WO2020243930A1 - 数据传输的方法、终端设备和网络设备 - Google Patents

数据传输的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020243930A1
WO2020243930A1 PCT/CN2019/090186 CN2019090186W WO2020243930A1 WO 2020243930 A1 WO2020243930 A1 WO 2020243930A1 CN 2019090186 W CN2019090186 W CN 2019090186W WO 2020243930 A1 WO2020243930 A1 WO 2020243930A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetitions
redundancy version
pdsch
tci states
terminal device
Prior art date
Application number
PCT/CN2019/090186
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/090186 priority Critical patent/WO2020243930A1/zh
Priority to EP19931979.9A priority patent/EP3968712B1/en
Priority to CN201980075798.7A priority patent/CN113170448A/zh
Priority to CN202110844852.9A priority patent/CN113595706B/zh
Publication of WO2020243930A1 publication Critical patent/WO2020243930A1/zh
Priority to US17/541,964 priority patent/US20220095345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications, and in particular to a method, terminal device and network device for data transmission.
  • the New Radio (NR) system introduces PDSCH repetition (Repetition), that is, PDSCH carrying the same data can pass through different time slots , Transmission/Reception Point (TRP) or redundant version, etc. multiple transmissions to obtain diversity gain and reduce Block Error Ratio (BLER).
  • PDSCH repetition that is, PDSCH carrying the same data can pass through different time slots , Transmission/Reception Point (TRP) or redundant version, etc. multiple transmissions to obtain diversity gain and reduce Block Error Ratio (BLER).
  • TRP Transmission/Reception Point
  • BLER Block Error Ratio
  • the embodiments of the present application provide a data transmission method, terminal equipment and network equipment, which can dynamically determine the number of repeated transmissions of the PDSCH and the redundancy version used for the repeated transmission of the PDSCH under different TRP numbers.
  • a data transmission method includes: a terminal device determines the number of TCI states indicated by a transmission configuration according to downlink control information DCI; the terminal device determines the number of TCI states according to the number of TCI states The first number of repeated transmissions of the physical downlink shared channel PDSCH scheduled by the DCI and/or the redundancy version used for each repeated transmission of the PDSCH scheduled by the DCI; the terminal device according to the first number of repeats and/or the For the redundancy version, repeat transmission of the PDSCH scheduled by the DCI.
  • a method for data transmission includes: a network device determines a first repetition number of the PDSCH repeated transmission and/or the number of transmission points TRP for transmitting the physical downlink shared channel PDSCH The redundancy version used for each repeated transmission of the PDSCH; the network device performs repeated transmission of the PDSCH according to the first number of repetitions and/or the redundancy version.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of its implementation modes method.
  • the device is a chip.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • repeated PDSCH transmission it is possible that a single TRP performs all the repeated transmissions of the PDSCH, or it may be that the repeated transmission of the PDSCH is performed on multiple TRPs.
  • the network device may use different numbers of TRPs to perform multiple repeated transmissions of the PDSCH at different times. The number of TRPs is different, and the number of repeated PDSCH transmissions and the redundancy version used for each repeated transmission of the PDSCH may be different.
  • the terminal device can dynamically determine the number of repetitions and/or the redundancy version corresponding to the number of TRPs, which can further support flexible switching of the number of TRPs and improve the performance of downlink transmission.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Figure 2 is a schematic interaction diagram of downlink beam management.
  • Figure 3 shows repeated transmission of PDSCH based on time slots.
  • Figure 4 shows the repeated transmission of the PDSCH based on TRP.
  • FIG. 5 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for configuring the TCI state of the PDSCH according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a redundancy version used for repeated PDSCH transmission with different TCI states according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a redundancy version used for repeated PDSCH transmission when the TCI state is equal to 1 according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a redundancy version used for repeated PDSCH transmission when the TCI state is greater than 1 according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another data transmission method according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a device according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR evolution system of NR system
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be the network device 110 (for example, a base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here can include, for example, a metro cell, a micro cell, and a pico cell. Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • network equipment can use analog beams to transmit PDSCH. Before performing analog beamforming, the network equipment can determine the beam to be used through the downlink beam management process.
  • the downlink beam management can be based on the channel state information reference signal (Channel State Information Reference Signal, CSI-RS) or the synchronization signal block (Synchronization Signal). Block, SSB).
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronization Signal block
  • the network device transmits multiple SSBs or N CSI-RS resources for beam management.
  • the terminal device can perform measurement based on the multiple SSBs or multiple CSI-RS resources, select the part of the SSB or CSI-RS resources with the best reception quality, and compare the corresponding SSB index or CSI-RS resource index and the corresponding reference signal
  • the received power (Reference Signal Receiving Power, RSRP) is reported to the network device.
  • the network device determines an optimal SSB or CSI-RS resource according to the report of the terminal device, and determines its used transmission beam as the transmission beam used for downlink transmission, so that the transmission beam can be used to transmit the downlink control channel or the downlink data channel.
  • the network device Before the network device transmits the downlink control channel or downlink data channel, it can indicate the corresponding Quasi-co-located (QCL) reference signal to the terminal device through the Transmission Configuration Indicator (TCI) state, so that the terminal The device may use the receiving beam used to receive the QCL reference signal to receive a corresponding downlink control channel, such as a physical downlink control channel (Physical Downlink Control Channel, PDCCH) or a downlink data channel.
  • a corresponding downlink control channel such as a physical downlink control channel (Physical Downlink Control Channel, PDCCH) or a downlink data channel.
  • PDCCH Physical Downlink Control Channel
  • the NR system introduces PDSCH repetition transmission (Repetition), that is, PDSCH carrying the same data can be transmitted multiple times through different time slots, TRP, or redundancy version (Redundancy Version, RV).
  • Repetition PDSCH repetition transmission
  • TRP time slots
  • RV redundancy version
  • repeated transmission can be performed in multiple time slots.
  • one downlink control information (Downlink Control Information, DCI) can schedule multiple PDSCHs carrying the same data for transmission on multiple consecutive time slots.
  • DCI Downlink Control Information
  • the frequency domain resources for each repeated transmission of the PDSCH may be the same, and the RV may be different.
  • the terminal device can determine the RV version for each repeated transmission according to the RV number indicated by the DCI.
  • repeated transmission can also be performed on multiple TRPs.
  • the PDSCH carrying the same data can be transmitted on different TRPs using different beams (in this case, the network device can indicate multiple TCI states in one DCI).
  • the multi-TRP repeated transmission method can also be combined with the multi-slot repeated transmission method.
  • the PDSCH can be transmitted in multiple different time slots using different TRPs.
  • the number of TRPs for repeated PDSCH transmission at different times may be different .
  • the number of TRPs for repeated PDSCH transmission in time slot 1 is 1, and the number of TRPs for repeated PDSCH transmission in time slot 2 is 2.
  • the number of corresponding PDSCH repeated transmissions and the redundancy version used for each repeated PDSCH transmission may be different.
  • the redundancy version used for each repeated PDSCH transmission can be the same; when network equipment uses the same TRP for repeated PDSCH transmission, the PDSCH used for each repeated transmission The redundancy version can be different.
  • the terminal device cannot know the number of TRPs for repeated PDSCH transmission, the terminal device cannot determine the number of repeated PDSCH transmissions and/or the redundancy version used for each repeated PDSCH transmission.
  • the embodiment of the present application proposes a data transmission method that can support repeated transmission of PDSCH in the case of single TRP transmission and multiple TRP transmission, so that the terminal device can dynamically determine the number of repetitions and/or the number of TRPs. Redundant version.
  • FIG. 5 is a schematic flowchart of a data transmission method 200 according to an embodiment of the present application.
  • the method described in FIG. 5 may be executed by a terminal device, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 200 may include at least part of the following content.
  • the terminal device determines the number of TCI states according to DCI.
  • a TCI state may include the following configuration:
  • TCI status identification (Identify, ID), used to identify a TCI status
  • a QCL message can include the following information:
  • QCL type configuration for example, it can be one of QCL type A (QCL TypeA), QCL type B (QCL TypeB), QCL type C (QCL TypeC) or QCL type D (QCL TypeD);
  • the QCL reference signal configuration may include the cell ID where the reference signal is located, the bandwidth part (Bandwidth, BWP) ID, and the identification of the reference signal (for example, it may be a CSI-RS resource ID or an SSB index).
  • the QCL type of at least one QCL information is one of QCL TypeA, QCL TypeB, and QCL TypeC. If another QCL information is configured, the QCL type of the QCL information is QCL TypeD.
  • QCL-TypeA ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ⁇ ;
  • the terminal device may assume that the target large-scale parameters of the target downlink channel and the reference SSB or reference CSI-RS resource are the same, so that the same corresponding receiving parameters are used for reception, and the target large-scale parameters may be configured through QCL type configuration. determine.
  • the terminal device can use and receive the reference SSB or reference CSI.
  • -Receive beams ie Spatial Rx parameter
  • the target downlink channel and its reference SSB or reference CSI-RS resource are transmitted by the same TRP, the same antenna panel or the same beam on the network device side. If the transmission TRP or transmission panel or transmission beam of the two downlink signals or downlink channels are different, different TCI states can be configured.
  • the network equipment can indicate the TCI status through radio resource control (Radio Resource Control, RRC) signaling or RRC signaling + media access control (Media Access Control, MAC) signaling.
  • RRC Radio Resource Control
  • MAC media access control
  • the network device can indicate M available TCI states through RRC signaling, and activate L of the M TCI states through MAC layer signaling, and finally can pass
  • the TCI status indication field in the DCI indicates part of the TCI status from the activated L TCI statuses, such as 1 or 2 TCI statuses, which are used for the PDSCH scheduled by the DCI.
  • M and L are positive integers.
  • the network device may indicate the number of TCI states in the DCI of the scheduling target PDSCH.
  • the terminal device can determine the number of TCI states according to the DCI.
  • DCI can explicitly indicate the number of TCI states. For example, if the number of TCI states is 2, the bit “1" in the DCI can be used to indicate that the number of TCI states is 2, and the bit "0" in the DCI can be used to indicate that the number of TCI states is 1.
  • DCI may implicitly indicate the number of TCI states.
  • the DCI may indicate the number of TCI states by indicating the TCI state.
  • DCI may indicate TCI state 1 and TCI state 2, and the terminal device may determine that the number of TCI states is 2.
  • the terminal device determines the first repetition number of the target PDSCH repeated transmission and/or the redundancy version used for each repeated transmission of the target PDSCH according to the number of TCI states.
  • the target PDSCH repeatedly transmits the same data every time, that is, the target PDSCH carries the same source bit information every time it repeatedly transmits.
  • the redundancy version, demodulation reference signal (Demodulation Reference Signal, DMRS) port, frequency domain resource, beam, etc. used for each repeated transmission of the target PDSCH may be the same or different, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application does not limit the names of the target PDSCH repeated transmission and the target PDSCH repetition times, that is, they can also be expressed as other names.
  • repeated transmission of the target PDSCH may also be referred to as multiple target PDSCHs carrying the same data or multiple aggregations of target PDSCHs.
  • the number of repetitions of the target PDSCH may also be referred to as the number of target PDSCHs carrying the same data or the aggregate number of target PDSCHs.
  • the number of repetitions of the target PDSCH may be one of 1, 2, 4, and 8, for example.
  • the terminal device determines the first repetition number of the target TCI repeated transmission according to the number of TCI states, which will be described in detail below.
  • the terminal device determines the first repetition number of repeated transmission of the target PDSCH according to the number of TCI states, including: the terminal device may determine the number of TCI states as the first repetition number.
  • the terminal device may determine that the first repetition number of repeated transmission of the target PDSCH is also 2.
  • the repeated transmission of the target PDSCH may have a one-to-one correspondence with the TCI state, that is, the terminal device may adopt a different TCI state each time the repeated transmission of the target PDSCH is performed. For example, if the number of TCI states and the first repetition count are both 2, the TCI state includes the first TCI state and the second TCI state, the first TCI state can be used when the target PDSCH performs the first repeated transmission, and the target PDSCH performs the second The second TCI state can be used for repeated transmissions.
  • the terminal device determines the first repetition number of the target PDSCH repeated transmission according to the number of TCI states, including: the terminal device may determine the first repetition number according to the number of TCI states and the second repetition number indicated by higher layer signaling, and/or The terminal device may determine the first number of repetitions according to the number of TCI states and the third number of repetitions indicated by the DCI.
  • the second number of repetitions indicated by the high-layer signaling may be the number of repetitions indicated by the RRC parameter.
  • the DCI indicates the third number of repetitions.
  • the network device may indicate the third number of repetitions through time domain resource configuration information in the DCI.
