WO2022183507A1 - 一种测量间隔增强的方法及装置、终端设备、网络设备 - Google Patents

一种测量间隔增强的方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2022183507A1
WO2022183507A1 PCT/CN2021/079391 CN2021079391W WO2022183507A1 WO 2022183507 A1 WO2022183507 A1 WO 2022183507A1 CN 2021079391 W CN2021079391 W CN 2021079391W WO 2022183507 A1 WO2022183507 A1 WO 2022183507A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
intervals
per
measurement interval
interval
Prior art date
Application number
PCT/CN2021/079391
Other languages
English (en)
French (fr)
Inventor
胡荣贻
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21928590.5A priority Critical patent/EP4304261A4/en
Priority to PCT/CN2021/079391 priority patent/WO2022183507A1/zh
Priority to CN202180082120.9A priority patent/CN116569588A/zh
Publication of WO2022183507A1 publication Critical patent/WO2022183507A1/zh
Priority to US18/242,341 priority patent/US20230413095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for enhancing a measurement interval, a terminal device, and a network device.
  • the network may configure a specific time window for the terminal device, and the terminal device performs measurement within the specific time window, thereby performing mobility handover based on the measurement result.
  • a specific time window is called a Measurement Gap (MG), which can also be referred to as a gap (gap).
  • MG Measurement Gap
  • a network configures a measurement interval for a terminal device, only one measurement interval can be configured in a period. The duration of 1 measurement interval is limited, resulting in lower measurement efficiency.
  • Embodiments of the present application provide a method and apparatus for enhancing measurement interval, terminal equipment, and network equipment.
  • the terminal device receives configuration information of a coexistence measurement interval, the coexistence measurement interval includes a plurality of measurement intervals, wherein the plurality of measurement intervals are configured within the first time period and/or the plurality of measurement intervals are used for the second measurements over time.
  • the apparatus for enhancing the measurement interval provided by the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a receiving unit configured to receive configuration information of a coexistence measurement interval, where the coexistence measurement interval includes a plurality of measurement intervals, wherein the plurality of measurement intervals are configured within the first time period and/or the plurality of measurement intervals are used for measurements during the second time period.
  • the network device sends configuration information of a coexistence measurement interval, the coexistence measurement interval includes a plurality of measurement intervals, wherein the plurality of measurement intervals are configured within the first time period and/or the plurality of measurement intervals are used for the second measurements over time.
  • the device for enhancing the measurement interval provided by the embodiment of the present application is applied to network equipment, and the device includes:
  • a sending unit configured to send configuration information of a coexistence measurement interval, where the coexistence measurement interval includes multiple measurement intervals, wherein the multiple measurement intervals are configured within the first time period and/or the multiple measurement intervals are used for measurements during the second time period.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for enhancing the measurement interval.
  • the network device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for enhancing the measurement interval.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for enhancing the measurement interval.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for enhancing the measurement interval.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables a computer to execute the above-mentioned method for enhancing the measurement interval.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for enhancing the measurement interval.
  • the computer program provided by the embodiments of the present application when running on a computer, causes the computer to execute the above-mentioned method for enhancing the measurement interval.
  • the network configures the coexistence measurement interval for the terminal device, and the coexistence measurement interval includes multiple measurement intervals, so that the terminal device can use multiple measurement intervals for measurement.
  • the duration of the interval may cover multiple reference signal measurement time windows or multiple reference signals, thereby improving measurement efficiency.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for enhancing measurement interval provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram 1 of a device for enhancing measurement interval provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram 2 of the structural composition of the device for enhancing the measurement interval provided by the embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communications capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the network can configure the terminal device to measure the reference signal of the target neighbor cell within a specific time window, where the target neighbor cell can be an intra-frequency neighbor cell, an inter-frequency neighbor cell, or a different network neighbor cell.
  • the measurement quantity of the reference signal may be Reference Signal Received Power (RSRP), or Reference Signal Received Quality (RSRQ), or Signal to Interference plus Noise Ratio (Signal to Interference plus Noise). Ratio, SINR).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • FR Frequency range
  • FR1 and FR2 the corresponding frequency ranges of FR1 and FR2 are shown in Table 1 below, FR1 is also called sub 6GHz frequency band, FR2 is also called millimeter wave band. It should be noted that the frequency ranges corresponding to FR1 and FR2 are not limited to the frequency ranges shown in Table 1, and can also be adjusted.
  • the terminal device According to whether the terminal device supports the ability of FR1 and FR2 to work independently, there are two types of gaps for the measurement interval, one is the UE granularity measurement interval (per UE gap), the other is the FR granularity measurement interval (per FR gap), and further , per FR gap is further divided into per FR1 gap and per FR2 gap.
  • per UE gap is also called gapUE
  • per FR1 gap is also called gapFR1
  • per FR2 gap is also called gapFR2.
  • the terminal device introduces a capability indication of whether to support FR1 and FR2 to work independently.
  • the capability indication is called independentGapConfig.
  • the capability indication is used for the network to determine whether the measurement interval of the per FR type can be configured, such as per FR1 gap, per FR2 gap. Specifically, if the capability indication is used to indicate that the terminal device supports FR1 and FR2 to work independently, the network can configure the per FR type measurement interval; if the capability indication is used to indicate that the terminal device does not support FR1 and FR2 to work independently, the network cannot configure For the measurement interval of the per FR type, only the measurement interval of the per UE type (ie, the per UE gap) can be configured.
  • gapFR1 per FR1 gap
  • the measurement interval belonging to the per FR1 gap type is only applicable to the measurement of FR1.
  • Per FR1 gap and per UE gap do not support simultaneous configuration.
  • E-UTRA-NR Dual Connectivity (EN-DC) mode the master node (Master Node, MN) is in LTE mode, the secondary node (Secondary Node, SN) is in NR mode, only MN Per FR1 gap can be configured.
  • MN Master Node
  • SN Secondary Node
  • gapFR2 per FR2 gap
  • the measurement interval belonging to the per FR2 gap type is only applicable to FR2 measurements.
  • Per FR2 gap and per UE gap do not support simultaneous configuration. Both per FR2 gap and per FR1 gap support simultaneous configuration.
  • the terminal device can perform independent measurements for FR1 and FR2, and the terminal device can be configured with a measurement interval of the per FR gap type, such as the per FR1 gap type of measurement interval. Measurement interval, per FR2 gap type of measurement interval.
  • the measurement interval belonging to the per UE gap type applies to measurements in all frequency bands (including FR1 and FR2).
  • MN is LTE standard
  • SN is NR standard
  • only MN can configure per UE gap. If per UE gap is configured, per FR gap (such as per FR1 gap, per FR2 gap) cannot be configured again.
  • the terminal equipment is not allowed to send any data and does not expect to adjust the receivers of the primary and secondary carriers.
  • the network configures the measurement configuration (MeasConfig) through RRC dedicated signaling, as shown in Table 2 below.
  • MeasConfig includes measurement interval configuration and measurement object configuration, where the measurement interval configuration is measGapConfig, and the measurement object configuration is measObjectToAddModList.
  • the configuration information of a measurement interval includes: measurement interval offset (ie gapOffset), period of measurement interval (ie MGRP), duration of measurement interval (ie MGL).
  • the measurement interval offset is used to determine the starting point of the measurement interval.
  • the type of a measurement interval can be per UE gap, or per FR1 gap, or per FR2 gap.
  • 24 patterns of measurement intervals (referred to as interval patterns for short) are supported, and different interval patterns correspond to different MGRPs and/or MGLs.
  • Some spacing patterns are used for FR1 measurement, corresponding to per FR1 gap; some spacing patterns are used for FR2 measurement, corresponding to per FR2 gap.
  • spacing patterns for measuring Positioning Reference Signal can be introduced.
  • PRS Positioning Reference Signal
  • Table 5 which gives the spacing The patterns are identified as two spacing patterns of 24 and 25, which are used to measure the PRS.
  • the configuration information of a measurement object can be configured with the SMTC associated with the measurement object, and the configuration of the SMTC can support ⁇ 5, 10, 20, 40, 80, 160
  • the period of ⁇ ms, and the window length of ⁇ 1,2,3,4,5 ⁇ ms, the time offset (time offset) of SMTC is strongly correlated with the period, and the value is ⁇ 0,...,period-1, ⁇ . Since the carrier frequency is no longer included in the measurement object, the SMTC can be configured independently for each MO instead of each frequency.
  • one frequency layer can be configured with two SMTCs (SMTC and SMTC2), and the two SMTCs have the same time offset but different periods.
  • SMTC and SMTC2 For inter-frequency measurement in the RRC connected state, only one SMTC is configured. It can be seen that SMTC2 only supports configuration for co-frequency measurement. It should be pointed out that the period of SMTC2 is shorter than that of SMTC; the time offset of SMTC2 can follow that of SMTC.
  • SMTC can be configured independently for each MO instead of each frequency point, which leads to a measurement interval that often cannot cover the time windows of multiple SMTCs or multiple reference signals, where multiple SMTCs may belong to different The MOs or belong to the same MO (the case of the same frequency), if you want to realize the measurement in multiple SMTC time windows or realize the measurement of multiple reference signals, a long measurement time is required, resulting in low measurement efficiency.
  • the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 2 is a schematic flowchart of a method for enhancing measurement interval provided by an embodiment of the present application. As shown in FIG. 2 , the method for enhancing measurement interval includes the following steps:
  • Step 201 The terminal device receives configuration information of a coexistence measurement interval, where the coexistence measurement interval includes multiple measurement intervals, wherein the multiple measurement intervals are configured within the first time period and/or the multiple measurement intervals are used for measurements during the second time period.
  • the network device sends configuration information of the coexistence measurement interval (concurrent gap), and correspondingly, the terminal device receives the configuration information of the coexistence measurement gap.
  • the coexistence measurement interval includes multiple measurement intervals. Here, a plurality of measurement intervals have a coexistence relationship.
  • the coexistence relationship between multiple measurement intervals may be embodied in: the multiple measurement intervals are configured within the first time period.
  • the coexistence relationship between multiple measurement intervals may be embodied in: the multiple measurement intervals are used for measurement in the second time period.
  • the first time period has one of the following characteristics:
  • the time window of the first time period is periodic
  • the time window of the first time period is aperiodic.
  • the time window of the first time period is aperiodic, for example, the time window of the first time period is triggered once.
  • the second time period has at least one of the following characteristics:
  • the time window of the second time period covers all of the plurality of measurement intervals
  • the time window of the second time period covers a portion of the plurality of measurement intervals
  • the start of the time window of the second time period is the start of the first activated measurement interval of the plurality of measurement intervals.
  • the second period of time includes the first period of time.
  • the gap type of the measurement interval may be per UE gap or per FR gap. Further, per FR gap can be further divided into per FR1 gap and per FR2 gap.
  • the interval pattern of the measurement interval may be any one of the interval patterns shown in Table 4 or Table 5, but is not limited thereto, and the interval pattern of the measurement interval may also be other newly introduced interval patterns.
  • the multiple measurement intervals are per UE gap.
  • the coexistence measurement interval includes measurement interval 1, measurement interval 2, and measurement interval 3.
  • the gap types of these three measurement intervals are all per UE gaps.
  • the coexistence measurement interval includes three per UE gaps.
  • the plurality of measurement intervals are per FR gap.
  • the coexistence measurement interval includes measurement interval 1, measurement interval 2, and measurement interval 3.
  • the gap types of these three measurement intervals are all per FR gaps.
  • the coexistence measurement interval includes three per FR gaps.
  • the multiple measurement intervals are per UE gap.
  • the coexistence measurement interval includes measurement interval 1, measurement interval 2, and measurement interval 3.
  • the gap types of these three measurement intervals are all per UE gaps.
  • the coexistence measurement interval includes three per UE gaps.
  • the coexistence measurement interval includes measurement interval 1, measurement interval 2, and measurement interval 3.
  • the gap types of these three measurement intervals are all per FR gaps.
  • the coexistence measurement interval includes three per FR gaps.
  • the coexistence measurement interval includes measurement interval 1, measurement interval 2 and measurement interval 3.
  • the gap type of measurement interval 1 is per UE gap, and the gap type of measurement interval 2 and measurement interval 3 is per FR gap.
  • the coexistence measurement The interval consists of 1 per UE gap and 2 per FR gap.
  • the coexistence measurement interval includes measurement interval 1, measurement interval 2 and measurement interval 3.
  • the gap type of measurement interval 1 is per FR gap
  • the gap type of measurement interval 2 and measurement interval 3 is per UE gap.
  • the coexistence measurement The interval consists of 1 per FR gap and 2 per UE gap.
  • the network device configures the coexistence measurement interval for the terminal device, it needs to meet the specified restriction.
  • the coexistence measurement interval satisfies at least one of the following constraints:
  • the total number of measurement intervals in the coexistence measurement interval is less than or equal to the first number
  • the number of per UE gaps in the coexistence measurement interval is less than or equal to the second number
  • the number of per FR gaps in the coexistence measurement interval is less than or equal to a third number, and the number of per FR gaps is equal to the number of per FR1 gaps plus the number of per FR2 gaps;
  • the number of per FR1 gaps in the coexistence measurement interval is less than or equal to a fourth number
  • the number of per FR2 gaps in the coexistence measurement interval is less than or equal to the fifth number.
  • the above limitation can be embodied by the capability information supported by the terminal device, and the terminal device reports the capability information supported by the terminal device, and the capability information is used to indicate at least one of the following:
  • the total number of measurement intervals supported by the terminal device is at most the first number
  • the number of per UE gap supported by the terminal device is at most the second number
  • the maximum number of per FR gaps supported by the terminal device is a third number
  • the number of per FR1 gaps supported by the terminal device is at most the fourth number
  • the number of per FR2 gaps supported by the terminal device is at most the fifth number.
