WO2020125509A1 - 终端节能控制方法、装置及设备 - Google Patents

终端节能控制方法、装置及设备 Download PDF

Info

Publication number
WO2020125509A1
WO2020125509A1 PCT/CN2019/124502 CN2019124502W WO2020125509A1 WO 2020125509 A1 WO2020125509 A1 WO 2020125509A1 CN 2019124502 W CN2019124502 W CN 2019124502W WO 2020125509 A1 WO2020125509 A1 WO 2020125509A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
saving configuration
configuration parameters
physical layer
zero
Prior art date
Application number
PCT/CN2019/124502
Other languages
English (en)
French (fr)
Inventor
杨美英
郑方政
王加庆
罗晨
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217022104A priority Critical patent/KR102541273B1/ko
Priority to US17/416,387 priority patent/US20220060989A1/en
Priority to EP19900678.4A priority patent/EP3902315A4/en
Priority to JP2021535976A priority patent/JP7386248B2/ja
Publication of WO2020125509A1 publication Critical patent/WO2020125509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method, device, and equipment for energy-saving control of a terminal.
  • A-CSI-RS Aperiodic Channel State indication
  • the aperiodic channel state indication reference signal at After receiving the PDCCH (Physical Downlink Control Channel), if there is no PDSCH (Physical Downlink Shared Channel, Physical Layer Downlink Shared Channel) reception in the same slot, or CSI-RS (Channel State Indication Reference) signal, channel After receiving the status indication reference signal), you can switch to micro sleep mode, thereby reducing the power consumption of the user equipment UE.
  • the factors that affect whether there is data transmission in the same slot include: K1, K2, and periodic channel tracking, CSI-RS measurement, and periodic RRM ( radio resource management) measurement.
  • the parameter K0 represents the slot interval of PDCCH transmission to PDSCH transmission
  • the parameter K1 represents the interval of PDSCH transmission to ACK (Acknowledgement, acknowledgement) feedback slot
  • the parameter K2 represents the transmission of PDCCH to PUSCH (Physical Physical Uplink shared channel), physical layer uplink shared channel ) The transmission slot interval.
  • K0 value is 0 (the default is 0 when K0 is not configured), 1, 2, 3, K2 is configured as 0, 1, 2, 3, 4, 5, 6, 7, K1 is configured as 0, ..., 15 ,
  • A-CSI-RS triggering offset is the slot interval from PDCCH transmission to A-CSI-RS transmission, and the configuration is 0, 1, 2, 3, 4.
  • K0, K2 only after receiving and demodulating the PDCCH, the UE can know whether the PDSCH needs to be cached in the same slot; the configuration of K1 is based on high-level signaling, which can be changed semi-statically; A-CSI-RS triggering offset It is also a high-level configuration and can be changed semi-statically. From the perspective of terminal energy saving, K0, K1, K2, A-CSI-RS triggering offset, and the four parameters are jointly configured to certain specific characteristics to achieve the energy saving effect. For example, if K0>0, the UE can enter micro sleep.
  • the purpose of the present disclosure is to provide a method, device and equipment for terminal energy-saving control to solve the problem that the parameters in the related art cannot satisfy the application and the terminal energy-saving cannot be achieved.
  • the present disclosure provides a terminal energy-saving control method, which is applied to network equipment, and includes:
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset for reference signal transmission trigger;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • sending energy-saving configuration parameters to the terminal device includes:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is greater than zero; if the service demand If the second preset condition is met, the energy-saving configuration parameter is sent to the terminal device, at least one of the energy-saving configuration parameters is equal to zero;
  • the first preset condition includes at least one of the following:
  • Delay is less than the preset delay threshold
  • Service quality is less than the preset service quality threshold
  • the business priority is less than the preset business priority threshold
  • the business type is the first preset type
  • the second preset condition includes at least one of the following:
  • the delay is greater than or equal to the preset delay threshold
  • the service quality is greater than or equal to the preset service quality threshold
  • the business priority is greater than or equal to the preset business priority threshold
  • the service type is the second preset type.
  • sending energy-saving configuration parameters to the terminal device includes:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is equal to zero; Preset conditions, send energy-saving configuration parameters to the terminal device, each parameter in the energy-saving configuration parameters is greater than zero;
  • the third preset condition includes at least one of the following:
  • the current time slot is in the channel state information measurement period
  • the current time slot is in the synchronous broadcast signal transmission time slot
  • the current time slot is in the channel tracking reference signal sending time slot
  • the current time slot is in the radio resource management measurement period
  • the fourth preset condition is that the current time slot is in a non-channel state information measurement period, an asynchronous broadcast signal transmission slot, a non-channel tracking reference signal transmission slot, and a non-radio resource management measurement period.
  • sending energy-saving configuration parameters to the terminal device includes:
  • the energy saving configuration parameters are sent through media access control signaling.
  • sending energy-saving configuration parameters to the terminal device includes:
  • Each parameter in the energy-saving configuration parameter is sent to the terminal device through at least one set.
  • the present disclosure provides a terminal energy-saving control method, which is applied to terminal equipment and includes:
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset of the reference signal transmission;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the energy-saving configuration parameters sent by the network device include:
  • the energy saving configuration parameter is received through media access control signaling.
  • the energy-saving configuration parameters sent by the network device include:
  • the network device After receiving the energy-saving configuration parameters sent by the network device, it also includes:
  • the current energy consumption mode is switched to the first energy consumption mode, and the energy consumption of the first energy consumption mode is less than the energy consumption of the current energy consumption mode;
  • the current energy consumption mode is switched to the second energy consumption mode, and the energy consumption of the second energy consumption mode is greater than the energy consumption of the current energy consumption mode.
  • the present disclosure provides a network device, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the transceiver is used to send energy-saving configuration parameters to the terminal device; wherein,
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset for reference signal transmission trigger;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the transceiver is also used for:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is greater than zero; if the service demand If the second preset condition is met, the energy-saving configuration parameter is sent to the terminal device, at least one of the energy-saving configuration parameters is equal to zero;
  • the first preset condition includes at least one of the following:
  • Delay is less than the preset delay threshold
  • Service quality is less than the preset service quality threshold
  • the business priority is less than the preset business priority threshold
  • the business type is the first preset type
  • the second preset condition includes at least one of the following:
  • the delay is greater than or equal to the preset delay threshold
  • the service quality is greater than or equal to the preset service quality threshold
  • the business priority is greater than or equal to the preset business priority threshold
  • the service type is the second preset type.
  • the transceiver is also used for:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is equal to zero; if the channel state satisfies the fourth Preset conditions, send energy-saving configuration parameters to the terminal device, each parameter in the energy-saving configuration parameters is greater than zero;
  • the third preset condition includes at least one of the following:
  • the current time slot is in the channel state information measurement period
  • the current time slot is in the synchronous broadcast signal transmission time slot
  • the current time slot is in the channel tracking reference signal sending time slot
  • the current time slot is in the radio resource management measurement period
  • the fourth preset condition is that the current time slot is in a non-channel state information measurement period, an asynchronous broadcast signal transmission slot, a non-channel tracking reference signal transmission slot, and a non-radio resource management measurement period.
  • the transceiver is also used for:
  • the energy saving configuration parameters are sent through media access control signaling.
  • the transceiver is also used for:
  • Each parameter in the energy-saving configuration parameter is sent to the terminal device through at least one set.
  • the present disclosure provides a terminal device, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the transceiver is used to receive energy-saving configuration parameters sent by a network device; wherein,
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset of the reference signal transmission;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the transceiver is also used for:
  • the energy saving configuration parameter is received through media access control signaling.
  • the transceiver is also used for:
  • the processor is used for:
  • the current energy consumption mode is switched to the first energy consumption mode, and the energy consumption of the first energy consumption mode is less than the energy consumption of the current energy consumption mode;
  • the current energy consumption mode is switched to the second energy consumption mode, and the energy consumption of the second energy consumption mode is greater than the energy consumption of the current energy consumption mode.
  • a terminal energy-saving control device including:
  • Sending module used to send energy-saving configuration parameters to the terminal equipment
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset for reference signal transmission trigger;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • a terminal energy-saving control device including:
  • the receiving module is used to receive the energy-saving configuration parameters sent by the network equipment
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset of the reference signal transmission;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, the terminal energy-saving control method applied to the network device as described above is implemented. Steps.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the terminal energy-saving control method applied to the terminal device as described above Steps.
  • At least two of K0, K2, A-CSI-RS triggering offset are sent to the terminal device as energy-saving configuration parameters, and in the energy-saving configuration parameters, each parameter is greater than zero or at least one The parameter is equal to zero, so that the terminal device can directly switch to the corresponding energy consumption mode in time by receiving the energy-saving configuration parameter, and realize more effective energy-saving control.
  • FIG. 1 is a schematic flowchart of a terminal energy-saving control method applied to a network device according to some embodiments of the present disclosure
  • FIG. 2 is a schematic flowchart of a terminal energy-saving control method applied to a terminal device according to some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of a network device according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a terminal device according to some embodiments of the present disclosure.
  • a method for controlling energy saving of a terminal includes:
  • Step 101 sending energy-saving configuration parameters to the terminal device;
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset for reference signal transmission trigger;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • a network device for example, a base station
  • applying the terminal energy-saving control method of some embodiments of the present disclosure will send at least two of K0, K2, and A-CSI-RS triggering offset to the terminal device as energy-saving configuration parameters
  • each parameter is greater than zero or at least one parameter is equal to zero, so that the terminal device can directly switch to the corresponding energy consumption mode in time by receiving the energy-saving configuration parameter, to achieve more effective Energy saving control.
  • K1 and K0 have a certain mapping relationship (for example, after determining the value of K0, the value of K1 can be determined, or the base station configures K0 and K1 according to service requirements such as service type, delay, etc.), so, in this In the embodiment, K1 is no longer limited.
