WO2020129271A1 - 鋳造装置 - Google Patents

鋳造装置 Download PDF

Info

Publication number
WO2020129271A1
WO2020129271A1 PCT/JP2019/012307 JP2019012307W WO2020129271A1 WO 2020129271 A1 WO2020129271 A1 WO 2020129271A1 JP 2019012307 W JP2019012307 W JP 2019012307W WO 2020129271 A1 WO2020129271 A1 WO 2020129271A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
gas
casting
passage
mold
Prior art date
Application number
PCT/JP2019/012307
Other languages
English (en)
French (fr)
Inventor
慎太郎 荒木
誠 澤井
石井 啓介
Original Assignee
本田金属技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田金属技術株式会社 filed Critical 本田金属技術株式会社
Priority to US17/296,735 priority Critical patent/US11318529B2/en
Priority to CN201980076508.0A priority patent/CN113165052B/zh
Publication of WO2020129271A1 publication Critical patent/WO2020129271A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/04Machines or apparatus for chill casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/065Cooling or heating equipment for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups

Definitions

  • the present invention relates to a casting apparatus suitable for manufacturing a cylinder head, a piston and the like.
  • one of the components of an internal combustion engine is a cylinder head.
  • This cylinder head is manufactured by a casting method.
  • a molten metal such as an aluminum alloy is poured into the cavity of the mold and taken out from the mold when the solidification of the molten metal is completed. The one taken out becomes the cylinder head.
  • a combustion chamber is provided in the internal combustion engine.
  • the shape of the combustion chamber greatly affects the output of the internal combustion engine. Therefore, the accuracy of the combustion chamber is required.
  • the cylinder head forms part of the combustion chamber. Precision and strength are required for the part of the cylinder head where a part of the combustion chamber is formed.
  • Patent Document 1 A technique for cooling a combustion chamber forming portion in a cylinder head mold is disclosed in Patent Document 1, for example.
  • the thermal deformation of the combustion chamber forming portion and the coarsening of the solidified structure can be suppressed. If there is no thermal deformation, the accuracy of the combustion chamber can be increased. Further, by cooling, the structure of the casting can be made dense and the strength can be increased.
  • FIG. 12A an insert die 201 is attached to the lower die 200 of the cylinder head die.
  • a cooling passage 202 is provided in the nest 201.
  • FIG. 12B which is a view taken in the direction of arrow b in FIG. 12A, the cooling passage 202 is opened with a long drill. Both ends of the cooling passage 202 are closed by plugs 203.
  • Such a cooling passage 202 is called a "straight channel".
  • Patent Document 2 a technique of casting a cylinder head using a nest is disclosed in Patent Document 2, for example.
  • the insert is water-cooled from the start of pressurization until the solidification of the combustion chamber portion is completed. After the solidification is complete, the insert is air cooled. By cooling, the structure of the combustion chamber portion is densified.
  • Patent Document 2 has the following problems. When air is switched to water in the cooling medium passage through which water or air flows, water mixed with air flows for a while. Since air has a low cooling capacity, it is necessary to keep flowing water until the water becomes 100%. Since it has to wait until it stabilizes, the production efficiency decreases.
  • Patent Document 1 and Patent Document 2 have the following common problems.
  • Components (calcium etc.) contained in water adhere to the inner wall surface of the cooling passage 202 shown in FIG. 12 in the form of being converted into oxides or hydroxides.
  • This deposit has a much lower thermal conductivity than metals such as iron. If the thermal conductivity is small, it is not possible to sufficiently cool the insert 201 with water, and the insert 201 is melted and damaged.
  • An object of the present invention is to provide a casting device equipped with an insert die that does not use water.
  • the invention according to claim 1 is provided with a mold including an insert, a melt supply device for supplying a melt to a cavity of the mold, and a gas supply mechanism for supplying a gas for forced cooling to the insert.
  • a casting machine that The insert is a sintered product made of a powder containing at least one of tungsten, molybdenum, and tungsten carbide as a main material, This sintered product contains a gas passage through which the gas for forced cooling flows.
  • the gas passage has one of a spiral shape and a meandering shape.
  • a part of the cross section of the gas passage is located near a surface of the insert that contacts the molten metal.
  • the mold is for casting a cylinder head of an internal combustion engine, and the insert is for forming a combustion chamber.
  • the insert is made of tungsten, molybdenum, or tungsten carbide, which has a significantly higher thermal conductivity than the die steel.
  • the gas passage is built in the nest. Therefore, the present invention provides a low-pressure casting apparatus having an insert that uses only gas without using water.
  • the gas passage has a spiral shape or a meandering shape.
  • the conventional insert is made of steel for molds that allows water to flow through one straight passage
  • the insert of the present invention has a spiral passage or a meandering passage and is made of a material such as tungsten having a high thermal conductivity. By using a rate material and a refrigerant as a gas, it was comparable to the conventional water cooling insert.
  • a part of the cross section of the gas passage is located near the surface where the molten metal of the insert contacts. In the nesting, the surface where the molten metal comes into contact has the highest temperature. Since the gas passage extends close to the surface of the insert that contacts the molten metal, the insert is effectively cooled.
  • the present invention is applied to a cylinder head of an internal combustion engine. According to the present invention, it is possible to obtain a cylinder head in which a combustion chamber has a dense structure even though it is an air-cooled insert casting method.
  • FIG. 12A is a cross-sectional view of a lower mold of a conventional cylinder head mold
  • FIG. 12B is a view on arrow b of FIG. 12A.
  • the casting apparatus 10 includes a mold 20 having an insert 90, a melt supply device 30 for supplying the melt 32 to the mold 20, and a gas for forced cooling to the insert 90.
  • the gas supply mechanism 40 is provided.
  • the gas supplied by the gas supply mechanism 40 may be any of air, nitrogen, carbon dioxide, or an equivalent gas, and the type is not limited.
  • the mold 20 includes, for example, a lower mold 21, a left side mold 22 and a right side mold 23 that slide left and right, an upper mold 24 that is placed on the left side mold 22 and the right side mold 23, and an upper center of the lower mold 21.
  • the nest 90 is placed, the collapsing core 25 is passed to the nest 90 and the left side mold 22, and the collapsing core 26 is passed to the nest 90 and the right side mold 23.
  • the molten metal supply device 30 includes, for example, a furnace body 31 having a built-in heater, a pan 33 that is surrounded by the furnace body 31 and stores the molten metal 32, a stalk (conduit) 34 that is inserted into the molten metal 32 from above, and an upper portion of the pan 33. And an air supply pipe 35 for sending a compressed gas. A gas having a pressure of (atmospheric pressure+50 kPa) is sent from the air supply pipe 35. Then, the molten metal 32 is pushed down. Along with this pushing down, part of the molten metal 32 rises in the stalk 34 and is supplied to the cavity 27 in the mold 20.
