WO2021228117A1 - 资源确定方法及装置 - Google Patents

资源确定方法及装置 Download PDF

Info

Publication number
WO2021228117A1
WO2021228117A1 PCT/CN2021/093225 CN2021093225W WO2021228117A1 WO 2021228117 A1 WO2021228117 A1 WO 2021228117A1 CN 2021093225 W CN2021093225 W CN 2021093225W WO 2021228117 A1 WO2021228117 A1 WO 2021228117A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
frequency
terminal device
indication information
Prior art date
Application number
PCT/CN2021/093225
Other languages
English (en)
French (fr)
Inventor
温容慧
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022569036A priority Critical patent/JP2023524891A/ja
Priority to EP21804449.3A priority patent/EP4142400A4/en
Publication of WO2021228117A1 publication Critical patent/WO2021228117A1/zh
Priority to US17/986,481 priority patent/US20230081073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present invention relates to the field of communication technology, in particular to a method and device for determining resources.
  • UE User Equipment
  • REDCAP UE reduced-capability UE
  • the bandwidth supported by REDCAP UE is limited, and it may only be possible to transmit data within the 20/10/5MHz bandwidth. If the current frequency domain resources have serious interference (such as interference from neighboring cells) or frequency domain resources are tight (there are many REDCAP UEs) All receive services on the frequency domain resource), the base station can switch the frequency domain resources of the REDCAP UE to other frequency domain resources to avoid interference or achieve load balancing.
  • the frequency domain resource switching of the base station to the traditional UE needs to be implemented through partial bandwidth (bandwidth part, BWP) switching.
  • BWP handover process requires a certain handover delay, and the REDCAP UE does not send and receive data during the BWP handover process. If the base station also switches the frequency domain resources of the REDCAP UE through the BWP handover, it will affect the communication process of the REDCAP UE, resulting in low REDCAP UE communication efficiency.
  • this application provides a method for determining resources.
  • the execution subject of the method may be a terminal device or a chip applied to the terminal device.
  • the following describes an example where the execution subject is a terminal device.
  • the terminal device receives first indication information, the first indication information instructs the terminal device to determine frequency domain resources in a first manner, and the first manner includes frequency domain resource switching, frequency domain resource tuning, frequency hopping, method A, and/or One of the methods B, wherein the method A includes the frequency domain resource switching and the frequency hopping, and the method B includes the frequency domain resource tuning and the frequency hopping; the terminal device is in the Communicate with network equipment on the determined frequency domain resources.
  • the frequency domain resource change time corresponding to the frequency domain resource switching is greater than the frequency domain resource change time corresponding to the frequency domain resource tuning.
  • the present application provides a method for determining resources.
  • the execution subject of the method may be a network device or a chip applied to the network device.
  • the following description will be made by taking a network device as the execution subject as an example.
  • the network device sends first indication information, the first indication information instructs the terminal device to determine frequency domain resources in a first manner, and the first manner includes frequency domain resource switching, frequency domain resource tuning, frequency hopping, method A, and/or One of the methods B, wherein the method A includes the frequency domain resource switching and the frequency hopping, and the method B includes the frequency domain resource tuning and the frequency hopping; on the frequency domain resource Communicate with terminal equipment.
  • the first indication information instructs the terminal device to determine the frequency domain resource in the first manner, and can obtain a change mode adapted to the current frequency domain resource change demand, rather than simply performing BWP switching improves the flexibility of the terminal equipment to change frequency domain resources; at the same time, the terminal equipment changes frequency domain resources based on the adaptive change method, which can quickly change frequency domain resources and reduce the time delay of frequency domain resource changes , Improve the communication efficiency. For example, if the terminal device currently needs to transmit data urgently, the terminal device can be instructed to change the frequency domain resource through frequency domain resource tuning.
  • the terminal device can quickly complete the frequency domain resource change to meet the transmission demand; if the terminal device is not eager for data transmission needs, for example, the terminal device changes the frequency domain resource only to perform downlink channel monitoring, then the terminal device can be instructed Frequency-domain resource switching is performed through frequency-domain resource switching to meet data transmission requirements.
  • the first indication information is downlink control information DCI.
  • the first indication information instructing the terminal device to determine the frequency domain resource in the first manner includes: the first indication information is used to indicate a first time length, and according to the first time length And the first threshold value instructs the terminal device to determine the frequency domain resource in the first manner.
  • the first indication information is DCI
  • the indication field corresponding to the first time length is already included in the DCI, so the change mode can be indicated through the existing field in the DCI. There is no need to add new fields in the DCI, which further reduces signaling overhead.
  • the first indication information is used to indicate the parameter of the frequency domain resource
  • the parameter of the frequency domain resource indicates that the terminal device determines according to the first manner Frequency domain resources. It can be seen that the terminal device can determine the frequency domain resource according to the first method. For example, when the first method is frequency domain resource tuning, it can quickly communicate with the network device on the determined frequency domain resource, reducing handover time. Delay, improve communication efficiency.
  • the parameter of the frequency domain resource is the index of the second frequency domain resource; or is the indication information of the location of the second frequency domain resource; or
  • the parameter is the frequency hopping interval, and the frequency hopping interval is used to indicate frequency hopping in the first frequency domain resource where the terminal device is located before the frequency domain resource is determined by the first method; or the change method includes the method A, so
  • the parameters of the frequency domain resource are the index of the frequency domain resource and the frequency hopping interval, and the frequency hopping interval is used to indicate frequency hopping within the frequency domain resource; or the change mode includes the mode B, so
  • the parameters of the frequency domain resource are indication information of the location of the frequency domain resource and a frequency hopping interval, and the frequency hopping interval is used to indicate frequency hopping within the frequency domain resource.
  • the frequency domain resource includes at least one of the following: a partial bandwidth BWP, a carrier, a subcarrier, or a subband.
  • the frequency domain resource change time corresponding to the frequency domain resource switching includes the time required to change the frequency domain resource and the radio resource control RRC reconfiguration time; and/ Or the frequency domain resource change time corresponding to the frequency domain resource tuning includes the time required to change the frequency domain resource.
  • the frequency domain resource change time corresponding to frequency domain resource tuning is shorter than the frequency domain resource switching.
  • the frequency domain resource can be changed through frequency domain resource tuning, which can quickly change the frequency domain resource and reduce the handover delay.
  • a communication device in a third aspect, is provided, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the communication device has a function of realizing the behavior in the method example of the first aspect described above.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver module, configured to receive first indication information, the first indication information instructing the terminal device to determine frequency domain resources in a first manner, and the first manner includes frequency domain One of resource switching, frequency domain resource tuning, frequency hopping, mode A and/or mode B, wherein the mode A includes the frequency domain resource switching and the frequency hopping, and the mode B includes the frequency Domain resource tuning and the frequency hopping; the processing module is used to communicate with the network device on the determined frequency domain resource.
  • These modules can perform the corresponding functions in the above-mentioned method examples of the first aspect. For details, please refer to the detailed description in the method examples, which will not be repeated here.
  • a communication device in a fourth aspect, is provided, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the second aspect described above.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver module, configured to send first indication information, the first indication information instructing the terminal device to determine frequency domain resources in a first manner, and the first manner includes frequency domain One of resource switching, frequency domain resource tuning, frequency hopping, mode A and/or mode B, wherein the mode A includes the frequency domain resource switching and the frequency hopping, and the mode B includes the frequency Domain resource tuning and the frequency hopping; a processing module for communicating with the terminal device on the frequency domain resource.
  • These modules can perform the corresponding functions in the above-mentioned method example of the second aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a communication device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the terminal device in the foregoing method embodiment.
  • a communication device may be the network device in the foregoing method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the network device in the foregoing method embodiment.
  • a computer program product includes: computer program code, which when the computer program code is running, causes the methods executed by the terminal device in the above aspects to be executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method executed by the network device in the above aspects is executed.
  • the present application provides a chip system, which includes a processor, configured to implement the functions of the terminal device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor, and is configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the network device in the above aspects is implemented.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a frequency domain resource change method provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a frequency domain resource switching provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of frequency domain resource tuning provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of frequency hopping provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a first modification manner provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a second modification manner according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 1 it is a schematic diagram of a possible network architecture to which the embodiments of this application are applicable, including a terminal device 110 and a network device 120.
  • the terminal device 110 and the network device 120 can communicate through the Uu air interface, and the Uu air interface can be understood as a universal UE to network interface.
  • Uu air interface transmission includes uplink transmission and downlink transmission.
  • uplink transmission refers to the terminal device 110 sending uplink information to the network device 120.
  • the uplink information may include one or more of uplink data information, uplink control information, and reference signal (RS).
  • the channel used to transmit uplink information is called an uplink channel, and the uplink channel may be a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • the PUSCH is used to carry uplink data, and the uplink data may also be referred to as uplink data information.
  • the PUCCH is used to carry the uplink control information (uplink control information, UCI) fed back by the terminal device.
  • UCI may include channel state information (channel state information, CSI), acknowledgement (acknowledgement, ACK)/negative acknowledgement (negative acknowledgement, NACK), etc.
  • downlink transmission refers to the network device 120 sending downlink information to the terminal device 110.
  • the downlink information may include one or more of downlink data information, downlink control information, and downlink reference signals.
  • the downlink reference signal may be a channel state information reference signal (CSI-RS) or a phase tracking reference signal (PTRS).
  • the channel used to transmit downlink information is called a downlink channel, and the downlink channel may be a physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH).