  • step 101 includes:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is greater than zero; if the service demand If the second preset condition is met, the energy-saving configuration parameter is sent to the terminal device, at least one of the energy-saving configuration parameters is equal to zero;
  • the first preset condition includes at least one of the following:
  • Delay is less than the preset delay threshold
  • Service quality is less than the preset service quality threshold
  • the business priority is less than the preset business priority threshold
  • the business type is the first preset type
  • the second preset condition includes at least one of the following:
  • the delay is greater than or equal to the preset delay threshold
  • the service quality is greater than or equal to the preset service quality threshold
  • the business priority is greater than or equal to the preset business priority threshold
  • the service type is the second preset type.
  • the network device applying the terminal energy saving control method of some embodiments of the present disclosure will set the corresponding energy saving configuration parameters according to the service request of the terminal device and the demand of the service.
  • the service requirements may be service types, delay requirements, service quality QoS requirements, and service priority QCI requirements.
  • the delay is less than the preset delay threshold, QoS is less than the preset quality of service threshold, or QCI is less than at least one of the preset service priority thresholds .
  • the service type meets the second preset type such as instant Network communication
  • the delay is greater than or equal to the preset delay threshold
  • the QoS is greater than or equal to the preset quality of service threshold, or the QCI is greater than or equal to at least one of the preset service priority thresholds
  • you can send at least one Energy-saving configuration parameters are sent to the terminal device, so that the terminal device switches from the current energy consumption mode to a higher energy consumption mode.
  • the service requirement based on the configuration parameter may be the service requirement of the network device
  • the energy saving configuration parameters configured by the base station may be based on at least one of the service type, delay requirement, QoS requirement, or QCI indication of the base station, and may be based on the service type and/or QoS requirement of the terminal device. Specifically, if the service does not require high delay, or the QoS requirement is not high, or the QCI is not high, and each parameter in the configured energy-saving configuration parameters is greater than zero, the terminal device can switch to an energy-saving mode with lower energy consumption ; Conversely, if at least one of the configured energy-saving configuration parameters is equal to zero, the terminal can use a higher energy consumption mode.
  • the terminal device may turn off the power consumption of some devices, or the terminal device may enter a sleep mode to reduce power consumption; switch to The higher energy consumption mode may be the power consumption of receiving PDSCH, or the power consumption of transmitting PUSCH, or the power consumption of receiving CSI-RS.
  • step 101 includes:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is equal to zero; if the channel state satisfies the fourth Preset conditions, send energy-saving configuration parameters to the terminal device, each parameter in the energy-saving configuration parameters is greater than zero;
  • the third preset condition includes at least one of the following:
  • the current time slot is in the channel state information measurement period
  • the current time slot is in the synchronous broadcast signal transmission time slot
  • the current time slot is in the channel tracking reference signal sending time slot
  • the current time slot is in the radio resource management measurement period
  • the fourth preset condition is that the current time slot is in a non-channel state information measurement period, an asynchronous broadcast signal transmission slot, a non-channel tracking reference signal transmission slot, and a non-radio resource management measurement period.
  • the network device applying the terminal energy saving control method of some embodiments of the present disclosure will set corresponding energy saving configuration parameters according to the current time slot state.
  • the slot state includes whether it is in a channel state information measurement CSI period, whether it is in a synchronous broadcast signal transmission slot, whether it is in a channel tracking reference signal TRS transmission slot, whether it is in a radio resource management RRM measurement period, and so on.
  • each item can be sent
  • the energy-saving configuration parameters whose parameters are all equal to zero are sent to the terminal device, so that the terminal device switches from the current energy consumption mode to a higher energy consumption mode; if the current time slot state satisfies the non-channel state information measurement period, the asynchronous broadcast signal transmission time slot, In the non-channel tracking reference signal transmission time slot and the non-radio resource management measurement period, energy-saving configuration parameters with all parameters greater than zero can be sent to the terminal device, so that the terminal device switches from the current energy consumption mode to a smaller energy consumption Energy saving mode.
  • the base station configures energy-saving configuration parameters, and the base station may be based on CSI measurement, RRM measurement, and channel tracking.
  • the terminal device may turn off the power consumption of some devices, or the terminal device may enter a sleep mode to reduce power consumption; switch
  • the mode of higher energy consumption may be the power consumption of receiving PDSCH, or the power consumption of transmitting PUSCH, or the power consumption of receiving CSI-RS.
  • step 101 includes:
  • the energy saving configuration parameters are sent through media access control signaling.
  • the configured energy saving configuration parameters can be sent through radio resource control RRC signaling, or PDCCH signaling, or media access control MAC-CE signaling.
  • RRC signaling or PDCCH signaling
  • media access control MAC-CE signaling or media access control MAC-CE signaling.
  • specific bearer signaling is not limited to the above content, but can also be implemented by other signaling, which will not be enumerated here.
  • RRC signaling is semi-static
  • PDCCH signaling and MAC-CE signaling are dynamic, considering the above configuration method, in order to ensure timely transmission of energy-saving configuration parameters, and avoid unnecessary signaling overhead
  • Semi-static such as RRC signaling
  • RRC signaling sends energy-saving configuration parameters configured based on service requirements
  • dynamic such as PDCCH signaling or MAC-CE signaling
  • step 101 since the energy-saving configuration parameters include at least two of K0, K2, and A-CSI-RS triggering offset, step 101 includes:
  • Each parameter in the energy-saving configuration parameter is sent to the terminal device through at least one set.
  • At least two of the energy-saving configuration parameters can be sent through one set.
  • the at least two parameters can also be divided into multiple sets and sent to the terminal device one or more times.
  • the terminal device can obtain the parameters of the energy-saving configuration parameters, and the terminal device can switch the corresponding energy consumption mode after acquiring the parameters of the energy-saving configuration parameters. .
  • the terminal device can subsequently receive CSI-RS, TRS, PDSCH, or send PUSCH according to the configuration. Specifically, PDSCH or PUSCH is sent or received according to PDCCH scheduling information.
  • the terminal energy saving control method of some embodiments of the present disclosure will send at least two of K0, K2, A-CSI-RS triggering offset to the terminal device as energy saving configuration parameters, and in the energy saving configuration parameters Each parameter is greater than zero or at least one parameter is equal to zero. In this way, the terminal device can directly switch to the corresponding energy consumption mode in time by receiving the energy-saving configuration parameter, and achieve more effective energy-saving control.
  • some embodiments of the present disclosure provide a terminal energy saving control method, which is applied to a terminal device and includes:
  • Step 201 Receive energy-saving configuration parameters sent by a network device; where,
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset of the reference signal transmission;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the terminal device receives the energy-saving configuration parameter configured by the network device including at least two parameters in K0, K2, and A-CSI-RS triggering offset, and in the energy-saving configuration parameter, each parameter is greater than zero or at least one
  • the item parameter is equal to zero, so as to be able to switch to the corresponding energy consumption mode in time and achieve more effective energy-saving control.
  • K1 and K0 have a certain mapping relationship (for example, after determining the value of K0, the value of K1 can be determined, or the base station configures K0 and K1 according to service requirements such as service type, delay, etc.), so, in this In the embodiment, K1 is no longer limited.
  • the energy-saving configuration parameters sent by the network device include:
  • the energy saving configuration parameter is received through media access control signaling.
  • signaling based on the energy-saving configuration parameters sent by the network device will be correspondingly received, such as RRC signaling, or PDCCH signaling, or MAC-CE signaling.
  • the energy-saving configuration parameters sent by the network device include:
  • At least two of the energy-saving configuration parameters may be sent through one set.
  • the at least two parameters may also be divided into multiple sets and sent one or more times.
  • the terminal device can obtain all parameter items of the energy-saving configuration parameters through one or more receptions of one set or multiple sets.
  • the terminal device can obtain the parameters of the energy-saving configuration parameters, and the terminal device can perform the corresponding energy consumption mode after acquiring the parameters of the energy-saving configuration parameters. Switch.
  • the network device After receiving the energy-saving configuration parameters sent by the network device, it also includes:
  • the current energy consumption mode is switched to the first energy consumption mode, and the energy consumption of the first energy consumption mode is less than the energy consumption of the current energy consumption mode;
  • the current energy consumption mode is switched to the second energy consumption mode, and the energy consumption of the second energy consumption mode is greater than the energy consumption of the current energy consumption mode.
  • the terminal device switches the energy consumption mode according to the configured energy-saving configuration parameters.
  • the current energy consumption mode is switched to the first energy consumption mode with lower energy consumption;
  • the current energy consumption mode is switched to the second energy consumption mode with greater energy consumption.
  • the current energy consumption mode of the terminal device is to perform PDCCH reception and switch to the first energy consumption mode, which may be that the terminal device turns off the power consumption of some devices, or that the terminal device enters a sleep mode to reduce power consumption;
  • Switching to the second power consumption mode may be power consumption for receiving PDSCH, power consumption for sending PUSCH, or power consumption for receiving CSI-RS.
  • this method is used in conjunction with the above-mentioned method applied to network devices to achieve energy-saving control.
  • the implementation of the terminal device is applicable to this method, and the same technical effect can be achieved .
  • some embodiments of the present disclosure provide a network device, including: a transceiver 310, a memory 320, a processor 300, and a computer stored on the memory 320 and capable of running on the processor 300 program;
  • the transceiver 310 is used to send energy-saving configuration parameters to the terminal device; wherein,
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset for reference signal transmission trigger;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the transceiver 310 is also used for:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is greater than zero; if the service demand If the second preset condition is met, the energy-saving configuration parameter is sent to the terminal device, at least one of the energy-saving configuration parameters is equal to zero;
  • the first preset condition includes at least one of the following:
  • Delay is less than the preset delay threshold
  • Service quality is less than the preset service quality threshold
  • the business priority is less than the preset business priority threshold
  • the business type is the first preset type
  • the second preset condition includes at least one of the following:
  • the delay is greater than or equal to the preset delay threshold