  • this casting method is also called low pressure casting or low pressure casting.
  • low pressure casting is adopted.
  • the gas supply mechanism 40 includes, for example, a compressed gas source 41 such as a compressor or a compressed gas tank, a gas supply pipe 42 that sends a compressed gas from the compressed gas source 41 to the nest 90, and a spent gas from the nest 90. And a gas discharge pipe 43 for discharging.
  • the gas supply pipe 42 is provided with a stop valve 44 and a flow rate adjusting valve 45, and a gas having a desired flow velocity or flow rate is supplied to the insert 90.
  • the molten product 32 is supplied to the cavity 27 by the molten metal supply device 30 while forcibly cooling the insert 90 with a gas, so that a cast product can be obtained.
  • the cast product will be described by taking the cylinder head 50 of the internal combustion engine as an example. However, the cast product is not limited to the cylinder head 50.
  • the cylinder head 50 as a cast product has a recessed portion 51 for accommodating the valve mechanism (FIG. 3, reference numeral 70) in the upper part, a combustion chamber 52 in the center of the lower part, and a left side on the left side. It has an intake passage 53 and an exhaust passage 54 on the right side.
  • valve mechanism FIG. 3, reference numeral 70
  • the combustion chamber 52 is formed by a nest (FIG. 1, reference numeral 90).
  • the collapsing core (reference numeral 25 in FIG. 1) is broken and scraped out after the solidification of the molten metal is completed.
  • the obtained cavity becomes the intake passage 53.
  • the exhaust passage 54 is formed by the collapsing core (reference numeral 26 in FIG. 1).
  • the internal combustion engine 60 includes the cylinder head 50 will be described based on FIG. As shown in FIG. 3, the internal combustion engine 60 has a cylinder block 61, a cylinder head 50 mounted on the cylinder block 61, and a head cover 63 that covers the upper surface of the cylinder head 50.
  • the intake passage 53 and the exhaust passage 54 of the cylinder head 50 are opened and closed by the valve mechanism 70.
  • the valve operating mechanism 70 includes an intake valve 71 that opens and closes the intake passage 53, an intake-side spring 72 that biases the intake valve 71 to the closing side, an intake-side rocker arm 73 that pushes the intake valve 71 to the opening side, and an intake valve
  • the intake side rocker arm shaft 74 that supports the side rocker arm 73, the cam shaft 75 that swings the intake side rocker arm shaft 74, the exhaust valve 76 that opens and closes the exhaust passage 54, and the exhaust side that urges the exhaust valve 76 to the closing side. It comprises a spring 77, an exhaust side rocker arm 78 that pushes the exhaust valve 76 to the open side, and an exhaust side rocker arm shaft 79 that supports the exhaust side rocker arm 78.
  • the exhaust side rocker arm 78 is also swung by the cam shaft 75.
  • the intake side spring seat 82 and the exhaust side spring seat 83 are formed by machining a cast product.
  • the intake-side valve seat 84, the intake-side valve guide 85 arranged above it, the exhaust-side valve seat 86, and the exhaust-side valve guide 87 arranged above it are It is fitted into a casting.
  • combustion chamber 52 Since the combustion chamber 52 is exposed to high-temperature combustion gas, it requires higher temperature strength than other parts. By cooling with the nest 90, the metal structure of the combustion chamber 52 becomes dense. When it becomes dense, the strength of the combustion chamber 52 increases.
  • the insert 90 extends from the first horizontal hole 91, a first vertical hole 92 extending obliquely from the first horizontal hole 91, an inlet 93a following the first vertical hole 92, and the inlet 93a.
  • the gas passage 93, an outlet 93b of the gas passage 93, a second vertical hole 94 that descends from the outlet 93b, and a second horizontal hole 95 that extends from the second vertical hole 94 are provided.
  • the gas passage 93 has a vertically long rectangular or elliptical cross section, and the upper end reaches the vicinity of the upper surface of the insert 90.
  • the upper surface of the insert 90 is a surface that contacts the molten metal.
  • a part of the cross section of the gas passage 93 is located near the surface of the insert 90 in contact with the molten metal (the upper surface in this example). In the nest 90, the surface where the molten metal comes into contact has the highest temperature. Since the gas passage 93 extends close to the surface of the insert 90 in contact with the molten metal, the insert 90 is effectively cooled.
  • FIG. 5A is a sectional view taken along line 5a-5a in FIG. 4, in which the gas passage 93 has a spiral shape.
  • a comparative example is shown in FIG.
  • the insert 221 has a straight passage 222 formed by a long drill. Both ends of this straight passage 222 are closed by plugs 223.
  • FIG. 5C shows a modified example according to the present invention. In this modification, the gas passage 93 has a meandering shape.
  • the distance between the inlet 222a and the outlet 222b is L.
  • a refrigerant pool is formed between the inlet 222a and the plug 223, and contributes little to cooling. The same is true between the outlet 222b and the plug 223. Therefore, the distance L becomes a length that contributes to cooling.
  • the distance between the inlet 93a and the outlet 93b was approximately 7 ⁇ L.
  • the distance between the inlet 93a and the outlet 93b was approximately 6 ⁇ L.
  • the gas passage 93 having a spiral shape or a meandering shape is 6 to 7 times longer than the conventional straight passage 222. However, it is not easy to form the gas passage 93 having a spiral shape or a meandering shape. Therefore, a method of forming the gas passage 93 having a spiral shape will be described with reference to FIGS. 6 to 9.
  • a first die 101 As shown in FIG. 6A, a first die 101, a first lower punch 102 that is fitted into the first die 101 from below, and a first upper punch 103 that is arranged above the first lower punch 102.
  • a first molding die 100 consisting of is prepared. Then, the metal mixed powder 104 as a powder containing tungsten as a main material is put into the first die 101.
  • the metal mixed powder 104 is preferably a mixture of a tungsten powder 105 as a main material and a nickel powder 106 as an auxiliary material.
  • the main material may be molybdenum powder, tungsten carbide powder, or a mixture thereof.
  • the main material may be 80 to 99% by mass, and the balance may be an auxiliary material.
  • FIG. 6B the metal mixed powder 104 in the first die 101 is compressed by the first lower punch 102 and the first upper punch 103. From the above, the first green compact 107 shown in FIG. 6C is obtained. Next, as shown in FIG. 6D, a groove-shaped gas passage 93 that is open downward is formed in the first green compact 107 by machining.
  • the first upper punch 103 may be provided with a protrusion in order to form the first powder compact 107 and the gas passage 93 at the same time.
  • This convex portion corresponds to a groove-shaped gas passage.
  • a second die 111 As shown in FIG. 7A, a second die 111, a second lower punch 112 that is fitted into the second die 111 from below, and a second upper punch 113 that is arranged above the second lower punch 112.