  • the time domain resource configuration information may explicitly indicate the third number of repetitions.
  • the time domain resource configuration information may indicate the first number of repetitions while indicating the time domain resources used for each repeated transmission of the target PDSCH.
  • the time domain resource configuration information may implicitly indicate the third number of repetitions.
  • the time domain resource configuration information only indicates the time domain resources used for each repeated transmission of the target PDSCH, and the terminal device may determine the third number of repetitions according to the time domain resources used for each repeated transmission of the target PDSCH. For example, if the time domain resource configuration information indicates the time domain resources used for each repetition of 4 target PDSCHs, the terminal device may determine that the third repetition number is 4.
  • the DCI may introduce a new bit field or reserve bits in the DCI, specifically for indicating the third number of repetitions.
  • the second repetition count indicated by the high-layer signaling and the third repetition count indicated by the DCI can be understood as: when a single TRP performs repeated transmission of the target PDSCH, the repeated transmission of the target PDSCH is repeated.
  • the second number of repetitions and the third repetition may also be preset on the terminal device according to the protocol.
  • the repeated transmission of the target PDSCH in the embodiment of the present application may include the first transmission of the target PDSCH.
  • the terminal device can determine the first number of repetitions in two ways, which are described separately below.
  • the terminal device may determine the first number of repetitions in different implementation manners according to whether the number of TCI states is greater than one.
  • the terminal device may determine the second number of repetitions indicated by high-layer signaling as the first number of repetitions. For example, if the second number of repetitions indicated by high-layer signaling is 2, the terminal device may determine that the first number of repetitions of the target PDSCH repeated transmission is also 2.
  • the terminal device may determine the first number of repetitions according to one of the following three methods.
  • the terminal device may determine the third number of repetitions indicated by the DCI as the first number of repetitions.
  • the above technical solution can support the dynamic configuration of the first repetition times of the target PDSCH repeated transmission, thereby supporting more flexible scheduling.
  • the terminal device can determine the first repetition number according to the number of TCI states and the second repetition number indicated by the higher layer signaling.
  • the terminal device may randomly select one of the number of TCI states and the second number of repetitions as the first number of repetitions.
  • the first number of repetitions may be equal to the sum of the number of TCI states and the second number of repetitions. For example, if the number of TCI states is 2, and the second number of repetitions is 2, the terminal device may determine that the first number of repetitions is 4.
  • the first number of repetitions may be equal to the product of the number of TCI states and the second number of repetitions.
  • the number of TCI states is 1, it can be obtained: when the number of TCI states is 1, the first repetition number is equal to the second repetition number indicated by the higher layer signaling; when the number of TCI states is greater than When 1, the first number of repetitions is the product of the second number of repetitions and the number of TCI states.
  • the terminal device may determine that the first number of repetitions is 2. If the second number of repetitions is 4 and the number of TCI states is 2, the terminal device can determine that the first number of repetitions is 4.
  • the number of TCI states is 1, it can be obtained: when the number of TCI states is 1, the first repetition number is equal to the second repetition number indicated by the higher layer signaling; when the number of TCI states is greater than When 1, the first number of repetitions is the smaller of the second number of repetitions and the number of TCI states.
  • Table 1 is an example of a possible way of determining the number of first repetitions.
  • the first repetition number is equal to the second repetition number, that is, when the second repetition number is 1, the first repetition number is also 1;
  • the first number of repetitions is also 2;
  • the second number of repetitions is 4, the first number of repetitions is also 4.
  • the number of TCI states is greater than 1, the first repetition count is the smaller value between the number of TCI states and the second repetition count.
  • the first The number of repetitions is 1; when the number of TCI states is 2 and the second number of repetitions is 2, the first repetition number is 2; when the number of TCI states is 2 and the second repetition number is 4, the first repetition number is 2 .
  • the technical solution of method 2 reuses the repetition count indication information in the high-level signaling of the existing system.
  • the repetition count of multi-TRP transmission can be calculated according to the number of TRPs (indicated by the number of TCI states) and the repetition count indicated by the high-level signaling, so The number of repetitions of a TRP can be the same as in the existing system.
  • the technical solution of way 2 can indicate the maximum number of repetitions through high-layer signaling, and then indicate the actual number of repetitions currently used through DCI, so that the repetition number of the target PDSCH can be flexibly configured.
  • the terminal device may determine the first number of repetitions according to the number of TCI states and the third number of repetitions indicated by the DCI.
  • the terminal device may randomly select one of the number of TCI states and the third number of repetitions as the first number of repetitions.
  • the first number of repetitions may be equal to the sum of the number of TCI states and the third number of repetitions. For example, if the number of TCI states is 2, and the third repetition number is 2, the terminal device may determine that the first repetition number is 4.
  • the first number of repetitions may be equal to the average of the number of TCI states and the third number of repetitions.
  • the first number of repetitions may be equal to the product of the number of TCI states and the third number of repetitions.
  • Table 2 is an example of a possible way of determining the number of first repetitions.
  • Table 2 assumes that the second number of repetitions configured by high-layer signaling is 2. It can be seen from Table 2 that when the number of TCI states is 1, the first repetition number is equal to the second repetition number indicated by the higher layer signaling.
  • the first repetition count is the product of the number of TCI states and the third repetition count, that is, when the number of TCI states is 2 and the third repetition count is 1, the first repetition count is 2;
  • the first number of repetitions is 4; when the number of TCI states is 2 and the third number of repetitions is 4, the first number of repetitions is 8.
  • N is the third number of repetitions
  • N is a positive integer. For example, if the third number of repetitions is 1 and the number of TCI states is 2, the terminal device may determine that the first number of repetitions is 2. If the third number of repetitions is 4 and the number of TCI states is 2, the terminal device can determine that the first number of repetitions is 4.
  • DCI may not need to change the number of TRPs but only indicate the number of repetitions of the target PDSCH repeated transmission by a single TRP.
  • the number of repetitions of the target PDSCH repeated transmission by multiple TRPs can be based on the number of TRPs (through TCI status). It is calculated by calculating the number of repetitions of the target PDSCH repeated transmission by a single TRP.
  • Embodiment 1 when the number of TCI states is 1, the indication method of the number of repetitions of the target PDSCH repeated transmission in the existing system can be reused as much as possible, thereby reducing the complexity of the terminal device.
  • the number of TCI states is greater than 1, a new way to determine the number of repetitions can be introduced, so that multiple TRP transmissions can be supported.
  • the terminal device may determine the first number of repetitions according to the number of TCI states and the fourth number of repetitions.
  • the fourth number of repetitions is the number of repetitions indicated by higher layer signaling or DCI.
  • the fourth number of repetitions is the same as the second number of repetitions; when the fourth number of repetitions is the number of repetitions indicated by the DCI, the fourth number of repetitions is the same as the third repetition number.
  • the terminal device may randomly select one of the number of TCI states and the fourth number of repetitions as the first number of repetitions.
  • the first number of repetitions may be equal to the sum of the number of TCI states and the fourth number of repetitions.
  • the first number of repetitions may be equal to the average of the number of TCI states and the fourth number of repetitions.
  • the first number of repetitions may be equal to the product of the number of TCI states and the fourth number of repetitions.
  • Table 3 shows a possible method for determining the number of first repetitions. It can be seen from Table 3 that the first repetition number is the product of the number of TCI states and the fourth repetition number. For example, when the number of TCI states is 2 and the fourth repetition number is 4, the first repetition number is 8; When the number of TCI states is 1 and the fourth number of repetitions is 2, the first number of repetitions is 2.
  • P is the fourth number of repetitions
  • Embodiment 2 can directly calculate the first repetition number without first judging which method is used to determine the first repetition number according to the number of TCI states.
  • the advantage of this method is that when the TCI state is 1 (that is, a single TRP performs repeated transmission of the target PDSCH), the number of repetitions of repeated transmission of the target PDSCH is the same as that of a single TRP in the existing system, thereby retaining good backward compatibility Sex.
  • the foregoing content describes the implementation manner in which the terminal device determines the first repetition number according to the number of TCI states.
  • the implementation manner in which the terminal device determines the redundancy version used for each repeated transmission of the target PDSCH according to the number of TCI states will be described in detail below.
  • the terminal device can determine the redundancy version used for each repeated transmission of the target PDSCH according to the redundancy version indication information in the DCI or the redundancy version sequence configured by the RRC signaling.
  • the redundancy version sequence of the RRC signaling configuration may include but is not limited to any one of the following: ⁇ 0,2,3,1 ⁇ , ⁇ 0,0,0,0 ⁇ and ⁇ 0,3,0 ,3 ⁇ .
  • the redundancy version indication information in the DCI may be carried in any domain in the DCI, that is, the redundancy version indication information may reuse any domain in the DCI.
  • DCI may also introduce a new bit field specifically for carrying the redundant version indication information.
  • the terminal device determines the redundancy version used for each repeated transmission of the target PDSCH according to the redundancy version indication information in the DCI
  • the terminal device can determine the target PDSCH for each repeated transmission according to the redundancy version indication information in the DCI and Table 4 The redundancy version used.
  • the redundancy version used for the 0th repeated transmission of the target PDSCH is 2
  • the redundancy version used for the first repeated transmission of the target PDSCH is 3
  • the redundancy version used for the second repeated transmission of the target PDSCH is 1
  • the redundancy version used for the third repeated transmission of the target PDSCH is 0.
  • the terminal device may determine the redundancy version used for repeated transmission of the target PDSCH with different TCI states according to the redundancy version indication information in the DCI.
  • the redundancy versions used for repeated transmission of the target PDSCH with different TCI states may be the same, or the redundancy versions used for the repeated transmission of the target PDSCH with different TCI states may have a cyclic shift relationship.
  • the number of TCI states is 2, the TCI state includes the first TCI state and the second TCI state, and the first redundancy version used for repeated transmission of the target PDSCH using the first TCI state is ⁇ 0,2,3,1 ⁇ .
  • the second redundancy version used for repeated transmission of the target PDSCH in the second TCI state may be the same as the first redundancy version, that is, ⁇ 0,2,3,1 ⁇ , or the second redundancy version and
  • the first redundancy version has a cyclic shift relationship.
  • the second redundancy version may be ⁇ 3,1,0,2 ⁇ , for example.
  • the number and direction of the cyclic shift may be negotiated between the terminal device and the network device.
  • the terminal device and the network device negotiate a right shift; or, the number and direction of the cyclic shift can be specified in the protocol; or, the number and direction of the cyclic shift can be configured by the network device, for example, the network device
  • the network device After determining the left shift by three digits, the network device can send configuration information to the terminal device, the configuration information is used to indicate the direction of the cyclic shift and the number of bits is three digits left; or, the number of cyclic shifts can be Based on the number of TCI states.
  • the terminal device can respectively determine the redundancy version used for the repeated transmission of the target PDSCH with different TCI states.
  • the number of TCI states is assumed For 2
  • the TCI state includes the first TCI state and the second TCI state.
  • the terminal device can first determine the first redundancy version used for repeated transmission of the target PDSCH in the first TCI state, and then the terminal device can use the first redundancy
  • the version determines the second redundancy version used for repeated transmission of the target PDSCH in the second TCI state.
  • the terminal device may determine the first redundancy version based on Table 4.
  • the terminal device can determine the second redundancy version according to the first redundancy version ⁇ 0,2,3,1 ⁇ .
  • the determined second redundancy version may be ⁇ 0,2,3,1 ⁇ or ⁇ 3,1,0,2 ⁇ , for example.
  • the first redundancy version and the second redundancy version determined by the terminal device may be specifically as shown in FIG. 7.
  • the terminal device may respectively determine the first redundancy version and the second redundancy version according to the redundancy version indication information in the DCI. In this implementation manner, the terminal device determines that the second redundancy version is not based on the first redundancy version. For example, the terminal device may simultaneously determine the first redundancy version and the second redundancy version based on Table 4.
  • embodiment 1 allocates redundancy versions to the target PDSCHs transmitted by different TRPs, so that the polling of redundancy versions can be performed within each TRP to improve retransmission. Reliability.
  • the terminal device may determine the redundancy version sequence used for repeated transmission of the target PDSCH according to the redundancy version indication information in the DCI, and when the number of TCI states is different, the redundancy version indication information indicates The redundancy version sequence can be different.
  • the third redundancy version sequence may be different from the fourth redundancy version sequence, where the third redundancy version sequence is the redundancy version sequence indicated by the redundancy version indication information when the number of TCI states is 1.
  • the fourth redundancy version sequence is the redundancy version sequence indicated by the redundancy version indication information when the number of TCI states is greater than 1.
