WO2021088044A1 - 信息处理方法、终端设备及存储介质 - Google Patents

信息处理方法、终端设备及存储介质 Download PDF

Info

Publication number
WO2021088044A1
WO2021088044A1 PCT/CN2019/116833 CN2019116833W WO2021088044A1 WO 2021088044 A1 WO2021088044 A1 WO 2021088044A1 CN 2019116833 W CN2019116833 W CN 2019116833W WO 2021088044 A1 WO2021088044 A1 WO 2021088044A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial domain
uplink signal
transmission filter
terminal device
signal
Prior art date
Application number
PCT/CN2019/116833
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
黄莹沛
方昀
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980099926.1A priority Critical patent/CN114342510A/zh
Priority to PCT/CN2019/116833 priority patent/WO2021088044A1/zh
Publication of WO2021088044A1 publication Critical patent/WO2021088044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to mobile communication technology, in particular to an information processing method, terminal equipment and storage medium.
  • the design goals of the New Radio (NR)/5G system include large-bandwidth communications in high frequency bands (for example, frequency bands above 6 GHz). When the operating frequency becomes higher, the path loss in the transmission process will increase, thereby affecting the coverage capability of the high-frequency system.
  • An effective technical solution that can effectively guarantee the coverage of the high-band NR system is based on the massive antenna array (Massive Multiple-Input Multiple-Output, Massive MIMO) using multiple beam technology to improve coverage.
  • Massive MIMO Massive MIMO
  • the multiple beam technology may also be referred to as a hybrid beam technology.
  • network equipment configures terminal equipment through downlink signals to indicate which uplink transmission beam the terminal equipment uses to transmit uplink signals through the configured spatial relationship information, but this will involve relatively large signaling overhead. Therefore, how the terminal device determines the uplink transmission beam for transmitting the uplink signal when the network device is not configured with spatial relationship information has become a problem to be solved.
  • Embodiments of the present invention provide an information processing method, terminal equipment, and storage medium, which can determine an uplink transmission beam for transmitting an uplink signal when the network device is not configured with spatial relationship information.
  • an embodiment of the present invention provides an information processing method, including:
  • the terminal device determines to transmit the first uplink signal according to the first component carrier CC where the first uplink signal is located or the first downlink bandwidth part BWP corresponding to the first CC Or determine the first spatial domain sending filter according to a path loss reference signal corresponding to the first uplink signal.
  • an embodiment of the present invention provides an information processing method, including:
  • the terminal device determines the first spatial domain transmitting filter used for transmitting the first uplink signal on the first CC, and determines the second spatial domain transmitting filter used for transmitting the second uplink signal on the second CC, where all The first uplink signal is not configured with spatial relationship information.
  • an embodiment of the present invention provides a terminal device, including:
  • the first determining unit is configured to determine the transmission location according to the first component carrier CC where the first uplink signal is located or the first downlink bandwidth part BWP corresponding to the first CC when the spatial relationship information is not configured for the first uplink signal.
  • the first spatial domain transmission filter used by the first uplink signal, or the first spatial domain transmission filter is determined according to a path loss reference signal corresponding to the first uplink signal.
  • an embodiment of the present invention provides a terminal device, including:
  • the second determining unit is configured to determine the first spatial domain transmitting filter used for transmitting the first uplink signal on the first CC, and determine the second spatial domain transmitting filter used for transmitting the second uplink signal on the second CC , Wherein the first uplink signal is not configured with first spatial relationship information.
  • an embodiment of the present invention provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal when the computer program is running. The steps of the information processing method performed by the device.
  • an embodiment of the present invention provides a storage medium that stores an executable program, and when the executable program is executed by a processor, the above-mentioned information processing method executed by the terminal device is implemented.
  • the information processing method provided by the embodiment of the present invention includes: when the first uplink signal is not configured with spatial relationship information, the terminal equipment according to the first component carrier CC where the first uplink signal is located or the first downlink corresponding to the first CC
  • the line bandwidth part BWP determines the first spatial domain transmission filter used to transmit the first uplink spatial signal, or determines the first spatial domain transmission filter according to the path loss reference signal corresponding to the first uplink signal;
  • the uplink transmission beam for transmitting the uplink signal is determined.
  • FIG. 1 is a schematic diagram of an optional system of a single beam according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an optional system of multiple beams according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optional time domain of CA according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional system with multiple TRPs according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optional composition structure of a communication system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an optional processing flow of an information processing method provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optional processing flow of an information processing method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an optional overlap according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an optional structure of a terminal device provided by the implementation of the present invention.
  • FIG. 10 is a schematic diagram of an optional structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an optional structure of an electronic device provided by an embodiment of the present invention.
  • the multi-beam system carrier aggregation (CA), and multi-transmit-receive node (transmit-receive point, TRP) will be described first.
  • CA carrier aggregation
  • TRP multi-transmit-receive node
  • the NR/5G Multi-beam system concentrates the transmit power in a narrow beam in the downlink to cover a part of the cell, thereby enhancing the coverage of the entire system.
