WO2020129179A1 - 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置 - Google Patents

遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020129179A1
WO2020129179A1 PCT/JP2018/046779 JP2018046779W WO2020129179A1 WO 2020129179 A1 WO2020129179 A1 WO 2020129179A1 JP 2018046779 W JP2018046779 W JP 2018046779W WO 2020129179 A1 WO2020129179 A1 WO 2020129179A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral wall
centrifugal blower
fan
distance
rotation axis
Prior art date
Application number
PCT/JP2018/046779
Other languages
English (en)
French (fr)
Inventor
弘恭 林
拓矢 寺本
一也 道上
亮 堀江
貴宏 山谷
堤 博司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880100152.5A priority Critical patent/CN113195902B/zh
Priority to AU2018453648A priority patent/AU2018453648B2/en
Priority to JP2020560698A priority patent/JP6984043B2/ja
Priority to ES18943779T priority patent/ES2940739T3/es
Priority to US17/287,826 priority patent/US11994148B2/en
Priority to PCT/JP2018/046779 priority patent/WO2020129179A1/ja
Priority to EP18943779.1A priority patent/EP3901470B1/en
Priority to TW108126504A priority patent/TWI728415B/zh
Publication of WO2020129179A1 publication Critical patent/WO2020129179A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow

Definitions

  • centrifugal blower 1 a centrifugal blower 1A, a centrifugal blower 1B, a centrifugal blower 1C, a centrifugal blower 1D, a centrifugal blower 1E, a centrifugal blower 1F, and a centrifugal blower 1G according to an embodiment of the present invention will be described with reference to the drawings and the like. .. Further, the blower device 30, the air conditioner 40, and the refrigeration cycle device 50 according to the embodiment of the present invention will be described with reference to the drawings. In the following drawings including FIG. 1, the relative dimensional relationship and shape of each component may be different from the actual one.
  • the fan 2 is rotationally driven by a motor or the like (not shown), and forcibly sends air outward in the radial direction by the centrifugal force generated by the rotation.
  • the fan 2 has a disc-shaped main plate 2a and a plurality of blades 2d installed on a peripheral edge portion 2a1 of the main plate 2a.
  • the main plate 2a may have any plate shape, and may have a shape other than a disk shape (for example, a polygonal shape).
  • a shaft portion 2b to which a motor (not shown) is connected is provided at the center of the main plate 2a.
  • each blade 2d is provided so as to rise substantially vertically to the main plate 2a, but the present invention is not limited to this configuration, and each blade 2d extends in the vertical direction of the main plate 2a. It may be provided so as to be inclined.
  • the scroll casing 4 houses the fan 2 and rectifies the air blown from the fan 2.
  • the scroll casing 4 has a scroll portion 41 and a discharge portion 42.
  • a tongue portion 43 is formed between the diffuser plate 42c of the discharge portion 42 and the winding start portion 41a of the peripheral wall 4c.
  • the tongue portion 43 suppresses the inflow of air from the winding end to the winding start of the spiral flow path.
  • the tongue portion 43 is provided in the upstream portion of the ventilation passage, and divides the air flow in the rotation direction R of the fan 2 and the air flow in the ejection direction from the downstream portion of the ventilation passage to the discharge port 42a. Has a role to let.
  • the tongue portion 43 is a convex portion that is provided at the boundary between the scroll portion 41 and the discharge portion 42 and bulges inside the scroll casing 4.
  • the tongue portion 43 extends in the scroll casing 4 in a direction parallel to the axial direction of the rotation axis RS of the shaft portion 2b.
  • the tongue portion 43 is located between the end of the discharge portion 42 and the winding start portion 41a of the peripheral wall 4c to form a curved surface, and the airflow generated by the fan 2 is discharged to the discharge port 42a via the scroll portion 41. Lead.
  • the outer peripheral portion FL shown in FIGS. 2 and 3 indicates the outer peripheral portion of the fan 2.
  • the outer peripheral portion FL is the position of the tip portion of the blade 2d located on the outermost periphery of the fan 2 in a plan view of the centrifugal blower 1 viewed in the axial direction of the rotation axis RS.
  • the distance between the outer peripheral portion FL and the rotation axis RS is always constant.
  • the tip portion of the blade 2d here is the radial tip of the fan 2.
  • the closest portion 41c is a portion where the distance between the reference peripheral wall CL and the rotation axis RS is minimum between the winding start portion 41a and the winding end portion 41b of the reference peripheral wall CL.
  • the closest portion 41c is a portion where the distance between the reference peripheral wall CL and the outer peripheral portion FL of the fan 2 is the minimum between the winding start portion 41a and the winding end portion 41b of the reference peripheral wall CL. ..
  • the position where the distance between the peripheral wall 4c of the scroll casing 4 and the rotation axis RS is the minimum is defined as the closest portion 41c.
  • the centrifugal blower which is a comparative example, has a structure in which the closest portion 41c is moved from the tongue portion 43 in the rotation direction R of the fan 2.
  • the centrifugal blower 1 according to the first embodiment also has a structure in which the closest portion 41c is moved from the tongue portion 43 in the rotation direction R of the fan 2. 2 and 3, the closest portion 41c is formed at a position of about 90° from the winding start portion 41a in the circumferential direction about the rotation axis RS, but the closest portion 41c is located at the position. However, it is not limited to being formed at a position of about 90° from the winding start portion 41a.
  • the first reference line BL1 is an imaginary straight line connecting the rotation axis RS and the winding start portion 41a in a cross section perpendicular to the rotation axis RS.
  • the second reference line BL2 is an imaginary straight line connecting the rotation axis RS and the closest part 41c in the cross section perpendicular to the rotation axis RS.
  • the distance L shown in FIG. 2 indicates the distance between the rotation axis RS and the peripheral wall 4c or the reference peripheral wall CL.
  • the distance LP shown in FIG. 3 indicates the distance between the rotation axis RS and the peripheral wall 4c in the direction perpendicular to the rotation axis RS.
  • the distance LS indicates the distance between the rotation axis RS and the reference peripheral wall CL.
  • the distance L1 is the distance between the rotation axis RS and the winding start portion 41a of the peripheral wall of the centrifugal blower that is the comparative example in the direction perpendicular to the rotation axis RS. In other words, it is the length of the first reference line BL1.
  • the distance L1 is the distance between the rotation axis RS and the winding start portion 41a of the peripheral wall 4c in the direction perpendicular to the rotation axis RS. That is, the centrifugal blower that is the comparative example and the centrifugal blower 1 according to the first embodiment have the winding start portions 41a at the same position in the circumferential direction and the radial direction of the fan 2.
  • the angle ⁇ shown in FIG. 2 is the second reference line connecting the rotation axis RS and the closest portion 41c from the first reference line BL1 connecting the rotation axis RS and the winding start portion 41a in a cross section perpendicular to the rotation axis RS. It is an angle that advances in the rotation direction R of the fan 2 from the first reference line BL1 up to BL2.
  • the angle ⁇ P shown in FIG. 3 is an angle in the circumferential direction from the winding start portion 41a to the measurement position of the distance LP with the rotation axis RS as the center in a plan view of the centrifugal blower 1 viewed in the axial direction of the rotation axis RS. Is.
  • the angle ⁇ S is an angle in the circumferential direction from the winding start portion 41a to the measurement position of the distance LS with the rotation axis RS as the center in a plan view of the centrifugal blower as a comparative example viewed in the axial direction of the rotation axis RS.
  • the angle ⁇ L is an angle in the circumferential direction from the winding start portion 41a to the position of the closest portion 41c around the rotation axis RS in a plan view of the centrifugal blower 1 viewed in the axial direction of the rotation axis RS. 2 and 3, the angle ⁇ L is formed to be about 90°, but as described above, the angle ⁇ L is not limited to be formed to be about 90°.
  • the angle ⁇ L may be an angle between the winding start portion 41a and the winding end portion 41b, such as 180°.
  • FIG. 4 is a diagram showing the relationship between the angle ⁇ and the distance L in the centrifugal blower 1 of FIG. 3 and the centrifugal blower of the comparative example. The structure of the centrifugal blower 1 will be described in more detail with reference to FIGS. 3 and 4.
  • the bulging portion 4c1 As compared with the virtual reference peripheral wall CL in which the peripheral wall 4c approaches the rotation axis RS at a constant rate from the winding start portion 41a to the closest portion 41c, a part of the peripheral wall 4c has a diameter of the fan 2. Bulge in the direction.
  • the bulging portion 4c1 is a portion where the distance between the peripheral wall 4c and the rotation axis RS is increased on the winding start portion 41a side of the closest approaching portion 41c. That is, the bulging portion 4c1 is a portion where the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 increases on the winding start portion 41a side of the closest approaching portion 41c. Note that, as shown in FIG. 4, the distance between the peripheral wall 4c of the bulging portion 4c1 and the rotation axis RS is smaller than the distance between the peripheral wall 4c of the winding start portion 41a and the rotation axis RS.
  • the peripheral wall 4c is formed so that the distance between the peripheral wall 4c and the rotation axis RS becomes smaller in the rotation direction R of the fan 2 from the winding start portion 41a to the closest portion 41c. It has a part 4d.
  • the reduction portion 4d is a portion where the peripheral wall 4c is formed such that the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 becomes closer in the rotation direction R of the fan 2 from the winding start portion 41a to the closest portion 41c. Is.
  • the reducing portion 4d is formed from the winding start portion 41a to the bulging portion 4c1 in the rotation direction R of the fan 2, and at a constant rate as the angle ⁇ increases from the winding start portion 41a to the closest portion 41c.
  • the first inflection portion U1 is a boundary portion between the winding start portion 41a and the closest portion 41c, which is apart from the portion where the peripheral wall 4c approaches the outer peripheral portion FL of the fan 2.
  • the 2nd inflection part M1 is a boundary part of the part which the peripheral wall 4c approaches from the part which separates from the rotating shaft RS from the winding start part 41a to the closest part 41c.
  • the second inflection portion M1 is a boundary portion of a portion from the winding start portion 41a to the closest portion 41c where the peripheral wall 4c approaches from the portion away from the outer peripheral portion FL of the fan 2. That is, as shown in FIG.
  • the bulging portion 4c1 of the peripheral wall 4c has a downward convex curve and an upward convex curve in the direction from the winding start portion 41a to the closest portion 41c in the relationship between the angle ⁇ P and the distance LP. And a curved line.
  • the circumferential wall 4c is configured to gradually separate from the rotation axis RS in the rotation direction R from the first inflection portion U1 to the second inflection portion M1. That is, the peripheral wall 4c is configured to gradually separate from the outer peripheral portion FL of the fan 2 in the rotation direction R from the first inflection portion U1 to the second inflection portion M1. Therefore, in the centrifugal blower 1, in the rotation direction R, the gas flow path between the first inflection portion U1 and the second inflection portion M1 is expanded.
  • the distance between the outer peripheral portion FL of the fan 2 and the rotation axis RS is always constant. Then, in the rotational direction R of the fan 2, the peripheral wall 4c from the winding start portion 41a to the bulging portion 4c1 decreases the distance LP at a constant rate as the angle ⁇ increases from the winding start portion 41a to the closest portion 41c. Is formed. Therefore, in the centrifugal blower 1, the distance between the peripheral wall 4c and the blade 2d is gradually narrowed from the winding start portion 41a to the bulging portion 4c1.
  • the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 increases. That is, in the scroll casing 4, the gas passage formed between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 in the contracting portion 4d gradually contracts from the winding start portion 41a to the closest portion 41c, In the bulging portion 4c1, the gas flow path expands.
  • the centrifugal blower 1 has a reduction section 4d formed in the rotation direction R of the fan 2 so that the distance between the peripheral wall 4c and the rotation axis RS becomes closer from the winding start section 41a to the closest section 41c. Further, the centrifugal blower has a bulging portion 4c1 between the contracting portion 4d and the closest portion 41c, in which the distance between the peripheral wall 4c and the rotation axis RS increases. Therefore, in the centrifugal blower 1, after the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 gradually decreases from the tongue portion 43 to the closest portion 41c, the peripheral wall 4c and the fan in front of the closest portion 41c.
  • the centrifugal blower 1 secures the air volume by expanding the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 in front of the closest portion 41c. Then, in the centrifugal blower 1, since the gas for which the air volume is ensured passes through the closest portion 41c, the wind speed of the gas increases, so that the scroll unit 41 can efficiently increase the pressure.
  • the gas passage formed between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 is gradually reduced in the reducing portion 4d from the winding start portion 41a to the closest portion 41c, In the bulging portion 4c1, the flow channel expands.
  • the centrifugal blower 1 secures the air volume by expanding the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 in front of the closest portion 41c. Then, in the centrifugal blower 1, since the gas for which the air volume is ensured passes through the closest portion 41c, the wind speed of the gas increases, so that the scroll unit 41 can efficiently increase the pressure.
  • the bulging portion 4c1 bulges in the radial direction of the fan 2 as compared with a virtual reference wall in which the peripheral wall 4c approaches the rotation axis RS at a constant rate from the winding start portion 41a to the closest portion 41c. ..
  • the centrifugal blower 1 secures the air volume by expanding the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 in front of the closest portion 41c. Then, in the centrifugal blower 1, since the gas for which the air volume is ensured passes through the closest portion 41c, the wind speed of the gas increases, so that the scroll unit 41 can efficiently increase the pressure.
  • peripheral wall 4c is configured to gradually separate from the rotation axis RS from the first inflection portion U1 to the second inflection portion M1.
  • the centrifugal blower 1 secures the air volume by expanding the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 in front of the closest portion 41c. Then, in the centrifugal blower 1, since the gas for which the air volume is ensured passes through the closest portion 41c, the wind speed of the gas increases, so that the scroll unit 41 can efficiently increase the pressure.
  • the distance between the peripheral wall 4c of the bulging portion 4c1 and the rotation axis RS is smaller than the distance between the peripheral wall 4c of the winding start portion 41a and the rotation axis RS. Therefore, the centrifugal blower 1 can maintain the velocity of the gas in the flow path accelerated by the reduction unit 4d to a certain degree, and can suppress the separation of the gas.
  • the peripheral wall 4ca of the centrifugal blower 1A, the peripheral wall 4cb of the centrifugal blower 1B, and the peripheral wall 4cc of the centrifugal blower 1A are wall portions corresponding to the peripheral wall 4c of the centrifugal blower 1, respectively.
  • the above-mentioned angle ⁇ P is an angle in the circumferential direction from the winding start portion 41a to the measurement position of the distance L13 with the rotation axis RS as the center in a plan view of the centrifugal blower 1C viewed in the axial direction of the rotation axis RS. is there.
  • a curve PL1 represented by a long dashed line shown in FIG. 6 represents a relationship between an angle ⁇ P from the winding start part 41a to the closest part 41c and a distance L11.
