WO2021068226A1 - 一种测量间隔的确定方法及装置、终端设备 - Google Patents
一种测量间隔的确定方法及装置、终端设备 Download PDFInfo
- Publication number
- WO2021068226A1 WO2021068226A1 PCT/CN2019/110734 CN2019110734W WO2021068226A1 WO 2021068226 A1 WO2021068226 A1 WO 2021068226A1 CN 2019110734 W CN2019110734 W CN 2019110734W WO 2021068226 A1 WO2021068226 A1 WO 2021068226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- measurement
- bwp
- terminal device
- interval
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- the embodiments of the present application relate to the field of mobile communication technology, and in particular to a method and device for determining a measurement interval, and terminal equipment.
- the purpose of the measurement gap (MG) is to create a small gap (gap) in which the terminal device measures the target cell.
- Gap small gap
- Rel-15 stipulates that the measurement interval must be configured. In this way, for those measurements that do not require a measurement interval, it will cause the loss of system throughput. For this reason, it is necessary to consider scenarios where the inter-frequency measurement does not need to configure the measurement interval, and how to clarify which scenarios do not need to configure the measurement interval is to be discussed.
- the embodiments of the present application provide a method and device for determining a measurement interval, and terminal equipment.
- the terminal device determines whether the measurement of the first signal requires a measurement interval based on the positional relationship between the first signal and the first bandwidth part (Band Width Part, BWP) and the subcarrier interval of the first signal;
- the first BWP is an activated BWP of a serving cell, and the first signal is a reference signal sent by a target cell.
- the device for determining the measurement interval provided in the embodiment of the present application is applied to a terminal device, and the device includes:
- the determining unit is configured to determine whether the measurement of the first signal requires a measurement interval based on the positional relationship between the first signal and the first BWP and the subcarrier interval of the first signal; wherein, the first BWP is The activated BWP of the serving cell, where the first signal is a reference signal sent by the target cell.
- the terminal device provided in the embodiment of the present application includes a processor and a memory.
- the memory is used to store a computer program
- the processor is used to call and run the computer program stored in the memory to execute the method for determining the measurement interval described above.
- the chip provided in the embodiment of the present application is used to implement the above-mentioned method for determining the measurement interval.
- the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for determining the measurement interval.
- the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for determining a measurement interval.
- the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above-mentioned method for determining the measurement interval.
- the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for determining the measurement interval.
- the following factors are considered as to whether the measurement of the first signal requires a measurement interval: the positional relationship between the first signal and the first BWP and the subcarrier spacing of the first signal, so that the inter-frequency can be determined based on the above factors Scenarios where the measurement interval is not required in the measurement.
- FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
- FIG. 2 is a schematic flowchart of a method for determining a measurement interval provided by an embodiment of the application
- FIG. 3 is a diagram of the relationship between the SSB and the activated BWP in Example 1 provided by an embodiment of the present application;
- FIG. 4 is a diagram of the relationship between the SSB and the activated BWP in Example 2 provided by an embodiment of the present application;
- FIG. 5 is a diagram of the relationship between the SSB and the activated BWP in Example 3 provided by an embodiment of the present application;
- FIG. 6 is a schematic diagram of the structural composition of an apparatus for determining a measurement interval provided by an embodiment of the application.
- FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a chip of an embodiment of the present application.
- FIG. 9 is a schematic block diagram of a communication system provided by an embodiment of the present application.
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- 5G communication system 5G communication system or future communication system.
- the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
- the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
- the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
- the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
- the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
- the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
- the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
- PSTN public switched telephone network
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- DSL Digital Subscriber Line
- a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
- mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
- PCS Personal Communications System
- GPS Global Positioning System
- Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
- the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
- the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
- NR New Radio
- FIG. 1 exemplarily shows one network device and two terminals.
- the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
- the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
- network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
- the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
- the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
- the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
- the measurement of the SSB of the target cell belongs to Co-frequency measurement, otherwise, the measurement of the SSB of the target cell belongs to inter-frequency measurement.
- the CSI-RS of the target cell is included in the CSI-RS of the serving cell, and the SCS of the target cell and the serving cell are the same.
- the measurement of the CSI-RS of the cell belongs to the same frequency measurement, otherwise, the measurement of the CSI-RS of the target cell belongs to the inter-frequency measurement.
- the measurement interval for the UE per UE gap
- the measurement interval for the frequency range Frequency Range, FR
- FR Frequency Range
- the master node determines the configuration information of the gap (ie, gapUE).
- gapFR1 is used for FR1 frequency measurement
- gapFR2 is used for FR2 frequency measurement
- the MN determines the configuration information of gapFR1
- the secondary node (Secondary Node, SN) determines the configuration information of gapFR2.
- the parameters of the measurement interval are configured through MeasgapConfig.
- the information element of the MeasgapConfig is shown in Table 1 below.
- gapFR1 is used to indicate the measurement interval configuration for FR1.
- gapFR2 is used to indicate the measurement interval configuration for FR2.
- gapUE is used to indicate the measurement interval configuration for all frequencies (including FR1 and FR2).
- gapUE cannot use NR RRC configuration, only LTE RRC can configure gapUE.
- gapUE and gapFR1/gapFR2 cannot be configured at the same time.
- gapUE and gapFR1 can only be configured by E-UTRA.
- the measurement interval sharing scheme allows multiple measurements to share the measurement interval.
- Rel-15 stipulates that the measurement interval must be configured, while Rel-16 considers supporting measurement under certain conditions without configuring the measurement interval.
- the technical solution of the embodiment of this application provides several conditions that do not need to configure the measurement interval. (Or say several scenes). Further, if the inter-frequency measurement does not need to configure the measurement interval, it will bring about new transmission restrictions and scheduling or configuration changes such as the measurement interval sharing scheme. For different scenarios, if the corresponding transmission restrictions are not well defined, unnecessary transmission interruptions or transmission conflicts will occur, resulting in poor measurement results and affecting the performance of Radio Resource Management (RRM) measurement .
- RRM Radio Resource Management
- the embodiment of the present application proposes a more effective solution to solve the transmission limitation during inter-frequency measurement, and provides a reasonable scheduling solution that can meet normal data transmission and transmission interruption caused by measurement when there is a measurement interval or not.
- the technical solutions of the embodiments of the present application will be described in detail below.
- FIG. 2 is a schematic flowchart of a method for determining a measurement interval provided by an embodiment of the application. As shown in FIG. 2, the method for determining a measurement interval includes the following steps:
- Step 201 The terminal device determines whether the measurement of the first signal requires a measurement interval based on the positional relationship between the first signal and the first BWP and the subcarrier interval of the first signal; wherein, the first BWP is The activated BWP of the serving cell, where the first signal is a reference signal sent by the target cell.
- the measurement of the first signal belongs to inter-frequency measurement.
- the first signal is SSB or CSI-RS.
- the following describes how to determine whether the measurement of the first signal requires a measurement interval in combination with different situations.
- Case 1 The center frequency points of the first signal and the second signal are different, and the subcarrier spacing of the second signal is the same as the subcarrier spacing of the first BWP; wherein, the second signal is the Reference signal sent by the serving cell.
