WO2020129384A1 - 放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム - Google Patents

放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム Download PDF

Info

Publication number
WO2020129384A1
WO2020129384A1 PCT/JP2019/041000 JP2019041000W WO2020129384A1 WO 2020129384 A1 WO2020129384 A1 WO 2020129384A1 JP 2019041000 W JP2019041000 W JP 2019041000W WO 2020129384 A1 WO2020129384 A1 WO 2020129384A1
Authority
WO
WIPO (PCT)
Prior art keywords
markers
image
radiation image
resolution
low
Prior art date
Application number
PCT/JP2019/041000
Other languages
English (en)
French (fr)
Inventor
隆大 宮島
淳也 山本
和義 西野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201980083981.1A priority Critical patent/CN113194834A/zh
Priority to US17/416,501 priority patent/US20220074873A1/en
Priority to JP2020561179A priority patent/JPWO2020129384A1/ja
Publication of WO2020129384A1 publication Critical patent/WO2020129384A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/587Alignment of source unit to detector unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/044Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/417Imaging recording with co-ordinate markings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present invention relates to a radiation image processing device, a radiation image processing method, and a radiation image processing program.
  • a subject is irradiated with X-rays from an X-ray tube, and X-rays that have passed through the subject are detected by a flat panel X-ray detector (hereinafter, referred to as “FPD”) to obtain a projected image.
  • FPD flat panel X-ray detector
  • the first, second, and third cameras capture optical images of the markers arranged on the surveillance board and obtain the images.
  • the three-dimensional position calculating unit calculates the three-dimensional positions of the X-ray tube and the FPD based on each obtained image.
  • the reconstruction calculation unit creates a tomographic image or the like based on the group of projected images and the measured three-dimensional position (for example, Patent Document 1).
  • an X-ray tomographic plane inspection apparatus using X-ray tomosynthesis detects an image of a tomographic plane by synthesizing a plurality of image data obtained by one imaging. At this time, when synthesizing a plurality of image data, it is necessary to calculate the position of the tube that radiates X-rays, but as a prerequisite, it is necessary to detect the metal marker embedded in the phantom to be imaged together with the subject. is there.
  • the present invention provides a radiation image processing technique capable of detecting a metal marker from a radiation image at high speed and with high accuracy.
  • a radiographic image processing apparatus includes an acquisition unit that acquires a radiographic image including a plurality of markers, a generation unit that generates a low-resolution image in which the resolution of the radiographic image is reduced, A position specifying unit that specifies the position of each of the plurality of markers in the low resolution image based on the characteristics of the marker, and a position on the radiographic image that corresponds to the position of each of the plurality of markers in the low resolution image By doing so, a position estimation unit that estimates the positions of the plurality of markers in the radiation image is provided.
  • the radiation image processing apparatus is characterized by further comprising a search unit that searches for a region of interest in which the plurality of markers in the low resolution image are reflected, based on the characteristics of the plurality of markers.
  • the searching unit is characterized in that the scanning area for the low-resolution image is narrowed down step by step based on the characteristics of the plurality of markers.
  • the search unit specifies a tentative region of interest including a region in which the plurality of markers are reflected in the low-resolution image based on the characteristics of the plurality of markers, and the plurality of markers are identified from the tentative region of interest. It is characterized in that the region of interest in the image is specified.
  • the position specifying unit specifies the barycentric coordinates of each of the plurality of markers included in the region of interest as the position of each of the plurality of markers in the low-resolution image based on the characteristics of the plurality of markers. It is a feature.
  • a radiographic image processing method executed by a radiographic image processing apparatus acquires a radiographic image in which a plurality of markers are reflected, generates a low-resolution image in which the resolution of the radiographic image is reduced, and Identifying the position of each of the plurality of markers in the low resolution image based on the characteristics of the plurality of markers, and searching for the position on the radiation image corresponding to the position of each of the plurality of markers in the low resolution image.
  • the position of the plurality of markers in the radiation image is estimated according to.
  • a radiographic image processing program acquires a radiographic image in which a plurality of markers are reflected in a computer, generates a low-resolution image in which the resolution of the radiographic image is reduced, and features of the plurality of markers. Based on, by specifying the position of each of the plurality of markers in the low resolution image, by searching the position on the radiation image corresponding to the position of each of the plurality of markers in the low resolution image, the radiation image The process of estimating the positions of the plurality of markers in is executed.
  • a metal marker can be detected from a radiation image at high speed and with high accuracy.
  • FIG. 1 is a schematic diagram showing the overall configuration of the radiation image capturing apparatus according to this embodiment.
  • the radiographic image capturing device 1 is a device for performing radiographic image capturing such as tomosynthesis tomography for medical use, and acquires a plurality of image data by capturing an image of a subject T while changing the position of the tube 2 which is a radiation source. To do.
  • the radiation image capturing apparatus 1 includes a tube 2, a position changing mechanism 3, a detector 4, a phantom 5, a radiation image processing device 6, an image capturing control unit 7, and the like.
  • the tube 2 generates radiation (X-rays) by applying a high voltage based on a signal from the imaging control unit 7, and irradiates the radiation to the detector 4.
  • the tube 2 is movably held by the position changing mechanism 3.
  • the position changing mechanism 3 changes the position of the tube 2 based on a signal from the imaging control unit 7.
  • the detector 4 is a flat panel X-ray detector (FPD) that is arranged so as to face the tube 2 and converts a captured image by the radiation emitted from the tube 2 into image data. That is, the detector 4 converts the radiation into an electric signal, reads the converted electric signal as an image signal, and outputs the image signal to the radiation image processing device 6.
  • the detector 4 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. Further, the plurality of conversion elements and the pixel electrodes are arranged at a predetermined cycle (pixel pitch).
  • the phantom 5 is also called a calibration phantom, and has a structure in which a metal ball is placed in the center of a rectangular parallelepiped made of resin such as acrylic.
  • the phantom 5 is provided between the tube 2 and the detector 4, and is photographed together with the subject T in order to estimate the position of the tube 2.
  • the radiation image processing device 6 is a device that processes a signal of an image obtained by the detector 4. The configuration of the radiation image processing device 6 will be described later.
  • FIG. 2 is a schematic diagram showing an example of a phantom used in this embodiment.
  • the phantom 5 is made of resin or the like, and has therein a plurality of metal markers 11a, 11b, 11c, 11d, 12a, 12b, 12c, 12d made of metal such as aluminum, gold, lead, and tungsten. ..
  • the metal marker 11a and the metal marker 12a are arranged separately in the perspective direction with respect to the detector 4 to form a pair.
  • the metal marker 11b and the metal marker 12b form a pair separately arranged in the perspective direction with respect to the detector 4.
  • the metal marker 11c and the metal marker 12c are separately arranged in the perspective direction with respect to the detector 4 to form a pair.
  • the metal marker 11d and the metal marker 12d are arranged separately in the perspective direction with respect to the detector 4 to form a pair.
  • metal markers may be referred to as "markers”. Further, the metal markers (or markers) 11a, 11b, 11c, 11d, 12a, 12b, 12c, 12d are collectively referred to as the metal marker (or marker) 10.
  • the metal markers forming the pair are arranged at least 70 mm apart from each other in the perspective direction. Further, the metal markers forming the pair are arranged at positions where they do not overlap with each other when viewed from the perspective (when the phantom 5 is viewed in plan).
  • FIG. 3 is a block diagram showing a configuration example of the radiation image processing apparatus in this embodiment.
  • the radiation image processing device 6 includes a control unit 21, a storage unit 29, a memory 30, an input interface 34, an output interface 35, and a communication interface 36.
  • the interface is referred to as “I/F”.
  • the control unit 21, the storage unit 29, the memory 30, the input I/F 34, the output I/F 35, and the communication I/F 36 are connected to each other by a bus (not shown) that transfers command signals and data signals.
  • the control unit 21 is, for example, a processor (not shown) such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an FPGA (Field-Programmable Gate Array) configured for image processing, and the radiation image processing apparatus. 6 controls the entire operation and performs image processing.
  • a processor such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an FPGA (Field-Programmable Gate Array) configured for image processing, and the radiation image processing apparatus. 6 controls the entire operation and performs image processing.
  • the storage unit 29 is a large-capacity storage device such as a hard disk drive or SSD (Solid State Drive), and stores the radiation image 30 obtained by the detector 4.
  • the storage unit 29 also stores information regarding the marker detection conditions 33 used in this embodiment. Further, in the storage unit 29, programs such as an operating system (OS) and programs related to radiation image processing (including the program according to the present embodiment) are installed.
  • OS operating system
  • programs related to radiation image processing including the program according to the present embodiment
  • the memory 30 is a work storage area used when the control unit 21 performs a predetermined process or displays data on the screen, and is a volatile storage device such as a RAM (Random Access Memory). However, depending on the specifications, for example, a non-volatile flash memory may be used.
  • RAM Random Access Memory
  • the input I/F 34 is an interface to which an input device (not shown) such as a keyboard or an operation panel is connected.
  • the detection condition 33 of the marker 10 can be set via the input device.