  • a curved line PL2 represented by the alternate long and short dash line shown in FIG. 6 represents the relationship between the angle ⁇ P from the winding start portion 41a to the closest portion 41c and the distance L12.
  • a curve PL3 represented by a short dashed line shown in FIG. 6 represents the relationship between the angle ⁇ P from the winding start part 41a to the closest part 41c and the distance L13.
  • the peripheral wall 4ca, the peripheral wall 4cb, and the peripheral wall 4cc each have a bulging portion 4c1 between the winding start portion 41a and the closest portion 41c.
  • the peripheral wall 4cc from the winding start portion 41a to the bulging portion 4c1 has a reduction portion in which the distance L13 decreases as the angle ⁇ increases from the winding start portion 41a to the closest portion 41c. 4d3.
  • the wall portion that configures between the first inflection portion PU1 and the second inflection portion PM1 in the rotation direction R moves away from the outer peripheral portion FL of the fan 2. Therefore, in the peripheral wall 4ca, in the rotational direction R, the gas flow path between the first inflection portion PU1 and the second inflection portion PM1 is expanded.
  • the first inflection portion PU1 is located below the reference line AA′. That is, in the peripheral wall 4ca, the wall portion from the winding start portion 41a to the first inflection portion U1 approaches the outer peripheral portion FL of the fan 2 in the rotation direction R. Therefore, in the circumferential wall 4ca, in the rotation direction R, the gas flow path between the winding start portion 41a and the first inflection portion U1 is reduced. As a result, the centrifugal blower 1A can reduce the steep pressure difference generated in the tongue portion 43, and can further suppress noise.
  • the centrifugal blower 1A accelerates the gas in the part where the flow path of the gas between the winding start part 41a and the first inflection part U1 is reduced to increase the air volume in the bulging part 4c1, and the closest part.
  • the pressure can be increased at 41c.
  • the centrifugal blower 1A can level the wind speed before and after the closest portion 41c and balance the pressure due to the configuration and the operation.
  • the wall portion from the winding start portion 41a to the first inflection portion U2 approaches the outer peripheral portion FL of the fan 2. Therefore, in the peripheral wall 4cb, in the rotation direction R, the gas flow path between the winding start portion 41a and the first inflection portion U2 is reduced.
  • the first inflection portion PU2 is located above the reference line AA′. Therefore, in the centrifugal blower 1B, in the rotation direction R, the rate at which the peripheral wall 4cb approaches the outer peripheral portion FL of the fan 2 is smaller than the rate at which the reference peripheral wall CL approaches the outer peripheral portion FL of the fan 2.
  • the volume of the gas flow passage formed between the peripheral wall 4cb and the outer peripheral portion FL of the fan 2 is increased and the amount of suction air can be increased, as compared with the centrifugal blower of the comparative example.
  • the peripheral wall 4cc has a first inflection portion PU3 and a second inflection portion PM3 in the bulging portion 4c1.
  • the first inflection portion PU3 is the minimum point of the curve PL3 in the bulge portion 4c1
  • the second inflection portion PM3 is the maximum point of the curve PL3 in the bulge portion 4c1. That is, as shown in FIG. 6, the bulging portion 4c1 of the peripheral wall 4cc has a downward convex curve and an upward convex curve in the direction from the winding start portion 41a to the closest portion 41c in the relationship between the angle ⁇ P and the distance 13. And a curved line.
  • the wall portion from the winding start portion 41a to the first inflection portion U1 approaches the outer peripheral portion FL of the fan 2. Therefore, in the circumferential wall 4cc, in the rotation direction R, the gas flow path between the winding start portion 41a and the first inflection portion U3 is reduced.
  • the first inflection portion PU3 is located above the reference line AA′. Therefore, in the centrifugal blower 1C, the ratio of the peripheral wall 4cc approaching the outer peripheral portion FL of the fan 2 in the rotation direction R is smaller than the ratio of the reference peripheral wall CL approaching the outer peripheral portion FL of the fan 2.
  • the centrifugal blower 1C In the centrifugal blower 1C, the volume of the gas flow passage formed between the peripheral wall 4cc and the outer peripheral portion FL of the fan 2 is increased and the amount of intake air can be increased, as compared with the centrifugal blower of the comparative example. Further, the peripheral wall 4cc is formed such that the first inflection portion PU3 is closer to the winding start portion 41a than the first inflection portion PU2. Therefore, the centrifugal blower 1C has a larger bulging portion 4c1 than the centrifugal blower 1B.
  • the centrifugal blower 1 preferably has the peripheral wall 4c formed such that the distance between the peripheral wall 4c and the rotation shaft RS is less than or equal to the distance L1 between the rotation shaft RS and the peripheral wall 4c in the winding start portion 41a. Therefore, in the centrifugal blower 1, the bulging portion 4c1 also has the peripheral wall 4c formed such that the distance between the peripheral wall 4c and the rotation shaft RS is equal to or less than the distance L1 between the rotation shaft RS and the peripheral wall 4c in the winding start portion 41a. Is desirable.
  • the centrifugal blower 1C preferably has a peripheral wall 4cc formed such that the distance between the peripheral wall 4cc and the rotary shaft RS is less than or equal to the distance L1 between the rotary shaft RS and the peripheral wall 4cc in the winding start portion 41a. Since the centrifugal blower 1, the centrifugal blower 1A, the centrifugal blower 1B, and the centrifugal blower 1C have the configuration, the gas in the flow path can be accelerated, and the gas separation can be suppressed.
  • FIG. 7 is a partially enlarged view of the centrifugal blower 1D according to the second embodiment of the present invention.
  • FIG. 8 is a figure showing the relationship of each angle (theta) and distance L in the centrifugal air blower 1D of FIG. 7 and the centrifugal air blower of a comparative example. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 6 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1D according to the second embodiment is different from the centrifugal blower 1 according to the first embodiment in the shape of the peripheral wall 4c. Therefore, in the following description, the configuration of the peripheral wall 4c of the centrifugal blower 1D according to the second embodiment will be mainly described with reference to FIGS. 7 and 8.
  • the distance LP is formed so as to decrease.
  • the rate at which the distance LP decreases as the angle ⁇ increases is the same as the rate at which the distance LS decreases as the angle ⁇ increases. That is, in the peripheral wall 4c from the winding start portion 41a to the bulging portion 4c1, the slope of the curve TL is the same as the slope of the reference line AA'.
  • the peripheral wall 4c has a first inflection portion J1 and a second inflection portion K1 in the bulging portion 4c1.
  • the first inflection portion J1 is a boundary portion from the winding start portion 41a to the closest portion 41c to a portion where the distance between the peripheral wall 4c and the rotation axis RS is constant from the portion where the peripheral wall 4c approaches the rotation axis RS. ..
  • the first inflection portion J1 has a distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 from the portion where the peripheral wall 4c approaches the outer peripheral portion FL of the fan 2 from the winding start portion 41a to the closest portion 41c. Is the boundary of the part where is constant.
  • the second inflection portion K1 is a boundary portion of a portion approaching from a portion where the distance between the peripheral wall 4c and the rotation axis RS is constant from the winding start portion 41a to the closest portion 41c.
  • the second inflection portion K1 is a boundary portion of a portion approaching from a portion where the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 is constant from the winding start portion 41a to the closest portion 41c. ..
  • the peripheral wall 4c has an equidistant portion 4c3 forming the peripheral wall 4c between the first inflection portion J1 and the second inflection portion K1.
  • the equidistant portion 4c3 is a portion where the distance between the peripheral wall 4c and the rotation axis RS is formed constant between the reducing portion 4d and the closest portion 41c.
  • the equidistant portion 4c3 is a portion where the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 is formed constant between the contracting portion 4d and the closest portion 41c.
  • the circumferential wall 4c reduces the distance LP in the rotation direction R of the fan 2 from the second inflection portion K1 to the closest portion 41c as the angle ⁇ increases.
  • the distance between the outer peripheral portion FL of the fan 2 and the rotation axis RS is always constant. Then, in the rotational direction R of the fan 2, the peripheral wall 4c from the winding start portion 41a to the bulging portion 4c1 decreases the distance LP at a constant rate as the angle ⁇ increases from the winding start portion 41a to the closest portion 41c. Is formed. Therefore, in the centrifugal blower 1D, the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 is gradually narrowed from the winding start portion 41a to the bulging portion 4c1.
  • the centrifugal blower 1D has the bulging portion 4c1, and compared with the distance between the peripheral wall 4c from the winding start portion 41a to the bulging portion 4c1 and the outer peripheral portion FL of the fan 2, the bulging portion 4c1.
  • the distance between the peripheral wall 4c and the blade 2d at 4c1 increases.
  • the peripheral wall 4c has an equidistant portion 4c3 in the bulging portion 4c2 in which the distance between the rotation axis RS and the peripheral wall 4c is constant.
  • the equidistant portion 4c3 is formed between the first inflection portion J1 and the second inflection portion K1. Since the centrifugal blower 1D has the equidistant portion 4c3, the distance between the rotation axis RS and the peripheral wall 4c becomes constant, and the fluctuation of the wind speed can be reduced. Therefore, the centrifugal blower 1D can suppress the fluctuation of the wall surface pressure in the equidistant portion 4c3 and can suppress the noise.
  • the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 gradually decreases from the tongue portion 43 to the closest portion 41c, and then the peripheral wall 4c and the fan 2 in front of the closest portion 41c.
  • the distance to the outer peripheral portion FL increases.
  • the centrifugal blower 1D secures the air volume by expanding the distance between the peripheral wall 4c and the outer peripheral portion FL of the fan 2 in front of the closest portion 41c. Then, in the centrifugal blower 1, since the gas for which the air volume is ensured passes through the closest portion 41c, the wind speed of the gas increases, so that the scroll unit 41 can efficiently increase the pressure.
  • centrifugal blower 1D moves the closest portion 41c having the minimum distance between the peripheral wall 4c and the rotation axis RS in the rotation direction R of the fan 2 from the tongue portion 43, so that the tongue portion 43 has a sudden movement.
  • the pressure difference can be reduced and noise can be suppressed.
  • FIG. 9 is an enlarged view of a modified example of the centrifugal blower 1D according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing the relationship between each angle ⁇ and the distance L in the centrifugal blowers of the modified example and the comparative example of the centrifugal blower 1D according to the second embodiment of the present invention.
  • a centrifugal blower 1E, a centrifugal blower 1F, and a centrifugal blower 1G which are modified examples of the centrifugal blower 1D, will be described with reference to FIGS. 9 and 10. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 8 are designated by the same reference numerals and the description thereof will be omitted.
  • the distance L21 is the distance between the rotation axis RS of the centrifugal blower 1E and the peripheral wall 4ce in the direction perpendicular to the rotation axis RS of the centrifugal blower 1E.
  • the distance L22 is a distance between the rotation axis RS of the centrifugal blower 1F and the peripheral wall 4cf in the direction perpendicular to the rotation axis RS of the centrifugal blower 1F.
  • the distance L23 is a distance between the rotation axis RS of the centrifugal blower 1G and the peripheral wall 4cg in the vertical direction of the rotation axis RS of the centrifugal blower 1G.
  • the peripheral wall 4ce of the centrifugal blower 1E, the peripheral wall 4cf of the centrifugal blower 1F, and the peripheral wall 4cg of the centrifugal blower 1G are wall portions corresponding to the peripheral wall 4c of the centrifugal blower 1D, respectively.
  • angle ⁇ P is an angle in the circumferential direction from the winding start portion 41a to the measurement position of the distance L23 about the rotation axis RS in a plan view of the centrifugal blower 1G viewed in the axial direction of the rotation axis RS. is there.
  • a curved line TL1 shown by a long dashed line in FIG. 10 represents the relationship between the angle ⁇ P from the winding start portion 41a to the closest portion 41c and the distance L21.
  • a curved line TL2 represented by the alternate long and short dash line shown in FIG. 10 represents the relationship between the angle ⁇ P from the winding start portion 41a to the closest portion 41c and the distance L22.
  • a curve TL3 represented by a short dashed line in FIG. 10 represents the relationship between the angle ⁇ P from the winding start part 41a to the closest part 41c and the distance L23.
  • the peripheral wall 4ce, the peripheral wall 4cf, and the peripheral wall 4cg each have a bulging portion 4c2 between the winding start portion 41a and the closest portion 41c.
  • the reduction unit 4d4 has a distance L21 that decreases.
  • the peripheral wall 4cf from the winding start portion 41a to the bulging portion 4c2 has a reduction portion in which the distance L22 decreases as the angle ⁇ increases from the winding start portion 41a to the closest portion 41c. 4d5.
  • the peripheral wall 4cg from the winding start portion 41a to the bulging portion 4c2 has a reduction portion in which the distance L23 decreases as the angle ⁇ increases from the winding start portion 41a to the closest portion 41c. 4d6.
  • the peripheral wall 4ce has a first inflection portion TJ1 and a second inflection portion TK1, as shown in FIGS. 9 and 10. Then, the peripheral wall 4ce has an equidistant portion 4c4 which constitutes the peripheral wall 4ce between the first inflection portion TJ1 and the second inflection portion TK1.
  • the equidistant portion 4c4 is a portion where the distance between the rotation axis RS and the peripheral wall 4ce is constant. In other words, the equidistant portion 4c4 is a portion where the distance between the peripheral wall 4ce and the outer peripheral portion FL of the fan 2 is constant.
  • the peripheral wall 4ce reduces the distance L21 as the angle ⁇ increases from the second inflection portion TK1 to the closest portion 41c.
  • the peripheral wall 4cf has a first inflection portion TJ2 and a second inflection portion TK2, as shown in FIGS. 9 and 10. Further, the peripheral wall 4cf has an equidistant portion 4c5 that constitutes the peripheral wall 4cf between the first inflection portion TJ2 and the second inflection portion TK2.
  • the equidistant portion 4c5 is a portion where the distance between the rotation axis RS and the peripheral wall 4cf is constant. In other words, the equidistant portion 4c5 is a portion where the distance between the peripheral wall 4cf and the outer peripheral portion FL of the fan 2 becomes constant. Further, the peripheral wall 4cf decreases the distance 22 from the second inflection portion TK2 to the closest portion 41c as the angle ⁇ increases.
  • the peripheral wall 4cg has a first inflection portion TJ3 and a second inflection portion TK3, as shown in FIGS. 9 and 10. Further, the peripheral wall 4cg has an equidistant portion 4c6 that constitutes the peripheral wall 4cg between the first inflection portion TJ3 and the second inflection portion TK3.
  • the equidistant portion 4c6 is a portion where the distance between the rotation axis RS and the peripheral wall 4cg is constant. In other words, the equidistant portion 4c6 is a portion where the distance between the peripheral wall 4cg and the outer peripheral portion FL of the fan 2 becomes constant. Further, the peripheral wall 4cg decreases the distance L23 as the angle ⁇ increases from the second inflection portion TK3 to the closest portion 41c.
  • the equidistant portion 4c4 of the centrifugal blower 1E, the equidistant portion 4c5 of the centrifugal blower 1F, and the equidistant portion 4c6 of the centrifugal blower 1G have different lengths. That is, the centrifugal blower 1D can suppress the fluctuation of the wall surface pressure and suppress the noise by forming the length of the equidistant portion 4c3 to a length suitable for the centrifugal blower 1D.
