WO2020206622A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2020206622A1
WO2020206622A1 PCT/CN2019/081978 CN2019081978W WO2020206622A1 WO 2020206622 A1 WO2020206622 A1 WO 2020206622A1 CN 2019081978 W CN2019081978 W CN 2019081978W WO 2020206622 A1 WO2020206622 A1 WO 2020206622A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
information
channel detection
bwp
Prior art date
Application number
PCT/CN2019/081978
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/081978 priority Critical patent/WO2020206622A1/zh
Priority to CN201980087248.7A priority patent/CN113273274B/zh
Publication of WO2020206622A1 publication Critical patent/WO2020206622A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and device for wireless communication.
  • LBT Listen Before Talk
  • the embodiments of the present application provide a wireless communication method and device, which are beneficial to improve resource utilization, thereby improving system performance.
  • a wireless communication method including: a first device sends first information on a first frequency domain resource, where the first information is used to instruct a second device to receive the first information on a second frequency domain resource Second message or send third message
  • a wireless communication method including: a second device receives first information on a first frequency domain resource, the first information is used to indicate that the second device is on a second frequency domain resource Receive second information or send third information.
  • a wireless communication device which is used to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the device includes a unit for executing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a wireless communication device which is used to execute the foregoing second aspect or any possible implementation of the second aspect.
  • the device includes a unit for executing the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • a wireless communication device in a fifth aspect, includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a wireless communication device in a sixth aspect, includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a chip is provided for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the first device can send the first information on the first frequency domain resource, which is used to schedule the second device to receive the second information or send the third information on the second frequency domain resource, thereby enabling cross-frequency domain Resource scheduling is conducive to improving resource utilization, thereby improving system performance.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another wireless communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another wireless communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another wireless communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another wireless communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another wireless communication method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE LTE-based access to unlicensed spectrum
  • NR New Radio
  • NR NR system evolution system on unlicensed spectrum, such as NR (NR-based access on unlicensed spectrum) to unlicensed spectrum (NR-U) system, universal mobile telecommunication system (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi) or next-generation communication systems, etc.
  • UMTS universal mobile telecommunication system
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (CA, Carrier Aggregation) scenario, can also be applied to a dual connectivity (DC, Dual Connectivity) scenario, and can also be applied to a standalone (SA, Standalone) network deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA Standalone
  • the CA network deployment scenario can be that the primary carrier is on the licensed spectrum, the secondary carrier is on the unlicensed spectrum, the primary carrier and the secondary carrier Connect via ideal backhaul.
  • the DC network deployment scenario can be that the primary carrier is on the licensed spectrum, the secondary carrier is on the unlicensed spectrum, the primary carrier and the secondary carrier
  • the system on the primary carrier can belong to different systems from the system on the secondary carrier.
  • the system on the primary carrier is the LTE system
  • the system on the secondary carrier is the NR system
  • the system on the primary carrier The system of may also belong to the same system as the system on the secondary carrier.
  • the systems on the primary carrier and the secondary carrier are both LTE systems or both NR systems.
  • the terminal device can access the network through the system on the unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • the channel access scheme (or channel detection scheme) on the unlicensed frequency band may include the following types:
  • Type 1 (Category 1, Cat-1LBT for short).
  • the channel detection of this type 1 does not perform LBT, and transmits immediately or immediately after the end of the handover interval. Among them, between the end of the uplink transmission and the start of the downlink transmission The interval does not exceed 16 ⁇ s;
  • Type 2 (Category 2, referred to as Cat-2LBT), the channel detection of this type 2 is a single channel detection, that is, when the result of a single channel detection is that the channel is occupied, the channel detection is considered as a failure. If the result of the detection is that the channel is idle, the channel detection is considered successful. Specifically, after determining that the first information needs to be sent, the first device may perform T one-shot channel detection on the resource for sending the first information before sending the first information. If the channel is idle, it can be considered as LBT. Success means that the channel detection is successful. If the channel is occupied, the LBT is considered to have failed, that is, the channel detection fails.
  • the length of T one-shot may be indicated by the network device, or determined according to the service priority, or specified by the communication system. Optionally, the length of T one-shot is 25 microseconds.
  • Type 4 (Category 4, referred to as Cat-4LBT), the channel detection of this type 4 is channel detection based on a contention window. When the results of channel detection in the contention window are all channel free, the channel detection is considered successful. Otherwise, it is considered that the channel detection has failed.
  • the size of the contention window can be determined according to the channel access priority, and the channel access priority can correspond to a set of channel access parameters, as shown in Table 1.
  • the channel access priority may be determined according to the length of the time domain resource of the first signal to be sent or the priority of the first signal to be sent.
  • the type 4 channel detection may include the following steps:
  • step S3 Perform a clear channel assessment (CCA) time slot detection with a length of T sl (where T sl is 9 us in length, that is, the length of a CCA time slot is 9 us). If the CCA time slot is idle, then Go to step S4; otherwise, go to step S5;
  • CCA clear channel assessment
  • step S6 If the channel detection result is that all CCA time slots within T d are idle, then step S4 is executed; otherwise, step S5 is executed.
  • the channel detection can be considered as successful when the channel access process is ended, otherwise the channel detection is considered as a failure, rather than when the channel is idle, the channel detection is considered as successful.
  • CW p and m p can be determined according to the priority of the business.
  • CW min, p is the minimum value of the CW channel access priority value p corresponding to p
  • CW max, p is the maximum value of the channel access priority corresponding to the CW p value of p
  • T mcot, p is a channel The maximum length of time that the signal transmission corresponding to the access priority p can occupy.
  • channel access schemes on unlicensed frequency bands may also include other types, or the above-mentioned types of channel detection schemes may also be adjusted or updated.
  • the embodiment does not specifically limit this.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the application.
  • the method 200 may be executed by a network device or a terminal device in the communication system shown in FIG. 1.
  • the method may include the following content:
  • the first device sends first information on a first frequency domain resource, where the first information is used to instruct the second device to receive second information or send third information on the second frequency domain resource.
  • the first information on the first frequency domain resource can be used to schedule the second information or the third information on the second frequency domain resource. Therefore, the wireless communication method according to the embodiment of the present application can implement data across frequency domain resources. Scheduling can improve the utilization of frequency domain resources and improve system performance.
  • both the first frequency domain resource and the second frequency domain resource may be frequency domain resources on an unlicensed frequency band, that is, the embodiments of the present application can implement cross-over on unlicensed frequency bands. Scheduling of frequency domain resources.
  • the first frequency domain resource may be a frequency domain resource on a licensed frequency band
  • the second frequency domain resource is a frequency domain resource on an unlicensed frequency band, that is, the embodiment of the present application Can realize the data scheduling of authorized frequency band to unlicensed frequency band.
  • the first frequency domain resource and the second frequency domain resource may be in units of bandwidth part (Bandwidth Part, BWP), carrier, subband (subband), or other frequency domain units,
  • BWP bandwidth part
  • the first frequency domain resource may be a first BWP
  • the second frequency domain resource may be a second BWP
  • the first frequency domain resource may be a first carrier
  • the second frequency domain resource may be a second carrier
  • the first frequency domain resource may be a first subband
  • the second frequency domain resource may be a second subband.
  • the first device may be a network device
  • the second device may be a terminal device
  • the first information may be downlink control information
  • the second information may be downlink information, that is, the first device may The second device is scheduled to receive downlink information.
  • the first device may be a network device
  • the second device may be a terminal device
  • the first information may be downlink control information
  • the third information may be uplink information, that is, the first device The second device can be scheduled to send uplink information.
  • the first device may be a terminal device
  • the second device may be a terminal device
  • the first information may be side-line control information
  • the third information may be side-line information, that is, the One device can schedule the second device to send or receive sideline information.
  • the first information may be a physical downlink control channel (Physical Downlink Control Channel, PDCCH), or downlink control information (Downlink Control Information, DCI) in the PDCCH, or may also be downlink Signal or downlink channel
  • the second information may be a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), a channel state information reference signal (Channel-State Information-Reference Signal, CSI-RS), a synchronization signal block (Synchronization Signal) Block, SSB) part or all of the signals, demodulation reference signal (Demodulation Reference Signal, DMRS), positioning reference signal (Positioning Reference Signals, PRS), tracking reference signal (Tracing Reference Signals, TRS), or other Signals or channels, for example, Sounding Reference Signals (SRS) and Phase-Tracking Reference Signals (PT-RS), which are not limited in the embodiment of the present application.
  • SRS Sounding Reference Signals
  • PT-RS Phase-Tracking Reference Signals
  • the SSB here can be used for communication device access network and wireless resource management measurement
  • DMRS can be used for channel demodulation
  • CSI-RS can be used for downlink channel measurement
  • PT-RS can be used for downlink time-frequency synchronization or phase tracking.
  • the second information in the embodiment of the present application may include downlink channels or downlink signals with the same name and different functions as the foregoing, or may include downlink channels or downlink signals with the same name and the same function as the foregoing. Not limited.
  • the first information may be the PDCCH, or the DCI in the PDCCH, or may also be a downlink signal or a downlink channel
  • the third information may be a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), SRS, PT-RS, or other uplink signals or uplink channels, such as CSI-RS, some or all of the signals in SSB, DMRS, PRS, TRS, etc., this embodiment of the application does not do this limited.
  • the SRS here can be used for uplink channel or sideline channel measurement
  • PT-RS can be used for uplink or sideline time-frequency synchronization or phase tracking.
  • the third information in the embodiment of the present application may include uplink channels or uplink signals or side channels or side signals with the same name and different functions as the above, or may include uplink channels with different names and the same function as the above. Either an uplink signal or a side channel or a side channel signal, which is not limited in this application.