  • the third redundancy version sequence indicated by the redundancy version indication information in the DCI may be as shown in Table 4. If the number of TCI states is greater than 1, the fourth redundancy version sequence indicated by the redundancy version indication information in the DCI may be as shown in one of Table 5 to Table 7.
  • Table 4 to Table 7 may be preset on the terminal device according to the protocol.
  • Table 4 to Table 7 may be configured by the network device.
  • the network device may be configured to the terminal device through RRC signaling.
  • the terminal device may determine the redundancy version used for repeated transmission of the target PDSCH according to the redundancy version sequence indicated by the RRC signaling, and when the number of TCI states is different, the RRC signaling may also be different , The redundancy version sequence of the RRC signaling configuration can also be different.
  • the network device can configure two redundancy version sequences through different RRC signaling.
  • One sequence can be used when the number of TCI states is 1, and one sequence can be used when the number of TCI states is greater than one.
  • the terminal device can obtain the redundancy version used for repeated transmission of the target PDSCH from the corresponding RRC signaling according to the current number of TCI states.
  • the two redundancy version sequences configured by the network equipment through RRC signaling are ⁇ 0,2,3,1 ⁇ and ⁇ 0,3,0,3 ⁇ , where ⁇ 0,2,3,1 ⁇ is used
  • ⁇ 0,2,3,1 ⁇ is used in the case where the number of TCI states is 1, ⁇ 0,3,0,3 ⁇ is used when the number of TCI states is greater than 1.
  • the terminal device can determine that the redundancy version used for repeated transmission of the target PDSCH is ⁇ 0, 2, 3, 1 ⁇ , when the number of TCI states is greater than 1, the terminal device can determine that the target PDSCH is repeatedly transmitted
  • the redundancy version used is the configured redundancy version sequence can be ⁇ 0,3,0,3 ⁇ .
  • the terminal device may determine that the redundancy version used for each repeated transmission of the target PDSCH is different.
  • the embodiment of the present application does not limit the manner in which the terminal device determines the redundancy version used for each repeated transmission of the target PDSCH.
  • the terminal device may determine the redundancy version used for each repeated transmission of the target PDSCH according to Table 4.
  • the terminal device may determine the redundancy version used for each repeated transmission of the target PDSCH according to the redundancy version sequence configured by the RRC signaling.
  • Fig. 8 shows the redundancy version used for each repeated transmission of the target PDSCH when the number of TCI states is 1. It can be seen that the redundancy version used for repeated transmission of the target PDSCH is ⁇ 0,2,3,1 ⁇ , and the redundancy versions used for the 4 repeated transmissions are different.
  • the terminal device may determine that the redundancy version used for each repeated transmission of the target PDSCH is partially the same.
  • the parts with the same redundancy version may be pre-appointed by the terminal device and the network device, or may also be stipulated by the protocol.
  • the redundancy version used for the first half of the repeated transmission of the target PDSCH may be the same as the redundancy version used for the second half of the repeated transmission.
  • Figure 9 shows a schematic diagram of the redundancy version used in the first half of the repeated transmission of the target PDSCH and the redundancy version used in the second half of the repeated transmission. It can be seen from Figure 9 that the redundancy version used in the repeated transmission of the target PDSCH For ⁇ 0,2,0,2 ⁇ , the redundancy version used for the first half of the repeated transmission of the target PDSCH is the same as the redundancy version used for the second half of the repeated transmission.
  • the redundancy version used for odd-numbered repeated transmissions and even-numbered repeated transmissions of the target PDSCH may be the same.
  • the redundancy version used for repeated transmission of the target PDSCH is ⁇ 0,0,2,2 ⁇ .
  • the redundancy version used for the intermediate number of repeated transmissions of the target PDSCH may be the same.
  • the first repetition number of the target PDSCH repeated transmission is 4, which are 0, 1, 2, and 3 transmissions respectively, then the first transmission and the second transmission of the target PDSCH use the same redundancy version, and the target PDSCH is repeated
  • the transmitted redundancy version may be ⁇ 0, 2, 2, 3 ⁇ , for example.
  • Tables 1 to 7 are only some specific examples of the embodiments of the present application, and do not limit the embodiments of the present application, and any corresponding relationship obtained by deformation on this basis is within the protection scope of the present application.
  • redundant version and “redundant version sequence” in the embodiments of this application are often used interchangeably in the embodiments of this application.
  • the DCI may indicate the first number of repetitions and/or the redundancy version used for each repeated transmission of the target PDSCH.
  • the terminal device can directly determine the first number of repetitions and/or the redundancy version used for each repeated transmission of the target PDSCH according to the indication of the DCI.
  • the terminal device performs repeated transmission of the target PDSCH according to the first number of repetitions and/or the redundancy version.
  • the terminal device may perform repeated transmission of the target PDSCH in multiple adjacent time slots according to the first number of repetitions and/or the redundancy version.
  • the terminal device may perform repeated transmission of the target PDSCH in multiple adjacent mini-slots or multiple non-adjacent mini-slots according to the first number of repetitions and/or the redundancy version.
  • one mini-slot may include consecutive multiple orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device may also perform repeated transmission of the target PDSCH in other time units according to the first number of repetitions and/or the redundancy version.
  • the method 200 may further include: after the terminal device receives the target PDSCH for the first number of repetitions, it may merge the target PDSCHs for the first number of repetitions, and compare the combined target PDSCH Perform testing.
  • the terminal device may merge the target PDSCHs for the first number of repetitions, which are not specifically limited in this application.
  • the terminal device may perform soft bit combination on the target PDSCH for the first number of repetitions.
  • the network device may use different numbers of TRPs to perform multiple repeated transmissions of the PDSCH at different times.
  • the number of TRPs is different, and the number of repeated PDSCH transmissions and the redundancy version used for each repeated transmission of the PDSCH may be different.
  • the number of TCI states is equal to the number of TRPs, so that the terminal device can obtain the current PDSCH repeated transmission according to the number of TCI states in the DCI
  • the number of TRPs so that the terminal device can dynamically determine the number of repetitions and/or redundancy versions corresponding to the number of TRPs. It can further support flexible switching of the number of TRPs and improve the performance of downlink transmission.
  • FIG. 10 is a schematic flowchart of a data transmission method 300 according to an embodiment of the present application.
  • the method described in FIG. 10 may be executed by a network device, and the network device may be, for example, the network device 110 shown in FIG. 1.
  • the method 300 may include at least part of the following content.
  • the network device determines the first repetition number of the target PDSCH repeated transmission and/or the redundancy version used for each repeated transmission of the target PDSCH according to the number of TRPs for transmitting the target PDSCH.
  • the network device determines that the target PDSCH can be repeatedly transmitted, and determines that the number of the transmission target PDSCH and its repeated TRPs is T. After that, the network device may determine the number of TCI states indicated in the DCI of the scheduling target PDSCH according to the number of TRPs.
  • the number of TCI states can be equal to the number of TRPs.
  • the network device may send the DCI for scheduling the target PDSCH to the terminal device, where the DCI is used to indicate the number of TCI states.
  • the network device may pre-configure the S group TCI status through MAC layer signaling, and indicate one group of TCI status through log 2 S bit indication information in the DCI, where each group of TCI status includes T TCI status .
  • S is a positive integer
  • the network device may pre-configure S groups of TCI states through MAC layer signaling, and each group of TCI states includes at most T_max TCI states (for example, it may be 1, 2, ..., T_max TCI states).
  • the network device can indicate one group of TCI states through log 2 S bit indication information in the DCI, and the indicated group of TCI states includes T TCI states, and T is less than or equal to S_max.
  • the terminal device determines the first repetition number and/or the related description of the redundancy version may be applicable to the method 300.
  • the embodiments of the present application will not repeat the implementation manner in which the network device determines the first repetition number and the redundancy version according to the number of TRPs.
  • the network device performs repeated transmission of the target PDSCH according to the first number of repetitions and/or the redundancy version.
  • the network device may perform repeated transmission of the target PDSCH in multiple adjacent time slots according to the first number of repetitions and/or the redundancy version.
  • the network device may perform repeated transmission of the target PDSCH in multiple adjacent mini-slots or multiple non-adjacent mini-slots according to the first number of repetitions and/or the redundancy version.
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the data transmission method according to the embodiment of the present application is described in detail above.
  • the communication device according to the embodiment of the present application will be described below in conjunction with FIG. 11 to FIG. 13.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 11 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine the number of TCI states according to the DCI.
  • the processing unit 410 is further configured to determine, according to the number of TCI states, a first repetition number of PDSCH repeated transmissions of the physical downlink shared channel scheduled by the DCI and/or used for each repeated transmission of the DCI scheduled PDSCH The redundant version.
  • the communication unit 420 is configured to perform repeated transmission of the PDSCH scheduled by the DCI according to the first number of repetitions and/or the redundancy version.
  • the processing unit 410 is specifically configured to determine the number of the TCI states as the first number of repetitions.
  • the processing unit 410 is specifically configured to: determine the first number of repetitions according to the number of TCI states and the second number of repetitions indicated by higher layer signaling; and/or Determine the first number of repetitions according to the number of TCI states and the third number of repetitions indicated by the DCI.
  • the processing unit 410 is specifically configured to: when the number of TCI states is equal to 1, determine the second number of repetitions indicated by the high-layer signaling as the The first number of repetitions; when the number of TCI states is greater than 1, the third number of repetitions indicated by the DCI is determined as the first number of repetitions, or according to the number of TCI states and The second number of repetitions determines the first number of repetitions, or the first number of repetitions is determined according to the number of TCI states and the third number of repetitions.
  • the processing unit 410 is specifically configured to: determine any one of the following values as the first number of repetitions: the second number of repetitions and the number of TCI states The product of, the larger value of the second number of repetitions and the number of TCI states, and the smaller value of the second number of repetitions and the number of TCI states.
  • the processing unit 410 is specifically configured to: determine any one of the following values as the first number of repetitions: the third number of repetitions and the number of TCI states The product of, the larger value of the third number of repetitions and the number of TCI states, and the smaller value of the third number of repetitions and the number of TCI states.
  • the DCI includes time domain resource configuration information, and the time domain resource configuration information is used to indicate the third number of repetitions.
  • the processing unit 410 is specifically configured to: when the number of TCI states is equal to 1, according to the redundancy version indication information in the DCI or the radio resource control RRC signaling indication
  • the redundancy version sequence of the DCI determines the redundancy version used for each repeated transmission of the PDSCH scheduled by the DCI; when the number of TCI states is greater than 1, the redundancy version indication information in the DCI is determined to be used
  • the processing unit 410 is specifically configured to: the TCI state includes at least a first TCI state and a second TCI state, and determine to use the second TCI state according to the redundancy version indication information.
  • the redundancy versions used for repeated PDSCH transmissions in different TCI states are the same, or there is a cyclic shift between the redundancy versions used for repeated PDSCH transmissions in different TCI states. Bit relationship.
  • the processing unit 410 is specifically configured to: determine a redundancy version sequence used for repeated transmission of the PDSCH scheduled by the DCI according to the redundancy version indication information in the DCI, and When the number of TCI states is different, the redundancy version sequence indicated by the redundancy version indication information is also different; or, according to the redundancy version sequence indicated by RRC signaling, the PDSCH scheduled by the DCI is determined every time When the redundancy version used for repeated transmission and the number of the TCI states are different, the RRC signaling is also different.
  • the processing unit 410 is specifically configured to: when the number of TCI states is equal to 1, determine that the redundancy version used for each repeated transmission of the PDSCH scheduled by the DCI is not Same; when the number of TCI states is greater than 1, it is determined that the redundancy version used for each repeated transmission of the PDSCH scheduled by the DCI is the same.
  • the redundancy version used for the first half of the repeated transmission of the PDSCH scheduled by the DCI is the same as the redundancy version used for the second half of the repeated transmission
  • the redundancy version used for the odd-numbered repeated transmission of the PDSCH scheduled by the DCI is the same as the even-numbered repeated transmission.
  • the communication unit 420 is specifically configured to: according to the first number of repetitions and/or the redundancy version, in multiple adjacent time slots or multiple adjacent time slots In the mini-slot or multiple non-adjacent mini-slots, the PDSCH scheduled by the DCI is repeatedly transmitted.
  • the processing unit 410 is further configured to: combine the first number of repetitions and PDSCHs scheduled by the DCI to obtain a combined PDSCH; Perform testing.
  • terminal device 400 may correspond to the terminal device in the method 200, and can implement the corresponding operations of the terminal device in the method 200. For brevity, details are not described herein again.