  • FIG. 11 is a conceptual view of the centrifugal blower 1H according to the third embodiment of the present invention viewed from the suction port side.
  • FIG. 12 is an enlarged view of the B2 portion of the centrifugal blower 1H of FIG.
  • FIG. 13 is a sectional view taken along line BB of FIG. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 10 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1H according to the third embodiment is different from the centrifugal blower 1 according to the first embodiment in the configuration of the peripheral wall 4c. Therefore, in the following description, the configuration of the peripheral wall 4c of the centrifugal blower 1H according to the third embodiment will be mainly described with reference to FIGS. 11 to 13.
  • the centrifugal blower 1H has the convex portion 44 on the closest portion 41c of the peripheral wall 4c, and restricts the flow passage to secure the amount of intake air from the tongue portion 43 to the closest portion 41c, while flowing the air flowing at the closest portion 41c. Can speed up.
  • the shape of the convex portion 44 of the centrifugal blower 1H is not limited to the above-described aspect in which the convex portion 44 is formed to have a constant thickness in the entire range in the rotation axis direction of the fan 2.
  • the convex portion 44 is formed so as to extend between the opposing side walls 4 a in the rotation axis direction of the fan 2, and has a different thickness in the rotation axis direction of the fan 2. It may be formed. That is, the convex portion 44 may be formed such that the thickness is not constant in the rotation axis direction of the fan 2 and the thickness differs depending on the portion.
  • the convex portion 44 may be formed in the central portion of the peripheral wall 4c between the opposing side walls 4a in the rotation axis direction of the fan 2. Further, as shown in FIG. 15, the convex portion 44 may be formed such that the thickness is not constant in the rotation axis direction of the fan 2 and the thickness differs depending on the portion.
  • the convex portion 44 may be formed between the opposing side walls 4a in the rotation axis direction of the fan 2 at a position closer to the side wall 4a from the central portion of the peripheral wall 4c. Then, as shown in FIG. 16, the convex portion 44 may be formed to have a constant thickness in the rotation axis direction of the fan 2 at a position closer to the side wall 4a from the central portion of the peripheral wall 4c.
  • the convex portion 44 may be formed in the central portion of the peripheral wall 4c between the side walls 4a facing each other in the rotation axis direction of the fan 2. Then, as shown in FIG. 17, the convex portion 44 may be formed to have a constant thickness in the rotation axis direction of the fan 2 at the central portion of the peripheral wall 4c.
  • the protrusions 44 may be formed between the opposing side walls 4a in the rotation axis direction of the fan 2 at positions close to the side wall 4a from the central portion of the peripheral wall 4c. That is, the convex portion 44 may be formed only on the side wall 4a side between the opposed side walls 4a in the rotation axis direction of the fan 2. In addition, the plurality of convex portions 44 may be formed between the side walls 4 a facing each other in the rotation axis direction of the fan 2. Then, as shown in FIG. 18, the convex portion 44 does not have a constant thickness in the rotation axis direction of the fan 2 at each position approaching the side wall 4a from the central portion of the peripheral wall 4c, and the thickness varies depending on the portion. May be formed as follows.
  • the convex portion 44 may be formed in the entire range of the peripheral wall 4c between the opposing side walls 4a as shown in FIGS. 13 and 14, and as shown in FIGS. It may be formed in a part of the peripheral wall 4c between the opposing side walls 4a. Further, a plurality of protrusions 44 may be formed as shown in FIG. 18, or may be formed only on the side wall 4a side.
  • the shape of the convex portion 44 is a shape for making the wind speed of the closest portion 41c uniform in the rotation axis direction of the fan 2, and may have any shape such as a corrugated shape or a rectangular shape in cross section.
  • FIG. 19 is a figure which shows the structure of the air blower 30 which concerns on Embodiment 4 of this invention. Portions having the same configurations as those of the centrifugal blower 1 and the like in FIGS. 1 to 10 are designated by the same reference numerals and the description thereof will be omitted.
  • the air blower 30 according to the fourth embodiment is, for example, a ventilation fan or a tabletop fan.
  • the blower device 30 includes the centrifugal blower 1 according to the first embodiment or the centrifugal blower 1D according to the second embodiment, and a case 7 that houses the centrifugal blower 1 and the like.
  • the case 7 has two openings, a suction port 71 and a discharge port 72.
  • the blower device 30 is formed at a position where the suction port 71 and the discharge port 72 face each other.
  • the blower device 30 is not necessarily formed at a position where the suction port 71 and the discharge port 72 face each other, such that one of the suction port 71 and the discharge port 72 is formed above or below the centrifugal blower 1. It does not have to be.
  • a partition plate 73 partitions a space SP1 having a portion where the suction port 71 is formed and a space SP2 having a portion where the discharge port 72 is formed.
  • the centrifugal blower 1 is installed such that the suction port 5 is located in the space SP1 on the side where the suction port 71 is formed and the discharge port 42a is located in the space SP2 on the side where the discharge port 72 is formed.
  • blower device 30 includes the centrifugal blower 1 according to the first embodiment or the centrifugal blower 1D according to the second embodiment, the scroll portion 41 can efficiently increase the pressure. Further, the blower 30 can reduce noise.
  • Embodiment 5 is a perspective view of the air conditioning apparatus 40 which concerns on Embodiment 5 of this invention.
  • 21 is a figure which shows the internal structure of the air conditioning apparatus 40 which concerns on Embodiment 5 of this invention.
  • FIG. 22 is a sectional view of an air conditioner 40 according to Embodiment 5 of the present invention.
  • FIG. 23 is sectional drawing of the modification of the air conditioning apparatus 40 which concerns on Embodiment 5 of this invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 10 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG.
  • the upper surface portion 16a is omitted in order to show the internal configuration of the air conditioner 40.
  • the air conditioner 40 according to the fifth embodiment faces any one or more of the centrifugal blower 1 according to the first embodiment and the centrifugal blower 1D according to the second embodiment, and the discharge port 42a of the centrifugal blower 1 or the like.
  • the heat exchanger 10 arrange
  • the air conditioning apparatus 40 according to the fifth embodiment includes the case 16 installed behind the ceiling of the room to be air-conditioned. In the following description, when the centrifugal blower 1 is referred to, any one of the centrifugal blower 1 according to the first embodiment and the centrifugal blower 1D according to the second embodiment is used.
  • the case 16 is formed in a rectangular parallelepiped shape including an upper surface portion 16a, a lower surface portion 16b, and a side surface portion 16c.
  • the shape of the case 16 is not limited to a rectangular parallelepiped shape, and may be another shape such as a columnar shape, a prismatic shape, a conical shape, a shape having a plurality of corners, or a shape having a plurality of curved surfaces. It may be.
  • the case 16 has a side surface portion 16c in which a case discharge port 17 is formed, as one of the side surface portions 16c.
  • the case discharge port 17 is formed in a rectangular shape as shown in FIG.
  • the shape of the case discharge port 17 is not limited to the rectangular shape, and may be, for example, a circular shape, an oval shape, or any other shape.
  • the case 16 has a side surface portion 16c in which a case suction port 18 is formed on a surface of the side surface portion 16c, which is a surface behind the surface in which the case discharge port 17 is formed.
  • the case suction port 18 is formed in a rectangular shape as shown in FIG.
  • the shape of the case suction port 18 is not limited to the rectangular shape, and may be, for example, a circular shape, an oval shape, or another shape.
  • a filter for removing dust in the air may be arranged in the case suction port 18.
  • the centrifugal blower 1 includes a fan 2 and a scroll casing 4 in which a bell mouth 3 is formed.
  • the fan motor 9 is supported by a motor support 9a fixed to the upper surface 16a of the case 16.
  • the fan motor 9 has an output shaft 6a.
  • the output shaft 6a is arranged so as to extend parallel to the surface of the side surface portion 16c on which the case suction port 18 is formed and the surface on which the case discharge port 17 is formed.
  • two fans 2 are attached to the output shaft 6a.
  • the centrifugal blower 1 is attached to the partition plate 19, and the inner space of the case 16 includes a space SP11 on the suction side of the scroll casing 4 and a space SP12 on the blowout side of the scroll casing 4. It is partitioned by a partition plate 19.
  • the heat exchanger 10 is arranged at a position facing the discharge port 42a of the centrifugal blower 1, and is arranged in the case 16 on the air passage of the air discharged by the centrifugal blower 1.
  • the heat exchanger 10 adjusts the temperature of the air sucked into the case 16 through the case suction port 18 and blown from the case discharge port 17 into the air-conditioned space.
  • the heat exchanger 10 may have a known structure.
  • the case suction port 18 may be formed at a position vertical to the axial direction of the rotation axis RS of the centrifugal blower 1.
  • the case suction port 18a is formed in the lower surface portion 16b. Good.
  • FIG. 24 is an enlarged view of part C of a modified example of the air conditioner 40 of FIG.
  • FIG. 25 is an enlarged view of a C portion of another modified example of the air conditioning apparatus 40 of FIG.
  • the arrows shown in FIGS. 24 and 25 show the flow of gas sucked into the case 16.
  • the closest portion 41c is arranged between the case wall portion 16S in which the case suction port 18a is formed and the virtual plane portion VS that passes through the rotation axis RS of the fan 2 and is parallel to the case wall portion 16S. Is formed.
  • the centrifugal blower 1 has a third reference line BL3 when a line perpendicular to the rotation axis RS of the fan 2 and the case wall portion 16S in which the case suction port 18a is formed is the third reference line BL3.
  • the closest portion 41c is moved by the angle ⁇ ′ from the direction toward the winding start portion 41a. That is, the closest part 41c is arranged between the third reference line BL3 and the winding start part 41a.
  • the angle between the first reference line BL1 and the third reference line BL3 in the rotation direction R is about 90°.
  • the position of the third reference line BL3 is not limited to the position where the angle between the first reference line BL1 and the third reference line BL3 is about 90°.
  • the angle between the first reference line BL1 and the third reference line BL3 in the rotation direction R may be about 180°.
  • the closest portion 41c is arranged between the case wall portion 16S in which the case suction port 18 is formed and the virtual flat surface portion VS that passes through the rotation axis RS of the fan 2 and is parallel to the case wall portion 16S. Is formed. That is, the third reference line BL3 may be a straight line that is perpendicular to the rotation axis RS of the fan 2 and is perpendicular to the case wall portion 16S in which the case suction port is formed in the vertical cross section of the rotation axis RS.
  • the centrifugal blower 1 housed in the air conditioner 40 has a configuration in which the closest portion 41c is moved by the angle ⁇ ′ from the third reference line BL3 toward the winding start portion 41a. Therefore, the centrifugal blower 1 housed in the air conditioner 40 can increase the suction air volume of the scroll portion 41 and the distance for increasing the pressure.
  • FIG. 26 is a figure which shows the structure of the refrigerating-cycle apparatus 50 which concerns on Embodiment 6 of this invention.
  • the centrifugal blower 1 according to the first embodiment or the centrifugal blower 1D according to the second embodiment is used.
  • the refrigeration cycle device 50 is described as being used for air conditioning purposes, but the refrigeration cycle device 50 is not limited to being used for air conditioning purposes.
  • the refrigeration cycle device 50 is used for refrigerating or air conditioning applications such as a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater.
  • the outdoor unit 100 has a compressor 101, a flow path switching device 102, an outdoor heat exchanger 103, and an expansion valve 105.
  • the compressor 101 compresses the drawn refrigerant and discharges it.
  • the compressor 101 may include an inverter device, and the inverter device may change the operating frequency to change the capacity of the compressor 101.
  • the capacity of the compressor 101 is the amount of refrigerant sent out per unit time.
  • the flow path switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path.
  • the refrigeration cycle device 50 can realize the heating operation or the cooling operation by switching the flow of the refrigerant using the flow path switching device 102 based on the instruction from the control device 110.
  • the outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 103 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the refrigerant pipe 400 and the outdoor air to evaporate and evaporate the refrigerant.
  • the outdoor heat exchanger 103 functions as a condenser, and performs heat exchange between the refrigerant that has been compressed by the compressor 101 that has flowed in from the flow path switching device 102 side and the outdoor air, and removes the refrigerant. Condensate and liquefy.
  • the outdoor heat exchanger 103 is provided with an outdoor blower 104 to increase the efficiency of heat exchange between the refrigerant and the outdoor air.
  • the outdoor blower 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotation speed of the fan.
  • the expansion valve 105 is an expansion device (flow rate control means), and functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the opening. For example, when the expansion valve 105 is composed of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from the control device 110.
  • the indoor unit 200 has an indoor heat exchanger 201 that performs heat exchange between the refrigerant and indoor air, and an indoor blower 202 that adjusts the flow of air through which the indoor heat exchanger 201 performs heat exchange.
  • the indoor heat exchanger 201 functions as a condenser during the heating operation, and performs heat exchange between the refrigerant flowing from the refrigerant pipe 300 and the indoor air to condense and liquefy the refrigerant, and to the refrigerant pipe 400 side. Drain.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow path switching device 102.
  • the gas refrigerant flowing into the indoor heat exchanger 201 is condensed by heat exchange with the indoor air blown by the indoor blower 202, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 201.
  • the room air heated by receiving heat from the gas refrigerant becomes conditioned air and is blown out from the discharge port of the indoor unit 200 to the air conditioned space.
  • the refrigerant flowing out from the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 100, evaporates by heat exchange with the outside air blown by the outdoor blower 104, and becomes a low-temperature low-pressure gas refrigerant to become the outdoor heat exchanger 103. Drained from.
  • the gas refrigerant flowing out of the outdoor heat exchanger 103 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
  • the refrigeration cycle device 50 according to the sixth embodiment includes the centrifugal blower 1 according to the first embodiment or the centrifugal blower 1D according to the second embodiment, the scroll portion 41 can efficiently increase the pressure. Further, the blower 30 can reduce noise.
  • centrifugal blower 1 centrifugal blower, 1A centrifugal blower, 1B centrifugal blower, 1C centrifugal blower, 1D centrifugal blower, 1E centrifugal blower, 1F centrifugal blower, 1G centrifugal blower, 1H centrifugal blower, 2 fans, 2a main plate, 2a1, peripheral portion, 2b shaft part, 2d wings, 2e suction port, 3 bell mouth, 4 scroll casing, 4a side wall, 4c peripheral wall, 4c1 bulging part, 4c2 bulging part, 4c3 equidistant part, 4c4 equidistant part, 4c5 equidistant part, 4c6 equidistant part 4ca peripheral wall, 4cb peripheral wall, 4cc peripheral wall, 4ce peripheral wall, 4cf peripheral wall, 4cg peripheral wall, 4d reduction part, 4d1 reduction part, 4d2 reduction part, 4d3 reduction part, 5 suction port, 6