  • a second molding die 110 consisting of is prepared. Then, the metal mixed powder 104 is put into the second die 111.
  • the metal mixed powder 104 is made of the same material as the constituent elements of the first green compact (FIG. 6, reference numeral 107).
  • the second powder compact 114 is machined to have a long first lateral hole 91, a first vertical hole 92 rising from the tip of the first lateral hole 91, and a first lateral hole 91.
  • a short second horizontal hole 95 provided on the opposite side of the second horizontal hole 95 and a second vertical hole 94 rising from the tip of the second horizontal hole 95 are formed.
  • the first green compact 107 is stacked on the second green compact 114.
  • a boundary 117 between the first green compact 107 and the second green compact 114 is a boundary 117.
  • the first vertical hole 92 is connected to the inlet 93a of the gas passage 93
  • the second vertical hole 94 is connected to the outlet 93b of the gas passage 93.
  • the sintering furnace 120 includes, for example, a cylindrical container 121, a heat insulating material 122 lined in the container 121, a heater 123 arranged in the container 121, and a vacuum pump 124 that evacuates the inside of the container 121. ..
  • liquid phase sintering process may be performed in an inert gas (argon gas, nitrogen gas) atmosphere in addition to the vacuum. Therefore, the sintering furnace 120 is not limited to the vacuum type sintering equipment.
  • the liquid-phase sintering method is a processing method in which some components are dissolved during sintering and proceed in a liquid-phase mixed state.
  • the description will be made again based on the embodiment.
  • the melting point of tungsten is 3380°C
  • the melting point of nickel is 1453°C.
  • the inside of the container 121 is evacuated and then maintained at about 1500° C. by the heater 123. Then, the nickel powder on the low melting point side becomes a liquid phase, and the tungsten powder on the high melting point side remains a solid phase, and liquid phase sintering proceeds in a mixed state of the liquid phase.
  • the insert 90 as a sintered product shown in FIG. 9A is obtained.
  • the gas when gas is supplied to the first lateral hole 91, the gas enters the gas passage 93 through the first vertical hole 92 and cools the nest 90 to every corner while passing through the gas passage 93. ..
  • the warmed gas is discharged through the outlet 93b, the second vertical hole 94, and the second horizontal hole 95.
  • FIG. 9B is an enlarged view of part b of FIG. 9A.
  • FIG. 9B shows a cross section of a general part of the insert 90.
  • the tungsten particles 96 are sintered so that the gap is filled with the nickel melt 97.
  • FIG. 9C is an enlarged view of portion c of FIG. 9A.
  • FIG. 9C shows the vicinity of the boundary between the outlet 93b and the second vertical hole 94, that is, the boundary (reference numeral 117 in FIG. 8). Same as FIG. 9B, the tungsten particles 96 are sintered so that the gap is filled with the nickel melt 97.
  • the boundary layer itself does not exist as described with reference to FIGS. 9(a) to 9(c).
  • the mechanical strength is sufficiently high.
  • the boundary layer hinders heat conduction, the nest 90 according to the present invention maintains high heat conductivity because the boundary layer itself does not exist.
  • the cast product (cylinder head 50) was removed from the mold provided with the insert 90 having the spiral gas passage 93.
  • the infrared thermometer (or radiation thermometer) 125 was used to measure the temperature of the center of the insert 90 (the portion corresponding to the plug seat 55) to obtain the temperature Ta.
  • the casting 50 was removed from the mold including the insert 221 having the straight passage 222. Immediately after that, the temperature of the center of the insert 221 was measured by the infrared thermometer 125 to obtain the temperature Tb.
  • Ta Example was 341° C.
  • Tb Comparative Example
  • the temperature of the insert 90 was greatly lowered.
  • the materials of the inserts are both tungsten and the refrigerant is both gas.
  • the example and the comparative example are different only in the length of the refrigerant passage or the gas passage. Due to the difference in the passage length, the temperature was greatly lowered in the example.
  • DASII is an abbreviation for Dendrite Arm Spacing II.
  • DASII is obtained by observing and measuring the cut surface of a sample with a microscope.
  • DASII indicates the size of the coagulated tissue and is one of the values for judging the compactness of the tissue.
  • the cast product was removed from the mold including the insert 90 having the spiral gas passage 93.
  • a sample was obtained from the vicinity of the plug seat 55 of the obtained cast product, the sample was magnified with a microscope, and DASII was measured at a plurality of points.
  • the insert 221 has a straight passage 222, but is substantially uncooled.
  • the cast product was removed from the mold provided with the insert 221.
  • a sample was obtained from the vicinity of the plug seat 55 of the obtained cast product, the sample was magnified with a microscope, and DASII was measured at a plurality of points.
  • the minimum value of DASII was 22.6 ⁇ m, the maximum value was 27.8 ⁇ m, and the average value was 26.1 ⁇ m.
  • the minimum value of DASII was 34.1 ⁇ m, the maximum value was 41.7 ⁇ m, and the average value was 38.1 ⁇ m.
  • the DASII in the combustion chamber is required to be 35 ⁇ m or less, preferably 30 ⁇ m or less. In this embodiment, the maximum value is 27.8 ⁇ m, which satisfies the requirement sufficiently.
  • a general insert is cast steel or steel for molds.
  • the thermal conductivity of cast steel or steel for molds is about 50 W/(m ⁇ K).
  • the thermal conductivity of tungsten used in the present invention is 177 W/(m ⁇ K). Since the thermal conductivity of tungsten is about 3.5 times higher, the cooling efficiency is improved. Since it is made of tungsten, the nest 90 is sufficiently and thoroughly cooled with a small amount of gas.
  • Carbon steel (Fe) has a melting point of 1540° C. and a thermal conductivity of about 50 W/(m ⁇ K).
  • tungsten has a melting point of 3400° C. and a thermal conductivity of 177 W/(m ⁇ K).
  • molybdenum has a melting point of 2620° C. and a thermal conductivity of 139 W/(m ⁇ K).
  • tungsten carbide has a melting point of 2870° C. and a thermal conductivity of 84 W/(m ⁇ K).
  • a molybdenum sintered product may be obtained by changing the tungsten powder to a molybdenum powder, or a tungsten carbide sintered product may be obtained by changing the tungsten powder to a tungsten carbide powder.
  • the casting product obtained by the casting apparatus 10 of the present invention may be a piston core or a piston top core other than the cylinder head 50, and is not limited to the cylinder head 50.
  • the casting apparatus 10 of the present invention is a low pressure casting apparatus in the embodiment, it may be gravity casting, high pressure casting or sand casting, and is not limited to low pressure casting.
  • the gas passage 93 has a spiral shape or a meandering shape in the embodiment, it may have a shape capable of achieving a cooling length rather than a linear shape, and may have a U shape, a circular shape, a flat shape, a fin shape, or a spiral shape. It is not limited to the serpentine shape.
  • the present invention is suitable for a casting device for casting a cylinder head, a piston, and the like.