  • the network device configures a coexistence measurement interval that satisfies the restriction for the terminal device according to the capability information reported by the terminal device. For example: the terminal device reports capability information, which is used to indicate that the terminal device supports a maximum of X per UE gaps, and the terminal device supports a maximum of Y per FR gaps, and X and Y are positive integers; According to the capability information, the network device configures at most X per UE gaps and Y per FR gaps for the terminal device.
  • the coexistence measurement interval is configured by different network nodes.
  • the following describes how to configure the coexistence measurement interval based on different network scenarios.
  • the description of the MN may also be replaced by the primary cell (PCell), and the description of the SN may also be replaced by the primary and secondary cells (PSCell).
  • Scenario 1 NR SA scenario
  • the multiple measurement intervals are all configured by the MN.
  • the first part of the measurement intervals in the multiple measurement intervals is configured by the MN, and the second part of the measurement intervals in the multiple measurement intervals is configured by the secondary node SN configuration.
  • the multiple measurement intervals are all configured by the MN.
  • the first part of the measurement intervals in the plurality of measurement intervals is configured by the MN, and the second part of the measurement intervals in the plurality of measurement intervals is configured by the SN.
  • the multiple measurement intervals are all configured by the MN.
  • the MR-DC is an EN-DC
  • the MN is of the LTE standard
  • the SN is of the NR standard.
  • the per UE gap and/or the per FR1 gap in the plurality of measurement intervals is configured by the MN
  • the per FR2 gap in the plurality of measurement intervals is configured by the SN.
  • the MR-DC is an NE-DC
  • the MN is of the NR standard
  • the MN is of the LTE standard.
  • the per UE gap and/or the per FR2 gap in the plurality of measurement intervals is configured by the MN
  • the per FR1 gap in the plurality of measurement intervals is configured by the SN; alternatively, the plurality of measurement intervals Both the per UE gap and/or the per FR gap in the interval are configured by the MN.
  • the MN and the SN can communicate with each other.
  • the MN and the SN can communicate with each other.
  • negotiation some information to better configure the measurement interval. This will be described below.
  • the number and/or type of the first part of the measurement interval is notified by the MN to the SN, for the SN to determine the number of configurable measurement intervals and/or or type; or, the number and/or type of the second partial measurement interval is notified to the MN by the SN, for the MN to determine the number and/or type of the measurement interval that can be configured.
  • the number and/or type of the first partial measurement interval is used by the MN to determine first suggestion information, and the first suggestion information is notified to the MN by the MN SN, the first suggestion information is used to indicate the number and/or type of measurement intervals that the MN proposes to configure the SN; or, the number and/or type of the second part of the measurement interval is used for the SN determination Second suggestion information, the second suggestion information is notified to the MN by the SN, and the second suggestion information is used to indicate the number and/or type of measurement intervals that the SN recommends the MN to configure.
  • the terminal device reports its capability information, where the capability information is used to indicate the number of measurement intervals and the type of measurement intervals supported by the terminal device.
  • the number of measurement intervals supported by the terminal device may refer to the foregoing solution, for example, including at least one of the first number, the second number, the third number, the fourth number, and the fifth number.
  • the type of measurement interval supported by the terminal device is, for example, per UE gap or per FR gap. If the terminal equipment reports its capability information to the MN, the MN can notify the SN of the capability information.
  • the MN may configure the first part of the measurement interval according to the capability information of the terminal device, and then notify the SN of the number and/or type of the first part of the measurement interval.
  • the number and/or type of measurement intervals configured to configure the second portion of measurement intervals.
  • the coexistence measurement interval formed by the first part of the measurement interval configured by the MN and the second part of the measurement interval configured by the SN satisfies the restriction indicated by the capability information of the terminal device.
  • the MN may configure the first part of the measurement interval according to the capability information of the terminal device, and then determine the number and/or type of the measurement interval that the SN can configure according to the number and/or type of the first part of the measurement interval; the MN sends the first suggestion information to the SN , which is used to indicate the number and/or type of measurement intervals that the MN proposes to configure the SN.
  • the SN can configure the second part of the measurement interval according to the capability information of the terminal device, and then notify the MN of the number and/or type of the second part of the measurement interval, and the MN can configure the second part of the measurement interval according to the capability information of the terminal device and the number of the second part of the measurement interval. and/or type determines the number and/or type of measurement intervals that can be configured to configure the first portion of measurement intervals.
  • the coexistence measurement interval formed by the first part of the measurement interval configured by the MN and the second part of the measurement interval configured by the SN satisfies the restriction indicated by the capability information of the terminal device.
  • the SN may configure the second part of the measurement interval according to the capability information of the terminal device, and then determine the number and/or type of the measurement interval that the MN can configure according to the number and/or type of the second part of the measurement interval; the SN sends the second part of the measurement interval to the MN.
  • Recommendation information used to indicate the number and/or type of measurement intervals that the SN recommends the MN to configure.
  • the information exchanged between the MN and the SN may be carried in the configuration information of CG-config or CG-configinfo.
  • each measurement interval in the plurality of measurement intervals is associated with a list, and the list includes at least one of the following: a frequency list, a frequency band list, and a measurement object list ;
  • the association relationship between each measurement interval in the first part of the measurement interval and the list is notified by the MN to the SN, for the SN to combine each measurement interval in the second part of the measurement interval with the list. and/or, the association relationship between each measurement interval in the second part of the measurement interval and the list is notified to the MN by the SN, for the The MN re-determines the measurement interval associated with each list in combination with the association relationship between each measurement interval in the first part of the measurement interval and the list.
  • the first part of the measurement interval configured by the MN includes measurement interval 1, measurement interval 2 and measurement interval 3; among them, measurement interval 1 is per FR1 gap, associated frequency list 1 or measurement object list 1; measurement interval 2 is per FR1 gap, The associated frequency list 2 or the measurement object list 2; the measurement interval 3 is per UE gap, and the associated frequency list 3 or the measurement object list 3.
  • the second part of the measurement interval of the SN configuration includes measurement interval 4, which is per FR2 gap, associated frequency list 4 or measurement object list 4.
  • the multiple coexisting measurement intervals may be configured according to different basis, which will be described below.
  • Solution A The multiple measurement intervals are configured according to the reference signal measurement time window of the measurement object.
  • the measurement interval is used for SSB measurement, and the multiple measurement intervals are configured according to the SMTC of the measurement object.
  • the SMTC is used to determine the SSB measurement time window.
  • the measurement interval is also applicable to the measurement of other reference signals such as CSI-RS, or PRS, etc.
  • the reference signal measurement time window may be a corresponding CSI-RS measurement time window, or a PRS measurement time window, or the like.
  • the reference signal measurement time window as the SMTC (that is, the SSB measurement time window) as an example, but it is not limited to this, and the reference signal measurement time window can also be other reference signals.
  • Measurement time window such as CSI-RS measurement time window, PRS measurement time window, etc.
  • the plurality of measurement objects are grouped according to the period of the reference signal measurement time window of the plurality of measurement objects, and a measurement interval associated with the group of measurement objects is configured for each group of measurement objects.
  • multiple groups of measurement objects are allowed to be associated with the same measurement interval.
  • the period of the SMTC of the measurement object 1 and the measurement object 2 are both 20ms, and the periods of the SMTC of the measurement object 3 and the measurement object 4 are both 40ms.
  • the measurement object 1 and the measurement object 2 are grouped into a group, a measurement interval 1 is configured for the group of measurement objects, and the MGL of the measurement interval 1 can be 20ms.
  • the measurement object 3 and the measurement object 4 are grouped into a group, a measurement interval 2 is configured for this group of measurement objects, and the MGL of the measurement interval 2 can be 40ms.
  • the plurality of measurement objects are grouped according to the time offsets of the reference signal measurement time windows of the plurality of measurement objects, and a measurement interval associated with the group of measurement objects is configured for each group of measurement objects. Further, optionally, when the periods of the reference signal measurement time windows of the multiple measurement objects are the same, the multiple measurement intervals associated with the multiple groups of measurement objects have the following characteristics: the same period, the same length, and different measurement interval offsets .
  • the SMTC periods of measurement object 1, measurement object 2, measurement object 3, and measurement object 4 are all the same, for example, 20 ms.
  • the time offset of the SMTC of the measurement object 1 and the measurement object 2 is ⁇ 1
  • the time offset of the SMTC of the measurement object 3 and the measurement object 4 is ⁇ 2.
  • Group measurement object 1 and measurement object 2 into a group, and configure a measurement interval 1 for this group of measurement objects.
  • the measurement object 3 and the measurement object 4 are grouped into a group, and a measurement interval 2 is configured for this group of measurement objects.
  • the period and length of the measurement interval 1 and the measurement interval 2 are the same, that is, the measurement interval 1 and the measurement interval 2 correspond to the same interval pattern identifier, but the measurement interval offsets of the measurement interval 1 and the measurement interval 2 are different.
  • Solution B The multiple measurement intervals are configured according to the type of reference signal.
  • the type of the reference signal includes at least one of the following: a synchronization signal block (SSB), a channel state indication reference signal (CSI-RS), and a positioning reference signal (PRS).
  • SSB synchronization signal block
  • CSI-RS channel state indication reference signal
  • PRS positioning reference signal
  • the terminal device measures SSB and PRS at the same time, the measurement interval for measuring SSB is measurement interval 1, and the measurement interval for measuring PRS is measurement interval 2.
  • measurement interval 1 and measurement interval 2 correspond to different interval pattern identifiers.
  • Solution C The multiple measurement intervals are configured according to the radio access technology (RAT) type of the network.
  • RAT radio access technology
  • configure measurement interval 1 for NR which is used for the measurement of NR frequency or NR measurement object.
  • Configure measurement interval 2 for LTE which is used for measurement of LTE frequency or NR measurement object.
  • configure per FR1 gap for NR FR1 For example: configure per FR1 gap for NR FR1, configure per FR2 gap for NR FR2, and configure per FR1 gap for LTE.
  • Solution D The multiple measurement intervals are configured according to a frequency list.
  • intra-frequency list 1 intra-frequency list 1
  • inter-frequency list 1 intra-frequency list 1
  • intra-frequency list 2 intra-frequency list 2
  • inter-frequency list 2 inter-frequency list 2
  • Scheme E The multiple measurement intervals are configured according to the frequency band list.
  • one measurement interval can be configured separately for the unlicensed band.
  • Scheme F The multiple measurement intervals are configured according to the measurement object list.
  • the configured coexistence measurement interval may be updated (that is, maintained), which will be described below.
  • one or more pre-configured measurement intervals may be pre-configured through RRC dedicated signaling, and the pre-configured measurement intervals may be used after being subsequently activated.
  • the preconfigured measurement interval is activated and affects the configured coexistence measurement interval.
  • the coexistence measurement interval includes the preconfigured measurement interval and the multiple measurement intervals. After the preconfigured measurement interval is deactivated, the coexistence measurement interval includes the plurality of measurement intervals.
  • the preconfigured measurement interval when determining whether the coexistence measurement interval meets the limit, the preconfigured measurement interval is not considered, and the preconfigured measurement interval can be directly activated and coexist with multiple configured measurement intervals.
  • the coexistence measurement interval includes the preconfigured measurement interval and the multiple measurement intervals; Alternatively, if the preconfigured measurement interval and the plurality of measurement intervals do not meet a specified limit, the coexistence measurement interval is updated based on the priority of the measurement intervals.
  • the preconfigured measurement interval is considered. If the preconfigured measurement interval and multiple configured measurement intervals meet the specified limit, the preconfigured measurement interval coexist with the multiple measurement intervals; or, if the preconfigured measurement interval and the configured multiple measurement intervals do not meet the specified limit, the coexistence measurement interval is updated based on the priority of the measurement intervals.
  • the specified restrictions include at least one of the following restrictions:
  • the total number of the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to the first number
  • the preconfigured measurement interval belongs to the per UE gap, and the number of the per UE gap in the preconfigured measurement interval and the multiple measurement intervals is less than or equal to the second number;
  • the preconfigured measurement interval belongs to the per FR gap, and the number of the per FR gap in the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to a third number;
  • the preconfigured measurement interval belongs to per FR1 gap, and the number of per FR1 gaps in the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to a fourth number;
  • the preconfigured measurement interval belongs to the per FR2 gap, and the number of per FR2 gaps in the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to the fifth number.
  • the coexistence measurement interval is updated based on the priority of the measurement interval, which can be implemented in the following ways:
  • the first measurement interval is discarded, and the coexistence measurement interval includes the preconfigured measurement interval interval and a measurement interval of the plurality of measurement intervals other than the first measurement interval; or,
  • the preconfigured measurement interval is discarded, and the coexistence measurement interval includes the plurality of measurements interval.
  • the priority of N measurement intervals in the plurality of measurement intervals is lower than the priority of the preconfigured measurement interval, and N is a positive integer; the first measurement interval is the N The measurement interval with the lowest priority among the measurement intervals. In some optional embodiments, the N measurement intervals are of the same gap type as the preconfigured measurement intervals.
  • a second measurement interval is added to the coexistence measurement interval.
  • the second measurement interval is a previously discarded measurement interval.
  • the second measurement interval is of the same gap type as the preconfigured measurement interval.
  • the coexistence measurement interval includes the multiple measurement intervals; or, if the multiple measurement intervals do not meet the specified limit, the coexistence measurement interval The interval is updated based on the priority of the measurement interval.