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

遠心送風機は、回転駆動されるファン(2)と、ファンを収納するスクロールケーシング(4)と、を備え、スクロールケーシングは、前記ファンから吹き出された空気の流れを分流させる舌部(43)との境界を巻始部(41a)として渦巻形状に形成された周壁(4c)を有し、周壁において、周壁とファンの回転軸との間の距離が最小となる位置を最接近部(41c)と定義した場合に、周壁は、ファンの回転方向において、巻始部から最接近部にかけて周壁と回転軸との間の距離が近づくように形成された縮小部(4d)と、縮小部と最接近部との間に周壁と回転軸との間の距離が拡大する膨出部(4c1)と、を有するものである。

Description

遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
 本発明は、スクロールケーシングを有する遠心送風機並びにこれを備えた送風装置、空気調和装置及び冷凍サイクル装置に関する。
 従来の遠心送風機は、スクロールケーシング内に円盤上の主板と多数の翼とで構成されたファンと、ファンの回転軸方向端に形成された吸込口から流入した空気を遠心方向に吹き出し昇圧させるために必要となる舌部と、を備えている。遠心送風機は、吸込口から流入したスクロールケーシング内の気流が吐出口に向かう際、気流の一部が舌部を分岐点としてスクロール内に再流入する。この際、舌部と翼との間に形成された気体の流路の急な縮小により、吐出口に向かう気流とスクロール内に再流入する気流との間で大きな圧力差が生じ、騒音が増加する要因となっている。そこで、スクロールケーシングとファンの外周との間隙が最小となる位置を舌部から翼回転方向に移動させた遠心送風機が提案されている(例えば、特許文献1参照)。特許文献1の遠心送風機は、スクロールケーシングとファンの外周との間隙が最小となる位置を舌部から翼回転方向に移動させることで、舌部で生じていた急な圧力差を減少させ、低騒音化を図るものである。
特開平09-242697号公報
 しかしながら、特許文献1の遠心送風機は、スクロールケーシングとファンの外周との間隙が最小となる位置を舌部から翼回転方向に移動させているため、舌部から当該位置までの流路を流れる気体の風量が低減する。そのため、特許文献1の遠心送風機は、渦巻形状に形成されたスクロール部において効率よく圧力を上昇させることができないおそれがある。
 本発明は、上記のような課題を解決するためのものであり、スクロールケーシングとファンの外周との間隙が最小となる位置を舌部から翼回転方向に移動させても、スクロール部における圧力を効率よく上昇させることができる遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置を得ることを目的とする。
 本発明に係る遠心送風機は、回転駆動されるファンと、ファンを収納するスクロールケーシングと、を備え、スクロールケーシングは、ファンから吹き出された空気の流れを分流させる舌部との境界を巻始部として渦巻形状に形成された周壁を有し、周壁において、周壁とファンの回転軸との間の距離が最小となる位置を最接近部と定義した場合に、周壁は、ファンの回転方向において、巻始部から最接近部にかけて周壁と回転軸との間の距離が近づくように形成された縮小部と、縮小部と最接近部との間に周壁と回転軸との間の距離が拡大する膨出部と、を有するものである。
 本発明に係る遠心送風機は、ファンの回転方向において、巻始部から最接近部にかけて周壁と回転軸との間の距離が近づくように形成された縮小部を有し、縮小部と最接近部との間に周壁と回転軸との間の距離が拡大する膨出部を有する。そのため、遠心送風機は、舌部から最接近部にかけて、周壁とファンの外周部との間の距離が徐々に狭くなった後、最接近部の前で周壁とファンの外主部との間の距離が拡大する。遠心送風機は、最接近部の前で周壁とファンの外周部との間の距離が広がることで風量を確保し、風量が確保された分の気体が最接近部を通過することで気体の風速が上昇するため、スクロール部で効率よく圧力を上昇させることが可能となる。
本発明の実施の形態1に係る遠心送風機の斜視図である。 本発明の実施の形態1に係る遠心送風機の吸込口側からみた概念図である。 図2の遠心送風機のB部の拡大図である。 図3の遠心送風機及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。 本発明の実施の形態1に係る遠心送風機の変形例の拡大図である。 本発明の実施の形態1に係る遠心送風機の変形例及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。 本発明の実施の形態2に係る遠心送風機の部分拡大図である。 図7の遠心送風機及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。 本発明の実施の形態2に係る遠心送風機の変形例の拡大図である。 本発明の実施の形態2に係る遠心送風機の変形例及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。 本発明の実施の形態3に係る遠心送風機の吸込口側からみた概念図である。 図11の遠心送風機のB2部の拡大図である。 図12のB-B線断面図である。 本発明の実施の形態3に係る遠心送風機の変形例1の断面図である。 本発明の実施の形態3に係る遠心送風機の変形例2の断面図である。 本発明の実施の形態3に係る遠心送風機の変形例3の断面図である。 本発明の実施の形態3に係る遠心送風機の変形例4の断面図である。 本発明の実施の形態3に係る遠心送風機の変形例5の断面図である。 本発明の実施の形態4に係る送風装置の構成を示す図である。 本発明の実施の形態5に係る空気調和装置の斜視図である。 本発明の実施の形態5に係る空気調和装置の内部構成を示す図である。 本発明の実施の形態5に係る空気調和装置の断面図である。 本発明の実施の形態5に係る空気調和装置の変形例の断面図である。 図23の空気調和装置の変形例のC部拡大図である。 図23の空気調和装置の他の変形例のC部拡大図である。 本発明の実施の形態6に係る冷凍サイクル装置の構成を示す図である。
 以下、本発明の実施の形態に係る遠心送風機1、遠心送風機1A、遠心送風機1B、遠心送風機1C、遠心送風機1D、遠心送風機1E、遠心送風機1F及び遠心送風機1Gについて図面等を参照しながら説明する。また、本発明の実施の形態に係る送風装置30、空気調和装置40及び冷凍サイクル装置50についても図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。
実施の形態1.
[遠心送風機1]
 図1は、本発明の実施の形態1に係る遠心送風機1の斜視図である。図2は、本発明の実施の形態1に係る遠心送風機1の吸込口5側からみた概念図である。なお、図2は、後述する回転軸RSの軸方向において、スクロールケーシング4の中央部分の断面を示す概念図である。以下の説明では、回転軸RSの軸方向において、スクロールケーシング4の中央部分の断面で説明するが、回転軸RSの軸方向において、スクロールケーシング4の他の部分の断面であってもよい。なお、以下に説明する遠心送風機1の構成は、回転軸RSの軸方向において、少なくとも一部に存在すればよく、あるいは、回転軸RSの軸方向において全ての領域で存在してもよい。図1及び図2を用いて、遠心送風機1の基本的な構造について説明する。遠心送風機1は、例えば、シロッコファン、あるいは、ターボファン等の多翼遠心型の遠心送風機1であり、気流を発生させるファン2と、ファン2を収納するスクロールケーシング4とを有する。
(ファン2)
 ファン2は、モータ等(図示は省略)によって回転駆動され、回転で生じる遠心力により、径方向外方へ空気を強制的に送出するものである。ファン2は、図1に示すように、円盤状の主板2aと、主板2aの周縁部2a1に設置される複数枚の翼2dと、を有する。なお、主板2aは板状であればよく、円盤状以外の形状(例えば多角形状)であってもよい。主板2aの中心部には、モータ(図示は省略)が接続される軸部2bが設けられている。ファン2は、主板2aと複数の翼2dとにより、筒形状に構成され、軸部2bの回転軸RSの軸方向において、主板2aと反対側の端部に、主板2aと複数の翼2dとで囲まれた空間に気体を流入させるための吸込口2eが形成されている。
 複数の翼2dは、軸部2bを中心として円周状に配置され、基端が主板2aに固定されている。複数の翼2dは、軸部2bの回転軸RSの軸方向において、主板2aの両側に設けられている。なお、例えば、吸込口5が1つしか形成されていない片吸い込みの遠心送風機1である場合には、複数の翼2dは、軸部2bの回転軸RSの軸方向において、主板2aの片側にのみ設けられていてもよい。各翼2dは、主板2aの周縁部2a1に、互いに一定の間隔をあけて配置されている。各翼2dは、例えば湾曲した長方形の板状に形成されており、径方向に沿うように、又は径方向に対して所定の角度で傾斜して設置される。
 ファン2は、モータ(図示は省略)が駆動することにより、回転軸RSを中心に回転駆動される。ファン2が回転することで、遠心送風機1の外部の気体が、スクロールケーシング4に形成された吸込口5と、ファン2の吸込口2eとを通り、主板2aと複数の翼2dとで囲まれる空間に吸込まれる。そして、ファン2が回転することで、主板2aと複数の翼2dとで囲まれる空間に吸込まれた空気が、翼2dと隣接する翼2dとの間を通り、径方向外方に送り出される。なお、実施の形態1において、各翼2dは主板2aに対してほぼ垂直に立ち上がるように設けられているが、当該構成に限定されるものではなく、各翼2dは、主板2aの垂直方向に対して傾斜して設けられてもよい。
(スクロールケーシング4)
 スクロールケーシング4は、ファン2を収納し、ファン2から吹き出された空気を整流する。スクロールケーシング4は、スクロール部41と、吐出部42と、を有する。
(スクロール部41)
 スクロール部41は、ファン2が発生させた気流の動圧を静圧に変換する風路を形成する。スクロール部41は、ファン2を構成する軸部2bの回転軸RSの軸方向からファン2を覆い、空気を取り込む吸込口5が形成された側壁4aと、ファン2を軸部2bの回転軸RSの径方向から囲む周壁4cと、を有する。また、スクロール部41は、吐出部42と周壁4cの巻始部41aとの間に位置して曲面を構成し、ファン2が発生させた気流を、スクロール部41を介して吐出口42aに導く舌部43を有する。なお、回転軸RSの径方向とは、回転軸RSに垂直な方向である。周壁4c及び側壁4aにより構成されるスクロール部41の内部空間は、ファン2から吹き出された空気が周壁4cに沿って流れる空間となっている。
(側壁4a)
 側壁4aは、ファン2の回転軸RSの軸方向に対して略垂直に配置されてファン2を覆う。スクロールケーシング4の側壁4aには、ファン2とスクロールケーシング4の外部との間を空気が流通できるように、吸込口5が形成されている。吸込口5は円形状に形成され、吸込口5の中心とファン2の軸部2bの中心とがほぼ一致するように配設される。側壁4aの当該構成により、吸込口5近傍の空気は滑らかに流動し、また、吸込口5からファン2に効率よく流入する。遠心送風機1は、軸部2bの回転軸RSの軸方向において、主板2aの両側に、吸込口5が形成された側壁4aを有する両吸込タイプのスクロールケーシング4を有する。すなわち、遠心送風機1は、スクロールケーシング4が側壁4aを二つ有し、側壁4aはそれぞれ対向するように配置されている。なお、遠心送風機1は、軸部2bの回転軸RSの軸方向において、主板2aの片側にのみ吸込口5が形成された側壁4aを有する片吸込タイプのスクロールケーシング4であってもよい。この場合、遠心送風機1のスクロールケーシング4は、吸込口5が形成された側壁4aと、当該側壁4aに対向するように配置された吸込口5が形成されていない側壁(図示は省略)とを有する。
 側壁4aに設けられた吸込口5は、ベルマウス3によって形成されている。ベルマウス3は、ファン2に吸入される気体を整流してファン2の吸込口2eに流入させる。ベルマウス3は、スクロールケーシング4の外部から内部に向けて開口径が次第に小さくなるように形成されている。
(周壁4c)
 周壁4cは、ファン2を軸部2bの径方向から囲み、複数の翼2dと対向する内周面を構成する。周壁4cは、ファン2の翼2dの空気の吹き出し側と対向する。周壁4cは、例えば、ファン2の回転軸RSの軸方向と平行に配置されてファン2を覆う。周壁4cは、図2に示すように、舌部43との境界に位置する巻始部41aからファン2の回転方向Rに沿って舌部43から離れた側の吐出部42とスクロール部41との境界に位置する巻終部41bまで設けられている。巻始部41aは、湾曲面を構成する周壁4cにおいて、ファン2の回転により発生する気流の上流側の端部であり、巻終部41bは、ファン2の回転により発生する気流の下流側の端部である。
 周壁4cは、ファン2の回転軸RSの軸方向に幅がある。周壁4cは、渦巻形状に形成される。渦巻形状としては、例えば、対数螺旋、アルキメデス螺旋、あるいは、インボリュート曲線等に基づく渦巻形状がある。周壁4cの内周面は、渦巻形状の巻始めとなる巻始部41aから渦巻形状の巻終りとなる巻終部41bまでファン2の周方向に沿って滑らかに湾曲する湾曲面を構成する。このような構成により、ファン2から送り出された空気は、吐出部42の方向へファン2と周壁4cとの間隙を滑らかに流動する。このため、スクロールケーシング4内では、舌部43から吐出部42へ向かって空気の静圧が効率よく上昇する。なお、周壁4cの詳細な構成は後述する。
(吐出部42)
 吐出部42は、ファン2が発生させ、スクロール部41を通過した気流が吐出される吐出口42aを形成する。吐出部42は、周壁4cに沿って流動する空気の流れ方向に直交する断面が、矩形状となる中空の管で構成される。図1及び図2に示すように、吐出部42は、ファン2から送り出されて周壁4cとファン2との間隙を流動する空気を、スクロールケーシング4の外部へ排出するように案内する流路を形成する。
 吐出部42は、図1に示すように、延設板42bと、ディフューザ板42cと、第1側板42dと、第2側板42eと等で構成される。延設板42bは、周壁4cの下流側の巻終部41bに滑らかに連続して、周壁4cと一体に形成される。ディフューザ板42cは、スクロールケーシング4の舌部43と一体に形成されており、延設板42bと対向する。ディフューザ板42cは、吐出部42内の空気の流れ方向に沿って流路の断面積が次第に拡大するように、延設板42bと所定の角度を有して形成されている。第1側板42dは、スクロールケーシング4の側壁4aと一体に形成されており、第2側板42eは、スクロールケーシング4の反対側の側壁4aと一体に形成されている。そして、第1側板42dと第2側板42eとは、延設板42bとディフューザ板42cとの間に形成されている。このように、吐出部42は、延設板42b、ディフューザ板42c、第1側板42d及び第2側板42eにより、断面矩形状の流路が形成されている。
(舌部43)
 スクロールケーシング4において、吐出部42のディフューザ板42cと、周壁4cの巻始部41aとの間に舌部43が形成されている。舌部43は、渦巻状流路の巻き終わりから巻き始めへの空気の流入を抑制する。また、舌部43は、通風路の上流部に設けられ、ファン2の回転方向Rに向かう空気の流れと、通風路の下流部から吐出口42aに向かう吐出方向の空気の流れと、を分流させる役割を有する。舌部43は、スクロール部41と吐出部42との境界部分に設けられ、スクロールケーシング4の内部に膨出する凸部である。舌部43は、スクロールケーシング4において、軸部2bの回転軸RSの軸方向と平行な方向に延びている。舌部43は、吐出部42の端部と周壁4cの巻始部41aとの間に位置して曲面を構成し、ファン2が発生させた気流を、スクロール部41を介して吐出口42aに導く。
 舌部43は、所定の曲率半径で形成されており、周壁4cは、舌部43を介してディフューザ板42cと滑らかに接続されている。吸込口5からファン2を通過して送り出された空気が、スクロールケーシング4によって集められて吐出部42に流入する際、舌部43が空気の流路の分岐点となる。すなわち、吐出部42の流入口では、吐出口42aへ向かう気流と及び舌部43から上流側へ再流入する気流とが形成される。また、吐出部42に流入する空気流れは、スクロールケーシング4を通過する間に静圧が上昇し、スクロールケーシング4内よりも高圧となる。そのため、舌部43は、このような圧力差を仕切る機能を有すると共に、曲面により、吐出部42に流入する空気を各流路へ導く機能を備えている。
(周壁4cの詳細な構成)
 図3は、図2の遠心送風機1のB部の拡大図である。なお、図3では、実施の形態1の遠心送風機1の周壁4cは、後述する基準周壁CLと比較するために、長破線で示している。図2及び図3を用いて、実施の形態1の遠心送風機1の構造について説明する。
 図2及び図3に示す外周部FLは、ファン2の外周部を示している。外周部FLは、遠心送風機1を回転軸RSの軸方向に見た平面視において、ファン2の最外周に位置する翼2dの先端部の位置である。外周部FLと、回転軸RSとの間の距離は常に一定である。なお、ここでいう翼2dの先端部とは、ファン2の径方向の先端である。
 図3に示す基準周壁CLは、比較例である遠心送風機の周壁を表すものである。基準周壁CLは、巻始部41aから後述する最接近部41cにかけて一定の割合で周壁4cが回転軸RSに近づいていく仮想の周壁である。
 最接近部41cは、基準周壁CLの巻始部41aから巻終部41bまでの間において、基準周壁CLと回転軸RSとの間の距離が最小となる部分である。換言すれば、最接近部41cは、基準周壁CLの巻始部41aから巻終部41bまでの間において、基準周壁CLとファン2の外周部FLとの間の距離が最小となる部分である。同様に、周壁4cの巻始部41aから巻終部41bまでの間において、スクロールケーシング4の周壁4cと回転軸RSとの間の距離が最小となる位置を最接近部41cと定義する。すなわち、最接近部41cは、周壁4cの巻始部41aから巻終部41bまでの間において、スクロールケーシング4の周壁4cとファン2の外周部FLとの間の距離が最小となる部分である。
 比較例である遠心送風機は、最接近部41cを舌部43からファン2の回転方向Rに移動させた構造を有している。実施の形態1に係る遠心送風機1もまた、最接近部41cを舌部43からファン2の回転方向Rに移動させた構造を有している。なお、図2及び図3では、最接近部41cは、回転軸RSを中心とした周方向において、巻始部41aから約90°の位置に形成されているが、最接近部41cの位置は、巻始部41aから約90°の位置に形成されることに限定されるものではない。最接近部41cは、例えば、巻始部41aから約180°の位置に形成される等、巻始部41aから巻終部41bまでの間において形成されていればよい。最接近部41cは、特に、遠心送風機1が設置される、例えば、室内機等のユニットの吸込口のそばに形成されていることが望ましい。なお、最接近部41cと、空気調和装置の吸込口との関係については後述する。