  • the first device sending the first information on the first frequency domain resource may be that the first device does not perform channel detection on the second frequency domain resource, but directly The first information is sent on the first frequency domain resource; or in other embodiments, the first device may first perform channel detection on the second frequency domain resource to determine whether the second frequency domain resource is available If the second frequency domain resource is available, the first information is sent on the first frequency domain resource.
  • the first device sends the first information on the first frequency domain resource, and the first information is used to schedule the second device to receive the second information on the second frequency domain resource as Embodiment 1.
  • the first device to send the first information on the first frequency domain resource, and the first information is used to schedule the second identification to send the third information on the second frequency domain resource is recorded as Embodiment 2.
  • the first device may also send the second information on the second frequency domain resource.
  • the first device may not perform channel detection on the second frequency domain resource. , Sending the second information directly on the second frequency domain resource, or in some other embodiments, the first device may also send the second information after determining that the second frequency domain resource is available.
  • the second device may also send the third information on the second frequency domain resource.
  • the second device may not send the third information to the second frequency domain resource.
  • the embodiment of the application does not specifically limit the manner in which the first device and the second device perform channel detection on the second frequency domain resource.
  • the aforementioned Cat-2LBT manner may be used for channel detection, or
  • the aforementioned Cat-4LBT method may be used for channel detection, or other newly added channel detection methods may also be used for channel detection, etc., which is not limited in the embodiment of the present application.
  • Embodiment 1 and Embodiment 2 will be described with reference to the specific examples shown in FIGS. 3 to 8.
  • FIGS. 3 to 5 are specific examples of Embodiment 1, where the first device is a network device, the second device is a terminal device, the first information is PDCCH, the second information is PDCCH, and the first frequency The domain resource is the first BWP, namely BWP 1, and the second frequency domain resource is the second BWP, namely BWP 2.
  • 6 to 8 are specific examples of Embodiment 2, where the first device is a network device, the second device is a terminal device, the first information is PDCCH, the third information is PUSCH, and the first frequency domain resource is The first BWP is BWP 1, and the second frequency domain resource is the second BWP, BWP 2.
  • the second information is sent by the first device. If the first device wants to send the second information on the second frequency domain resource, it needs to obtain the right to use the second frequency domain resource. Therefore, The first device may perform channel detection on the second frequency domain resource before sending the second information to determine whether the second frequency domain resource is available.
  • the network device may first determine whether the second BWP is available, and if the second BWP is available, send the PDCCH again. If the BWP is not available, the network device may not send the PDCCH. Specifically, the network device may perform channel detection on the second BWP before sending the PDCCH to determine whether the second BWP is available.
  • the network device may further determine whether the second BWP is available, and if the second BWP is available, send the PDSCH again. Specifically, the network device may perform channel detection on the second BWP after sending the PDCCH and before sending the PDSCH to determine whether the second BWP is available, as shown in FIG. 3.
  • the network device when the network device wants to schedule the PDSCH on the second BWP through the PDCCH on the first BWP, it can perform channel detection on the second BWP before sending the PDCCH, which can ensure that the second BWP can be used for scheduling data. Further, before the PDSCH is sent, channel detection is further performed on the second BWP, which helps to ensure that the second BWP can indeed be used for scheduling data when the PDSCH is sent.
  • the network device may first use the first channel detection mechanism to perform channel detection on the second BWP, and determine whether to send the PDCCH for scheduling the PDSCH on the second BWP If the second BWP is available, the network device can send the PDCCH. Further, before sending the PDSCH, the network device can also use the second channel detection mechanism to perform channel detection on the second BWP to determine whether the second BWP Available, if the second BWP is available, send the PDSCH again.
  • the channel detection based on the contention window can correspond to the Cat-4LBT described above, and the single channel detection can correspond to the Cat-2LBT described above.
  • the first channel detection mechanism may be channel detection based on a contention window
  • the second channel detection mechanism may be channel detection based on a contention window.
  • Cat-4LBT is used for the second channel detection.
  • the BWP performs channel detection to ensure that the second BWP is available, that is, allows scheduling data on the second BWP at this time, and further uses Cat-4LBT to perform channel detection on the second BWP before sending the PDSCH to ensure that the current channel is indeed available.
  • the same channel access priority can be used, or different channel access priorities can also be used, that is, The first channel detection mechanism and the second channel detection mechanism may use the same parameters for channel detection, or may also use different parameters for channel detection.
  • the parameters may include but are not limited to some or all of the parameters in Table 1.
  • the first channel detection mechanism may be channel detection based on a contention window
  • the second channel detection mechanism may be a single channel detection.
  • Cat-4LBT is used to detect the second BWP. Performing channel detection can ensure that the second BWP is available, that is, allowing data to be scheduled on the second BWP at this time, and then using Cat-2LBT to perform channel detection on the second BWP can further ensure that the current channel is indeed available.
  • the first channel detection mechanism may be a single channel detection
  • the second channel detection mechanism may be a channel detection based on a contention window
  • Cat-2LBT is used to perform a second BWP.
  • Channel detection is to initially monitor the channel on the second BWP to determine that the channel is available, and then use Cat-4LBT to perform channel detection on the second BWP to ensure that the current channel is indeed available.
  • the first channel detection mechanism may be a single channel detection
  • the second channel detection mechanism may be a single channel detection, using Cat-2LBT to perform channel detection on the second BWP You can initially monitor the channel on the second BWP, determine that the channel is available, and then use Cat-2LBT for channel detection to ensure that the current channel is indeed available.
  • the first channel detection mechanism and the channel detection manner of the second channel detection mechanism are only examples, and the embodiment of the present application does not limit this.
  • the network device may not perform channel detection on the second BWP before sending the PDCCH, and then perform the second BWP after sending the PDCCH and before sending the PDSCH.
  • the second BWP performs channel detection, and when it is determined that the second BWP is available, the PDSCH is sent again, as shown in FIG. 4.
  • the network device when the network device wants to schedule the PDSCH on the second BWP through the PDCCH on the first BWP, it can perform channel detection on the second BWP after sending the PDCCH and before sending the PDSCH, which helps ensure that the second BWP BWP can be used to transmit the PDSCH.
  • the network device may use the second channel detection mechanism to perform channel detection on the second BWP before transmitting the PDSCH, and determine whether the second BWP is available. When the second BWP is available, the PDSCH is sent again.
  • the second channel detection mechanism may be channel detection based on a contention window. Before sending the PDCCH, no channel detection is performed on the second BWP, and before the PDSCH is sent, Cat-4LBT is used. Performing channel detection on the second BWP can ensure that the second BWP is available, that is, allowing the PDSCH to be sent on the second BWP at this time.
  • the second channel detection mechanism may be a single channel detection. Before sending the PDCCH, no channel detection is performed on the second BWP, and the Cat-2LBT pair is used before sending the PDSCH. Channel detection by the second BWP can ensure that the second BWP is available, that is, the PDSCH is allowed to be sent on the second BWP at this time.
  • the network device may perform channel detection on the second BWP before sending the PDCCH, and not perform the channel detection on the second BWP after sending the PDCCH and before sending the PDSCH.
  • BWP performs channel detection, as shown in Figure 5.
  • the network device sends the PDCCH to the terminal device on the first BWP, and it is expected that when the terminal device is scheduled to receive downlink data on the second BWP, in order to ensure the availability of the channel, the network device may also send the PDCCH to the terminal device before sending the PDCCH.
  • the second BWP performs channel detection to ensure that the channel is available when the network device sends data on the second BWP. After sending the PDCCH and before sending the PDSCH, the network device may not perform channel detection on the second BWP.
  • the network device may use the first channel detection mechanism to perform channel detection on the second frequency domain resource before sending the PDCCH.
  • the first channel detection mechanism may be channel detection based on a contention window.
  • using Cat-4LBT to perform channel detection on the second BWP can ensure that the second BWP is available, that is, it is allowed to send PDSCH on the second BWP at this time, and further, send PDSCH on the second BWP At this time, the network device may not perform channel detection on the second BWP, and directly send the PDSCH on the second BWP.
  • the first channel detection mechanism may be a single channel detection.
  • using Cat-2LBT to perform channel detection on the second BWP on the second BWP can ensure that the second BWP is available, that is, allow the PDSCH to be sent on the second BWP at this time.
  • the network device may directly send the PDSCH on the second BWP without performing channel detection on the second BWP.
  • the third information is sent by the second device, and the first device sends the first information on the first frequency domain resource, and wants to schedule the second device to send the third information on the second frequency domain resource Therefore, the second device needs to obtain the use right of the second frequency domain resource to send the third information, and the use right of the second frequency domain resource may be determined according to the following manner.
  • the network device may first determine whether the second BWP is available, and if the second BWP is available, then send the PDCCH, if the second BWP is available If the BWP is not available, the network device may not send the PDCCH. Specifically, the network device may perform channel detection on the second BWP before sending the PDCCH to determine whether the second BWP is available.
  • the terminal device may further determine whether the second BWP is available, and if the second BWP is available, send the PUSCH again. Specifically, after receiving the PDCCH and before sending the PUSCH, the terminal device may perform channel detection on the second BWP to determine whether the second BWP is available, as shown in FIG. 6.
  • the network device when the network device wants to schedule the PUSCH on the second BWP through the PDCCH on the first BWP, it can perform channel detection on the second BWP before sending the PDCCH, which can ensure that the second BWP can be used for scheduling data. Further, before the terminal device sends the PUSCH, the terminal device further performs channel detection on the second BWP, which helps to ensure that the second BWP can indeed be used for scheduling data when sending the PDSCH.