Abstract

鋳造装置(10)は、入子(90)を備える金型(20)と、この金型(20)へ溶湯を供給する溶湯供給装置(30)と、入子(90)へ強制冷却用の気体を供給する気体供給機構(40)とを備えている。入子(90)は、金型用鋼より熱伝導率が格段に大きなタングステン製とされる。入子(90)は、渦巻き形又は蛇行形の気体通路を内蔵する。渦巻き形又は蛇行形の気体通路は、ストレート通路より格段に通路長さが大きい。

Description

鋳造装置
 本発明は、シリンダヘッド及びピストン等の製造に好適な鋳造装置に関する。
 例えば、内燃機関の構成要素の一つは、シリンダヘッドである。このシリンダヘッドは、鋳造法で製造される。鋳造法では、金型のキャビティにアルミニウム合金などの溶湯を注入し、溶湯の凝固が完了したら金型から取り出す。取り出されたものが、シリンダヘッドとなる。
 内燃機関に燃焼室が備えられている。この燃焼室の形状は、内燃機関の出力に大きく影響する。そのため、燃焼室の精度が要求される。
 シリンダヘッドは燃焼室の一部を形成する。シリンダヘッドにおいて燃焼室の一部が形成される部分は精度、強度が要求される。
 シリンダヘッド用金型において、燃焼室形成部を冷却する技術は、例えば、特許文献1に開示されている。
 冷却することで、燃焼室形成部の熱変形及び凝固組織の粗大化を抑制することができる。熱変形がなければ、燃焼室の精度を高めることができる。また、冷却することで、鋳物の組織を緻密にし強度を高くすることができる。
 特許文献1によるシリンダヘッド用金型の下型を、図12に基づいて説明する。
 図12(a)に示されるように、シリンダヘッド用金型の下型200には、入子(insert die)201が取り付けられる。この入子201には、冷却通路202が設けられている。
 図12(a)のb矢視図である図12(b)に示されるように、冷却通路202は、ロングドリルで開けられる。冷却通路202は、両端がプラグ203で塞がれている。このような冷却通路202は、「ストレート流路」と呼ばれる。
 冷却通路202に、水を流すことで、入子201の温度上昇が防止される。
 同様に、入子を使用してシリンダヘッドを鋳造する技術が、例えば、特許文献2に開示されている。
 特許文献2による低圧鋳造方法では、加圧開始から燃焼室部分の凝固が完了するまでは、入子は水冷される。凝固が完了した後は、入子は空冷される。冷却することで、燃焼室部分の組織は緻密化させる。
 この特許文献2に開示される技術には、次に述べる問題点が存在する。
 水又は空気を流す冷却媒体通路において、空気を水に切り替えると、暫くは空気混じりの水が流れる。空気は冷却能力が低いため、水が100%になるまで、水を流し続ける必要がある。安定するまで、待たなければならないので、生産効率が低下する。
 また、管内に存在する水と水との間に空気が介在すると、水が流れにくくなることが知られている。空気が圧縮性流体であるため、入側の水の圧力が出側の水にうまく伝わらないからである。そこで、水等の液体を流す管には、空気抜き弁が設けられる。空気抜き弁により、空気が排出される。
 しかし、図12(a)に示される冷却通路202は、最上位(最も高い位置)にあるため、空気を抜くことは困難である。
 よって、1つの冷却媒体通路に水と空気を交互に流すという特許文献2の技術は、推奨されない。
 また、特許文献1及び特許文献2の技術には、次に述べる共通の問題点が存在する。
 図12に示される冷却通路202の内壁面に、水に含まれる成分(カルシウムなど)が酸化物や水酸化物に変化した形態で付着する。この付着物は鉄などの金属より、格段に熱伝導率が小さい。熱伝導率が小さいと、水で入子201を十分に冷却することができなくなり、入子201が溶損する。
 そこで、入子の冷却に、水を使用しない鋳造技術が求められる。
特許第3636108号公報 特開2011-235337号公報
 本発明は、水を使用しない入子(insert die)を備えた鋳造装置を提供することを課題とする。
 請求項1に係る発明は、入子を備える金型と、この金型のキャビティへ溶湯を供給する溶湯供給装置と、前記入子へ強制冷却用の気体を供給する気体供給機構とを備えている鋳造装置であって、
 前記入子は、タングステン、モリブデン、タングステンカーバイドの少なくとも1種を主材料とする粉末からなる燒結品であり、
 この燒結品は、前記強制冷却用の気体を流す気体通路を内蔵している。
 請求項2に係る発明では、好ましくは、前記気体通路は、渦巻き形と蛇行形との一方の形状を呈している。
 請求項3に係る発明では、好ましくは、前記気体通路の断面の一部は、前記入子の前記溶湯が接する面の近くに位置している。
 請求項4及び請求項5に係る発明では、好ましくは、前記金型は、内燃機関のシリンダヘッドを鋳造するものであり、前記入子は、燃焼室を形成するものである。
 請求項1に係る発明では、金型用鋼より格段に熱伝導率が大きいタングステン、モリブデン又はタングステンカーバイドで入子が作製された。加えて、入子に気体通路が内蔵されている。
 よって、本発明により、水を使用しないで気体のみを使用する入子を備えた低圧鋳造装置が提供される。
 請求項2に係る発明では、気体通路は、渦巻き形又は蛇行形とした。
 従来の入子が、1本のストレート通路に水を流す金型用鋼製であったものを、本発明の入子は、通路を渦巻き形又は蛇行形とし、材質をタングステンなどの高い熱伝導率材とし、冷媒を気体にすることで、従来の水冷入子と遜色がないものとなった。
 請求項3に係る発明では、気体通路の断面の一部は、入子の溶湯が接する面の近くに位置している。
 入子において、溶湯が接する面が最も高温になる。気体通路が入子の溶湯が接する面の近くまで延びているため、入子は効果的に冷却される。
 請求項4及び請求項5に係る発明では、本発明を内燃機関のシリンダヘッドに適用した。
 本発明により、空冷入子の鋳造法でありながら、燃焼室が緻密な組織で構成されたシリンダヘッドが得られる。