 第1基準線BL1は、回転軸RSと垂直方向の断面において、回転軸RSと巻始部41aとを結ぶ仮想の直線である。第2基準線BL2は、回転軸RSと垂直方向の断面において、回転軸RSと最接近部41cとを結ぶ仮想の直線である。
 図2に示す距離Lは、回転軸RSと周壁4c又は基準周壁CLとの間の距離を示すものである。図3に示す距離LPは、回転軸RSの垂直方向において、回転軸RSと周壁4cとの間の距離を示すものである。距離LSは、回転軸RSと、基準周壁CLとの間の距離を示すものである。
 距離L1は、回転軸RSの垂直方向において、回転軸RSと、比較例である遠心送風機の周壁の巻始部41aとの間の距離である。換言すれば、第1基準線BL1の長さである。同様に、距離L1は、回転軸RSの垂直方向において、回転軸RSと、周壁4cの巻始部41aとの間の距離である。すなわち、比較例である遠心送風機と、実施の形態1に係る遠心送風機1とは、ファン2の周方向及び径方向において、巻始部41aが同じ位置にある。
 距離L2は、回転軸RSの垂直方向において、回転軸RSと、比較例である遠心送風機の周壁の最接近部41cとの間の距離である。換言すれば、第2基準線BL2の長さである。同様に、距離L2は、回転軸RSの垂直方向において、回転軸RSと、周壁4cの最接近部41cとの間の距離である。すなわち、比較例である遠心送風機と、実施の形態1に係る遠心送風機1とは、ファン2の周方向及び径方向において、最接近部41cが同じ位置にある。
 図2に示す角度θは、回転軸RSと垂直方向の断面において、回転軸RSと巻始部41aとを結ぶ第1基準線BL1から回転軸RSと最接近部41cとを結ぶ第2基準線BL2までの間で、第1基準線BL1からファン2の回転方向Rに進む角度である。そして、図3に示す角度θPは、遠心送風機1を回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離LPの測定位置までの周方向の角度である。角度θSは、比較例である遠心送風機を回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離LSの測定位置までの周方向の角度である。
 角度θLは、遠心送風機1を回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから最接近部41cの位置までの周方向の角度である。なお、図2及び図3では、角度θLは約90°に形成されているが、上述したように、角度θLは、約90°であるように形成されることに限定されるものではない。角度θLは、例えば、180°等、巻始部41aから巻終部41bまでの間における角度であればよい。
 図4は、図3の遠心送風機1及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。図3及び図4を用いて、遠心送風機1の構造について更に詳細に説明する。
 図4に示す基準線A-A´は、巻始部41aから最接近部41cまでの基準周壁CLの角度θと距離LSとの関係を表すものである。図4に示すように、基準周壁CLは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、一定の割合で距離LSが減少するように形成されている。そのため、比較例の遠心送風機は、巻始部41aから最接近部41cにかけて、基準周壁CLが回転軸RSに一定の割合で近づくように形成されている。すなわち、比較例の遠心送風機は、巻始部41aから最接近部41cにかけて、気体の流路が一定の割合で縮小するように形成されている。
 図4に示す長破線で表された曲線PLは、巻始部41aから最接近部41cまでの周壁4cの角度θPと距離LPとの関係を表すものである。周壁4cは、図3及び図4に示すように、巻始部41aと最接近部41cとの間に膨出部4c1を有する。膨出部4c1は、図3及び図4に示すように、周壁4cにおいて、回転軸RSと周壁4cとの間の距離LPが、回転軸RSと基準周壁CLとの間の距離LS以上の大きさに形成されている部分である。膨出部4c1は、巻始部41aから最接近部41cにかけて一定の割合で周壁4cが回転軸RSに近づいていく仮想の基準周壁CLと比較して、周壁4cの一部がファン2の径方向に膨出する。膨出部4c1は、最接近部41cよりも巻始部41a側において周壁4cと回転軸RSとの間の距離が拡大する部分である。すなわち、膨出部4c1は、最接近部41cよりも巻始部41a側において周壁4cとファン2の外周部FLとの間の距離が拡大する部分である。なお、図4に示すように、膨出部4c1の周壁4cと回転軸RSとの間の距離は、巻始部41aの周壁4cと回転軸RSとの間の距離よりも小さい。
 なお、図4に示すように、周壁4cは、ファン2の回転方向Rにおいて、巻始部41aから最接近部41cにかけて周壁4cと回転軸RSとの間の距離が近づくように形成された縮小部4dを有している。縮小部4dは、周壁4cは、ファン2の回転方向Rにおいて、巻始部41aから最接近部41cにかけて周壁4cとファン2の外周部FLとの間の距離が近づくように形成されている部分である。縮小部4dは、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までに形成されており、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、一定の割合で距離LPが減少するように形成されている。なお、角度θが大きくなるに従い距離LPが減少する割合は、角度θが大きくなるに従い距離LSが減少する割合と同じである。すなわち、巻始部41aから膨出部4c1までの周壁4cは、曲線PLの傾きが、基準線A-A´の傾きと同じである。
 周壁4cは、図3及び図4に示すように、膨出部4c1において第1変曲部U1と、第2変曲部M1とを有する。図4に示すように、第1変曲部U1は、膨出部4c1における曲線PLの極小点であり、第2変曲部M1は、膨出部4c1における曲線PLの極大点である。第1変曲部U1は、巻始部41aから最接近部41cにかけて、周壁4cが回転軸RSに近づく部分から離れる部分の境界部である。換言すれば、第1変曲部U1は、巻始部41aから最接近部41cにかけて、周壁4cがファン2の外周部FLに近づく部分から離れる部分の境界部である。第2変曲部M1は、巻始部41aから最接近部41cにかけて、周壁4cが回転軸RSから離れる部分から近づく部分の境界部である。換言すれば、第2変曲部M1は、巻始部41aから最接近部41cにかけて、周壁4cがファン2の外周部FLから離れる部分から近づく部分の境界部である。すなわち、周壁4cの膨出部4c1は、図4に示すように、角度θPと距離LPとの関係において、巻始部41aから最接近部41cに向う方向に下に凸の曲線と上に凸の曲線とを有するように形成されている。そして、周壁4cは、回転方向Rにおいて、第1変曲部U1から第2変曲部M1にかけて、回転軸RSから徐々に離れるように構成されている。すなわち、周壁4cは、回転方向Rにおいて、第1変曲部U1から第2変曲部M1にかけて、ファン2の外周部FLから徐々に離れるように構成されている。そのため、遠心送風機1は、回転方向Rにおいて、第1変曲部U1と第2変曲部M1との間の気体の流路が拡大している。
 上述したように、ファン2の外周部FLと、回転軸RSとの距離は常に一定である。そして、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までの周壁4cは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、一定の割合で距離LPが減少するように形成されている。そのため、遠心送風機1は、巻始部41aから膨出部4c1にかけて、周壁4cと翼2dとの間の距離が徐々に狭くなっている。また、遠心送風機1は、膨出部4c1を有しており、巻始部41aから膨出部4c1までの周壁4cと翼2dとの間の距離と比較して、膨出部4c1での周壁4cと翼2dとの間の距離が拡大する。なお、舌部43は、巻始部41aよりも気流の上流側に形成されており、舌部43の下流側端部に巻始部41aが形成されている。以上のような構成から、遠心送風機1は、舌部43から最接近部41cにかけて、周壁4cとファン2の外周部FLとの間の距離が徐々に狭くなった後、最接近部41cの手前で周壁4cとファン2の外周部FLとの間の距離が拡大する。すなわち、スクロールケーシング4は、巻始部41aから最接近部41cにかけて、縮小部4dにおいて、周壁4cとファン2の外周部FLとの間に形成される気体の流路が徐々に縮小した後、膨出部4c1において、気体の流路が拡大する。
[遠心送風機1の動作例]
 ファン2が回転すると、スクロールケーシング4の外の空気は、吸込口5を通じてスクロールケーシング4の内部に吸い込まれる。スクロールケーシング4の内部に吸い込まれる空気は、ベルマウス3に案内されてファン2に吸い込まれる。ファン2に吸い込まれた空気は、複数の翼2dの間を通る過程で、動圧と静圧とが付加された気流となってファン2の径方向外側に向かって吹き出される。ファン2から吹き出された気流は、スクロール部41において周壁4cの内側と翼2dとの間を案内される間に動圧が静圧に変換され、スクロール部41を通過後、吐出部42に形成された吐出口42aからスクロールケーシング4の外へ吹き出される。
[遠心送風機1の作用効果]
 遠心送風機1は、ファン2の回転方向Rにおいて、巻始部41aから最接近部41cにかけて周壁4cと回転軸RSとの間の距離が近づくように形成された縮小部4dを有する。また遠心送風機は、縮小部4dと最接近部41cとの間に周壁4cと回転軸RSとの間の距離が拡大する膨出部4c1を有する。そのため、遠心送風機1は、舌部43から最接近部41cにかけて、周壁4cとファン2の外周部FLとの間の距離が徐々に狭くなった後、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が拡大する。遠心送風機1は、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が広がることで風量を確保する。そして、遠心送風機1は、風量が確保された分の気体が最接近部41cを通過することで気体の風速が上昇するため、スクロール部41で効率よく圧力を上昇させることが可能となる。
 また、スクロールケーシング4は、巻始部41aから最接近部41cにかけて、縮小部4dにおいて、周壁4cとファン2の外周部FLとの間に形成される気体の流路が徐々に縮小した後、膨出部4c1において、流路が拡大する。遠心送風機1は、最接近部41cの手前で周壁4cとファン2の外周部FLとの間の距離が広がることで風量を確保する。そして、遠心送風機1は、風量が確保された分の気体が最接近部41cを通過することで気体の風速が上昇するため、スクロール部41で効率よく圧力を上昇させることが可能となる。
 また、膨出部4c1は、巻始部41aから最接近部41cにかけて一定の割合で周壁4cが回転軸RSに近づいていく仮想の基準壁と比較して、ファン2の径方向に膨出する。遠心送風機1は、最接近部41cの手前で周壁4cとファン2の外周部FLとの間の距離が広がることで風量を確保する。そして、遠心送風機1は、風量が確保された分の気体が最接近部41cを通過することで気体の風速が上昇するため、スクロール部41で効率よく圧力を上昇させることが可能となる。
 また、周壁4cは、周壁4cが回転軸RSに近づく部分から離れる部分の境界部となる第1変曲部U1と、周壁4cが回転軸RSから離れる部分から近づく部分の境界部となる第2変曲部M1と、を有する。遠心送風機1は、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が広がることで風量を確保する。そして、遠心送風機1は、風量が確保された分の気体が最接近部41cを通過することで気体の風速が上昇するため、スクロール部41で効率よく圧力を上昇させることが可能となる。
 また、周壁4cは、第1変曲部U1から第2変曲部M1にかけて、回転軸RSから徐々に離れるように構成されている。遠心送風機1は、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が広がることで風量を確保する。そして、遠心送風機1は、風量が確保された分の気体が最接近部41cを通過することで気体の風速が上昇するため、スクロール部41で効率よく圧力を上昇させることが可能となる。
 また、膨出部4c1の周壁4cと回転軸RSとの間の距離は、巻始部41aの周壁4cと回転軸RSとの間の距離よりも小さい。そのため、遠心送風機1は、縮小部4dで加速させた流路内の気体の速度を一定程度維持することができ、気体の剥離を抑制することができる。
 また、遠心送風機1は、周壁4cとファン2の外周部FLとの間の距離が最小となる最接近部41cを、舌部43からファン2の回転方向Rに移動させることで、舌部43で生じる急な圧力差を低減することができ騒音を抑制することができる。
 図5は、本発明の実施の形態1に係る遠心送風機1の変形例の拡大図である。図6は、本発明の実施の形態1に係る遠心送風機1の変形例及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。図5及び図6を用いて、遠心送風機1の変形例である、遠心送風機1A、遠心送風機1B及び遠心送風機1Cについて説明する。なお、図1~図4の遠心送風機1と同一の構成を有する部位には同一の符号を付してその説明を省略する。
 距離L11は、遠心送風機1Aの回転軸RSの垂直方向において、遠心送風機1Aの回転軸RSと周壁4caとの間の距離である。距離L12は、遠心送風機1Bの回転軸RSの垂直方向において、遠心送風機1Bの回転軸RSと周壁4cbとの間の距離である。距離L13は、遠心送風機1Cの回転軸RSの垂直方向において、遠心送風機1Cの回転軸RSと周壁4ccとの間の距離である。なお、遠心送風機1Aの周壁4ca、遠心送風機1Bの周壁4cb及び遠心送風機1Aの周壁4ccは、それぞれ、遠心送風機1の周壁4cに相当する壁部である。
 上述した角度θPは、遠心送風機1Aを回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離L11の測定位置までの周方向の角度である。同様に、上述した角度θPは、遠心送風機1Bを回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離L12の測定位置までの周方向の角度である。同様に、上述した角度θPは、遠心送風機1Cを回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離L13の測定位置までの周方向の角度である。
 図6に示す長破線で表された曲線PL1は、巻始部41aから最接近部41cまでの角度θPと距離L11との関係を表すものである。同様に、図6に示す一点鎖線で表された曲線PL2は、巻始部41aから最接近部41cまでの角度θPと距離L12との関係を表すものである。同様に、図6に示す短破線で表された曲線PL3は、巻始部41aから最接近部41cまでの角度θPと距離L13との関係を表すものである。周壁4ca、周壁4cb及び周壁4ccは、図5及び図6に示すように、それぞれ巻始部41aと最接近部41cとの間に膨出部4c1を有する。
 なお、図6に示すように、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までの周壁4caは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、距離L11が減少する縮小部4d1を有する。同様に、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までの周壁4cbは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、距離L12が減少する縮小部4d2を有する。同様に、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までの周壁4ccは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、距離L13が減少する縮小部4d3を有する。
 周壁4caは、図5及び図6に示すように、第1変曲部PU1と、第2変曲部PM1とを有する。図6に示すように、第1変曲部PU1は、曲線PL1の極小点であり、第2変曲部PM1は、曲線PL1の極大点である。すなわち、周壁4caは、図6に示すように、角度θPと距離L11との関係において、巻始部41aから最接近部41cに向う方向に下に凸の曲線と上に凸の曲線とを有するように形成されている。そして、周壁4caは、回転方向Rにおいて、第1変曲部PU1と第2変曲部PM1との間を構成する壁部が、ファン2の外周部FLから離れていく。そのため、周壁4caは、回転方向Rにおいて、第1変曲部PU1と第2変曲部PM1との間の気体の流路が拡大している。
 周壁4caは、図6に示すように第1変曲部PU1が、基準線A-A´よりも下に位置している。すなわち、周壁4caは、回転方向Rにおいて、巻始部41aから第1変曲部U1までの壁部が、ファン2の外周部FLに近づいていく。そのため、周壁4caは、回転方向Rにおいて、巻始部41aと第1変曲部U1との間の気体の流路が縮小している。その結果、遠心送風機1Aは、舌部43で生じていた急な圧力差を減少させることができ、更に騒音を抑制することができる。
 周壁4caは、回転方向Rにおいて、巻始部41aと第1変曲部U1との間の気体の流路を縮小させた後、膨出部4c1で気体の流路を拡大している。そのため、遠心送風機1Aは、巻始部41aと第1変曲部U1との間の気体の流路を縮小させた部分において、気体を加速させ、膨出部4c1で風量を増やし、最接近部41cで圧力を上昇させることができる。遠心送風機1Aは、当該構成及び作用により、最接近部41cの前後における風速をならし、圧力のバランスをとることができる。
 周壁4cbは、図5及び図6に示すように、膨出部4c1において第1変曲部PU2と、第2変曲部PM2とを有する。図6に示すように、第1変曲部PU2は、膨出部4c1における曲線PL2の極小点であり、第2変曲部PM2は、膨出部4c1における曲線PL2の極大点である。すなわち、周壁4cbの膨出部4c1は、図6に示すように、角度θPと距離L12との関係において、巻始部41aから最接近部41cに向う方向に下に凸の曲線と上に凸の曲線とを有するように形成されている。そして、周壁4cbは、回転方向Rにおいて、第1変曲部PU2と第2変曲部PM2との間を構成する壁部が、ファン2の外周部FLと離れていく。そのため、周壁4cbは、回転方向Rにおいて、第1変曲部PU2と第2変曲部PM2との間の気体の流路が拡大している。
 周壁4cbは、回転方向Rにおいて、巻始部41aから第1変曲部U2までの壁部が、ファン2の外周部FLに近づいていく。そのため、周壁4cbは、回転方向Rにおいて、巻始部41aと第1変曲部U2との間の気体の流路が縮小している。しかし、周壁4cbは、図6に示すように第1変曲部PU2が、基準線A-A´よりも上に位置している。そのため、遠心送風機1Bは、回転方向Rにおいて、周壁4cbがファン2の外周部FLに近づく割合が、基準周壁CLがファン2の外周部FLに近づく割合と比較して小さい。遠心送風機1Bは、比較例の遠心送風機と比較して、周壁4cbとファン2の外周部FLとの間に形成される気体の流路の容積が大きくなり、吸込み風量を増加させることができる。