  • the specified restrictions include at least one of the following restrictions:
  • the total number of the plurality of measurement intervals is less than or equal to the first number
  • the number of per UE gaps in the multiple measurement intervals is less than or equal to the second number
  • the number of per FR gaps in the plurality of measurement intervals is less than or equal to a third number
  • the number of per FR1 gaps in the plurality of measurement intervals is less than or equal to a fourth number
  • the number of per FR2 gaps in the plurality of measurement intervals is less than or equal to the fifth number.
  • the coexistence measurement interval is updated based on the priority of the measurement interval, which can be implemented in the following ways:
  • the first measurement interval determined according to the priority is discarded, and the coexistence measurement interval includes measurement intervals other than the first measurement interval among the plurality of measurement intervals.
  • the first measurement interval determined according to the priority refers to: the measurement interval with the lowest priority among the multiple measurement intervals; or, the per UE among the multiple measurement intervals The measurement interval with the lowest priority in the gap; or, the measurement interval with the lowest priority in the per FR gap among the plurality of measurement intervals; or the lowest priority in the per FR1 gap among the plurality of measurement intervals The measurement interval; or, the measurement interval with the lowest priority in the per FR2 gap among the multiple measurement intervals.
  • multiple measurement intervals can cover more measurement objects or measure reference signals together, thereby avoiding the complexity and delay caused by reconfiguration, and improving the Efficiency of mobility handoffs. Further, shorter measurement intervals can be configured to reduce throughput loss and impact on existing network and terminal device performance. In addition, based on the coordination between network nodes, it is possible to flexibly match the measurement intervals of some frequency points or measurement objects in batches.
  • FIG. 3 is a schematic structural diagram 1 of a device for enhancing measurement interval provided by an embodiment of the present application. As shown in FIG. 3 , which is applied to terminal equipment, the device for enhancing measurement interval includes:
  • a receiving unit 301 configured to receive configuration information of a coexistence measurement interval, where the coexistence measurement interval includes a plurality of measurement intervals, wherein the plurality of measurement intervals are configured within a first time period and/or the plurality of measurement intervals for measurements in the second time period.
  • the first time period has one of the following characteristics:
  • the time window of the first time period is periodic
  • the time window of the first time period is aperiodic.
  • the second time period has at least one of the following characteristics:
  • the time window of the second time period covers all of the plurality of measurement intervals
  • the time window of the second time period covers a portion of the plurality of measurement intervals
  • the start of the time window of the second time period is the start of the first activated measurement interval of the plurality of measurement intervals.
  • the second period of time includes the first period of time.
  • the multiple measurement intervals are per UE gap; or,
  • the multiple measurement intervals are per FR gap.
  • the multiple measurement intervals are per UE gap; or,
  • there is at least one per FR gap in the plurality of measurement intervals including:
  • a part of the measurement intervals in the multiple measurement intervals is per UE gap, and another part of the measurement intervals is per FR gap; or,
  • the multiple measurement intervals are per FR gap.
  • the coexistence measurement interval satisfies at least one of the following constraints:
  • the total number of measurement intervals in the coexistence measurement interval is less than or equal to the first number
  • the number of per UE gaps in the coexistence measurement interval is less than or equal to the second number
  • the number of per FR gaps in the coexistence measurement interval is less than or equal to a third number, and the number of per FR gaps is equal to the number of per FR1 gaps plus the number of per FR2 gaps;
  • the number of per FR1 gaps in the coexistence measurement interval is less than or equal to a fourth number
  • the number of per FR2 gaps in the coexistence measurement interval is less than or equal to the fifth number.
  • the apparatus further comprises:
  • a sending unit (not shown in the figure), configured to report capability information supported by the terminal device, where the capability information is used to indicate at least one of the following:
  • the total number of measurement intervals supported by the terminal device is at most the first number
  • the number of per UE gap supported by the terminal device is at most the second number
  • the maximum number of per FR gaps supported by the terminal device is a third number
  • the number of per FR1 gaps supported by the terminal device is at most the fourth number
  • the number of per FR2 gaps supported by the terminal device is at most the fifth number.
  • the plurality of measurement intervals are all configured by the MN.
  • a first part of the measurement intervals in the plurality of measurement intervals is configured by the MN, and a second part of the measurement intervals in the plurality of measurement intervals is configured by the SN; or,
  • the plurality of measurement intervals are all configured by the MN.
  • a first part of the measurement intervals in the plurality of measurement intervals is configured by the MN, and a second part of the measurement intervals in the plurality of measurement intervals is configured by the SN; or,
  • the plurality of measurement intervals are all configured by the MN.
  • MR-DC when the MR-DC is an EN-DC,
  • the per UE gap and/or the per FR1 gap in the plurality of measurement intervals is configured by the MN, and the per FR2 gap in the plurality of measurement intervals is configured by the SN.
  • the MR-DC is an NE-DC
  • the per UE gap and/or the per FR2 gap in the plurality of measurement intervals is configured by the MN, and the per FR1 gap in the plurality of measurement intervals is configured by the SN; or,
  • the per UE gap and/or the per FR gap in the multiple measurement intervals are configured by the MN.
  • the number and/or type of the first part of the measurement interval is notified by the MN to the SN, for the SN to determine the number and/or type of the measurement interval that can be configured; or,
  • the number and/or type of the second part of the measurement interval is notified to the MN by the SN, for the MN to determine the number and/or type of the measurement interval that can be configured.
  • the number and/or type of the first partial measurement interval is used by the MN to determine first suggestion information, the first suggestion information is notified by the MN to the SN, and the first suggestion information is notified to the SN by the MN.
  • a proposal information is used to indicate the number and/or type of measurement intervals that the MN proposes to configure the SN; or,
  • the number and/or type of the second partial measurement interval is used by the SN to determine second advice information, the second advice information is notified to the MN by the SN, and the second advice information is used to indicate the
  • the SN proposes the number and/or type of measurement intervals configured by the MN.
  • each measurement interval in the plurality of measurement intervals is associated with a list, and the list includes at least one of the following: a frequency list, a frequency band list, and a measurement object list;
  • the association relationship between each measurement interval in the first part of the measurement interval and the list is notified by the MN to the SN, so that the SN combines the relationship between each measurement interval in the second part of the measurement interval and the list.
  • the association relationship between each measurement interval in the second part of the measurement interval and the list is notified to the MN by the SN, so that the MN combines the relationship between each measurement interval in the first part of the measurement interval and the list
  • the association relationship of redetermines the measurement interval associated with each list.
  • the multiple measurement intervals are configured according to the reference signal measurement time window of the measurement object.
  • the multiple measurement intervals are configured according to the reference signal measurement time window of the measurement object, including:
  • the multiple measurement objects are grouped according to the period of the reference signal measurement time window of the multiple measurement objects, and a measurement interval associated with the group of measurement objects is configured for each group of measurement objects.
  • the multiple measurement intervals are configured according to the reference signal measurement time window of the measurement object, including:
  • the multiple measurement objects are grouped according to the time offsets of the reference signal measurement time windows of the multiple measurement objects, and a measurement interval associated with the group of measurement objects is configured for each group of measurement objects.
  • the multiple measurement intervals associated with the multiple groups of measurement objects have the following characteristics: the same period, the same length, and the measurement interval deviation settings are different.
  • the multiple measurement intervals are configured according to the type of reference signal.
  • the type of the reference signal includes at least one of the following: SSB, CSI-RS, and PRS.
  • the multiple measurement intervals are configured according to the RAT type of the network.
  • the multiple measurement intervals are configured according to a frequency list.
  • the multiple measurement intervals are configured according to a frequency band list.
  • the multiple measurement intervals are configured according to a measurement object list.
  • the coexistence measurement interval includes the preconfigured measurement interval and the plurality of measurement intervals.
  • the coexistence measurement interval includes the plurality of measurement intervals.
  • the coexistence measurement interval includes the preconfigured measurement interval and the plurality of measurement intervals; or,
  • the coexistence measurement interval is updated based on the priority of the measurement interval.
  • the specified restrictions include at least one of the following restrictions:
  • the total number of the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to the first number
  • the preconfigured measurement interval belongs to the per UE gap, and the number of the per UE gap in the preconfigured measurement interval and the multiple measurement intervals is less than or equal to the second number;
  • the preconfigured measurement interval belongs to the per FR gap, and the number of the per FR gap in the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to a third number;
  • the preconfigured measurement interval belongs to per FR1 gap, and the number of per FR1 gaps in the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to a fourth number;
  • the preconfigured measurement interval belongs to the per FR2 gap, and the number of per FR2 gaps in the preconfigured measurement interval and the plurality of measurement intervals is less than or equal to the fifth number.
  • the coexistence measurement interval is updated based on the priority of the measurement interval, including:
  • the first measurement interval is discarded, and the coexistence measurement interval includes the preconfigured measurement interval interval and a measurement interval of the plurality of measurement intervals other than the first measurement interval; or,
  • the preconfigured measurement interval is discarded, and the coexistence measurement interval includes the plurality of measurements interval.
  • the priorities of N measurement intervals in the plurality of measurement intervals are lower than the priorities of the preconfigured measurement intervals, and N is a positive integer;
  • the first measurement interval is the measurement interval with the lowest priority among the N measurement intervals.
  • the N measurement intervals are of the same gap type as the preconfigured measurement intervals.
  • a second measurement interval is added to the coexistence measurement interval.
  • the second measurement interval is a previously discarded measurement interval.
  • the second measurement interval is of the same gap type as the preconfigured measurement interval.
  • the coexistence measurement interval includes the multiple measurement intervals; or,
  • the coexistence measurement interval is updated based on the priority of the measurement intervals.
  • the specified restrictions include at least one of the following restrictions:
  • the total number of the plurality of measurement intervals is less than or equal to the first number
  • the number of per UE gaps in the multiple measurement intervals is less than or equal to the second number
  • the number of per FR gaps in the plurality of measurement intervals is less than or equal to a third number
  • the number of per FR1 gaps in the plurality of measurement intervals is less than or equal to a fourth number
  • the number of per FR2 gaps in the plurality of measurement intervals is less than or equal to the fifth number.
  • the coexistence measurement interval is updated based on the priority of the measurement interval, including:
  • the first measurement interval determined according to the priority is discarded, and the coexistence measurement interval includes measurement intervals other than the first measurement interval among the plurality of measurement intervals.
  • the first measurement interval determined according to the priority refers to:
  • the measurement interval with the lowest priority among the per FR2 gaps among the plurality of measurement intervals is the measurement interval with the lowest priority among the per FR2 gaps among the plurality of measurement intervals.
  • FIG. 4 is a second schematic diagram of the structural composition of an apparatus for enhancing measurement interval provided by an embodiment of the present application. As shown in FIG. 4 , which is applied to network equipment, the apparatus for enhancing measurement interval includes:
  • a sending unit 401 configured to send configuration information of a coexistence measurement interval, where the coexistence measurement interval includes multiple measurement intervals, wherein the multiple measurement intervals are configured within a first time period and/or the multiple measurement intervals for measurements in the second time period.
  • the multiple measurement intervals are per UE gap; or,
  • the multiple measurement intervals are per FR gap.
  • the multiple measurement intervals are per UE gap; or,
  • there is at least one per FR gap in the plurality of measurement intervals including:
  • a part of the measurement intervals in the multiple measurement intervals is per UE gap, and another part of the measurement intervals is per FR gap; or,
  • the multiple measurement intervals are per FR gap.
  • the plurality of measurement intervals are all configured by the MN.
  • a first part of the measurement intervals in the plurality of measurement intervals is configured by the MN, and a second part of the measurement intervals in the plurality of measurement intervals is configured by the SN; or,
  • the plurality of measurement intervals are all configured by the MN.
  • a first part of the measurement intervals in the plurality of measurement intervals is configured by the MN, and a second part of the measurement intervals in the plurality of measurement intervals is configured by the SN; or,
  • the plurality of measurement intervals are all configured by the MN.
  • the number and/or type of the first part of the measurement interval is notified by the MN to the SN, for the SN to determine the number and/or type of the measurement interval that can be configured; or,
  • the number and/or type of the second part of the measurement interval is notified to the MN by the SN, for the MN to determine the number and/or type of the measurement interval that can be configured.
  • the number and/or type of the first partial measurement interval is used by the MN to determine first suggestion information, the first suggestion information is notified by the MN to the SN, and the first suggestion information is notified to the SN by the MN.
  • a proposal information is used to indicate the number and/or type of measurement intervals that the MN proposes to configure the SN; or,
  • the number and/or type of the second partial measurement interval is used by the SN to determine second advice information, the second advice information is notified to the MN by the SN, and the second advice information is used to indicate the
  • the SN proposes the number and/or type of measurement intervals configured by the MN.
  • FIG. 5 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 500 shown in FIG. 5 includes a processor 510, and the processor 510 may call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 500 may specifically be a network device in this embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 500 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 500 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 7 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 7 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种测量间隔增强的方法及装置、终端设备、网络设备,该方法包括:终端设备接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。