  • the network device may first use the first channel detection mechanism to perform channel detection on the second BWP, and determine whether to send the PDCCH for scheduling PDSCH on the second BWP If the second BWP is available, the network device may send the PDCCH. Further, before the terminal device sends the PUSCH, the terminal device may also use the third channel detection mechanism to perform channel detection on the second BWP to determine the second BWP Whether the BWP is available, if the second BWP is available, the PUSCH is sent again, and if the second BWP is not available, the terminal device may not send the PUSCH.
  • the first channel detection mechanism may be channel detection based on a contention window
  • the third channel detection mechanism may be channel detection based on a contention window.
  • the network device first adopts Cat-4LBT pair Channel detection by the second BWP can ensure that the second BWP is available, that is, data is allowed to be scheduled on the second BWP at this time.
  • the terminal device Before sending PUSCH, the terminal device further uses Cat-4LBT to perform channel detection on the second BWP to ensure The current channel is indeed available.
  • the first channel detection mechanism may be channel detection based on a contention window
  • the third channel detection mechanism may be a single channel detection.
  • the network device first uses Cat-4LBT to perform the first channel detection.
  • the channel detection of the second BWP can ensure that the second BWP is available, that is, it is allowed to schedule data on the second BWP at this time.
  • the terminal device further uses Cat-2LBT to perform channel detection on the second BWP before sending PUSCH to ensure that the current channel is true. Available.
  • the first channel detection mechanism may be a single channel detection
  • the third channel detection mechanism may be a channel detection based on a contention window.
  • the network device first uses Cat-2LBT for the first channel detection.
  • the second BWP performs channel detection to initially monitor the channel on the second BWP to determine that the channel is available.
  • the terminal device Before sending the PUSCH, the terminal device further uses Cat-4LBT to perform channel detection on the second BWP to ensure that the current channel is indeed available.
  • the first channel detection mechanism may be a single channel detection
  • the third channel detection mechanism may be a single channel detection
  • the network device uses Cat-2LBT to perform the second BWP Channel detection can initially monitor the channel on the second BWP to determine that the channel is available.
  • the terminal device further uses Cat-2LBT for channel detection before sending PUSCH to ensure that the current channel is indeed available.
  • the first channel detection mechanism and the channel detection manner of the third channel detection mechanism are only examples, and the embodiment of the present application does not limit this.
  • the network device may not perform channel detection on the second BWP before sending the PDCCH, and the terminal device may perform the channel detection after receiving the PDCCH and before sending the PUSCH Perform channel detection on the second BWP, and if it is determined that the second BWP is available, send the PUSCH again, as shown in FIG. 7.
  • the network device when the network device wants to schedule the PUSCH on the second BWP through the PDCCH on the first BWP, the network device may not perform channel detection on the second BWP before sending the PDCCH, and the terminal device may perform channel detection on the second BWP after receiving the PDCCH. And before sending the PUSCH, performing channel detection on the second BWP helps to ensure that the second BWP can be used to send the PUSCH.
  • the terminal device may use a third channel detection mechanism to perform channel detection on the second BWP before sending PUSCH to determine whether the second BWP is available. If the second BWP is available, the PUSCH is sent again, and if the second BWP is not available, the terminal device may not send the PUSCH.
  • the third channel detection mechanism may be channel detection based on a contention window.
  • the network device does not perform channel detection on the second BWP before sending the PDCCH, and the terminal device does not perform channel detection on the second BWP before sending the PUSCH.
  • Cat-4LBT to perform channel detection on the second BWP can ensure that the second BWP is available, that is, the PUSCH is allowed to be sent on the second BWP at this time.
  • the third channel detection mechanism may be a single channel detection.
  • the network device does not perform channel detection on the second BWP before sending the PDCCH, and the terminal device uses Cat-2LBT performs channel detection on the second BWP to ensure that the second BWP is available, that is, it allows PUSCH to be sent on the second BWP at this time.
  • the network device may perform channel detection on the second BWP before sending the PDCCH, and the terminal device does not check after receiving the PDCCH and before sending the PUSCH.
  • the second BWP performs channel detection, as shown in Figure 8.
  • the network device sends the PDCCH to the terminal device on the first BWP, and it is expected that when the terminal device is scheduled to send uplink data on the second BWP, in order to ensure the availability of the channel, the network device may also send the PDCCH to the second BWP before sending the PDCCH.
  • the second BWP performs channel detection to ensure that the channel is available when the network device sends data on the second BWP.
  • the terminal device may not perform channel detection on the second BWP .
  • the network device may use the first channel detection mechanism to perform channel detection on the second frequency domain resource before sending the PDCCH.
  • the first channel detection mechanism may be channel detection based on a contention window.
  • the network device uses Cat-4LBT to perform channel detection on the second BWP, which can ensure that the second BWP is available, that is, allow the PDSCH to be sent on the second BWP at this time.
  • the terminal device Before sending the PUSCH on the BWP, the terminal device may directly send the PUSCH on the second BWP without performing channel detection on the second BWP.
  • the first channel detection mechanism may be a single channel detection.
  • the network device Before sending the PDCCH, the network device uses Cat-2LBT to perform channel detection on the second BWP to the second BWP, which can ensure that the second BWP is available, that is, allow the PDSCH to be sent on the second BWP at this time. Further, the terminal Before the device sends the PUSCH on the second BWP, the terminal device may directly send the PUSCH on the second BWP without performing channel detection on the second BWP.
  • the first device can schedule downlink data, uplink data or sideline data across frequency domain resources, and before the scheduled data is sent, it can perform at least one channel detection to ensure that the frequency domain resources corresponding to the data are available
  • channel detection can be performed before the scheduling information (e.g., first information) is sent, or channel detection can be performed before the scheduled data (e.g., second information or third information) is sent, or it can be performed before sending
  • the scheduling information and channel detection are performed before sending scheduled data.
  • the specific channel detection methods used may also be of various types, which are not limited in the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a wireless communication method 300 according to another embodiment of the present application.
  • the method 300 may be executed by a terminal device in the communication system shown in FIG. 1, as shown in FIG. 9,
  • the method 300 includes the following contents:
  • S310 The second device receives first information on the first frequency domain resource, where the first information is used to instruct the second device to receive the second information or send the third information on the second frequency domain resource.
  • the method 300 further includes:
  • the second device sends the third information on the second frequency domain resource.
  • the second device sending the third information on the second frequency domain resource includes:
  • the determining by the second device whether the second frequency domain resource is available includes:
  • the second device performs channel detection on the second frequency domain resource to determine whether the second frequency domain resource is available.
  • the second device performing channel detection on the second frequency domain resource includes:
  • the second device uses a third channel detection mechanism to perform channel detection on the second frequency domain resource.
  • the third channel detection mechanism is single channel detection or channel detection based on a contention window.
  • the first information is a physical downlink control channel PDCCH, or downlink control information DCI in the PDCCH;
  • the second information is at least one of the following:
  • Physical downlink shared channel PDSCH Physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, part or all of the signals in the synchronization signal block SSB, demodulation reference signal DMRS, positioning reference signal PRS, tracking reference signal TRS.
  • the first information is a physical downlink control channel PDCCH, or downlink control information DCI in the PDCCH;
  • the third information is at least one of the following:
  • Physical uplink shared channel PUSCH Physical uplink shared channel PUSCH, sounding reference signal SRS, phase tracking reference signal PT-RS.
  • the first frequency domain resource is a first bandwidth part BWP or a first carrier
  • the second frequency domain resource is a second BWP or a second carrier.
  • the first device is a network device
  • the second device is a terminal device
  • the first frequency domain resource and the second frequency domain resource are frequency domain resources on an unlicensed frequency band;
  • the first frequency domain resource is a frequency domain resource on a licensed frequency band
  • the second frequency domain resource is a frequency domain resource on an unlicensed frequency band.
  • FIG. 10 shows a schematic block diagram of a wireless communication device 400 according to an embodiment of the present application. As shown in FIG. 10, the device 400 includes:
  • the communication module 410 is configured to send first information on a first frequency domain resource, where the first information is used to instruct the second device to receive second information or send third information on the second frequency domain resource.
  • the device 400 further includes:
  • a determining module configured to determine whether the second frequency domain resource is available
  • the communication module is specifically configured to send the first information on the first frequency domain resource when the second frequency domain resource is available.
  • the determining module is specifically configured to
  • the communication module 410 is further configured to:
  • the first channel detection mechanism is used to perform channel detection on the second frequency domain resource.
  • the first channel detection mechanism is single channel detection or channel detection based on a contention window.
  • the communication module 410 is further configured to: send the second information on the second frequency domain resource.
  • the device 400 further includes:
  • a determining module configured to determine whether the second frequency domain resource is available
  • the communication module is specifically configured to send the second information on the second frequency domain resource when the second frequency domain resource is available.
  • the communication module 410 is further configured to:
  • the communication module 410 is further configured to:
  • the second channel detection mechanism is used to perform channel detection on the second frequency domain resource.
  • the second channel detection mechanism is a single channel detection or channel detection based on a contention window.
  • the first information is a physical downlink control channel PDCCH, or downlink control information DCI in the PDCCH;
  • the second information is at least one of the following:
  • Physical downlink shared channel PDSCH Physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, part or all of the signals in the synchronization signal block SSB, demodulation reference signal DMRS, positioning reference signal PRS, tracking reference signal TRS.
  • the first information is a physical downlink control channel PDCCH, or downlink control information DCI in the PDCCH;
  • the third information is at least one of the following:
  • Physical uplink shared channel PUSCH Physical uplink shared channel PUSCH, sounding reference signal SRS, phase tracking reference signal PT-RS.
  • the first frequency domain resource is a first bandwidth part BWP or a first carrier
  • the second frequency domain resource is a second BWP or a second carrier.