- the first signal is within the first BWP, and the subcarrier spacing of the first signal is the same as the subcarrier spacing of the second signal and the first BWP, then the first signal The measurement does not require a measurement interval.
- the terminal device has no transmission restriction in a first time range, and the first time range is determined based on the time domain position of the first signal.
- the measurement of the first signal does not require a measurement interval .
- the terminal device has a transmission restriction in a first time range, and the first time range is based on the first time range.
- the time domain position of a signal is determined.
- the transmission restriction here refers to the transmission restriction.
- the frequency domain position of the first signal belongs to FR1
- the terminal device supports simultaneous reception of the first signal and data
- the terminal device has no transmission restriction within the first time range
- the first time range is determined based on the time domain position of the first signal.
- the terminal device In the case where the frequency domain position of the first signal belongs to FR1, if the terminal device does not support simultaneous reception of the first signal and data, the terminal device has a transmission restriction within the first time range , The first time range is determined based on the time domain position of the first signal.
- the transmission restriction here refers to the transmission and reception restriction.
- the terminal device has a transmission restriction in a first time range, and the first time range is determined based on the time domain position of the first signal .
- the transmission restriction here refers to the transmission and reception restriction.
- FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
- the frequency range NR FR1 usually refers to the 5G Sub-6GHz (below 6GHz) frequency band, and may be extended to sub-7GHz (below 7GHz) in the future
- the frequency range NR FR2 usually refers to the 5G millimeter wave frequency band.
- Case 2 The center frequency points of the first signal and the second signal are different, and the subcarrier interval of the second signal is different from the subcarrier interval of the first BWP; wherein, the second signal is the Reference signal sent by the serving cell.
- the sub-carrier spacing of the first signal is the same as the sub-carrier spacing of the second signal, and the sub-carrier spacing of the first signal is the same as that of the second signal. If the subcarrier intervals of the first BWP are different, then the measurement of the first signal does not require a measurement interval.
- the terminal device has a transmission restriction in a first time range, and the first time range is based on the time domain position of the first signal determine.
- the transmission restriction here refers to the transmission restriction.
- the frequency domain position of the first signal belongs to FR1
- the terminal device if the terminal device supports simultaneous reception of the first signal and data, the terminal device has no transmission restriction within the first time range, The first time range is determined based on the time domain position of the first signal.
- the terminal device if the terminal device does not support simultaneous reception of the first signal and data, the terminal device has a transmission restriction within the first time range ,
- the first time range is determined based on the time domain position of the first signal.
- the transmission restriction here refers to the transmission and reception restriction.
- the terminal device has a transmission restriction within a first time range, and the first time range is determined based on the time domain position of the first signal .
- the transmission restriction here refers to the transmission and reception restriction.
- the first signal is within the first BWP, and the subcarrier spacing of the first signal is the same as the subcarrier spacing of the second signal and the first BWP, then the first The measurement of the signal does not require a measurement interval.
- the terminal device has no transmission restriction in a first time range, and the first time range is determined based on the time domain position of the first signal.
- the first signal is within the first BWP, and the subcarrier spacing of the first signal is different from the subcarrier spacing of the second signal and the first BWP, and the first The frequency domain position of the signal belongs to the TDD frequency band, so the measurement of the first signal does not require a measurement interval.
- the terminal device has a transmission restriction in a first time range, and the first time range is determined based on a time domain position of the first signal.
- the terminal device supports simultaneous reception of the first signal and data or supports multiple subcarrier intervals, then the measurement of the first signal does not require a measurement interval.
- the terminal device has no transmission restriction in a first time range, and the first time range is determined based on the time domain position of the first signal.
- the multiple subcarrier intervals supported by the terminal device include the subcarrier interval of the first BWP, the subcarrier interval of the first signal, and the subcarrier interval of the second signal.
- the measurement of the first signal requires a measurement interval.
- the first signal is within the first BWP, and the subcarrier spacing of the first signal is different from the subcarrier spacing of the second signal and the first BWP, and the first The frequency domain position of the signal belongs to FR2, so the measurement of the first signal does not require a measurement interval.
- the terminal device has a transmission restriction in a first time range, and the first time range is determined based on a time domain position of the first signal.
- Case 3 The center frequency of the first signal and the second signal are the same, and the subcarrier spacing of the second signal is different from the subcarrier spacing of the first BWP; wherein, the second signal is the Reference signal sent by the serving cell.
- case 3 and the case 2 are the same for judging whether the measurement interval and the transmission restriction are required.
- the solution in the case 2 is also applicable to the case 3.
- the network equipment may be a base station, such as a gNB.
- the network device decides whether the measurement interval is required, and then determines whether it is necessary to configure the measurement interval for the terminal device.
- the transmission restriction refers to the first signal of the terminal device in the first timing window, and n1 symbols before the first signal and the number of symbols after the first signal. n2 symbols cannot send uplink signals and/or cannot receive downlink signals; among them, n1 and n2 are integers greater than or equal to 0. In another optional implementation manner, the transmission restriction means that the terminal device cannot send uplink signals and/or cannot receive downlink signals within the first timing window.
- the transmission restriction means that the terminal device cannot transmit uplink signals for the first signal within the first timing window, and n1 symbols before the first signal and n2 symbols after the first signal; or , The terminal device cannot send an uplink signal within the first timing window.
- Restriction on reception means that the terminal device cannot receive downlink signals for the first signal, n1 symbols before the first signal and n2 symbols after the first signal within the first timing window; or , The terminal device cannot receive the downlink signal within the first timing window.
- the uplink signal in the above solution includes at least one of the following: Physical Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (PUSCH), Sounding Reference Signal (SRS) .
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- SRS Sounding Reference Signal
- the downlink signal in the above solution includes at least one of the following: Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), Tracking Reference Signal (TRS) CSI-RS (CSI-RS for CQI) for Channel Quality Indication (CQI).
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Channel
- TRS Tracking Reference Signal
- CQI Channel Quality Indication
- the first timing window in the above solution is an SSB measurement timing configuration (SS/PBCH block Measurement Timing Configuration, SMTC) window.
- SSB measurement timing configuration SS/PBCH block Measurement Timing Configuration, SMTC
- the measurement object is the SSB of the target cell, and the measurement of the SSB of the target cell belongs to inter-frequency measurement. Regardless of whether the SSB of the serving cell is within the activated BWP, the SSB of the target cell is within the activated BWP but is different from the center frequency of the SSB of the serving cell.
- the subcarrier spacing of the SSB of the serving cell is SCS1
- the subcarrier spacing of the activated BWP is SCS2
- the subcarrier spacing of the SSB of the serving cell is SCS3.
- SCS1 is the same as SCS2.
- the measurement of the measurement object does not require a measurement interval, and the network side does not need to configure the measurement interval, and there is no transmission limit.
- the measurement of the measurement object does not require a measurement interval, and the network side may not configure the measurement interval, but there will be the following transmission and reception restrictions: the measured SSB in the SMTC window and the previous n1
- One symbol and the following n2 symbols cannot transmit PUCCH, PUSCH, and SRS and receive PDCCH, PDSCH, TRS, and CSI-RS for CQI.