Description

一种测量间隔增强的方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种测量间隔增强的方法及装置、终端设备、网络设备。
背景技术
为了终端设备更好实现移动性切换,网络可以为终端设备配置一个特定的时间窗口,终端设备在该特定的时间窗口内执行测量,从而基于测量结果进行移动性切换。特定的时间窗口称为测量间隔(Measurement Gap,MG),也可以简称为间隔(gap)。目前,网络在为终端设备配置测量间隔时,在一个时期内仅能配置1个测量间隔。1个测量间隔的持续时间是有限的,导致测量效率较低。
发明内容
本申请实施例提供一种测量间隔增强的方法及装置、终端设备、网络设备。
本申请实施例提供的测量间隔增强的方法,包括:
终端设备接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
本申请实施例提供的测量间隔增强的装置,应用于终端设备,所述装置包括:
接收单元,用于接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
本申请实施例提供的测量间隔增强的方法,包括:
网络设备发送共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
本申请实施例提供的测量间隔增强的装置,应用于网络设备,所述装置包括:
发送单元,用于发送共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔增强的方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔增强的方法。
本申请实施例提供的芯片,用于实现上述的测量间隔增强的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的测量间隔增强的方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的测量间隔增强的方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的测量间隔增强的方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的测量间隔增强的方法。
通过上述技术方案,提供了一种测量间隔增强的方案,网络为终端设备配置共存测量间隔,共存测量间隔包括多个测量间隔,从而可以实现终端设备使用多个测量间隔进行测量,由于多个测量间隔的持续时间可以覆盖多个参考信号测量时间窗口或者多种参考信号,从而可以提高测量效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的测量间隔增强的方法的流程示意图;
图3是本申请实施例提供的测量间隔增强的装置的结构组成示意图一;
图4是本申请实施例提供的测量间隔增强的装置的结构组成示意图二;
图5是本申请实施例提供的一种通信设备示意性结构图;
图6是本申请实施例的芯片的示意性结构图;
图7是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信 系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,需要说明的是,以下相关技术的描述是用于理解本申请实施例的技术方案,并不造成对本申请实施例技术方案的限定。
(1)测量间隔
为了终端设备更好实现移动性切换,网络可以配置终端设备在特定的时间窗口内测量目标邻区的参考信号,其中,目标邻区可以是同频邻区或者异频邻区或者异网络邻区。作为示例,参考信号的测量量可以是参考信号接收功率(Reference Signal Received Power,RSRP)、或者参考信号接收质量(Reference Signal Received Quality,RSRQ)、或者信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。特定的时间窗口称为测量间隔。
NR系统的研究主要考虑两个频段(Frequency range,FR),分别为FR1和FR2,其中,FR1和FR2对应的频率范围如下表1所示,FR1又称为sub 6GHz频段,FR2又称为毫米波频段。需要说明的是,FR1和FR2对应的频率范围并不局限于表1所示的频率范围,也可以进行调整。
频段 频率范围
FR1 450MHz–6GHz
FR2 24.25GHz–52.6GHz
表1
根据终端设备是否支持FR1和FR2独立工作的能力,测量间隔的gap类型有两种,一种是UE粒度测量间隔(per UE gap),另一种是FR粒度测量间隔(per FR gap),进一步,per FR gap又分为per FR1 gap和per FR2 gap。其中,per UE gap又称为gapUE,per FR1 gap又称为gapFR1,per FR2 gap又称为gapFR2。与此同时,终端设备引入了是否支持FR1和FR2独立工作的能力指示,该能力指示称为independentGapConfig,该能力指示用于网络确定是否能够配置per FR类型的测量间隔,例如per FR1 gap、per FR2 gap。具体地,若能力指示用于指示终端设备支持FR1和FR2独立工作,则网络能够配置per FR类型的测量间隔;若能力指示用于指示终端设备不支持FR1和FR2独立工作,则网络不能够配置per FR类型的测量间隔,仅能够配置per UE类型的测量间隔(即per UE gap)。
以下对per FR1 gap、per FR2 gap、以及per UE gap进行说明。
per FR1 gap(即gapFR1):属于per FR1 gap类型的测量间隔只适用于FR1的测量。per FR1 gap与per UE gap不支持同时配置。
在E-UTRA和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)模式下,主节点(Master Node,MN)为LTE制式,辅节点(Secondary Node,SN)为NR制式,只有MN可以配置per FR1 gap。
per FR2 gap(即gapFR2):属于per FR2 gap类型的测量间隔只适用于FR2的测量。per FR2 gap与per UE gap不支持同时配置。per FR2 gap和per FR1 gap支持同时配置。
若终端设备支持FR1和FR2独立工作的能力(即independent gap能力),则终端设备可以针对FR1和FR2进行独立测量,该终端设备可以被配置per FR gap类型的测量间隔,例如per FR1 gap类型的测量间隔,per FR2 gap类型的测量间隔。
per UE gap(gapUE):属于per UE gap类型的测量间隔适用于所有频段(包括FR1和FR2)的测量。
在EN-DC模式下,MN为LTE制式,SN为NR制式,只有MN可以配置per UE gap。若配置了per UE gap,则per FR gap(如per FR1 gap,per FR2 gap)不可以再配置。
在per UE gap类型的测量间隔的持续时间内,终端设备不允许发送任何数据,也不期望调整主载波和辅载波的接收机。
(2)测量配置
网络通过RRC专用信令配置测量配置(即MeasConfig),如下表2所示,MeasConfig包括测量间隔配置和测量对象配置,其中,测量间隔配置即为measGapConfig,测量对象配置即为 measObjectToAddModList。
Figure PCTCN2021079391-appb-000001
表2
进一步,表2中的measGapConfig的内容参照以下表3所示,其中,一个测量间隔的配置信息有:测量间隔偏置(即gapOffset)、测量间隔的周期(即MGRP)、测量间隔的时长(即MGL)。其中,测量间隔偏置用于确定测量间隔的起点。
Figure PCTCN2021079391-appb-000002
表3
一个测量间隔的类型可以是per UE gap,或者是per FR1 gap,或者是per FR2 gap。参照以下表4,测量间隔的图样(简称为间隔图样)支持24种,不同的间隔图样对应的MGRP和/或MGL不同。有些间隔图样用于FR1的测量,对应于per FR1 gap;有些间隔图样用于FR2的测量,对应于per FR2 gap。
间隔图样标识 MGL(ms) MGRP(ms)
0 6 40
1 6 80
2 3 40
3 3 80
4 6 20
5 6 160
6 4 20
7 4 40
8 4 80
9 4 160
10 3 20
11 3 160
12 5.5 20
13 5.5 40
14 5.5 80
15 5.5 160
16 3.5 20
17 3.5 40
18 3.5 80
19 3.5 160
20 1.5 20
21 1.5 40
22 1.5 80
23 1.5 160
表4
除了表4所示的24种间隔图样以外,还可以引入其他的间隔图样,例如可以引入用于测量定位参考信号(Positioning Reference Signal,PRS)的的间隔图样,参照以下表5,给出了间隔图样标识为24和25的两种间隔图样,这两种间隔图样用于测量PRS。
间隔图样标识 MGL(ms) MGRP(ms)
24 10 80
25 20 160
表5
进一步,表2中的measObjectToAddModList的内容参照以下表6所示,其中,一个测量对象的配置信息中可以配置与该测量对象关联的SMTC,SMTC的配置可支持{5,10,20,40,80,160}ms的周期,以及{1,2,3,4,5}ms的窗口长度,SMTC的时间偏置(time offset)与周期是强相关的,取值为{0,…,周期-1,}。由于测量对象中不再包含载频,SMTC可以独立按每个MO而不是每个频点来配置。
Figure PCTCN2021079391-appb-000003
Figure PCTCN2021079391-appb-000004
表6
参照以下表7,对于RRC连接态的同频测量,1个频率层可以配置2个SMTC(SMTC和SMTC2),这两个SMTC有相同的时间偏置但不同的周期。对于RRC连接态的异频测量,只配置1个SMTC。可见,SMTC2只支持为同频测量进行配置。需要指出的是,SMTC2的周期要比SMTC的短;SMTC2的时间偏置可以沿用SMTC的。
Figure PCTCN2021079391-appb-000005
表7
目前,网络在为终端设备配置测量间隔时,在一个公共时期(common period)内仅能配置1个测量间隔。而SMTC可以独立按每个MO而不是每个频点来配置,这就会导致,1个测量间隔往往不能涵盖住多个SMTC的时间窗口或者多种参考信号,其中,多个SMTC可以属于不同MO或者属于同一MO(同频的情况),如果想要实现在多个SMTC的时间窗口内的测量或者实现对多种参考信号的测量,需要很长的测量时间,导致测量效率较低。为此,提出了本申请实施例的以下技术方案。
图2是本申请实施例提供的测量间隔增强的方法的流程示意图,如图2所示,所述测量间隔增强的方法包括以下步骤:
步骤201:终端设备接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
本申请实施例中,网络设备发送共存测量间隔(concurrent gap)的配置信息,相应地,终端设备接收共存测量间隔的配置信息。其中,共存测量间隔包括多个测量间隔。这里,多个测量间隔之 间具有共存关系。
在一些可选实施方式中,多个测量间隔之间的共存关系可以体现在:所述多个测量间隔在第一时间段内被配置。
在一些可选实施方式中,多个测量间隔之间的共存关系可以体现在:所述多个测量间隔用于第二时间段内的测量。
上述方案中,所述第一时间段具有以下一种特征:
所述第一时间段的时间窗口是周期性的;
所述第一时间段的时间窗口是非周期性的。
可选地,所述第一时间段的时间窗口是非周期性的,例如是,所述第一时间段的时间窗口是单次触发的。
上述方案中,所述第二时间段具有以下至少一种特征:
所述第二时间段的时间窗口覆盖所述多个测量间隔的全部;
所述第二时间段的时间窗口覆盖所述多个测量间隔的部分;
所述第二时间段的时间窗口的起点是所述多个测量间隔中第一个被激活的测量间隔的起点。
在一些可选实施方式中,所述第二时间段包括所述第一时间段。
需要说明的是,对应一个测量间隔来说,该测量间隔的gap类型可以是per UE gap,或者是per FR gap。进一步,per FR gap又可以分为per FR1 gap和per FR2 gap。该测量间隔的间隔图样可以是表4或者表5所示的任意一种间隔图样,不局限于此,该测量间隔的间隔图样还可以是其他新引入的间隔图样。
本申请实施例中,具有共存关系的多个测量间隔,按照gap类型满足以下其中一种配置原则。
配置原则一
在所述共存测量间隔的配置信息中,不支持per UE gap和per FR gap同时配置。
在一些可选实施方式中,所述多个测量间隔均为per UE gap。例如:共存测量间隔包括测量间隔1、测量间隔2和测量间隔3,这3个测量间隔的gap类型均为per UE gap,换句话说,共存测量间隔包括3个per UE gap。
在一些可选实施方式中,所述多个测量间隔均为per FR gap。例如:共存测量间隔包括测量间隔1、测量间隔2和测量间隔3,这3个测量间隔的gap类型均为per FR gap,换句话说,共存测量间隔包括3个per FR gap。
配置原则二
在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap同时配置。
在一些可选实施方式中,所述多个测量间隔均为per UE gap。例如:共存测量间隔包括测量间隔1、测量间隔2和测量间隔3,这3个测量间隔的gap类型均为per UE gap,换句话说,共存测量间隔包括3个per UE gap。
在一些可选实施方式中,所述多个测量间隔中至少有一个per FR gap。作为一种实施方式,所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap。作为另一种实施方式,所述多个测量间隔均为per FR gap。例如:共存测量间隔包括测量间隔1、测量间隔2和测量间隔3,这3个测量间隔的gap类型均为per FR gap,换句话说,共存测量间隔包括3个per FR gap。例如:共存测量间隔包括测量间隔1、测量间隔2和测量间隔3,测量间隔1的gap类型为per UE gap,测量间隔2和测量间隔3的gap类型为per FR gap,换句话说,共存测量间隔包括1个per UE gap和2个per FR gap。例如:共存测量间隔包括测量间隔1、测量间隔2和测量间隔3,测量间隔1的gap类型为per FR gap,测量间隔2和测量间隔3的gap类型为per UE gap,换句话说,共存测量间隔包括1个per FR gap和2个per UE gap。
本申请实施例中,可选地,网络设备为终端设备配置共存测量间隔时,需要满足指定限制。具体地,所述共存测量间隔满足以下至少一种限制:
所述共存测量间隔中的测量间隔总数目小于等于第一数目;
所述共存测量间隔中的per UE gap的数目小于等于第二数目;