  • the service quality is greater than or equal to the preset service quality threshold
  • the business priority is greater than or equal to the preset business priority threshold
  • the service type is the second preset type.
  • the transceiver 310 is also used for:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is equal to zero; if the channel state satisfies the fourth Preset conditions, send energy-saving configuration parameters to the terminal device, each parameter in the energy-saving configuration parameters is greater than zero;
  • the third preset condition includes at least one of the following:
  • the current time slot is in the channel state information measurement period
  • the current time slot is in the synchronous broadcast signal transmission time slot
  • the current time slot is in the channel tracking reference signal sending time slot
  • the current time slot is in the radio resource management measurement period
  • the fourth preset condition is that the current time slot is in a non-channel state information measurement period, an asynchronous broadcast signal transmission slot, a non-channel tracking reference signal transmission slot, and a non-radio resource management measurement period.
  • the transceiver 310 is also used for:
  • the energy saving configuration parameters are sent through media access control signaling.
  • the transceiver 310 is also used for:
  • Each parameter in the energy-saving configuration parameter is sent to the terminal device through at least one set.
  • the transceiver 310 is used to receive and send data under the control of the processor 300.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 300 and various circuits of the memory represented by the memory 320 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 310 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 300 is responsible for managing the bus architecture and general processing, and the memory 320 may store data used by the processor 300 when performing operations.
  • the processor 300 is responsible for managing the bus architecture and general processing, and the memory 320 may store data used by the processor 300 when performing operations.
  • the network device of this embodiment will send at least two of K0, K2, A-CSI-RS triggering offset to the terminal device as energy-saving configuration parameters, and in the energy-saving configuration parameters, each parameter is greater than zero or at least A parameter is equal to zero, so that the terminal device can directly switch to the corresponding energy consumption mode in time by receiving the energy-saving configuration parameter, so as to realize more effective energy-saving control.
  • some embodiments of the present disclosure provide a terminal device, including: a transceiver 410, a memory 420, a processor 400, and a computer stored on the memory 420 and running on the processor 400 program;
  • the transceiver 410 is used to receive energy-saving configuration parameters sent by a network device; wherein,
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset of the reference signal transmission;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the transceiver 410 is also used for:
  • the energy saving configuration parameter is received through media access control signaling.
  • the transceiver 410 is also used for:
  • processor 400 is used for:
  • the current energy consumption mode is switched to the first energy consumption mode, and the energy consumption of the first energy consumption mode is less than the energy consumption of the current energy consumption mode;
  • the current energy consumption mode is switched to the second energy consumption mode, and the energy consumption of the second energy consumption mode is greater than the energy consumption of the current energy consumption mode.
  • the transceiver 410 is used to receive and send data under the control of the processor 400.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 400 and various circuits of the memory represented by the memory 420 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 410 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the user interface 430 may also be an interface that can be externally connected to the required device.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, and a joystick.
  • the processor 400 is responsible for managing the bus architecture and general processing, and the memory 420 may store data used by the processor 400 in performing operations.
  • the terminal device of this embodiment receives energy-saving configuration parameters including at least two parameters in K0, K2, A-CSI-RS triggering offset configured by the network device, and in the energy-saving configuration parameters, each parameter is greater than zero or at least One parameter is equal to zero, so that it can be switched to the corresponding energy consumption mode in time to achieve more effective energy-saving control.
  • Some embodiments of the present disclosure provide a terminal energy-saving control device, including:
  • Sending module used to send energy-saving configuration parameters to the terminal equipment
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset for reference signal transmission trigger;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the sending module is also used to:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is greater than zero; if the service demand If the second preset condition is met, the energy-saving configuration parameter is sent to the terminal device, at least one of the energy-saving configuration parameters is equal to zero;
  • the first preset condition includes at least one of the following:
  • Delay is less than the preset delay threshold
  • Service quality is less than the preset service quality threshold
  • the business priority is less than the preset business priority threshold
  • the business type is the first preset type
  • the second preset condition includes at least one of the following:
  • the delay is greater than or equal to the preset delay threshold
  • the service quality is greater than or equal to the preset service quality threshold
  • the business priority is greater than or equal to the preset business priority threshold
  • the service type is the second preset type.
  • the sending module is also used to:
  • the energy saving configuration parameter is sent to the terminal device, and each parameter in the energy saving configuration parameter is equal to zero; if the channel state satisfies the fourth Preset conditions, send energy-saving configuration parameters to the terminal device, each parameter in the energy-saving configuration parameters is greater than zero;
  • the third preset condition includes at least one of the following:
  • the current time slot is in the channel state information measurement period
  • the current time slot is in the synchronous broadcast signal transmission time slot
  • the current time slot is in the channel tracking reference signal sending time slot
  • the current time slot is in the radio resource management measurement period
  • the fourth preset condition is that the current time slot is in a non-channel state information measurement period, an asynchronous broadcast signal transmission slot, a non-channel tracking reference signal transmission slot, and a non-radio resource management measurement period.
  • the sending module is also used to:
  • the energy saving configuration parameters are sent through media access control signaling.
  • the sending module is also used to:
  • Each parameter in the energy-saving configuration parameter is sent to the terminal device through at least one set.
  • the device sends at least two of K0, K2, A-CSI-RS triggering offset as energy-saving configuration parameters to the terminal device, and in the energy-saving configuration parameters, each parameter is greater than zero or at least one parameter is equal to zero, In this way, the terminal device can directly switch to the corresponding energy consumption mode in time by receiving the energy-saving configuration parameter, and realize more effective energy-saving control.
  • the apparatus is an apparatus that applies the above-mentioned terminal energy-saving control method applied to network equipment, and the implementation of the embodiment of the above-described terminal energy-saving control method applied to network equipment is also applicable to the apparatus and can achieve the same technical effect .
  • Some embodiments of the present disclosure provide a terminal energy-saving control device, including:
  • the receiving module is used to receive the energy-saving configuration parameters sent by the network equipment
  • the energy-saving configuration parameters include at least two of the following parameters:
  • Physical layer downlink control channel transmission to physical layer downlink shared channel transmission slot interval K0, physical layer downlink control channel transmission to physical layer uplink shared channel transmission slot interval K2, and physical layer downlink control channel transmission to aperiodic channel state Indicates the time slot interval A-CSI-RS triggering offset of the reference signal transmission;
  • Each of the energy-saving configuration parameters is greater than zero; or,
  • At least one of the energy-saving configuration parameters is equal to zero.
  • the receiving module is also used to:
  • the energy saving configuration parameter is received through media access control signaling.
  • the receiving module is also used to:
  • the device further includes:
  • the first processing module is configured to switch the current energy consumption mode to the first energy consumption mode if each parameter in the energy-saving configuration parameters is greater than zero, and the energy consumption of the first energy consumption mode is less than the current Energy consumption in energy consumption mode;
  • a second processing module configured to switch the current energy consumption mode to a second energy consumption mode if at least one of the energy saving configuration parameters is equal to zero, and the energy consumption of the second energy consumption mode is greater than the current energy consumption Energy consumption in consumption mode.
  • the device receives energy-saving configuration parameters including at least two parameters in K0, K2, A-CSI-RS triggering offset configured by the network equipment, and in the energy-saving configuration parameters, each parameter is greater than zero or at least one parameter is equal to zero, In order to be able to switch to the corresponding energy consumption mode in time later, to achieve more effective energy-saving control.
  • this device is a device that applies the above-mentioned terminal energy-saving control method applied to a terminal device.
  • the implementation of the above-described embodiment of the terminal energy-saving control method applied to a terminal device is also applicable to this device and can achieve the same technical effect. .
  • Some embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, which when executed by a processor implements the terminal energy-saving control method applied to the network device as above Steps.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the terminal energy-saving control method applied to the terminal device as described above Steps.
  • Computer readable media including permanent and non-permanent, removable and non-removable media, can store information by any method or technology.
  • the information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, read-only compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • the module may be implemented in software so as to be executed by various types of processors.
  • an identified executable code module may include one or more physical or logical blocks of computer instructions, which may be constructed as objects, procedures, or functions, for example. Nevertheless, the executable code of the identified module need not be physically located together, but may include different instructions stored in different bits. When these instructions are logically combined together, they constitute a module and implement the provisions of the module purpose.
  • the executable code module may be a single instruction or many instructions, and may even be distributed on multiple different code segments, among different programs, and across multiple memory devices.
  • operational data can be identified within the module, and can be implemented in any suitable form and organized within any suitable type of data structure. The operation data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and may exist at least partially as electronic signals only on the system or network.
  • the module can be implemented by software, considering the level of hardware technology in the related art, so the module that can be implemented in software, regardless of cost, those skilled in the art can build a corresponding hardware circuit to achieve the corresponding Function, the hardware circuit includes a conventional very large scale integration (VLSI) circuit or gate array and semiconductors or other discrete components in related technologies such as logic chips, transistors and the like. Modules can also be implemented with programmable hardware devices, such as field programmable gate arrays, programmable array logic, programmable logic devices, and so on.
  • VLSI very large scale integration
  • programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种终端节能控制方法、装置及设备。该方法包括:发送节能配置参数至终端设备;其中,所述节能配置参数包括以下参数中至少两项:物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且所述节能配置参数中的各项参数均大于零;或者,所述节能配置参数中的至少一项参数等于零。