- the measurement object is the SSB of the target cell, and the measurement of the SSB of the target cell belongs to inter-frequency measurement. Regardless of whether the SSB of the serving cell is within the activated BWP, the SSB of the target cell is within the activated BWP but is different from the center frequency of the SSB of the serving cell.
- the subcarrier spacing of the SSB of the serving cell is SCS1
- the subcarrier spacing of the activated BWP is SCS2
- the subcarrier spacing of the SSB of the serving cell is SCS3. Among them, SCS1 is different from SCS2.
- SCS3 is the same as SCS1 and SCS2, regardless of whether the terminal device supports simultaneousRxDataSSB-DiffNumerology, the measurement of the measurement object does not require a measurement interval, and the network side does not need to configure the measurement interval, and there is no transmission limit.
- the terminal device supports simultaneousRxDataSSB-DiffNumerology or instructs the terminal device to support the FFT of three SCS (SCS1, SCS2 and SCS3) at the same time through a new capability, the measurement of the measurement object does not require a measurement interval, and the network side does not need to configure the measurement interval, or There are no transfer restrictions.
- the measurement of the measurement object requires a measurement interval, and the network side can configure the measurement interval.
- the measurement object is the SSB of the target cell, and the measurement of the SSB of the target cell belongs to inter-frequency measurement. Regardless of whether the SSB of the serving cell is within the activated BWP, the SSB of the target cell is within the activated BWP but is the same as the center frequency of the SSB of the serving cell.
- the subcarrier spacing of the SSB of the serving cell is SCS1
- the subcarrier spacing of the activated BWP is SCS2
- the subcarrier spacing of the SSB of the serving cell is SCS3. Among them, SCS1 is different from SCS2.
- SCS3 is the same as SCS1 and SCS2, regardless of whether the terminal device supports simultaneousRxDataSSB-DiffNumerology, the measurement of the measurement object does not require a measurement interval, and the network side does not need to configure the measurement interval, and there is no transmission limit.
- the terminal device supports simultaneousRxDataSSB-DiffNumerology or instructs the terminal device to support the FFT of three SCS (SCS1, SCS2 and SCS3) at the same time through a new capability, the measurement of the measurement object does not require a measurement interval, and the network side does not need to configure the measurement interval, or There are no transfer restrictions.
- the measurement of the measurement object requires a measurement interval, and the network side can configure the measurement interval.
- the transmission restriction includes the symbol where the SSB is located, and n1 symbols before and n2 symbols after the SSB.
- the first time range of the transmission restriction includes all symbols in the SMTC window where the SSB is located.
- the measured reference signal is the SSB as an example for description.
- the technical solution of the embodiment of the present application is not limited to this, and the reference signal may also be a CSI-RS.
- the above method of SSB as an example is also applicable to CSI-RS.
- CSI-RS and SSB The difference between CSI-RS and SSB is that the definitions of intra-frequency measurement and inter-frequency measurement are slightly different: for SSB, if the center frequency of the SBB of the serving cell and the SSB of the target cell are the same as the SCS, then for the target cell The measurement of the SSB of the target cell belongs to the same-frequency measurement, otherwise, the measurement of the SSB of the target cell belongs to the inter-frequency measurement.
- the CSI-RS of the target cell is included in the CSI-RS of the serving cell, and the SCS of the target cell and the serving cell are the same, then the measurement of the CSI-RS of the target cell belongs to the same frequency measurement, otherwise , The measurement of the CSI-RS of the target cell belongs to the inter-frequency measurement.
- CSI-RS does not set a measurement window (ie SMTC window) for the reference signal.
- a measurement window ie SMTC window
- the transmission is restricted.
- the first time range of may still include the symbol where the CSI-RS to be measured is located, n1 symbols before and n2 symbols after the CSI-RS, and the others are basically the same as the measurement based on SSB.
- the technical solution of the embodiment of the present application for scenarios where the measurement interval is not required, the resources originally occupied by the measurement interval can be used to improve the throughput of the system. Further, the technical solution of the embodiment of the present application proposes a transmission scheduling or restriction solution when the measurement interval is not configured for inter-frequency measurement, and the measurement interval configuration can satisfy normal data transmission and transmission interruption caused by measurement. Reasonable scheduling plan. On the other hand, the technical solutions of the embodiments of the present application design corresponding scheduling restriction solutions according to scenarios, which reduces the conflict between terminal device data transmission and measurement, and can improve the accuracy and efficiency of RRM measurement.
- FIG. 6 is a schematic diagram of the structural composition of an apparatus for determining a measurement interval provided by an embodiment of the application, which is applied to a terminal device.
- the apparatus for determining a measurement interval includes:
- the determining unit 601 is configured to determine whether the measurement of the first signal requires a measurement interval based on the positional relationship between the first signal and the first BWP and the subcarrier interval of the first signal; wherein, the first BWP Is the activated BWP of the serving cell, and the first signal is a reference signal sent by the target cell.
- the center frequency points of the first signal and the second signal are different, and the subcarrier interval of the second signal is the same as the subcarrier interval of the first BWP; wherein, the first signal The second signal is a reference signal sent by the serving cell.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is the same as that of the second signal and the first signal. If the subcarrier intervals of a BWP are the same, it is determined that the measurement of the first signal does not require a measurement interval.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is equal to the subcarrier interval of the first BWP If they are different, it is determined that the measurement of the first signal does not require a measurement interval.
- the terminal device in the case that the frequency domain position of the first signal belongs to the TDD frequency band, the terminal device has a transmission restriction in a first time range, and the first time range is based on the first signal The time domain location is determined.
- the terminal device when the frequency domain position of the first signal belongs to FR1, if the terminal device supports simultaneous reception of the first signal and data, the terminal device is within the first time range There is no transmission restriction, and the first time range is determined based on the time domain position of the first signal.
- the terminal device when the frequency domain position of the first signal belongs to FR1, if the terminal device does not support simultaneous reception of the first signal and data, the terminal device is in the first time range There is a transmission restriction, and the first time range is determined based on the time domain position of the first signal.
- the terminal device when the frequency domain position of the first signal belongs to FR2, the terminal device has a transmission restriction in a first time range, and the first time range is based on the frequency domain of the first signal. Time domain location is determined.
- the center frequency points of the first signal and the second signal are different, and the subcarrier interval of the second signal is different from the subcarrier interval of the first BWP; wherein, the first signal The second signal is a reference signal sent by the serving cell.
- the center frequency points of the first signal and the second signal are the same, and the subcarrier spacing of the second signal is different from the subcarrier spacing of the first BWP; wherein, the first signal The second signal is a reference signal sent by the serving cell.
- the determining unit 601 is configured to: if the first signal is within the first BWP, and the subcarrier interval of the first signal is equal to the subcarrier interval of the second signal If the same, and the subcarrier interval of the first signal is different from the subcarrier interval of the first BWP, it is determined that the measurement of the first signal does not require a measurement interval.