  • the output I/F 35 is, for example, an interface to which a display device such as a touch panel or a display or an output device (not shown) such as a printer is connected.
  • the communication I/36 is an interface for communicating with other devices such as the detector 4 and the imaging control unit 7.
  • the control unit 21 generally performs the marker position estimation processing 22 and the tube position estimation processing 28 regarding this embodiment.
  • the marker position estimation process 22 is a process of estimating the position of the marker 10 reflected in the captured radiographic image.
  • the control unit 21 reads and executes the program according to the present embodiment stored in the storage unit 29 to acquire the acquisition unit 23, the generation unit 24, the search unit 25, and the position identification unit. 26 and the position estimation unit 27.
  • the control unit 21 reads the detection condition 33 stored in the storage device 29 and places it in the memory 30.
  • the acquisition unit 23 acquires a radiographic image 31, which is stored in the storage device 29 via the communication I/F 35 and in which the plurality of markers 10 are reflected, and arranges it on the memory 31.
  • the generation unit 24 generates a low-resolution image 32 in which the resolution of the radiation image 31 is reduced and arranges it on the memory 30.
  • the search unit 25 searches for a region of interest showing the plurality of markers 10 in the low-resolution image 32, based on the characteristics of the plurality of markers set in the detection condition 33.
  • the region of interest refers to a predetermined region selected from the low resolution image 32 for image analysis.
  • the search unit 25 can narrow down the scanning region for the low-resolution image 32 in stages based on the characteristics of the plurality of markers 10.
  • the search unit 25 identifies a tentative region of interest including a region in which the plurality of markers 10 are reflected in the low-resolution image 32 based on the characteristics of the plurality of markers, and one or more markers are reflected in the tentative region of interest. Area of interest that is being identified.
  • the position specifying unit 26 specifies the position of each of the plurality of markers 10 in the low resolution image 32 based on the characteristics of the plurality of markers set in the detection condition 33. More specifically, the position specifying unit 26 specifies the position of each of the plurality of markers 10 included in the region of interest in the low resolution image 32, based on the characteristics of the plurality of markers 10 set in the detection condition 33. .. The position specifying unit 26 specifies the barycentric coordinates of each of the plurality of markers 10 included in the region of interest as the position of each of the plurality of markers 10 in the low-resolution image 32, based on the characteristics of the plurality of markers 10.
  • the position estimation unit 27 estimates the positions of the plurality of markers 10 in the radiation image 31 by searching the positions on the radiation image 31 corresponding to the positions of the plurality of markers 10 in the low resolution image 32.
  • the tube position estimation process 28 identifies the above-mentioned pair in the vertical direction of the phantom 5 based on the position and area of the marker appearing in the radiation image 31 estimated by the marker position estimation process 22, and determines the pair as a pair.
  • the position of the tube is estimated based on the position coordinates of the specified marker.
  • the program according to the present embodiment may be executed not only by the radiation image processing device 6 but also by an information processing device such as a computer.
  • the program according to this embodiment may be installed in a computer from a communication network or a recording medium.
  • the recording medium containing such a program is not only constituted by a removable medium which is distributed separately from the apparatus main body in order to provide the program to each user, but also is stored in the apparatus main body in advance for each user. It is composed of a recording medium provided.
  • the steps for writing the program recorded on the recording medium are not limited to the processing performed in time series according to the order, but are not necessarily performed in time series, and may be performed in parallel or individually. It includes the processing to be executed.
  • FIG. 4 is a flowchart showing the overall processing of the control unit of the radiation image capturing apparatus according to this embodiment.
  • the control unit 21 performs marker position estimation processing (S1).
  • the marker position estimation process (S1) is a process of estimating the position of the marker 10 reflected in the captured radiographic image 31. The detailed processing of S1 will be described later.
  • the control unit 21 performs a tube position estimation process (S2).
  • the tube position estimation process (S2) the binarized image creation process (S2-1), the labeling process (S2-2), the area calculation process of each region (S2-3), and the marker perspective based on the area.
  • the determination process (S2-4), the marker pair determination process (S2-5), and the tube coordinate estimation process (S2-6) are executed in that order.
  • control unit 21 In the binarized image creation process (S2-1), the control unit 21 generates a binarized radiation image based on the signal of the image detected by the detector 4.
  • control unit 21 performs labeling on each of the metal markers 11a to 11d and 12a to 12d whose positions are estimated in the marker position estimation process (S1) in the radiographic image, Differentiate from each other.
  • control unit 21 is a step of calculating the area of each of the plurality of metal markers 11a to 11d and 12a to 12d in the labeled radiographic image.
  • control unit 21 also calculates the average value of the maximum value and the minimum value of the calculated areas.
  • the control unit 21 uses the calculated average value as a threshold to detect the metal markers 11a to 11d in the radiation image having an area larger than the average value by the detector 4. It is determined that the metal markers 12a to 12d in the radiographic image having an area smaller than the average value are classified into the first group by determining that they are relatively distant from each other (located in the upper part in the phantom 5 in FIG. 2). It is determined to be relatively close to the detector 4 (located in the lower part in the phantom 5 in FIG. 2) and classified into the second group.
  • the control unit 21 causes the plurality of metal markers 11a to 11d and 12a to 12d for each of the classified groups based on the relative positions on the xy coordinate plane. After classifying 11a to 11d and 12a to 12d, the metal markers 11a to 11d of the first group and the metal markers 12a to 12d of the second group whose relative positions are matched are selected as a pair.
  • control unit 21 uses, as the metal markers whose relative positions match, for example, a pair of the metal marker 11a and the metal marker 12a, a pair of the metal marker 11b and the metal marker 12b, and a metal marker 11c and the metal marker 12c. Or the pair of the metal marker 11d and the metal marker 12d is selected.
  • the number is not limited to this.
  • the number of metal markers that can configure at least two pairs should be provided for estimating the tube position.
  • the marker is not limited to the metal, and any material may be used as long as the amount of X-ray absorption is large.
  • the control unit 21 estimates the position of the tube 2 based on the position coordinates of the metal markers 11a to 11d and 12a to 12d selected as a pair.
  • a three-dimensional space including the tube 2, the metal markers 11a and 12a, and the metal markers 11a and 12a in the radiographic image is assumed.
  • the position coordinate of the position S of the tube 2 is defined as (x, y, Sd).
  • the position coordinates of the position of the metal marker 11a are defined as (Pa, Pb, Pd+Ps).
  • the position coordinates of the position of the metal marker 12a are defined as (Pa, Pb, Pd).
  • the position coordinates of the position of the metal marker 11a in the radiographic image are defined as (a1, b1, 0). Further, the position coordinates of the position of the metal marker 12a in the radiographic image are defined as (a2, b2, 0).
  • x is the coordinate of the tube 2 in the X direction.
  • y is the coordinate of the tube 2 in the Y direction.
  • Pa is the coordinate of the metal markers 11a and 12a in the X direction.
  • Pb is a coordinate in the Y direction of the metal markers 51a and 52a.
  • Sd is a distance (SID: Source Image receptor Distance) from the detector 4 to the tube 2 in the Z direction.
  • Pd is the distance in the Z direction from the detector 4 to the metal marker 12a.
  • Ps is the distance in the Z direction between the metal markers 11a and 12a.
  • the position coordinate of the position S of the tube 2 is expressed by the following formula. It is derived from (1) and (2).
  • FIG. 5 is a flowchart showing details of the marker position estimation processing (S1) in this embodiment.
  • FIG. 6 is a diagram illustrating the process of S12 of FIG.
  • FIG. 7 is a diagram for explaining the process of S13 of FIG.
  • FIG. 8 is a diagram illustrating the processing of S14 of FIG.
  • FIG. 9 is a diagram illustrating the process of S15 of FIG.
  • FIG. 10 is a diagram illustrating the processing of S16 of FIG.
  • control unit 21 reduces the processing time required to estimate the position of the marker by gradually narrowing the scanning range of the radiographic image whose resolution has been reduced. Further, since the tube coordinates change with an accuracy of less than 1 pixel, the final estimation of the marker coordinates is performed using the radiation image of the original resolution. Note that the data of the image (radiation image) of the subject T and the phantom 5 obtained by the detector 4 is stored in the storage unit 29 in advance.
  • control unit 21 as the acquisition unit 23, reads the radiation image 31 stored in the storage unit 29 and arranges it in the memory 30 (S11).
  • the control unit 21, as the generation unit 24, reduces the resolution of the read radiation image 31 to generate the low resolution image 32 in which the information amount is reduced (S12).
  • the resolution of the image may be reduced by applying an average value filter to the pixel block and integrating the pixels. Further, for example, one pixel of the feature points may be extracted from the pixel block, or the pixels may be simply thinned to reduce the resolution. Further, the filter does not necessarily have to be an average value filter as long as it can smooth pixels.
  • the degree of decrease in the resolution of the radiation image 31 may be arbitrarily set by the operator using an operation panel or the like, or may be set to a predetermined value in advance.
  • the control unit 21 as the search unit 25 detects a rough phantom position (which is a region in which a marker may exist and is referred to as a temporary phantom region) from the low-resolution image 32. ..
  • a rough phantom position which is a region in which a marker may exist and is referred to as a temporary phantom region
  • the control unit 21 scans the region of interest 41 in the low resolution image 32, and performs binarization and labeling.