Description

终端节能控制方法、装置及设备
相关申请的交叉引用
本申请主张在2018年12月20日在中国提交的中国专利申请号No.201811564810.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种终端节能控制方法、装置及设备。
背景技术
随着无线通信系统的发展,终端类型和业务类型多样化,终端省电、节约网络资源和满足各种业务类型的需求并存。其中,在RAN1#95会议上,讨论通过了,对于跨slot调度,如果K0>0且,A-CSI-RS(Aperiodic Channel state indication reference signal,非周期信道状态指示参考信号)触发的offset,在接收完PDCCH(Physical downlink control channel,物理层下行控制信道)之后,在相同slot内如果没有PDSCH(Physical downlink shared channel,物理层下行共享信道)接收,或CSI-RS(Channel state indication reference signal,信道状态指示参考信号)的接收,则可以切换到micro sleep模式,从而降低了用户设备UE功耗。
基于相关技术中的标准,影响在同一个slot是否存在数据传输的因素,除了K0配置之外,还包括:K1,K2,以及周期性的信道跟踪,CSI-RS测量,以及周期性的RRM(radio resource management,无线资源管理)测量。其中,参数K0表示PDCCH传输到PDSCH传输的slot间隔,参数K1表示PDSCH传输到ACK(Acknowledgement,确认)反馈的slot的间隔,参数K2表示PDCCH传输到PUSCH(Physical uplink shared channel,物理层上行共享信道)传输的slot间隔。K0取值为0(K0没有配置时默认为0)、1、2、3,K2配置为0、1、2、3、4、5、6、7,K1的配置为0、……、15,A-CSI-RS triggering offset为PDCCH传输到A-CSI-RS传输的slot间隔,配置为0、1、2、3、4。
其中,K0,K2只有在接收和解调出PDCCH之后,UE才能知道相同的slot内是否需要缓存PDSCH;K1的配置是基于高层信令的,是半静态可以改变的;A-CSI-RS triggering offset也是高层配置的,半静态可以改变的。从终端节能的角度,K0,K1,K2,A-CSI-RS triggering offset,四个参数共同配置为某些特定特点时,才能达到节能的效果。例如,K0>0,UE可以进入micro sleep,如果此时K2=0,由于PUSCH的发送和PDCCH的接收都在通过一个slot,则考虑至少UE的射频发送设备不能关闭,基带设备也不能关闭,即UE不能进入micro sleep模式;或者,如果A-CSI-RS triggering offset=0,类似的,UE也不能进入micro sleep模式。
发明内容
本公开的目的是提供一种终端节能控制方法、装置及设备,以解决相关技术中的参数无法满足应用,无法实现终端节能的问题。
为达到上述目的,本公开提供一种终端节能控制方法,应用于网络设备,包括:
发送节能配置参数至终端设备;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,发送节能配置参数至终端设备,包括:
根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的至少一项参数等于零;其中,
所述第一预设条件包括以下至少一项:
时延小于预设时延阈值;
服务质量小于预设服务质量阈值;
业务优先级小于预设业务优先级阈值;
业务类型为第一预设类型;
所述第二预设条件包括以下至少一项:
时延大于或等于预设时延阈值;
服务质量大于或等于预设服务质量阈值;
业务优先级大于或等于预设业务优先级阈值;
业务类型为第二预设类型。
其中,发送节能配置参数至终端设备,包括:
根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
所述第三预设条件包括以下至少一项:
当前时隙处于信道状态信息测量周期中;
当前时隙处于同步广播信号发送时隙;
当前时隙处于信道跟踪参考信号发送时隙;
当前时隙处于无线资源管理测量周期中;
所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量周期中。
其中,发送节能配置参数至终端设备,包括:
通过无线资源控制信令发送所述节能配置参数;或者
通过物理层下行控制信道信令发送所述节能配置参数;或者
通过媒体接入控制信令发送所述节能配置参数。
其中,发送节能配置参数至终端设备,包括:
将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
为达到上述目的,本公开提供一种终端节能控制方法,应用于终端设备,包括:
接收网络设备发送的节能配置参数;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,接收网络设备发送的节能配置参数,包括:
通过无线资源控制信令接收所述节能配置参数;或者
通过物理层下行控制信道信令接收所述节能配置参数;或者
通过媒体接入控制信令接收所述节能配置参数。
其中,接收网络设备发送的节能配置参数,包括:
接收通过至少一个集合发送的所述节能配置参数。
其中,接收网络设备发送的节能配置参数之后,还包括:
若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
为达到上述目的,本公开提供一种网络设备,包括:收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述收发器用于发送节能配置参数至终端设备;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,所述收发器还用于:
根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的至少一项参数等于零;其中,
所述第一预设条件包括以下至少一项:
时延小于预设时延阈值;
服务质量小于预设服务质量阈值;
业务优先级小于预设业务优先级阈值;
业务类型为第一预设类型;
所述第二预设条件包括以下至少一项:
时延大于或等于预设时延阈值;
服务质量大于或等于预设服务质量阈值;
业务优先级大于或等于预设业务优先级阈值;
业务类型为第二预设类型。
其中,所述收发器还用于:
根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
所述第三预设条件包括以下至少一项:
当前时隙处于信道状态信息测量周期中;
当前时隙处于同步广播信号发送时隙;
当前时隙处于信道跟踪参考信号发送时隙;
当前时隙处于无线资源管理测量周期中;
所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量 周期中。
其中,所述收发器还用于:
通过无线资源控制信令发送所述节能配置参数;或者
通过物理层下行控制信道信令发送所述节能配置参数;或者
通过媒体接入控制信令发送所述节能配置参数。
其中,所述收发器还用于:
将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
为达到上述目的,本公开提供一种终端设备,包括:收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述收发器用于接收网络设备发送的节能配置参数;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,所述收发器还用于:
通过无线资源控制信令接收所述节能配置参数;或者
通过物理层下行控制信道信令接收所述节能配置参数;或者
通过媒体接入控制信令接收所述节能配置参数。
其中,所述收发器还用于:
接收通过至少一个集合发送的所述节能配置参数。
其中,所述处理器用于:
若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
为达到上述目的,本公开提供一种终端节能控制装置,包括:
发送模块,用于发送节能配置参数至终端设备;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
为达到上述目的,本公开提供一种终端节能控制装置,包括:
接收模块,用于接收网络设备发送的节能配置参数;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
为达到上述目的,本公开还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上应用于网络设备的终端节能控制方法中的步骤。
为达到上述目的,本公开还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上应用于终端设备的终端节能控制方法中的步骤。
本公开的上述技术方案的有益效果如下:
本公开的方法,会将K0、K2、A-CSI-RS triggering offset中的至少两项作为节能配置参数发送至终端设备,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,如此,使得终端设备能够直接由接收到该节能配置参数,及时地切换到对应的能耗模式,实现更有效地节能控制。
附图说明
图1为本公开一些实施例的应用于网络设备的终端节能控制方法的流程示意图;
图2为本公开一些实施例的应用于终端设备的终端节能控制方法的流程示意图;
图3为本公开一些实施例的网络设备的结构示意图;
图4为本公开一些实施例的终端设备的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,本公开一些实施例的一种终端节能控制方法,应用于网络设备,包括:
步骤101,发送节能配置参数至终端设备;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