- the terminal device in the case that the frequency domain position of the first signal belongs to the TDD frequency band, the terminal device has a transmission restriction in a first time range, and the first time range is based on the first signal The time domain location is determined.
- the terminal device when the frequency domain position of the first signal belongs to FR1, if the terminal device supports simultaneous reception of the first signal and data, the terminal device is within the first time range There is no transmission restriction, and the first time range is determined based on the time domain position of the first signal.
- the terminal device when the frequency domain position of the first signal belongs to FR1, if the terminal device does not support simultaneous reception of the first signal and data, the terminal device is in the first time range There is a transmission restriction, and the first time range is determined based on the time domain position of the first signal.
- the terminal device when the frequency domain position of the first signal belongs to FR2, the terminal device has a transmission restriction in a first time range, and the first time range is based on the frequency domain of the first signal. Time domain location is determined.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is the same as that of the second signal and the first signal. If the subcarrier intervals of a BWP are all the same, it is determined that the measurement of the first signal does not require a measurement interval.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is the same as that of the second signal and the first signal.
- the subcarrier intervals of a BWP are all different, and the frequency domain position of the first signal belongs to the TDD frequency band, it is determined that the measurement of the first signal does not require a measurement interval.
- the terminal device has a transmission restriction in a first time range, and the first time range is determined based on a time domain position of the first signal.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is the same as that of the second signal and the first signal.
- the subcarrier intervals of a BWP are all different, and the frequency domain position of the first signal belongs to FR1, and the terminal device supports simultaneous reception of the first signal and data or supports multiple subcarrier intervals, then it is determined that the first The measurement of the signal does not require a measurement interval.
- the terminal device has no transmission restriction within a first time range, and the first time range is determined based on the time domain position of the first signal.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is the same as that of the second signal and the first signal.
- the subcarrier intervals of a BWP are all different, and the frequency domain position of the first signal belongs to FR1, and the terminal device does not support simultaneous reception of the first signal and data, it is determined that the measurement of the first signal requires measurement interval.
- the determining unit 601 is configured to, if the first signal is within the first BWP, and the subcarrier interval of the first signal is the same as that of the second signal and the first signal.
- the subcarrier intervals of a BWP are all different, and the frequency domain position of the first signal belongs to FR2, it is determined that the measurement of the first signal does not require a measurement interval.
- the terminal device has a transmission restriction in a first time range, and the first time range is determined based on a time domain position of the first signal.
- the transmission restriction refers to the first signal of the terminal device in the first timing window, and n1 symbols before the first signal and the number of symbols after the first signal. n2 symbols cannot send uplink signals and/or cannot receive downlink signals; among them, n1 and n2 are integers greater than or equal to 0.
- the transmission restriction means that the terminal device cannot send uplink signals and/or cannot receive downlink signals within the first timing window.
- the first signal is SSB or CSI-RS.
- the measurement of the first signal belongs to inter-frequency measurement.
- FIG. 7 is a schematic structural diagram of a communication device 700 provided by an embodiment of the present application.
- the communication device may be a terminal device or a network device.
- the communication device 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
- the communication device 700 may further include a memory 720.
- the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
- the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
- the communication device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
- the transceiver 730 may include a transmitter and a receiver.
- the transceiver 730 may further include an antenna, and the number of antennas may be one or more.
- the communication device 700 may specifically be a network device of an embodiment of the application, and the communication device 700 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, it will not be repeated here. .
- the communication device 700 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
- I won’t repeat it here.
- FIG. 8 is a schematic structural diagram of a chip of an embodiment of the present application.
- the chip 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
- the chip 800 may further include a memory 820.
- the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
- the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
- the chip 800 may further include an input interface 830.
- the processor 810 can control the input interface 830 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
- the chip 800 may further include an output interface 840.
- the processor 810 can control the output interface 840 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
- the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
- the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
