置姿勢計測装置
DE102004007213A1 (de) 2004-02-13 2005-09-08 Siemens Ag Konfokaler Abstandssensor
JP2007121122A (ja) 2005-10-28 2007-05-17 Omron Corp 変位センサ
US7791712B2 (en) * 2007-03-27 2010-09-07 Mitutoyo Corporation Chromatic confocal sensor fiber interface
JP2010151745A (ja) 2008-12-26 2010-07-08 Omron Corp 変位センサ
JP2010216880A (ja) 2009-03-13 2010-09-30 Omron Corp 変位センサ
US8194251B2 (en) * 2010-08-26 2012-06-05 Mitutoyo Corporation Method for operating a dual beam chromatic point sensor system for simultaneously measuring two surface regions
KR101819006B1 (ko) * 2010-10-27 2018-01-17 삼성전자주식회사 광학 측정 장치
CN103837093B (zh) 2012-11-20 2017-09-12 鸿富锦精密工业(深圳)有限公司 光谱共焦传感器校准系统及方法
DE112015001154T5 (de) * 2014-04-24 2016-12-08 Olympus Corporation Mikroskop und Mikroskopie-Verfahren
US9774765B2 (en) * 2015-09-15 2017-09-26 Mitutoyo Corporation Chromatic aberration correction in imaging system including variable focal length lens
US9958257B2 (en) 2015-09-21 2018-05-01 Kla-Tencor Corporation Increasing dynamic range of a height sensor for inspection and metrology
JP6520669B2 (ja) * 2015-12-03 2019-05-29 オムロン株式会社 光学計測装置
CN108369193A (zh) 2015-12-08 2018-08-03 伊雷克托科学工业股份有限公司 移动传感器坐标检测系统
JP6779234B2 (ja) * 2015-12-25 2020-11-04 株式会社キーエンス 共焦点変位計
US10557701B2 (en) * 2016-03-25 2020-02-11 Thorlabs, Inc. MEMS tunable VCSEL powered swept source OCT for 3D metrology applications
EP3222964B1 (en) * 2016-03-25 2020-01-15 Fogale Nanotech Chromatic confocal device and method for 2d/3d inspection of an object such as a wafer
JP6788476B2 (ja) 2016-10-21 2020-11-25 株式会社ミツトヨ クロマティック共焦点センサ及び測定方法
KR101899711B1 (ko) 2017-02-07 2018-09-17 한국광기술원 색수차 렌즈를 이용한 공초점 영상 구현 장치
JP6819370B2 (ja) * 2017-03-09 2021-01-27 オムロン株式会社 共焦点計測装置
JP2019066259A (ja) * 2017-09-29 2019-04-25 オムロン株式会社 光学センサおよび光学センサにおける異常検出方法
JP6939360B2 (ja) * 2017-10-02 2021-09-22 オムロン株式会社 共焦点計測装置
JP6969453B2 (ja) * 2018-03-12 2021-11-24 オムロン株式会社 光学計測装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585349A (en) 1983-09-12 1986-04-29 Battelle Memorial Institute Method of and apparatus for determining the position of a device relative to a reference
JP2004286608A (ja) 2003-03-24 2004-10-14 Olympus Corp 共焦点高さ測定装置
JP2005214905A (ja) * 2004-01-30 2005-08-11 Sunx Ltd 変位センサ及び変位測定方法
JP2008286624A (ja) * 2007-05-17 2008-11-27 Omron Corp 計測装置
JP2012208102A (ja) * 2011-03-14 2012-10-25 Omron Corp 共焦点計測装置
JP2014153092A (ja) * 2013-02-05 2014-08-25 Canon Inc 測定装置および物品の製造方法
JP2018119907A (ja) * 2017-01-27 2018-08-02 レーザーテック株式会社 測定面調整方法、膜厚測定方法及び膜厚測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901568A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194897A4 (en) * 2020-09-02 2024-01-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISTANCE MEASURING DEVICE, DISTANCE MEASURING METHOD, CAMERA AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
EP3901568B1 (en) 2023-02-15
JP6986235B2 (ja) 2021-12-22
TW202024561A (zh) 2020-07-01
CN112654832A (zh) 2021-04-13
TWI724668B (zh) 2021-04-11
KR20210063414A (ko) 2021-06-01
EP3901568A4 (en) 2022-08-24
EP3901568A1 (en) 2021-10-27
KR102556921B1 (ko) 2023-07-18
US20220011092A1 (en) 2022-01-13
US11965729B2 (en) 2024-04-23
JP2020101402A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
JP6044315B2 (ja) 変位計測方法および変位計測装置
JP5790178B2 (ja) 共焦点計測装置
JP4929161B2 (ja) 加工物表面の形状および/または粗さを測定するための測定装置
JP6001440B2 (ja) クロマティックポイントセンサシステム
US20120314206A1 (en) Apparatus for imaging a sample surface
CN109791040B (zh) 用于借助彩色共焦传感器进行光学表面测量的方法和装置
CN109596045B (zh) 共焦测量装置
JP2010249808A (ja) 分光透過率可変素子を備えた分光イメージング装置及び分光イメージング装置における分光透過率可変素子の調整方法
WO2020129533A1 (ja) 共焦点センサ
CN105938196B (zh) 彩色共焦点传感器和测量方法
JP6919603B2 (ja) 波長検出装置及び共焦点計測装置
TWI755690B (zh) 光學測量裝置、光學測量方法以及光學測量程式
CN110274543B (zh) 光学测量装置以及光学测量方法
KR20190088386A (ko) 광학 계측 장치 및 광학 계측 방법
JP2015129674A (ja) 分光透過率測定装置
WO2022149290A1 (ja) 変位センサ
JP4634884B2 (ja) 表面性状測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217012442

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019897739

Country of ref document: EP

Effective date: 20210720