  • the network uses a relatively wide beam: the beam 101 covers the entire cell and can serve the terminal devices in the cell: UE1, UE2, UE3, UE4, and UE5 at the same time. Therefore, at each moment, terminal devices within the coverage of the cell have the opportunity to obtain transmission resources allocated by the system.
  • the multi-beam system uses beam sweeping in time to achieve the effect of covering the entire cell, that is, different beams are used at different times to cover different areas, and each beam covers a small area. Achieve the effect of multiple beams covering the entire cell.
  • a multi-beam system uses 4 different beams at different times: beam 201, beam 202, beam 203, and beam 204 cover different areas, where beam 201 covers UE1 at time 1.
  • the corresponding area, beam 202 covers the area corresponding to UE at time 2
  • beam 203 covers the area corresponding to UE3 and UE4 at time 3
  • beam 204 covers the area corresponding to UE5 at time 4.
  • the terminal equipment in the cell can communicate with the network equipment only when a certain beam just covers its corresponding area at a certain moment. For example, at time 3, the system uses beam 3 to cover UE3 and UE4, and UE3 and UE4 can communicate with Communication equipment communication.
  • the terminal device can also use multiple transmit beams for uplink transmission.
  • the principle is similar, and the details are not repeated here.
  • Beam is a term used in daily discussions. In actual agreements, the word beam is often invisible. Different beams are identified or indicated by different signals carried, such as:
  • SS Synchronization Signal
  • PBCH Physical broadcast channel
  • ⁇ Different beams transmit different channel state information reference signals (Channel state information reference signal, CSI-RS) resource (resource) corresponding to the CSI-RS signal; terminal equipment distinguishes downlink by CSI-RS signal/CSI-RS resource Send beam.
  • CSI-RS channel state information reference signal
  • SRS signals corresponding to different channel sounding reference signal (Sounding Reference Signal, SRS) resources (resources) are transmitted on different beams.
  • Network equipment distinguishes uplink transmission beams through SRS signal/SRS resource identification.
  • the terminal equipment side (here refers to the beam correspondence that can be established without the need for uplink beam scanning (UL beam sweeping), that is, if the receiving beam X is better for receiving downlink signals /Best choice, when the terminal equipment infers that its corresponding transmission beam Y is the best/optimal uplink transmission beam according to the reception beam X), if the network equipment indicates that the corresponding downlink signal of a certain downlink transmission beam is the downlink signal A, Then, the terminal device can know the corresponding transmission beam C according to the receiving beam B corresponding to the received downlink signal A. In this case, the network device instructs the uplink transmission beam C of the terminal device to often directly indicate the downlink signal A to indirectly indicate the uplink transmission beam C.
  • the description of the beam is based on the uplink signal or the downlink signal carried.
  • beam correspondence includes two types:
  • the first type does not require UL beam sweeping beam correspondence.
  • the second type is to require UL beam sweeping beam correspondence.
  • the first type is referred to as beam correspondence for short; when the second type is mentioned, it is clearly stated that the beam correspondence of UL beam sweeping is required, or simply referred to as the beam correspondence is not ideal or does not satisfy the beam correspondence. .
  • the manner in which the network device determines which uplink transmission beam the terminal device uses may include:
  • Manner 1 The network device configures multiple SRS resources to allow the terminal device to use different uplink transmission beams for corresponding SRS transmission, where different uplink transmission beams transmit SRS signals corresponding to different SRS resources. By measuring the SRS signal, the network equipment can know which uplink transmission beam performs better transmission effect.
  • Method 2 If there is beam correspondence on the terminal device side, the network device considers that the terminal device can know its corresponding receiving beam according to its corresponding better downlink transmission beam based on this characteristic, and knows the terminal device corresponding to this terminal device according to the beam correspondence The better uplink transmit beam.
  • method one can be used for beam correspondence situations (that is, beam correspondence can be satisfied without UL beam sweeping) and situations where beam correspondence is not ideal (that is, UL beam sweeping is required to satisfy beam correspondence), and method two is general Only used in the case of beam correspondence.
  • the network device When the network device instructs the terminal device which uplink transmission beam to use, it can indirectly indicate the corresponding uplink transmission beam by indicating the following identifiers:
  • SRS resource indicator (SRS resource indicator, SRI), (optionally, part of the signaling also includes) indication information corresponding to the uplink bandwidth part (Bandwidth Part, BWP) identifier (BWP ID) where the SRS resource is located.
  • BWP uplink bandwidth part
  • BWP ID uplink bandwidth part
  • CSI-RS resource indicator (CSI-RS resource indicator).
  • SSB is also SS/PBCH block.
  • the uplink transmission beam when it transmits SRS, the description is as follows:
  • the terminal device If the terminal device is configured with the high-level parameter spatial relationship information including the identifier of the reference SSB index, the terminal device will use the same spatial domain filter as the received reference SSB to transmit the target SRS resource.