本発明に係る鋳造装置の原理図である。 シリンダヘッドの断面図である。 内燃機関の断面図である。 入子の断面図である。 図5(a)は図4の5a-5a線断面図、図5(b)は比較例を説明する図、図5(c)は変更例を説明する図である。 入子の製造工程を説明する図である。 入子の製造工程を説明する図である。 入子の製造工程を説明する図である。 入子の金属組織を説明する図である。 渦巻き形気体通路の優位性を説明する図である。 DASIIの測定結果を説明する図である。 図12(a)は従来のシリンダヘッド用金型の下型の断面図、図12(b)は図12(a)のb矢視図である。
 以下、本発明の好ましい実施例について、添付した図面に基づいて説明する。
 図1に示されるように、鋳造装置10は、入子90を備える金型20と、この金型20へ溶湯32を供給する溶湯供給装置30と、入子90へ強制冷却用の気体を供給する気体供給機構40とを備えている。
 気体供給機構40で供給する気体は、空気、窒素、二酸化炭素又は同等のガスの何れでもよく、種類は問わない。
 金型20は、例えば、下型21と、左右にスライドする左サイド型22及び右サイド型23と、左サイド型22及び右サイド型23に載せる上型24と、下型21の上面中央に載せられた入子90と、この入子90と左サイド型22に渡される崩壊中子25と、入子90と右サイド型23に渡される崩壊中子26とからなる。
 溶湯供給装置30は、例えば、ヒータを内蔵する炉体31と、この炉体31で囲われ溶湯32を貯える鍋33と、溶湯32に上から差し込まれるストーク(導管)34と、鍋33の上部に圧縮気体を送る送気管35とを備えている。送気管35から(大気圧+50kPa)程度の圧力の気体を送る。すると、溶湯32は押し下げられる。この押し下げに伴って溶湯32の一部がストーク34内を上昇し、金型20内のキャビティ27に供給される。
 (大気圧+50kPa)は、ダイカスト圧力より格段に低いため、この鋳造法は低加圧鋳造又は低圧鋳造とも呼ばれる。本書では、低圧鋳造の呼称を採用する。
 気体供給機構40は、例えば、コンプレッサや圧縮気体タンクのような圧縮気体源41と、この圧縮気体源41から入子90まで圧縮気体を送る気体供給管42と、入子90から用済みの気体を排出する気体排出管43とを備えている。
 気体供給管42に、ストップ弁44及び流量調節弁45を備えており、所望の流速又は流量の気体が、入子90へ供給される。
 このような構成の鋳造装置10において、入子90を気体で強制冷却しつつ、溶湯供給装置30でキャビティ27へ溶湯32を供給することで、鋳造品を得ることができる。
 鋳造品は、内燃機関のシリンダヘッド50を例に説明する。ただし、鋳造品はシリンダヘッド50に限定されるものではない。
 図2に示されるように、鋳造品としてのシリンダヘッド50は、上部に動弁機構(図3、符号70)を収納する凹部51を有し、下部中央に燃焼室52を有し、左側に吸気通路53を有し、右側に排気通路54を有する。
 燃焼室52は、入子(図1、符号90)で形成される。
 崩壊中子(図1、符号25)は溶湯の凝固が完了したら、壊されて掻きだされる。得られた空洞が吸気通路53となる。
 同様に、崩壊中子(図1、符号26)で、排気通路54が形成される。
 シリンダヘッド50を含む内燃機関60を、図3に基づいて説明する。
 図3に示されるように、内燃機関60は、シリンダブロック61と、このシリンダブロック61に載っているシリンダヘッド50と、このシリンダヘッド50の上面を覆うヘッドカバー63とを有する。
 シリンダヘッド50の吸気通路53及び排気通路54は、動弁機構70により開閉される。
 動弁機構70は、吸気通路53を開閉する吸気バルブ71と、この吸気バルブ71を閉じ側へ付勢する吸気側ばね72と、吸気バルブ71を開側へ押す吸気側ロッカアーム73と、この吸気側ロッカアーム73を支える吸気側ロッカアーム軸74と、この吸気側ロッカアーム軸74をスイングするカム軸75と、排気通路54を開閉する排気バルブ76と、この排気バルブ76を閉じ側へ付勢する排気側ばね77と、排気バルブ76を開側へ押す排気側ロッカアーム78と、排気側ロッカアーム78を支える排気側ロッカアーム軸79とからなる。排気側ロッカアーム78もカム軸75でスイングされる。
 吸気バルブ71と排気バルブ76の下方が燃焼室(正確には、燃焼室頂部)52となる。
 吸気側ばね座82や排気側ばね座83は、鋳造品に機械加工を施すことで形成される。
 吸気側バルブシート84や、その上方に配置される吸気側バルブガイド85や、排気側バルブシート86や、その上方に配置される排気側バルブガイド87は、鋳造品に機械加工を施した後に、鋳造品に嵌められる。
 燃焼室52は、高温の燃焼ガスに晒されるため、他の部位よりも、高温強度が要求される。入子90で冷却することで、燃焼室52の金属組織が緻密になる。緻密になると、燃焼室52の強度が高まる。
 図4に示されるように、入子90は、第1横穴91と、この第1横穴91から斜めに延びる第1縦穴92と、この第1縦穴92に続く入口93aと、この入口93aから延びる気体通路93と、この気体通路93の出口93bと、この出口93bから下がる第2縦穴94と、この第2縦穴94から延びる第2横穴95とを備えている。
 気体通路93は、縦長矩形又は長円断面を呈し、上端は入子90の上表面の近傍に達している。入子90の上表面は溶湯と接する面である。上表面の近傍に達する気体通路93に冷媒を流すことにより、入子90で最も高温になる上表面が、効果的に冷却される。
 すなわち、気体通路93の断面の一部は、入子90の溶湯が接する面(この例では上表面)の近くに位置している。入子90において、溶湯が接する面が最も高温になる。気体通路93が入子90の溶湯が接する面の近くまで延びているため、入子90は効果的に冷却される。
 図5(a)は図4の5a-5a線断面図であり、気体通路93は、渦巻き形を呈している。