  • FIG. 12 shows a schematic block diagram of a network device 500 according to an embodiment of the present application. As shown in FIG. 12, the network device 500 includes:
  • the processing unit 510 is used to determine the first number of repeated transmissions of the PDSCH and/or the redundancy version used for each repeated transmission of the PDSCH according to the number of TRPs for transmitting the PDSCH.
  • the communication unit 520 is configured to perform repeated transmission of the PDSCH according to the first number of repetitions and/or the redundancy version.
  • the processing unit 510 is specifically configured to: determine the first repetition number according to the number of TRPs and the second repetition number indicated in advance through high-layer signaling.
  • the processing unit 510 is specifically configured to: determine any one of the following values as the first number of repetitions: the second repetition number and the number of TRPs Product, the larger value of the second number of repetitions and the number of TRPs, and the smaller value of the second number of repetitions and the number of TRPs.
  • the processing unit 510 is specifically configured to: when the number of TRPs is equal to 1, determine that the redundancy version used for each repeated transmission of the PDSCH is different; When the number of TCI states is greater than 1, it is determined that the redundancy version used for each repeated transmission of the PDSCH is the same.
  • the redundancy version used for the first half of the repeated transmission of the PDSCH is the same as the redundancy version used for the second half of the repeated transmission; or
  • the redundancy version used in the odd-numbered repeated transmission of the PDSCH is the same as that used in the even-numbered repeated transmission.
  • the communication unit 520 is specifically configured to: according to the first number of repetitions and/or the redundancy version, in multiple adjacent time slots or multiple adjacent time slots In a mini-slot or multiple non-adjacent mini-slots, repeated PDSCH transmission is performed.
  • the network device 500 may correspond to the network device in the method 300, and can implement the corresponding operations of the network device in the method 300. For brevity, details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 13 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • Fig. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 14 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device 700 may be a chip. It should be understood that the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 15 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 15, the communication system 700 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种数据传输的方法、终端设备和网络设备,该方法包括:终端设备根据下行控制信息DCI,确定传输配置指示TCI状态的数量;所述终端设备根据所述TCI状态的数量,确定所述DCI调度的物理下行共享信道PDSCH重复传输的第一重复次数和/或所述DCI调度的PDSCH每次重复传输所使用的冗余版本;所述终端设备根据所述第一重复次数和/或所述冗余版本,进行所述DCI调度的PDSCH的重复传输。本申请实施的数据传输的方法、终端设备和网络,动态地确定不同TRP数量情况下PDSCH的重复传输次数和PDSCH重复传输所用的冗余版本。

Description

数据传输的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,具体涉及一种数据传输的方法、终端设备和网络设备。
背景技术
为了提高物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的传输可靠性,新无线(New Radio,NR)系统引入了PDSCH的重复传输(Repetition),即携带相同数据的PDSCH可以通过不同的时隙、传输点(Transmission/Reception Point,TRP)或冗余版本等多次传输,从而获得分集增益,降低误块率(Block Error Ratio,BLER)。
在进行PDSCH的重复传输时,有可能是单个TRP进行PDSCH所有的重复传输,也可能是PDSCH的重复传输是在多个TRP上进行的。因此,如何确定不同TRP数量情况下PDSCH的重复传输次数和PDSCH重复传输所用的冗余版本是一项亟待解决的问题。
发明内容
本申请实施例提供一种数据传输的方法、终端设备和网络设备,可以动态地确定不同TRP数量情况下PDSCH的重复传输次数和PDSCH重复传输所用的冗余版本。
第一方面,提供了一种数据传输的方法,所述方法包括:终端设备根据下行控制信息DCI,确定传输配置指示TCI状态的数量;所述终端设备根据所述TCI状态的数量,确定所述DCI调度的物理下行共享信道PDSCH重复传输的第一重复次数和/或所述DCI调度的PDSCH每次重复传输所使用的冗余版本;所述终端设备根据所述第一重复次数和/或所述冗余版本,进行所述DCI调度的PDSCH的重复传输。
第二方面,提供了一种数据传输的方法,所述方法包括:网络设备根据传输物理下行共享信道PDSCH的传输点TRP的数量,确定所述PDSCH重复传输的第一重复次数和/或所述PDSCH每次重复传输所使用的冗余版本;所述网络设备根据所述第一重复次数和/或所述冗余版本,进行所述PDSCH的重复传输。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
可选地,该装置为芯片。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
在进行PDSCH的重复传输时,有可能是单个TRP进行PDSCH所有的重复传输,也可能是PDSCH的重复传输是在多个TRP上进行的。网络设备可以在不同的时刻采用不同数量的TRP进行PDSCH的多次重复传输,TRP的数量不同,PDSCH重复传输的次数和PDSCH每次重复传输所使用的冗余版本可能是不同的。上述技术方案,由于TCI状态的数量与TRP数量之间具体一定的关系,比如,TCI状态的数量与TRP数量相等,这样终端设备可以根据DCI中的TCI状态的数量获取到进行当前PDSCH的重复传输的TRP的数量,从而终端设备可以动态地确定与TRP数量对应的重复次数和/或冗余版本,进一步可以支持TRP数量的灵活切换,提高下行传输的性能。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2是下行波束管理的示意性交互图。
图3是基于时隙的PDSCH的重复传输。
图4是基于TRP的PDSCH的重复传输。
图5是本申请实施例的一种数据传输的方法的示意性流程图。
图6是本申请实施例的一种PDSCH的TCI状态配置方法示意性图。
图7是本申请实施例的一种采用不同的TCI状态的PDSCH重复传输所使用的冗余版本示意图。
图8是本申请实施例的一种TCI状态等于1时PDSCH重复传输所使用的冗余版本示意图。
图9是本申请实施例的一种TCI状态大于1时PDSCH重复传输所使用的冗余版本示意图。
图10是本申请实施例的另一种数据传输的方法的示意性流程图。
图11是根据本申请实施例的终端设备的示意性框图。
图12是根据本申请实施例的网络设备的示意性框图。
图13是根据本申请实施例的通信设备的示意性框图。
图14是根据本申请实施例的装置的示意性框图。
图15是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信 能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括例如城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。
在NR系统中,网络设备可以采用模拟波束来传输PDSCH。在进行模拟波束赋形之前,网络设备可以通过下行波束管理过程来确定所用的波束,下行波束管理可以基于信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或者同步信号块(Synchronization Signal Block,SSB)进行。
具体而言,如图2所示,网络设备发送用于波束管理的多个SSB或者N个CSI-RS资源。终端设备可以基于该多个SSB或多个CSI-RS资源进行测量,选择其中接收质量最好的部分SSB或者CSI-RS资源,并将相应的SSB索引或CSI-RS资源索引以及相应的参考信号接收功率(Reference Signal Receiving Power,RSRP)上报给网络设备。网络设备根据终端设备的上报确定一个最优的SSB或CSI-RS资源,将其所用的发送波束确定为下行传输所用的发送波束,从而可以使用该发送波束传输下行控制信道或者下行数据信道。网络设备在传输下行控制信道或下行数据信道之前,可以通过传输配置指示(Transmission Configuration Indicator,TCI)状态将对应的准共址(Quasi-co-located,QCL)参考信号指示给终端设备,从而终端设备可以采用接收所述QCL参考信号所用的接收波束,来接收对应的下行控制信道例如物理下行控制信道(Physical Downlink Control Channel,PDCCH)或下行数据信道。
为了提高PDSCH的传输可靠性,NR系统引入了PDSCH的重复传输(Repetition),即携带相同数据的PDSCH可以通过不同的时隙、TRP或冗余版本(Redundancy Version,RV)等进行多次传输,从而获得分集增益,降低误检概率。
具体而言,如图3所示,重复传输可以在多个时隙进行。对于多时隙上的重复传输,一个下行控制信息(Downlink Control Information,DCI)可以调度多个携带相同数据的PDSCH在连续的多个时隙上传输。可选地,PDSCH每次重复传输的频域资源可以相同,RV可以不同。其中,终端设备可以根据DCI指示的RV号确定每次重复传输的RV版本。
如图4所示,重复传输也可以在多个TRP上进行。对于多TRP的重复传输,携带相同数据的PDSCH可以在采用不同的波束(此时网络设备可以在一个DCI中指示多个TCI状态)在不同的TRP上分别传输。
当然,多TRP重复传输的方式也可以和多时隙重复传输的方式结合。比如,PDSCH可以在多个不同的时隙上采用不同的TRP进行传输。
在进行PDSCH的重复传输时,有可能是单个TRP进行PDSCH所有的重复传输,也可能是PDSCH的重复传输是在多个TRP上进行的,并且不同时刻进行PDSCH重复传输的TRP数量可能是不同的。比如,在时隙1进行PDSCH重复传输的TRP的数量为1,在时隙2进行PDSCH重复传输的TRP的 数量为2。网络设备采用不同数量的TRP发送PDSCH时,对应的PDSCH重复传输的次数和PDSCH每次重复传输所使用的冗余版本可能是不同的。例如,网络设备采用不同的TRP进行PDSCH的重复传输时,PDSCH每次重复传输所使用的冗余版本可以相同;网络设备采用同一个TRP进行PDSCH的重复传输时,PDSCH每次重复传输所使用的冗余版本可以不同。
由于终端设备无法获知进行PDSCH重复传输的TRP数量,因此,终端设备无法确定PDSCH重复传输的重复次数和/或PDSCH每次重复传输所使用的冗余版本。
鉴于此,本申请实施例提出了一种数据传输的方法,可以支持单TRP传输和多TRP传输情况下的PDSCH的重复传输,使得终端设备可以动态地确定与TRP数量对应的重复次数和/或冗余版本。
图5是根据本申请实施例的数据传输的方法200的示意性流程图。图5所述的方法可以由终端设备执行,该终端设备例如可以为图1中所示的终端设备120。如图5所示,该方法200可以包括以下内容中的至少部分内容。
在210中,终端设备根据DCI,确定TCI状态的数量。
在本申请实施例中,一个TCI状态可以包括如下配置:
1、TCI状态标识(Identify,ID),用于标识一个TCI状态;
2、QCL信息1;
3、QCL信息2。
其中,一个QCL信息可以包括如下信息:
(a)、QCL类型配置,例如,可以是QCL类型A(QCL TypeA),QCL类型B(QCL TypeB),QCL类型C(QCL TypeC)或QCL类型D(QCL TypeD)中的一个;
(b)、QCL参考信号配置,例如,可以包括参考信号所在的小区ID,带宽部分(Bandwidth,BWP)ID以及参考信号的标识(例如可以是CSI-RS资源ID或SSB索引)。
其中,在QCL信息1和QCL信息2中,至少一个QCL信息的QCL类型为QCL TypeA,QCL TypeB,QCL TypeC中的一个,如果配置另一个QCL信息,则该QCL信息的QCL类型为QCL TypeD。
其中,不同QCL类型配置的定义如下:
1、QCL-TypeA:{多普勒偏移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),时延扩展(delay spread)};