- the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
- the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
- FIG. 9 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
- the communication system 900 includes a terminal device 910 and a network device 920.
- the terminal device 910 can be used to implement the corresponding function implemented by the terminal device in the above method
- the network device 920 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
- the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
- the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
- the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP Digital Signal Processor
- ASIC application specific integrated circuit
- FPGA Field Programmable Gate Array
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
- RAM random access memory
- SRAM static random access memory
- DRAM dynamic random access memory
- DRAM synchronous dynamic random access memory
- DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
- Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
- DR RAM Direct Rambus RAM
- the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
- the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
- the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application For the sake of brevity, I won’t repeat it here.
- the embodiments of the present application also provide a computer program product, including computer program instructions.
- the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
- the embodiment of the present application also provides a computer program.
- the computer program can be applied to the network device in the embodiment of the present application.
- the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
- I won’t repeat it here.
- the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
- the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
- the disclosed system, device, and method may be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供一种测量间隔的确定方法及装置、终端设备,该方法包括:终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
Description
本申请实施例涉及移动通信技术领域,具体涉及一种测量间隔的确定方法及装置、终端设备。
测量间隔(Measurement gap,MG)的目的是创建一个小的间隔(gap),终端设备在这个间隔中对目标小区进行测量。对于异频测量,Rel-15规定必须配置测量间隔,这样的话对于那些本不需要测量间隔的测量,会导致系统吞吐量的损失。为此,需要考虑异频测量不需要配置测量间隔的场景,如何明确哪些场景不需要配置测量间隔有待探讨。
发明内容
本申请实施例提供一种测量间隔的确定方法及装置、终端设备。
本申请实施例提供的测量间隔的确定方法,包括:
终端设备基于第一信号与第一带宽部分(Band Width Part,BWP)之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
本申请实施例提供的测量间隔的确定装置,应用于终端设备,所述装置包括:
确定单元,用于基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔的确定方法。
本申请实施例提供的芯片,用于实现上述的测量间隔的确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的测量间隔的确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的测量间隔的确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的测量间隔的确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的测量间隔的确定方法。
通过上述技术方案,对于第一信号的测量是否需要测量间隔,考虑了以下因素:第一信号与第一BWP之间的位置关系和第一信号的子载波间隔,从而可以基于上述因素明确异频测量中不需要测量间隔的场景。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的测量间隔的确定方法的流程示意图;
图3是本申请实施例提供的示例一的SSB与激活BWP的关系图;
图4是本申请实施例提供的示例二的SSB与激活BWP的关系图;
图5是本申请实施例提供的示例三的SSB与激活BWP的关系图;
图6为本申请实施例提供的测量间隔的确定装置的结构组成示意图;
图7是本申请实施例提供的一种通信设备示意性结构图;
图8是本申请实施例的芯片的示意性结构图;
图9是本申请实施例提供的一种通信系统的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会 话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
对于同步信号块(Synchronization Signal Block,SSB)而言,若服务小区的SBB和目标小区的SSB的中心频点和子载波间隔(Sub-Carrier Space,SCS)相同,则对于目标小区的SSB的测量属于同频测量,否则,对于目标小区的SSB的测量属于异频测量。
对于信道状态指示参考信号(Channel Status Indicator Reference Signal,CSI-RS)而言,目标小区的CSI-RS被包含在服务小区的CSI-RS内,且目标小区和服务小区的SCS相同,则对于目标小区的CSI-RS的测量属于同频测量,否则,对于目标小区的CSI-RS的测量属于异频测量。
在NR中,可配置针对UE的测量间隔(per UE gap)或者针对频段范围(Frequency Range,FR)的测量间隔(per FR gap)。进一步,
◆per UE gap,只能配置一个,即gapUE,用于FR1和FR2频率的测量。对于per UE gap,主节点(Master Node,MN)决定gap的配置信息(即gapUE)。
◆per FR gap,可独立配置两个,即gapFR1和/或gapFR2,gapFR1用于FR1频率的测量,gapFR2用于FR2频率的测量。对于per FR gap,MN决定gapFR1的配置信息,辅节点(Secondary Node,SN)决定gapFR2的配置信息。
测量间隔的参数通过MeasgapConfig来配置,MeasgapConfig的信息单元(information element)如下表1所示,其中,在MeasgapConfig中,gapFR1用于指示针对FR1的测量间隔配置。在EN-DC场景下,gapFR1不能使用NR RRC配置,只有LTE RRC可以配置gapFR1。gapFR2用于指示针对FR2的测量间隔配置。gapUE用于指示针对全部频率(包括FR1和FR2)的测量间隔配置。在EN-DC场景下,gapUE不 能使用NR RRC配置,只有LTE RRC可以配置gapUE。
表1
需要说明的是,gapUE和gapFR1/gapFR2不能同时配置。对于支持EN-DC的UE,gapUE和gapFR1只能由E-UTRA来配置。
测量间隔共享方案允许多个测量共享测量间隔,测量间隔共享方案由网络配置(如mesGapSharingScheme)。具体地,测量间隔共享方案通过两比特来配置,其中,00表示所有的频点均分测量间隔的机会;01,10,11分别对应X取值25,50,75,X的取值用于确定同频测量和异频测量占据测量间隔的比例,其中,同频测量占据测量间隔的比例为K
intra=1/X*100,异频测量占据测量间隔的比例为K
inter=1/(100-X)*100。
对于异频测量,Rel-15规定必须配置测量间隔,而Rel-16考虑支持某些条件下的测量不用配置测量间隔,本申请实施例的技术方案给出了不需要配置测量间隔的几种条件(或者说几种场景)。进一步,如果异频测量不需要配置测量间隔,则会带来新的传输限制和测量间隔共享方案等的调度或配置变化。对于不同的场景,如果不做好相应的传输限制的定义,则会出现不必要的传输中断或传输冲突,导致得到较差的测量结果,影响无线资源管理(Radio Resource Management,RRM)测量的性能。所以,本申请实施例提出一种更有效的方案来解决异频测量时候的传输限制,针对有无测量间隔时给出可满足正常的数据传输和测量引起的传输中断的合理调度方案。以下对本申请实施例的技术方案进行详细说明。
图2为本申请实施例提供的测量间隔的确定方法的流程示意图,如图2所示,所述测量间隔的确定方法包括以下步骤:
步骤201:终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
本申请实施例中,所述第一信号的测量属于异频测量。
在本申一可选实施方式中,所述第一信号为SSB或CSI-RS。
以下结合不同的情况对如何确定所述第一信号的测量是否需要测量间隔进行描述。
1)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔相同,则所述第一信号的测量不需要测量间隔。
进一步,所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
2)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则所述第一信号的测量不需要测量间隔。
进一步,2.1)所述第一信号属于时分复用(Time-Division Multiplexing,TDD)频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。可选地,这里的传输限制是指发射的限制。
进一步,2.2)所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
进一步,2.3)所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。可选地,这里的传输限制是指发射和接收的限制。
进一步,2.4)所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。可选地,这里的传输限制是指发射和接收的限制。
需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。其中,频率范围NR FR1通常是指5G Sub-6GHz(6GHz以下)频段,未来也可能扩展到sub-7GHz(7GHz以下),频率范围NR FR2通常是指5G毫米波频段。
1)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号的子载波间隔相同,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则所述第一信号的测量不需要测量间隔。
进一步,1.1)所述第一信号的频域位置属于TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。可选地,这里的传输限制是指发射的限制。
进一步,1.2)所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
进一步,1.3)所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。可选地,这里的传输限制是指发射和接收的限制。
进一步,1.4)所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。可选地,这里的传输限制是指发射和接收的限制。