  • the PDCCH is used to carry downlink control information (DCI)
  • the PDSCH is used to carry downlink data
  • the downlink data may also be referred to as downlink data information.
  • a core network device 130 may also be included.
  • the terminal device 110 may be connected to the network device 120 in a wireless manner, and the network device 120 may be connected to the core network device 130 in a wired or wireless manner.
  • the core network device 130 and the network device 120 may be separate and different physical devices, or the core network device 130 and the network device 120 may be the same physical device, and all of the core network device 130 and the network device 120 are integrated on the physical device / Part of the logic function.
  • the terminal device 110 may be a fixed location or may be movable, which is not limited.
  • the network architecture shown in FIG. 1 may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not limited.
  • the number of terminal equipment, network equipment, and core network equipment is not limited.
  • LTE long term evolution
  • 5G fifth generation
  • future mobile communication systems For example, long term evolution (LTE) systems, fifth generation (5G) mobile communication systems, and future mobile communication systems.
  • LTE long term evolution
  • 5G fifth generation
  • future mobile communication systems For example, long term evolution (LTE) systems, fifth generation (5G) mobile communication systems, and future mobile communication systems.
  • the network device 120 involved in the embodiment of the present application may be an access network (Access network, AN) device.
  • the access network device may refer to a device in the access network that communicates with wireless user equipment through one or more cells on the air interface, such as a base station NodeB (for example, an access point), and the NodeB can be used to connect the received air frame with the wireless user equipment.
  • IP Internet Protocol
  • the NodeB may be an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution (LTE) system or an advanced long term evolution (LTE-A). Or, it may also include the new air interface network equipment gNB in the 5th generation (5G) NR system of mobile communication technology.
  • the access network device may also be a vehicle to everything (V2X) technology.
  • the network device is a road side unit (RSU).
  • the RSU may be a fixed infrastructure entity supporting V2X applications, and may exchange messages with other entities supporting V2X applications.
  • the access network equipment may also include a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (CloudRAN) system. In this case, the access The network equipment coordinates the attribute management of the air interface.
  • the embodiments of this application do not limit the access network equipment.
  • the terminal device 110 involved in the embodiment of the present application refers to a device with low device complexity for industrial wireless sensing, video surveillance, and wearable devices, that is, REDCAP UE.
  • REDCAP UE may have the following characteristics: the number of transmitting and receiving antennas is reduced; UE bandwidth is reduced; half-duplex frequency division duplex FDD; UE processing time is relaxed; UE processing capability is reduced.
  • REDCAP UE can also be divided into multiple sub-types. For example, according to application scenarios, REDCAP UE can be subdivided into industrial wireless sensors (IWSN), video surveillance, wearable devices, and so on.
  • IWSN industrial wireless sensors
  • REDCAP UE can also be subdivided into multiple sub-types according to the REDCAP UE's bandwidth, modulation order, peak rate and other standards. This application does not limit the way of classification into sub-types.
  • the REDCAP UE can also be subdivided into multiple types according to the capabilities and factors such as the bandwidth of the REDCAP UE.
  • receiver-bandwidth adaptation In the NR standard design, a new technology is introduced, receiver-bandwidth adaptation.
  • the terminal device Through the receiving bandwidth adaptive technology, the terminal device only monitors the downlink control channel on a smaller bandwidth and receives a small amount of downlink data transmission.
  • the terminal device When the terminal device has a large amount of data reception or the current bandwidth interference is serious, then Need to switch bandwidth, that is, BWP switch.
  • the base station needs to configure multiple BWPs for the terminal device in advance, the multiple BWPs are indicated by BWP indication information, and the number of bits in the indication field corresponding to the BWP indication information is determined by the number of BWPs configured by the base station for the terminal device . Exemplarily, if the number of BWPs configured by the base station for the terminal device is four, the size of the indication field corresponding to the BWP indication information is 2 bits.
  • the base station will send downlink control information (DCI) to the terminal device.
  • the DCI includes the target BWP index (index), and the terminal device is instructed to switch from the currently used BWP through the DCI. Switch to the target BWP corresponding to the index to use the target BWP to communicate with the base station.
  • DCI downlink control information
  • the value range of the BWP handover delay is: 0.75ms ⁇ 3ms, which is much longer than the frequency domain tuning (retuning) time, mainly because the process of BWP handover also requires RRC reconfiguration. . Therefore, the BWP handover delay also includes the RRC reconfiguration time.
  • REDCAP UE Due to the limited bandwidth supported by REDCAP UE, it may only be able to transmit within the 20/10/5MHz bandwidth. If the current frequency domain resources for data transmission have serious interference (such as interference from neighboring cells) or resource constraints (there are many REDCAPs) The UE receives services on the frequency domain resource), the frequency domain resource of the REDCAP UE needs to be switched. If the base station also uses the BWP handover technology to switch the frequency domain resource of the REDCAP UE, there will be a long handover Time delay affects the communication process of REDCAP UE, resulting in low communication efficiency of REDCAP UE.
  • the frequency domain resources mentioned in the embodiments of the present application include at least one of the following: BWP, carrier, subcarrier, and subband.
  • BWP frequency domain resource
  • This application mainly takes the frequency domain resource as the BWP as an example to describe the frequency domain resource change process in detail, and the change process of other frequency domain resources is similar to changing the BWP and will not be described in detail. Therefore, the frequency domain resources mentioned later can also be referred to as BWP.
  • the length of time required for frequency resource tuning is different from the length of time required for frequency resource switching.
  • the time length may be a guard period (guard period), a guard interval, a maximum guard period, a maximum guard interval, a minimum guard period, or a minimum guard interval.
  • the length of time required for frequency resource tuning is less than the length of time required for frequency resource switching.
  • the network device 120 sends first instruction information to the terminal device 110, where the first instruction information is used to instruct the terminal device to determine frequency domain resources in a first manner, and the first manner includes frequency domain resource switching, frequency domain resource tuning, frequency hopping, One of mode A and/or mode B, wherein the mode A includes the frequency domain resource switching and the frequency hopping, and the mode B includes the frequency domain resource tuning and the frequency hopping; the terminal device 110 is in the determined frequency domain resource Communicate with network equipment on the computer.
  • the frequency domain resource switch may be a BWP switch.
  • the frequency domain resource needs to be changed first, and then RRC reconfiguration is performed. Therefore, the frequency domain resource change time corresponding to the frequency domain resource switching includes the time required to change the frequency domain resource, that is, the frequency domain tuning time and the RRC reconfiguration time.
  • the frequency domain resource tuning refers to tuning frequency domain resources, for example, tuning from a first frequency domain resource to a second frequency domain resource does not require RRC reconfiguration, and the terminal device 110 still uses the first frequency domain resource Corresponding link parameters for data transmission. Therefore, the frequency domain resource change time corresponding to the frequency domain resource tuning only includes the frequency domain tuning time. Therefore, the frequency domain resource change time corresponding to the frequency domain resource tuning is less than the frequency domain resource change time corresponding to frequency domain resource switching.
  • the network device 120 instructs the terminal device to determine the frequency domain resource in the first manner through the first indication information, so that the terminal device 110 determines the frequency domain resource in a manner adapted to the current frequency domain resource change.
  • the terminal device 110 can quickly change the frequency domain resource according to the current transmission demand, which reduces the time delay of the frequency domain resource change and improves the communication efficiency.
  • the network device can instruct the terminal device to change the frequency domain resource through frequency domain resource tuning. Therefore, the terminal device can quickly complete the frequency domain resource change, reduce the handover delay, and meet the transmission requirements. Demand to improve communication efficiency.
  • FIG. 2 is a schematic flowchart of a method for determining a resource according to an embodiment of the application. The method includes but is not limited to the following steps:
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information.
  • the first message instructs the terminal device to determine the frequency domain resource in the first manner.
  • the first method includes one of frequency domain resource switching, frequency domain resource tuning, frequency hopping, method A and/or method B, wherein the method A includes the frequency domain resource switching and the frequency hopping, and the method B includes The frequency domain resource tuning and the frequency hopping.
  • the frequency domain resource change time corresponding to the frequency domain resource tuning only includes the frequency domain tuning time corresponding to the terminal device.
  • the frequency domain tuning time is related to the type of the terminal device.
  • the frequency domain tuning time can be 2 symbols, 140us.
  • the first indication information may be an existing signaling message or a new signaling message, which is not limited in this application.
  • the first indication information may be DCI.
  • the network device may indicate the first mode through a newly added field in the DCI, or may indicate the first mode through an existing field in the DCI, which is not limited in this application.
  • three newly added bits in the DCI may be used to instruct the terminal device to determine the frequency domain resource according to the first method.
  • 001 is used to indicate that the first mode is frequency domain resource switching
  • 010 is used to indicate the first mode is frequency domain resource tuning
  • 011 is used to indicate that the first mode is frequency hopping
  • 100 is used to indicate that the first mode is mode A
  • 101 It is used to indicate that the first mode is mode B; in addition, 000, 110, and 111 are reserved so that when there are new frequency domain resource change modes in the future, 000, 110, and 111 can be used for indication.
  • the first mode when the first mode is indicated by an existing field in the DCI, the first mode may be indicated by the first time length included in the DCI.
  • the first time length may be the time required for the terminal device to change the frequency domain resource.
  • the first method is determined to be frequency domain resource switching, and when the first time length is less than the first threshold value, the first method is determined
  • One way is frequency domain resource tuning. That is, if the network device can use the first time length in the DCI to instruct the terminal device to determine the frequency domain resource in the first manner.
  • the first time length can be implemented by a timer, or it can be a time length specified by the protocol. In this way, there is no need to amplify the DCI field, which reduces the signaling overhead.
  • the first threshold value may include one of the following: the frequency domain resource change time corresponding to the frequency domain resource handover, that is, the BWP handover delay corresponding to the terminal device; or, a fixed value specified in the protocol, That is, a value commonly followed by all REDCAP UEs; or, the network equipment is notified in advance through signaling, for example, through an RRCI message. That is, before sending the first indication information to the terminal device, the RRC message is sent to the terminal device, where the RRC message includes the first threshold value. Therefore, the first threshold value required to determine the resource can be dynamically adjusted through the RRC message, which improves the flexibility of determining the frequency domain resource.
  • the first indication information is also used to indicate the parameter of the frequency domain resource.
  • the parameter of the frequency domain resource is related to the specific type of the first mode.
  • the frequency domain resources that are not determined in the first way the first frequency domain resources