2、QCL-TypeB:{Doppler shift,Doppler spread};
3、QCL-TypeC:{Doppler shift,average delay};
4、QCL-TypeD:{空间接收参数(Spatial Rx parameter)}。
在本申请实施例中,如果网络设备通过TCI状态配置目标下行信道的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为QCL-TypeA,QCL-TypeB或QCL-TypeC,则终端设备可以假设所述目标下行信道与所述参考SSB或参考CSI-RS资源的目标大尺度参数是相同的,从而采用相同的相应接收参数进行接收,所述目标大尺度参数可以通过QCL类型配置来确定。类似地,如果网络设备通过TCI状态配置目标下行信道的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为QCL-TypeD,则终端设备可以采用与接收所述参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter)来接收所述目标下行信道。通常来说,目标下行信道与其参考SSB或参考CSI-RS资源在网络设备侧是由同一个TRP,同一个天线面板(panel)或者相同的波束来发送的。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,可以配置不同的TCI状态。
对于下行控制信道,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令或者RRC信令+媒体接入控制(Media Access Control,MAC)信令的方式来指示TCI状态。
对于下行数据信道,如PDSCH,参考图6,网络设备可以通过RRC信令指示M个可用的TCI状态,并通过MAC层信令激活其中该M个TCI状态中的L个TCI状态,最后可以通过DCI中的TCI状态指示域从激活的L个TCI状态中指示部分TCI状态,如1个或2个TCI状态,用于DCI调度的PDSCH。其中,M和L为正整数。
在网络设备确定PDSCH(为了描述方便,后续内容称为目标PDSCH)可以进行重复传输(Repetition)后,网络设备可以在调度目标PDSCH的DCI中指示TCI状态的数量。相应地,终端设备在接收到该DCI后,可以根据DCI确定TCI状态的数量。
作为一种示例,DCI可以显性指示TCI状态的数量。例如,若TCI状态的数量为2,则DCI中的比特位“1”可以用于指示TCI状态的数量为2,DCI中的比特位“0”可以用于指示TCI状态的数量为1。
作为另一种示例,DCI可以隐式指示TCI状态的数量。
可选地,DCI可以通过指示TCI状态来指示TCI状态的数量。例如,DCI可以指示TCI状态1 和TCI状态2,则终端设备可以确定TCI状态的数量为2。
在220中,终端设备根据TCI状态的数量,确定目标PDSCH重复传输的第一重复次数和/或目标PDSCH每次重复传输所使用的冗余版本。
可选地,在本申请实施例中,目标PDSCH每次重复传输相同的数据,即目标PDSCH每次重复传输时携带相同的源比特信息。目标PDSCH每次重复传输采用的冗余版本、解调参考信号(Demodulation Reference Signal,DMRS)端口、频域资源和波束等可以相同,也可以不同,本申请实施例对此不作具体限定。
应理解,本申请实施例对目标PDSCH的重复传输和目标PDSCH的重复次数的名称并不限定,也就是说,它们也可以表述为其他名称。例如,目标PDSCH的重复传输也可以称为携带相同数据的多个目标PDSCH或者目标PDSCH的多次聚合。目标PDSCH的重复次数也可以称为携带相同数据的目标PDSCH的数量或者目标PDSCH的聚合数量。
可选地,目标PDSCH的重复次数例如可以是1、2、4和8中的一个。
在本申请实施例中,终端设备根据TCI状态的数量,确定目标TCI重复传输的第一重复次数的实现方法有多种,下面进行详细介绍。
方法1
终端设备根据TCI状态的数量,确定目标PDSCH重复传输的第一重复次数,包括:终端设备可以将TCI状态的数量确定为第一重复次数。
例如,DCI中指示的TCI状态的数量为2,则终端设备可以确定目标PDSCH重复传输的第一重复次数也为2。
此时,目标PDSCH的重复传输可以与TCI状态具有一一对应的关系,即终端设备每次进行目标PDSCH的重复传输可以采用不同的TCI状态。例如,TCI状态的数量和第一重复次数都为2,TCI状态包括第一TCI状态和第二TCI状态,则目标PDSCH进行第一次重复传输时可以采用第一TCI状态,目标PDSCH进行第二次重复传输时可以采用第二TCI状态。
方法2
终端设备根据TCI状态的数量,确定目标PDSCH重复传输的第一重复次数,包括:终端设备可以根据TCI状态的数量和高层信令所指示的第二重复次数,确定第一重复次数,和/或,终端设备可以根据TCI状态的数量和DCI指示的第三重复次数,确定第一重复次数。
其中,高层信令所指示的第二重复次数可以为通过RRC参数所指示的重复次数。
DCI指示第三重复次数,作为一种示例,网络设备可以通过DCI中的时域资源配置信息指示第三重复次数。
示例性地,该时域资源配置信息可以显性指示第三重复次数。例如,该时域资源配置信息在指示目标PDSCH每次重复传输所使用的时域资源的同时,可以指示第一重复次数。
再示例性地,该时域资源配置信息可以隐式指示第三重复次数。例如,该时域资源配置信息只指示目标PDSCH每次重复传输所采用的时域资源,终端设备根据目标PDSCH每次重复传输所采用的时域资源可以确定第三重复次数。比如,该时域资源配置信息指示了4个目标PDSCH每次重复重复所采用的时域资源,则终端设备可以确定第三重复次数为4。
作为另一种示例,DCI可以引入新的比特域或者在DCI中预留比特位,专门用于指示第三重复次数。
可选地,在本申请实施例中,高层信令指示的第二重复次数和DCI指示的第三重复次数可以理解为:单个TRP进行目标PDSCH的重复传输时,目标PDSCH重复传输的重复次数。
当然,第二重复次数和第三重复也可以是协议规定预设在终端设备上的。
需要说明的是,本申请实施例中的目标PDSCH的重复传输可以包括目标PDSCH的首次传输。
还需要说明的是,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在方法2中,终端设备可以通过两种方式确定第一重复次数,下面分别进行描述。
实施例1
具体地,终端设备可以根据TCI状态的数量是否大于1,采用不同的实现方式确定第一重复次数。
在一种实现方式中,当TCI状态的数量等于1时,则终端设备可以将高层信令指示的第二重复次数确定为第一重复次数。例如,高层信令指示的第二重复次数为2,则终端设备可以确定目标PDSCH重复传输的第一重复次数也为2。
在另一种实现方式中,当TCI状态的数量大于1时,终端设备可以根据以下三种方式之一确定第一重复次数。
方式1:终端设备可以将DCI指示的第三重复次数确定为第一重复次数。
将方式1与TCI状态的数量为1的实现方式结合,可以得到:当TCI状态的数量为1时,第一重复次数与高层信令指示的第二重复次数相等;当TCI状态的数量大于1时,第一重复次数与DCI指示的第三重复次数相等。这种情况下,如果在DCI中引入新的比特域或者在DCI中预留比特位专门用于指示第三重复次数,则该比特位可以只在TCI状态的数量大于1时存在,在TCI状态的数量等于1时不存在。
上述技术方案可以支持动态地配置目标PDSCH重复传输的第一重复次数,从而可以支持更灵活地调度。
方式2:终端设备可以根据TCI状态的数量和高层信令指示的第二重复次数,确定第一重复次数。
可选地,终端设备可以在TCI状态的数量和第二重复次数中,随机选择一个数量作为第一重复次数。
可选地,第一重复次数可以等于TCI状态的数量和第二重复次数的和。例如,TCI状态的数量为2,第二重复次数为2,则终端设备可以确定第一重复次数为4。
可选地,第一重复次数可以等于TCI状态的数量与第二重复次数的乘积。将该实现方式与TCI状态的数量为1的实现方式结合,可以得到:当TCI状态的数量为1时,第一重复次数与高层信令指示的第二重复次数相等;当TCI状态的数量大于1时,第一重复次数为第二重复次数和TCI状态的数量中的乘积。
可选地,第一重复次数可以为第二重复次数和TCI状态的数量中的较大值,即第一重复次数=max(T,R),其中,T为TCI状态的数量,R为第二重复次数,T和R为正整数。举例说明,若第二重复次数为1,TCI状态的数量为2,则终端设备可以确定第一重复次数为2。若第二重复次数为4,TCI状态的数量为2,则终端设备可以确定第一重复次数为4。
可选地,第一重复次数可以为第二重复次数和TCI状态的数量中的较小值,即第一重复次数=min(T,R)。将该实现方式与TCI状态的数量为1的实现方式结合,可以得到:当TCI状态的数量为1时,第一重复次数与高层信令指示的第二重复次数相等;当TCI状态的数量大于1时,第一重复次数为第二重复次数和TCI状态的数量中的较小值。
表1为一种可能的第一重复次数的确定方式的举例。从表1中可以看到,当TCI状态的数量为1时,第一重复次数与第二重复次数相等,即当第二重复次数为1时,第一重复次数也为1;当第二重复次数为2时,第一重复次数也为2;当第二重复次数为4时,第一重复次数也为4。当TCI状态的数量大于1时,第一重复次数为TCI状态的数量与第二重复次数的之间的较小值,即当TCI状态的数量为2且第二重复次数为1时,第一重复次数为1;当TCI状态的数量为2且第二重复次数为2时,第一重复次数为2;当TCI状态的数量为2且第二重复次数为4时,第一重复次数为2。
表1
Figure PCTCN2019090186-appb-000001
方式2的技术方案重用了现有系统高层信令中的重复次数指示信息,多TRP传输的重复次数可以根据TRP数量(通过TCI状态数量表示)和高层信令指示的重复次数计算得到,从而每个TRP的重复次数可以与现有系统中相同。另外,方式2的技术方案可以通过高层信令指示重复次数的最大值,再通过DCI指示当前实际使用的重复次数,从而可以灵活地配置目标PDSCH的重复次数。
方式3:终端设备可以根据TCI状态的数量和DCI指示的第三重复次数,确定第一重复次数。
可选地,终端设备可以在TCI状态的数量和第三重复次数中,随机选择一个数量作为第一重复次数。
可选地,第一重复次数可以等于TCI状态的数量和第三重复次数的和。例如,TCI状态的数量为2,第三重复次数为2,则终端设备可以确定第一重复次数为4。
可选地,第一重复次数可以等于TCI状态的数量和第三重复次数的平均值。
可选地,第一重复次数可以等于TCI状态的数量与第三重复次数的乘积。
参考表2,表2为一种可能的第一重复次数的确定方式的示例。表2假设高层信令配置的第二重 复次数为2。从表2中可以看到,当TCI状态的数量为1时,第一重复次数与高层信令指示的第二重复次数相等。当TCI状态的数量大于1时,第一重复次数为TCI状态的数量与第三重复次数的乘积,即当TCI状态的数量为2且第三重复次数为1时,第一重复次数为2;当TCI状态的数量为2且第三重复次数为2时,第一重复次数为4;当TCI状态的数量为2且第三重复次数为4时,第一重复次数为8。
表2
Figure PCTCN2019090186-appb-000002
可选地,第一重复次数可以为第三重复次数和TCI状态的数量中的较大值,即第一重复次数=max(T,N)。其中,N为第三重复次数,N为正整数。举例说明,若第三重复次数为1,TCI状态的数量为2,则终端设备可以确定第一重复次数为2。若第三重复次数为4,TCI状态的数量为2,则终端设备可以确定第一重复次数为4。
可选地,第一重复次数可以为第三重复次数和TCI状态的数量中的较小值,即第一重复次数=min(T,N)。
方式3的技术方案中,DCI可以不需要根据TRP的数量变化而只指示单个TRP进行目标PDSCH重复传输的重复次数,多个TRP进行目标PDSCH重复传输的重复次数可以根据TRP的数量(通过TCI状态的数量表示)和单个TRP进行目标PDSCH重复传输的重复次数计算得到。
实施例1的技术方案,TCI状态的数量为1时,可以尽可能重用现有系统中目标PDSCH重复传输的重复次数的指示方式,从而可以降低终端设备的复杂度。当TCI状态的数量大于1时,可以引入新的重复次数确定方式,从而可以支持多TRP传输。
实施例2
终端设备可以根据TCI状态的数量和第四重复次数确定第一重复次数。
其中,第四重复次数为通过高层信令或DCI指示的重复次数。当第四重复次数为高层信令指示的重复次数时,第四重复次数与第二重复次数相同;当第四重复次数为DCI指示的重复次数时,第四重复次数与第三重复次数相同。
作为一种示例,终端设备可以在TCI状态的数量和第四重复次数中,随机选择一个数量作为第一重复次数。
作为另一种示例,第一重复次数可以等于TCI状态的数量和第四重复次数的和。
作为另一种示例,第一重复次数可以等于TCI状态的数量和第四重复次数的平均值。
作为另一种示例,第一重复次数可以等于TCI状态的数量与第四重复次数的乘积。
表3示出了一种可能的第一重复次数的确定方法。从表3中可以看到,第一重复次数为TCI状态的数量与第四重复次数的乘积,比如,当TCI状态的数量为2且第四重复次数为4时,第一重复次数为8;当TCI状态的数量为1且第四重复次数为2时,第一重复次数为2。
表3
Figure PCTCN2019090186-appb-000003
作为另一种示例,第一重复次数可以为第四重复次数和TCI状态的数量中的较大值,即第一重复次数=max(T,P)。其中,P为第四重复次数
作为另一种示例,第一重复次数可以为第四重复次数和TCI状态的数量中的较小值,即第一重复次数=min(T,P)。
实施例2和实施例1的主要区别在于,实施例2可以不先根据TCI状态的数量判断采用哪种方法来确定第一重复次数,而是直接计算第一重复次数。该方法的好处是当TCI状态为1时(即单个TRP进行目标PDSCH的重复传输),目标PDSCH重复传输的重复次数与现有系统中单个TRP的情况相同,从而保留了很好的后向兼容性。
应理解,在本申请实施例中,“第一”、“第二”、“第三”和“第四”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
上述内容描述了终端设备根据TCI状态的数量确定第一重复次数的实现方式,下面将详细描述终端设备根据TCI状态的数量确定目标PDSCH每次重复传输所使用的冗余版本的实现方式。
实施例1
当TCI状态的数量等于1时,终端设备可以根据DCI中的冗余版本指示信息或者RRC信令配置的冗余版本序列,确定目标PDSCH每次重复传输所使用的冗余版本。
可选地,RRC信令配置的冗余版本序列可以包括但不限于以下中的任意一个:{0,2,3,1}、{0,0,0,0}和{0,3,0,3}。
可选地,DCI中的冗余版本指示信息可以承载于DCI中的任何一个域中,即冗余版本指示信息可以重用DCI中的任何一个域。或者,DCI也可以引入一个新的比特域专门用于承载所述冗余版本指示信息。
当终端设备根据DCI中的冗余版本指示信息确定目标PDSCH每次重复传输所使用的冗余版本时,终端设备可以根据DCI中的冗余版本指示信息和表4,确定目标PDSCH每次重复传输所使用的冗余版本。
表4
Figure PCTCN2019090186-appb-000004
例如,目标PDSCH重复传输的第一重复次数为4,DCI中的冗余版本指示信息指示的RV值为2,则根据表4可以得到目标PDSCH第0次重复传输所使用的冗余版本为2,目标PDSCH第1次重复传输所使用的冗余版本为3,目标PDSCH第2次重复传输所使用的冗余版本为1,目标PDSCH第3次重复传输所使用的冗余版本为0。
当TCI状态的数量大于1时,终端设备可以根据DCI中的冗余版本指示信息,分别确定采用不同的TCI状态的目标PDSCH重复传输所使用的冗余版本。
可选地,采用不同的TCI状态的目标PDSCH重复传输所使用的冗余版本可以相同,或者,采用不同的TCI状态的目标PDSCH重复传输所使用的冗余版本之间可以具有循环移位的关系。例如,TCI状态的数量为2,TCI状态包括第一TCI状态和第二TCI状态,采用第一TCI状态的目标PDSCH重复传输所使用的第一冗余版本为{0,2,3,1},则采用第二TCI状态的目标PDSCH重复传输所使用的第二冗余版本可以与第一冗余版本相同,即也为{0,2,3,1},或者,第二冗余版本与第一冗余版本之间具有循环移位的关系,此时,第二冗余版本比如可以为{3,1,0,2}。