通过步骤101,应用本公开一些实施例的终端节能控制方法的网络设备(如,基站),会将K0、K2、A-CSI-RS triggering offset中的至少两项作为节能配置参数发送至终端设备,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,如此,使得终端设备能够直接由接收到该节能配置参数,及时地切换到对应的能耗模式,实现更有效地节能控制。
还应该知道的是,物理层下行共享信道传输到确认反馈的时隙间隔K1也可作为节能配置参数由网络设备发送至终端设备。而且,K1与K0具有一定 的映射关系(例如,确定K0取值后,则K1的取值就可确定,或者,基站根据业务类型、时延等业务需求配置K0和K1),所以,在该实施例中,不再限定K1。
在该实施例中,为针对当前场景的使用,一方面,可选地,步骤101包括:
根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的至少一项参数等于零;其中,
所述第一预设条件包括以下至少一项:
时延小于预设时延阈值;
服务质量小于预设服务质量阈值;
业务优先级小于预设业务优先级阈值;
业务类型为第一预设类型;
所述第二预设条件包括以下至少一项:
时延大于或等于预设时延阈值;
服务质量大于或等于预设服务质量阈值;
业务优先级大于或等于预设业务优先级阈值;
业务类型为第二预设类型。
这里,应用本公开一些实施例的终端节能控制方法的网络设备会根据终端设备的业务请求,由该业务的需求,进行对应的节能配置参数设置。具体的,该业务的需求可为业务类型、时延需求、服务质量QoS需求、业务优先级QCI需求等。如此,若满足业务类型为第一预设类型(如非即时网络通信),时延小于预设时延阈值,QoS小于预设服务质量阈值或QCI小于预设业务优先级阈值中的至少一项,则可发送各项参数均大于零的节能配置参数至终端设备,以使终端设备从当前能耗模式切换至更小能耗的节能模式;若满足业务类型为第二预设类型(如即时网络通信),时延大于或等于预设时延阈值,QoS大于或等于预设服务质量阈值或QCI大于或等于预设业务优先级阈值中的至少一项,则可发送至少一项参数等于零的节能配置参数至终端设备,以 使终端设备从当前能耗模式切换至更高能耗的模式。其中,针对终端设备上报的业务请求,配置参数基于的业务需求可以网络设备的业务需求,也可以是终端设备的业务需求。
例如,基站配置节能配置参数,可以基于基站的业务类型、时延需求、QoS需求或者QCI指示中的至少一种,可以基于终端设备的业务类型和/或QoS需求。具体的,如果业务对于时延要求不高,或者QoS要求不高,或者QCI不高,配置的节能配置参数中的各项参数均大于零,则终端设备可以切换为更小能耗的节能模式;反之,配置的节能配置参数中至少一项参数等于零,则终端可以更高能耗的模式。其中,若终端设备当前能耗模式是进行PDCCH接收,切换到节能模式,可以是该终端设备关掉部分设备的功耗,可以是该终端设备进入睡眠模式的状态,以降低功耗;切换到更高能耗的模式,可以是接收PDSCH的功耗,或发送PUSCH的功耗,或接收CSI-RS的功耗。
另一方面,步骤101包括:
根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
所述第三预设条件包括以下至少一项:
当前时隙处于信道状态信息测量周期中;
当前时隙处于同步广播信号发送时隙;
当前时隙处于信道跟踪参考信号发送时隙;
当前时隙处于无线资源管理测量周期中;
所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量周期中。
这里,应用本公开一些实施例的终端节能控制方法的网络设备会根据当前时隙状态进行对应的节能配置参数设置。具体的,时隙状态包括是否处于信道状态信息测量CSI周期、是否处于同步广播信号发送时隙、是否处于信道跟踪参考信号TRS发送时隙、是否处于无线资源管理RRM测量周期等。如 此,若当前时隙状态满足处于信道状态信息测量周期中、处于同步广播信号发送时隙、处于信道跟踪参考信号发送时隙或者处于无线资源管理测量周期中的至少一项,则可发送各项参数均等于零的节能配置参数至终端设备,以使终端设备从当前能耗模式切换至更高能耗的模式;若当前时隙状态满足处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量周期中,则可发送各项参数均大于零的节能配置参数至终端设备,以使终端设备从当前能耗模式切换至更小能耗的节能模式。
例如基站配置节能配置参数,基站可以基于CSI测量、RRM测量和信道跟踪。具体的,如果当前时隙为进行周期性CSI和/或RRM测量的时间位置,可以配置节能配置参数各项参数均等于零,如K0=0,K2=0,A-CSI-RS triggering offset=0,以使终端设备从当前能耗模式切换至更高能耗的模式;如果当前时隙没有进行周期性CSI以及RRM测量,且无同步广播信号和信道跟踪参考信号发送,则可配置各项参数均大于零的节能配置参数,如K0>0,K2>0,A-CSI-RS triggering offset>0,以使终端设备从当前能耗模式切换至更小能耗的节能模式。同样的,若终端设备当前能耗模式是进行PDCCH接收,切换到节能模式,可以是该终端设备关掉部分设备的功耗,可以是该终端设备进入睡眠模式的状态,以降低功耗;切换到更高能耗的模式,可以是接收PDSCH的功耗,或发送PUSCH的功耗,或接收CSI-RS的功耗。
在该实施例中,可选地,步骤101包括:
通过无线资源控制信令发送所述节能配置参数;或者
通过物理层下行控制信道信令发送所述节能配置参数;或者
通过媒体接入控制信令发送所述节能配置参数。
如此,配置后的节能配置参数就能够通过无线资源控制RRC信令,或者PDCCH信令,或者媒体接入控制MAC-CE信令发送。当然,具体的承载信令不限于上述内容,还可由其它信令来实现,在此不再一一列举。
另外,由于RRC信令是半静态的,PDCCH信令和MAC-CE信令是动态的,考虑到上述的配置方式,为保证及时的发送节能配置参数,同时避免不必要的信令开销,例如半静态的,如RRC信令,进行基于业务需求而配置的节能 配置参数的发送,例如动态的,如PDCCH信令或者MAC-CE信令,进行基于当前时隙状态而配置的节能配置参数的发送。
此外,还应该知道的是,在该实施例中,因节能配置参数包括K0、K2和A-CSI-RS triggering offset中的至少两项,故,步骤101包括:
将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
如此,对于节能配置参数中的至少两项参数,可通过一个集合发送,当然,也可以将至少两项参数分为多个集合一次或多次发送给终端设备。
一般而言,最晚在基站发送PDCCH后,终端设备就能够获取到节能配置参数中的各项参数,终端设备在获取到节能配置参数的各项参数后,就能够进行对应的能耗模式切换。终端设备后续还能够根据配置,接收CSI-RS、TRS、PDSCH,或发送PUSCH。具体的,PDSCH或PUSCH是按照PDCCH调度信息发送或接收。
综上所述,本公开一些实施例的终端节能控制方法,会将K0、K2、A-CSI-RS triggering offset中的至少两项作为节能配置参数发送至终端设备,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,如此,使得终端设备能够直接由接收到该节能配置参数,及时地切换到对应的能耗模式,实现更有效地节能控制。
如图2所示,本公开的一些实施例提供一种终端节能控制方法,应用于终端设备,包括:
步骤201,接收网络设备发送的节能配置参数;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
通过步骤201,终端设备接收网络设备配置的包括K0、K2、A-CSI-RS  triggering offset中至少两项参数的节能配置参数,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,以便后续能够及时切换到对应的能耗模式,实现更有效地节能控制。
还应该知道的是,物理层下行共享信道传输到确认反馈的时隙间隔K1也可作为节能配置参数由网络设备发送至终端设备。而且,K1与K0具有一定的映射关系(例如,确定K0取值后,则K1的取值就可确定,或者,基站根据业务类型、时延等业务需求配置K0和K1),所以,在该实施例中,不再限定K1。
其中,接收网络设备发送的节能配置参数,包括:
通过无线资源控制信令接收所述节能配置参数;或者
通过物理层下行控制信道信令接收所述节能配置参数;或者
通过媒体接入控制信令接收所述节能配置参数。
这里,将基于网络设备发送节能配置参数的信令,进行对应的接收,如通过RRC信令,或者PDCCH信令,或者MAC-CE信令进行接收。
其中,接收网络设备发送的节能配置参数,包括:
接收通过至少一个集合发送的所述节能配置参数。
在应用于网络设备的方法实施例中,节能配置参数中的至少两项参数,可通过一个集合发送,当然,也可以将至少两项参数分为多个集合一次或多次发送,相应的,终端设备既能够通过一个集合或者多个集合的一次或多次接收,来得到节能配置参数的所有参数项。
应该了解的是,最晚在基站发送PDCCH后,终端设备就能够获取到节能配置参数中的各项参数,终端设备在获取到节能配置参数的各项参数后,就能够进行对应的能耗模式切换。
其中,接收网络设备发送的节能配置参数之后,还包括:
若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
这里,终端设备根据配置的节能配置参数进行能耗模式的切换,在节能 配置参数中的各项参数均大于零的情况,将当前能耗模式切换为能耗更小的第一能耗模式;在节能配置参数中的至少一项参数等于零的情况,将当前能耗模式切换为能耗更大的第二能耗模式。
例如,终端设备当前能耗模式是进行PDCCH接收,切换到第一能耗模式,可以是该终端设备关掉部分设备的功耗,可以是该终端设备进入睡眠模式的状态,以降低功耗;切换到第二能耗模式,可以是接收PDSCH的功耗,或发送PUSCH的功耗,或接收CSI-RS的功耗。
需要说明的是,该方法是与上述应用于网络设备的方法配合实现节能控制的,上述应用于网络设备的方法实施例中,终端设备的实现方式适用于该方法,也能达到相同的技术效果。
如图3所示,本公开的一些实施例提供一种网络设备,包括:收发器310、存储器320、处理器300及存储在所述存储器320上并可在所述处理器300上运行的计算机程序;