  • the terminal device will use the same spatial domain filter as the reference periodic CSI-RS or the reference semi-persistent CSI-RS to transmit the target SRS resource.
  • the terminal device will use the same spatial domain transmission filter as the reference periodic SRS to transmit the target SRS resource.
  • the transmitted signals and channels may include: SRS, Physical Uplink Shared Channel (PUSCH), or Physical Uplink Control Channel (PUCCH).
  • SRS Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Physical Uplink Shared Channel Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the UE determines which uplink transmission beam to use according to information configured by the network device (for example, corresponding radio resource control (Radio Resource Control, RRC) signaling).
  • RRC Radio Resource Control
  • the UE will use the information configured by the network device (for example, corresponding RRC signaling) and downlink control information (Downlink control information, The SRS resource indicated by DCI) determines which uplink transmission beam is used.
  • the UE determines which uplink transmission beam to use according to the SRS resource identifier indicated in the RRC parameter; if the RRC IE configuredGrantConfig does not include the parameter rrc-ConfiguredUplinkGrant, the UE determines which uplink transmission beam to use according to the SRS resource indicated by the DCI indication information.
  • the network device configures the SRS-SpatialRelationInfo for the SRS resource, where the SRS-SpatialRelationInfo can indicate any of the following three types of information: SRI (optionally, it also contains the indication information corresponding to the uplink BWP ID where the SRS resource is located), SSB index And CSI-RS resource identification.
  • SRI optionally, it also contains the indication information corresponding to the uplink BWP ID where the SRS resource is located
  • SSB index And CSI-RS resource identification.
  • PUCCH Physical Uplink Control Channel
  • the network device configures PUCCH-SpatialRelationInfo (spatial relation information) for PUCCH, which can indicate any of the following three types of information: SRI (optionally, also includes indication information corresponding to the uplink BWP ID where the SRS resource is located), SSB index and CSI-RS resource identifier.
  • all PUCCH resources will determine which uplink transmission beam to use based on the information configured by the network device.
  • each PUCCH resource determines which uplink transmission beam to use according to the spatial relationship information indicated by further instructions/configuration/activation information (such as MAC CE) of the network device.
  • the spatial relationship information may refer to PUCCH spatial relationship information, and/or SRS spatial relationship information.
  • SRS-SpatialRelationInfo or PUCCH-SpatialRelationInfo
  • PUCCH-SpatialRelationInfo there will be relatively large signaling overhead in some scenarios.
  • CA is to jointly schedule and use resources on multiple component carriers (Component Carrier, CC), so that the 5G system can support a larger bandwidth, and thus can achieve a higher system peak rate.
  • Component Carrier CC
  • the continuity of the aggregated carriers on the spectrum it can be divided into non-continuous carrier aggregation as shown in 301 in Figure 3 and continuous carrier aggregation as shown in 302 in Figure 3; according to whether the frequency bands of the aggregated carriers are the same, Divided into inter-band (Inter-band) carrier aggregation and in-band (Intra-band) carrier aggregation.
  • two discontinuous component carriers (component carrier A and component carrier B) are aggregated, the bandwidth of one component carrier is 20MHz, and the total bandwidth after carrier aggregation is 40MHz; in Figure 3 In 302, five consecutive carriers are aggregated, the bandwidth of one component carrier is 20MHz, and the total bandwidth after carrier aggregation is 100MHz.
  • the target downlink signal (or target downlink channel) and its reference SSB or reference CSI-RS resource are sent by the same transmit-receive point (TRP) on the network side. If the TRPs for transmitting two downlink signals are different, different TCI states are usually configured.
  • the network structure including multiple TRPs may be as shown in FIG. 4, and the UE communicates with TRP1 and TRP2 through beam 401 and beam 402, respectively.
  • the TCI state is used to configure a quasi co-location relationship between one or two downlink reference signals and the DMRS of the PDSCH.
  • the description of QCL is as follows: the large-scale parameters of the channel on one antenna port can be derived from the other antenna port, and the two antenna ports are considered to have a QCL relationship.
  • the large-scale parameters include: Doppler delay, average delay , Space receiving parameters, etc.
  • Doppler delay e.g., Doppler delay, average delay, Space receiving parameters, etc.
  • the large-scale parameters of the two SSBs can be inferred from each other, or can be considered Is similar.
  • the terminal can assume that the target downlink signal and the reference SSB or The large-scale parameters of the reference CSI-RS resources are the same, and the large-scale parameters are determined by QCL type configuration.
  • the terminal device can use the same reception as the reference SSB or reference CSI-RS resource.
  • the beam or spatial receiving parameter (Spatial Rx parameter) is used to receive the target downlink signal.
  • the terminal device determines the uplink transmission beam for transmitting the uplink signal when the network device is not configured with spatial relationship information has become a problem to be solved, and it does not involve multiple component carriers (CC), namely CA, multiple TRPs, etc. Determination of the spatial relationship information of the scene.
  • CC component carriers
  • the embodiments of the present invention provide an information processing method.