  • the binarization is a process of binarizing each pixel in the image area of the scanning range based on the threshold value of the pixel value set in advance.
  • labeling when the binarized pixel and the binarized pixel adjacent to it are the same value, grouping is performed and this is repeated to determine the closed region as the same object, and distinguish it for each object.
  • control unit 21 performs a labeling process on each of the plurality of metal markers 11a to 11d and 12a to 12d in the low resolution image 32, and the image of each metal marker and other Images are distinguished from each other and labeled (labeled).
  • the control unit 21 detects a metal marker from the low resolution image 32 based on the detection condition 33 and labels it.
  • the detection condition 33 defines the characteristics of the metal marker reflected in the low resolution image 32, and is, for example, the circularity or the area of the marker in the low resolution image 32. For example, when there are the most labeled objects whose circularity and area satisfy predetermined conditions (threshold values), the control unit 21 sets the region specified by the position 42 of the region of interest as the phantom region.
  • the control unit 21 as the search unit 25 determines the estimated phantom position based on the temporary phantom region 42 (S14). That is, as shown in FIG. 8, the control unit 21 scans the region of interest 51 having a size larger than the marker (for example, 1.5 times the size of the marker) in the temporary phantom region 42 in the low-resolution image 32. Then, binarization and labeling are performed. Then, the control unit 21 detects the labeled object that satisfies the detection condition 33 from the labeled objects. The control unit 21 obtains the maximum and minimum values of the X and Y coordinates among the labeled objects that satisfy the detection condition 33, and centers the average of the maximum and minimum values of the X and Y coordinates. The area of a predetermined range is defined as the phantom area 52.
  • the control unit 21, as the position specifying unit 26, estimates the rough coordinates of the marker within the range of the phantom region 52 (S15).
  • the control unit 21 scans an area of interest 51 having a size larger than the marker (for example, 1.5 times the size of the marker) in the confirmed phantom area 52, and Quantify and label.
  • the control unit 21 detects the labeled object that satisfies the detection condition 33 from the labeled objects.
  • the control unit 21 records the barycentric coordinates of each labeled object that satisfies the detection condition 33.
  • the control unit 21 finally determines the coordinates of each marker on the original radiographic image 31 before resolution reduction (S16).
  • the control unit 21 centers the coordinates corresponding to the barycentric coordinates of each object labeled in the low resolution image 32 in the original radiation image 31 before resolution reduction.
  • the ROI 61 having a size larger than the marker for example, 1.5 times the size of the marker is set, binarization is performed in the ROI 61, and the final marker coordinates are calculated.
  • the position of the phantom in which the marker is embedded is tentatively specified from the radiographic image in which the resolution is reduced, and the region specified as the position of the tentative phantom is considered. It is possible to narrow down the search range as an area, specify a rough position of each marker, and estimate the final marker coordinates in the original radiographic image before the resolution is reduced. As a result, the processing time required to estimate the position of the marker can be shortened by gradually narrowing the scanning range of the radiographic image whose resolution has been reduced. Further, since the final estimation of the coordinates of the marker is performed using the radiation image of the original resolution, it is possible to deal with the change of the tube coordinates with an accuracy of less than 1 pixel.
  • the labeling is performed to detect the labeled object satisfying the detection condition 33 from the labeled object.
  • the detection condition 33 may be set for each labeling, or the same extraction condition may be set. It may be.
  • the present invention is not limited to this, and an image obtained by other tomography such as CT (Computed Tomography) may also be used.
  • CT Computer Tomography
  • the image applied to the present embodiment may be, for example, an MRI (magnetic resonance imaging) image or other medical image.
  • the radiation image processing apparatus (for example, the radiation image processing apparatus 6) according to the present embodiment is An acquisition unit (for example, acquisition unit 23) that acquires a radiation image (for example, radiation image 31) in which a plurality of markers are reflected; A generation unit (for example, generation unit 24) that generates a low-resolution image (for example, low-resolution image 32) in which the resolution of the radiation image is reduced; A position specifying unit (for example, a position specifying unit 26) that specifies the position of each of the plurality of markers in the low-resolution image based on the characteristics of the plurality of markers (for example, the detection condition 33); A position estimation unit (for example, the position estimation unit 27) that estimates the positions of the plurality of markers in the radiation image by searching the positions on the radiation image corresponding to the positions of the plurality of markers in the low resolution image. )When, It is characterized by including.
  • metal markers can be detected from radiation images at high speed and with high accuracy. That is, since the scanning range of the radiographic image whose resolution has been lowered can be narrowed down in stages, the processing time required for estimating the position of the marker can be shortened. Moreover, although the tube coordinates change with an accuracy of less than 1 pixel, the final marker coordinates are estimated using the radiation image of the original resolution, so that the marker coordinates with high accuracy can be estimated. As a result, highly accurate tube coordinates can be estimated.
  • the radiation image processing device (for example, the radiation image processing device 6) further includes: A search unit (for example, a search unit 25) that searches for a region of interest in which the plurality of markers are reflected in the low-resolution image, based on the characteristics of the plurality of markers. It is characterized by including. With this configuration, it is possible to search for a plurality of marker interest regions in the low resolution image.
  • a search unit for example, a search unit 25
  • the searching unit (for example, the searching unit 25) is characterized in that the scanning area for the low-resolution image is narrowed down in stages based on the characteristics of the plurality of markers. With this configuration, it is possible to narrow down the area where the marker exists.
  • the search unit (for example, the search unit 25) is based on the characteristics of the plurality of markers and includes a temporary region of interest (for example, a temporary phantom region 42) including a region in which the plurality of markers are reflected in the low-resolution image. Is specified, and the region of interest (for example, the phantom region 52) in which the plurality of markers are reflected is specified from the temporary region of interest. With this configuration, the position where the phantom exists can be estimated from the rough phantom area.
  • a temporary region of interest for example, a temporary phantom region 42
  • the region of interest for example, the phantom region 52
  • the position specifying unit determines, based on the characteristics of the plurality of markers, the barycentric coordinates of each of the plurality of markers included in the region of interest, the plurality of markers in the low resolution image. Of the above position.
  • the tube coordinates change with an accuracy of less than 1 pixel, but since the final estimation of the marker coordinates is performed using the radiation image of the original resolution, the highly accurate marker coordinates are obtained. Can be estimated, and as a result, highly accurate tube coordinates can be estimated.
  • the radiation image processing method executed by the radiation image processing apparatus is A radiographic image (for example, the radiographic image 31) in which a plurality of markers are reflected is acquired (for example, S11 in FIG. 5), A low resolution image (for example, the low resolution image 32) in which the resolution of the radiation image is reduced is generated (for example, S12 in FIG. 5), The position of each of the plurality of markers in the low resolution image is specified based on the characteristics of the plurality of markers (for example, the detection condition 33) (for example, S15 in FIG. 5), The positions of the plurality of markers in the radiation image are estimated by searching the positions on the radiation image corresponding to the positions of the plurality of markers in the low resolution image (for example, S16 in FIG. 5). It is characterized by
  • metal markers can be detected from radiation images at high speed and with high accuracy. That is, since the scanning range of the radiographic image whose resolution has been lowered can be narrowed down in stages, the processing time required for estimating the position of the marker can be shortened. Moreover, although the tube coordinates change with an accuracy of less than 1 pixel, the final marker coordinates are estimated using the radiation image of the original resolution, so that the marker coordinates with high accuracy can be estimated. As a result, highly accurate tube coordinates can be estimated.
  • a radiographic image for example, the radiographic image 31
  • a low resolution image for example, the low resolution image 32
  • the position of each of the plurality of markers in the low resolution image is specified based on the characteristics of the plurality of markers (for example, the detection condition 33) (for example, S15 in FIG. 5)
  • the positions of the plurality of markers in the radiation image are estimated by searching the positions on the radiation image corresponding to the positions of the plurality of markers in the low resolution image (for example, S16 in FIG. 5). Let the process run.
  • metal markers can be detected from radiation images at high speed and with high accuracy. That is, since the scanning range of the radiographic image whose resolution has been lowered can be narrowed down in stages, the processing time required for estimating the position of the marker can be shortened. Moreover, although the tube coordinates change with an accuracy of less than 1 pixel, the final marker coordinates are estimated using the radiation image of the original resolution, so that the marker coordinates with high accuracy can be estimated. As a result, highly accurate tube coordinates can be estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Quality & Reliability (AREA)
  • Pulmonology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】放射線画像から高速かつ高精度で金属マーカを検出することができる放射線画像処理技術を提供する。 【解決手段】 複数のマーカが写り込んだ放射線画像を取得する取得部と、放射線画像の解像度を落とした低解像度画像を生成する生成部と、複数のマーカの特徴に基づいて、低解像度画像における複数のマーカそれぞれの位置を特定する位置特定部と、低解像度画像における複数のマーカそれぞれの位置に対応する放射線画像上の位置を探索することにより、放射線画像における複数のマーカの位置を推定する位置推定部と、を備える放射線画像処理装置により、上記課題の解決を図る。