 周壁4ccは、図5及び図6に示すように、膨出部4c1において第1変曲部PU3と、第2変曲部PM3とを有する。図6に示すように、第1変曲部PU3は、膨出部4c1における曲線PL3の極小点であり、第2変曲部PM3は、膨出部4c1における曲線PL3の極大点である。すなわち、周壁4ccの膨出部4c1は、図6に示すように、角度θPと距離13との関係において、巻始部41aから最接近部41cに向う方向に下に凸の曲線と上に凸の曲線とを有するように形成されている。そして、周壁4ccは、回転方向Rにおいて、第1変曲部PU3と第2変曲部PM3との間を構成する壁部が、ファン2の外周部FLから離れていく。そのため、周壁4ccは、回転方向Rにおいて、第1変曲部PU3と第2変曲部PM3との間の気体の流路が拡大している。
 周壁4ccは、回転方向Rにおいて、巻始部41aから第1変曲部U1までの壁部が、ファン2の外周部FLに近づいていく。そのため、周壁4ccは、回転方向Rにおいて、巻始部41aと第1変曲部U3との間の気体の流路が縮小している。しかし、周壁4ccは、図6に示すように第1変曲部PU3が、基準線A-A´よりも上に位置している。そのため、遠心送風機1Cは、回転方向Rにおいて、周壁4ccがファン2の外周部FLに近づく割合が、基準周壁CLがファン2の外周部FLに近づく割合と比較して小さい。遠心送風機1Cは、比較例の遠心送風機と比較して、周壁4ccとファン2の外周部FLとの間に形成される気体の流路の容積が大きくなり、吸込み風量を増加させることができる。また、周壁4ccは、第1変曲部PU3が、第1変曲部PU2よりも巻始部41aに近い位置に形成されている。そのため、遠心送風機1Cは、遠心送風機1Bよりも膨出部4c1が大きく形成されている。その結果、遠心送風機1Cは、遠心送風機1Bと比較して周壁4ccとファン2の外周部FLとの間に形成される気体の流路の容積が大きくなり、吸込み風量を増加させることができる。
 なお、遠心送風機1は、図4において、曲線PLが、点Aよりも下方に位置することが更に望ましい。すなわち、遠心送風機1は、周壁4cと回転軸RSと間の距離が、巻始部41aにおける回転軸RSと周壁4cとの距離L1以下に形成された周壁4cを有することが望ましい。そのため、遠心送風機1は、膨出部4c1もまた、周壁4cと回転軸RSと間の距離が、巻始部41aにおける回転軸RSと周壁4cとの距離L1以下に形成された周壁4cを有することが望ましい。同様に、遠心送風機1Aは、周壁4caと回転軸RSと間の距離が、巻始部41aにおける回転軸RSと周壁4caとの距離L1以下に形成された周壁4caを有することが望ましい。同様に、遠心送風機1Bは、周壁4cbと回転軸RSと間の距離が、巻始部41aにおける回転軸RSと周壁4cbとの距離L1以下に形成された周壁4cbを有することが望ましい。同様に、遠心送風機1Cは、周壁4ccと回転軸RSと間の距離が、巻始部41aにおける回転軸RSと周壁4ccとの距離L1以下に形成された周壁4ccを有することが望ましい。遠心送風機1、遠心送風機1A、遠心送風機1B及び遠心送風機1Cが、当該構成を備えることで、流路内の気体を加速させることができ、気体の剥離を抑制することができる。
実施の形態2.
[遠心送風機1D]
 図7は、本発明の実施の形態2に係る遠心送風機1Dの部分拡大図である。図8は、図7の遠心送風機1D及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。なお、図1~図6の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係る遠心送風機1Dは、実施の形態1に係る遠心送風機1における周壁4cの形状が異なるものである。従って、以下の説明では、図7及び図8を用いて、実施の形態2に係る遠心送風機1Dの周壁4cの構成を中心に説明する。
 図8に示す長破線で表された曲線TLは、巻始部41aから最接近部41cまでの角度θPと距離LPとの関係を表すものである。周壁4cは、図7及び図8に示すように、巻始部41aと最接近部41cとの間に膨出部4c2を有する。膨出部4c2は、図7及び図8に示すように、周壁4cにおいて、回転軸RSと周壁4cとの間の距離LPが、回転軸RSと基準周壁CLとの間の距離LS以上の大きさに形成されている部分である。すなわち、膨出部4c2は、巻始部41aから最接近部41cにかけて一定の割合で周壁4cが回転軸RSに近づいていく仮想の基準周壁CLと比較して、周壁4cの一部がファン2の径方向に膨出する。膨出部4c2は、最接近部41cよりも巻始部41a側において周壁4cと回転軸RSとの間の距離が拡大する部分である。すなわち、膨出部4c2は、最接近部41cよりも巻始部41a側において周壁4cとファン2の外周部FLとの間の距離が拡大する部分である。
 図8に示すように、周壁4cは、ファン2の回転方向Rにおいて、巻始部41aから最接近部41cにかけて周壁4cと回転軸RSとの間の距離が近づくように形成された縮小部4dを有している。縮小部4dは、周壁4cは、ファン2の回転方向Rにおいて、巻始部41aから最接近部41cにかけて周壁4cとファン2の外周部FLとの間の距離が近づくように形成された部分である。縮小部4dは、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までにおいて形成されており、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、一定の割合で距離LPが減少するように形成されている。なお、角度θが大きくなるに従い距離LPが減少する割合は、角度θが大きくなるに従い距離LSが減少する割合と同じである。すなわち、巻始部41aから膨出部4c1までの周壁4cは、曲線TLの傾きが、基準線A-A´の傾きと同じである。
 周壁4cは、図7及び図8に示すように、膨出部4c1において第1変曲部J1と、第2変曲部K1とを有する。第1変曲部J1は、巻始部41aから最接近部41cにかけて、周壁4cが回転軸RSに近づく部分から周壁4cと回転軸RSとの間の距離が一定となる部分の境界部である。換言すれば、第1変曲部J1は、巻始部41aから最接近部41cにかけて、周壁4cがファン2の外周部FLに近づく部分から周壁4cとファン2の外周部FLとの間の距離が一定となる部分の境界部である。第2変曲部K1は、巻始部41aから最接近部41cにかけて、周壁4cと回転軸RSとの間の距離が一定となる部分から近づく部分の境界部である。換言すれば、第2変曲部K1は、巻始部41aから最接近部41cにかけて、周壁4cとファン2の外周部FLとの間の距離が一定となる部分から近づく部分の境界部である。
 周壁4cは、第1変曲部J1と第2変曲部K1との間の周壁4cを構成する等距離部4c3を有する。等距離部4c3は、縮小部4dと最接近部41cとの間において、周壁4cと回転軸RSとの距離が一定に形成されている部分である。換言すれば、等距離部4c3は、縮小部4dと最接近部41cとの間において、周壁4cとファン2の外周部FLとの距離が一定に形成されている部分である。周壁4cは、ファン2の回転方向Rにおいて、第2変曲部K1から、最接近部41cにかけて、角度θが大きくなるに従い距離LPを減少させている。
 上述したように、ファン2の外周部FLと、回転軸RSとの距離は常に一定である。そして、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c1までの周壁4cは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、一定の割合で距離LPが減少するように形成されている。そのため、遠心送風機1Dは、巻始部41aから膨出部4c1にかけて、周壁4cとファン2の外周部FLとの間の距離が徐々に狭くなっている。また、遠心送風機1Dは、膨出部4c1を有しており、巻始部41aから膨出部4c1までの周壁4cとファン2の外周部FLとの間の距離と比較して、膨出部4c1での周壁4cと翼2dとの間の距離が拡大する。また、周壁4cは、膨出部4c2において、回転軸RSと周壁4cとの間の距離が一定になる等距離部4c3を有する。以上のような構成から、遠心送風機1Dは、舌部43から最接近部41cにかけて、周壁4cとファン2の外周部FLとの間の距離が徐々に狭くなった後、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が拡大する。すなわち、スクロールケーシング4は、巻始部41aから最接近部41cにかけて、縮小部4dにおいて、周壁4cとファン2の外周部FLとの間に形成される気体の流路が徐々に縮小した後、膨出部4c2において、流路が拡大する。また、遠心送風機1Dは、周壁4cにおいて、回転軸RSと周壁4cとの間の距離が一定になる等距離部4c3を有する。
[遠心送風機1Dの作用効果]
 遠心送風機1Dは、周壁4cにおいて、回転軸RSと周壁4cとの間の距離が一定になる等距離部4c3を有する。遠心送風機1Dは、等距離部4c3を有することで、回転軸RSと周壁4cとの間の距離が一定となり、風速の変動を低減することができる。そのため、遠心送風機1Dは、等距離部4c3において壁面圧力の変動を抑制することができ、騒音を抑制することができる。
 また、等距離部4c3は、第1変曲部J1と第2変曲部K1との間に形成されている。遠心送風機1Dは、等距離部4c3を有することで、回転軸RSと周壁4cとの間の距離が一定となり、風速の変動を低減することができる。そのため、遠心送風機1Dは、等距離部4c3において壁面圧力の変動を抑制することができ、騒音を抑制することができる。
 遠心送風機1Dは、舌部43から最接近部41cにかけて、周壁4cとファン2の外周部FLとの間の距離が徐々に狭くなった後、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が拡大する。遠心送風機1Dは、最接近部41cの前で周壁4cとファン2の外周部FLとの間の距離が広がることで風量を確保する。そして、遠心送風機1は、風量が確保された分の気体が最接近部41cを通過することで気体の風速が上昇するため、スクロール部41で効率よく圧力を上昇させることが可能となる。
 また、遠心送風機1Dは、周壁4cと回転軸RSとの間の距離が最小となる最接近部41cを、舌部43からファン2の回転方向Rに移動させることで、舌部43で生じる急な圧力差を低減することができ騒音を抑制することができる。
 図9は、本発明の実施の形態2に係る遠心送風機1Dの変形例の拡大図である。図10は、本発明の実施の形態2に係る遠心送風機1Dの変形例及び比較例の遠心送風機における、それぞれの角度θと距離Lとの関係を表す図である。図9及び図10を用いて、遠心送風機1Dの変形例である、遠心送風機1E、遠心送風機1F及び遠心送風機1Gについて説明する。なお、図1~図8の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。
 距離L21は、遠心送風機1Eの回転軸RSの垂直方向において、遠心送風機1Eの回転軸RSと周壁4ceとの間の距離である。距離L22は、遠心送風機1Fの回転軸RSの垂直方向において、遠心送風機1Fの回転軸RSと周壁4cfとの間の距離である。距離L23は、遠心送風機1Gの回転軸RSの垂直方向において、遠心送風機1Gの回転軸RSと周壁4cgとの間の距離である。なお、遠心送風機1Eの周壁4ce、遠心送風機1Fの周壁4cf及び遠心送風機1Gの周壁4cgは、それぞれ、遠心送風機1Dの周壁4cに相当する壁部である。
 上述した角度θPは、遠心送風機1Eを回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離L21の測定位置までの周方向の角度である。同様に、上述した角度θPは、遠心送風機1Fを回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離L22の測定位置までの周方向の角度である。同様に、上述した角度θPは、遠心送風機1Gを回転軸RSの軸方向に見た平面視において、回転軸RSを中心として巻始部41aから、距離L23の測定位置までの周方向の角度である。
 図10に示す長破線で表された曲線TL1は、巻始部41aから最接近部41cまでの角度θPと距離L21との関係を表すものである。同様に、図10に示す一点鎖線で表された曲線TL2は、巻始部41aから最接近部41cまでの角度θPと距離L22との関係を表すものである。同様に、図10に示す短破線で表された曲線TL3は、巻始部41aから最接近部41cまでの角度θPと距離L23との関係を表すものである。周壁4ce、周壁4cf及び周壁4cgは、図9及び図10に示すように、それぞれ巻始部41aと最接近部41cとの間に膨出部4c2を有する。
 なお、図9及び図10に示すように、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c2までの周壁4ceは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、距離L21が減少する縮小部4d4を有する。同様に、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c2までの周壁4cfは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、距離L22が減少する縮小部4d5を有する。同様に、ファン2の回転方向Rにおいて、巻始部41aから膨出部4c2までの周壁4cgは、巻始部41aから最接近部41cにかけて角度θが大きくなるに従い、距離L23が減少する縮小部4d6を有する。
 周壁4ceは、図9及び図10に示すように、第1変曲部TJ1と、第2変曲部TK1とを有する。そして、周壁4ceは、第1変曲部TJ1と第2変曲部TK1との間の周壁4ceを構成する等距離部4c4を有する。等距離部4c4は、回転軸RSと周壁4ceとの間の距離が一定になる部分である。換言すれば、等距離部4c4は、周壁4ceとファン2の外周部FLとの間の距離が一定になる部分である。周壁4ceは、第2変曲部TK1から、最接近部41cにかけて、角度θが大きくなるに従い距離L21を減少させている。
 周壁4cfは、図9及び図10に示すように、第1変曲部TJ2と、第2変曲部TK2とを有する。そして、周壁4cfは、第1変曲部TJ2と第2変曲部TK2との間の周壁4cfを構成する等距離部4c5を有する。等距離部4c5は、回転軸RSと周壁4cfとの間の距離が一定になる部分である。換言すれば、等距離部4c5は、周壁4cfとファン2の外周部FLとの間の距離が一定になる部分である。また、周壁4cfは、第2変曲部TK2から、最接近部41cにかけて、角度θが大きくなるに従い距離22を減少させている。
 周壁4cgは、図9及び図10に示すように、第1変曲部TJ3と、第2変曲部TK3とを有する。そして、周壁4cgは、第1変曲部TJ3と第2変曲部TK3との間の周壁4cgを構成する等距離部4c6を有する。等距離部4c6は、回転軸RSと周壁4cgとの間の距離が一定になる部分である。換言すれば、等距離部4c6は、周壁4cgとファン2の外周部FLとの間の距離が一定になる部分である。また、周壁4cgは、第2変曲部TK3から、最接近部41cにかけて、角度θが大きくなるに従い距離L23を減少させている。
 図10に示すように、遠心送風機1Eの等距離部4c4、遠心送風機1Fの等距離部4c5、遠心送風機1Gの等距離部4c6は、それぞれ長さが異なっている。すなわち、遠心送風機1Dは、等距離部4c3の長さを当該遠心送風機1Dに適した長さに形成することで、壁面圧力の変動を抑制することができ、騒音を抑制することができる。
実施の形態3.
[遠心送風機1H]
 図11は、本発明の実施の形態3に係る遠心送風機1Hの吸込口側からみた概念図である。図12は、図11の遠心送風機1HのB2部の拡大図である。図13は、図12のB-B線断面図である。なお、図1~図10の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係る遠心送風機1Hは、実施の形態1に係る遠心送風機1における周壁4cの構成が異なるものである。従って、以下の説明では、図11~図13を用いて、実施の形態3に係る遠心送風機1Hの周壁4cの構成を中心に説明する。
 遠心送風機1Hは、周壁4cの最接近部41cに凸部44を有する。凸部44は、周壁4cの内壁からスクロールケーシング4の内部に向かって突出する部分である。凸部44は、図12に示すように周方向で中央が最も突出しており、中央から裾部分に向かって突出した壁の肉厚が薄くなるように滑らかな凸形状に形成されている。なお、凸部44は、周壁4cからスクロールケーシング4の内部に向かって突出する形状であればよく、図12に示すように周方向において中央部分が突出した滑らかな凸形状に限定されるものではなく、どのような形状でもよい。凸部44は、図13に示すように、ファン2の回転軸方向において、対向する側壁4aの間に延びるように形成されている。凸部44は、ファン2の回転軸方向において全ての範囲で一定の厚さに形成されている。
 遠心送風機1Hは、周壁4cの最接近部41cに凸部44を有し、流路を絞ることで、舌部43から最接近部41cにかけての吸込み風量を確保しつつ最接近部41cで流れる空気の速度を上げることができる。
 図14は、本発明の実施の形態3に係る遠心送風機1Hの変形例1の断面図である。図15は、本発明の実施の形態3に係る遠心送風機1Hの変形例2の断面図である。図16は、本発明の実施の形態3に係る遠心送風機1Hの変形例3の断面図である。図17は、本発明の実施の形態3に係る遠心送風機1Hの変形例4の断面図である。図18は、本発明の実施の形態3に係る遠心送風機1Hの変形例5の断面図である。遠心送風機1Hの凸部44の形状は、上述したファン2の回転軸方向において全ての範囲で一定の厚さに形成されている態様に限定されるものではない。例えば、図14に示すように、凸部44は、ファン2の回転軸方向において、対向する側壁4aの間に延びるように形成されており、ファン2の回転軸方向において厚さが異なるように形成されてもよい。すなわち、凸部44は、ファン2の回転軸方向において厚さが一定ではなく、部分によって厚さが異なるように形成されてもよい。
 また、凸部44は、図15に示すように、ファン2の回転軸方向において、対向する側壁4aの間で、周壁4cの中央部分に形成されてもよい。そして、凸部44は、図15に示すように、ファン2の回転軸方向において厚さが一定ではなく、部分によって厚さが異なるように形成されてもよい。
 また、凸部44は、図16に示すように、ファン2の回転軸方向において、対向する側壁4aの間で、周壁4cの中央部分から側壁4aに近づいた位置に形成されてもよい。そして、凸部44は、図16に示すように、周壁4cの中央部分から側壁4aに近づいた位置でファン2の回転軸方向において一定の厚さに形成されてもよい。