  • the information processing method of the embodiments of the present invention can be applied to various communication systems, such as: Long Term Evolution (LTE) system, LTE frequency division duplex ( Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), 5G system or future communication systems, etc.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G system Fifth Generation
  • future communication systems etc.
  • the communication system 500 to which the embodiment of the present invention is applied is as shown in FIG. 5.
  • the communication system 500 may include a network device 510, and the network device 510 may be a device that communicates with a terminal device 520 (or called a communication terminal or a terminal).
  • the network device 510 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 510 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, a base station (gNB) in an NR/5G system, or a cloud radio access network (Cloud Radio Access Network, CRAN) wireless controller.
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the communication system 500 may also include: a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, and a bridge , Routers, network-side equipment in the 5G network, or network equipment in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • CRAN Cloud Radio Access Network
  • PLMN Public Land Mobile Network
  • the communication system 500 further includes at least one terminal device 520 located within the coverage area of the at least one network device 510.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • Digital TV networks such as DVB-H networks
  • satellite networks such as DVB-H networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 5 exemplarily shows one network device and two terminal devices.
  • the communication system 500 may include multiple terminal devices and multiple network devices, and the coverage of each network device may include other numbers This is not limited in the embodiment of the present invention.
  • the communication system 500 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present invention.
  • the information processing method provided in the embodiment of the present invention is suitable for transmission between a terminal device and a network device.
  • the information processing method provided in the embodiment of the present invention is suitable for transmission between a terminal device and a terminal device.
  • the uplink signal can be used to refer to the uplink signal or the channel used for transmitting the uplink signal.
  • the uplink signal can include the uplink SRS signal, or can refer to the uplink physical layer channel, for example, PUCCH;
  • the uplink signal can be used to refer to the resource that carries the uplink signal or uplink channel.
  • An optional processing flow of the information processing method provided by the embodiment of the present invention, as shown in FIG. 6, includes the following steps:
  • the terminal device determines, according to the first CC where the first uplink signal is located, or the first downlink BWP corresponding to the first CC, which is used to transmit the first uplink signal.
  • the first spatial domain sending filter, or the first spatial domain sending filter is determined according to a path loss reference signal corresponding to the first uplink signal.
  • the PDSCH on the first CC or the first downlink BWP does not have a corresponding activated TCI state, or the first CC or the first downlink BWP corresponding to the first CC is on At least one CORESET in the configured CORESET is configured with a corresponding group index, and the first spatial domain transmission filter is determined according to a path loss reference signal corresponding to the first uplink signal.
  • the first uplink signal or the first uplink channel and the resource carrying the first uplink signal or the first uplink channel are simply referred to as the first uplink signal.
  • the signal/channel type of the first uplink signal includes at least one of the following: SRS (or SRS resource corresponding to SRS) and PUCCH (or PUCCH resource corresponding to PUCCH).
  • the first spatial domain transmission filter is used to perform SRS transmission on the first SRS resource.
  • the first spatial domain transmission filter is used to perform PUCCH transmission on the first PUCCH resource.
  • the transmission scenario of the first uplink signal is a single TRP scenario.
  • the transmission scenario of the first uplink signal is a multi-TRP scenario.
  • the terminal device determines to transmit the first uplink signal according to the first CC where the first uplink signal is located or the first downlink BWP corresponding to the first CC
  • the first spatial domain transmission filter used includes:
  • the transmission configuration indicates that the first TCI state in the TCI state determines the first spatial domain transmission filter.
  • the first TCI state is an activated TCI state.
  • the first TCI state is the TCI state with the smallest identification among the activated TCI states.
  • the first TCI state is selected from the TCI state corresponding to the PDCCH according to the first selection rule.
  • the first selection rule can also be other rules such as the largest identifier and a fixed value.
  • the first TCI state selected by the selection rule includes one or more TCI states.
  • the content of the first selection rule can be pre-defined or configured by a network device. The embodiment of the present invention does not limit the content of the first selection rule in any way.
  • the first spatial domain transmitting filter is determined according to the reference signal corresponding to the type D in the first TCI state.
  • the PDSCH on the first CC or the first downlink BWP has a corresponding activated TCI state.
  • the TCI state with the smallest ID among the activated TCI states is used to determine the first space Domain transmit filter.
  • the method further includes:
  • the terminal device receives the instruction information sent by the network device.
  • the indication information is used to activate at least one TCI state among the TCI states corresponding to the PDSCH on the first CC or the first downlink BWP.
  • the indication information may be transmitted through MAC CE.
  • the first TCI state is the activated TCI state.
  • the existing TCI state is activated by the network device, and the currently activated TCI state is used.
  • the TCI state with the smallest identifier among the TCI states determines the first spatial domain transmission filter.
  • the terminal device does not want the following situations to occur at the same time:
  • the first uplink signal is not configured with spatial relationship information, and the first CC or the first downlink BWP where the first uplink signal is located is not configured with a control resource set CORESET.
  • the UE does not want the first CC to appear
  • the PDSCH on the upper or the first downlink BWP does not have a corresponding activated TCI state.