Description

放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム
 本発明は、放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラムに関する。
 放射線画像処理技術としては、例えば、次の技術がある。X線管から被検体にX線を照射し、被検体を透過したX線をフラットパネル型X線検出器(以下、「FPD」と称する)が検出して投影像を得る。この際、第1、第2、第3カメラは、監視板上に配されるマーカの光学像を撮像し、その画像を得る。そして、3次元位置算定部が、得られた各画像に基づいて、X線管とFPDの3次元位置を算定する。再構成演算部は、投影像の一群と計測された3次元位置とに基づいて、断層像等を作成する(例えば、特許文献1)。
 また、撮影視野にマーカを被検体とともに写し込んだ状態で一連の放射線画像の撮影を行い、各放射線画像に写り込んだマーカ像に基づいて、撮像系の移動様式が理想からどのくらいずれているかを認識し、この認識に基づいて画像の補正を行う技術がある(例えば特許文献2)。
特開2006-181252号公報 特開2013-17675号公報
 例えばX線トモシンセシス(Tomosynthesis)を用いたX線断層面検査装置は、1回の撮像によって得られる複数の画像データを合成することによって、断層面の画像を検出する。このとき複数の画像データを合成するに際して、X線を放射する管球の位置を算出する必要があるが、その前提として、被検体とともに写し込むファントムに埋設された金属マーカの検出を行う必要がある。
 しかしながら、撮影した放射線画像から金属マーカの検出を行うには、関心領域を撮像画像中で走査させ、二値化を繰り返すことが要求されるため、膨大な処理時間を要する。また、画像中の金属マーカの位置を検出する場合、1ピクセル未満の精度で管球位置推定結果が大きく変わるため、マーカ位置の検出の精度も要求される。
 本発明は、一側面として、放射線画像から高速かつ高精度で金属マーカを検出することができる放射線画像処理技術を提供する。
 本発明の一側面にかかる放射線画像処理装置は、複数のマーカが写り込んだ放射線画像を取得する取得部と、前記放射線画像の解像度を落とした低解像度画像を生成する生成部と、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定する位置特定部と、前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する位置推定部とを備えることを特徴とする。
 前記放射線画像処理装置は、さらに、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカが映っている関心領域を探索する探索部を備えることを特徴とする。
 前記探索部は、前記複数のマーカの特徴に基づいて、前記低解像度画像に対する走査領域を段階的に絞り込むことを特徴とする。
 前記探索部は、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカが映っている領域を含む仮の関心領域を特定し、該仮の関心領域から前記複数のマーカが映っている前記関心領域を特定することを特徴とする。
 前記位置特定部は、前記複数のマーカの特徴に基づいて、前記関心領域に含まれる前記複数のマーカそれぞれの重心座標を、前記低解像度画像における前記複数のマーカそれぞれの前記位置として特定することを特徴とする。
 本発明の一側面にかかる放射線画像処理装置により実行される放射線画像処理方法は、複数のマーカが写り込んだ放射線画像を取得し、前記放射線画像の解像度を落とした低解像度画像を生成し、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定し、前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する、ことを特徴とする。
 本発明の一側面にかかる放射線画像処理プログラムは、コンピュータに、複数のマーカが写り込んだ放射線画像を取得し、前記放射線画像の解像度を落とした低解像度画像を生成し、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定し、前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する、処理を実行させる。
 本発明の一側面によれば、放射線画像から高速かつ高精度で金属マーカを検出することができる。
本実施形態における放射線画像撮影装置の全体構成を示す模式図である。 本実施形態で用いるファントムの一例を示す模式図である。 本実施形態における放射線画像処理装置の構成例を示すブロック図である。 本実施形態における放射線画像撮影装置の制御部の全体の処理を示すフローチャートである。 本実施形態におけるマーカ位置推定処理(S1)の詳細を示すフローチャートである。 図5のS12の処理を説明する図である。 図5のS13の処理を説明する図である。 図5のS14の処理を説明する図である。 図5のS15の処理を説明する図である。 図5のS16の処理を説明する図である。
 図1は、本実施形態における放射線画像撮影装置の全体構成を示す模式図である。放射線画像撮影装置1は、医用として例えばトモシンセシス断層撮影等の放射線画像撮影を行う装置であり、放射線源である管球2の位置を変更しながら被写体Tを撮影することで複数の画像データを取得する。具体的には、放射線画像撮影装置1は、管球2、位置変更機構3、検出器4、ファントム5、放射線画像処理装置6、撮影制御部7等を備える。
 管球2は、撮影制御部7からの信号に基づいて高電圧が印加されることにより、放射線(X線)を発生させてその放射線を検出器4に向けて照射する。管球2は、位置変更機構3によって、移動可能に保持される。位置変更機構3は、撮影制御部7からの信号に基づいて管球2の位置を変更する。
 検出器4は、管球2に対面するように配置され、管球2から照射された放射線による撮影画像を画像データに変換するフラットパネル型X線検出器(Flat Panel Detector;FPD)である。すなわち、検出器4は、放射線を電気信号に変換すると共に、変換された電気信号を画像の信号として読み取って、その画像の信号を放射線画像処理装置6に出力する。なお、検出器4は、複数の変換素子(図示省略)と、これら複数の変換素子上に配置された画素電極(図示省略)と、を備える。また、複数の変換素子及び画素電極は、所定の周期(画素ピッチ)で配置される。
 ファントム5は、キャリブレーションファントムとも呼称されるものであり、例えば、アクリル等の樹脂製の直方体の中央部に金属製の球を配置した構成を有する。ファントム5は、管球2と検出器4との間に設けられ、管球2の位置を推定するために被写体Tと共に撮影される。
 放射線画像処理装置6は、検出器4によって得られた画像の信号を処理する装置である。放射線画像処理装置6の構成については、後述する。
 図2は、本実施形態で用いるファントムの一例を示す模式図である。ファントム5は、樹脂等で構成されており、アルミニウム、金、鉛、タングステン等の金属からなる複数の金属マーカ11a,11b,11c,11d,12a,12b,12c,12dを内部に有している。
 金属マーカ11a及び金属マーカ12aは、検出器4に対する遠近方向に分けて配置されてペアをなす。金属マーカ11b及び金属マーカ12bは、検出器4に対する遠近方向に分けて配置されたペアをなす。金属マーカ11c及び金属マーカ12cは、検出器4に対する遠近方向に分けて配置されてペアをなす。金属マーカ11d及び金属マーカ12dは、検出器4に対する遠近方向に分けて配置されてペアをなす。