所述收发器310用于发送节能配置参数至终端设备;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,所述收发器310还用于:
根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的至少一项参数等于零;其中,
所述第一预设条件包括以下至少一项:
时延小于预设时延阈值;
服务质量小于预设服务质量阈值;
业务优先级小于预设业务优先级阈值;
业务类型为第一预设类型;
所述第二预设条件包括以下至少一项:
时延大于或等于预设时延阈值;
服务质量大于或等于预设服务质量阈值;
业务优先级大于或等于预设业务优先级阈值;
业务类型为第二预设类型。
其中,所述收发器310还用于:
根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
所述第三预设条件包括以下至少一项:
当前时隙处于信道状态信息测量周期中;
当前时隙处于同步广播信号发送时隙;
当前时隙处于信道跟踪参考信号发送时隙;
当前时隙处于无线资源管理测量周期中;
所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量周期中。
其中,所述收发器310还用于:
通过无线资源控制信令发送所述节能配置参数;或者
通过物理层下行控制信道信令发送所述节能配置参数;或者
通过媒体接入控制信令发送所述节能配置参数。
其中,所述收发器310还用于:
将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
其中,收发器310用于在处理器300的控制下接收和发送数据。在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器300代表 的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器300负责管理总线架构和通常的处理,存储器320可以存储处理器300在执行操作时所使用的数据。
处理器300负责管理总线架构和通常的处理,存储器320可以存储处理器300在执行操作时所使用的数据。
该实施例的网络设备,会将K0、K2、A-CSI-RS triggering offset中的至少两项作为节能配置参数发送至终端设备,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,如此,使得终端设备能够直接由接收到该节能配置参数,及时地切换到对应的能耗模式,实现更有效地节能控制。
如图4所示,本公开的一些实施例提供一种终端设备,包括:收发器410、存储器420、处理器400及存储在所述存储器420上并可在所述处理器400上运行的计算机程序;
所述收发器410用于接收网络设备发送的节能配置参数;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,所述收发器410还用于:
通过无线资源控制信令接收所述节能配置参数;或者
通过物理层下行控制信道信令接收所述节能配置参数;或者
通过媒体接入控制信令接收所述节能配置参数。
其中,所述收发器410还用于:
接收通过至少一个集合发送的所述节能配置参数。
其中,所述处理器400用于:
若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
其中,收发器410用于在处理器400的控制下接收和发送数据。在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器400代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器410可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器400负责管理总线架构和通常的处理,存储器420可以存储处理器400在执行操作时所使用的数据。
该实施例的终端设备,接收网络设备配置的包括K0、K2、A-CSI-RS triggering offset中至少两项参数的节能配置参数,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,以便后续能够及时切换到对应的能耗模式,实现更有效地节能控制。
本公开的一些实施例提供一种终端节能控制装置,包括:
发送模块,用于发送节能配置参数至终端设备;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,所述发送模块还用于:
根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的至少一项参数等于零;其中,
所述第一预设条件包括以下至少一项:
时延小于预设时延阈值;
服务质量小于预设服务质量阈值;
业务优先级小于预设业务优先级阈值;
业务类型为第一预设类型;
所述第二预设条件包括以下至少一项:
时延大于或等于预设时延阈值;
服务质量大于或等于预设服务质量阈值;
业务优先级大于或等于预设业务优先级阈值;
业务类型为第二预设类型。
其中,所述发送模块还用于:
根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
所述第三预设条件包括以下至少一项:
当前时隙处于信道状态信息测量周期中;
当前时隙处于同步广播信号发送时隙;
当前时隙处于信道跟踪参考信号发送时隙;
当前时隙处于无线资源管理测量周期中;
所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量 周期中。
其中,所述发送模块还用于:
通过无线资源控制信令发送所述节能配置参数;或者
通过物理层下行控制信道信令发送所述节能配置参数;或者
通过媒体接入控制信令发送所述节能配置参数。
其中,所述发送模块还用于:
将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
该装置会将K0、K2、A-CSI-RS triggering offset中的至少两项作为节能配置参数发送至终端设备,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,如此,使得终端设备能够直接由接收到该节能配置参数,及时地切换到对应的能耗模式,实现更有效地节能控制。
需要说明的是,该装置是应用了上述应用于网络设备的终端节能控制方法的装置,上述应用于网络设备的终端节能控制方法的实施例的实现方式适用于该装置也能达到相同的技术效果。
本公开的一些实施例提供一种终端节能控制装置,包括:
接收模块,用于接收网络设备发送的节能配置参数;其中,
所述节能配置参数包括以下参数中的至少两项:
物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
所述节能配置参数中的各项参数均大于零;或者,
所述节能配置参数中的至少一项参数等于零。
其中,所述接收模块还用于:
通过无线资源控制信令接收所述节能配置参数;或者
通过物理层下行控制信道信令接收所述节能配置参数;或者
通过媒体接入控制信令接收所述节能配置参数。
其中,所述接收模块还用于:
接收通过至少一个集合发送的所述节能配置参数。
其中,所述装置还包括:
第一处理模块,用于若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
第二处理模块,用于若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
该装置接收网络设备配置的包括K0、K2、A-CSI-RS triggering offset中至少两项参数的节能配置参数,而且在该节能配置参数中,各项参数均大于零或者至少一项参数等于零,以便后续能够及时切换到对应的能耗模式,实现更有效地节能控制。
需要说明的是,该装置是应用了上述应用于终端设备的终端节能控制方法的装置,上述应用于终端设备的终端节能控制方法的实施例的实现方式适用于该装置也能达到相同的技术效果。
本公开的一些实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上应用于网络设备的终端节能控制方法中的步骤。
本公开的一些实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上应用于终端设备的终端节能控制方法中的步骤。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的 信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
进一步需要说明的是,此说明书中所描述的许多功能部件都被称为模块,以便更加特别地强调其实现方式的独立性。
本公开一些实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到相关技术中的硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的相关技术中的半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
上述范例性实施例是参考该些附图来描述的,许多不同的形式和实施例是可行而不偏离本公开精神及教示,因此,本公开不应被建构成为在此所提出范例性实施例的限制。更确切地说,这些范例性实施例被提供以使得本公开会是完善又完整,且会将本公开范围传达给那些熟知此项技术的人士。在该些图式中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定范例性实施例目的,并无意成为限制用。如在此所使用地,除非该内文清楚地另有所指,否则该单数形式“一”、“一个”和“该” 是意欲将该些多个形式也纳入。会进一步了解到该些术语“包含”及/或“包括”在使用于本说明书时,表示所述特征、整数、步骤、操作、构件及/或组件的存在,但不排除一或更多其它特征、整数、步骤、操作、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,一值范围包含该范围的上下限及其间的任何子范围。
以上所述是本公开的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (22)