  • the terminal device determines the The first spatial domain transmit filter.
  • the path loss reference signal is used to determine the first spatial domain transmission filter Device.
  • the path loss reference signal may correspond to CSI-RS resources, or SS/PBCH blocks, or positioning reference signal (positioning RS, PRS) resources.
  • the first TCI state is the TCI state with the smallest identifier among the TCI states corresponding to the PDSCH.
  • the TCI state with the smallest ID among the existing TCI states is used to determine the first Spatial domain transmit filter.
  • the method further includes:
  • the terminal device receives the TCI state corresponding to the PDSCH configured by the network device.
  • the first TCI state is the TCI state with the smallest identifier among the configured TCI states.
  • the TCI state is configured by the network device, and the TCI state with the smallest identifier among the configured TCI states is used to determine the first spatial domain transmission filter Device.
  • the terminal equipment is based on the first CC where the first uplink signal is located.
  • the first downlink BWP corresponding to the first CC to determine the first spatial domain transmission filter used for transmitting the first uplink signal includes:
  • Determination method 1 When at least one of the CORESETs configured on the first CC where the first uplink signal is located or the first downstream BWP corresponding to the first CC is configured with a corresponding group index, according to the corresponding group index of the first CORESET The TCI state or the QCL signal corresponding to the first CORESET determines the first spatial domain transmission filter, where the first CORESET is the CORESET configured on the first CC or the first downstream BWP.
  • Determination method 2 When at least one of the CORESET configured on the first CC where the first uplink signal is located or the first downlink BWP corresponding to the first CC is configured with a corresponding group index, according to the configured first uplink signal The corresponding first spatial relationship information determines the first spatial domain transmitting filter. Or, when at least one of the CORESETs configured on the first CC where the first uplink signal is located or the first downlink BWP corresponding to the first CC is configured with a corresponding group index, the terminal expects that the first uplink signal configuration corresponds to The first spatial relationship information.
  • the first CORESET is selected from the CORESET configured on the first CC or the first downstream BWP according to the second selection rule.
  • the second selection rule can also be the largest identifier and a fixed value.
  • the first CORESET selected according to the second selection rule includes one or more CORESETs.
  • the content of the second selection rule can be pre-defined or configured by a network device. The embodiment of the present invention does not limit the content of the second selection rule in any way.
  • the transmission scenario of the first uplink signal is a multi-TRP scenario.
  • At least one of the CORESETs configured on the first CC where the first uplink signal is located or the first downlink BWP corresponding to the first CC is configured to correspond to the group.
  • the index reflects.
  • One group index can correspond to one TRP.
  • the group index is configured in an RRC configuration parameter corresponding to the at least one CORESET.
  • the group indexes of different CORESET configurations may be the same or different.
  • the CORESET configured with the same group index may be referred to as a CORESET group.
  • the value of the group index includes 0 and 1, CORESET with a group index of 0 is a CORESET group, and CORESET with a group index of 1 is another CORESET group.
  • the CORESET that has not configured a group index considers the value of its group index to be a fixed value (for example, 0 or 1), or the value of the configured group index Different values.
  • the group index can be used to determine the Hybrid Automatic Repeat request ACK (HARQ-ACK) codebook (Codebook), that is, configure the CORESET scheduling of different group indexes according to network-related configuration parameters.
  • HARQ-ACK Hybrid Automatic Repeat request ACK
  • Codebook codebook
  • the HARQ-ACK of the PDSCH can use an independent HARQ-ACK Codebook.
  • the terminal device may configure network-related configuration parameters, and configure HARQ-ACKs of PDSCHs scheduled by CORESETs of different groups of indexes may be joint HARQ-ACK Codebooks, that is, CORESETs of different groups of indexes use the same HARQ-ACK Codebook at this time.
  • the TCI state corresponding to the first CORESET or the first CORESET corresponding Determining the first spatial domain transmitting filter according to the QCL signal of the first CORESET, including: a reference signal corresponding to type D in the TCI state corresponding to the first CORESET or a reference signal corresponding to type D in the QCL signal corresponding to the first CORESET Signal to determine the first spatial domain transmit filter.
  • the first CORESET is the first CC or the first download The CORESET with the smallest identifier among the CORESETs on the downstream time slots detected recently on the row BWP.
  • the first CORESET includes one of the following:
  • the network device configures the terminal device to use the joint HARQ-ACK feedback, and the HARQ-ACK corresponding to the downlink data sent by different TRPs can be multiplexed and fed back together.
  • the first CORESET includes one of the following:
  • the CORESET of the first DCI that triggers the first uplink signal is carried.
  • the network device configures the terminal device to use independent HARQ-ACK feedback, and the HARQ-ACK corresponding to the downlink data sent by different TRPs can be fed back separately and not multiplexed together.
  • the value of the first group of indexes includes: 0 or 1.