  • the device 400 is a network device, and the second device is a terminal device.
  • the first frequency domain resource and the second frequency domain resource are frequency domain resources on an unlicensed frequency band;
  • the first frequency domain resource is a frequency domain resource on a licensed frequency band
  • the second frequency domain resource is a frequency domain resource on an unlicensed frequency band.
  • the device 400 may correspond to the first device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the device 400 are used to implement the method 200 shown in FIG. 2 respectively.
  • the corresponding process of the first device in the first device will not be repeated here.
  • Fig. 11 is a schematic block diagram of a wireless communication device according to an embodiment of the present application.
  • the device 500 of FIG. 11 includes:
  • the communication module 510 is configured to receive first information on a first frequency domain resource, and the first information is used to instruct the device to receive second information or send third information on a second frequency domain resource.
  • the method 500 further includes: the communication module is further configured to:
  • the device 500 further includes:
  • a determining module configured to determine whether the second frequency domain resource is available
  • the communication module is specifically configured to send the third information on the second frequency domain resource when the second frequency domain resource is available.
  • the determining module is specifically configured to perform channel detection on the second frequency domain resource to determine whether the second frequency domain resource is available.
  • the communication module 510 is further configured to:
  • the third channel detection mechanism is used to perform channel detection on the second frequency domain resource.
  • the third channel detection mechanism is single channel detection or channel detection based on a contention window.
  • the first information is a physical downlink control channel PDCCH, or downlink control information DCI in the PDCCH;
  • the second information is at least one of the following:
  • Physical downlink shared channel PDSCH Physical downlink shared channel PDSCH, channel state information reference signal CSI-RS, part or all of the signals in the synchronization signal block SSB, demodulation reference signal DMRS, positioning reference signal PRS, tracking reference signal TRS.
  • the first information is a physical downlink control channel PDCCH, or downlink control information DCI in the PDCCH;
  • the third information is at least one of the following:
  • Physical uplink shared channel PUSCH Physical uplink shared channel PUSCH, sounding reference signal SRS, phase tracking reference signal PT-RS.
  • the first frequency domain resource is a first bandwidth part BWP or a first carrier
  • the second frequency domain resource is a second BWP or a second carrier.
  • the first device is a network device
  • the device 500 is a terminal device.
  • the first frequency domain resource and the second frequency domain resource are frequency domain resources on an unlicensed frequency band;
  • the first frequency domain resource is a frequency domain resource on a licensed frequency band
  • the second frequency domain resource is a frequency domain resource on an unlicensed frequency band.
  • the device 500 may correspond to the second device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the device 500 are to implement the method 300 shown in FIG. 9 respectively.
  • the corresponding process of the second device in the second device will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 12 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device of the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the first device in each method of the embodiment of the present application. For the sake of brevity, it is not here. Repeat it again.
  • the communication device 600 may specifically be the second device of the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the second device in each method of the embodiment of the present application. For the sake of brevity, it is not here. Repeat it again.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 13 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 14 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 14, the communication system 900 includes a first device 910 and a second device 920.
  • the first device 910 can be used to implement the corresponding function implemented by the first device in the foregoing method
  • the second device 920 can be used to implement the corresponding function implemented by the second device in the foregoing method.
  • the first device 910 can be used to implement the corresponding function implemented by the first device in the foregoing method
  • the second device 920 can be used to implement the corresponding function implemented by the second device in the foregoing method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • I will not repeat them here.
  • the computer-readable storage medium can be applied to the second device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • I will not repeat them here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the first device in each method of the embodiment of the present application.
  • the computer program product can be applied to the second device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the second device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first device in the embodiment of the present application, and when the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the first device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the computer program can be applied to the second device in the embodiment of the present application, and when the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the second device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:第一设备在第一频域资源上发送第一信息,所述第一信息用于指示第二设备在第二频域资源上接收第二信息或发送第三信息。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在基于非授权频段的通信系统中,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,根据信道侦听结果确定是否能够进行数据传输,资源利用率较低。因此,如何实现非授权频段上的数据调度以提升资源利用率是一项亟需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和设备,有利于提升资源利用率,从而提升系统性能。