2)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均相同,则所述第一信号的测量不需要测量间隔。
进一步,所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
3)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于TDD频段,则所述第一信号的测量不需要测量间隔。
进一步,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
4)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备支持同时接收所述第一信号和数据或者支持多种子载波间隔,则所述第一信号的测量不需要测量间隔。
进一步,所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述终端设备支持的多种子载波间隔包括所述第一BWP的子载波间隔、所述第一信号的子载波间隔以及所述第二信号的子载波间隔。
5)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备不支持同时接收所述第一信号和数据,则所述第一信号的测量需要测量间隔。
6)若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR2,则所述第一信号的测量不需要测量间隔。
进一步,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
这里,情况三与情况二对于判断是否需要测量间隔以及传输限制的方式一致,为避免重复描述,情况二中的方案同样适用于情况三中。
需要说明的是,本申请实施例的上述技术方案同样适用于网络设备侧,该网络设备可以是基站,如gNB。由网络设备决策是否需要测量间隔,进而决定是否需要给终端设备配置测量间隔。
在一可选实施方式中,所述传输限制是指所述终端设备在第一定时窗口内的所述第一信号,以及所述第一信号之前的n1个符号和所述第一信号之后的n2个符号不能发送上行信号和/或不能接收下行信号;其中,n1和n2为大于等于0的整数。在另一可选实施方式中,所述传输限制是指所述终端设备在第一定时窗口内不能发送上行信号和/或不能接收下行信号。
需要说明的是,所述传输限制分为以下两种:
发射的限制,指所述终端设备在第一定时窗口内的所述第一信号,以及所述第一信号之前的n1个符号和所述第一信号之后的n2个符号不能发送上行信号;或者,所述终端设备在第一定时窗口内不能发送上行信号。
接收的限制,指所述终端设备在第一定时窗口内的所述第一信号,以及所述第一信号之前的n1个符号和所述第一信号之后的n2个符号不能接收下行信号;或者,所述终端设备在第一定时窗口内不能接收下行信号。
进一步,上述方案中的上行信号包括以下至少之一:物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、探测参考信号(Sounding Reference Signal,SRS)。
进一步,上述方案中的下行信号包括以下至少之一:物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、跟踪参考信号(Tracking Reference Signal,TRS)、针对信道质量指示(Channel Quality Indication,CQI)的CSI-RS(CSI-RS for CQI)。
进一步,上述方案中的第一定时窗口为SSB测量定时配置(SS/PBCH block Measurement Timing Configuration,SMTC)窗口。
以下结合具体示例对本申请实施例的上述技术方案进行举例说明,以下示例是以基于SSB(SSB-based)的测量为例进行说明。
示例一
参照图3,测量对象为目标小区的SSB,对于目标小区的SSB的测量属于异频测量。无论服务小区的SSB是否在激活BWP内,目标小区的SSB在激活BWP内但与服务小区的SSB的中心频点不同。服务小区的SSB的子载波间隔为SCS1,激活BWP的子载波间隔为SCS2,服务小区的SSB的子载波间隔为SCS3。其中,SCS1与SCS2相同。
1-1:若SCS3=SCS1=SCS2,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,也没有传输限制。
1-2:若SCS3与SCS2不同,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但测量可能会带来以下传输限制:
(1)若测量对象属于TDD频段,则有如下发射的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS,其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
(2)若测量对象属于FR1,则:
如果终端设备支持同时接收数据和SSB(即simultaneousRxDataSSB-DiffNumerology),则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,也没有传输限制。
如果终端设备不支持simultaneousRxDataSSB-DiffNumerology,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但会有如下发射和接收的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS和接收PDCCH、PDSCH、TRS以及CSI-RS for CQI。其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
(3)若测量对象属于FR2,则无论终端设备是否支持simultaneousRxDataSSB-DiffNumerology,对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但会有如下发射和接收的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS和接收PDCCH、PDSCH、TRS以及CSI-RS for CQI。其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
示例二
参照图4,测量对象为目标小区的SSB,对于目标小区的SSB的测量属于异频测量。无论服务小区的SSB是否在激活BWP内,目标小区的SSB在激活BWP内但与服务小区的SSB的中心频点不同。服务小区的SSB的子载波间隔为SCS1,激活BWP的子载波间隔为SCS2,服务小区的SSB的子载波间隔为SCS3。其中,SCS1与SCS2不同。
2-1:若SCS3与SCS1相同,且SCS3与SCS2不同,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但测量可能会带来传输限制,该传输限制可以参照前述示例一中的1-2。
2-2:若SCS3与SCS1和SCS2均相同,则无论终端设备是否支持simultaneousRxDataSSB-DiffNumerology,对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,也没有传输限制。
2-3:若SCS3与SCS1和SCS2均不相同,则:
(1)若测量对象属于TDD频段,则有如下发射的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS,其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
(2)若测量对象属于FR1,则:
如果终端设备支持simultaneousRxDataSSB-DiffNumerology或通过新的能力指示终端设备同时支持三种SCS(SCS1、SCS2和SCS3)的FFT,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,也没有传输限制。
如果终端设备不支持simultaneousRxDataSSB-DiffNumerology,则对测量对象的测量需要测量间隔,网络侧可以配置测量间隔。
(3)若测量对象属于FR2,则无论终端设备是否支持simultaneousRxDataSSB-DiffNumerology,对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但会有如下发射和接收的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS和接收PDCCH、PDSCH、TRS以及CSI-RS for CQI。其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
示例三
参照图5,测量对象为目标小区的SSB,对于目标小区的SSB的测量属于异频测量。无论服务小区的SSB是否在激活BWP内,目标小区的SSB在激活BWP内但与服务小区的SSB的中心频点相同。服务小区的SSB的子载波间隔为SCS1,激活BWP的子载波间隔为SCS2,服务小区的SSB的子载波间隔为SCS3。其中,SCS1与SCS2不同。
3-1:若SCS3与SCS1相同,且SCS3与SCS2不同,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但测量可能会带来传输限制,该传输限制可以参照前述示例一中的1-2。
3-2:若SCS3与SCS1和SCS2均相同,则无论终端设备是否支持simultaneousRxDataSSB-DiffNumerology,对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,也没有传输限制。
3-3:若SCS3与SCS1和SCS2均不相同,则:
(1)若测量对象属于TDD频段,则有如下发射的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS,其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
(2)若测量对象属于FR1,则:
如果终端设备支持simultaneousRxDataSSB-DiffNumerology或通过新的能力指示终端设备同时支持三种SCS(SCS1、SCS2和SCS3)的FFT,则对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,也没有传输限制。
如果终端设备不支持simultaneousRxDataSSB-DiffNumerology,则对测量对象的测量需要测量间隔,网络侧可以配置测量间隔。
(3)若测量对象属于FR2,则无论终端设备是否支持simultaneousRxDataSSB-DiffNumerology,对测量对象的测量不需要测量间隔,网络侧可以不配置测量间隔,但会有如下发射和接收的限制:SMTC窗口内的被测量SSB及其之前的n1个符号和之后的n2个符号不能发射PUCCH、PUSCH以及SRS和接收PDCCH、PDSCH、TRS以及CSI-RS for CQI。其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。
在本申请一可选实施方式中,对于FR1的异频测量,根据是否有RRC配置终端设 备上报SSB索引(指示小区标识)进一步还有以下额外的传输限制:1)若deriveSSB_IndexFromCell被激活,则传输限制的第一时间范围包括SSB所在的符号以及SSB之前的n1个符号和之后的n2个符号。其中,n1和n2为大于等于0的整数,在一个例子中,n1=n2=1。2)若deriveSSB_IndexFromCell没被激活,则传输限制的第一时间范围包括SSB所在的SMTC窗口的所有符号。
需要说明的是,上述示例中是以测量的参考信号为SSB为例进行说明。本申请实施例的技术方案不局限于此,参考信号还可以是CSI-RS。对于支持CSI-RS测量的终端设备来说,以上SSB为例的方法同样适用于CSI-RS。
CSI-RS与SSB不同的地方在于,同频测量和异频测量的定义稍有不同:对于SSB而言,若服务小区的SBB和目标小区的SSB的中心频点和SCS相同,则对于目标小区的SSB的测量属于同频测量,否则,对于目标小区的SSB的测量属于异频测量。对于CSI-RS而言,目标小区的CSI-RS被包含在服务小区的CSI-RS内,且目标小区和服务小区的SCS相同,则对于目标小区的CSI-RS的测量属于同频测量,否则,对于目标小区的CSI-RS的测量属于异频测量。
此外,CSI-RS不像SSB,没有为参考信号设置测量的窗口(即SMTC窗口),这里对于FR1的异频测量,如果RRC没有配置终端设备上报SSB索引(即deriveSSB_IndexFromCell没被激活),传输限制的第一时间范围仍可以包括被测量的CSI-RS所在的符号以及CSI-RS之前的n1个符号和之后的n2个符号,其他与基于SSB的测量基本一致。
本申请实施例的技术方案,对于不需要测量间隔的场景,可以利用测量间隔原本占用的资源来提高系统的吞吐量。进一步,本申请实施例的技术方案,提出了一种异频测量不配置测量间隔时的传输调度或限制的方案,针对有无测量间隔配置给出可满足正常的数据传输和测量引起的传输中断的合理调度方案。另一方面,本申请实施例的技术方案分场景分别设计了相应的调度限制方案,减少了终端设备数据传输和测量的冲突,能够提高RRM测量的准确度和效率。
图6为本申请实施例提供的测量间隔的确定装置的结构组成示意图,应用于终端设备,如图6所示,所述测量间隔的确定装置包括:
确定单元601,用于基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