 図5(b)に比較例が示されている。この比較例では、入子221は、ロングドリルで穿けられたストレート通路222を有する。このストレート通路222は、両端がプラグ223で塞がれている。
 また、図5(c)に本発明に係る変更例が示されている。この変更例では、気体通路93は、蛇行形を呈している。
 図5(b)に示されるストレート通路222において、入口222aと出口222bとの間の距離をLとする。入口222aとプラグ223との間は冷媒溜まりとなり、冷却に殆ど貢献しない。出口222bとプラグ223との間も同様である。よって、距離Lが冷却に寄与する長さとなる。
 図5(a)に示される気体通路93のうち、入口93aと出口93bとの間の距離は、概ね、7×Lであった。
 また、図5(c)に示される気体通路93は、入口93aと出口93bとの間の距離が、概ね、6×Lであった。
 渦巻き形や蛇行形を呈する気体通路93は、従来のストレート通路222の6~7倍の長さになる。
 ただし、渦巻き形や蛇行形を呈する気体通路93の形成は、容易ではない。そこで、渦巻き形を呈する気体通路93の形成方法を、図6~図9に基づいて説明する。
 図6(a)に示されるように、第1ダイ101と、この第1ダイ101に下から嵌める第1下パンチ102と、この第1下パンチ102の上方に配置する第1上パンチ103とからなる第1成形型100を準備する。そして、第1ダイ101に、タングステンを主材料とする粉末としての金属混合粉104を投入する。
 金属混合粉104は、主材料としてのタングステン粉末105と、補助材料としてのニッケル粉末106との混合物が好適である。なお、主材料はタングステン粉末の他、モリブデン粉末やタングステンカーバイド粉末であってもよいし、これらの混合物であってもよい。
 混合割合としては、主材料が80~99質量%、残部が補助材料であればよい。
 図6(b)にて、第1ダイ101内の金属混合粉104を、第1下パンチ102と第1上パンチ103で圧縮する。
 以上により、図6(c)に示される第1圧粉成形体107が得られる。
 次に、図6(d)に示されるように、第1圧粉成形体107に、下へ開放されている溝状の気体通路93を機械加工により形成する。
 尚、第1圧粉成形体107と気体通路93を同時に造るために、第1上パンチ103に凸部を設けてもよい。この凸部は溝状の気体通路に対応している。
 図7(a)に示されるように、第2ダイ111と、この第2ダイ111に下から嵌める第2下パンチ112と、この第2下パンチ112の上方に配置する第2上パンチ113とからなる第2成形型110を準備する。そして、第2ダイ111に、金属混合粉104を投入する。
 金属混合粉104は、第1圧粉成形体(図6、符号107)の構成要素と同材とする。
 図7(b)にて、第2ダイ111内の金属混合粉104を、第2下パンチ112と第2上パンチ113で圧縮する。
 以上により、図7(c)に示される第2圧粉成形体114が得られる。
 図7(d)に示されるように、第2圧粉成形体114に、機械加工により、長い第1横穴91と、この第1横穴91の先端から立ち上がる第1縦穴92と、第1横穴91の反対側に設けられる短い第2横穴95と、この第2横穴95の先端から立ち上がる第2縦穴94とを形成する。
 次に、図8(a)に示されるように、第2圧粉成形体114に第1圧粉成形体107を重ねる。第1圧粉成形体107と第2圧粉成形体114の境目が境界117となる。
 得られた重畳体118は、第1縦穴92が気体通路93の入口93aに繋がり、第2縦穴94が気体通路93の出口93bに繋がっている。
 次に、図8(b)に示されるように、重畳体118を焼結炉120に入れ、液相焼結処理を施す。
 焼結炉120は、例えば、円筒の容器121と、この容器121に内張りされた断熱材122と、容器121内に配置されるヒータ123と、容器121内を真空排気する真空ポンプ124とからなる。
 真空ポンプ124で真空引きされると、大気圧が容器121の外周面に掛かる。容器121が円筒であるため、潰れる心配はない。炭素(カーボン)は大気中では燃えるが、真空中では燃えない。よって、断熱材122にカーボンファイバーを使用し、ヒータ123に炭素棒を使用することができる。炭素棒は通電するだけで赤熱しヒータの役割を果たす。
 なお、液相焼結処理は、真空中の他、不活性ガス(アルゴンガス、窒素ガス)雰囲気で実施してもよい。よって、焼結炉120は、真空式焼結設備に限定されない。
 液相焼結法とは、焼結中に一部の成分が溶解し、液相混在の状態で進行する処理法である。実施例に基づいて再度説明を試みる。
 タングステンの融点は、3380℃であり、ニッケルの融点は、1453℃である。容器121内を真空状態にした上で、ヒータ123により1500℃程度に保つ。
 すると、低融点側のニッケル粉末が液相化し、高融点側のタングステン粉末は固相のままで、液相混在の状態による液相焼結が進行する。
 以上により、図9(a)に示される焼結品としての入子90が得られる。
 この入子90では、気体を、第1横穴91に供給すると、この気体は第1縦穴92を通って気体通路93に進入し、気体通路93を通る間に入子90を隅々まで冷却する。温まった気体は、出口93b、第2縦穴94、第2横穴95を通って排出される。
 図9(b)は、図9(a)のb部拡大図である。図9(b)に、入子90の一般部の断面が示されている。タングステン粒子96は、ニッケル溶融物97で隙間が埋められるようにして、焼結される。
 図9(c)は、図9(a)のc部拡大図である。図9(c)に、出口93bと第2縦穴94との境界付近、すなわち境界(図8、符号117)が示されている。図9(b)と同一であって、タングステン粒子96は、ニッケル溶融物97で隙間が埋められるようにして、焼結される。
 仮に、ある燒結品を燒結法により作製し、また、別の燒結品を燒結法により作製したとする。そして、ある燒結品と別の燒結品とを重ね、再度焼結接合する。すると、ある焼結品と別の焼結品との境界に不可避的に境界層ができる。2回実施した焼結で発生した境界層は、強度低下の要因となり好ましくない。