第一方面,提供了一种无线通信的方法,包括:第一设备在第一频域资源上发送第一信息,所述第一信息用于指示第二设备在第二频域资源上接收第二信息或发送第三信息
第二方面,提供了一种无线通信的方法,包括:第二设备在第一频域资源上接收第一信息,所述第一信息用于指示所述第二设备在第二频域资源上接收第二信息或发送第三信息。
第三方面,提供了一种无线通信的设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种无线通信的设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第五方面,提供了一种无线通信的设备,该设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种无线通信的设备,该设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于上述技术方案,第一设备可以在第一频域资源上发送第一信息,用于调度第二设备在第二频 域资源上接收第二信息或发送第三信息,从而能够实现跨频域资源的调度,有利于提升资源利用率,从而提升系统性能。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是本申请实施例提供的一种无线通信的方法的示意性图。
图3是本申请实施例的一种无线通信的方法的示意性图。
图4是本申请实施例的另一种无线通信的方法的示意性图。
图5是本申请实施例的再一种无线通信的方法的示意性图。
图6是本申请实施例的再一种无线通信的方法的示意性图。
图7是本申请实施例的再一种无线通信的方法的示意性图。
图8是本申请实施例的再一种无线通信的方法的示意性图。
图9是本申请实施例提供的一种无线通信的方法的示意性图。
图10是本申请实施例提供的一种无线通信的设备的示意性框图。
图11是本申请实施例提供的一种无线通信的设备的示意性框图。
图12是本申请另一实施例提供的一种通信设备的示意性框图。
图13是本申请实施例提供的一种芯片的示意性框图。
图14是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、新无线(New Radio,NR)系统及NR系统的演进系统,例如非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或下一代通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信。
本申请实施例中的通信系统可以应用于载波聚合(CA,Carrier Aggregation)场景,也可以应用于双连接(DC,Dual Connectivity)场景,还可以应用于独立(SA,Standalone)布网场景。
当本申请实施例中的通信系统应用于非授权频谱,且布网场景是CA时,该CA布网场景可以是主载波在授权频谱上,辅载波在非授权频谱上,主载波和辅载波通过理想回传(backhaul)连接。
当本申请实施例中的通信系统应用于非授权频谱,且布网场景是DC时,该DC布网场景可以是主载波在授权频谱上,辅载波在非授权频谱上,主载波和辅载波通过非理想backhaul连接,其中,主载波上的系统可以和辅载波上的系统属于不同的系统,例如,主载波上的系统为LTE系统,辅载波上的系统为NR系统,或者,主载波上的系统也可以和辅载波上的系统属于相同的系统,例如,主载波和辅载波上的系统均为LTE系统或均为NR系统。
当本申请实施例中的通信系统应用于非授权频谱,且布网场景是SA时,终端设备可以通过非授权频谱上的系统接入网络。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信 系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所述例中,非授权频段上的信道接入方案(或者说,信道检测方案)可以包括如下类型:
类型1(Category 1,简称Cat-1LBT),该类型1的信道检测是不进行LBT,立即传输或者在切换时间间隔结束后立即传输,其中,从上行传输的结束到下行传输的开始之间的间隔不超过16μs;
类型2(Category 2,简称Cat-2LBT),该类型2的信道检测为单次信道检测,即在单次信道检测的结果为信道被占用的情况下,则认为信道检测失败,在单次信道检测的结果为信道空闲的情况下,则认为信道检测成功。具体地,第一设备可以在确定需要发送第一信息后,在该发送第一信息前对发送该第一信息的资源进行长度为T one-shot的信道检测,如果信道空闲,则可以认为LBT成功,即信道检测成功,如果信道被占用,则认为LBT失败,即信道检测失败。其中,T one-shot的长度可以是网络设备指示的,或者是根据业务优先级确定的,或者是通信系统规定的。可选地,T one-shot的长度为25微秒。
类型4(Category 4,简称Cat-4LBT),该类型4的信道检测为基于竞争窗口的信道检测,在该竞争窗口内的信道检测的结果都为信道空闲的情况下,则认为信道检测成功,否则认为信道检测失败。可选地,该竞争窗口的大小可以根据信道接入优先级确定,该信道接入优先级可以对应一组信道接入参数,如表1所示,根据Cat-4LBT进行信道检测时,可以根据信道接入优先级对应的信道接入参数进行信道检测。应理解,表1中信道接入优先级对应的数字越小表示优先级越高。可选地,该信道接入优先级可以根据待发送的第一信号的时域资源的长度或待发送的第一信号的优先级来确定。
可选地,该类型4的信道检测可以包括以下步骤:
S1,设置计数器的计数值N=N init,其中,N init是0到CW p之间均匀分布的随机数,执行步骤S4;
S2,如果N大于零,将计数器的计数值减1,即N=N-1;
S3,对信道做长度为T sl(其中,T sl长度为9us,即CCA时隙长度为9us)的空闲信道评估(Clear Channel Assessment,CCA)时隙检测,如果该CCA时隙为空闲,则执行步骤S4;否则,执行步骤S5;
S4,如果N等于零,则结束信道接入过程;否则,执行步骤S2;
S5,对信道做时间长度为T d(T d=16+m p*9(us))的CCA时隙检测,该CCA检测的结果为至少一个CCA时隙被占用,或者为所有CCA时隙均空闲;
S6,如果信道检测结果是T d时间内所有的CCA时隙均空闲,则执行步骤S4;否则,执行步骤S5。
应注意,在该基于竞争窗口的信道检测中,在结束信道接入过程时,才可以认为信道检测成功,否则认为信道检测失败,而不是在信道空闲的就认为信道检测成功。其中,CW p和m p可以根据业务的优先级来确定。
表1
信道接入优先级(p) m p CW min,p CW max,p T mcot,p 允许的CW p的大小
1 1 3 7 2ms {3,7}
2 1 7 15 3ms {7,15}
3 3 15 63 8ms/10ms {15,31,63}
4 7 15 1023 8ms/10ms {15,31,63,127,255,511,1023}
其中,CW min,p为信道接入优先级p对应的CW p取值的最小值,CW max,p为信道接入优先级p对应的CW p取值的最大值,T mcot,p为信道接入优先级p对应的信号传输可占用的最大时间长度。
应理解,本申请实施例中,随着标准的更新和发展,非授权频段上的信道接入方案还可以包括其他类型,或者,上述几种类型的信道检测方案也可以调整或更新,本申请实施例对此不作具体限定。
图2为本申请实施例提供的一种无线通信的方法的示意性流程图。可选地,该方法200可以由图1所示的通信系统中的网络设备或终端设备执行,如图2所示,该方法可以包括如下内容:
S210,第一设备在第一频域资源上发送第一信息,所述第一信息用于指示第二设备在第二频域资源上接收第二信息或发送第三信息。
即第一频域资源上的第一信息可以用于调度第二频域资源上的第二信息或第三信息,因此,根据本申请实施例的无线通信的方法可以实现跨频域资源的数据调度,从而能够提升频域资源的利用率,提升系统性能。
可选地,在一些实施例中,所述第一频域资源和所述第二频域资源都可以为非授权频段上的频域资源,即本申请实施例能够实现非授权频段上的跨频域资源的调度。
可选地,在另一些实施例中,所述第一频域资源可以为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源,即本申请实施例可以实现授权频段对非授权频段的数据调度。
可选地,在本申请实施例中,该第一频域资源和第二频域资源可以以带宽部分(Bandwidth Part,BWP),载波,子带(subband),或者其他频域单元为单位,本申请实施例对此不作限定。例如,该第一频域资源可以为第一BWP,该第二频域资源可以为第二BWP。又例如,该第一频域资源可以为第一载波,该第二频域资源可以为第二载波。再例如,该第一频域资源可以为第一子带,该第二频域资源可以为第二子带。
应理解,本申请实施例可以适用于下行数据的调度,上行数据的调度,或侧行数据的调度等各种数据调度场景。
例如,所述第一设备可以为网络设备,所述第二设备可以为终端设备,所述第一信息可以为下行控制信息,所述第二信息可以为下行信息,即所述第一设备可以调度第二设备进行下行信息的接收。
又例如,所述第一设备可以为网络设备,所述第二设备可以为终端设备,所述第一信息可以为下行控制信息,所述第三信息可以为上行信息,即所述第一设备可以调度第二设备进行上行信息的发送。
再例如,所述第一设备可以为终端设备,所述第二设备可以为终端设备,所述第一信息可以为侧行控制信息,所述第三信息可以为侧行信息,即所述第一设备可以调度第二设备进行侧行信息的发送或接收。
可选地,在一些实施例中,所述第一信息可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH),或PDCCH中的下行控制信息(Downlink Control Information,DCI),或者也可以为下行信号或下行信道,所述第二信息可以为物理下行共享信道(Physical Downlink Shared Channel,PDSCH),信道状态信息参考信号(Channel-State Information-Reference Signal,CSI-RS),同步信号块(Synchronization Signal Block,SSB)中的部分或全部信号,解调参考信号(Demodulation  Reference Signal,DMRS),定位参考信号(Positioning Reference Signals,PRS),追踪参考信号(Tracing Reference Signals,TRS),或者也可以为其他信号或信道,例如,探测参考信号(Sounding Reference Signals,SRS),相位追踪参考信号(Phase-Tracking Reference Signals,PT-RS),本申请实施例对此不作限定。
应理解,这里的SSB可用于通信设备接入网络和无线资源管理测量,DMRS可用于信道的解调,CSI-RS可用于下行信道的测量,PT-RS可用于下行时频同步或相位跟踪。应理解,本申请实施例中所述第二信息可以包括和上述名称相同、功能不同的下行信道或下行信号,也可以包括和上述名称不同、功能相同的下行信道或下行信号,本申请对此并不限定。
可选地,在另一些实施例中,所述第一信息可以为PDCCH,或PDCCH中的DCI,或者也可以为下行信号或下行信道,所述第三信息可以为物理上行共享信道(Physical Uplink Shared Channel,PUSCH),SRS,PT-RS,或者也可以为其他上行信号或上行信道,例如CSI-RS,SSB中的部分或全部信号,DMRS,PRS,TRS等,本申请实施例对此不作限定。
应理解,这里的SRS可用于上行信道或侧行信道的测量,PT-RS可用于上行或侧行时频同步或相位跟踪。应理解,本申请实施例中所述第三信息可以包括和上述名称相同、功能不同的上行信道或上行信号或侧行信道或侧行信号,也可以包括和上述名称不同、功能相同的上行信道或上行信号或侧行信道或侧行信号,本申请对此并不限定。
可选地,在一些实施例中,所述第一设备在所述第一频域资源上发送所述第一信息可以是所述第一设备不对第二频域资源进行信道检测,直接在所述第一频域资源上发送所述第一信息;或者在另一些实施例中,所述第一设备可以首先对所述第二频域资源进行信道检测,确定该第二频域资源是否可用,在该第二频域资源可用的情况下,再在该第一频域资源上发送该第一信息。
为便于说明和理解,将第一设备在第一频域资源上发送第一信息,所述第一信息用于调度第二设备在第二频域资源上接收第二信息记为实施例1,将第一设备在第一频域资源上发送第一信息,所述第一信息用于调度第二识别在第二频域资源上发送第三信息记为实施例2。
在该实施例1中,该第一设备还可以在第二频域资源上发送第二信息,可选地,在一些实施例中,所述第一设备可以不对第二频域资源进行信道检测,直接在该第二频域资源上发送第二信息,或者在另一些实施例中,该第一设备也可以在确定第二频域资源可用的情况下再发送该第二信息。
类似地,在该实施例2中,该第二设备还可以在第二频域资源上发送第三信息,可选地,在一些实施例中,所述第二设备可以不对第二频域资源进行信道检测,直接在该第二频域资源上发送第三信息,或者在另一些实施例中,该第二设备也可以在确定第二频域资源可用的情况下再发送该第三信息。
应理解,本申请实施例对于所述第一设备和所述第二设备对第二频域资源进行信道检测的方式不作具体限定,例如可以采用前述的Cat-2LBT的方式进行信道检测,或者也可以采用前述的Cat-4LBT的方式进行信道检测,或者也可以采用其他新增的信道检测方式进行信道检测等,本申请实施例对此不作限定。
以下,结合图3至图8所示的具体示例,说明该实施例1和实施例2的具体实现方式。