可选地,若采用不同的TCI状态的目标PDSCH重复传输所使用的冗余版本之间可以具有循环移位的关系,循环移位的位数和方向可以是终端设备和网络设备协商好的,比如,终端设备和网络设备协商右移一位;或者,循环移位的位数和方向可以是协议规定的;或者,循环移位的位数和方向可以是网络设备配置的,比如,网络设备确定左移三位,之后,网络设备可以向终端设备发送配置信息,该配置信息用于指示循环移位的方向和位数为左移三位;或者,所述循环移位的位数可以是根据所述TCI状态的数量得到的。
终端设备根据DCI中的冗余版本指示信息,分别确定采用不同的TCI状态的目标PDSCH重复传输所使用的冗余版本的实现方式可以有两种,在一种实现方式中,假设TCI状态的数量为2,TCI状态包括第一TCI状态和第二TCI状态,终端设备可以先确定采用第一TCI状态的目标PDSCH重复传输所使用的第一冗余版本,然后,终端设备可以根据第一冗余版本确定采用第二TCI状态的目标PDSCH重复传输所使用的第二冗余版本。
可选地,在终端设备确定第一冗余版本的过程中,终端设备可以基于表4确定第一冗余版本。
例如,终端设备基于表4确定的第一冗余版本为{0,2,3,1},则终端设备可以根据第一冗余版本{0,2,3,1}确定第二冗余版本,确定出的第二冗余版本例如可以为{0,2,3,1}或者{3,1,0,2}。终端设备确定的第一冗余版本和第二冗余版本具体可以如图7所示。
在另一种实现方式中,终端设备可以根据DCI中的冗余版本指示信息,分别确定第一冗余版本和第二冗余版本。在该实现方式中,终端设备确定第二冗余版本不基于第一冗余版本。比如,终端设备可以基于表4同时确定第一冗余版本和第二冗余版本。
在实施例1中,由于不同TCI状态对应了不同的TRP,实施例1为不同TRP传输的目标PDSCH分别分配冗余版本,从而可以在每个TRP内部进行冗余版本的轮询,提高重传的可靠性。
实施例2
作为一种可能的实施例,终端设备可以根据DCI中的冗余版本指示信息,确定目标PDSCH重复传输所使用的冗余版本序列,且TCI状态的数量不同时,该冗余版本指示信息指示的冗余版本序列可以不同。
也就是说,第三冗余版本序列与第四冗余版本序列可以不同,其中,第三冗余版本序列为TCI状态的数量为1时所述冗余版本指示信息所指示的冗余版本序列,第四冗余版本序列为TCI状态的数量大于1时所述冗余版本指示信息指示的冗余版本序列。
示例性地,如果TCI状态的数量等于1,则DCI中的冗余版本指示信息所指示的第三冗余版本序列可以如表4所示。如果TCI状态的数量大于1,则DCI中的冗余版本指示信息所指示的第四冗余版本序列可以如表5-表7中的其中一个所示。
表5
Figure PCTCN2019090186-appb-000005
表6
Figure PCTCN2019090186-appb-000006
表7
Figure PCTCN2019090186-appb-000007
可选地,在本申请实施例中,表4-表7可以是根据协议规定预设在终端设备上的。或者,表4-表7可以是网络设备配置的,例如,网络设备可以通过RRC信令配置给终端设备。
作为另一种可能的实施例,终端设备可以根据RRC信令指示的冗余版本序列,确定目标PDSCH重复传输所使用的冗余版本,且TCI状态的数量不同时,该RRC信令也可以不同,RRC信令配置的冗余版本序列也可以不同。
具体而言,网络设备可以通过不同的RRC信令配置两个冗余版本序列,一个序列可以用于TCI状态数量为1的情况,一个序列可以用于TCI状态数量大于1的情况。终端设备可以根据当前TCI状态的数量,从相应RRC信令获得目标PDSCH重复传输所使用的冗余版本。
例如,网络设备通过RRC信令配置的两个冗余版本序列分别为{0,2,3,1}和{0,3,0,3},其中,{0,2,3,1}用于TCI状态的数量为1的情况,{0,3,0,3}用于TCI状态数量大于1的情况。则当TCI状态数量为1时,终端设备可以确定目标PDSCH重复传输所使用的冗余版本为{0,2,3,1},当当TCI状态数量大于1时,终端设备可以确定目标PDSCH重复传输所使用的冗余版本为所配置的冗余版本序列可以为{0,3,0,3}。
实施例3
可选地,如果TCI状态的数量为1,则终端设备可以确定目标PDSCH每次重复传输所使用的冗 余版本都不相同。
在该情况下,本申请实施例对终端设备确定目标PDSCH每次重复传输所使用的冗余版本的方式不作限定。示例性地,终端设备可以根据表4确定目标PDSCH每次重复传输所使用的冗余版本。或者,终端设备可以根据RRC信令配置的冗余版本序列确定目标PDSCH每次重复传输所使用的冗余版本。
参考图8,图8为TCI状态的数量为1时目标PDSCH每次重复传输所使用的冗余版本。可以看到,目标PDSCH重复传输所使用的冗余版本为{0,2,3,1},4次重复传输所使用的冗余版本都不相同。
可选地,如果TCI状态的数量大于1,则终端设备可以确定目标PDSCH每次重复传输所使用的冗余版本部分相同。
可选地,冗余版本相同的部分可以是终端设备和网络设备预先约定好的,或者,也可以是协议规定的。
比如,目标PDSCH前一半重复传输所使用的冗余版本可以与后一半重复传输所使用的冗余版本相同。图9示出了目标PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同的示意图,从图9中可以看到,目标PDSCH重复传输所使用的冗余版本为{0,2,0,2},目标PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同。
再比如,目标PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本可以相同。例如,目标PDSCH重复传输所使用的冗余版本为{0,0,2,2}。
再比如,目标PDSCH中间次数的重复传输所使用的冗余版本可以相同。例如,目标PDSCH重复传输的第一重复次数为4,分别为0,1,2,3次传输,则目标PDSCH第1次传输和第2次传输所使用的冗余版本相同,则目标PDSCH重复传输的冗余版本例如可以为{0,2,2,3}。
需要说明的是,表1-表7只是本申请实施例的一些具体例子,并不会对本申请实施例造成限定,任何在此基础上进行变形得到的对应关系都在本申请的保护范围内。
还需要说明的是,本申请实施例中术语“冗余版本”和“冗余版本序列”在本申请实施例中常被可互换使用。
可选地,在本申请实施例中,DCI可以指示第一重复次数和/或目标PDSCH每次重复传输所使用的冗余版本。这样,终端设备可以根据DCI的指示直接确定第一重复次数和/或目标PDSCH每次重复传输所使用的冗余版本。
在230中,终端设备根据第一重复次数和/或冗余版本,进行目标PDSCH的重复传输。
可选地,终端设备可以根据第一重复次数和/或冗余版本,在多个相邻的时隙中,进行目标PDSCH的重复传输。
可选地,终端设备可以根据第一重复次数和/或冗余版本,在多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行目标PDSCH的重复传输。
其中,一个迷你时隙中可以包括连续的多个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
当然,终端设备也可以根据第一重复次数和/或冗余版本,在其他时间单元上进行目标PDSCH的重复传输。
可选地,在本申请实施例中,方法200还可以包括:终端设备接收到第一重复次数个目标PDSCH后,可以将该第一重复次数个目标PDSCH进行合并,并对合并后的目标PDSCH进行检测。
可选地,终端设备对第一重复次数个目标PDSCH进行合并的方法有很多,本申请不作具体限定。例如,终端设备可以对第一重复次数个目标PDSCH进行软比特合并。
本申请实施例,在进行PDSCH的重复传输时,有可能是单个TRP进行PDSCH所有的重复传输,也可能是PDSCH的重复传输是在多个TRP上进行的。网络设备可以在不同的时刻采用不同数量的TRP进行PDSCH的多次重复传输,TRP的数量不同,PDSCH重复传输的次数和PDSCH每次重复传输所使用的冗余版本可能是不同的。上述技术方案,由于TCI状态的数量与TRP数量之间具体一定的关系,比如,TCI状态的数量与TRP数量相等,这样终端设备可以根据DCI中的TCI状态的数量获取到进行当前PDSCH的重复传输的TRP的数量,从而终端设备可以动态地确定与TRP数量对应的重复次数和/或冗余版本。进一步可以支持TRP数量的灵活切换,提高下行传输的性能。
上文结合图5-图9,从终端设备的角度详细描述了根据本申请实施例的数据传输的方法,下文结合图10,从网络设备的角度详细描述根据本申请实施例的数据传输的方法。
图10是根据本申请实施例的数据传输的方法300的示意性流程图。图10所述的方法可以由网络设备执行,该网络设备例如可以为图1中所示的网络设备110。如图10所示,该方法300可以包括以下内容中的至少部分内容。
在310中,网络设备根据传输目标PDSCH的TRP的数量,确定目标PDSCH重复传输的第一重复次数和/或目标PDSCH每次重复传输所使用的冗余版本。
可选地,在本申请实施例中,网络设备确定目标PDSCH可以进行重复传输,并且确定传输目标PDSCH及其各次重复的TRP的数量为T。之后,网络设备可以根据TRP的数量确定调度目标PDSCH的DCI中指示的TCI状态的数量。
可选地,TCI状态的数量可以与TRP的数量相等。
接下来,网络设备可以向终端设备发送用于调度目标PDSCH的DCI,该DCI用于指示TCI状态的数量。
作为一种示例,网络设备可以通过MAC层信令预先配置S组TCI状态,并在DCI中通过log 2S比特的指示信息指示其中一组TCI状态,其中,每组TCI状态包括T个TCI状态。S为正整数
作为另一种示例,网络设备可以通过MAC层信令预先配置S组TCI状态,每组TCI状态最多包含T_max个TCI状态(例如,可以是1,2,…,T_max个TCI状态)。网络设备可以在DCI中通过log 2S比特的指示信息指示其中一组TCI状态,所指示的该组TCI状态中包含T个TCI状态,T小于等于S_max。典型地,S_max=2,T=1或T=2。
应理解,以上虽然分别描述了方法200和方法300,但是这并不意味着方法200和方法300是独立的,在不矛盾的情况下,方法200和方法300的描述可以相互参考。例如,方法200中终端设备确定第一重复次数和/或冗余版本的相关描述可以适用于方法300。为了内容的简洁,本申请实施例不再赘述网络设备根据TRP的数量确定第一重复次数和冗余版本的实现方式。
在320中,网络设备根据第一重复次数和/或所述冗余版本,进行目标PDSCH的重复传输。
可选地,网络设备可以根据第一重复次数和/或冗余版本,在多个相邻的时隙中,进行目标PDSCH的重复传输。
可选地,网络设备可以根据第一重复次数和/或冗余版本,在多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行目标PDSCH的重复传输。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的数据传输的方法,下面将结合图11至图13,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图11示出了本申请实施例的终端设备400的示意性框图。如图11所示,该终端设备400包括:
处理单元410,用于根据DCI,确定TCI状态的数量。
所述处理单元410还用于,根据所述TCI状态的数量,确定所述DCI调度的物理下行共享信道PDSCH重复传输的第一重复次数和/或所述DCI调度的PDSCH每次重复传输所使用的冗余版本。
通信单元420,用于根据所述第一重复次数和/或所述冗余版本,进行所述DCI调度的PDSCH的重复传输。
可选地,在本申请实施例中,所述处理单元410具体用于:将所述TCI状态的数量,确定为所述第一重复次数。
可选地,在本申请实施例中,所述处理单元410具体用于:根据所述TCI状态的数量和高层信令所指示的第二重复次数,确定所述第一重复次数;和/或根据所述TCI状态的数量和所述DCI指示的第三重复次数,确定所述第一重复次数。
可选地,在本申请实施例中,所述处理单元410具体用于:当所述TCI状态的数量等于1时,将所述高层信令所指示的所述第二重复次数,确定为所述第一重复次数;当所述TCI状态的数量大于1时,将所述DCI指示的所述第三重复次数,确定为所述第一重复次数,或者,根据所述TCI状态的数量和所述第二重复次数,确定所述第一重复次数,或者,根据所述TCI状态的数量和所述第三重复次数确定所述第一重复次数。
可选地,在本申请实施例中,所述处理单元410具体用于:将以下中的任意一种值确定为所述第一重复次数:所述第二重复次数与所述TCI状态的数量之积、所述第二重复次数和所述TCI状态的 数量中的较大值、所述第二重复次数和所述TCI状态的数量中的较小值。
可选地,在本申请实施例中,所述处理单元410具体用于:将以下中的任意一种值确定为所述第一重复次数:所述第三重复次数与所述TCI状态的数量之积、所述第三重复次数和所述TCI状态的数量中的较大值、所述第三重复次数和所述TCI状态的数量中的较小值。
可选地,在本申请实施例中,所述DCI包括时域资源配置信息,所述时域资源配置信息用于指示所述第三重复次数。
可选地,在本申请实施例中,所述处理单元410具体用于:当所述TCI状态的数量等于1时,根据所述DCI中的冗余版本指示信息或无线资源控制RRC信令指示的冗余版本序列,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本;当所述TCI状态的数量大于1时,根据所述DCI中的冗余版本指示信息,分别确定采用不同的TCI状态的PDSCH重复传输所使用的冗余版本。
可选地,在本申请实施例中,所述处理单元410具体用于:所述TCI状态至少包括第一TCI状态和第二TCI状态,根据所述冗余版本指示信息,确定采用所述第一TCI状态的PDSCH重复传输所使用的冗余版本;根据采用所述第一TCI状态的PDSCH重复传输所使用的冗余版本,确定采用所述第二TCI状态的PDSCH重复传输所使用的冗余版本。
可选地,在本申请实施例中,采用不同的TCI状态的PDSCH重复传输所使用的冗余版本相同,或者,采用不同的TCI状态的PDSCH重复传输所使用的冗余版本之间具有循环移位关系。
可选地,在本申请实施例中,所述处理单元410具体用于:根据所述DCI中的冗余版本指示信息,确定所述DCI调度的PDSCH重复传输所使用的冗余版本序列,且所述TCI状态的数量不同时,所述冗余版本指示信息所指示的所述冗余版本序列也不同;或者,根据RRC信令指示的冗余版本序列,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本,且所述TCI状态的数量不同时,所述RRC信令也不同。
可选地,在本申请实施例中,所述处理单元410具体用于:当所述TCI状态的数量等于1时,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本都不相同;当所述TCI状态的数量大于1时,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本部分相同。
可选地,在本申请实施例中,当所述TCI状态的数量大于1时,所述DCI调度的PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同,或者,所述DCI调度的PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本相同。
可选地,在本申请实施例中,所述通信单元420具体用于:根据所述第一重复次数和/或所述冗余版本,在多个相邻的时隙或多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行所述DCI调度的PDSCH重复传输。
可选地,在本申请实施例中,所述处理单元410还用于:将所述DCI调度的所述第一重复次数个PDSCH进行合并,得到合并后的PDSCH;对所述合并后的PDSCH进行检测。
应理解,该终端设备400可对应于方法200中的终端设备,可以实现该方法200中的终端设备的相应操作,为了简洁,在此不再赘述。
图12示出了本申请实施例的网络设备500的示意性框图。如图12所示,该网络设备500包括:
处理单元510,用根据传输PDSCH的TRP的数量,确定所述PDSCH重复传输的第一重复次数和/或所述PDSCH每次重复传输所使用的冗余版本。
通信单元520,用于根据所述第一重复次数和/或所述冗余版本,进行所述PDSCH的重复传输。
可选地,在本申请实施例中,所述处理单元510具体用于:根据所述TRP的数量和预先通过高层信令所指示的第二重复次数,确定所述第一重复次数。