  1. 一种终端节能控制方法,应用于网络设备,包括:
    发送节能配置参数至终端设备;其中,
    所述节能配置参数包括以下参数中的至少两项:
    物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
    所述节能配置参数中的各项参数均大于零;或者,
    所述节能配置参数中的至少一项参数等于零。
  2. 根据权利要求1所述的方法,其中,发送节能配置参数至终端设备,包括:
    根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的至少一项参数等于零;其中,
    所述第一预设条件包括以下至少一项:
    时延小于预设时延阈值;
    服务质量小于预设服务质量阈值;
    业务优先级小于预设业务优先级阈值;
    业务类型为第一预设类型;
    所述第二预设条件包括以下至少一项:
    时延大于或等于预设时延阈值;
    服务质量大于或等于预设服务质量阈值;
    业务优先级大于或等于预设业务优先级阈值;
    业务类型为第二预设类型。
  3. 根据权利要求1所述的方法,其中,发送节能配置参数至终端设备,包括:
    根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
    所述第三预设条件包括以下至少一项:
    当前时隙处于信道状态信息测量周期中;
    当前时隙处于同步广播信号发送时隙;
    当前时隙处于信道跟踪参考信号发送时隙;
    当前时隙处于无线资源管理测量周期中;
    所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量周期中。
  4. 根据权利要求1至3任一项所述的方法,其中,发送节能配置参数至终端设备,包括:
    通过无线资源控制信令发送所述节能配置参数;或者
    通过物理层下行控制信道信令发送所述节能配置参数;或者
    通过媒体接入控制信令发送所述节能配置参数。
  5. 根据权利要求1至3任一项所述的方法,其中,发送节能配置参数至终端设备,包括:
    将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
  6. 一种终端节能控制方法,应用于终端设备,包括:
    接收网络设备发送的节能配置参数;其中,
    所述节能配置参数包括以下参数中的至少两项:
    物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
    所述节能配置参数中的各项参数均大于零;或者,
    所述节能配置参数中的至少一项参数等于零。
  7. 根据权利要求6所述的方法,其中,接收网络设备发送的节能配置参数,包括:
    通过无线资源控制信令接收所述节能配置参数;或者
    通过物理层下行控制信道信令接收所述节能配置参数;或者
    通过媒体接入控制信令接收所述节能配置参数。
  8. 根据权利要求6或7所述的方法,其中,接收网络设备发送的节能配置参数,包括:
    接收通过至少一个集合发送的所述节能配置参数。
  9. 根据权利要求6所述的方法,其中,接收网络设备发送的节能配置参数之后,还包括:
    若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
    若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
  10. 一种网络设备,包括:收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述收发器用于发送节能配置参数至终端设备;其中,
    所述节能配置参数包括以下参数中的至少两项:
    物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
    所述节能配置参数中的各项参数均大于零;或者,
    所述节能配置参数中的至少一项参数等于零。
  11. 根据权利要求10所述的网络设备,其中,所述收发器还用于:
    根据终端设备上报的业务请求,若所述业务的需求满足第一预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;若所述业务的需求满足第二预设条件,则发送节能配置参数至终端设备,所 述节能配置参数中的至少一项参数等于零;其中,
    所述第一预设条件包括以下至少一项:
    时延小于预设时延阈值;
    服务质量小于预设服务质量阈值;
    业务优先级小于预设业务优先级阈值;
    业务类型为第一预设类型;
    所述第二预设条件包括以下至少一项:
    时延大于或等于预设时延阈值;
    服务质量大于或等于预设服务质量阈值;
    业务优先级大于或等于预设业务优先级阈值;
    业务类型为第二预设类型。
  12. 根据权利要求10所述的网络设备,其中,所述收发器还用于:
    根据当前时隙状态,若所述当前时隙状态满足第三预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均等于零;若所述信道状态满足第四预设条件,则发送节能配置参数至终端设备,所述节能配置参数中的各项参数均大于零;其中,
    所述第三预设条件包括以下至少一项:
    当前时隙处于信道状态信息测量周期中;
    当前时隙处于同步广播信号发送时隙;
    当前时隙处于发送时隙;
    当前时隙处于无线资源管理测量周期中;
    所述第四预设条件为:当前时隙处于非信道状态信息测量周期、非同步广播信号发送时隙、非信道跟踪参考信号发送时隙以及非无线资源管理测量周期中。
  13. 根据权利要求10至12任一项所述的网络设备,其中,所述收发器还用于:
    通过无线资源控制信令发送所述节能配置参数;或者
    通过物理层下行控制信道信令发送所述节能配置参数;或者
    通过媒体接入控制信令发送所述节能配置参数。
  14. 根据权利要求10至12任一项所述的网络设备,其中,所述收发器还用于:
    将所述节能配置参数中的各项参数通过至少一个集合发送至所述终端设备。
  15. 一种终端设备,包括:收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述收发器用于接收网络设备发送的节能配置参数;其中,
    所述节能配置参数包括以下参数中的至少两项:
    物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
    所述节能配置参数中的各项参数均大于零;或者,
    所述节能配置参数中的至少一项参数等于零。
  16. 根据权利要求15所述的终端设备,其中,所述收发器还用于:
    通过无线资源控制信令接收所述节能配置参数;或者
    通过物理层下行控制信道信令接收所述节能配置参数;或者
    通过媒体接入控制信令接收所述节能配置参数。
  17. 根据权利要求15或16所述的终端设备,其中,所述收发器还用于:
    接收通过至少一个集合发送的所述节能配置参数。
  18. 根据权利要求15所述的终端设备,其中,所述处理器用于:
    若所述节能配置参数中的各项参数均大于零,则将当前能耗模式切换为第一能耗模式,所述第一能耗模式的能耗小于所述当前能耗模式的能耗;
    若所述节能配置参数中的至少一项参数等于零,则将当前能耗模式切换为第二能耗模式,所述第二能耗模式的能耗大于所述当前能耗模式的能耗。
  19. 一种终端节能控制装置,包括:
    发送模块,用于发送节能配置参数至终端设备;其中,
    所述节能配置参数包括以下参数中的至少两项:
    物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物 理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输触发的时隙间隔A-CSI-RS triggering offset;且
    所述节能配置参数中的各项参数均大于零;或者,
    所述节能配置参数中的至少一项参数等于零。
  20. 一种终端节能控制装置,包括:
    接收模块,用于接收网络设备发送的节能配置参数;其中,
    所述节能配置参数包括以下参数中的至少两项:
    物理层下行控制信道传输到物理层下行共享信道传输的时隙间隔K0,物理层下行控制信道传输到物理层上行共享信道传输的时隙间隔K2,以及物理层下行控制信道传输到非周期信道状态指示参考信号传输的时隙间隔A-CSI-RS triggering offset;且
    所述节能配置参数中的各项参数均大于零;或者,
    所述节能配置参数中的至少一项参数等于零。
  21. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述的终端节能控制方法中的步骤。
  22. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求6至9任一项所述的终端节能控制方法中的步骤。
PCT/CN2019/124502 2018-12-20 2019-12-11 终端节能控制方法、装置及设备 WO2020125509A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217022104A KR102541273B1 (ko) 2018-12-20 2019-12-11 단말 에너지 절약 제어 방법, 장치 및 기기
US17/416,387 US20220060989A1 (en) 2018-12-20 2019-12-11 Terminal energy-saving control method, apparatus and device
EP19900678.4A EP3902315A4 (en) 2018-12-20 2019-12-11 METHOD, DEVICE AND DEVICE FOR ENERGY-SAVING CONTROL OF TERMINALS
JP2021535976A JP7386248B2 (ja) 2018-12-20 2019-12-11 端末省エネ制御方法、装置及び機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811564810.4A CN111356211B (zh) 2018-12-20 2018-12-20 一种终端节能控制方法、装置及设备
CN201811564810.4 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020125509A1 true WO2020125509A1 (zh) 2020-06-25