  • the frequency domain resources that are determined in the first way are called the second frequency domain resources
  • the parameter of the frequency domain resource is the index of the frequency domain resource.
  • the terminal device determines the second frequency domain resource according to the index.
  • the second frequency domain resource is used to communicate with the network device.
  • the first frequency domain resource mentioned in this application is the frequency domain resource currently being used by the terminal device. That is, the terminal device receives the first indication information sent by the network device through the first frequency domain resource.
  • the parameter of the frequency domain resource is the indication information of the location of the second frequency domain resource.
  • the indication information of the position is used to instruct the terminal device to determine the frequency domain resource in the first manner.
  • the indication information of the location of the second frequency domain resource may be a tuning ratio.
  • the terminal device determines the second frequency domain resource according to the first method, and the absolute difference between the start frequency (or cutoff frequency) of the second frequency domain resource and the first frequency domain resource is the tuning Bandwidth, and after the frequency domain resource tuning is completed, use the second frequency domain resource to communicate with the network device. Therefore, the terminal device can complete the frequency domain resource change by only tuning the frequency domain resource without performing RRC reconfiguration. Therefore, the frequency domain resource change time is only the time required for the tuning process, which reduces the frequency domain resource change process. Handover delay improves communication efficiency.
  • FIG. 4 only shows the frequency domain resource tuning in the direction of increasing frequency. In practical applications, it can also be tuned in the direction of decreasing frequency.
  • the specific tuning direction can be determined by the value of the tuning ratio. For example, when the tuning ratio is a positive value, it is determined to tune in a direction where the frequency becomes larger, and when the tuning ratio is a negative value, it is determined to tune in a direction where the frequency becomes smaller.
  • one or more bits in the indication information can also be used to indicate the tuning direction. For example, in the case of using one bit to indicate, if the bit is 1, it is determined to tune in the direction where the frequency becomes larger. The bit is 0, which confirms tuning in the direction of decreasing frequency. This application does not limit the way of tuning to determine the tuning direction.
  • Table 2 shows a corresponding relationship between the first indication information and the tuning ratio.
  • the tuning granularity can be one of the following: carrier bandwidth, the maximum bandwidth supported by the terminal device, the bandwidth of the first frequency domain resource, a fixed value, the ratio between the carrier bandwidth and the bandwidth of the first frequency domain resource, or the network device passing Signaling instructions.
  • the network device can notify the terminal device in advance of which tuning granularity the terminal device specifically uses.
  • the network device can notify the terminal device through an RRC message.
  • the tuning granularity indicated by the RRC message is the carrier bandwidth, and the terminal device may determine the tuning bandwidth according to the carrier bandwidth and the tuning ratio.
  • the terminal device can also indicate the tuning granularity through one or more bits in the indication information, that is, the synchronization indicates the tuning granularity and the tuning bandwidth.
  • the bit 001 indicates that the tuning granularity is the carrier bandwidth or the bit 010 indicates that the tuning granularity is The maximum bandwidth supported by the terminal device, etc. Therefore, this application does not limit the way of indicating the tuning granularity.
  • the terminal device determines the second frequency domain resource according to the frequency hopping interval and the location of the first hop, that is, determines the location of the second hop. s position.
  • the terminal device can perform frequency hopping in the first frequency domain resource according to the location of the first hop and the location of the second hop. That is, when the frequency hopping time comes, hop from the position of the first hop to the position of the second hop, and use the second frequency domain resource corresponding to the second hop to communicate with the network equipment.
  • the second frequency domain resource hops to the first frequency domain resource, and the first frequency domain resource corresponding to the first hop is used to communicate with the network device.
  • the first frequency domain resource corresponding to the first hop is essentially the first resource block corresponding to the first hop among the frequency domain resources currently being used by the terminal device.
  • the second frequency domain resource corresponding to the second hop is essentially the second RB corresponding to the second hop in the first frequency domain resource. Therefore, performing frequency hopping in the first frequency domain resource essentially means performing frequency hopping between the first RB and the second RB in the first frequency domain resource currently in use.
  • the parameter is the index of the second frequency domain resource and the frequency hopping interval. Therefore, the first indication information instructs the terminal device to determine the second frequency domain resource according to the index, and perform frequency hopping in the second frequency domain resource according to the frequency hopping interval.
  • the terminal device can first perform frequency domain resource switching according to the index, and switch the frequency domain resource from the first frequency domain resource to the second frequency domain resource.
  • the switching process is similar to the above-mentioned frequency domain resource switching process. , No longer describe.
  • frequency hopping transmission is performed in the frequency domain resource according to the frequency hopping interval.
  • the first indication information also indicates the position of the first hop in the frequency domain resource, and the terminal device determines the position of the second hop according to the position of the first hop and the frequency hopping interval; then, the first hop is used first.
  • One hop corresponds to the frequency domain resource (RB) in the frequency domain resource to communicate with the network device, and when the frequency hopping moment comes, hop from the position of the first hop to the position of the second hop, and use the second hop to correspond Frequency domain resources (RB) to transmit data, so as to realize frequency hopping transmission in frequency domain resources.
  • RB frequency domain resource
  • the terminal device can use RBs of different frequency bands in the second frequency domain resource to transmit data at different moments, thereby not affecting the communication process and further improving communication efficiency.
  • the parameter is the indication information of the location of the second frequency domain resource and the frequency hopping interval. Therefore, the indication information of the location of the second frequency domain resource instructs the terminal device to determine the frequency domain resource in the first manner, and perform frequency hopping in the frequency domain resource according to the frequency hopping interval.
  • the terminal device first tunes the frequency domain resource from the first frequency domain resource to the second frequency domain resource according to the indication information of the position of the second frequency domain resource.
  • the tuning process is similar to the above-mentioned tuning process. Describe again; then, perform frequency hopping transmission in the second frequency domain resource according to the frequency hopping interval.
  • the first indication information also includes the position of the first hop in the frequency domain resource.
  • the terminal device can determine the position of the second hop according to the position of the first hop and the frequency hopping interval; then, use the first hop first.
  • One hop is performed on the corresponding frequency domain resource (RB) in the second frequency domain resource with the network device, and when the frequency hopping moment comes, the frequency hop is performed from the position of the first hop to the position of the second hop, and the second hop is used
  • the corresponding frequency domain resource (RB) communicates with the network device, thereby realizing frequency hopping in the second frequency domain resource. Therefore, after changing the frequency domain resource to the second frequency domain resource, even if there is interference in the second frequency domain resource, for example, the second frequency domain resource is obtained through tuning, and the second frequency domain resource is the same as the first frequency domain resource.
  • the terminal device If the terminal device transmits data with the overlapping RBs, it will affect the communication process. However, due to the frequency hopping in the second frequency domain resource, the terminal device can use the RBs of different frequency bands in the second frequency domain resource for data transmission at different times, which will not affect the data transmission of the terminal device and further improve the communication efficiency. .
  • the terminal device communicates with the network device on the determined frequency domain resource. And the network device communicates with the terminal device on the frequency domain resource.
  • the terminal device After the terminal device completes the communication resource to the frequency domain resource change, the terminal device can use the frequency domain resource to communicate with the network device.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal equipment, and interaction between the network equipment and the terminal equipment.
  • the network device and the terminal device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the terminal device 110 shown in FIG. 1, or the network device 120 shown in FIG. 1, or may be a module (such as a chip ).
  • the communication device 800 includes a transceiver module 801 and a processing module 802.
  • the communication device 800 may be used to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 1.
  • the transceiver module 801 is used to receive the indication information of the frequency domain resource change mode.
  • the processing module 802 is configured to determine a target uplink configuration grant associated with the first time-frequency resource, where the target uplink configuration grant is one of the N uplink configuration grants.
  • the processing module 802 is configured to determine a frequency domain resource change mode according to the indication information, and the change mode includes one of frequency domain resource switching, frequency domain resource tuning, frequency hopping, a first change mode or a second change mode , Wherein the first changing manner includes the frequency domain resource switching and the frequency hopping, and the second changing manner includes the frequency domain resource tuning and the frequency hopping.
  • the transceiver module 801 is used to send indication information of the frequency domain resource change mode, and the change mode includes frequency domain resource switching and frequency domain resource tuning. , Frequency hopping, one of the first change mode, or the second change mode, wherein the first change mode includes the frequency domain resource switching and the frequency hopping, and the second change mode includes the frequency domain Resource tuning and the frequency hopping; processing module 802, configured to perform data transmission with the terminal device through the second frequency domain resource, the second frequency domain resource being a frequency domain resource change manner indicated by the indication information Determined frequency domain resources.
  • transceiver module 801 and processing module 802 For a more detailed description of the foregoing transceiver module 801 and processing module 802, reference may be made to the relevant description in the foregoing method embodiment, which will not be described here.
  • the communication device 900 includes a processor 910 and an interface circuit 920.
  • the processor 910 and the interface circuit 920 are coupled with each other.
  • the interface circuit 920 may be a transceiver or an input/output interface.
  • the communication device 900 may further include a memory 930 for storing instructions executed by the processor 910 or storing input data required by the processor 910 to run the instructions or storing data generated after the processor 910 runs the instructions.
  • the processor 910 is used to perform the function of the foregoing processing module 802 and the interface circuit 920 is used to perform the function of the foregoing transceiver module 801.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip When the aforementioned communication device is a chip applied to a network device, the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as a radio frequency module or antenna), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated object before and after is an “or” relationship; in the formula of this application, the character “/” indicates that the associated object before and after is a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种资源确定方法及装置。该方法包括:终端设备接收第一指示信息,所述第一指示信息指示所述终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;所述终端设备在所述确定的频域资源上与网络设备进行通信。本申请实施例有利于提高通信效率。