  • the terminal device determining that the determination method of the first spatial domain transmission filter is determination method 2 as an example, when the first CC where the first uplink signal is located or the first downlink BWP corresponding to the first CC is configured At least one CORESET in the CORESET is configured with a corresponding group index, and the method further includes: receiving first spatial relationship information corresponding to the first uplink signal configured by the network device.
  • the terminal device when at least one of the CORESETs configured on the first CC where the first uplink signal is located or the first downstream BWP corresponding to the first CC is configured with a corresponding group index, the terminal device does not want to configure the first CC A spatial relationship information.
  • the terminal device receives the first spatial relationship information configured by the network device.
  • the terminal device is configured to adopt independent HARQ-ACK feedback.
  • the path loss reference signal of determines the first spatial domain transmitting filter.
  • the embodiment of the present invention also provides an information processing method, as shown in FIG. 7, including:
  • the terminal device determines a first spatial domain transmitting filter used for transmitting a first uplink signal on the first CC, and determines a second spatial domain transmitting filter used for transmitting a second uplink signal on the second CC.
  • the first uplink signal is not configured with spatial relationship information.
  • the spatial relationship information configured corresponding to the first uplink signal is called first spatial relationship information
  • the spatial relationship information configured corresponding to the second uplink signal is called second spatial relationship information
  • the signal/channel type of the second uplink signal includes one of the following: SRS (or SRS resource), PUCCH (or PUCCH resource), and PUSCH.
  • the terminal device transmits the first uplink signal on the BWP currently activated on the first CC.
  • the signal/channel type of the first uplink signal and the second uplink signal can be the same or different
  • the method for determining the first spatial domain transmission filter and the second spatial domain transmission filter includes one of the following:
  • Manner 1 When the first uplink signal and the second uplink signal overlap in the time domain, and the second uplink signal is configured with corresponding second spatial relationship information, determine according to the second spatial relationship information The first spatial domain transmission filter and the second spatial domain transmission filter.
  • Manner 2 When the first uplink signal and the second uplink signal overlap in the time domain, and the second uplink signal is configured with corresponding second spatial relationship information or not configured with spatial relationship information, according to the The signal parameter of the first uplink signal and the signal parameter of the second uplink signal determine the first spatial domain transmission filter and the second spatial domain transmission filter.
  • Manner 3 When the first uplink signal and the second uplink signal overlap in the time domain, and the second uplink signal is not configured with corresponding second spatial relationship information, according to the first CC number and The number of the second CC determines the first spatial domain transmission filter and the second spatial domain transmission filter.
  • the first spatial domain transmission filter and the second spatial domain transmission filter are both determined according to the second spatial relationship information.
  • the terminal device determines the first spatial domain transmission filter based on the second spatial relationship information on the overlapping symbols where the first uplink signal and the second uplink signal overlap in the time domain And the second spatial domain transmitting filter.
  • the manner in which the first uplink signal and the second uplink signal overlap in the time domain is shown in FIG. 8, including: partial overlap shown in 801, inclusion shown in 802, and complete overlap shown in 803.
  • the signal parameters of the first uplink signal and the second uplink signal are determined according to the signal parameters of the first uplink signal and the second uplink signal. Priority, thereby determining the priorities of the first spatial domain transmitting filter and the second spatial domain transmitting filter, and determining the first spatial domain transmitting filter according to the priorities of the first spatial domain transmitting filter and the second spatial domain transmitting filter And the second spatial domain transmit filter.
  • the terminal equipment performs data based on the signal parameter of the first uplink signal and the value of the second uplink signal.
  • the signal parameter determines the first spatial domain transmitting filter and the second spatial domain transmitting filter.
  • the signal parameters include at least one of the following: signal/channel type, signal time domain characteristics.
  • the signal/channel types include: SRS, PUCCH, and PUSCH.
  • the time domain characteristics of the signal include: periodicity, aperiodicity, and semi-persistence.
  • the rules for determining the priority of the signal parameter of the first uplink signal and the signal parameter of the second uplink signal can be set according to actual requirements.
  • the priority of SRS is higher than the priority of PUCCH (SRS>PUCCH).
  • PUCCH PUCCH ⁇ SRS.
  • the signal parameters may also include: carried content.
  • PUCCH carrying HARQ/SR>SRS may also include: carried content.
  • the first uplink signal is SRS and the second uplink signal is PUCCH, and the priority of the first uplink signal is higher than that of the second uplink signal.
  • the first uplink signal is SRS and the second uplink signal is PUCCH, and the priority of the second uplink signal is higher than that of the first uplink signal.
  • the method for determining the first spatial domain transmission filter and the second spatial domain transmission filter includes:
  • the transmission filters are the same, wherein the spatial domain transmission filter with a high priority is an uplink signal with a high priority for transmitting signal parameters in the first spatial domain transmission filter and the second spatial domain transmission filter.
  • the spatial domain transmission filter used, the spatial domain transmission filter with a low priority is the one with the low priority of the transmission signal parameter among the first spatial domain transmission filter and the second spatial domain transmission filter.
  • the spatial domain transmission filter with a lower priority is made to follow the spatial domain transmission filter with a higher priority.