 対して、本実施例では、焼結は1回のみ実施するため、境界層はできない。すなわち、図8(a)に示される第1圧粉成形体107と第2圧粉成形体114の境界117が消失した。その上に、第1圧粉成形体107と第2圧粉成形体114との接合部位が一般部と同じ形態で液相焼結された。接合部位に、有害な境界層が発生しない。
 このように、本発明に係る入子90には、図9(a)~図9(c)で説明したように、境界層そのものが存在しない。結果、機械的強度は十分に高くなる。境界層は熱伝導を妨げるが、本発明に係る入子90は、境界層そのものが存在しないため、高い熱伝導性が維持される。
 以上に述べた入子90の優位性を、実験により確認した。その内容を以下に説明する。
○実験1:
・実験の目的:ストレート通路に対する渦巻き形の気体通路の優位性を確かめる。
・実験設備:図1に示される低圧鋳造装置
・実施例での入子:
・・タングステン燒結品
・・渦巻き形の気体通路
・比較例での入子:
・・タングステン燒結品
・・ストレート通路
・冷媒:実施例、比較例とも空気
・溶湯:アルミニウム合金(AC2B)
 図10(a)に示されるように、渦巻き形の気体通路93を有する入子90を備えた金型から鋳造品(シリンダヘッド50)を外した。直後に、赤外線温度計(又は輻射温度計)125で、入子90の中央(プラグ座55に対応する部位)を測温し、温度Taを得た。
 また、図10(b)示されるように、ストレート通路222を有する入子221を備えた金型から鋳造品50を外した。直後に、赤外線温度計125で、入子221の中央を測温し、温度Tbを得た。
 図10(c)に示されるように、Ta(実施例)は、341℃であった。対して、Tb(比較例)は、509℃であった。
 ストレート通路を渦巻き形の気体通路に変更することにより、入子90の温度が大きく下がった。
 実施例と比較例において、入子の材質は共にタングステンであり、冷媒は共に気体である。実施例と比較例において、冷媒通路又は気体通路の長さだけが異なる。通路長さの差により、実施例では温度が大きく下がった。
○実験2:
・実験の目的:DASIIが小さくなることを確かめる。
 DASIIは、デンドライト二次アーム間隔(Dendrite Arm Spacing II)の略号である。DASIIは、サンプルのカット面を、顕微鏡で観察し測定することで得られる。DASIIは、凝固組織の大きさを示し、組織の緻密さを判断する値の一つである。
・実験設備:図1に示される低圧鋳造装置
・実施例での入子:
・・タングステン燒結品
・・渦巻き形の通路
・・冷媒:気体(空気)
・比較例での入子:
・・タングステン燒結品
・・ストレート形の通路
・・冷媒:なし
・溶湯:アルミニウム合金(AC2B)
 図11(a)に示されるように、渦巻き形の気体通路93を有する入子90を備えた金型から鋳造品を外した。得られた鋳造品のプラグ座55近傍から、サンプルを取得し、このサンプルを顕微鏡で拡大し、DASIIを複数箇所測定した。
 また、図11(b)示されるように、入子221は、ストレート通路222を有するが、実質的に無冷却である。この入子221を備えた金型から鋳造品を外した。得られた鋳造品のプラグ座55近傍から、サンプルを取得し、このサンプルを顕微鏡で拡大し、DASIIを複数箇所測定した。
 図11(c)に示されるように、実施例では、DASIIは、最小値が22.6μmであり、最大値が27.8μmであり、平均値は26.1μmであった。
 対して、比較例では、DASIIは、最小値が34.1μmであり、最大値が41.7μmであり、平均値は38.1μmであった。
 燃焼室におけるDASIIは、35μm以下、好ましくは30μm以下にすることが求められている。本実施例では、最大値が27.8μmであり、十分に要求を満たしている。
 尚、一般の入子は、鋳鋼又は金型用鋼とされる。鋳鋼又は金型用鋼の熱伝導率は、約50W/(m・K)である。
 対して、本発明で採用したタングステンの熱伝導率は、177W/(m・K)である。 タングステンの方が、熱伝導率が3.5倍程度大きいため、冷却効率が良くなる。タングステン製であるため、少量の気体で入子90が十分に且つ隅々まで冷やされる。
 炭素鋼(Fe)は融点が1540℃、熱伝導率が約50W/(m・K)である。
 対してタングステンは融点が3400℃、熱伝導率が177W/(m・K)である。
 また、モリブデンは融点が2620℃、熱伝導率が139W/(m・K)である。
 また、タングステンカーバイドは融点が2870℃、熱伝導率が84W/(m・K)である。
 本発明者が、試作したところ、モリブデン焼結品及びタングステンカーバイド焼結品も鋼より熱伝導率が高く、溶損に強いことが確認できた。
 よって、タングステン粉末をモリブデン粉末に変更することでモリブデン焼結品を得ることや、タングステン粉末をタングステンカーバイド粉末に変更することでタングステンカーバイド焼結品を得るようにしてもよい。
 また、本発明の鋳造装置10で得る鋳造品は、シリンダヘッド50の他、ピストン中子や、ピストントップコアであってもよく、シリンダヘッド50に限定されるものではない。
 また、本発明の鋳造装置10は、実施例では低圧鋳造装置としたが、重力鋳造、高圧鋳造、砂型鋳造であってもよく、低圧鋳造に限定されるものではない。
 また、気体通路93は、実施例では渦巻き形又は蛇行形としたが、直線形よりも冷却長さが稼げる形状であればよく、U字形、円形、平面形、フィン形などでもよく、渦巻き形や蛇行形に限定されるものではない。
 本発明は、シリンダヘッド及びピストン等を鋳造する鋳造装置に好適である。
 10…鋳造装置、20…金型、27…キャビティ、30…溶湯供給装置、32…溶湯、40…気体供給機構、50…シリンダヘッド、52…燃焼室、60…内燃機関、90…入子、93…気体通路、105…タングステン粉末。