所述共存测量间隔中的per FR gap的数目小于等于第三数目,所述per FR gap的数目等于per FR1 gap的数目加上per FR2 gap的数目;
所述共存测量间隔中的per FR1 gap的数目小于等于第四数目;
所述共存测量间隔中的per FR2 gap的数目小于等于第五数目。
上述限制可以通过终端设备支持的能力信息来体现,所述终端设备上报所述终端设备支持的 能力信息,所述能力信息用于指示以下至少之一:
所述终端设备支持的测量间隔总数最多为第一数目;
所述终端设备支持的per UE gap的数目最多为第二数目;
所述终端设备支持的per FR gap的数目最多为第三数目;
所述终端设备支持的per FR1 gap的数目最多为第四数目;
所述终端设备支持的per FR2 gap的数目最多为第五数目。
网络设备根据终端设备上报的能力信息,为该终端设备配置满足限制的共存测量间隔。例如:终端设备上报能力信息,该能力信息用于指示该终端设备支持per UE gap的数目最多为X个,以及该终端设备支持per FR gap的数目最多为Y个,X和Y为正整数;网络设备根据该能力信息,最多为该终端设备配置X个per UE gap以及Y个per FR gap。
本申请实施例中,在不同的网络场景下,共存测量间隔由不同的网络节点来配置。以下结合不同的网络场景对如何配置共存测量间隔进行说明。需要说明的是,以下描述中,MN的描述也可以被替换为主小区(PCell),SN的描述也可以被替换为主辅小区(PSCell)。
场景一:NR SA场景
在NR SA场景下,所述多个测量间隔均由MN来配置。
场景二:NR-DC场景
在一些可选实施方式中,在NR-DC场景下,所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由辅节点SN来配置。
在一些可选实施方式中,在NR-DC场景下,所述多个测量间隔均由MN来配置。
场景三:MR-DC场景
在一些可选实施方式中,在MR-DC场景下,所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置。
在一些可选实施方式中,在MR-DC场景下,所述多个测量间隔均由MN来配置。
在一可选实施方式中,所述MR-DC为EN-DC,在EN-DC中,MN为LTE制式的,SN为NR制式的。对于这种情况,所述多个测量间隔中的per UE gap和/或per FR1 gap由MN来配置,所述多个测量间隔中的per FR2 gap由SN来配置。
在一可选实施方式中,所述MR-DC为NE-DC,在NE-DC中,MN为NR制式的,MN为LTE制式的。对于这种情况,所述多个测量间隔中的per UE gap和/或per FR2 gap由MN来配置,所述多个测量间隔中的per FR1 gap由SN来配置;或者,所述多个测量间隔中的per UE gap和/或per FR gap均由MN来配置。
本申请实施例中,如果所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置,那么,MN和SN之间可以协商一些信息,以更好的配置测量间隔。以下对其进行说明。
MN和SN之间的协商方案
协商方案一
方案1-1)在一些可选实施方式中,所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
方案1-2)在一些可选实施方式中,所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型;或者,所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
本申请实施例中,终端设备上报其能力信息,该能力信息用于指示终端设备支持的测量间隔的数目以及测量间隔的类型。其中,终端设备支持的测量间隔的数目可以参照前述方案,例如包括第一数目、第二数目、第三数目、第四数目和第五数目中的至少之一。终端设备支持的测量间隔的类型例如是per UE gap或者per FR gap。如果终端设备将其能力信息上报给MN,那么MN可以将该能力信息通知给SN。
MN可以根据终端设备的能力信息配置第一部分测量间隔,然后将第一部分测量间隔的数目和/或类型通知给SN,SN根据终端设备的能力信息以及第一部分测量间隔的数目和/或类型确定能够配置的测量间隔的数目和/或类型,从而配置第二部分测量间隔。MN配置的第一部分测量间 隔和SN配置的第二部分测量间隔形成的共存测量间隔满足终端设备的能力信息所指示的限制。或者,MN可以根据终端设备的能力信息配置第一部分测量间隔,然后根据第一部分测量间隔的数目和/或类型确定SN能够配置的测量间隔的数目和/或类型;MN向SN发送第一建议信息,用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型。
同理,SN可以根据终端设备的能力信息配置第二部分测量间隔,然后将第二部分测量间隔的数目和/或类型通知给MN,MN根据终端设备的能力信息以及第二部分测量间隔的数目和/或类型确定能够配置的测量间隔的数目和/或类型,从而配置第一部分测量间隔。MN配置的第一部分测量间隔和SN配置的第二部分测量间隔形成的共存测量间隔满足终端设备的能力信息所指示的限制。或者,SN可以根据终端设备的能力信息配置第二部分测量间隔,然后根据第二部分测量间隔的数目和/或类型确定MN能够配置的测量间隔的数目和/或类型;SN向MN发送第二建议信息,用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
上述方案中,可选地,MN和SN之间交互的信息可以携带在CG-config或者CG-configinfo的配置信息中。
协商方案二
方案2-1)在一些可选实施方式中,所述多个测量间隔中的每个测量间隔与一个列表具有关联关系,所述列表包括以下至少之一:频率列表、频段列表、测量对象列表;所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系由所述MN通知给所述SN,用于所述SN结合所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔;和/或,所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系由所述SN通知给所述MN,用于所述MN结合所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔。
例如:MN配置的第一部分测量间隔包括测量间隔1、测量间隔2和测量间隔3;其中,测量间隔1为per FR1 gap,关联频率列表1或者测量对象列表1;测量间隔2为per FR1 gap,关联频率列表2或者测量对象列表2;测量间隔3为per UE gap,关联频率列表3或者测量对象列表3。SN配置的第二部分测量间隔包括测量间隔4,测量间隔4为per FR2 gap,关联频率列表4或者测量对象列表4。MN和SN交换各自配置的测量间隔的信息后,可以允许重新关联测量间隔和频率列表或者测量对象列表,例如:允许FR1的频率列表1或者测量对象列表1关联测量间隔2,FR1的频率列表2或者测量对象列表2关联测量间隔1。
本申请实施例中,共存的所述多个测量间隔可以按照不同的依据进行配置,以下对其进行说明。
方案A:所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置。
需要说明的是,典型的情况,测量间隔用于SSB的测量,所述多个测量间隔按照测量对象的SMTC进行配置,这里,SMTC用于确定SSB测量时间窗口。不局限于此,测量间隔也适用于其他参考信号如CSI-RS,或PRS等的测量,相应地,参考信号测量时间窗口可以是对应的CSI-RS测量时间窗口、或PRS测量时间窗口等。
需要指出的是,以下例子中大部分以参考信号测量时间窗口为SMTC(也即SSB测量时间窗口)为例进行说明的,但不局限于此,参考信号测量时间窗还可以是其他参考信号的测量时间窗口,例如CSI-RS测量时间窗,PRS测量时间窗等。
在一些可选实施方式中,按照多个测量对象的参考信号测量时间窗口的周期对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。这里,允许多组测量对象关联相同的测量间隔。
例如:有4个测量对象,测量对象1和测量对象2的SMTC的周期均为20ms,测量对象3和测量对象4的SMTC的周期均为40ms。将测量对象1和测量对象2归为一组,为该组测量对象配置一个测量间隔1,测量间隔1的MGL可以是20ms。将测量对象3和测量对象4归为一组,为该组测量对象配置一个测量间隔2,测量间隔2的MGL可以是40ms。
在一些可选实施方式中,按照多个测量对象的参考信号测量时间窗口的时间偏置对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。进一步,可选地,所述多个测量对象的参考信号测量时间窗口的周期相同的情况下,多组测量对象关联的多个测量间隔具有以下特征:周期相同、长度相同、测量间隔偏置不同。
例如:有4个测量对象,测量对象1、测量对象2、测量对象3和测量对象4的SMTC的周期均相同,例如都为20ms。测量对象1和测量对象2的SMTC的时间偏置为Δ1,测量对象3和测量对象4的SMTC的时间偏置为Δ2。将测量对象1和测量对象2归为一组,为该组测量对象 配置一个测量间隔1。将测量对象3和测量对象4归为一组,为该组测量对象配置一个测量间隔2。测量间隔1和测量间隔2的周期和长度均相同,即测量间隔1和测量间隔2对应同一间隔图样标识,但是,测量间隔1和测量间隔2的测量间隔偏置不同。
方案B:所述多个测量间隔按照参考信号的类型进行配置。
在一些可选实施方式中,所述参考信号的类型包括以下至少之一:同步信号块(SSB)、信道状态指示参考信号(CSI-RS)、定位参考信号(PRS)。
例如:终端设备同时测量SSB和PRS,用于测量SSB的测量间隔为测量间隔1,用于测量PRS的测量间隔为测量间隔2。可选地,测量间隔1和测量间隔2对应不同的间隔图样标识。
方案C:所述多个测量间隔按照网络的无线接入技术(RAT)类型进行配置。
例如:为NR配置测量间隔1,用于NR频率或者NR测量对象的测量。为LTE配置测量间隔2,用于LTE频率或者NR测量对象的测量。
例如:为NR配置per UE gap,为LTE配置per FR1 gap。
例如:为NR FR1配置per FR1 gap,为NR FR2配置per FR2 gap,为LTE配置per FR1 gap。
方案D:所述多个测量间隔按照频率列表进行配置。
例如:为同频列表1(intra-frequency list 1),异频列表1(inter-frequency list 1),同频列表2(intra-frequency list 2),异频列表2(inter-frequency list 2),分别配置一个测量间隔。
方案E:所述多个测量间隔按照频段列表进行配置。
例如:为频段列表1、频段列表2和频段列表3,分别配置一个测量间隔。特别地,可以为免授权频段(unlicensed band)单独配置1个测量间隔。
方案F:所述多个测量间隔按照测量对象列表进行配置。
例如:为同频测量对象列表1,异频测量对象列表1,同频测量对象列表2以及异频测量对象列表2,分别配置一个测量间隔。
本申请实施例中,配置完的共存测量间隔可以进行更新(也即维护),以下对其进行说明。
更新方案一
本申请实施例中,可以通过RRC专用信令预配置一个或多个预配置测量间隔(pre-configured MG),预配置测量间隔可以在后续被激活后便可以使用。预配置测量间隔被激活,会影响已配置的共存测量间隔。
方式1)预配置测量间隔被激活后,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔。所述预配置测量间隔被去激活后,所述共存测量间隔包括所述多个测量间隔。
这里,预配置测量间隔被激活后,在确定共存测量间隔是否满足限制时,不考虑预配置测量间隔,预配置测量间隔可直接被激活并与已配置的多个测量间隔共存。
方式2)预配置测量间隔被激活后,若所述预配置测量间隔和所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔;或者,若所述预配置测量间隔和所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
这里,预配置测量间隔被激活后,在确定共存测量间隔是否满足限制时,考虑预配置测量间隔,若预配置测量间隔和已配置的多个测量间隔满足指定限制,则所述预配置测量间隔和所述多个测量间隔共存;或者,若预配置测量间隔和已配置的多个测量间隔不满足指定限制,则共存测量间隔基于测量间隔的优先级进行更新。
在一些可选实施方式中,所述指定限制包括以下至少一种限制:
所述预配置测量间隔和所述多个测量间隔的总数目小于等于第一数目;
所述预配置测量间隔属于per UE gap,所述预配置测量间隔和所述多个测量间隔中的per UE gap的数目小于等于第二数目;
所述预配置测量间隔属于per FR gap,所述预配置测量间隔和所述多个测量间隔中的per FR gap的数目小于等于第三数目;
所述预配置测量间隔属于per FR1 gap,所述预配置测量间隔和所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
所述预配置测量间隔属于per FR2 gap,所述预配置测量间隔和所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
上述方案中,所述共存测量间隔基于测量间隔的优先级进行更新,可以通过以下方式来实现:
若所述预配置测量间隔的优先级高于所述多个测量间隔中的第一测量间隔的优先级,则所述 第一测量间隔被弃用,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔中除所述第一测量间隔以外的测量间隔;或者,
若所述预配置测量间隔的优先级低于所述多个测量间隔中的每个测量间隔的优先级,则所述预配置测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔。
在一些可选实施方式中,所述多个测量间隔中有N个测量间隔的优先级低于所述预配置测量间隔的优先级,N为正整数;所述第一测量间隔为所述N个测量间隔中优先级最低的测量间隔。在一些可选实施方式中,所述N个测量间隔与所述预配置测量间隔的间隔gap类型相同。
进一步,所述预配置测量间隔被去激活后,所述共存测量间隔中补入第二测量间隔。在一些可选实施方式中,所述第二测量间隔为前一次被弃用的测量间隔。在一些可选实施方式中,所述第二测量间隔与所述预配置测量间隔的gap类型相同。
更新方案二
本申请实施例中,若所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述多个测量间隔;或者,若所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
在一些可选实施方式中,所述指定限制包括以下至少一种限制:
所述多个测量间隔的总数目小于等于第一数目;
所述多个测量间隔中的per UE gap的数目小于等于第二数目;
所述多个测量间隔中的per FR gap的数目小于等于第三数目;