在一可选实施方式中,所述第一信号与第二信号的中心频点不同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔相同;其中,所述第二信号为所述服务小区发送的参考信号。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔相同,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述第一信号的频域位置属于TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限 制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号与第二信号的中心频点不同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔不同;其中,所述第二信号为所述服务小区发送的参考信号。
在一可选实施方式中,所述第一信号与第二信号的中心频点相同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔不同;其中,所述第二信号为所述服务小区发送的参考信号。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号的子载波间隔相同,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述第一信号的频域位置属于TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均相同,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于TDD频段,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备支持同时接收所述第一信号和数据或者支持多种子载波间隔,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备不支持同时接收所述第一信号和数据,则确定所述第一信号的测量需要测量间隔。
在一可选实施方式中,所述确定单元601,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR2,则确定所述第一信号的测量不需要测量间隔。
在一可选实施方式中,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
在一可选实施方式中,所述传输限制是指所述终端设备在第一定时窗口内的所述第一信号,以及所述第一信号之前的n1个符号和所述第一信号之后的n2个符号不能发送上行信号和/或不能接收下行信号;其中,n1和n2为大于等于0的整数。
在一可选实施方式中,所述传输限制是指所述终端设备在第一定时窗口内不能发送上行信号和/或不能接收下行信号。
在一可选实施方式中,所述第一信号为SSB或CSI-RS。
在一可选实施方式中,所述第一信号的测量属于异频测量。
本领域技术人员应当理解,本申请实施例的上述测量间隔的确定装置的相关描述可以参照本申请实施例的测量间隔的确定方法的相关描述进行理解。
图7是本申请实施例提供的一种通信设备700示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图7所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备700具体可为本申请实施例的移动终端/终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的芯片的示意性结构图。图8所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入 接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统900的示意性框图。如图9所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据 速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是 各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (59)
- 一种测量间隔的确定方法,所述方法包括:终端设备基于第一信号与第一带宽部分BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
- 根据权利要求1所述的方法,其中,所述第一信号与第二信号的中心频点不同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔相同;其中,所述第二信号为所述服务小区发送的参考信号。
- 根据权利要求2所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔相同,则所述第一信号的测量不需要测量间隔。
- 根据权利要求2所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则所述第一信号的测量不需要测量间隔。
- 根据权利要求4所述的方法,其中,所述第一信号的频域位置属于时分复用TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求4所述的方法,其中,所述第一信号的频域位置属于频段范围FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求4所述的方法,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求4所述的方法,其中,所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求1所述的方法,其中,所述第一信号与第二信号的中心频点不同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔不同;其中,所述第二信号为所述服务小区发送的参考信号。
- 根据权利要求1所述的方法,其中,所述第一信号与第二信号的中心频点相同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔不同;其中,所述第二信号为所述服务小区发送的参考信号。
- 根据权利要求9或10所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号的子载波间隔相同,且所述第一信号的子载波间隔与所述第一BWP的子载波间 隔不同,则所述第一信号的测量不需要测量间隔。
- 根据权利要求11所述的方法,其中,所述第一信号的频域位置属于TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求11所述的方法,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求11所述的方法,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求11所述的方法,其中,所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求9或10所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均相同,则所述第一信号的测量不需要测量间隔。
- 根据权利要求9或10所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于TDD频段,则所述第一信号的测量不需要测量间隔。
- 根据权利要求17所述的方法,其中,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求9或10所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备支持同时接收所述第一信号和数据或者支持多种子载波间隔,则所述第一信号的测量不需要测量间隔。
- 根据权利要求3、16、19中任一项所述的方法,其中,所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求9或10所述的方法,其中,所述终端设备基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备不支持同时接收所述第一信号和数据,则所述第一信号的测量需要测量间隔。
- 根据权利要求9或10所述的方法,其中,所述终端设备基于第一信号与第 一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔,包括:若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR2,则所述第一信号的测量不需要测量间隔。
- 根据权利要求22所述的方法,其中,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求4至23中任一项所述的方法,其中,所述传输限制是指所述终端设备在第一定时窗口内的所述第一信号,以及所述第一信号之前的n1个符号和所述第一信号之后的n2个符号不能发送上行信号和/或不能接收下行信号;其中,n1和n2为大于等于0的整数。
- 根据权利要求4至23中任一项所述的方法,其中,所述传输限制是指所述终端设备在第一定时窗口内不能发送上行信号和/或不能接收下行信号。
- 根据权利要求1至25中任一项所述的方法,其中,所述第一信号为同步信号块SSB或信道状态指示参考信号CSI-RS。
- 根据权利要求1至26中任一项所述的方法,其中,所述第一信号的测量属于异频测量。
- 一种测量间隔的确定装置,应用于终端设备,所述装置包括:确定单元,用于基于第一信号与第一BWP之间的位置关系,以及所述第一信号的子载波间隔确定所述第一信号的测量是否需要测量间隔;其中,所述第一BWP为服务小区的激活BWP,所述第一信号为目标小区发送的参考信号。
- 根据权利要求28所述的装置,其中,所述第一信号与第二信号的中心频点不同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔相同;其中,所述第二信号为所述服务小区发送的参考信号。
- 根据权利要求29所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔相同,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求29所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求31所述的装置,其中,所述第一信号的频域位置属于TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求31所述的装置,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求31所述的装置,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求31所述的装置,其中,所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求28所述的装置,其中,所述第一信号与第二信号的中心频点不同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔不同;其中,所述第 二信号为所述服务小区发送的参考信号。
- 根据权利要求28所述的装置,其中,所述第一信号与第二信号的中心频点相同,且所述第二信号的子载波间隔和所述第一BWP的子载波间隔不同;其中,所述第二信号为所述服务小区发送的参考信号。
- 根据权利要求36或37所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号的子载波间隔相同,且所述第一信号的子载波间隔与所述第一BWP的子载波间隔不同,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求38所述的装置,其中,所述第一信号的频域位置属于TDD频段的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求38所述的装置,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求38所述的装置,其中,所述第一信号的频域位置属于FR1的情况下,若所述终端设备不支持同时接收所述第一信号和数据,则所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求38所述的装置,其中,所述第一信号的频域位置属于FR2的情况下,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求36或37所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均相同,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求36或37所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于TDD频段,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求44所述的装置,其中,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求36或37所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备支持同时接收所述第一信号和数据或者支持多种子载波间隔,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求30、43、46中任一项所述的装置,其中,所述终端设备在第一时间范围内没有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求36或37所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR1,且所述终端设备不支持同时接收所述第一信号和数据,则确定所述第一信号的测量需要测量间隔。