Description

资源确定方法及装置
本申请要求于2020年05月15日提交中国专利局、申请号为202010418041.8、申请名称为“资源确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种资源确定方法及装置。
背景技术
随着设备类型的增多,出现了一些不同于传统用户设备(User Equipment,UE)的设备,例如电脑、手机等。与传统UE相比,这类设备的复杂度低、收发天线数目少、UE带宽低、处理时间放松(对基站的响应时间变长)以及处理能力降低。这些设备统称为能力降低的UE(NR reduced capability UE,REDCAP UE)。
REDCAP UE支持的带宽受限,可能只能在20/10/5MHz带宽范围内进行数据传输,如果当前的频域资源上干扰严重(如存在邻小区干扰)或者频域资源紧张(有很多REDCAP UE都在该频域资源上接收业务),基站可以将该REDCAP UE的频域资源切换到其他的频域资源上,来避免干扰或实现负载均衡。
目前,基站对传统UE进行频域资源切换需要通过部分带宽(bandwidth part,BWP)切换实现。而BWP切换过程需要一定的切换时延,且在进行BWP切换的过程中REDCAP UE不会收发数据。如果基站也通过BWP切换来对REDCAP UE进行频域资源的切换,则会影响REDCAP UE的通信过程,导致REDCAP UE通信效率较低。
发明内容
第一方面,本申请提供一种资源确定方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。终端设备接收第一指示信息,所述第一指示信息指示终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;所述终端设备在所述确定的频域资源上与网络设备进行通信。
其中,该频域资源切换对应的频域资源改变时间大于该频域资源调谐对应的频域资源改变时间。
第二方面,本申请提供一种资源确定方法,该方法的执行主体可以是网络设备也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。网络设备发送第一指示信息,所述第一指示信息指示终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;在所述频域资源上与终端设备进行通信。
可以看出,在本申请实施例中,所述第一指示信息指示终端设备按照第一方式确定频域资源,可得到与当前频域资源改变需求所适配的改变方式,而不是单纯的进行BWP切换,提高了终端设备进行频域资源改变的灵活性;同时,终端设备基于适配的改变方式进行频域资源改变,可对频域资源进行快速改变,降低了频域资源改变的时延,提高了通信效率。举 例来说,若终端设备当前急需传输数据,则可以指示终端设备通过频域资源调谐进行频域资源改变。因此,终端设备可以快速的完成频域资源改变,满足传输需求;若终端设备对数据传输需求不急切的情况下,比如,终端设备进行频域资源改变只是进行下行信道监听,则可以指示终端设备通过频域资源切换进行频域资源改变,从而满足数据传输需求。
在上述第一方面或第二方面的可能的实施方式中,所述第一指示信息为下行控制信息DCI。
可以看出,在本实施方式中,所述第一指示信息指示终端设备按照第一方式确定频域资源包括:所述第一指示信息用于指示第一时间长度,根据所述第一时间长度和第一门限值指示终端设备按照第一方式确定频域资源。可以看出,在本实施方式中,所述第一指示信息为DCI时,通过DCI中已包括与该第一时间长度对应的指示域,因此可通过DCI中的已有字段来指示改变方式,无需在DCI中新增字段,进一步减少了信令开销。
在上述第一方面或第二方面的可能的实施方式中,所述第一指示信息用于指示所述频域资源的参数,所述频域资源的参数指示所述终端设备按照第一方式确定频域资源。可以看出,终端设备可以根据第一方式确定频域资源,例如当第一方式为频域资源调谐时,可以快速地在所述确定的频域资源上与网络设备进行通信,减少了切换时延,提高了通信效率。
在上述第一方面或第二方面的可能的实施方式中,所述频域资源的参数为所述第二频域资源的索引;或者为所述第二频域资源的位置的指示信息;或者为参数为跳频间隔,所述跳频间隔用于指示在采用第一方式确定频域资源前终端设备所在第一频域资源内进行跳频;或者所述改变方式包括所述方式A,所述频域资源的参数为所述频域资源的索引和跳频间隔,所述跳频间隔用于指示在所述频域资源内进行跳频;或者所述改变方式包括所述方式B,所述频域资源的参数为所述频域资源的位置的指示信息和跳频间隔,所述跳频间隔用于指示在所述频域资源内进行跳频。
在上述第一方面或第二方面的可能的实施方式中,所述频域资源包括以下至少一种:部分带宽BWP、载波、子载波或子带。
在上述第一方面或第二方面的可能的实施方式中,所述频域资源切换对应的频域资源改变时间包括改变所述频域资源需要的时间和无线资源控制RRC重配置时间;和/或所述频域资源调谐对应的频域资源改变时间包括改变所述频域资源需要的时间。
可以看出,在本实施方式中,频域资源调谐对应的频域资源改变时间小于频域资源切换。比如,当终端设备当前进行数据传输的优先级较高的情况下,可以通过频域资源调谐来改变频域资源,可以快速的改变频域资源,减少切换时延。
第三方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收第一指示信息,所述第一指示信息指示终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;所述处理模块,用于在所述确定的频域资源上与网络设备进行通信。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述 通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于发送第一指示信息,所述第一指示信息指示终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;处理模块,用于在所述频域资源上与所述终端设备进行通信。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
附图说明
图1为本申请实施例提供的一种可能的网络架构示意图;
图2为本申请实施例提供的一种频域资源改变方法的流程示意图;
图3为本申请实施例提供的一种频域资源切换的示意图;
图4为本申请实施例提供的一种频域资源调谐的示意图;
图5为本申请实施例提供的一种跳频的示意图;
图6为本申请实施例提供的一种第一改变方式的示意图;
图7为本申请实施例提供的一种第二改变方式的示意图;
图8为本申请实施例提供的一种通信装置的示意图;
图9为本申请实施例提供的另一种通信装置的示意图。
具体实施方式
如图1所示,为本申请实施例适用的一种可能的网络架构示意图,包括终端设备110和网络设备120。终端设备110和网络设备120间可通过Uu空口进行通信,Uu空口可以理解为通用的终端设备和网络设备之间的接口(universal UE to network interface)。Uu空口的传输包括上行传输和下行传输。
示例的,上行传输指终端设备110向网络设备120发送上行信息。其中,上行信息可包括上行数据信息、上行控制信息、参考信号(reference signal,RS)中的一个或多个。用于传输上行信息的信道称为上行信道,上行信道可以为物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)。PUSCH用于承载上行数据,上行数据也可以称为上行数据信息。PUCCH用于承载终端设备反馈的上行控制信息(uplink control information,UCI)。UCI中可以包括信道状态信息(channel state information,CSI)、肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)等。
示例的,下行传输指网络设备120向终端设备110发送下行信息。下行信息可以包括下行数据信息、下行控制信息和下行参考信号中的一个或多个。下行参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)或相位跟踪参考信号(phase tracking reference signal,PTRS)。用于传输下行信息的信道称为下行信道,下行信道可以为物理下行共享信道(physical downlink shared channel,PDSCH)或物理下行控制信道(physical downlink control channel,PDCCH)。所述PDCCH用于承载下行控制信息(downlink control information,DCI),PDSCH用于承载下行数据,下行数据也可称为下行数据信息。
可选的,在图1所示的网络架构中,还可包括核心网设备130。其中,终端设备110可通过无线的方式与网络设备120相连,网络设备120可通过有线或无线的方式与核心网设备130相连。核心网设备130与网络设备120可以是独立的不同的物理设备,或者,核心网设备130与网络设备120可以是相同的物理设备,该物理设备上集成有核心网设备130与网络设备120的全部/部分逻辑功能。
需要说明的是,在图1所示的网络架构中,终端设备110可以是固定位置的,也可以是可移动的,不作限定。图1所示的网络架构中,还可包括其它网络设备,比如无线中继设备和无线回传设备等,不作限定。图1所示的架构中,对终端设备、网络设备和核心网设备的数量不作限定。