 以下、金属マーカを「マーカ」と表記する場合もある。また、金属マーカ(またはマーカ)11a,11b,11c,11d,12a,12b,12c,12dを総称して、金属マーカ(またはマーカ)10を称する。
 ここでは、ペアを構成する金属マーカは、遠近方向において互いに少なくとも70mm離れて配置されている。また、ペアを構成する金属マーカは、遠近方向から見たとき(ファントム5を平面視したとき)に重なり合わない位置に配置されている。
 図3は、本実施形態における放射線画像処理装置の構成例を示すブロック図である。放射線画像処理装置6は、制御部21、記憶部29、メモリ30、入力インターフェース34、出力インターフェース35、通信インターフェース36を含む。以下、インターフェースを「I/F」と称する。制御部21、記憶部29、メモリ30、入力I/F34、出力I/F35、通信I/F36は、命令信号やデータ信号を受け渡すバス(不図示)で相互に接続されている。
 制御部21は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)又は画像処理用に構成されたFPGA(Field-Programmable Gate Array)等のプロセッサ(図示省略)であり、放射線画像処理装置6の全体の動作を制御したり、画像処理を行ったりする。
 記憶部29は、ハードディスクドライブやSSD(Solid State Drive)等の大容量の記憶装置であり、検出器4によって得られた放射線画像30を格納する。また、記憶部29には、本実施形態で用いるマーカの検出条件33に関する情報が格納されている。また、記憶部29には、オペレーティングシステム(OS)や、放射線画像処理に関するプログラム(本実施形態にかかるプログラムを含む)等のプログラムもインストールされている。
 メモリ30は、制御部21が所定の処理を行ったり、画面上にデータを表示したりするときに使う作業用の記憶領域であり、例えばRAM(Random Access Memory)等の揮発性の記憶装置であるが、仕様によっては例えば不揮発性のフラッシュメモリであってもよい。
 入力I/F34は、例えば、キーボードや操作パネル等の入力装置(不図示)が接続されるインターフェースである。入力装置を介してマーカ10の検出条件33を設定することができる。出力I/F35は、例えば、タッチパネルやディスプレイ等の表示装置やプリンタ等の出力装置(不図示)が接続されるインターフェースである。通信I/36は、検出器4や撮影制御部7等の他の機器と通信するインターフェースである。
 次に、制御部21による行われる処理について説明する。制御部21は、本実施形態に関して、概してマーカ位置推定処理22と管球位置推定処理28を行う。マーカ位置推定処理22は、撮影された放射線画像から、それに映り込んだマーカ10の位置を推定する処理である。マーカ位置推定処理22を行う場合、制御部21は、記憶部29に記憶された本実施形態にかかるプログラムを読み出して実行することにより、取得部23、生成部24、探索部25、位置特定部26、及び位置推定部27として機能する。このとき、制御部21は、記憶装置29に記憶されている検出条件33を読み出して、メモリ30に配置する。
 取得部23は、通信I/F35を介してまたは記憶装置29に記憶された、複数のマーカ10が映り込んだ放射線画像31を取得し、メモリ31上に配置する。
 生成部24は、放射線画像31の解像度を落とした低解像度画像32を生成し、メモリ30上に配置する。
 探索部25は、検出条件33に設定されている複数のマーカの特徴に基づいて、低解像度画像32における複数のマーカ10が映っている関心領域を探索する。ここで、関心領域とは、低解像度画像32から、画像解析のために選択した所定の領域を示す。探索部25は、複数のマーカ10の特徴に基づいて、低解像度画像32に対する走査領域を段階的に絞り込むことができる。探索部25は、複数のマーカの特徴に基づいて、低解像度画像32における複数のマーカ10が映っている領域を含む仮の関心領域を特定し、仮の関心領域から1または複数のマーカが映っている関心領域を特定することができる。
 位置特定部26は、検出条件33に設定されている複数のマーカの特徴に基づいて、低解像度画像32における複数のマーカ10それぞれの位置を特定する。より具体的には、位置特定部26は、検出条件33に設定されている複数のマーカ10の特徴に基づいて、低解像度画像32における関心領域に含まれる複数のマーカ10それぞれの位置を特定する。位置特定部26は、複数のマーカ10の特徴に基づいて、関心領域に含まれる複数のマーカ10それぞれの重心座標を、低解像度画像32における複数のマーカ10それぞれの位置として特定する。
 位置推定部27は、低解像度画像32における複数のマーカ10それぞれの位置に対応する放射線画像31上の位置を探索することにより、放射線画像31における複数のマーカ10の位置を推定する。
 管球位置推定処理28は、マーカ位置推定処理22によって推定された放射線画像31に写っているマーカの位置及び面積に基づいて、ファントム5における鉛直方向での、上述したペアを特定し、ペアとして特定されたマーカの位置座標に基づいて管球の位置を推定する。
 本実施形態にかかるプログラムは、放射線画像処理装置6だけでなく、コンピュータ等の情報処理装置で実行されてもよい。本実施形態にかかるプログラムは、通信ネットワークや記録媒体からコンピュータにインストールされてもよい。
 このようなプログラムを含む記録媒体は、各ユーザにプログラムを提供するために装置本体とは別に配布される、リムーバブルメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態で各ユーザに提供される記録媒体等で構成される。
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理を含むものである。
 図4は、本実施形態における放射線画像撮影装置の制御部の全体の処理を示すフローチャートである。制御部21は、マーカ位置推定処理(S1)を行う。マーカ位置推定処理(S1)は、撮影された放射線画像31から、それに映り込んだマーカ10の位置を推定する処理である。S1の詳細な処理については、後述する。
 次に、制御部21は、管球位置推定処理(S2)を行う。管球位置推定処理(S2)では、二値化画像作成処理(S2-1)と、ラベリング処理(S2-2)と、各領域の面積算出処理(S2-3)と、面積によるマーカの遠近判定処理(S2-4)と、マーカペア決定処理(S2-5)と、管球座標推定処理(S2-6)と、をその順番に実行する。
 二値化画像作成処理(S2-1)では、制御部21が、検出器4によって検出された画像の信号に基づいて、二値化された放射線画像を生成する。
 ラベリング処理(S2-2)では、制御部21が、放射線画像において、マーカ位置推定処理(S1)で位置が推定された金属マーカ11a~11d,12a~12dの各々に対してラベリングを行って、互いを区別する。
 各領域の面積算出処理(S2-3)では、制御部21が、ラベリングが行われた放射線画像中の複数の金属マーカ11a~11d,12a~12dの各々の面積を算出する工程である。ここでは、制御部21は、算出した面積の最大値と最小値との平均値も併せて算出する。
 面積によるマーカの遠近判定処理(S2-4)では、制御部21が、上記算出した平均値を閾値として、平均値よりも大きい面積を有する放射線画像中の金属マーカ11a~11dを、検出器4から相対的に遠い(図2のファントム5内で上部に位置する。)と判定して第1グループに分類すると共に、平均値よりも小さい面積を有する放射線画像中の金属マーカ12a~12dを、検出器4から相対的に近い(図2のファントム5内で下部に位置する。)と判定して第2グループに分類する。