- 根据权利要求36或37所述的装置,其中,所述确定单元,用于若所述第一信号在所述第一BWP内,且所述第一信号的子载波间隔与所述第二信号以及所述第一BWP的子载波间隔均不同,且所述第一信号的频域位置属于FR2,则确定所述第一信号的测量不需要测量间隔。
- 根据权利要求49所述的装置,其中,所述终端设备在第一时间范围内有传输限制,所述第一时间范围基于所述第一信号的时域位置确定。
- 根据权利要求31至50中任一项所述的装置,其中,所述传输限制是指所述终端设备在第一定时窗口内的所述第一信号,以及所述第一信号之前的n1个符号和所述第一信号之后的n2个符号不能发送上行信号和/或不能接收下行信号;其中,n1和n2为大于等于0的整数。
- 根据权利要求31至50中任一项所述的装置,其中,所述传输限制是指所述终端设备在第一定时窗口内不能发送上行信号和/或不能接收下行信号。
- 根据权利要求28至52中任一项所述的装置,其中,所述第一信号为SSB或CSI-RS。
- 根据权利要求28至53中任一项所述的装置,其中,所述第一信号的测量属于异频测量。
- 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至27中任一项所述的方法。
- 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法。
- 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法。
- 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法。
- 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/110734 WO2021068226A1 (zh) | 2019-10-12 | 2019-10-12 | 一种测量间隔的确定方法及装置、终端设备 |
CN202210582619.2A CN115002807B (zh) | 2019-10-12 | 2019-10-12 | 一种测量间隔的确定方法及装置、终端设备 |
CN201980100242.9A CN114391290A (zh) | 2019-10-12 | 2019-10-12 | 一种测量间隔的确定方法及装置、终端设备 |
EP19948291.0A EP4044716B1 (en) | 2019-10-12 | 2019-10-12 | Method and apparatus for determining measurement gap, and terminal device |
US17/719,096 US20220247534A1 (en) | 2019-10-12 | 2022-04-12 | Method and apparatus for determining measurement gap, and terminal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/110734 WO2021068226A1 (zh) | 2019-10-12 | 2019-10-12 | 一种测量间隔的确定方法及装置、终端设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/719,096 Continuation US20220247534A1 (en) | 2019-10-12 | 2022-04-12 | Method and apparatus for determining measurement gap, and terminal device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021068226A1 true WO2021068226A1 (zh) | 2021-04-15 |
Family
ID=75437670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/110734 WO2021068226A1 (zh) | 2019-10-12 | 2019-10-12 | 一种测量间隔的确定方法及装置、终端设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220247534A1 (zh) |
EP (1) | EP4044716B1 (zh) |
CN (2) | CN115002807B (zh) |
WO (1) | WO2021068226A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023284569A1 (zh) * | 2021-07-15 | 2023-01-19 | 中兴通讯股份有限公司 | 一种同频同系统测量方法、装置、存储介质及电子装置 |
WO2023165312A1 (en) * | 2022-03-03 | 2023-09-07 | Mediatek Inc. | Method and apparatus for satellite access network measurement outside gaps |
WO2024032490A1 (zh) * | 2022-08-10 | 2024-02-15 | 维沃移动通信有限公司 | 测量处理方法、装置、终端及网络侧设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109788497A (zh) * | 2017-11-10 | 2019-05-21 | 维沃移动通信有限公司 | 测量间隔的指示方法、接收方法、终端及网络设备 |
WO2019101299A1 (en) * | 2017-11-21 | 2019-05-31 | Nokia Technologies Oy | Method for efficient measurement gap offset signaling |
-
2019
- 2019-10-12 CN CN202210582619.2A patent/CN115002807B/zh active Active
- 2019-10-12 EP EP19948291.0A patent/EP4044716B1/en active Active
- 2019-10-12 CN CN201980100242.9A patent/CN114391290A/zh active Pending
- 2019-10-12 WO PCT/CN2019/110734 patent/WO2021068226A1/zh unknown
-
2022
- 2022-04-12 US US17/719,096 patent/US20220247534A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109788497A (zh) * | 2017-11-10 | 2019-05-21 | 维沃移动通信有限公司 | 测量间隔的指示方法、接收方法、终端及网络设备 |
WO2019101299A1 (en) * | 2017-11-21 | 2019-05-31 | Nokia Technologies Oy | Method for efficient measurement gap offset signaling |
Non-Patent Citations (2)
Title |
---|
NOKIA, NOKIA SHANGHAI BELL: "Summary of the email discussion [105bis#05][NR/R15] Measurement gap coordination in EN-DC (Nokia)", 3GPP DRAFT; R2-1906685 105BIS#05 NRR15 MEASUREMENT GAP COORDINATION INEN-DC SUMMARY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730142 * |
SAMSUNG: "Scenarios of Measurement Gap Considering Bandwidth Part", 3GPP DRAFT; R2-1711607 - SCENARIOS OF MEASUREMENT GAP CONSIDERING BANDWIDTH PART, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051343572 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023284569A1 (zh) * | 2021-07-15 | 2023-01-19 | 中兴通讯股份有限公司 | 一种同频同系统测量方法、装置、存储介质及电子装置 |
WO2023165312A1 (en) * | 2022-03-03 | 2023-09-07 | Mediatek Inc. | Method and apparatus for satellite access network measurement outside gaps |
WO2024032490A1 (zh) * | 2022-08-10 | 2024-02-15 | 维沃移动通信有限公司 | 测量处理方法、装置、终端及网络侧设备 |
Also Published As
Publication number | Publication date |
---|---|
US20220247534A1 (en) | 2022-08-04 |
EP4044716A4 (en) | 2022-11-02 |
CN115002807A (zh) | 2022-09-02 |
EP4044716B1 (en) | 2023-10-04 |
EP4044716A1 (en) | 2022-08-17 |
CN114391290A (zh) | 2022-04-22 |
CN115002807B (zh) | 2024-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020248261A1 (zh) | 一种测量间隔的确定方法及装置、终端 | |
US12108270B2 (en) | Wireless communication method, terminal device and network device | |
US20220247534A1 (en) | Method and apparatus for determining measurement gap, and terminal device | |
US11229048B2 (en) | Uplink channel transmitting method, and terminal device | |
US11825322B2 (en) | Measurement control method, terminal, and non-transitory computer-readable storage medium | |
WO2020062318A1 (zh) | 无线通信方法和终端设备 | |
WO2020248288A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2020198983A1 (zh) | 一种用于非授权频谱的无线通信方法及装置、通信设备 | |
US20210160857A1 (en) | Information transmission method, terminal device and network device | |
US20210112545A1 (en) | Method for determining uplink control information and communications device | |
WO2020164150A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2021088262A1 (zh) | 确定时隙格式的方法及装置 | |
TW202013918A (zh) | 一種訊號傳輸方法及裝置、終端、網路設備 | |
WO2020093399A1 (zh) | 无线通信方法、网络设备和终端设备 | |
WO2020061776A9 (zh) | 一种反馈资源的复用方法、终端设备及网络设备 | |
EP3985908B1 (en) | Downlink transmission method and terminal device | |
WO2021003733A1 (zh) | 一种资源共享方法及装置、终端、网络设备 | |
WO2020248281A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2020034161A1 (zh) | 一种下行信号传输方法、终端和计算机可读存储介质 | |
WO2020029201A1 (zh) | 信号上报的方法、终端设备和网络设备 | |
US11985026B2 (en) | Processing method and device for link recovery process, and terminal | |
US11902949B2 (en) | Wireless communication method and communication device | |
WO2022183507A1 (zh) | 一种测量间隔增强的方法及装置、终端设备、网络设备 | |
WO2020087467A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2020206622A1 (zh) | 无线通信的方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19948291 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019948291 Country of ref document: EP Effective date: 20220420 |