本申请实施例中的技术方案,可应用于各种通信系统。比如,长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统以及未来的移动通信系统等。
本申请实施例涉及的网络设备120可以是接入网(Access network,AN)设备。该接入网设备可以是指接入网中在空口通过一个或多个小区与无线用户设备通信的设备,例如基站NodeB(例如,接入点),该NodeB可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中,该接入网的其余部分可包括 IP网络。例如,该NodeB可以是长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的新空口网络设备gNB。该接入网设备还可以是一种车到一切(Vehicle to Everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。该RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。另外,接入网设备还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),此时,该接入网设备协调对空口的属性管理。本申请实施例对接入网设备不作限定。
本申请实施例涉及的终端设备110指的是设备复杂度较低的用于工业无线传感、视频监控以及可穿戴的设备,即REDCAP UE。REDCAP UE相对于传统终端设备可能具备以下特点:收发天线数目减少;UE带宽降低;半双工频分双工FDD;UE处理时间放松;UE处理能力降低。另外,还可将REDCAP UE细为多个子类型。例如,可以按照应用场景分类,将REDCAP UE细分为工业无线传感器(Industrial Wireless Sensors,IWSN)、视频监控、可穿戴设备,等等。当然,还可以按照REDCAP UE的带宽、调制阶数、峰值速率等标准将REDCAP UE细分为多个子类型。本申请对划分为子类型的方式不做限定。示例性的,还可根据REDCAP UE的带宽等能力和因素,将REDCAP UE细分为多种类型。
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
在NR标准设计中,引入了一个新的技术,接收带宽自适应(receiver-bandwidth adaptation)。通过接收带宽自适应技术,终端设备只在一个较小的带宽上监听下行控制信道,以及接收少量的下行数据传输,在终端设备有大量的数据接收或者当前的带宽干扰比较严重的情况下,则需要进行带宽的切换,即BWP切换。
为了实现BWP切换,基站需要提前给终端设备配置多个BWP,该多个BWP通过BWP指示信息进行指示,且该BWP指示信息对应的指示域的比特数由基站给终端设备配置的BWP的数量确定。示例性的,若基站给终端设备配置的BWP的数量为四个,则BWP指示信息对应的指示域的大小为2比特。在终端设备需要进行BWP切换的情况下,基站会向终端设备发送下行控制信息(Downlink control information,DCI),该DCI中包括目标BWP的索引(index),通过DCI指示终端设备从当前使用的BWP处切换到与该index对应的目标BWP处,以使用该目标BWP与基站进行通信。
但是,在进行BWP切换的过程中,终端设备若有数据传输,则需要先中断数据的传输,在BWP切换完成后,使用该目标BWP重新进行数据传输。也就是说,进行BWP切换过程会存在一定的BWP切换时延。且终端设备能力或子载波间隔(sub-carrierspace,SCS)不同,该BWP切换时延也不同。如表1所示,表1出了BWP切换时延与终端设备能力、子载波间隔之间的对应关系。
表1
Figure PCTCN2021093225-appb-000001
Figure PCTCN2021093225-appb-000002
从表1中可以看出,BWP切换时延的取值范围为:0.75ms~3ms,该时间远大于频域调谐(retuning)时间,主要因为进行BWP切换的过程中还需要进行RRC重配过程。因此,BWP切换时延还包括RRC重配的时间。
由于REDCAP UE支持的带宽受限,可能只能在20/10/5MHz带宽范围内进行传输,如果当前进行数据传输的频域资源上干扰严重(如存在邻小区干扰)或者资源紧张(有很多REDCAP UE都在该频域资源上接收业务),则需要对该REDCAP UE的频域资源进行切换,如果基站也通过BWP切换技术来对REDCAP UE进行频域资源的切换,则会存在较长的切换时延,影响REDCAP UE的通信过程,导致REDCAP UE通信效率较低。
因此,为了降低对REDCAP UE进行频域资源切换过程中的切换时延,提高REDCAP UE通信效率,特提出本申请的技术方案。
首先,需要说明的是,本申请实施例所提到的频域资源包括以下至少一种:BWP、载波、子载波和子带。本申请主要以频域资源为BWP为例详细说明频域资源改变过程,其他频域资源的改变过程与改变BWP类似,不再详细描述。因此,后续提到的频域资源,也可称作BWP。
下面结合图1所示的网络架构,说明本申请的资源确定方法的实现过程。
在本发明中,频率资源调谐所需要的时间长度和频率资源切换所需要的时间长度不同。例如,时间长度可以是保护周期(guard period)、保护间隔、最大保护周期、最大保护间隔、最小保护周期或最小保护间隔。例如,频率资源调谐所需要的时间长度小于频率资源切换所需要的时间长度。
网络设备120向终端设备110发送第一指示信息,该第一指示信息用于指示终端设备按照第一方式确定频域资源,该第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,该方式A包括该频域资源切换和该跳频,方式B包括该频域资源调谐和该跳频;终端设备110在确定的频域资源上与网络设备进行通信。
示例的,该频域资源切换可以为BWP切换,进行BWP切换首先需要先对频域资源进行改变,然后,再进行RRC重配置。因此该频域资源切换对应的频域资源改变时间包括改变频域资源所需的时间,即频域调谐时间以及RRC重配置时间。
示例的,该频域资源调谐是指对频域资源进行调谐,比如,从第一频域资源调谐到第二频域资源,不需要进行RRC重配置,终端设备110仍然采用第一频域资源对应的链路参数进行数据传输。因此,该频域资源调谐对应的频域资源改变时间只包括频域调谐时间。因此,该频域资源调谐对应的频域资源改变时间小于频域资源切换对应的频域资源改变时间。
可以看出,在本申请实施例中,网络设备120通过第一指示信息指示终端设备按照第一方式确定频域资源,使终端设备110确定与当前频域资源改变适配的方式确定频域资源,而不是单纯的使用BWP切换进行频域资源切换。从而终端设备110可以根据当前的传输需求对频域资源进行快速改变,降低了频域资源改变的时延,提高了通信效率。例如,终端设备对传输需 求比较急切的情况下,网络设备可以指示终端设备通过频域资源调谐进行频域资源改变,因此,终端设备可以快速的完成频域资源改变,降低切换时延,满足传输需求,提高通信效率。
参阅图2,图2为本申请实施例提供的一种资源确定方法的流程示意图。该方法包括但不限于以下步骤:
201:网络设备向终端设备发送第一指示信息。相应的,所述终端设备接收所述第一指示信息。
该第一消息指示终端设备按照第一方式确定频域资源。该第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,该方式A包括该频域资源切换和该跳频,该方式B包括该频域资源调谐和该跳频。
示例的,频域资源调谐完成后,不需要进行RRC重配置,终端设备仍然可以采用调谐前的频域资源对应的链路参数,通过调谐后的频域资源与网络设备进行通信。因此,该频域资源调谐对应的频域资源改变时间只包括与该终端设备对应的频域调谐时间。该频域调谐时间与该终端设备的类型相关。例如,该频域调谐时间可以为2个符号,140us。
其中,该第一指示信息可以为已有的信令消息,也可以为新的信令消息,本申请对此不做限定。示例性的,该第一指示信息可为DCI。
示例性的,网络设备可以通过DCI中的新增字段指示该第一方式,也可以通过DCI中的已有字段指示该第一方式,本申请对此不做限定。
示例性的,在通过DCI中的新增字段指示该第一方式的情况下,可通过DCI中的三个新增比特位指示终端设备按照第一方式确定频域资源。例如,001用于指示第一方式为频域资源切换,010用于指示第一方式频域资源调谐,011用于指示第一方式为跳频,100用于指示第一方式为方式A,101用于指示第一方式为方式B;另外,将000、110以及111预留,以便后续有新的频域资源改变方式时,可采用000、110以及111进行指示。
示例性的,在通过DCI中的已有字段指示该第一方式的情况下,可通过该DCI中包括的第一时间长度指示该第一方式。示例性的,该第一时间长度可为终端设备进行频域资源改变所要的时间。具体的,在该第一时间长度大于该第一门限值的情况下,确定第一方式为频域资源切换,在该第一时间长度小于该第一门限值的情况下,确定该第一方式为频域资源调谐。也就是说,若网络设备可通过DCI中的第一时间长度来指示终端设备按照第一方式确定频域资源。例如,第一时间长度可以通过计时器实现,也可以是协议规定的时间长度。采用这种方式无需对DCI的字段进行扩增,减少了信令开销。