所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
上述方案中,所述共存测量间隔基于测量间隔的优先级进行更新,可以通过以下方式来实现:
按照优先级确定的第一测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔中除所述第一测量间隔以外的测量间隔。
在一些可选实施方式中,所述按照优先级确定的第一测量间隔,是指:所述多个测量间隔中的优先级最低的测量间隔;或者,所述多个测量间隔中的per UE gap中的优先级最低的测量间隔;或者,所述多个测量间隔中的per FR gap中的优先级最低的测量间隔;或者,所述多个测量间隔中的per FR1 gap中的优先级最低的测量间隔;或者,所述多个测量间隔中的per FR2 gap中的优先级最低的测量间隔。
本申请实施例的技术方案,通过配置共存的多个测量间隔,可以实现多个测量间隔覆盖更多的测量对象或者参考信号一起测量,避免了重配置带来的复杂度和时延,提高了移动性切换的效率。进一步,可以配置更短的测量间隔从而减少吞吐量损失,减少对现有网络和终端设备性能的影响。此外,基于网络节点之间的协调,可实现批量对一些频点或测量对象的测量间隔的灵活匹配。
图3是本申请实施例提供的测量间隔增强的装置的结构组成示意图一,如图3所示,应用于终端设备,所述测量间隔增强的装置包括:
接收单元301,用于接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
在一些可选实施方式中,所述第一时间段具有以下一种特征:
所述第一时间段的时间窗口是周期性的;
所述第一时间段的时间窗口是非周期性的。
在一些可选实施方式中,所述第二时间段具有以下至少一种特征:
所述第二时间段的时间窗口覆盖所述多个测量间隔的全部;
所述第二时间段的时间窗口覆盖所述多个测量间隔的部分;
所述第二时间段的时间窗口的起点是所述多个测量间隔中第一个被激活的测量间隔的起点。
在一些可选实施方式中,所述第二时间段包括所述第一时间段。
在一些可选实施方式中,在所述共存测量间隔的配置信息中,不支持per UE gap和per FR gap同时配置。
在一些可选实施方式中,所述多个测量间隔均为per UE gap;或者,
所述多个测量间隔均为per FR gap。
在一些可选实施方式中,在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap 同时配置。
在一些可选实施方式中,所述多个测量间隔均为per UE gap;或者,
所述多个测量间隔中至少有一个per FR gap。
在一些可选实施方式中,所述多个测量间隔中至少有一个per FR gap,包括:
所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap;或者,
所述多个测量间隔均为per FR gap。
在一些可选实施方式中,所述共存测量间隔满足以下至少一种限制:
所述共存测量间隔中的测量间隔总数目小于等于第一数目;
所述共存测量间隔中的per UE gap的数目小于等于第二数目;
所述共存测量间隔中的per FR gap的数目小于等于第三数目,所述per FR gap的数目等于per FR1 gap的数目加上per FR2 gap的数目;
所述共存测量间隔中的per FR1 gap的数目小于等于第四数目;
所述共存测量间隔中的per FR2 gap的数目小于等于第五数目。
在一些可选实施方式中,所述装置还包括:
发送单元(图中未示出),用于上报所述终端设备支持的能力信息,所述能力信息用于指示以下至少之一:
所述终端设备支持的测量间隔总数最多为第一数目;
所述终端设备支持的per UE gap的数目最多为第二数目;
所述终端设备支持的per FR gap的数目最多为第三数目;
所述终端设备支持的per FR1 gap的数目最多为第四数目;
所述终端设备支持的per FR2 gap的数目最多为第五数目。
在一些可选实施方式中,在NR SA场景下,
所述多个测量间隔均由MN来配置。
在一些可选实施方式中,在NR-DC场景下,
所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
所述多个测量间隔均由MN来配置。
在一些可选实施方式中,在MR-DC场景下,
所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
所述多个测量间隔均由MN来配置。
在一些可选实施方式中,所述MR-DC为EN-DC的情况下,
所述多个测量间隔中的per UE gap和/或per FR1 gap由MN来配置,所述多个测量间隔中的per FR2 gap由SN来配置。
在一些可选实施方式中,所述MR-DC为NE-DC的情况下,
所述多个测量间隔中的per UE gap和/或per FR2 gap由MN来配置,所述多个测量间隔中的per FR1 gap由SN来配置;或者,
所述多个测量间隔中的per UE gap和/或per FR gap均由MN来配置。
在一些可选实施方式中,所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,
所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
在一些可选实施方式中,所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型;或者,
所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
在一些可选实施方式中,所述多个测量间隔中的每个测量间隔与一个列表具有关联关系,所述列表包括以下至少之一:频率列表、频段列表、测量对象列表;
所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系由所述MN通知给所述SN,用于所述SN结合所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔;和/或,
所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系由所述SN通知给所述MN,用于所述MN结合所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔。
在一些可选实施方式中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置。
在一些可选实施方式中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置,包括:
按照多个测量对象的参考信号测量时间窗口的周期对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。
在一些可选实施方式中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置,包括:
按照多个测量对象的参考信号测量时间窗口的时间偏置对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。
在一些可选实施方式中,所述多个测量对象的参考信号测量时间窗口的周期相同的情况下,多组测量对象关联的多个测量间隔具有以下特征:周期相同、长度相同、测量间隔偏置不同。
在一些可选实施方式中,所述多个测量间隔按照参考信号的类型进行配置。
在一些可选实施方式中,所述参考信号的类型包括以下至少之一:SSB、CSI-RS、PRS。
在一些可选实施方式中,所述多个测量间隔按照网络的RAT类型进行配置。
在一些可选实施方式中,所述多个测量间隔按照频率列表进行配置。
在一些可选实施方式中,所述多个测量间隔按照频段列表进行配置。
在一些可选实施方式中,所述多个测量间隔按照测量对象列表进行配置。
在一些可选实施方式中,预配置测量间隔被激活后,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔。
在一些可选实施方式中,所述预配置测量间隔被去激活后,所述共存测量间隔包括所述多个测量间隔。
在一些可选实施方式中,预配置测量间隔被激活后,
若所述预配置测量间隔和所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔;或者,
若所述预配置测量间隔和所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
在一些可选实施方式中,所述指定限制包括以下至少一种限制:
所述预配置测量间隔和所述多个测量间隔的总数目小于等于第一数目;
所述预配置测量间隔属于per UE gap,所述预配置测量间隔和所述多个测量间隔中的per UE gap的数目小于等于第二数目;
所述预配置测量间隔属于per FR gap,所述预配置测量间隔和所述多个测量间隔中的per FR gap的数目小于等于第三数目;
所述预配置测量间隔属于per FR1 gap,所述预配置测量间隔和所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
所述预配置测量间隔属于per FR2 gap,所述预配置测量间隔和所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
在一些可选实施方式中,所述共存测量间隔基于测量间隔的优先级进行更新,包括:
若所述预配置测量间隔的优先级高于所述多个测量间隔中的第一测量间隔的优先级,则所述第一测量间隔被弃用,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔中除所述第一测量间隔以外的测量间隔;或者,
若所述预配置测量间隔的优先级低于所述多个测量间隔中的每个测量间隔的优先级,则所述预配置测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔。
在一些可选实施方式中,所述多个测量间隔中有N个测量间隔的优先级低于所述预配置测量间隔的优先级,N为正整数;
所述第一测量间隔为所述N个测量间隔中优先级最低的测量间隔。
在一些可选实施方式中,所述N个测量间隔与所述预配置测量间隔的gap类型相同。
在一些可选实施方式中,所述预配置测量间隔被去激活后,所述共存测量间隔中补入第二测量间隔。
在一些可选实施方式中,所述第二测量间隔为前一次被弃用的测量间隔。
在一些可选实施方式中,所述第二测量间隔与所述预配置测量间隔的gap类型相同。
在一些可选实施方式中,若所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述多个测量间隔;或者,
若所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
在一些可选实施方式中,所述指定限制包括以下至少一种限制:
所述多个测量间隔的总数目小于等于第一数目;
所述多个测量间隔中的per UE gap的数目小于等于第二数目;
所述多个测量间隔中的per FR gap的数目小于等于第三数目;
所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
在一些可选实施方式中,所述共存测量间隔基于测量间隔的优先级进行更新,包括:
按照优先级确定的第一测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔中除所述第一测量间隔以外的测量间隔。
在一些可选实施方式中,所述按照优先级确定的第一测量间隔,是指:
所述多个测量间隔中的优先级最低的测量间隔;或者,
所述多个测量间隔中的per UE gap中的优先级最低的测量间隔;或者,
所述多个测量间隔中的per FR gap中的优先级最低的测量间隔;或者,
所述多个测量间隔中的per FR1 gap中的优先级最低的测量间隔;或者,
所述多个测量间隔中的per FR2 gap中的优先级最低的测量间隔。
本领域技术人员应当理解,本申请实施例的上述测量间隔增强的装置的相关描述可以参照本申请实施例的测量间隔增强的方法的相关描述进行理解。
图4是本申请实施例提供的测量间隔增强的装置的结构组成示意图二,如图4所示,应用于网络设备,所述测量间隔增强的装置包括:
发送单元401,用于发送共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
在一些可选实施方式中,在所述共存测量间隔的配置信息中,不支持per UE gap和per FR gap同时配置。
在一些可选实施方式中,所述多个测量间隔均为per UE gap;或者,
所述多个测量间隔均为per FR gap。
在一些可选实施方式中,在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap同时配置。
在一些可选实施方式中,所述多个测量间隔均为per UE gap;或者,
所述多个测量间隔中至少有一个per FR gap。
在一些可选实施方式中,所述多个测量间隔中至少有一个per FR gap,包括:
所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap;或者,
所述多个测量间隔均为per FR gap。
在一些可选实施方式中,在NR SA场景下,
所述多个测量间隔均由MN来配置。
在一些可选实施方式中,在NR-DC场景下,
所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
所述多个测量间隔均由MN来配置。
在一些可选实施方式中,在MR-DC场景下,
所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
所述多个测量间隔均由MN来配置。
在一些可选实施方式中,所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,
所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
在一些可选实施方式中,所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型;或者,
所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
本领域技术人员应当理解,本申请实施例的上述测量间隔增强的装置的相关描述可以参照本申请实施例的测量间隔增强的方法的相关描述进行理解。
图5是本申请实施例提供的一种通信设备500示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图5所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图5所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统700的示意性框图。如图7所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。 上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (114)