  • the priority of the first spatial domain transmission filter is higher than that of the second spatial domain transmission filter, that is, the priority of the first spatial domain transmission filter is high, and the priority of the second spatial domain transmission filter is low. Then the first spatial domain sending filter is determined, and the second spatial domain sending filter is the same as the first spatial domain sending filter, so that the second spatial domain sending filter follows the first spatial sending and filter.
  • the priority of the second spatial domain transmission filter is higher than that of the first spatial domain transmission filter, that is, the priority of the second spatial domain transmission filter is higher, and the priority of the first spatial domain transmission filter is lower. Then the second spatial domain transmission filter is determined, and the first spatial domain transmission filter is the same as the second spatial domain transmission filter, so that the first spatial domain transmission filter follows the second spatial domain transmission filter.
  • the spatial domain transmission filter with a high priority is a spatial domain transmission filter for an uplink signal with a high priority for transmitting signal parameters.
  • the priority of the signal parameter of the first uplink signal is higher than the priority of the signal parameter of the second uplink signal, then the priority of the first spatial domain transmission filter is higher than the priority of the second spatial domain transmission filter level.
  • the signal parameter further includes: the number of the CC.
  • the first uplink signal is determined according to the number of the first CC and the number of the second CC The priority of the signal and the second uplink signal.
  • the higher the priority of the CC where the first uplink signal and the second uplink signal are located is higher. In an example, the smaller the number of the CC where the first uplink signal and the second uplink signal are located has a higher priority.
  • the first spatial domain transmitting filter and the second spatial domain transmitting filter are determined according to the number of the first CC and the number of the second CC.
  • the second spatial domain transmission filter is determined according to the number of the first CC and the number of the second CC.
  • the first spatial domain transmission filter is determined, and the second spatial domain transmission filter is the same as the first spatial domain transmission filter.
  • the filters are the same.
  • the spatial domain transmitting filter with a larger corresponding CC number follows the spatial domain transmitting filter with a smaller corresponding CC number.
  • the first spatial domain transmission filter is determined, and the second spatial domain transmission filter is the same as the first spatial domain transmission filter.
  • the filters are the same.
  • the spatial domain transmission filter with a small corresponding CC number follows the spatial domain transmission filter with a large corresponding CC number.
  • the second spatial relationship is determined according to the second spatial relationship information.
  • Domain transmission filter in the case that the second uplink signal is not configured with second spatial relationship information, the second spatial domain transmission filter can be determined according to the information processing method shown in FIG. 6.
  • the first spatial domain sending filter can be determined according to the information processing method shown in FIG. 6.
  • the first spatial domain transmission filter is the same as the second spatial domain transmission filter.
  • the first spatial domain transmission filter is different from the second spatial domain transmission filter.
  • the method further includes:
  • the terminal device transmits the first uplink signal through the first spatial domain transmission filter, or transmits the second uplink signal through the second spatial domain transmission filter.
  • the terminal device transmits the corresponding uplink signal only through one of the first spatial domain transmitting filter and the second spatial domain transmitting filter.
  • the terminal device transmits the priority through the first spatial domain transmission filter or the second transmission filter corresponding to the uplink signal with a higher priority among the first uplink signal and the second uplink signal. High-level uplink signal.
  • the parameter for determining the uplink signal with a higher priority in the first uplink signal and the second uplink signal includes at least one of the following parameters:
  • Signal/channel type Signal/channel type, signal time domain characteristics, and CC where the signal is located.
  • the rules for determining the priority of different parameters can be set according to actual needs.
  • the first CC and the second CC satisfy one of the following relationships:
  • the first CC and the second CC belong to in-band carrier aggregation
  • the first CC and the second CC are in the same CC group
  • the first CC and the second CC are determined according to the reporting capability of the terminal device.
  • the information processing method provided by the embodiment of the present invention can determine the uplink transmission beam for transmitting the uplink signal when the network device is not configured with spatial relationship information, and is suitable for CA scenarios or multi-TRP scenarios, in the CA scenario or multi-TRP scenarios And when the network device is not configured with the spatial relationship information, the uplink transmission beam for transmitting the uplink signal is determined.
  • the information processing method provided in the embodiment of the present invention will be illustrated through different examples.
  • the terminal device uses the first spatial domain transmission filter to transmit the first SRS resource, where the first SRS resource is not configured with corresponding spatial relationship information.
  • the frequency band used for transmitting the first SRS resource is a millimeter wave frequency band.
  • the SRS resource set (SRS resource set) corresponding to the first SRS resource is used to support codebook transmission.
  • the usage of the SRS resource set corresponding to the first SRS resource is codebook.
  • the SRS resource set corresponding to the first SRS resource is used to support non-codebook transmission.
  • the usage of the SRS resource set corresponding to the first SRS resource is nonCodebook.
  • the SRS resource set corresponding to the first SRS resource is used to support antenna switching.
  • the usage of the SRS resource set corresponding to the first SRS resource is antennaSwitching.