示例性的,该第一门限值可包括以下一种:该频域资源切换对应的频域资源改变时间,即该终端设备对应的BWP切换时延;或者,协议中规定好的固定值,即所有REDCAP UE共同遵循的一个取值;或者,网络设备通过信令预先通知的,例如,通过RRCI消息提前通知的。即在向终端设备发送第一指示信息之前,向终端设备发送RRC消息,该RRC消息包括该第一门限值。因此,可以通过RRC消息动态调整确定资源所需要的第一门限值,提高确定频域资源的灵活性。
示例性的,该第一指示信息还用于指示该频域资源的参数。该频域资源的参数与该第一方式的具体类型相关。
为了表述方便,我们可将未采用第一方式确定的频域资源称为第一频域资源,采用第一方式确定之后的频域资源称为第二频域资源,为了更好的理解本申请的技术方案,下面以第 一频域资源和第二频域资源为例介绍本申请的方案:
示例性的,在该第一方式为频域资源切换的情况下,则该频域资源的参数为该频域资源的索引(index)。终端设备根据该index确定出该第二频域资源。
如图3所示,在确定出该频域资源后,进行RRC重配置,采用第二频域资源与网络设备进行通信。此外,本申请所提到的第一频域资源是终端设备当前正在使用的频域资源。也就是说,终端设备是通过第一频域资源来接收网络设备发送的第一指示信息。
示例性的,在该改变方式为频域资源调谐的情况下,该频域资源的参数为该第二频域资源的位置的指示信息。该位置的指示信息用于指示终端设备按照第一方式确定频域资源。
在一些可能的实施方式中,该第二频域资源的位置的指示信息可以为调谐比例。例如,通过该第一指示信息指示该调谐比例;终端设备根据该调谐比例以及调谐粒度确定调谐带宽,并根据该调谐带宽确定该第二频域资源,其中,该调谐带宽=|调谐比例|*调谐粒度。
如图4所示,终端设备在按照第一方式确定出第二频域资源,第二频域资源和第一频域资源的起始频率(或截止频率)之间的绝对差值为该调谐带宽,且在频域资源调谐完成后,使用该第二频域资源与网络设备进行通信。因此,终端设备可以只进行频域资源的调谐即可完成频域资源的改变,无需进行RRC重配置,从而频域资源改变时间只是调谐过程所需的时间,降低了频域资源改变过程中的切换时延,提高了通信效率。
需要说明,在进行频域资源调谐过程中,图4仅示出了向频率变大的方向进行频域资源的调谐。在实际应用中,也可以向频率变小的方向调谐。具体向哪个方向调谐可以通过该调谐比例的取值来确定。例如,在该调谐比例为正值的情况下,确定向频率变大的方向调谐,在该调谐比例为负值的情况下,确定向频率变小的方向调谐。另外,也可以通过该指示信息中的一个或多个比特位指示调谐方向,例如,在采用一个比特位指示的情况下,若该比特位为1,确定向频率变大的方向调谐,若该比特位为0,确定向频率变小的方向调谐。本申请不对调谐确定调谐方向的方式进行限定。
表2示出了一种第一指示信息与调谐比例之间的对应关系。
表2:
第一指示信息 000 001 010 011 100 101 110 111
调谐比例 1/8 1/4 3/8 1/2 5/8 3/4 7/8 预留
此外,该调谐粒度可以为以下一种:载波带宽、终端设备支持的最大带宽、第一频域资源的带宽、固定值、载波带宽与第一频域资源的带宽之间的比例或网络设备通过信令指示的。
具体地,终端设备具体使用上述的哪个调谐粒度,网络设备可以提前通知该终端设备,比如,网络设备可以通过RRC消息通知该终端设备。例如,该RRC消息指示的调谐粒度为载波带宽,终端设备可根据载波带宽以及调谐比例确定该调谐带宽。当然,终端设备也可以通过该指示信息中的一个或多个比特位指示调谐粒度,即同步指示调谐粒度和调谐带宽,例如,通过比特001指示调谐粒度为载波带宽或者通过比特010指示调谐粒度为终端设备支持的最大带宽,等等。因此,本申请不对指示调谐粒度的方式进行限定。
示例性的,在该第一方式为跳频的情况下,该参数为跳频间隔。进一步地,该第一指示信息还用于指示第一跳所在的位置,因此,终端设备根据该跳频间隔以及该第一跳所在的位置确定该第二频域资源,即确定第二跳所在的位置。
因此,如图5所示,在确定出第二跳所在的位置之后,终端设备可根据该第一跳的位置以及第二跳的位置在该第一频域资源内进行跳频。即在跳频时刻来临时,从第一跳的位置跳频到第二跳的位置,使用第二跳对应的第二频域资源与网络设备进行通信,在下次跳频时刻来临时,从该第二频域资源跳频到第一频域资源,使用第一跳对应的第一频域资源与网络设备进行通信。此外,在该第一方式为跳频的情况下,该第一跳对应的第一频域资源实质上就是终端设备当前正在使用的频域资源中第一跳对应的第一资源块(Resource Block,RB),第二跳对应的第二频域资源实质上就是第一频域资源中第二跳对应的第二RB。因此,在第一频域资源内进行跳频,实质上就是从当前正在使用的第一频域资源中的第一RB与第二RB之间进行跳频。
示例性的,在该第一方式为该方式A的情况下,该参数为该第二频域资源的索引和跳频间隔。因此,该第一指示信息指示终端设备根据该索引确定该第二频域资源,并根据该跳频间隔在该第二频域资源内进行跳频。
如图6所示,终端设备可根据该索引,先进行频域资源切换,将频域资源从第一频域资源切换到第二频域资源,切换过程与上述进行频域资源切换的过程类似,不再叙述。然后,根据该跳频间隔在该频域资源内进行跳频传输。
具体来说,该第一指示信息还指示了该频域资源中第一跳的位置,终端设备根据该第一跳的位置以及该跳频间隔确定第二跳的位置;然后,先使用该第一跳在该频域资源中对应的频域资源(RB)与网络设备进行通信,且在跳频时刻来临时,从第一跳的位置跳频到第二跳的位置,使用第二跳对应的频域资源(RB)传输数据,从而实现在频域资源内进行跳频传输。在将频域资源改变到第二频域资源后,即使第二频域资源内存在干扰,比如,在切换到第二频域资源时,临小区对第二频域资源产生干扰,但是由于在第二频域资源内进行跳频传输,终端设备可以在不同的时刻采用第二频域资源内不同频段的RB传输数据,从而不会影响通信过程,进一步提高通信效率。
示例性的,在该改变方式为该方式B的情况下,该参数为该第二频域资源的位置的指示信息和跳频间隔。因此,该第二频域资源的位置的指示信息指示终端设备按照第一方式确定该频域资源,并根据该跳频间隔在该频域资源内进行跳频。
如图7所示,终端设备先根据该第二频域资源的位置的指示信息将频域资源从第一频域资源调谐到第二频域资源,其调谐过程与上述的调谐过程类似,不再叙述;然后,根据该跳频间隔在该第二频域资源内进行跳频传输。具体来说,该第一指示信息还包括该频域资源中第一跳的位置,终端设备可根据该第一跳的位置以及该跳频间隔确定第二跳的位置;然后,先使用该第一跳在该第二频域资源中对应的频域资源(RB)与网络设备进行,且在跳频时刻来临时,从第一跳的位置跳频到第二跳的位置,使用第二跳对应的频域资源(RB)与网络设备进行通信,从而实现在第二频域资源内进行跳频。因此,在将频域资源改变到第二频域资源后,即使第二频域资源内存在干扰,比如,第二频域资源是通过调谐得到的,第二频域资源与第一频域资源之间可能存在重叠的RB,该重叠的RB为可能为存在干扰的RB,若该终端设备重叠的RB传输数据,则会影响通信过程。但是,由于在第二频域资源内进行跳频,终端设备可以在不同的时刻采用第二频域资源内不同频段的RB进行数据传输,从而不会影响终端设备的数据传输,进一步提高通信效率。
202:终端设备在确定的频域资源上与网络设备进行通信。以及所述网络设备在所述频域资源上与所述终端设备进行通信。
在终端设备将通信资源完成至该频域资源改变之后,终端设备可使用该频域资源与网络设备进行通信。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备110,也可以是如图1所示的网络设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图8所示,通信装置800包括收发模块801和处理模块802。通信装置800可用于实现上述图1所示的方法实施例中终端设备或网络设备的功能。
当通信装置800用于实现图1所述方法实施例中终端设备的功能时:收发模块801,用于接收频域资源改变方式的指示信息。处理模块802,用于确定与所述第一时频资源关联的目标上行配置授权,所述目标上行配置授权为所述N个上行配置授权中的一个。处理模块802,用于根据所述指示信息确定频域资源的改变方式,所述改变方式包括频域资源切换、频域资源调谐、跳频、第一改变方式或第二改变方式中的一种,其中,所述第一改变方式包括所述频域资源切换和所述跳频,所述第二改变方式包括所述频域资源调谐和所述跳频。
通信装置800用于实现图1所述方法实施例中网络设备的功能时:收发模块801,用于发送频域资源改变方式的指示信息,所述改变方式包括频域资源切换、频域资源调谐、跳频、第一改变方式或第二改变方式中的一种,其中,所述第一改变方式包括所述频域资源切换和所述跳频,所述第二改变方式包括所述频域资源调谐和所述跳频;处理模块802,用于通过所述第二频域资源与终端设备进行数据传输,所述第二频域资源为根据所述指示信息所指示的频域资源改变方式确定的频域资源。
关于上述收发模块801和处理模块802更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图9所示,通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当通信装置900用于实现上述方法实施例中的方法时,处理器910用于执行上述处理模块802的功能,接口电路920用于执行上述收发模块801的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息, 该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (19)