可选地,在本申请实施例中,所述处理单元510具体用于:将以下中的任意一种值确定为所述第一重复次数:所述第二重复次数与所述TRP的数量之积、所述第二重复次数和所述TRP的数量中的较大值、所述第二重复次数和所述TRP的数量中的较小值。
可选地,在本申请实施例中,所述处理单元510具体用于:当所述TRP的数量等于1时,确定所述PDSCH每次重复传输所使用的冗余版本都不相同;当所述TCI状态的数量大于1时,确定所述PDSCH每次重复传输所使用的冗余版本部分相同。
可选地,在本申请实施例中,当所述TCI状态的数量大于1时,所述PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同;或者所述PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本相同。
可选地,在本申请实施例中,所述通信单元520具体用于:根据所述第一重复次数和/或所述冗余版本,在多个相邻的时隙或多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行所述PDSCH重复传输。
应理解,该网络设备500可对应于方法300中的网络设备,可以实现该方法300中的网络设备的相应操作,为了简洁,在此不再赘述。
图13是本申请实施例提供的一种通信设备600示意性结构图。图13所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图13所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的装置的示意性结构图。图14所示的装置700包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置700可以为芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态 随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是本申请实施例提供的一种通信系统800的示意性框图。如图15所示,该通信系统700包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (52)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    终端设备根据下行控制信息DCI,确定传输配置指示TCI状态的数量;
    所述终端设备根据所述TCI状态的数量,确定所述DCI调度的物理下行共享信道PDSCH重复传输的第一重复次数和/或所述DCI调度的PDSCH每次重复传输所使用的冗余版本;
    所述终端设备根据所述第一重复次数和/或所述冗余版本,进行所述DCI调度的PDSCH的重复传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量,确定所述DCI调度的PDSCH重复传输的第一重复次数,包括:
    所述终端设备将所述TCI状态的数量,确定为所述第一重复次数。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量,确定所述DCI调度的PDSCH重复传输的第一重复次数,包括:
    所述终端设备根据所述TCI状态的数量和高层信令所指示的第二重复次数,确定所述第一重复次数;和/或
    所述终端设备根据所述TCI状态的数量和所述DCI指示的第三重复次数,确定所述第一重复次数。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量和高层信令所指示的第二重复次数,确定所述第一重复次数;或者所述终端设备根据所述TCI状态的数量和所述DCI指示的第三重复次数,确定所述第一重复次数,包括:
    当所述TCI状态的数量等于1时,所述终端设备将所述高层信令所指示的所述第二重复次数,确定为所述第一重复次数;
    当所述TCI状态的数量大于1时,所述终端设备将所述DCI指示的所述第三重复次数,确定为所述第一重复次数,或者,所述终端设备根据所述TCI状态的数量和所述第二重复次数,确定所述第一重复次数,或者,所述终端设备根据所述TCI状态的数量和所述第三重复次数确定所述第一重复次数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量和高层信令所指示的第二重复次数,确定所述第一重复次数,包括:
    所述终端设备将以下中的任意一种值确定为所述第一重复次数:
    所述第二重复次数与所述TCI状态的数量之积;
    所述第二重复次数和所述TCI状态的数量中的较大值;
    所述第二重复次数和所述TCI状态的数量中的较小值。
  6. 根据权利要求3或4所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量和所述DCI指示的第三重复次数,确定所述第一重复次数,包括:
    所述终端设备将以下中的任意一种值确定为所述第一重复次数:
    所述第三重复次数与所述TCI状态的数量之积;
    所述第三重复次数和所述TCI状态的数量中的较大值;
    所述第三重复次数和所述TCI状态的数量中的较小值。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述DCI包括时域资源配置信息,所述时域资源配置信息用于指示所述第三重复次数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本,包括:
    当所述TCI状态的数量等于1时,所述终端设备根据所述DCI中的冗余版本指示信息或无线资源控制RRC信令指示的冗余版本序列,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本;
    当所述TCI状态的数量大于1时,所述终端设备根据所述DCI中的冗余版本指示信息,分别确定采用不同的TCI状态的PDSCH重复传输所使用的冗余版本。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据所述DCI中的冗余版本指示信息,分别确定采用不同的TCI状态的PDSCH重复传输所使用的冗余版本,包括:
    所述TCI状态至少包括第一TCI状态和第二TCI状态,所述终端设备根据所述冗余版本指示信息,确定采用所述第一TCI状态的PDSCH重复传输所使用的冗余版本;
    所述终端设备根据采用所述第一TCI状态的PDSCH重复传输所使用的冗余版本,确定采用所述第二TCI状态的PDSCH重复传输所使用的冗余版本。
  10. 根据权利要求8或9所述的方法,其特征在于,采用不同的TCI状态的PDSCH重复传输所使用的冗余版本相同,或者,采用不同的TCI状态的PDSCH重复传输所使用的冗余版本之间具有循环移位关系。
  11. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本,包括:
    所述终端设备根据所述DCI中的冗余版本指示信息,确定所述DCI调度的PDSCH重复传输所使用的冗余版本序列,且所述TCI状态的数量不同时,所述冗余版本指示信息所指示的所述冗余版本序列也不同;或者
    所述终端设备根据RRC信令指示的冗余版本序列,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本,且所述TCI状态的数量不同时,所述RRC信令也不同。
  12. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备根据所述TCI状态的数量,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本,包括:
    当所述TCI状态的数量等于1时,所述终端设备确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本都不相同;
    当所述TCI状态的数量大于1时,所述终端设备确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本部分相同。
  13. 根据权利要求12所述的方法,其特征在于,当所述TCI状态的数量大于1时,所述DCI调度的PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同;或者
    所述DCI调度的PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本相同。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述终端设备根据所述第一重复次数和/或所述冗余版本,进行所述DCI调度的PDSCH重复传输,包括:
    所述终端设备根据所述第一重复次数和/或所述冗余版本,在多个相邻的时隙或多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行所述DCI调度的PDSCH重复传输。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述DCI调度的所述第一重复次数个PDSCH进行合并,得到合并后的PDSCH;
    所述终端设备对所述合并后的PDSCH进行检测。
  16. 一种数据传输的方法,其特征在于,所述方法包括:
    网络设备根据传输物理下行共享信道PDSCH的传输点TRP的数量,确定所述PDSCH重复传输的第一重复次数和/或所述PDSCH每次重复传输所使用的冗余版本;
    所述网络设备根据所述第一重复次数和/或所述冗余版本,进行所述PDSCH的重复传输。
  17. 根据权利要求16所述的方法,其特征在于,网络设备根据传输PDSCH的传输点TRP的数量,确定所述PDSCH重复传输的第一重复次数和/或所述PDSCH每次重复传输所使用的冗余版本,包括:
    所述网络设备根据所述TRP的数量和预先通过高层信令所指示的第二重复次数,确定所述第一重复次数。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备根据所述TRP的数量和预先通过高层信令所指示的第二重复次数,确定所述第一重复次数,包括:
    所述网络设备将以下中的任意一种值确定为所述第一重复次数:
    所述第二重复次数与所述TRP的数量之积;
    所述第二重复次数和所述TRP的数量中的较大值;
    所述第二重复次数和所述TRP的数量中的较小值。
  19. 根据权利要求16所述的方法,其特征在于,网络设备根据传输PDSCH的传输点TRP的数量,确定所述PDSCH重复传输的第一重复次数和/或所述PDSCH每次重复传输所使用的冗余版本,包括:
    当所述TRP的数量等于1时,所述网络设备确定所述PDSCH每次重复传输所使用的冗余版本都不相同;
    当所述TCI状态的数量大于1时,所述网络设备确定所述PDSCH每次重复传输所使用的冗余版本部分相同。
  20. 根据权利要求19所述的方法,其特征在于,当所述TCI状态的数量大于1时,所述PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同;或者
    所述PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本相同。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,所述网络设备根据所述第一重复 次数和/或所述冗余版本,进行所述PDSCH的重复传输,包括:
    所述网络设备根据所述第一重复次数和/或所述冗余版本,在多个相邻的时隙或多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行所述PDSCH重复传输。
  22. 一种终端设备,其特征在于,包括:
    处理单元,用于根据下行控制信息DCI,确定传输配置指示TCI状态的数量;
    所述处理单元还用于,根据所述TCI状态的数量,确定所述DCI调度的物理下行共享信道PDSCH重复传输的第一重复次数和/或所述DCI调度的PDSCH每次重复传输所使用的冗余版本;
    通信单元,用于根据所述第一重复次数和/或所述冗余版本,进行所述DCI调度的PDSCH的重复传输。
  23. 根据权利要求22所述的终端设备,其特征在于,所述处理单元具体用于:
    将所述TCI状态的数量,确定为所述第一重复次数。
  24. 根据权利要求22所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述TCI状态的数量和高层信令所指示的第二重复次数,确定所述第一重复次数;和/或
    根据所述TCI状态的数量和所述DCI指示的第三重复次数,确定所述第一重复次数。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理单元具体用于:
    当所述TCI状态的数量等于1时,将所述高层信令所指示的所述第二重复次数,确定为所述第一重复次数;
    当所述TCI状态的数量大于1时,将所述DCI指示的所述第三重复次数,确定为所述第一重复次数,或者,根据所述TCI状态的数量和所述第二重复次数,确定所述第一重复次数,或者,根据所述TCI状态的数量和所述第三重复次数确定所述第一重复次数。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述处理单元具体用于:
    将以下中的任意一种值确定为所述第一重复次数:
    所述第二重复次数与所述TCI状态的数量之积;
    所述第二重复次数和所述TCI状态的数量中的较大值;
    所述第二重复次数和所述TCI状态的数量中的较小值。
  27. 根据权利要求24或25所述的终端设备,其特征在于,所述处理单元具体用于:
    将以下中的任意一种值确定为所述第一重复次数:
    所述第三重复次数与所述TCI状态的数量之积;
    所述第三重复次数和所述TCI状态的数量中的较大值;
    所述第三重复次数和所述TCI状态的数量中的较小值。
  28. 根据权利要求24至27中任一项所述的终端设备,其特征在于,所述DCI包括时域资源配置信息,所述时域资源配置信息用于指示所述第三重复次数。
  29. 根据权利要求22至28中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    当所述TCI状态的数量等于1时,根据所述DCI中的冗余版本指示信息或无线资源控制RRC信令指示的冗余版本序列,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本;
    当所述TCI状态的数量大于1时,根据所述DCI中的冗余版本指示信息,分别确定采用不同的TCI状态的PDSCH重复传输所使用的冗余版本。
  30. 根据权利要求29所述的终端设备,其特征在于,所述处理单元具体用于:
    所述TCI状态至少包括第一TCI状态和第二TCI状态,根据所述冗余版本指示信息,确定采用所述第一TCI状态的PDSCH重复传输所使用的冗余版本;
    根据采用所述第一TCI状态的PDSCH重复传输所使用的冗余版本,确定采用所述第二TCI状态的PDSCH重复传输所使用的冗余版本。
  31. 根据权利要求29或30所述的终端设备,其特征在于,采用不同的TCI状态的PDSCH重复传输所使用的冗余版本相同,或者,采用不同的TCI状态的PDSCH重复传输所使用的冗余版本之间具有循环移位关系。
  32. 根据权利要求22至28中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述DCI中的冗余版本指示信息,确定所述DCI调度的PDSCH重复传输所使用的冗余版本序列,且所述TCI状态的数量不同时,所述冗余版本指示信息所指示的所述冗余版本序列也不同;或者
    根据RRC信令指示的冗余版本序列,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本,且所述TCI状态的数量不同时,所述RRC信令也不同。
  33. 根据权利要求22至28中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    当所述TCI状态的数量等于1时,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本都不相同;