 また、凸部44は、図17に示すように、ファン2の回転軸方向において、対向する側壁4aの間で、周壁4cの中央部分に形成されてもよい。そして、凸部44は、図17に示すように、周壁4cの中央部分の位置でファン2の回転軸方向において一定の厚さに形成されてもよい。
 また、凸部44は、図18に示すように、ファン2の回転軸方向において、対向する側壁4aの間で、周壁4cの中央部分から側壁4aに近づいた位置にそれぞれ形成されてもよい。すなわち、凸部44は、ファン2の回転軸方向において、対向する側壁4aの間で、側壁4a側にのみ形成されてもよい。また、凸部44は、ファン2の回転軸方向において、対向する側壁4aの間で複数形成されてもよい。そして、凸部44は、図18に示すように、周壁4cの中央部分から側壁4aに近づいたそれぞれの位置で、ファン2の回転軸方向において厚さが一定ではなく、部分によって厚さが異なるように形成されてもよい。
 上述したように、凸部44は、図13及び図14に示すように、対向する側壁4aの間で周壁4cの全ての範囲に形成されてもよく、図15~図18に示すように、対向する側壁4aの間で周壁4cの一部分に形成されてもよい。また、凸部44は、図18に示すように複数形成されてもよく、側壁4a側にのみ形成されてもよい。凸部44の形状は、最接近部41cの風速をファン2の回転軸方向で一様な速度にするための形状であり、断面形状において波形や矩形等、どのような形状でもよい。
実施の形態4.
[送風装置30]
 図19は、本発明の実施の形態4に係る送風装置30の構成を示す図である。図1~図10の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態4に係る送風装置30は、例えば、換気扇、卓上ファンなどである。送風装置30は、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dと、遠心送風機1等を収容するケース7とを備えている。ケース7には、吸込口71及び吐出口72の二つの開口が形成されている。送風装置30は、図19に示すように、吸込口71と吐出口72とが対向する位置に形成されている。なお、送風装置30は、例えば、吸込口71又は吐出口72のいずれか一方が遠心送風機1の上方又は下方に形成されているなど、必ずしも吸込口71と吐出口72とが対向する位置に形成されていなくてもよい。ケース7内は、吸込口71が形成されている部分を備えた空間SP1と吐出口72が形成されている部分を備えた空間SP2とが、仕切板73で仕切られている。遠心送風機1は、吸込口71が形成されている側の空間SP1に吸込口5が位置し、吐出口72が形成されている側の空間SP2に吐出口42aが位置する状態で設置される。
[送風装置30の動作例]
 送風装置30は、モータ6の駆動によってファン2が回転すると、吸込口71を通じてケース7の内部に空気が吸い込まれる。ケース7の内部に吸い込まれた空気は、ベルマウス3に案内され、ファン2に吸い込まれる。ファン2に吸い込まれた空気は、ファン2の径方向外側に向かって吹き出される。ファン2から吹き出された空気は、スクロールケーシング4の内部を通過後、スクロールケーシング4の吐出口42aから吹き出され、ケース7の吐出口72から吹き出される。
[送風装置30の作用効果]
 実施の形態4に係る送風装置30は、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dを備えるため、スクロール部41で効率よく圧力を上昇させることができる。また、送風装置30は、騒音の低減を実現できる。
実施の形態5.
[空気調和装置40]
 図20は、本発明の実施の形態5に係る空気調和装置40の斜視図である。図21は、本発明の実施の形態5に係る空気調和装置40の内部構成を示す図である。図22は、本発明の実施の形態5に係る空気調和装置40の断面図である。図23は、本発明の実施の形態5に係る空気調和装置40の変形例の断面図である。なお、図1~図10の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。また、図21では、空気調和装置40の内部構成を示すために、上面部16aは省略している。実施の形態5に係る空気調和装置40は、実施の形態1に係る遠心送風機1及び実施の形態2に係る遠心送風機1Dのいずれか1つ以上と、遠心送風機1等の吐出口42aと対向する位置に配置された熱交換器10と、を備える。また、実施の形態5に係る空気調和装置40は、空調対象の部屋の天井裏に設置されたケース16を備えている。なお、以下の説明において、遠心送風機1と示す場合には、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dのいずれか1つを用いるものである。
(ケース16)
 ケース16は、図20に示すように、上面部16a、下面部16b及び側面部16cを含む直方体状に形成されている。なお、ケース16の形状は、直方体状に限定されるものではなく、例えば、円柱形状、角柱状、円錐状、複数の角部を有する形状、複数の曲面部を有する形状等、他の形状であってもよい。ケース16は、側面部16cの1つとして、ケース吐出口17が形成された側面部16cを有する。ケース吐出口17の形状は、図20で示すように矩形状に形成されている。なお、ケース吐出口17の形状は、矩形状に限定されるものではなく、例えば、円形状、オーバル形状等でもよく、他の形状であってもよい。ケース16は、側面部16cのうち、ケース吐出口17が形成された面の裏となる面に、ケース吸込口18が形成された側面部16cを有している。ケース吸込口18の形状は、図21で示すように矩形状に形成されている。なお、ケース吸込口18の形状は、矩形状に限定されるものではなく、例えば、円形状、オーバル形状等でもよく、他の形状であってもよい。ケース吸込口18には、空気中の塵埃を取り除くフィルタが配置されてもよい。
 ケース16の内部には、二つの遠心送風機1と、ファンモータ9と、熱交換器10とが収容されている。遠心送風機1は、ファン2と、ベルマウス3が形成されたスクロールケーシング4とを備えている。ファンモータ9は、ケース16の上面部16aに固定されたモータサポート9aによって支持されている。ファンモータ9は、出力軸6aを有する。出力軸6aは、側面部16cのうち、ケース吸込口18が形成された面及びケース吐出口17が形成された面に対して平行に延びるように配置されている。空気調和装置40は、図21に示すように、二つのファン2が出力軸6aに取り付けられている。ファン2は、ケース吸込口18からケース16内に吸い込まれ、ケース吐出口17から空調対象空間へと吹き出される空気の流れを形成する。なお、ケース16内に配置される遠心送風機1は、二つに限定されるものではなく、一つ又は三つ以上でもよい。
 遠心送風機1は、図21に示すように、仕切板19に取り付けられており、ケース16の内部空間は、スクロールケーシング4の吸い込み側の空間SP11と、スクロールケーシング4の吹き出し側の空間SP12とが、仕切板19によって仕切られている。
 熱交換器10は、図22に示すように、遠心送風機1の吐出口42aと対向する位置に配置され、ケース16内において、遠心送風機1が吐出する空気の風路上に配置されている。熱交換器10は、ケース吸込口18からケース16内に吸い込まれ、ケース吐出口17から空調対象空間へと吹き出される空気の温度を調整する。なお、熱交換器10は、公知の構造のものを適用できる。また、ケース吸込口18は、遠心送風機1の回転軸RSの軸方向に垂直な位置に形成されていればよく、例えば、図23に示すように下面部16bにケース吸込口18aが形成されてもよい。
 図24は、図23の空気調和装置40の変形例のC部拡大図である。図25は、図23の空気調和装置40の他の変形例のC部拡大図である。図24及び図25に示す矢印は、ケース16に吸入される気体の流れを示すものである。遠心送風機1は、ケース吸込口18aが形成されたケース壁部16Sと、ファン2の回転軸RSを通りケース壁部16Sと平行な仮想の平面部VSとの間に、最接近部41cが配置されるように形成されている。より詳細には、遠心送風機1は、ファン2の回転軸RSからケース吸込口18aが形成されたケース壁部16Sに垂直となる線を第3基準線BL3とした場合に、第3基準線BL3から巻始部41a方向に向かって、最接近部41cを角度θ´移動させた構成である。すなわち、最接近部41cは、第3基準線BL3と巻始部41aとの間に配置されている。
 図24に示すように、空気調和装置40の変形例の場合、回転方向Rにおいて、第1基準線BL1と第3基準線BL3との間の角度は約90°となる。ただし、第3基準線BL3の位置は、第1基準線BL1と第3基準線BL3との間の角度が約90°となる位置に限定されるものではない。例えば、図25に示す空気調和装置40の変形例のように、回転方向Rにおいて、第1基準線BL1と第3基準線BL3との間の角度が約180°であってもよい。遠心送風機1は、ケース吸込口18が形成されたケース壁部16Sと、ファン2の回転軸RSを通りケース壁部16Sと平行な仮想の平面部VSとの間に、最接近部41cが配置されるように形成されている。すなわち、第3基準線BL3は、回転軸RSの垂直断面において、ファン2の回転軸RSからケース吸込口が形成されたケース壁部16Sに垂直となる直線であればよい。
[空気調和装置40の動作例]
 モータ6の駆動によって、ファン2が回転すると、空調対象空間の空気は、ケース吸込口18又はケース吸込口18aを通じてケース16の内部に吸い込まれる。ケース16の内部に吸い込まれた空気は、ベルマウス3に案内され、ファン2に吸い込まれる。ファン2に吸い込まれた空気は、ファン2の径方向外側に向かって吹き出される。ファン2から吹き出された空気は、スクロールケーシング4の内部を通過後、スクロールケーシング4の吐出口42aから吹き出され、熱交換器10に供給される。熱交換器10に供給された空気は、熱交換器10を通過する際に、熱交換され、温度及び湿度調整される。熱交換器10を通過した空気は、ケース吐出口17から空調対象空間に吹き出される。
[空気調和装置40の作用効果]
 実施の形態5に係る空気調和装置40は、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dを備えるため、スクロール部41で効率よく圧力を上昇させることができる。また、送風装置30は、騒音の低減を実現できる。
 また、空気調和装置40に収容されている遠心送風機1は、第3基準線BL3から巻始部41a方向に向かって、最接近部41cを角度θ´移動させた構成である。そのため、空気調和装置40に収容されている遠心送風機1は、スクロール部41の吸込み風量と昇圧させるための距離を増加することができる。
実施の形態6.
[冷凍サイクル装置50]
 図26は、本発明の実施の形態6に係る冷凍サイクル装置50の構成を示す図である。なお、実施の形態6に係る冷凍サイクル装置50の室内機200には、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dが用いられる。また、以下の説明では、冷凍サイクル装置50について、空調用途に使用される場合について説明するが、冷凍サイクル装置50は、空調用途に使用されるものに限定されるものではない。冷凍サイクル装置50は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途又は空調用途に使用される。
 実施の形態6に係る冷凍サイクル装置50は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房又は冷房して空気調和を行う。実施の形態6に係る冷凍サイクル装置50は、室外機100と、室内機200とを有する。冷凍サイクル装置50は、室外機100と室内機200とが冷媒配管300及び冷媒配管400により配管接続されて、冷媒が循環する冷媒回路が構成されている。冷媒配管300は、気相の冷媒が流れるガス配管であり、冷媒配管400は、液相の冷媒が流れる液配管である。なお、冷媒配管400には、気液二相の冷媒を流してもよい。そして、冷凍サイクル装置50の冷媒回路では、圧縮機101、流路切替装置102、室外熱交換器103、膨張弁105、室内熱交換器201が冷媒配管を介して順次接続されている。
(室外機100)
 室外機100は、圧縮機101、流路切替装置102、室外熱交換器103、及び膨張弁105を有している。圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機101は、インバータ装置を備えていてもよく、インバータ装置によって運転周波数を変化させて、圧縮機101の容量を変更することができるように構成されてもよい。なお、圧縮機101の容量とは、単位時間当たりに送り出す冷媒の量である。流路切替装置102は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。冷凍サイクル装置50は、制御装置110からの指示に基づいて、流路切替装置102を用いて冷媒の流れを切り換えることで、暖房運転又は冷房運転を実現することができる。
 室外熱交換器103は、冷媒と室外空気との熱交換を行う。室外熱交換器103は、暖房運転時には蒸発器の働きをし、冷媒配管400から流入した低圧の冷媒と室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外熱交換器103は、冷房運転時には、凝縮器の働きをし、流路切替装置102側から流入した圧縮機101で圧縮済の冷媒と室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。室外熱交換器103には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機104が設けられている。室外送風機104は、インバータ装置を取り付け、ファンモータの運転周波数を変化させてファンの回転速度を変更してもよい。膨張弁105は、絞り装置(流量制御手段)であり、膨張弁105を流れる冷媒の流量を調節することにより、膨張弁として機能し、開度を変化させることで、冷媒の圧力を調整する。例えば、膨張弁105が、電子式膨張弁等で構成された場合は、制御装置110の指示に基づいて開度調整が行われる。
(室内機200)
 室内機200は、冷媒と室内空気との間で熱交換を行う室内熱交換器201及び、室内熱交換器201が熱交換を行う空気の流れを調整する室内送風機202を有する。室内熱交換器201は、暖房運転時には、凝縮器の働きをし、冷媒配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管400側に流出させる。室内熱交換器201は、冷房運転時には蒸発器の働きをし、膨張弁105によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管300側に流出させる。室内送風機202は、室内熱交換器201と対面するように設けられている。室内送風機202には、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dのいずれか1つ以上が適用される。室内送風機202の運転速度は、ユーザの設定により決定される。室内送風機202には、インバータ装置を取り付け、ファンモータ(図示は省略)の運転周波数を変化させてファン2の回転速度を変更してもよい。
[冷凍サイクル装置50の動作例]
 次に、冷凍サイクル装置50の動作例として冷房運転動作を説明する。圧縮機101によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置102を経由して、室外熱交換器103に流入する。室外熱交換器103に流入したガス冷媒は、室外送風機104により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器103から流出する。室外熱交換器103から流出した冷媒は、膨張弁105によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機200の室内熱交換器201に流入し、室内送風機202により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器201から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。
 次に、冷凍サイクル装置50の動作例として暖房運転動作を説明する。圧縮機101によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置102を経由して、室内機200の室内熱交換器201に流入する。室内熱交換器201に流入したガス冷媒は、室内送風機202により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器201から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出した冷媒は、膨張弁105によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機100の室外熱交換器103に流入し、室外送風機104により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。
 実施の形態6に係る冷凍サイクル装置50は、実施の形態1に係る遠心送風機1又は実施の形態2に係る遠心送風機1Dを備えるため、スクロール部41で効率よく圧力を上昇させることができる。また、送風装置30は、騒音の低減を実現できる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 遠心送風機、1A 遠心送風機、1B 遠心送風機、1C 遠心送風機、1D 遠心送風機、1E 遠心送風機、1F 遠心送風機、1G 遠心送風機、1H 遠心送風機、2 ファン、2a 主板、2a1 周縁部、2b 軸部、2d 翼、2e 吸込口、3 ベルマウス、4 スクロールケーシング、4a 側壁、4c 周壁、4c1 膨出部、4c2 膨出部、4c3 等距離部、4c4 等距離部、4c5 等距離部、4c6 等距離部、4ca 周壁、4cb 周壁、4cc 周壁、4ce 周壁、4cf 周壁、4cg 周壁、4d 縮小部、4d1 縮小部、4d2 縮小部、4d3 縮小部、5 吸込口、6 モータ、6a 出力軸、7 ケース、9 ファンモータ、9a モータサポート、10 熱交換器、16 ケース、16S ケース壁部、16a 上面部、16b 下面部、16c 側面部、17 ケース吐出口、18 ケース吸込口、18a ケース吸込口、19 仕切板、30 送風装置、40 空気調和装置、41 スクロール部、41a 巻始部、41b 巻終部、41c 最接近部、42 吐出部、42a 吐出口、42b 延設板、42c ディフューザ板、42d 第1側板、42e 第2側板、43 舌部、44 凸部、50 冷凍サイクル装置、71 吸込口、72 吐出口、73 仕切板、100 室外機、101 圧縮機、102 流路切替装置、103 室外熱交換器、104 室外送風機、105 膨張弁、110 制御装置、200 室内機、201 室内熱交換器、202 室内送風機、300 冷媒配管、400 冷媒配管。