  1. 一种资源确定方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息指示终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;
    在所述确定的频域资源上与网络设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息为下行控制信息DCI。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息指示所述终端设备按照第一方式确定频域资源包括:
    所述第一指示信息用于指示第一时间长度,根据所述第一时间长度和第一门限值指示所述终端设备按照第一方式确定频域资源。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息用于指示所述频域资源的参数,所述第一指示信息指示所述终端设备按照第一方式确定频域资源包括:
    所述频域资源的参数指示所述终端设备按照第一方式确定频域资源。
  5. 根据权利要求4所述的方法,其特征在于,
    所述频域资源的参数为所述频域资源的索引;或者
    所述频域资源的参数为所述频域资源的位置的指示信息;或者
    所述频域资源的参数为跳频间隔;或者
    所述频域资源的参数为所述频域资源的索引和跳频间隔,所述跳频间隔用于指示在所述频域资源内进行跳频;或者
    所述频域资源的参数为所述频域资源的位置的指示信息和跳频间隔,所述跳频间隔用于指示在所述频域资源内进行跳频。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述频域资源包括以下至少一种:部分带宽BWP、载波、子载波或子带。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,
    所述频域资源切换对应的频域资源改变时间包括改变所述频域资源需要的时间和无线资源控制RRC重配置时间;和/或
    所述频域资源调谐对应的频域资源改变时间包括改变所述频域资源需要的时间。
  8. 一种资源确定方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息指示终端设备按照第一方式确定频域资源,所述第一方式包括频域资源切换、频域资源调谐、跳频、方式A和/或方式B中的一种,其中,所述方式A包括所述频域资源切换和所述跳频,所述方式B包括所述频域资源调谐和所述跳频;
    在所述频域资源上与所述终端设备进行通信。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息为下行控制信息DCI。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一指示信息指示所述终端设备按照第一方式确定频域资源包括:
    所述第一指示信息用于指示第一时间长度,所述第一时间长度和第一门限值指示所述终端设备按照第一方式确定频域资源。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,
    所述第一指示信息用于指示所述频域资源的参数,所述第一指示信息指示所述终端设备按照第一方式确定频域资源包括:
    所述频域资源的参数指示终端设备按照第一方式确定频域资源。
  12. 根据权利要求11所述的方法,其特征在于,
    所述频域资源的参数为所述频域资源的索引;或者
    所述频域资源的参数为所述频域资源的位置的指示信息;或者
    所述频域资源的参数为跳频间隔;或者
    所述频域资源的参数为所述频域资源的索引和跳频间隔,所述跳频间隔用于指示在所述频域资源内进行跳频;或者
    所述频域资源的参数为所述频域资源的位置的指示信息和跳频间隔,所述跳频间隔用于指示在所述频域资源内进行跳频。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述频域资源包括以下至少一种:部分带宽BWP、载波、子载波或子带。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,
    所述频域资源切换对应的频域资源改变时间包括改变所述频域资源需要的时间和无线资源控制RRC重配置时间;和/或
    所述频域资源调谐对应的频域资源改变时间包括改变所述频域资源需要的时间。
  15. 一种通信装置,其特征在于,包括用于执行如权利要求1至7或8至14中的任一项所述方法的模块。
  16. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至7或8至14中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至7或8至14中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得权利要求1至7或8至14中任一项所述的方法被执行。
  19. 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于实现权利要求1至7或8至14中任一项所述的方法。
PCT/CN2021/093225 2020-05-15 2021-05-12 资源确定方法及装置 WO2021228117A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022569036A JP2023524891A (ja) 2020-05-15 2021-05-12 リソース決定方法及び装置
EP21804449.3A EP4142400A4 (en) 2020-05-15 2021-05-12 METHOD AND APPARATUS FOR DETERMINING RESOURCES
US17/986,481 US20230081073A1 (en) 2020-05-15 2022-11-14 Resource determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010418041.8 2020-05-15
CN202010418041.8A CN113677024A (zh) 2020-05-15 2020-05-15 资源确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/986,481 Continuation US20230081073A1 (en) 2020-05-15 2022-11-14 Resource determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2021228117A1 true WO2021228117A1 (zh) 2021-11-18