 マーカペア決定処理(S2-5)では、制御部21が、分類されたグループ毎に、複数の金属マーカ11a~11d,12a~12dのxy座標平面上における相対的な位置に基づいて複数の金属マーカ11a~11d,12a~12dを分類した上で、相対的な位置が合致する第1グループの金属マーカ11a~11dと第2グループの金属マーカ12a~12dとをペアにして選択する。
 具体的には、制御部21は、相対的な位置が合致する金属マーカとして、例えば、金属マーカ11aと金属マーカ12aのペア、金属マーカ11bと金属マーカ12bのペア、金属マーカ11cと金属マーカ12cのペア、金属マーカ11dと金属マーカ12dのペアのいずれかを選択する。
 なお、ファントム5において、検出器4に対する遠近方向に分けて配置されてペアをなす複数の金属マーカとして、ここでは、4つのペアを構成可能な数を例示しているが、これに限定されない。例えばファントム5が傾く等により一部の金属マーカが撮影画像に映り込まない場合を考慮しても、管球位置の推定には、少なくとも2つのペアを構成可能な数の金属マーカを備えていればよい。また、マーカは金属製に限定されず、X線の吸収量が多ければ、どのような素材であってもよい。
 管球座標推定処理(S2-6)では、制御部21が、ペアにして選択された金属マーカ11a~11d,12a~12dの位置座標に基づいて、管球2の位置を推定する。ここで、管球2、金属マーカ11a,12a及び放射線画像中の金属マーカ11a,12aを含む3次元空間を想定する。このとき、管球2の位置Sの位置座標を(x、y、Sd)と定義する。また、金属マーカ11aの位置の位置座標を(Pa、Pb、Pd+Ps)と定義する。また、金属マーカ12aの位置の位置座標を(Pa、Pb、Pd)と定義する。また、放射線画像中の金属マーカ11aの位置の位置座標を(a1、b1、0)と定義する。また、放射線画像中の金属マーカ12aの位置の位置座標を(a2、b2、0)と定義する。
 なお、xは管球2のX方向の座標である。また、yは管球2のY方向の座標である。また、Paは、金属マーカ11a,12aのX方向の座標である。また、Pbは、金属マーカ51a,52aのY方向の座標である。また、Sdは、検出器4から管球2までのZ方向の距離(SID:Source Image receptor Distance)である。また、Pdは、検出器4から金属マーカ12aまでのZ方向の距離である。また、Psは、金属マーカ11a,12a同士の間のZ方向の距離である。
 管球2、金属マーカ11a,12a及び放射線画像中の金属マーカ11a,12aは、外分点の関係となっているので、この関係より、管球2の位置Sの位置座標は、以下の式(1)(2)より導かれる。
   x={a1*(1-β)-a2*(1-α)}/(β-α)・・・(1)
   y={b1*(1-β)-b2*(1-α)}/(β-α)・・・(2)
 但し、
   α=(Pd+Ps)/(Pd+Ps-Sd)
   β=Pd/(Pd-Sd)
これにより、放射線画像撮影装置1の中に、絶対位置を計測できるような機構がなくても、放射線画像中の複数のマーカの位置関係により。管球の位置を推定することができる。
 次に、マーカ位置推定処理(S1)の詳細を説明する。
 図5は、本実施形態におけるマーカ位置推定処理(S1)の詳細を示すフローチャートである。図6は、図5のS12の処理を説明する図である。図7は、図5のS13の処理を説明する図である。図8は、図5のS14の処理を説明する図である。図9は、図5のS15の処理を説明する図である。図10は、図5のS16の処理を説明する図である。
 S1では、制御部21は、解像度を低下させた放射線画像の走査範囲を段階的に絞っていくことで、マーカの位置の推定にかかる処理時間を短縮する。また、1ピクセル未満の精度で管球座標が変化するため、最終的なマーカの座標の推定は、元の解像度の放射線画像を用いて行う。なお、検出器4によって得られた、被写体Tとファントム5とが撮影された画像(放射線画像)のデータは、予め記憶部29に記憶されているものとする。
 まず、制御部21は、取得部23として、記憶部29に記憶された放射線画像31を読み出して、メモリ30に配置する(S11)。
 次に、制御部21は、生成部24として、図6に示すように、読み出した放射線画像31の解像度を低下させて、情報量を低下させた低解像度画像32を生成する(S12)。放射線画像31の解像度を低下させる方法としては、例えば、画素ブロックに平均値フィルタをかけて画素を統合することにより画像の解像度を落としてもよい。また、例えば、画素ブロックから特徴点の1画素を抽出するもの、或いは単に画素を間引いて解像度を落とすものであってもよい。また、フィルタも平均値フィルタである必要は必ずしもなく、画素を平滑化できればよい。
 放射線画像31の解像度の低下の度合いは、例えば、操作パネル等により操作者が任意に設定してもよいし、予め所定の値に設定されていてもよい。
 次に、制御部21は、探索部25として、低解像度画像32から、大まかなファントムの位置(マーカの存在する可能性のある領域のことであり、仮ファントム領域と称する。)の検出を行う。ここでは、制御部21は、図7に示すように、低解像度画像32内で関心領域41を走査させ、二値化とラベリングを行う。二値化とは、予め設定した画素値の閾値に基づいて、走査範囲の画像領域にある各画素を二値化する処理である。ラベリングは、二値化された画素とこれに隣接する二値化された画素とが同値である場合、グループ化を行い、これを繰り返して閉領域を同一のオブジェクトと判定し、オブジェクト毎に区別する処理である。この例では、具体的には、制御部21は、低解像度画像32中の複数の金属マーカ11a~11d,12a~12dの各々に対してラベリング処理を行って、個々の金属マーカの画像とその他の画像とを互いに区別し、それぞれラベル化(ラベリング)する。
 ラベリングを行う際、制御部21は、検出条件33に基づいて、低解像度画像32から金属マーカを検出し、ラベリングする。検出条件33とは、低解像度画像32に映り込んだ金属マーカの特徴を定義したものであり、例えば、低解像度画像32におけるマーカの円形度や面積である。制御部21は、例えば、円形度と面積が所定の条件(閾値)を満たすラベリングされたオブジェクトが最も多い場合、その関心領域の位置42で特定される領域をファントム領域とする。
 それから、制御部21は、探索部25として、仮ファントム領域42に基づいて、推定されるファントム位置を確定する(S14)。すなわち、制御部21は、図8に示すように、低解像度画像32における仮ファントム領域42内において、例えばマーカより大きいサイズ(例えば、マーカの1.5倍のサイズ)を持つ関心領域51を走査させ、二値化とラベリングを行う。それから、制御部21は、ラベリングされたオブジェクトから、検出条件33を満たすラベリングされたオブジェクトを検出する。制御部21は、検出条件33を満たすラベリングされたオブジェクトのうち、X座標、Y座標の最大値及び最小値のオブジェクトを取得し、X座標とY座標の最大値及び最小値の平均値を中心とする所定の範囲の領域をファントム領域52と確定する。
 それから、制御部21は、位置特定部26として、ファントム領域52の範囲でマーカの大まかな座標の推定を行う(S15)。ここでは、制御部21は、図9に示すように、確定したファントム領域52内において、例えばマーカより大きいサイズ(例えば、マーカの1.5倍のサイズ)を持つ関心領域51を走査させ、二値化とラベリングを行う。それから、制御部21は、ラベリングされたオブジェクトから、検出条件33を満たすラベリングされたオブジェクトを検出する。制御部21は、検出条件33を満たすラベリングされたオブジェクトそれぞれの重心座標を記録する。