  1. 一种测量间隔增强的方法,所述方法包括:
    终端设备接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
  2. 根据权利要求1所述的方法,其中,所述第一时间段具有以下一种特征:
    所述第一时间段的时间窗口是周期性的;
    所述第一时间段的时间窗口是非周期性的。
  3. 根据权利要求1或2所述的方法,其中,所述第二时间段具有以下至少一种特征:
    所述第二时间段的时间窗口覆盖所述多个测量间隔的全部;
    所述第二时间段的时间窗口覆盖所述多个测量间隔的部分;
    所述第二时间段的时间窗口的起点是所述多个测量间隔中第一个被激活的测量间隔的起点。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第二时间段包括所述第一时间段。
  5. 根据权利要求1至4中任一项所述的方法,其中,在所述共存测量间隔的配置信息中,不支持UE粒度测量间隔per UE gap和FR粒度测量间隔per FR gap同时配置。
  6. 根据权利要求5所述的方法,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔均为per FR gap。
  7. 根据权利要求1至4中任一项所述的方法,其中,在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap同时配置。
  8. 根据权利要求7所述的方法,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔中至少有一个per FR gap。
  9. 根据权利要求8所述的方法,其中,所述多个测量间隔中至少有一个per FR gap,包括:
    所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap;或者,
    所述多个测量间隔均为per FR gap。
  10. 根据权利要求7至9中任一项所述的方法,其中,所述共存测量间隔满足以下至少一种限制:
    所述共存测量间隔中的测量间隔总数目小于等于第一数目;
    所述共存测量间隔中的per UE gap的数目小于等于第二数目;
    所述共存测量间隔中的per FR gap的数目小于等于第三数目,所述per FR gap的数目等于per FR1 gap的数目加上per FR2 gap的数目;
    所述共存测量间隔中的per FR1 gap的数目小于等于第四数目;
    所述共存测量间隔中的per FR2 gap的数目小于等于第五数目。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述终端设备上报所述终端设备支持的能力信息,所述能力信息用于指示以下至少之一:
    所述终端设备支持的测量间隔总数最多为第一数目;
    所述终端设备支持的per UE gap的数目最多为第二数目;
    所述终端设备支持的per FR gap的数目最多为第三数目;
    所述终端设备支持的per FR1 gap的数目最多为第四数目;
    所述终端设备支持的per FR2 gap的数目最多为第五数目。
  12. 根据权利要求1至11中任一项所述的方法,其中,在新无线独立组网NR SA场景下,
    所述多个测量间隔均由主节点MN来配置。
  13. 根据权利要求1至11中任一项所述的方法,其中,在新无线-双连接NR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由辅节点SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  14. 根据权利要求1至11中任一项所述的方法,其中,在多无线接入技术-双连接MR-DC 场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  15. 根据权利要求14所述的方法,其中,所述MR-DC为EN-DC的情况下,
    所述多个测量间隔中的per UE gap和/或per FR1 gap由MN来配置,所述多个测量间隔中的per FR2 gap由SN来配置。
  16. 根据权利要求14所述的方法,其中,所述MR-DC为NE-DC的情况下,
    所述多个测量间隔中的per UE gap和/或per FR2 gap由MN来配置,所述多个测量间隔中的per FR1 gap由SN来配置;或者,
    所述多个测量间隔中的per UE gap和/或per FR gap均由MN来配置。
  17. 根据权利要求14至16中任一项所述的方法,其中,
    所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
  18. 根据权利要求14至16中任一项所述的方法,其中,
    所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
  19. 根据权利要求14至18中任一项所述的方法,其中,所述多个测量间隔中的每个测量间隔与一个列表具有关联关系,所述列表包括以下至少之一:频率列表、频段列表、测量对象列表;
    所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系由所述MN通知给所述SN,用于所述SN结合所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔;和/或,
    所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系由所述SN通知给所述MN,用于所述MN结合所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔。
  20. 根据权利要求1至19中任一项所述的方法,其中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置。
  21. 根据权利要求20所述的方法,其中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置,包括:
    按照多个测量对象的参考信号测量时间窗口的周期对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。
  22. 根据权利要求20所述的方法,其中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置,包括:
    按照多个测量对象的参考信号测量时间窗口的时间偏置对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。
  23. 根据权利要求22所述的方法,其中,所述多个测量对象的参考信号测量时间窗口的周期相同的情况下,多组测量对象关联的多个测量间隔具有以下特征:周期相同、长度相同、测量间隔偏置不同。
  24. 根据权利要求1至19中任一项所述的方法,其中,所述多个测量间隔按照参考信号的类型进行配置。
  25. 根据权利要求24所述的方法,其中,所述参考信号的类型包括以下至少之一:同步信号块SSB、信道状态指示参考信号CSI-RS、定位参考信号PRS。
  26. 根据权利要求1至19中任一项所述的方法,其中,所述多个测量间隔按照网络的无线接入技术RAT类型进行配置。
  27. 根据权利要求1至19中任一项所述的方法,其中,所述多个测量间隔按照频率列表进 行配置。
  28. 根据权利要求1至19中任一项所述的方法,其中,所述多个测量间隔按照频段列表进行配置。
  29. 根据权利要求1至19中任一项所述的方法,其中,所述多个测量间隔按照测量对象列表进行配置。
  30. 根据权利要求1至29中任一项所述的方法,其中,预配置测量间隔被激活后,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔。
  31. 根据权利要求30所述的方法,其中,所述预配置测量间隔被去激活后,所述共存测量间隔包括所述多个测量间隔。
  32. 根据权利要求1至29中任一项所述的方法,其中,预配置测量间隔被激活后,
    若所述预配置测量间隔和所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔;或者,
    若所述预配置测量间隔和所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
  33. 根据权利要求32所述的方法,其中,所述指定限制包括以下至少一种限制:
    所述预配置测量间隔和所述多个测量间隔的总数目小于等于第一数目;
    所述预配置测量间隔属于per UE gap,所述预配置测量间隔和所述多个测量间隔中的per UE gap的数目小于等于第二数目;
    所述预配置测量间隔属于per FR gap,所述预配置测量间隔和所述多个测量间隔中的per FR gap的数目小于等于第三数目;
    所述预配置测量间隔属于per FR1 gap,所述预配置测量间隔和所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
    所述预配置测量间隔属于per FR2 gap,所述预配置测量间隔和所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
  34. 根据权利要求32或33所述的方法,其中,所述共存测量间隔基于测量间隔的优先级进行更新,包括:
    若所述预配置测量间隔的优先级高于所述多个测量间隔中的第一测量间隔的优先级,则所述第一测量间隔被弃用,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔中除所述第一测量间隔以外的测量间隔;或者,
    若所述预配置测量间隔的优先级低于所述多个测量间隔中的每个测量间隔的优先级,则所述预配置测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔。
  35. 根据权利要求34所述的方法,其中,所述多个测量间隔中有N个测量间隔的优先级低于所述预配置测量间隔的优先级,N为正整数;
    所述第一测量间隔为所述N个测量间隔中优先级最低的测量间隔。
  36. 根据权利要求35所述的方法,其中,所述N个测量间隔与所述预配置测量间隔的间隔gap类型相同。
  37. 根据权利要求32至36中任一项所述的方法,其中,所述预配置测量间隔被去激活后,所述共存测量间隔中补入第二测量间隔。
  38. 根据权利要求37所述的方法,其中,所述第二测量间隔为前一次被弃用的测量间隔。
  39. 根据权利要求37或38所述的方法,其中,所述第二测量间隔与所述预配置测量间隔的gap类型相同。
  40. 根据权利要求1至29中任一项所述的方法,其中,
    若所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述多个测量间隔;或者,
    若所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
  41. 根据权利要求40所述的方法,其中,所述指定限制包括以下至少一种限制:
    所述多个测量间隔的总数目小于等于第一数目;
    所述多个测量间隔中的per UE gap的数目小于等于第二数目;
    所述多个测量间隔中的per FR gap的数目小于等于第三数目;
    所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
    所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
  42. 根据权利要求40或41所述的方法,其中,所述共存测量间隔基于测量间隔的优先级进行更新,包括:
    按照优先级确定的第一测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔中除所述第一测量间隔以外的测量间隔。
  43. 根据权利要求42所述的方法,其中,所述按照优先级确定的第一测量间隔,是指:
    所述多个测量间隔中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per UE gap中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per FR gap中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per FR1 gap中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per FR2 gap中的优先级最低的测量间隔。
  44. 一种测量间隔增强的装置,应用于终端设备,所述装置包括:
    接收单元,用于接收共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
  45. 根据权利要求44所述的装置,其中,所述第一时间段具有以下一种特征:
    所述第一时间段的时间窗口是周期性的;
    所述第一时间段的时间窗口是非周期性的。
  46. 根据权利要求44或45所述的装置,其中,所述第二时间段具有以下至少一种特征:
    所述第二时间段的时间窗口覆盖所述多个测量间隔的全部;
    所述第二时间段的时间窗口覆盖所述多个测量间隔的部分;
    所述第二时间段的时间窗口的起点是所述多个测量间隔中第一个被激活的测量间隔的起点。
  47. 根据权利要求44至46中任一项所述的装置,其中,所述第二时间段包括所述第一时间段。
  48. 根据权利要求44至47中任一项所述的装置,其中,在所述共存测量间隔的配置信息中,不支持per UE gap和per FR gap同时配置。
  49. 根据权利要求48所述的装置,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔均为per FR gap。
  50. 根据权利要求44至47中任一项所述的装置,其中,在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap同时配置。
  51. 根据权利要求50所述的装置,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔中至少有一个per FR gap。
  52. 根据权利要求51所述的装置,其中,所述多个测量间隔中至少有一个per FR gap,包括:
    所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap;或者,
    所述多个测量间隔均为per FR gap。
  53. 根据权利要求50至52中任一项所述的装置,其中,所述共存测量间隔满足以下至少一种限制:
    所述共存测量间隔中的测量间隔总数目小于等于第一数目;
    所述共存测量间隔中的per UE gap的数目小于等于第二数目;
    所述共存测量间隔中的per FR gap的数目小于等于第三数目,所述per FR gap的数目等于per FR1 gap的数目加上per FR2 gap的数目;
    所述共存测量间隔中的per FR1 gap的数目小于等于第四数目;
    所述共存测量间隔中的per FR2 gap的数目小于等于第五数目。
  54. 根据权利要求53所述的装置,其中,所述装置还包括:
    发送单元,用于上报所述终端设备支持的能力信息,所述能力信息用于指示以下至少之一:
    所述终端设备支持的测量间隔总数最多为第一数目;
    所述终端设备支持的per UE gap的数目最多为第二数目;
    所述终端设备支持的per FR gap的数目最多为第三数目;
    所述终端设备支持的per FR1 gap的数目最多为第四数目;
    所述终端设备支持的per FR2 gap的数目最多为第五数目。
  55. 根据权利要求44至54中任一项所述的装置,其中,在NR SA场景下,
    所述多个测量间隔均由MN来配置。
  56. 根据权利要求44至54中任一项所述的装置,其中,在NR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  57. 根据权利要求44至54中任一项所述的装置,其中,在MR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  58. 根据权利要求57所述的装置,其中,所述MR-DC为EN-DC的情况下,
    所述多个测量间隔中的per UE gap和/或per FR1 gap由MN来配置,所述多个测量间隔中的per FR2 gap由SN来配置。
  59. 根据权利要求57所述的装置,其中,所述MR-DC为NE-DC的情况下,
    所述多个测量间隔中的per UE gap和/或per FR2 gap由MN来配置,所述多个测量间隔中的per FR1 gap由SN来配置;或者,
    所述多个测量间隔中的per UE gap和/或per FR gap均由MN来配置。
  60. 根据权利要求57至59中任一项所述的装置,其中,
    所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
  61. 根据权利要求57至59中任一项所述的装置,其中,
    所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
  62. 根据权利要求57至61中任一项所述的装置,其中,所述多个测量间隔中的每个测量间隔与一个列表具有关联关系,所述列表包括以下至少之一:频率列表、频段列表、测量对象列表;
    所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系由所述MN通知给所述SN,用于所述SN结合所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔;和/或,
    所述第二部分测量间隔中的各个测量间隔与列表之间的关联关系由所述SN通知给所述MN,用于所述MN结合所述第一部分测量间隔中的各个测量间隔与列表之间的关联关系重新确定各个列表关联的测量间隔。
  63. 根据权利要求44至62中任一项所述的装置,其中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置。
  64. 根据权利要求63所述的装置,其中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置,包括:
    按照多个测量对象的参考信号测量时间窗口的周期对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。
  65. 根据权利要求63所述的装置,其中,所述多个测量间隔按照测量对象的参考信号测量时间窗口进行配置,包括:
    按照多个测量对象的参考信号测量时间窗口的时间偏置对所述多个测量对象进行分组,针对每组测量对象配置一个与该组测量对象关联的测量间隔。
  66. 根据权利要求65所述的装置,其中,所述多个测量对象的参考信号测量时间窗口的周期相同的情况下,多组测量对象关联的多个测量间隔具有以下特征:周期相同、长度相同、测量间隔偏置不同。
  67. 根据权利要求44至62中任一项所述的装置,其中,所述多个测量间隔按照参考信号的 类型进行配置。
  68. 根据权利要求67所述的装置,其中,所述参考信号的类型包括以下至少之一:SSB、CSI-RS、PRS。
  69. 根据权利要求44至62中任一项所述的装置,其中,所述多个测量间隔按照网络的RAT类型进行配置。
  70. 根据权利要求44至62中任一项所述的装置,其中,所述多个测量间隔按照频率列表进行配置。
  71. 根据权利要求44至62中任一项所述的装置,其中,所述多个测量间隔按照频段列表进行配置。
  72. 根据权利要求44至62中任一项所述的装置,其中,所述多个测量间隔按照测量对象列表进行配置。
  73. 根据权利要求44至72中任一项所述的装置,其中,预配置测量间隔被激活后,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔。
  74. 根据权利要求73所述的装置,其中,所述预配置测量间隔被去激活后,所述共存测量间隔包括所述多个测量间隔。
  75. 根据权利要求44至72中任一项所述的装置,其中,预配置测量间隔被激活后,
    若所述预配置测量间隔和所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔;或者,
    若所述预配置测量间隔和所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
  76. 根据权利要求75所述的装置,其中,所述指定限制包括以下至少一种限制:
    所述预配置测量间隔和所述多个测量间隔的总数目小于等于第一数目;
    所述预配置测量间隔属于per UE gap,所述预配置测量间隔和所述多个测量间隔中的per UE gap的数目小于等于第二数目;
    所述预配置测量间隔属于per FR gap,所述预配置测量间隔和所述多个测量间隔中的per FR gap的数目小于等于第三数目;
    所述预配置测量间隔属于per FR1 gap,所述预配置测量间隔和所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
    所述预配置测量间隔属于per FR2 gap,所述预配置测量间隔和所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
  77. 根据权利要求75或76所述的装置,其中,所述共存测量间隔基于测量间隔的优先级进行更新,包括:
    若所述预配置测量间隔的优先级高于所述多个测量间隔中的第一测量间隔的优先级,则所述第一测量间隔被弃用,所述共存测量间隔包括所述预配置测量间隔和所述多个测量间隔中除所述第一测量间隔以外的测量间隔;或者,
    若所述预配置测量间隔的优先级低于所述多个测量间隔中的每个测量间隔的优先级,则所述预配置测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔。
  78. 根据权利要求77所述的装置,其中,所述多个测量间隔中有N个测量间隔的优先级低于所述预配置测量间隔的优先级,N为正整数;
    所述第一测量间隔为所述N个测量间隔中优先级最低的测量间隔。
  79. 根据权利要求78所述的装置,其中,所述N个测量间隔与所述预配置测量间隔的gap类型相同。
  80. 根据权利要求75至79中任一项所述的装置,其中,所述预配置测量间隔被去激活后,所述共存测量间隔中补入第二测量间隔。
  81. 根据权利要求80所述的装置,其中,所述第二测量间隔为前一次被弃用的测量间隔。
  82. 根据权利要求80或81所述的装置,其中,所述第二测量间隔与所述预配置测量间隔的gap类型相同。
  83. 根据权利要求44至72中任一项所述的装置,其中,
    若所述多个测量间隔满足指定限制,则所述共存测量间隔包括所述多个测量间隔;或者,
    若所述多个测量间隔不满足指定限制,则所述共存测量间隔基于测量间隔的优先级进行更新。
  84. 根据权利要求83所述的装置,其中,所述指定限制包括以下至少一种限制:
    所述多个测量间隔的总数目小于等于第一数目;
    所述多个测量间隔中的per UE gap的数目小于等于第二数目;
    所述多个测量间隔中的per FR gap的数目小于等于第三数目;
    所述多个测量间隔中的per FR1 gap的数目小于等于第四数目;
    所述多个测量间隔中的per FR2 gap的数目小于等于第五数目。
  85. 根据权利要求83或84所述的装置,其中,所述共存测量间隔基于测量间隔的优先级进行更新,包括:
    按照优先级确定的第一测量间隔被弃用,所述共存测量间隔包括所述多个测量间隔中除所述第一测量间隔以外的测量间隔。
  86. 根据权利要求85所述的装置,其中,所述按照优先级确定的第一测量间隔,是指:
    所述多个测量间隔中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per UE gap中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per FR gap中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per FR1 gap中的优先级最低的测量间隔;或者,
    所述多个测量间隔中的per FR2 gap中的优先级最低的测量间隔。
  87. 一种测量间隔增强的方法,所述方法包括:
    网络设备发送共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
  88. 根据权利要求87所述的方法,其中,在所述共存测量间隔的配置信息中,不支持per UE gap和per FR gap同时配置。
  89. 根据权利要求88所述的方法,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔均为per FR gap。
  90. 根据权利要求87所述的方法,其中,在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap同时配置。
  91. 根据权利要求90所述的方法,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔中至少有一个per FR gap。
  92. 根据权利要求91所述的方法,其中,所述多个测量间隔中至少有一个per FR gap,包括:
    所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap;或者,
    所述多个测量间隔均为per FR gap。
  93. 根据权利要求87至92中任一项所述的方法,其中,在NR SA场景下,
    所述多个测量间隔均由MN来配置。
  94. 根据权利要求87至92中任一项所述的方法,其中,在NR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  95. 根据权利要求87至92中任一项所述的方法,其中,在MR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  96. 根据权利要求95所述的方法,其中,
    所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
  97. 根据权利要求95所述的方法,其中,
    所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间 隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
  98. 一种测量间隔增强的装置,应用于网络设备,所述装置包括:
    发送单元,用于发送共存测量间隔的配置信息,所述共存测量间隔包括多个测量间隔,其中,所述多个测量间隔在第一时间段内被配置和/或所述多个测量间隔用于第二时间段内的测量。
  99. 根据权利要求98所述的装置,其中,在所述共存测量间隔的配置信息中,不支持per UE gap和per FR gap同时配置。
  100. 根据权利要求99所述的装置,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔均为per FR gap。
  101. 根据权利要求98所述的装置,其中,在所述共存测量间隔的配置信息中,支持per UE gap和per FR gap同时配置。
  102. 根据权利要求101所述的装置,其中,
    所述多个测量间隔均为per UE gap;或者,
    所述多个测量间隔中至少有一个per FR gap。
  103. 根据权利要求102所述的装置,其中,所述多个测量间隔中至少有一个per FR gap,包括:
    所述多个测量间隔中的一部分测量间隔为per UE gap,另一部分测量间隔为per FR gap;或者,
    所述多个测量间隔均为per FR gap。
  104. 根据权利要求98至103中任一项所述的装置,其中,在NR SA场景下,
    所述多个测量间隔均由MN来配置。
  105. 根据权利要求98至103中任一项所述的装置,其中,在NR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  106. 根据权利要求98至103中任一项所述的装置,其中,在MR-DC场景下,
    所述多个测量间隔中的第一部分测量间隔由MN来配置,所述多个测量间隔中的第二部分测量间隔由SN来配置;或者,
    所述多个测量间隔均由MN来配置。
  107. 根据权利要求106所述的装置,其中,
    所述第一部分测量间隔的数目和/或类型由所述MN通知给所述SN,用于所述SN确定能够配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型由所述SN通知给所述MN,用于所述MN确定能够配置的测量间隔的数目和/或类型。
  108. 根据权利要求106所述的装置,其中,
    所述第一部分测量间隔的数目和/或类型用于所述MN确定第一建议信息,所述第一建议信息由所述MN通知给所述SN,所述第一建议信息用于指示所述MN建议所述SN配置的测量间隔的数目和/或类型;或者,
    所述第二部分测量间隔的数目和/或类型用于所述SN确定第二建议信息,所述第二建议信息由所述SN通知给所述MN,所述第二建议信息用于指示所述SN建议所述MN配置的测量间隔的数目和/或类型。
  109. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法。
  110. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求87至97中任一项所述的方法。
  111. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法,或者权利要求87至97中任一项所述的方法。
  112. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或者权利要求87至97中任一项所述的方法。
  113. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法,或者权利要求87至97中任一项所述的方法。
  114. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法,或者权利要求87至97中任一项所述的方法。
PCT/CN2021/079391 2021-03-05 2021-03-05 一种测量间隔增强的方法及装置、终端设备、网络设备 WO2022183507A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21928590.5A EP4304261A4 (en) 2021-03-05 2021-03-05 METHOD AND DEVICE FOR IMPROVING MEASUREMENT GAPS, TERMINAL DEVICE AND NETWORK DEVICE
PCT/CN2021/079391 WO2022183507A1 (zh) 2021-03-05 2021-03-05 一种测量间隔增强的方法及装置、终端设备、网络设备
CN202180082120.9A CN116569588A (zh) 2021-03-05 2021-03-05 一种测量间隔增强的方法及装置、终端设备、网络设备
US18/242,341 US20230413095A1 (en) 2021-03-05 2023-09-05 Measurement gap enhancement method and apparatus, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079391 WO2022183507A1 (zh) 2021-03-05 2021-03-05 一种测量间隔增强的方法及装置、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/242,341 Continuation US20230413095A1 (en) 2021-03-05 2023-09-05 Measurement gap enhancement method and apparatus, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022183507A1 true WO2022183507A1 (zh) 2022-09-09