Claims (5)

  1.  入子を備える金型と、この金型のキャビティへ溶湯を供給する溶湯供給装置と、前記入子へ強制冷却用の気体を供給する気体供給機構とを備えている鋳造装置であって、
     前記入子は、タングステン、モリブデン、タングステンカーバイドの少なくとも1種を主材料とする粉末からなる燒結品であり、
     この燒結品は、前記強制冷却用の気体を流す気体通路を内蔵している鋳造装置。
  2.  請求項1記載の鋳造装置であって、
     前記気体通路は、渦巻き形と蛇行形との一方の形状を呈している鋳造装置。
  3.  請求項1又は請求項2記載の鋳造装置であって、
     前記気体通路の断面の一部は、前記入子の前記溶湯が接する面の近くに位置している鋳造装置。
  4.  請求項1又は請求項2記載の鋳造装置であって、
     前記金型は、内燃機関のシリンダヘッドを鋳造するものであり、
     前記入子は、燃焼室を形成するものである鋳造装置。
  5.  請求項3記載の鋳造装置であって、
     前記金型は、内燃機関のシリンダヘッドを鋳造するものであり、
     前記入子は、燃焼室を形成するものである鋳造装置。
PCT/JP2019/012307 2018-12-20 2019-03-25 鋳造装置 WO2020129271A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/296,735 US11318529B2 (en) 2018-12-20 2019-03-25 Casting device
CN201980076508.0A CN113165052B (zh) 2018-12-20 2019-03-25 铸造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018237843A JP6527632B1 (ja) 2018-12-20 2018-12-20 鋳造装置
JP2018-237843 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129271A1 true WO2020129271A1 (ja) 2020-06-25

Family

ID=66730701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012307 WO2020129271A1 (ja) 2018-12-20 2019-03-25 鋳造装置

Country Status (4)

Country Link
US (1) US11318529B2 (ja)
JP (1) JP6527632B1 (ja)
CN (1) CN113165052B (ja)
WO (1) WO2020129271A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013205B1 (ja) * 1969-11-08 1975-05-17
JPH02299740A (ja) * 1989-05-16 1990-12-12 Asahi Glass Co Ltd 高温溶湯用成形型
JP2005186125A (ja) * 2003-12-26 2005-07-14 Ube Ind Ltd 金属製鋳型およびその製造方法
JP2006007270A (ja) * 2004-06-25 2006-01-12 Hitachi Metals Ltd シリンダブロック鋳造用ボアピン
JP2006247732A (ja) * 2005-03-14 2006-09-21 Mazda Motor Corp 鋳型装置及び鋳物の製造方法
JP6491735B1 (ja) * 2017-12-22 2019-03-27 本田金属技術株式会社 焼結品の製造方法及び焼結品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636108B2 (ja) * 2001-07-10 2005-04-06 日産自動車株式会社 シリンダヘッド鋳造用金型の冷却装置
DE102005054616B3 (de) * 2005-11-16 2006-11-09 Hydro Aluminium Mandl&Berger Gmbh Dauergießform und Gießformeinsatz
US8210234B2 (en) * 2010-02-19 2012-07-03 GM Global Technology Operations LLC Combustion chamber wall cooling chamber design for semi-permanent mold cylinder head casting
JP2011235337A (ja) 2010-05-12 2011-11-24 Honda Motor Co Ltd シリンダヘッドの低圧鋳造方法
JP2011240392A (ja) * 2010-05-20 2011-12-01 Honda Motor Co Ltd 鋳造装置、金型構造体及び鋳造方法
JP2014176853A (ja) * 2013-02-14 2014-09-25 Honda Motor Co Ltd ダイカスト用金型及び鋳造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013205B1 (ja) * 1969-11-08 1975-05-17
JPH02299740A (ja) * 1989-05-16 1990-12-12 Asahi Glass Co Ltd 高温溶湯用成形型
JP2005186125A (ja) * 2003-12-26 2005-07-14 Ube Ind Ltd 金属製鋳型およびその製造方法
JP2006007270A (ja) * 2004-06-25 2006-01-12 Hitachi Metals Ltd シリンダブロック鋳造用ボアピン
JP2006247732A (ja) * 2005-03-14 2006-09-21 Mazda Motor Corp 鋳型装置及び鋳物の製造方法
JP6491735B1 (ja) * 2017-12-22 2019-03-27 本田金属技術株式会社 焼結品の製造方法及び焼結品

Also Published As

Publication number Publication date
CN113165052B (zh) 2022-11-18
JP6527632B1 (ja) 2019-06-05
CN113165052A (zh) 2021-07-23
US11318529B2 (en) 2022-05-03
US20210387251A1 (en) 2021-12-16
JP2020099911A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
JP3919256B2 (ja) 方向性凝固した鋳造物を製作する方法とこの方法を実施するための装置
US20060213632A1 (en) Glass-forming die and method
US20110094705A1 (en) Methods for centrifugally casting highly reactive titanium metals
US5592984A (en) Investment casting with improved filling
US20090133850A1 (en) Systems for centrifugally casting highly reactive titanium metals
US20030015308A1 (en) Core and pattern manufacture for investment casting
CN111690832B (zh) 冷坩埚感应熔炼-压铸装置及制备块体非晶材料的方法
CN106825488A (zh) 用于制造车辆部件壳体的压铸装置及使用压铸装置制造车辆部件壳体的方法
CN110421144A (zh) 一种外加电磁场作用的高温合金浮动壁瓦片调压精铸方法
JPH04504981A (ja) 反応性合金の誘導スカル紡糸
WO2019123938A1 (ja) タングステン系又はこれに類する焼結品の製造方法及びタングステン系又はこれに類する焼結品
WO2020129271A1 (ja) 鋳造装置
JPS58217605A (ja) ロケツト燃焼器製作法
US3608617A (en) Art of making precision castings
CN106604791A (zh) 用于形成可用于燃气涡轮发动机中的部件的混合压铸系统
EP1145787B1 (en) Deoxidation casting, aluminium casting and casting machine
WO2021099980A1 (en) Die-casting mould and relative die-casting process
JP2018069293A (ja) 金属材料の溶解供給装置およびそれを用いた減圧鋳造装置
JP2007216237A (ja) 鋳造装置及び鋳型廻り部材の製造方法並びに鋳型廻り部材
RU2418651C2 (ru) Устройство для получения отливки поршня
WO2000048768A1 (en) Improved die casting process
JP5777204B2 (ja) 金属溶製用溶解炉
US5156202A (en) Process and permanent mold for mold-casting electrically conductive material
JP2007216294A (ja) 鋳造装置及び鋳型廻り部材の製造方法並びに鋳型廻り部材
US20070044937A1 (en) In-situ slurry formation and delivery apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900945

Country of ref document: EP

Kind code of ref document: A1