Family

ID=78525255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093225 WO2021228117A1 (zh) 2020-05-15 2021-05-12 资源确定方法及装置

Country Status (5)

Country Link
US (1) US20230081073A1 (zh)
EP (1) EP4142400A4 (zh)
JP (1) JP2023524891A (zh)
CN (1) CN113677024A (zh)
WO (1) WO2021228117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087107A (zh) * 2021-03-15 2022-09-20 华为技术有限公司 通信方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030393A1 (en) * 2015-08-18 2017-02-23 Samsung Electronics Co., Ltd. Scheduling information transmitting method and apparatus in d2d communication, and scheduling information receiving method and apparatus in d2d communication
CN109788563A (zh) * 2017-11-15 2019-05-21 维沃移动通信有限公司 Bwp指示方法、获取方法、网络侧设备及用户终端
WO2019096254A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Control plane design for bandwidth part in new radio
CN110166209A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 下行控制信息传输方法
CN110447288A (zh) * 2017-03-23 2019-11-12 华为技术有限公司 一种通信方法及装置
CN111052834A (zh) * 2017-09-08 2020-04-21 三星电子株式会社 使用带宽部分(bwp)配置处理无线电链路监测(rlm)的方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608690B2 (en) * 2014-07-17 2017-03-28 Qualcomm Incorporated Type 1 and type 2 hopping for device-to-device communications
US11637593B2 (en) * 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions
CN107888256B (zh) * 2016-09-30 2022-12-02 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
CN110380831B (zh) * 2018-04-03 2022-05-17 中兴通讯股份有限公司 一种传输方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030393A1 (en) * 2015-08-18 2017-02-23 Samsung Electronics Co., Ltd. Scheduling information transmitting method and apparatus in d2d communication, and scheduling information receiving method and apparatus in d2d communication
CN110447288A (zh) * 2017-03-23 2019-11-12 华为技术有限公司 一种通信方法及装置
CN111052834A (zh) * 2017-09-08 2020-04-21 三星电子株式会社 使用带宽部分(bwp)配置处理无线电链路监测(rlm)的方法和系统
CN109788563A (zh) * 2017-11-15 2019-05-21 维沃移动通信有限公司 Bwp指示方法、获取方法、网络侧设备及用户终端
WO2019096254A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Control plane design for bandwidth part in new radio
CN110166209A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 下行控制信息传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "On remaining details of BWPs", 3GPP DRAFT; R1-1800552 ON REMAINING ASPECTS OF BWPS_NOK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 12 January 2018 (2018-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384384 *

Also Published As

Publication number Publication date
EP4142400A4 (en) 2023-10-18
JP2023524891A (ja) 2023-06-13
CN113677024A (zh) 2021-11-19
EP4142400A1 (en) 2023-03-01
US20230081073A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
US11425697B2 (en) Dynamic management of uplink control signaling resources in wireless network
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
US10554794B2 (en) Information transmission method and apparatus in TDD system
US20220116182A1 (en) Method and apparatus for determining spatial domain transmission filter
US20230079810A1 (en) Switching method and apparatus
CN109891983A (zh) 动态时分双工的设置装置、方法以及通信系统
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2021068226A1 (zh) 一种测量间隔的确定方法及装置、终端设备
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
JP2024503682A (ja) マルチtrpシナリオで報告するビームグループの拡張
TWI741018B (zh) 發送或接收通道狀態資訊的方法和裝置
WO2021228117A1 (zh) 资源确定方法及装置
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2021055167A1 (en) Selecting a time division duplex slot format specific to a user equipment
WO2021077372A1 (en) Method and access network node for beam management
KR20220097868A (ko) 신호 감청 방법, 송신 방법, 단말 기기, 네트워크 기기
WO2020103316A1 (zh) 一种传输数据的方法和终端设备
CN109964443B (zh) 用于与新无线电中的所中断的话务流相关的互补传输的方法和装置
WO2021159398A1 (zh) 波束失败恢复的方法和装置
KR20230096071A (ko) 채널 전송 방법, 장치, 단말기기, 네트워크 기기 및 저장 매체
WO2021087994A1 (zh) 一种上行传输的方法、设备及存储介质
WO2021088044A1 (zh) 信息处理方法、终端设备及存储介质
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569036

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021804449

Country of ref document: EP

Effective date: 20221125

NENP Non-entry into the national phase

Ref country code: DE