Family

ID=83154907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079391 WO2022183507A1 (zh) 2021-03-05 2021-03-05 一种测量间隔增强的方法及装置、终端设备、网络设备

Country Status (4)

Country Link
US (1) US20230413095A1 (zh)
EP (1) EP4304261A4 (zh)
CN (1) CN116569588A (zh)
WO (1) WO2022183507A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431957A (zh) * 2015-04-09 2017-12-01 英特尔Ip公司 用于载波聚合的小区特定组测量间隙
CN108738150A (zh) * 2017-04-18 2018-11-02 宏达国际电子股份有限公司 处理测量间隔的装置及方法
CN110381528A (zh) * 2018-04-13 2019-10-25 华为技术有限公司 载波测量的方法、终端设备和网络设备
WO2020068828A1 (en) * 2018-09-24 2020-04-02 Apple Inc. Configuration of measurement gaps in new radio (nr)-nr dual connectivity (nr-nr dc) arrangements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558790B2 (en) * 2018-07-23 2023-01-17 Apple Inc. Configuration of multiple measurement gap patterns

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431957A (zh) * 2015-04-09 2017-12-01 英特尔Ip公司 用于载波聚合的小区特定组测量间隙
CN108738150A (zh) * 2017-04-18 2018-11-02 宏达国际电子股份有限公司 处理测量间隔的装置及方法
CN110381528A (zh) * 2018-04-13 2019-10-25 华为技术有限公司 载波测量的方法、终端设备和网络设备
WO2020068828A1 (en) * 2018-09-24 2020-04-02 Apple Inc. Configuration of measurement gaps in new radio (nr)-nr dual connectivity (nr-nr dc) arrangements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4304261A4 *

Also Published As

Publication number Publication date
EP4304261A4 (en) 2024-04-17
US20230413095A1 (en) 2023-12-21
CN116569588A (zh) 2023-08-08
EP4304261A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US20220046450A1 (en) Measurement interval configuration method and device, terminal, and network device
WO2018227622A1 (zh) 无线通信方法和设备
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
WO2020132871A1 (zh) Rrm测量的方法和设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2021003624A1 (zh) Bwp切换方法和终端设备
CN113383571A (zh) 一种测量间隔的配置方法及装置、终端、网络设备
WO2021088158A1 (zh) 无线通信方法、终端设备和网络设备
TW201906475A (zh) 無線通信方法和設備
US20230087417A1 (en) Measurement Method and Apparatus, Terminal Device, and Network Device
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2021068226A1 (zh) 一种测量间隔的确定方法及装置、终端设备
WO2020029286A1 (zh) 一种信号传输方法及装置、终端、网络设备
WO2022027489A1 (zh) 邻区测量的方法、终端设备和网络设备
US20230088518A1 (en) Measurement method for ue, terminal device and network device
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
US11743092B2 (en) Synchronization signal transmission method, transmitting end device and receiving end device
US11902949B2 (en) Wireless communication method and communication device
WO2022183507A1 (zh) 一种测量间隔增强的方法及装置、终端设备、网络设备
WO2020082327A1 (zh) 一种切换过程中的信令交互方法及装置、网络设备
WO2020056642A1 (zh) 一种数据传输方法、设备及存储介质
WO2023044677A1 (zh) 一种测量间隔增强的方法及装置、终端设备、网络设备
WO2023102732A1 (zh) 一种测量配置方法及装置、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082120.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021928590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021928590

Country of ref document: EP

Effective date: 20231002

NENP Non-entry into the national phase

Ref country code: DE