Claims (19)

  1.  回転駆動されるファンと、
     前記ファンを収納するスクロールケーシングと、
    を備え、
     前記スクロールケーシングは、
     前記ファンから吹き出された空気の流れを分流させる舌部との境界を巻始部として渦巻形状に形成された周壁を有し、
     前記周壁において、前記周壁と前記ファンの回転軸との間の距離が最小となる位置を最接近部と定義した場合に、
     前記周壁は、
     前記ファンの回転方向において、前記巻始部から前記最接近部にかけて前記周壁と前記回転軸との間の距離が近づくように形成された縮小部と、前記縮小部と前記最接近部との間に前記周壁と前記回転軸との間の距離が拡大する膨出部と、を有する遠心送風機。
  2.  前記スクロールケーシングは、
     前記巻始部から前記最接近部にかけて、
     前記縮小部において、前記周壁と前記ファンの外周部との間に形成される気体の流路が徐々に縮小した後、
     前記膨出部において、前記流路が拡大する請求項1に記載の遠心送風機。
  3.  前記膨出部は、
     前記巻始部から前記最接近部にかけて一定の割合で前記周壁が前記回転軸に近づいていく仮想の基準周壁と比較して、前記ファンの径方向に膨出する請求項1又は2に記載の遠心送風機。
  4.  前記周壁は、
     前記巻始部と前記最接近部との間において、
     前記周壁が前記回転軸に近づく部分から離れる部分の境界部となる第1変曲部と、
     前記周壁が前記回転軸から離れる部分から近づく部分の境界部となる第2変曲部と、
    を有し、
     前記第2変曲部は、前記膨出部に位置している請求項1~3のいずれか1項に記載の遠心送風機。
  5.  前記周壁は、
     前記第1変曲部から前記第2変曲部にかけて、前記回転軸から徐々に離れるように構成されている請求項4に記載の遠心送風機。
  6.  前記周壁は、
     前記縮小部と前記最接近部との間において、前記周壁と前記回転軸との距離が一定に形成されている等距離部を有する請求項1~3のいずれか1項に記載の遠心送風機。
  7.  前記周壁は、
     前記巻始部から前記最接近部にかけて、
     前記周壁が前記ファンの外周部に近づく部分から前記周壁と前記ファンの外周部との間の距離が一定となる部分の境界部となる第1変曲部と、
     前記周壁と前記ファンの外周部との間の距離が一定となる部分から近づく部分の境界部となる第2変曲部と、
    を有し、
     前記第2変曲部は、前記膨出部に位置し、
     前記等距離部は、前記第1変曲部と前記第2変曲部との間に形成されている請求項6に記載の遠心送風機。
  8.  前記膨出部の前記周壁と前記回転軸との間の距離は、前記巻始部の前記周壁と前記回転軸との間の距離よりも小さい請求項1~7のいずれか1項に記載の遠心送風機。
  9.  前記周壁は、
     前記最接近部の内壁から前記スクロールケーシングの内部に向かって突出する凸部を有する請求項1~8のいずれか1項に記載の遠心送風機。
  10.  前記凸部は、
     前記ファンの回転軸方向で前記周壁の全ての範囲に形成されている請求項9に記載の遠心送風機。
  11.  前記凸部は、
     前記ファンの回転軸方向で前記周壁の一部分に形成されている請求項9に記載の遠心送風機。
  12.  前記凸部は、
     前記ファンの回転軸方向で複数形成されている請求項9に記載の遠心送風機。
  13.  前記凸部は、
     前記ファンの回転軸方向で一定の厚さで形成されている請求項9~12のいずれか1項に記載の遠心送風機。
  14.  前記凸部は、
     前記ファンの回転軸方向で部分によって厚さが異なるように形成されている請求項9~12のいずれか1項に記載の遠心送風機。
  15.  請求項1~14のいずれか1項に記載の遠心送風機と、
     当該遠心送風機を収容するケースと、
    を備えた送風装置。
  16.  請求項1~14のいずれか1項に記載の遠心送風機と、
     当該遠心送風機の吐出口と対向する位置に配置された熱交換器と、
    を備える空気調和装置。
  17.  前記遠心送風機と、前記熱交換器とを収納し、前記遠心送風機に流入する気体が通過するケース吸込口が形成されたケース壁部を有するケースを更に備え、
     前記回転軸の垂直断面において、
     前記回転軸を通り前記ケース壁部と平行な仮想の平面部と、前記ケース壁部との間に、前記最接近部が配置される請求項16に記載の空気調和装置。
  18.  前記遠心送風機と、前記熱交換器とを収納し、前記遠心送風機に流入する気体が通過するケース吸込口が形成されたケース壁部を有するケースを更に備え、
     前記回転軸の垂直断面において、
     前記回転軸から前記ケース壁部に垂直となる線を基準線とした場合に、前記基準線と前記巻始部との間に前記最接近部が配置されている請求項16に記載の空気調和装置。
  19.  請求項1~14のいずれか1項に記載の遠心送風機を備えた冷凍サイクル装置。
PCT/JP2018/046779 2018-12-19 2018-12-19 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置 WO2020129179A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880100152.5A CN113195902B (zh) 2018-12-19 2018-12-19 离心式鼓风机、鼓风装置、空调装置以及冷冻循环装置
AU2018453648A AU2018453648B2 (en) 2018-12-19 2018-12-19 Centrifugal fan, air-sending device, air-conditioning apparatus, and refrigeration cycle apparatus
JP2020560698A JP6984043B2 (ja) 2018-12-19 2018-12-19 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
ES18943779T ES2940739T3 (es) 2018-12-19 2018-12-19 Ventilador impelente centrífugo, dispositivo de soplado, acondicionador de aire y dispositivo de ciclo de refrigeración
US17/287,826 US11994148B2 (en) 2018-12-19 2018-12-19 Centrifugal fan, air-sending device, air-conditioning apparatus, and refrigeration cycle apparatus
PCT/JP2018/046779 WO2020129179A1 (ja) 2018-12-19 2018-12-19 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
EP18943779.1A EP3901470B1 (en) 2018-12-19 2018-12-19 Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
TW108126504A TWI728415B (zh) 2018-12-19 2019-07-26 離心風扇、送風裝置、空調裝置以及冷凍循環裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046779 WO2020129179A1 (ja) 2018-12-19 2018-12-19 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020129179A1 true WO2020129179A1 (ja) 2020-06-25

Family

ID=71101154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046779 WO2020129179A1 (ja) 2018-12-19 2018-12-19 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置

Country Status (8)

Country Link
US (1) US11994148B2 (ja)
EP (1) EP3901470B1 (ja)
JP (1) JP6984043B2 (ja)
CN (1) CN113195902B (ja)
AU (1) AU2018453648B2 (ja)
ES (1) ES2940739T3 (ja)
TW (1) TWI728415B (ja)
WO (1) WO2020129179A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD938570S1 (en) * 2019-02-04 2021-12-14 Mitsubishi Electric Corporation Casing for blower
USD944966S1 (en) * 2019-02-04 2022-03-01 Mitsubishi Electric Corporation Casing for blower
EP3815520B1 (de) * 2019-10-29 2022-07-06 Andreas Stihl AG & Co. KG Handgeführtes bearbeitungsgerät mit radialgebläse
US11913460B2 (en) * 2020-03-20 2024-02-27 Greenheck Fan Corporation Exhaust fan
JP1681183S (ja) * 2020-07-31 2021-03-15

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274599U (ja) * 1988-11-25 1990-06-07
JPH09242697A (ja) 1996-03-06 1997-09-16 Akaishi Kinzoku Kogyo Kk 送風機
US20040253092A1 (en) * 2003-06-13 2004-12-16 Hancock Stephen S. Rounded blower housing with increased airflow
JP2005036679A (ja) * 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd 送風機
JP2008240612A (ja) * 2007-03-27 2008-10-09 Mitsubishi Electric Corp シロッコファン及び空気調和装置
JP2016033338A (ja) * 2014-07-31 2016-03-10 株式会社ケーヒン 遠心式送風機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3238913C2 (de) * 1982-10-21 1985-10-03 Werner Dr. 8972 Sonthofen Röhrs Radialventilatorgehäuse
JPH09242679A (ja) * 1996-03-06 1997-09-16 Aisin Seiki Co Ltd ベーンポンプ
KR100591335B1 (ko) * 2004-06-16 2006-06-19 엘지전자 주식회사 원심 송풍기
US8591183B2 (en) * 2007-06-14 2013-11-26 Regal Beloit America, Inc. Extended length cutoff blower
JP5448874B2 (ja) 2010-01-21 2014-03-19 三菱重工業株式会社 多翼遠心ファンおよびそれを用いた空気調和機
JP5753972B2 (ja) 2010-11-26 2015-07-22 パナソニックIpマネジメント株式会社 遠心送風機及びそれを用いた消音ボックス付送風機
JP6265545B2 (ja) * 2014-07-29 2018-01-24 ミネベアミツミ株式会社 シロッコ型遠心送風機
KR101615445B1 (ko) * 2014-08-14 2016-04-25 엘지전자 주식회사 공기 조화기
US10465697B2 (en) * 2014-10-16 2019-11-05 Lg Electronics Inc. Centrifugal fan and air conditioner having the same
WO2016139732A1 (ja) 2015-03-02 2016-09-09 三菱電機株式会社 シロッコファン及びこのシロッコファンを用いた空気調和機の室内機
US10907655B2 (en) * 2016-12-20 2021-02-02 Mitsubishi Electric Corporation Multiblade fan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274599U (ja) * 1988-11-25 1990-06-07
JPH09242697A (ja) 1996-03-06 1997-09-16 Akaishi Kinzoku Kogyo Kk 送風機
US20040253092A1 (en) * 2003-06-13 2004-12-16 Hancock Stephen S. Rounded blower housing with increased airflow
JP2005036679A (ja) * 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd 送風機
JP2008240612A (ja) * 2007-03-27 2008-10-09 Mitsubishi Electric Corp シロッコファン及び空気調和装置
JP2016033338A (ja) * 2014-07-31 2016-03-10 株式会社ケーヒン 遠心式送風機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901470A4

Also Published As

Publication number Publication date
JP6984043B2 (ja) 2021-12-17
CN113195902A (zh) 2021-07-30
US11994148B2 (en) 2024-05-28
ES2940739T3 (es) 2023-05-11
AU2018453648B2 (en) 2022-10-06
US20210388847A1 (en) 2021-12-16
TWI728415B (zh) 2021-05-21
AU2018453648A1 (en) 2021-06-03
EP3901470B1 (en) 2023-02-15
TW202024487A (zh) 2020-07-01
EP3901470A4 (en) 2021-12-29
CN113195902B (zh) 2024-04-16
EP3901470A1 (en) 2021-10-27
JPWO2020129179A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020129179A1 (ja) 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
TWI676741B (zh) 離心式送風機、送風裝置、空調裝置以及冷凍循環裝置
CN111247345B (zh) 离心送风机、送风装置、空气调节装置以及制冷循环装置
JP7031061B2 (ja) 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
US12038017B2 (en) Centrifugal air-sending device, air-sending apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
TWI832906B (zh) 離心式送風機、空調裝置以及冷凍循環裝置
JP7130061B2 (ja) 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
JP7258099B2 (ja) 空気調和装置及び冷凍サイクル装置
JP7301236B2 (ja) 遠心送風機のスクロールケーシング、このスクロールケーシングを備えた遠心送風機、空気調和装置及び冷凍サイクル装置
WO2024111021A1 (ja) 室内機および空気調和装置
WO2024038573A1 (ja) 送風機用ファン、多翼遠心送風機、及び、空調室内機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560698

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018453648

Country of ref document: AU

Date of ref document: 20181219

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018943779

Country of ref document: EP

Effective date: 20210719