 制御部21は、位置推定部27として、低解像度化する前の元の放射線画像31上での各マーカの座標の最終決定を行う(S16)。ここでは、制御部21は、図10に示すように、低解像度化する前の元の放射線画像31において、低解像度画像32にてラベリングされた各オブジェクトの重心座標に対応する座標を中心とする、例えばマーカより大きいサイズ(例えば、マーカの1.5倍のサイズ)を持つ関心領域61を設定し、関心領域61内で二値化を行い、最終的なマーカの座標を計算する。
 本実施形態によれば、マーカが映り込んだ放射線画像において、解像度を低下させた放射線画像からマーカが埋設されたファントムの位置を仮として特定し、仮のファントムの位置として特定された領域を関心領域として探索範囲を絞り込み、各マーカの大まかな位置を特定し、解像度を低下させる前の元の放射線画像にて最終的なマーカの座標を推定することができる。これにより、解像度を低下させた放射線画像の走査範囲を段階的に絞っていくことで、マーカの位置の推定にかかる処理時間を短縮することができる。また、最終的なマーカの座標の推定は、元の解像度の放射線画像を用いて行うので、1ピクセル未満の精度で管球座標が変化することについても対応することができる。
 なお、上記ではラベリングを行って、ラベリングされたオブジェクトから、検出条件33を満たすラベリングされたオブジェクトを検出しているが、検出条件33はラベリング毎に設定してもよいし、同一の抽出条件であってもよい。
 なお、上述の実施形態では、放射線画像として、トモシンセシスによって得られた画像を例に説明したが、これに限定されず、CT(Computed Tomography)等その他の断層撮影によって得られた画像であってもよい。または、本実施形態に適用する画像として、例えば、MRI(magnetic resonance imaging)画像等やその他の医用画像であってもよい。
 上述したように、本実施形態にかかる放射線画像処理装置(例えば、放射線画像処理装置6)は、
 複数のマーカが写り込んだ放射線画像(例えば、放射線画像31)を取得する取得部(例えば、取得部23)と、
 前記放射線画像の解像度を落とした低解像度画像(例えば、低解像度画像32)を生成する生成部(例えば、生成部24)と、
 前記複数のマーカの特徴(例えば、検出条件33)に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定する位置特定部(例えば、位置特定部26)と、
 前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する位置推定部(例えば、位置推定部27)と、
 を備えることを特徴とする。
 このように構成することにより、放射線画像から高速かつ高精度で金属マーカを検出することができる。すなわち、解像度を低下させた放射線画像の走査範囲を段階的に絞っていくことができるので、マーカの位置の推定にかかる処理時間を短縮することができる。また、1ピクセル未満の精度で管球座標が変化するが、最終的なマーカの座標の推定は、元の解像度の放射線画像を用いて行うので、精度の高いマーカの座標を推定することができ、その結果、精度の高い管球座標を推定することができる。
 前記放射線画像処理装置(例えば、放射線画像処理装置6)は、さらに、
 前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカが映っている関心領域を探索する探索部(例えば、探索部25)
 を備えることを特徴とする。
 このように構成することにより、前記低解像度画像内の複数のマーカ関心領域を探索することができる。
 前記探索部(例えば、探索部25)は、前記複数のマーカの特徴に基づいて、前記低解像度画像に対する走査領域を段階的に絞り込むことを特徴とする。
 このように構成することにより、マーカの存在する領域を絞り込むことができる。
 前記探索部(例えば、探索部25)は、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカが映っている領域を含む仮の関心領域(例えば、仮ファントム領域42)を特定し、該仮の関心領域から前記複数のマーカが映っている前記関心領域(例えば、ファントム領域52)を特定する。
 このように構成することにより、大まかなファントム領域からファントムが存在する位置を推定することができる。
 前記位置特定部(例えば、位置特定部26)は、前記複数のマーカの特徴に基づいて、前記関心領域に含まれる前記複数のマーカそれぞれの重心座標を、前記低解像度画像における前記複数のマーカそれぞれの前記位置として特定する。
 このように構成することにより、1ピクセル未満の精度で管球座標が変化するが、最終的なマーカの座標の推定は、元の解像度の放射線画像を用いて行うので、精度の高いマーカの座標を推定することができ、その結果、精度の高い管球座標を推定することができる。
 また、本実施形態にかかる放射線画像処理装置により実行される放射線画像処理方法は、
 複数のマーカが写り込んだ放射線画像(例えば、放射線画像31)を取得し(例えば、図5のS11)、
 前記放射線画像の解像度を落とした低解像度画像(例えば、低解像度画像32)を生成し(例えば、図5のS12)、
 前記複数のマーカの特徴(例えば、検出条件33)に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定し(例えば、図5のS15)、
 前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する(例えば、図5のS16)
ことを特徴とする。
 このように構成することにより、放射線画像から高速かつ高精度で金属マーカを検出することができる。すなわち、解像度を低下させた放射線画像の走査範囲を段階的に絞っていくことができるので、マーカの位置の推定にかかる処理時間を短縮することができる。また、1ピクセル未満の精度で管球座標が変化するが、最終的なマーカの座標の推定は、元の解像度の放射線画像を用いて行うので、精度の高いマーカの座標を推定することができ、その結果、精度の高い管球座標を推定することができる。
 また、本実施形態にかかる放射線画像処理プログラムは、
 コンピュータに、
 複数のマーカが写り込んだ放射線画像(例えば、放射線画像31)を取得し(例えば、図5のS11)、
 前記放射線画像の解像度を落とした低解像度画像(例えば、低解像度画像32)を生成し(例えば、図5のS12)、
 前記複数のマーカの特徴(例えば、検出条件33)に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定し(例えば、図5のS15)、
 前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する(例えば、図5のS16)
処理を実行させる。
 このように構成することにより、放射線画像から高速かつ高精度で金属マーカを検出することができる。すなわち、解像度を低下させた放射線画像の走査範囲を段階的に絞っていくことができるので、マーカの位置の推定にかかる処理時間を短縮することができる。また、1ピクセル未満の精度で管球座標が変化するが、最終的なマーカの座標の推定は、元の解像度の放射線画像を用いて行うので、精度の高いマーカの座標を推定することができ、その結果、精度の高い管球座標を推定することができる。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1   放射線画像撮影装置
  2   管球
  3   位置変更機構
  4   検出器
  5   ファントム
  6   放射線画像処理装置
  7   撮影制御部
  21  制御部
  23  取得部
  24  生成部
  25  探索部
  26  位置特定部
  27  位置推定部
  29  記憶部
  30  メモリ
  31  放射線画像
  32  低解像度画像
  33  検出条件
  34  入力I/F
  35  出力I/F
  36  通信I/F