应理解,图3至图5为实施例1的具体示例,其中,该第一设备为网络设备,第二设备为终端设备,该第一信息为PDCCH,该第二信息为PDCCH,第一频域资源为第一BWP,即BWP 1,第二频域资源为第二BWP,即BWP 2。图6至图8为实施例2的具体示例,其中,该第一设备为网络设备,第二设备为终端设备,该第一信息为PDCCH,该第三信息为PUSCH,第一频域资源为第一BWP,即BWP 1,第二频域资源为第二BWP,即BWP 2。
实施例1:
在该实施例1中,该第二信息是第一设备发送的,该第一设备想要在第二频域资源上发送第二信息,需要获得该第二频域资源的使用权,因此,该第一设备可以在发送第二信息之前,对该第二频域资源进行信道检测,确定该第二频域资源是否可用。
作为该实施例1的一个可选实施例,记为实施例1.1,该网络设备可以首先确定该第二BWP是否可用,在该第二BWP可用的情况下,再发送该PDCCH,若该第二BWP不可用,该网络设备可以不发送该PDCCH。具体地,该网络设备可以在发送PDCCH之前对该第二BWP进行信道检测,以确定该第二BWP是否可用。
可选地,在一些实施例中,在发送该PDCCH之后,且发送该PDSCH之前,该网络设备还可以进一步确定第二BWP是否可用,在该第二BWP可用的情况下,再发送该PDSCH。具体地,该网络设备可以在发送PDCCH之后,且发送该PDSCH之前,对该第二BWP进行信道检测,以确定第二BWP是否可用,如图3所示。
因此,网络设备在想要通过第一BWP上的PDCCH调度第二BWP上的PDSCH时,可以在发送PDCCH之前,先对第二BWP进行信道检测,能够保证该第二BWP可以用于调度数据,进一步地,在发送PDSCH之前,进一步对该第二BWP进行信道检测,有利于保证在发送PDSCH时,该第二BWP确实可用于调度数据。
可选地,作为该实施例1.1的一个可选实施例,该网络设备可以首先采用第一信道检测机制对该第二BWP进行信道检测,确定是否发送用于调度第二BWP上的PDSCH的PDCCH,若该第二BWP可用,该网络设备可以发送该PDCCH,进一步地,在发送PDSCH之前,该网络设备还可以采用第二信道检测机制对该第二BWP进行信道检测,确定该第二BWP是否可用,在该第二BWP可用的情况下,再发送该PDSCH。
应理解,在本申请实施例中,基于竞争窗口的信道检测,可以对应于前文所述的Cat-4LBT,单次信道检测可以对应于前文所述的Cat-2LBT,具体实现请参考前文实施例的相关描述,这里不再赘述。
可选地,在一些实施例中,所述第一信道检测机制可以为基于竞争窗口的信道检测,所述第二信道检测机制可以为基于竞争窗口的信道检测,首先采用Cat-4LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上调度数据,在发送PDSCH之前进一步采用Cat-4LBT对第二BWP进行信道检测,以保证当前信道确实可用。
可选地,当第一信道检测机制和所述第二信道检测机制都为Cat-4LBT时,可以采用相同的信道接入优先级,或者也可以采用不同的信道接入优先级,也就是说,该第一信道检测机制和该第二信道检测机制可以采用相同的参数进行信道检测,或者也可以采用不同的参数进行信道检测,该参数可以包括但不限于表1中的部分或全部参数。
可选地,在另一些实施例中,所述第一信道检测机制可以为基于竞争窗口的信道检测,所述第二信道检测机制可以为单次信道检测,首先采用Cat-4LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上调度数据,再采用Cat-2LBT对第二BWP进行信道检测可以进一步保证当前信道确实可用。
可选地,在再一些实施例中,所述第一信道检测机制可以为单次信道检测,所述第二信道检测机制可以为基于竞争窗口的信道检测,采用Cat-2LBT对第二BWP进行信道检测是为了初步监听第二BWP上的信道,确定信道可用,进一步再采用Cat-4LBT对第二BWP进行信道检测,可以保证当前信道确实可用。
可选地,在再一些实施例中,所述第一信道检测机制可以为单次信道检测,所述第二信道检测机 制可以为单次信道检测,采用Cat-2LBT对第二BWP进行信道检测可以初步监听第二BWP上的信道,确定信道可用,进一步再采用Cat-2LBT进行信道检测,可以保证当前信道确实可用。
应理解,在本申请实施例中,以上,所述第一信道检测机制,所述第二信道检测机制的信道检测方式仅为示例,本申请实施例对此不作限定。
作为该实施例1的另一个可选实施例,记为实施例1.2,该网络设备可以在发送PDCCH之前不对该第二BWP进行信道检测,在发送该PDCCH之后且发送该PDSCH之前再对该第二BWP进行信道检测,在确定该第二BWP可用的情况下,再发送该PDSCH,如图4所示。
因此,网络设备在想要通过第一BWP上的PDCCH调度第二BWP上的PDSCH时,可以在发送PDCCH之后,并且在发送PDSCH之前,对该第二BWP进行信道检测,有利于保证该第二BWP可用于发送该PDSCH。
可选地,作为该实施例1.2的一个可选实施例,该网络设备可以在发送PDSCH之前,采用第二信道检测机制对该第二BWP进行信道检测,确定该第二BWP是否可用,在该第二BWP可用的情况下,再发送该PDSCH。
可选地,在一些实施例中,所述第二信道检测机制可以为基于竞争窗口的信道检测,在发送PDCCH之前,不对该第二BWP进行信道检测,在发送该PDSCH之前,采用Cat-4LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上发送PDSCH。
可选地,在另一些实施例中,所述第二信道检测机制可以为单次信道检测,在发送PDCCH之前,不对该第二BWP进行信道检测,在发送该PDSCH之前,采用Cat-2LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上发送PDSCH。
作为该实施例1的再一个可选实施例,记为实施例1.3,该网络设备可以在发送PDCCH之前对该第二BWP进行信道检测,在发送该PDCCH之后且发送该PDSCH之前不对该第二BWP进行信道检测,如图5所示。
具体来说,网络设备在第一BWP上向终端设备发送PDCCH,期望调度终端设备在第二BWP上接收下行数据时,为了保证信道的可用性,该网络设备还可以在发送PDCCH之前,对该第二BWP做信道检测,以保证在该网络设备在该第二BWP上发送数据时信道可用,而在发送PDCCH之后,且发送PDSCH之前,该网络设备可以不对该第二BWP做信道检测。
可选地,作为该实施例1.3的一个可选实施例,该网络设备可以在发送该PDCCH之前,采用第一信道检测机制对该第二频域资源进行信道检测。
可选地,在一些实施例中,所述第一信道检测机制可以为基于竞争窗口的信道检测。在发送PDCCH之前,采用Cat-4LBT对该第二BWP进行信道检测,可以保证该第二BWP可用,即允许此时在该第二BWP上发送PDSCH,进一步地,在该第二BWP上发送PDSCH时,该网络设备可以不对该第二BWP进行信道检测,直接在该第二BWP上发送PDSCH。
可选地,在另一些实施例中,所述第一信道检测机制可以为单次信道检测。在发送PDCCH之前,采用Cat-2LBT对该第二BWP对该第二BWP进行信道检测,可以保证该第二BWP可用,即允许此时在该第二BWP上发送PDSCH,进一步地,在该第二BWP上发送PDSCH时,该网络设备可以不对该第二BWP进行信道检测,直接在该第二BWP上发送PDSCH。
实施例2:
在实施例2中,该第三信息是第二设备发送的,该第一设备在第一频域资源上发送第一信息,想要调度第二设备在第二频域资源上发送第三信息,因此,该第二设备发送该第三信息需要获得该第二频域资源的使用权,该第二频域资源的使用权可以根据如下方式确定。
作为该实施例2的一个可选实施例,记为实施例2.1,该网络设备可以首先确定该第二BWP是否可用,在该第二BWP可用的情况下,再发送该PDCCH,若该第二BWP不可用,该网络设备可以不发送该PDCCH。具体地,该网络设备可以在发送PDCCH之前对该第二BWP进行信道检测,以确定该第二BWP是否可用。
进一步地,在发送该PDCCH之后,在该终端设备发送该PUSCH之前,该终端设备还可以进一步确定第二BWP是否可用,在该第二BWP可用的情况下,再发送该PUSCH。具体地,该终端设备可以在接收到PDCCH之后,且发送该PUSCH之前,对该第二BWP进行信道检测,以确定第二BWP是否可用,如图6所示。
因此,网络设备在想要通过第一BWP上的PDCCH调度第二BWP上的PUSCH时,可以在发送PDCCH之前,先对第二BWP进行信道检测,能够保证该第二BWP可以用于调度数据,进一步地,在终端设备发送PUSCH之前,该终端设备进一步对该第二BWP进行信道检测,有利于保证在发送PDSCH时,该第二BWP确实可用于调度数据。
可选地,作为该实施例2.1的一个可选实施例,该网络设备可以首先采用第一信道检测机制对该第二BWP进行信道检测,确定是否发送用于调度第二BWP上的PDSCH的PDCCH,若该第二BWP可用,该网络设备可以发送该PDCCH,进一步地,在终端设备发送PUSCH之前,该终端设备还可以采用第三信道检测机制对该第二BWP进行信道检测,确定该第二BWP是否可用,在该第二BWP可用的情况下,再发送该PUSCH,若该第二BWP不可用,该终端设备可以不发送该PUSCH。
可选地,在一些实施例中,所述第一信道检测机制可以为基于竞争窗口的信道检测,所述第三信道检测机制可以为基于竞争窗口的信道检测,网络设备首先采用Cat-4LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上调度数据,终端设备在发送PUSCH之前,进一步再采用Cat-4LBT对第二BWP进行信道检测,以保证当前信道确实可用。
可选地,在另一些实施例中,所述第一信道检测机制可以为基于竞争窗口的信道检测,所述第三信道检测机制可以为单次信道检测,网络设备首先采用Cat-4LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上调度数据,终端设备在发送PUSCH之前,进一步采用Cat-2LBT对第二BWP进行信道检测可以保证当前信道确实可用。
可选地,在再一些实施例中,所述第一信道检测机制可以为单次信道检测,所述第三信道检测机制可以为基于竞争窗口的信道检测,网络设备首先采用Cat-2LBT对第二BWP进行信道检测可以初步监听第二BWP上的信道,确定信道可用,终端设备在发送PUSCH之前,进一步再采用Cat-4LBT对第二BWP进行信道检测,可以保证当前信道确实可用。
可选地,在再一些实施例中,所述第一信道检测机制可以为单次信道检测,所述第三信道检测机制可以为单次信道检测,网络设备采用Cat-2LBT对第二BWP进行信道检测可以初步监听第二BWP上的信道,确定信道可用,终端设备在发送PUSCH之前,进一步再采用Cat-2LBT进行信道检测,可以保证当前信道确实可用。
应理解,在本申请实施例中,以上,所述第一信道检测机制,所述第三信道检测机制的信道检测方式仅为示例,本申请实施例对此不作限定。
作为该实施例2的另一个可选实施例,记为实施例2.2,该网络设备可以在发送PDCCH之前不对该第二BWP进行信道检测,该终端设备可以在接收该PDCCH之后且发送该PUSCH之前对该第二BWP进行信道检测,在确定该第二BWP可用的情况下,再发送该PUSCH,如图7所示。
因此,网络设备在想要通过第一BWP上的PDCCH调度第二BWP上的PUSCH时,该网络设备可以在发送PDCCH之前,不对该第二BWP进行信道检测,而该终端设备可以在接收PDCCH之后, 并且在发送PUSCH之前,对该第二BWP进行信道检测,有利于保证该第二BWP可用于发送该PUSCH。
可选地,作为该实施例2.2的一个可选实施例,该终端设备可以在发送PUSCH之前,采用第三信道检测机制对该第二BWP进行信道检测,确定该第二BWP是否可用,在该第二BWP可用的情况下,再发送该PUSCH,若该第二BWP不可用,该终端设备可以不发送该PUSCH。
可选地,在一些实施例中,所述第三信道检测机制可以为基于竞争窗口的信道检测,网络设备在发送PDCCH之前,不对该第二BWP进行信道检测,而终端设备在发送该PUSCH之前,采用Cat-4LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上发送PUSCH。
可选地,在另一些实施例中,所述第三信道检测机制可以为单次信道检测,网络设备在发送PDCCH之前,不对该第二BWP进行信道检测,终端设备在发送该PUSCH之前,采用Cat-2LBT对第二BWP进行信道检测可以保证该第二BWP可用,即允许此时在该第二BWP上发送PUSCH。
作为该实施例2的再一个可选实施例,记为实施例2.3,该网络设备可以在发送PDCCH之前对该第二BWP进行信道检测,而终端设备在接收该PDCCH之后且发送该PUSCH之前不对该第二BWP进行信道检测,如图8所示。
具体来说,网络设备在第一BWP上向终端设备发送PDCCH,期望调度终端设备在第二BWP上发送上行数据时,为了保证信道的可用性,该网络设备还可以在发送PDCCH之前,对该第二BWP做信道检测,以保证在该网络设备在该第二BWP上发送数据时信道可用,在网络设备发送PDCCH之后,且终端设备发送PUSCH之前,该终端设备可以不对该第二BWP做信道检测。
可选地,作为该实施例2.3的一个可选实施例,该网络设备可以在发送该PDCCH之前,采用第一信道检测机制对该第二频域资源进行信道检测。
可选地,在一些实施例中,所述第一信道检测机制可以为基于竞争窗口的信道检测。网络设备在发送PDCCH之前,采用Cat-4LBT对该第二BWP进行信道检测,可以保证该第二BWP可用,即允许此时在该第二BWP上发送PDSCH,进一步地,终端设备在该第二BWP上发送PUSCH之前,该终端设备可以不对该第二BWP进行信道检测,直接在该第二BWP上发送PUSCH。
可选地,在另一些实施例中,所述第一信道检测机制可以为单次信道检测。网络设备在发送PDCCH之前,采用Cat-2LBT对该第二BWP对该第二BWP进行信道检测,可以保证该第二BWP可用,即允许此时在该第二BWP上发送PDSCH,进一步地,终端设备在该第二BWP上发送PUSCH之前,该终端设备可以不对该第二BWP进行信道检测,直接在该第二BWP上发送PUSCH。
综上,第一设备可以跨频域资源进行下行数据,上行数据或侧行数据的调度,并且,被调度数据在发送之前,可以执行至少一次信道检测,以确保该数据对应的频域资源可用,例如,可以在调度信息(例如,第一信息)发送之前执行信道检测,或者,也可以在被调度数据(例如,第二信息或第三信息)发送之前执行信道检测,或者也可以在发送调度信息,以及发送被调度数据之前都执行信道检测等,具体采用的信道检测方式也可以为各种类型,本申请实施例对此不作限定。