    当所述TCI状态的数量大于1时,确定所述DCI调度的PDSCH每次重复传输所使用的冗余版本部分相同。
  34. 根据权利要求33所述的终端设备,其特征在于,当所述TCI状态的数量大于1时,所述DCI调度的PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同;或者
    所述DCI调度的PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本相同。
  35. 根据权利要求22至34中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    根据所述第一重复次数和/或所述冗余版本,在多个相邻的时隙或多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行所述DCI调度的PDSCH重复传输。
  36. 根据权利要求22至35中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    将所述DCI调度的所述第一重复次数个PDSCH进行合并,得到合并后的PDSCH;
    对所述合并后的PDSCH进行检测。
  37. 一种网络设备,其特征在于,包括:
    处理单元,用根据传输物理下行共享信道PDSCH的传输点TRP的数量,确定所述PDSCH重复传输的第一重复次数和/或所述PDSCH每次重复传输所使用的冗余版本;
    通信单元,用于根据所述第一重复次数和/或所述冗余版本,进行所述PDSCH的重复传输。
  38. 根据权利要求37所述的网络设备,其特征在于,所述处理单元具体用于:
    根据所述TRP的数量和预先通过高层信令所指示的第二重复次数,确定所述第一重复次数。
  39. 根据权利要求38所述的网络设备,其特征在于,所述处理单元具体用于:
    将以下中的任意一种值确定为所述第一重复次数:
    所述第二重复次数与所述TRP的数量之积;
    所述第二重复次数和所述TRP的数量中的较大值;
    所述第二重复次数和所述TRP的数量中的较小值。
  40. 根据权利要求37所述的网络设备,其特征在于,所述处理单元具体用于:
    当所述TRP的数量等于1时,确定所述PDSCH每次重复传输所使用的冗余版本都不相同;
    当所述TCI状态的数量大于1时,确定所述PDSCH每次重复传输所使用的冗余版本部分相同。
  41. 根据权利要求40所述的网络设备,其特征在于,当所述TCI状态的数量大于1时,所述PDSCH前一半重复传输所使用的冗余版本与后一半重复传输所使用的冗余版本相同;或者
    所述PDSCH奇数次重复传输与偶数次重复传输所使用的冗余版本相同。
  42. 根据权利要求37至41中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    根据所述第一重复次数和/或所述冗余版本,在多个相邻的时隙或多个相邻的迷你时隙或多个不相邻的迷你时隙中,进行所述PDSCH重复传输。
  43. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  44. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求16至21中任一项所述的方法。
  45. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  46. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至21中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求16至21中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16至21中任一项所述的方法。
  51. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至15中任一 项所述的方法。
  52. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求16至21中任一项所述的方法。
PCT/CN2019/090186 2019-06-05 2019-06-05 数据传输的方法、终端设备和网络设备 WO2020243930A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/090186 WO2020243930A1 (zh) 2019-06-05 2019-06-05 数据传输的方法、终端设备和网络设备
EP19931979.9A EP3968712B1 (en) 2019-06-05 2019-06-05 Data transmission method, terminal device and network device
CN201980075798.7A CN113170448A (zh) 2019-06-05 2019-06-05 数据传输的方法、终端设备和网络设备
CN202110844852.9A CN113595706B (zh) 2019-06-05 2019-06-05 数据传输的方法、终端设备和网络设备
US17/541,964 US20220095345A1 (en) 2019-06-05 2021-12-03 Data transmission method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090186 WO2020243930A1 (zh) 2019-06-05 2019-06-05 数据传输的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/541,964 Continuation US20220095345A1 (en) 2019-06-05 2021-12-03 Data transmission method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020243930A1 true WO2020243930A1 (zh) 2020-12-10

Family

ID=73652351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090186 WO2020243930A1 (zh) 2019-06-05 2019-06-05 数据传输的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20220095345A1 (zh)
EP (1) EP3968712B1 (zh)
CN (2) CN113595706B (zh)
WO (1) WO2020243930A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022161483A1 (zh) * 2021-01-29 2022-08-04 展讯半导体(南京)有限公司 跨载波的信道重复传输方法及装置、存储介质、终端、网络设备
WO2022213355A1 (en) * 2021-04-09 2022-10-13 Qualcomm Incorporated Multi-beam listen-before-talk (lbt) signaling
US20230361971A1 (en) * 2019-10-11 2023-11-09 Beijing Xiaomi Mobile Software Co., Ltd. Methods for transmitting or receiving data, terminal, and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220338222A1 (en) * 2019-08-14 2022-10-20 Lg Electronics Inc. Method for transmitting/receiving downlink data in wireless communication system, and device therefor
US11930479B2 (en) * 2019-08-16 2024-03-12 Intel Corporation PUCCH and PDSCH in multiplexed NR applications
US11716725B2 (en) * 2020-03-06 2023-08-01 Qualcomm Incorporated User equipment requests for a number of transmission configuration indicator states
WO2023220966A1 (en) * 2022-05-18 2023-11-23 Nec Corporation Method, device and computer storage medium of communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108934078A (zh) * 2017-05-25 2018-12-04 普天信息技术有限公司 一种下行数据传输方法和装置
WO2019084711A1 (en) * 2017-10-30 2019-05-09 Nokia Shanghai Bell Co., Ltd. Methods and apparatuses for repetition transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
US9973303B2 (en) * 2013-12-20 2018-05-15 Samsung Electronics Co., Ltd. Determining timing for transmission or reception of signaling in a coverage enhanced operating mode
JP7223856B2 (ja) * 2019-01-04 2023-02-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 超高信頼性低遅延通信のための繰り返し
US11425745B2 (en) * 2019-03-28 2022-08-23 Beijing Xiaomi Mobile Software Co., Ltd. Activation indication of transmission configuration groups

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108934078A (zh) * 2017-05-25 2018-12-04 普天信息技术有限公司 一种下行数据传输方法和装置
WO2019084711A1 (en) * 2017-10-30 2019-05-09 Nokia Shanghai Bell Co., Ltd. Methods and apparatuses for repetition transmission

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "R1-1907706: Summary of AI: 7.2.8.2 Enhancements on Multi-TRP/Panel Transmission of Offline Discussion", 3GPP TSG RAN WG1 MEETING #97, 17 May 2019 (2019-05-17), XP051739989 *
OPPO: "R1-1904036: Enhancements on multi-TRP and multi-panel transmission", 3GPP TSG RAN WG1 MEETING #96BIS, 12 April 2019 (2019-04-12), XP051691249 *
See also references of EP3968712A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230361971A1 (en) * 2019-10-11 2023-11-09 Beijing Xiaomi Mobile Software Co., Ltd. Methods for transmitting or receiving data, terminal, and storage medium
WO2022161483A1 (zh) * 2021-01-29 2022-08-04 展讯半导体(南京)有限公司 跨载波的信道重复传输方法及装置、存储介质、终端、网络设备
WO2022213355A1 (en) * 2021-04-09 2022-10-13 Qualcomm Incorporated Multi-beam listen-before-talk (lbt) signaling

Also Published As

Publication number Publication date
CN113595706A (zh) 2021-11-02
US20220095345A1 (en) 2022-03-24
EP3968712A1 (en) 2022-03-16
CN113170448A (zh) 2021-07-23
EP3968712B1 (en) 2024-02-07
EP3968712A4 (en) 2022-05-11
CN113595706B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2020243930A1 (zh) 数据传输的方法、终端设备和网络设备
EP3972175B1 (en) Method used for transmitting data, and terminal device
WO2021007685A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US20220329368A1 (en) Wireless communication method and terminal device
EP3908035B1 (en) Wireless communication method, terminal device, and network device
TWI829760B (zh) 用於側行鏈路的通信方法和設備
CN113490278B (zh) 下行信号传输的方法和设备
TW202013921A (zh) 發送上行信號的方法和設備
TW202019205A (zh) 一種資源配置方法及裝置、終端
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
WO2021016777A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2020087854A1 (zh) 无线通信方法和设备
WO2020211095A1 (zh) 一种信号加扰方法及装置、通信设备
JP2022500906A (ja) 情報伝送方法、装置及び記憶媒体
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
US20230007682A1 (en) Data transmission method, terminal device and network device
US20210258961A1 (en) Data transmission method and device
WO2020206622A1 (zh) 无线通信的方法和设备
WO2020191776A1 (zh) 一种下行数据传输方法、终端设备及存储介质
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2020107147A1 (zh) 一种信息生成及指示方法、装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931979

Country of ref document: EP

Effective date: 20211209