Claims (7)

  1.  複数のマーカが写り込んだ放射線画像を取得する取得部と、
     前記放射線画像の解像度を落とした低解像度画像を生成する生成部と、
     前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定する位置特定部と、
     前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する位置推定部と、
     を備えることを特徴とする放射線画像処理装置。
  2.  前記放射線画像処理装置は、さらに、
     前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカが映っている関心領域を探索する探索部
     を備えることを特徴とする請求項1に記載の放射線画像処理装置。
  3.  前記探索部は、前記複数のマーカの特徴に基づいて、前記低解像度画像に対する走査領域を段階的に絞り込む
     ことを特徴とする請求項2に記載の放射線画像処理装置。
  4.  前記探索部は、前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカが映っている領域を含む仮の関心領域を特定し、該仮の関心領域から前記複数のマーカが映っている前記関心領域を特定する
     ことを特徴とする請求項2又は3に記載の放射線画像処理装置。
  5.  前記位置特定部は、前記複数のマーカの特徴に基づいて、前記関心領域に含まれる前記複数のマーカそれぞれの重心座標を、前記低解像度画像における前記複数のマーカそれぞれの前記位置として特定する
     ことを特徴とする請求項2~4のうちいずれか1項に記載の放射線画像処理装置。
  6.  放射線画像処理装置により実行される放射線画像処理方法であって、
     複数のマーカが写り込んだ放射線画像を取得し、
     前記放射線画像の解像度を落とした低解像度画像を生成し、
     前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定し、
     前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する、
     ことを特徴とする放射線画像処理方法。
  7.  コンピュータに、
     複数のマーカが写り込んだ放射線画像を取得し、
     前記放射線画像の解像度を落とした低解像度画像を生成し、
     前記複数のマーカの特徴に基づいて、前記低解像度画像における前記複数のマーカそれぞれの位置を特定し、
     前記低解像度画像における前記複数のマーカそれぞれの位置に対応する前記放射線画像上の位置を探索することにより、前記放射線画像における前記複数のマーカの位置を推定する、
     処理を実行させる放射線画像処理プログラム。
     
PCT/JP2019/041000 2018-12-21 2019-10-17 放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム WO2020129384A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980083981.1A CN113194834A (zh) 2018-12-21 2019-10-17 放射线图像处理装置、放射线图像处理方法以及放射线图像处理程序
US17/416,501 US20220074873A1 (en) 2018-12-21 2019-10-17 Radiological image processing device, radiological image processing method, and radiological image processing program
JP2020561179A JPWO2020129384A1 (ja) 2018-12-21 2019-10-17 放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239838 2018-12-21
JP2018-239838 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129384A1 true WO2020129384A1 (ja) 2020-06-25

Family

ID=71102806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041000 WO2020129384A1 (ja) 2018-12-21 2019-10-17 放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム

Country Status (4)

Country Link
US (1) US20220074873A1 (ja)
JP (1) JPWO2020129384A1 (ja)
CN (1) CN113194834A (ja)
WO (1) WO2020129384A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285944A (ja) * 2004-08-11 2006-10-19 Fuji Photo Film Co Ltd 被写体の構成要素を検出する装置および方法
US20110243407A1 (en) * 2010-04-06 2011-10-06 Siemens Corporation Data Transmission in Remote Computer Assisted Detection
JP2012020023A (ja) * 2010-07-16 2012-02-02 Fujifilm Corp 放射線撮影装置および方法並びにプログラム
JP2016120144A (ja) * 2014-12-25 2016-07-07 株式会社島津製作所 X線透視撮影装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564999B2 (en) * 2005-07-25 2009-07-21 Carestream Health, Inc. Method for identifying markers in radiographic images
JP4560023B2 (ja) * 2006-09-14 2010-10-13 三菱スペース・ソフトウエア株式会社 画像マッチング装置、画像マッチングプログラム及び画像マッチング方法
CN102711611B (zh) * 2009-12-29 2015-07-15 株式会社岛津制作所 放射线图像处理装置以及放射线图像处理方法
CN103635139A (zh) * 2011-07-06 2014-03-12 富士胶片株式会社 X射线成像设备和用于其的校准方法
JP6559934B2 (ja) * 2014-08-01 2019-08-14 キヤノンメディカルシステムズ株式会社 X線診断装置
JP6493163B2 (ja) * 2015-11-06 2019-04-03 オムロン株式会社 粗密探索方法および画像処理装置
FR3071715B1 (fr) * 2017-10-03 2019-11-01 Proteor Procede d'imagerie radiographique, dispositif de traitement d'image radiographique et dispositif d'imagerie radiographique.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285944A (ja) * 2004-08-11 2006-10-19 Fuji Photo Film Co Ltd 被写体の構成要素を検出する装置および方法
US20110243407A1 (en) * 2010-04-06 2011-10-06 Siemens Corporation Data Transmission in Remote Computer Assisted Detection
JP2012020023A (ja) * 2010-07-16 2012-02-02 Fujifilm Corp 放射線撮影装置および方法並びにプログラム
JP2016120144A (ja) * 2014-12-25 2016-07-07 株式会社島津製作所 X線透視撮影装置

Also Published As

Publication number Publication date
JPWO2020129384A1 (ja) 2021-10-07
CN113194834A (zh) 2021-07-30
US20220074873A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US20230263463A1 (en) Osteoporosis diagnostic support apparatus
US20170301066A1 (en) System and method for image correction
US9659390B2 (en) Tomosynthesis reconstruction with rib suppression
US20050201599A1 (en) Diagnostic imaging support apparatus and diagnostic imaging support method
CN105027163A (zh) 扫描区域确定装置
JP2014097400A (ja) 一連のct射影画像においてx線マーカを追跡するための方法
US20210125334A1 (en) System and Method for Analyzing Three-Dimensional Image Data
US20110064289A1 (en) Systems and Methods for Multilevel Nodule Attachment Classification in 3D CT Lung Images
WO2013127730A1 (en) Image alignment of breast images
US10043268B2 (en) Medical image processing apparatus and method to generate and display third parameters based on first and second images
US20160078606A1 (en) Super-Resolution Apparatus and Method
US11176638B2 (en) Image processing apparatus, image processing method and program
US20110211743A1 (en) Change Assessment Method
WO2022033598A1 (zh) 乳房x射线图像获取方法、装置、计算机设备和存储介质
US20160310036A1 (en) Image processing apparatus, image processing method, and storage medium
JP2002094772A (ja) 放射線画像処理方法および放射線画像処理装置
JP5599831B2 (ja) 骨塩定量分析における分析対象部位の特定方法および、この方法を実施するための画像処理装置並びに記録媒体
WO2020129384A1 (ja) 放射線画像処理装置、放射線画像処理方法及び放射線画像処理プログラム
JP5884351B2 (ja) X線検査装置、x線検査装置の制御方法、x線検査装置を制御するためのプログラム、および、当該プログラムを格納したコンピュータ読み取り可能な記録媒体
US11032469B2 (en) Imaging control apparatus, radiation imaging system, imaging control method, and storage medium
CN113990488A (zh) 甲状腺结节与颈部淋巴结联合诊断系统、介质及电子设备
JP5908816B2 (ja) 骨塩量計測装置および方法
JP5908817B2 (ja) 骨塩量計測装置および方法
TWI500412B (zh) 一種影像品質的改善處理方法及其造影系統
JP6386629B2 (ja) 核医学骨画像解析技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899875

Country of ref document: EP

Kind code of ref document: A1