上文结合图2至图8,从第一设备的角度详细描述了根据本申请实施例的无线通信的方法,下文结合图9,从第二设备的角度详细描述根据本申请另一实施例的无线通信的方法。应理解,第二设备侧的描述与第一设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图9是根据本申请另一实施例的无线通信的方法300的示意性流程图,可选地,该方法300可以由图1所示的通信系统中的终端设备执行,如图9所示,该方法300包括如下内容:
S310,第二设备在第一频域资源上接收第一信息,所述第一信息用于指示所述第二设备在第二频域资源上接收第二信息或发送第三信息。
可选地,在一些实施例中,所述方法300还包括:
所述第二设备在所述第二频域资源上发送所述第三信息。
可选地,在一些实施例中,所述第二设备在所述第二频域资源上发送所述第三信息,包括:
所述第二设备确定所述第二频域资源是否可用;
在所述第二频域资源可用的情况下,在所述第二频域资源上发送所述第三信息。
可选地,在一些实施例中,所述第二设备确定所述第二频域资源是否可用,包括:
所述第二设备对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
可选地,在一些实施例中,所述第二设备对所述第二频域资源进行信道检测,包括:
所述第二设备采用第三信道检测机制在所述第二频域资源上进行信道检测。
可选地,在一些实施例中,所述第三信道检测机制为单次信道检测或基于竞争窗口的信道检测。
可选地,在一些实施例中,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
所述第二信息为以下中的至少一种:
物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
可选地,在一些实施例中,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
所述第三信息为以下中的至少一种:
物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
可选地,在一些实施例中,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
可选地,在一些实施例中,所述第一设备为网络设备,所述第二设备为终端设备。
可选地,在一些实施例中,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
上文结合图2至图9,详细描述了本申请的方法实施例,下文结合图10至图14,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的无线通信的设备400的示意性框图。如图10所示,该设备400包括:
通信模块410,用于在第一频域资源上发送第一信息,所述第一信息用于指示第二设备在第二频域资源上接收第二信息或发送第三信息。
可选地,在一些实施例中,所述设备400还包括:
确定模块,用于确定所述第二频域资源是否可用;
所述通信模块具体用于:在所述第二频域资源可用的情况下,在所述第一频域资源上发送所述第一信息。
可选地,在一些实施例中,所述确定模块具体用于
对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
可选地,在一些实施例中,所述通信模块410还用于:
采用第一信道检测机制在所述第二频域资源上进行信道检测。
可选地,在一些实施例中,所述第一信道检测机制为单次信道检测或基于竞争窗口的信道检测。
可选地,在一些实施例中,所述通信模块410还用于:在所述第二频域资源上发送所述第二信息。
可选地,在一些实施例中,所述设备400还包括:
确定模块,用于确定所述第二频域资源是否可用;
所述通信模块具体用于:在所述第二频域资源可用的情况下,在所述第二频域资源上发送所述第二信息。
可选地,在一些实施例中,所述通信模块410还用于:
对所述第二频域资源进行信道检测,确定所述第二频域资源是否可用。
可选地,在一些实施例中,所述通信模块410还用于:
采用第二信道检测机制在所述第二频域资源上进行信道检测。
可选地,在一些实施例中,所述第二信道检测机制为单次信道检测,或基于竞争窗口的信道检测。
可选地,在一些实施例中,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
所述第二信息为以下中的至少一种:
物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
可选地,在一些实施例中,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
所述第三信息为以下中的至少一种:
物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
可选地,在一些实施例中,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
可选地,在一些实施例中,所述设备400为网络设备,所述第二设备为终端设备。
可选地,在一些实施例中,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
应理解,根据本申请实施例的设备400可对应于本申请方法实施例中的第一设备,并且设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中第一设备的相应流程,为了简洁,在此不再赘述。
图11是根据本申请实施例的无线通信的设备的示意性框图。图11的设备500包括:
通信模块510,用于在第一频域资源上接收第一信息,所述第一信息用于指示所述设备在第二频域资源上接收第二信息或发送第三信息。
可选地,在一些实施例中,所述方法500还包括:通信模块还用于:
在所述第二频域资源上发送所述第三信息。
可选地,在一些实施例中,所述设备500还包括:
确定模块,用于确定所述第二频域资源是否可用;
所述通信模块具体用于:在所述第二频域资源可用的情况下,在所述第二频域资源上发送所述第三信息。
可选地,在一些实施例中,所述确定模块具体用于:对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
可选地,在一些实施例中,所述通信模块510还用于:
采用第三信道检测机制在所述第二频域资源上进行信道检测。
可选地,在一些实施例中,所述第三信道检测机制为单次信道检测或基于竞争窗口的信道检测。
可选地,在一些实施例中,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
所述第二信息为以下中的至少一种:
物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
可选地,在一些实施例中,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
所述第三信息为以下中的至少一种:
物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
可选地,在一些实施例中,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
可选地,在一些实施例中,所述第一设备为网络设备,所述设备500为终端设备。
可选地,在一些实施例中,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
应理解,根据本申请实施例的设备500可对应于本申请方法实施例中的第二设备,并且设备500中的各个单元的上述和其它操作和/或功能分别为了实现图9所示方法300中第二设备的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种通信设备600示意性结构图。图12所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统900的示意性框图。如图14所示,该通信系统900包括第一设备910和第二设备920。
其中,该第一设备910可以用于实现上述方法中由第一设备实现的相应的功能,以及该第二设备920可以用于实现上述方法中由第二设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之 内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (57)

  1. 一种无线通信的方法,其特征在于,包括:第一设备在第一频域资源上发送第一信息,所述第一信息用于指示第二设备在第二频域资源上接收第二信息或发送第三信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备在第一频域资源上发送第一信息包括:
    所述第一设备确定所述第二频域资源是否可用;
    在所述第二频域资源可用的情况下,所述第一设备在所述第一频域资源上发送所述第一信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一设备确定所述第二频域资源是否可用,包括:
    所述第一设备对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
  4. 根据权利要求3所述的方法,其特征在于,所述第一设备对所述第二频域资源进行信道检测,包括:
    所述第一设备采用第一信道检测机制在所述第二频域资源上进行信道检测。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信道检测机制为单次信道检测或基于竞争窗口的信道检测。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第二频域资源上发送所述第二信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一设备在所述第二频域资源上发送所述第二信息,包括:
    所述第一设备确定所述第二频域资源是否可用;
    在所述第二频域资源可用的情况下,所述第一设备在所述第二频域资源上发送所述第二信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一设备确定所述第二频域资源是否可用,包括:所述第一设备对所述第二频域资源进行信道检测,确定所述第二频域资源是否可用。
  9. 根据权利要求8所述的方法,其特征在于,所述第一设备对所述第二频域资源进行信道检测,包括:所述第一设备采用第二信道检测机制在所述第二频域资源上进行信道检测。
  10. 根据权利要求9所述的方法,其特征在于,所述第二信道检测机制为单次信道检测,或基于竞争窗口的信道检测。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
    所述第二信息为以下中的至少一种:
    物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信 号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
    所述第三信息为以下中的至少一种:
    物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
    所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
  16. 一种无线通信的方法,其特征在于,包括:
    第二设备在第一频域资源上接收第一信息,所述第一信息用于指示所述第二设备在第二频域资源上接收第二信息或发送第三信息。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第二设备在所述第二频域资源上发送所述第三信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第二设备在所述第二频域资源上发送所述第三信息,包括:
    所述第二设备确定所述第二频域资源是否可用;
    在所述第二频域资源可用的情况下,在所述第二频域资源上发送所述第三信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第二设备确定所述第二频域资源是否可用,包括:所述第二设备对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
  20. 根据权利要求19所述的方法,其特征在于,所述第二设备对所述第二频域资源进行信道检测,包括:所述第二设备采用第三信道检测机制在所述第二频域资源上进行信道检测。
  21. 根据权利要求20所述的方法,其特征在于,所述第三信道检测机制为单次信道检测或基于竞争窗口的信道检测。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;所述第二信息为以下中的至少一种:
    物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;所述第三信息为以下中的至少一种:
    物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
  24. 根据权利要求16至23中任一项所述的方法,其特征在于,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
  25. 根据权利要求16至24中任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备。
  26. 根据权利要求16至25中任一项所述的方法,其特征在于,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
    所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