Family

ID=71102027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124502 WO2020125509A1 (zh) 2018-12-20 2019-12-11 终端节能控制方法、装置及设备

Country Status (6)

Country Link
US (1) US20220060989A1 (zh)
EP (1) EP3902315A4 (zh)
JP (1) JP7386248B2 (zh)
KR (1) KR102541273B1 (zh)
CN (1) CN111356211B (zh)
WO (1) WO2020125509A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316234A (zh) * 2021-05-28 2021-08-27 Oppo广东移动通信有限公司 Srs的发送方法及终端设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601370B (zh) * 2019-05-10 2021-03-23 维沃移动通信有限公司 信息确定方法及用户设备
CN113939027A (zh) * 2020-07-14 2022-01-14 青岛海信电子产业控股股份有限公司 一种无线通信方法、网络侧设备及用户设备
CN115499090B (zh) * 2021-06-18 2024-05-03 大唐移动通信设备有限公司 在通道节能下提升下行译码性能的方法及网络设备
WO2024031443A1 (zh) * 2022-08-10 2024-02-15 富士通株式会社 信息指示、信息接收装置以及方法
WO2024035208A1 (en) * 2022-08-12 2024-02-15 Samsung Electronics Co., Ltd. Methods and systems for saving network energy in spatial domain using adaptation information
KR20240041641A (ko) * 2022-09-23 2024-04-01 삼성전자주식회사 무선 통신 시스템의 에너지 세이빙을 위한 방법 및 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945447A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
WO2014165400A1 (en) * 2013-04-05 2014-10-09 Qualcom Incorporated Control channel overhead assumptions for deriving csi feedback
CN108365928A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 配置信息的发送方法、控制信道资源的检测方法和装置
CN108737311A (zh) * 2017-04-17 2018-11-02 北京三星通信技术研究有限公司 上行控制信息传输的方法及用户设备
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
WO2018222001A2 (ko) * 2017-06-02 2018-12-06 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018222099A1 (en) * 2017-06-02 2018-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Size indication for feedback signaling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921067B2 (ja) * 2007-09-28 2016-05-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ネットワークにおいてデータを送信するための方法
EP2919534B1 (en) * 2014-03-12 2019-03-06 Panasonic Intellectual Property Corporation of America Power headroom reporting for MTC devices in enhanced coverage mode
JP2015149760A (ja) * 2015-04-02 2015-08-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信システムにおけるシステムスループットに対する電力の優先順位付け
US10412669B2 (en) * 2016-03-14 2019-09-10 Apple Inc. Low power cellular modem system architecture
JP6596463B2 (ja) * 2016-05-12 2019-10-23 華碩電腦股▲ふん▼有限公司 無線通信システムにおいて短縮された送信時間間隔の中での制御チャネル構造を改良する方法及び装置
US10477475B2 (en) * 2017-03-23 2019-11-12 Apple Inc. Control indicator for power saving in a mobile wireless communication device
CA3061750C (en) * 2017-05-04 2020-07-14 Ofinno, Llc Semi-persistent scheduling in a wireless network
CN109150456B (zh) * 2017-06-16 2023-05-12 华为技术有限公司 一种无线通信方法和设备
WO2019031882A1 (en) * 2017-08-10 2019-02-14 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CONTROLLING TRANSMISSION POWER OF TERMINAL IN MOBILE COMMUNICATION SYSTEM
US10798774B2 (en) * 2017-09-20 2020-10-06 Qualcomm Incorporated Techniques and apparatuses for bandwidth part wake-up signaling
US10694536B2 (en) * 2017-12-04 2020-06-23 Qualcomm Incorporated Dynamic downlink control information timing indications in new radio
JP7332685B2 (ja) * 2018-08-21 2023-08-23 アイディーエーシー ホールディングス インコーポレイテッド ワイヤレス送信/受信ユニット(wtru)の電力制御のための方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945447A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
WO2014165400A1 (en) * 2013-04-05 2014-10-09 Qualcom Incorporated Control channel overhead assumptions for deriving csi feedback
CN108365928A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 配置信息的发送方法、控制信道资源的检测方法和装置
CN108737311A (zh) * 2017-04-17 2018-11-02 北京三星通信技术研究有限公司 上行控制信息传输的方法及用户设备
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
WO2018222001A2 (ko) * 2017-06-02 2018-12-06 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018222099A1 (en) * 2017-06-02 2018-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Size indication for feedback signaling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902315A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316234A (zh) * 2021-05-28 2021-08-27 Oppo广东移动通信有限公司 Srs的发送方法及终端设备

Also Published As

Publication number Publication date
EP3902315A4 (en) 2022-03-09
JP2022514902A (ja) 2022-02-16
CN111356211B (zh) 2021-07-13
EP3902315A1 (en) 2021-10-27
KR20210100721A (ko) 2021-08-17
KR102541273B1 (ko) 2023-06-08
CN111356211A (zh) 2020-06-30
JP7386248B2 (ja) 2023-11-24
US20220060989A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
WO2020125509A1 (zh) 终端节能控制方法、装置及设备
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
US11903010B2 (en) Sidelink quality measurement method and communications apparatus
WO2020164613A1 (zh) 中继通信的方法和装置
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
WO2020248825A1 (zh) 确定天线面板状态的方法和装置
WO2020221111A1 (zh) 一种调度切换方法及装置
WO2020233717A1 (zh) 一种上行harq传输方法及通信装置
TW202019213A (zh) 傳輸訊號的方法、網路設備及終端設備
WO2021022894A1 (zh) 一种天线面板状态的通知方法、设备、芯片及存储介质
JP6685295B2 (ja) 基地局
WO2021056460A1 (zh) 一种测量管理方法及装置、通信设备
JP6397059B2 (ja) ユーザ装置及び基地局
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
CN110611938A (zh) 通信方法和装置
WO2023143272A1 (zh) 网络节能方法、装置、设备及存储介质
WO2016180463A1 (en) Methods and apparatusses for enabling/disabling a drx mode
WO2021114206A1 (zh) 一种cli测量的方法及装置、终端设备、网络设备
WO2021062836A1 (zh) 功率调整方法及装置
WO2019242570A1 (zh) 通信方法和装置
WO2019120221A1 (zh) 一种通过pdsch传输无线信号的方法及装置
CN109756935B (zh) 一种调整工作带宽的方法和装置
WO2021228117A1 (zh) 资源确定方法及装置
WO2021159398A1 (zh) 波束失败恢复的方法和装置
WO2014032724A1 (en) Scheduling wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217022104

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019900678

Country of ref document: EP

Effective date: 20210720