  27. 一种无线通信的设备,其特征在于,包括:
    通信模块,用于在第一频域资源上发送第一信息,所述第一信息用于指示第二设备在第二频域资源上接收第二信息或发送第三信息。
  28. 根据权利要求27所述的设备,其特征在于,所述设备还包括:
    确定模块,用于确定所述第二频域资源是否可用;
    所述通信模块具体用于:在所述第二频域资源可用的情况下,在所述第一频域资源上发送所述第一信息。
  29. 根据权利要求28所述的设备,其特征在于,所述确定模块具体用于对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
  30. 根据权利要求29所述的设备,其特征在于,所述通信模块还用于:
    采用第一信道检测机制在所述第二频域资源上进行信道检测。
  31. 根据权利要求30所述的设备,其特征在于,所述第一信道检测机制为单次信道检测或基于竞争窗口的信道检测。
  32. 根据权利要求27至31中任一项所述的设备,其特征在于,所述通信模块还用于:在所述第二频域资源上发送所述第二信息。
  33. 根据权利要求32所述的设备,其特征在于,所述设备还包括:
    确定模块,用于确定所述第二频域资源是否可用;
    所述通信模块具体用于:在所述第二频域资源可用的情况下,在所述第二频域资源上发送所述第二信息。
  34. 根据权利要求33所述的设备,其特征在于,所述通信模块还用于:
    对所述第二频域资源进行信道检测,确定所述第二频域资源是否可用。
  35. 根据权利要求34所述的设备,其特征在于,所述通信模块还用于:
    采用第二信道检测机制在所述第二频域资源上进行信道检测。
  36. 根据权利要求35所述的设备,其特征在于,所述第二信道检测机制为单次信道检测,或基于竞争窗口的信道检测。
  37. 根据权利要求27至36中任一项所述的设备,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
    所述第二信息为以下中的至少一种:
    物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
  38. 根据权利要求27至37中任一项所述的设备,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;
    所述第三信息为以下中的至少一种:
    物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
  39. 根据权利要求27至38中任一项所述的设备,其特征在于,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
  40. 根据权利要求27至39中任一项所述的设备,其特征在于,所述设备为网络设备,所述第二设备为终端设备。
  41. 根据权利要求27至40中任一项所述的设备,其特征在于,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
    所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
  42. 一种无线通信的设备,其特征在于,包括:
    通信模块,用于在第一频域资源上接收第一信息,所述第一信息用于指示所述设备在第二频域资源上接收第二信息或发送第三信息。
  43. 根据权利要求42所述的设备,其特征在于,所述方法还包括:通信模块还用于:
    在所述第二频域资源上发送所述第三信息。
  44. 根据权利要求43所述的设备,其特征在于,所述设备还包括:
    确定模块,用于确定所述第二频域资源是否可用;
    所述通信模块具体用于:在所述第二频域资源可用的情况下,在所述第二频域资源上发送所述第三信息。
  45. 根据权利要求44所述的设备,其特征在于,所述确定模块具体用于:对所述第二频域资源进行信道检测,以确定所述第二频域资源是否可用。
  46. 根据权利要求45所述的设备,其特征在于,所述通信模块还用于:
    采用第三信道检测机制在所述第二频域资源上进行信道检测。
  47. 根据权利要求46所述的设备,其特征在于,所述第三信道检测机制为单次信道检测或基于竞争窗口的信道检测。
  48. 根据权利要求42至47中任一项所述的设备,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;所述第二信息为以下中的至少一种:
    物理下行共享信道PDSCH,信道状态信息参考信号CSI-RS,同步信号块SSB中的部分或全部信号,解调参考信号DMRS,定位参考信号PRS,追踪参考信号TRS。
  49. 根据权利要求42至48中任一项所述的设备,其特征在于,所述第一信息为物理下行控制信道PDCCH,或所述PDCCH中的下行控制信息DCI;所述第三信息为以下中的至少一种:
    物理上行共享信道PUSCH,探测参考信号SRS,相位追踪参考信号PT-RS。
  50. 根据权利要求42至49中任一项所述的设备,其特征在于,所述第一频域资源为第一带宽部分BWP或第一载波,所述第二频域资源为第二BWP或第二载波。
  51. 根据权利要求42至50中任一项所述的设备,其特征在于,所述第一设备为网络设备,所述设备为终端设备。
  52. 根据权利要求42至51中任一项所述的设备,其特征在于,所述第一频域资源和所述第二频域资源为非授权频段上的频域资源;或
    所述第一频域资源为授权频段上的频域资源,所述第二频域资源为非授权频段上的频域资源。
  53. 一种无线通信的设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法,或如权利要求16至26中任一项所述的方法。
  54. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法,或如权利要求16至26中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法,或如权利要求16至26中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法,或如权利要求16至26中任一项所述的方法。
  57. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法,或如权利要求16至26中任一项所述的方法。
PCT/CN2019/081978 2019-04-09 2019-04-09 无线通信的方法和设备 WO2020206622A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/081978 WO2020206622A1 (zh) 2019-04-09 2019-04-09 无线通信的方法和设备
CN201980087248.7A CN113273274B (zh) 2019-04-09 2019-04-09 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081978 WO2020206622A1 (zh) 2019-04-09 2019-04-09 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2020206622A1 true WO2020206622A1 (zh) 2020-10-15

Family

ID=72751759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081978 WO2020206622A1 (zh) 2019-04-09 2019-04-09 无线通信的方法和设备

Country Status (2)

Country Link
CN (1) CN113273274B (zh)
WO (1) WO2020206622A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273743A1 (zh) * 2021-06-28 2023-01-05 华为技术有限公司 一种侧行通信方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101224A (zh) * 2014-05-15 2015-11-25 宏碁股份有限公司 未授权频谱共享方法、使用所述方法的基站及用户设备
CN106162900A (zh) * 2016-08-15 2016-11-23 宇龙计算机通信科技(深圳)有限公司 非授权频段上的d2d通信方法、d2d通信装置、终端和基站
CN106937395A (zh) * 2015-12-30 2017-07-07 上海贝尔股份有限公司 发送用于未授权频带的上行调度信息的方法和调度装置
CN107682931A (zh) * 2016-08-09 2018-02-09 深圳市金立通信设备有限公司 一种数据通信方法及装置
CN108024310A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备
CN109565867A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 针对v2x通信的跨载波调度

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
CN105578608B (zh) * 2015-12-23 2019-03-08 工业和信息化部电信研究院 一种下行控制信息的发送、接收方法和设备
CN107041013A (zh) * 2016-02-03 2017-08-11 索尼公司 无线通信设备和无线通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101224A (zh) * 2014-05-15 2015-11-25 宏碁股份有限公司 未授权频谱共享方法、使用所述方法的基站及用户设备
CN106937395A (zh) * 2015-12-30 2017-07-07 上海贝尔股份有限公司 发送用于未授权频带的上行调度信息的方法和调度装置
CN107682931A (zh) * 2016-08-09 2018-02-09 深圳市金立通信设备有限公司 一种数据通信方法及装置
CN109565867A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 针对v2x通信的跨载波调度
CN106162900A (zh) * 2016-08-15 2016-11-23 宇龙计算机通信科技(深圳)有限公司 非授权频段上的d2d通信方法、d2d通信装置、终端和基站
CN108024310A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK: "Study on Licensed-Assisted Access to Unlicensed Spectrum", 3GPP TR 36.889 V1.0.1 (2015-06), 8 June 2015 (2015-06-08), pages 1 - 87, XP014249098 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273743A1 (zh) * 2021-06-28 2023-01-05 华为技术有限公司 一种侧行通信方法及装置

Also Published As

Publication number Publication date
CN113273274A (zh) 2021-08-17
CN113273274B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
US11963173B2 (en) Data transmission method and terminal device
US11950265B2 (en) Data transmission method, terminal device, and network device
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020243930A1 (zh) 数据传输的方法、终端设备和网络设备
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
US11432370B2 (en) D2D communication method and terminal device
TW202015450A (zh) 通訊方法、終端設備和網路設備
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2017139969A1 (zh) 频带配置装置、方法以及通信系统
TW202015476A (zh) 傳輸信號的方法、終端設備和網路設備
TW202034714A (zh) 一種回饋資訊長度的確定方法及裝置、通訊設備
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
US11758541B2 (en) Information transmission method, terminal device and network device
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
WO2020164075A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020206622A1 (zh) 无线通信的方法和设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021088066A1 (zh) 一种上行传输方法、电子设备及存储介质
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923754

Country of ref document: EP

Kind code of ref document: A1