  • the SRS resource set corresponding to the first SRS resource is used to support positioning.
  • the usage of the SRS resource set corresponding to the first SRS resource is positioning.
  • the terminal device satisfies beam correspondence.
  • the first SRS resource may be aperiodic, or periodic, or semi-persistent.
  • the manner in which the terminal device determines the first spatial domain transmission filter includes:
  • Method A1 When the first CC or the first BWP where the first SRS resource is located is configured with one or more CORESETs, the terminal device will use the reference signal corresponding to the type D (QCL-TypeD) in the TCI-state corresponding to the first CORESET or the corresponding reference signal The reference signal corresponding to the type D ('QCL-TypeD') in the QCL information is used to determine the first spatial domain transmitting filter.
  • the first CORESET is the CORESET with the smallest ID among the CORESETs on the downlink time slot that the terminal device has recently detected on the first CC or the first BWP.
  • the first CORESET is the CORESET corresponding to the DCI that triggers the transmission of the first SRS resource.
  • Method A2 When the first CC or the first BWP where the first SRS resource is located is not configured with CORESET, the terminal device activates the TCI state according to the activated TCI corresponding to the PDSCH on the first CC or the first BWP.
  • Type D ('QCL) -TypeD') corresponding reference signal to determine the first spatial domain transmission filter.
  • Method A3 When the first CC or the first BWP where the first SRS resource is located is not configured with CORESET, and there is no activated TCI state corresponding to the PDSCH on the first CC or the first BWP, the PDSCH must be activated on the first CC or the first BWP For the corresponding at least one TCI state, the terminal device determines the first spatial domain transmission filter based on the activated TCI state.
  • the first SRS resource needs to be configured with the corresponding ⁇ spatial relationship information.
  • the network configuration can be restricted to reduce the number of possible situations, reduce the complexity of the protocol, and reduce the complexity of UE and network implementation.
  • Manner A4 When the first CC or the first BWP where the first SRS resource is located is not configured with CORESET, and there is no active TCI state corresponding to the PDSCH on the first CC or the first BWP, the terminal device The reference signal corresponding to the type D ('QCL-TypeD') in one TCI state of the TCI states configured for the PDSCH determines the first spatial domain transmission filter.
  • the one TCI state is the TCI state with the smallest identifier among the TCI states corresponding to the PDSCH.
  • method A4 does not need to be an activated TCI state, and can save signaling for activating PDSCH TCI state.
  • Method A5 When the first CC or the first BWP where the first SRS resource is located is not configured with CORESET, and the first CC or the first BWP is not configured with at least one TCI state corresponding to the PDSCH, the first CC or the first BWP is configured For at least one TCI state corresponding to the PDSCH, the terminal device determines the first spatial domain transmission filter through the configured TCI state.
  • the first SRS resource needs to be configured with the corresponding Spatial relationship information.
  • Method A5 can reduce the number of possible situations, reduce the complexity of the protocol, and reduce the complexity of UE and network implementation by restricting the network configuration.
  • Manner A6 When the first CC or the first BWP where the first SRS resource is located is not configured with CORESET, and there is no active TCI state corresponding to the PDSCH on the first CC or the first BWP, the terminal device according to the path corresponding to the first SRS resource Loss reference signal (Pathloss RS) to determine the first spatial domain transmission filter.
  • Pathloss RS Loss reference signal
  • the existing path loss reference signal is used to reduce the implementation complexity of determining the first spatial domain transmission filter by the terminal device.
  • the first spatial domain transmitting filter is the same as the spatial domain filter used for receiving the path loss reference signal.
  • the path loss reference signal includes one of the following resources: CSI-RS resources, SS/PBCH blocks, positioning reference signal (positioning RS, PRS) resources.
  • the terminal device uses the first spatial domain transmission filter to transmit the first SRS resource on the first CC or the second BWP, and uses the second spatial domain transmission filter to transmit the second uplink signal on the second CC or the second BWP.
  • the second uplink signal may also be described as the second channel, and the spatial relationship information is not configured for the first SRS resource.
  • the frequency band used for transmitting the second uplink signal is a millimeter wave frequency band.
  • the second uplink signal may be an SRS signal or a positioning reference signal.
  • the second channel may be PDSCH or PDCCH.
  • the first CC and the second CC are two different CCs, and they belong to two different CCs in carrier aggregation.
  • the first BWP and the second BWP are respectively BWPs on two different CCs in carrier aggregation.
  • the method for the terminal device to determine the first spatial domain transmission filter and the second spatial domain transmission filter includes:
  • the terminal equipment Determine the first spatial domain transmitting filter according to the spatial relationship information corresponding to the second uplink signal (or second channel), or only on the overlapping symbols, according to the spatial relationship information corresponding to the second uplink signal (or second channel) To determine the first spatial domain transmit filter.
  • the default first spatial domain transmission filter follows (follow) the second spatial domain transmission filter explicitly indicated by the network, which can better effectively reduce the signaling overhead in the CA scenario.
  • the second uplink signal (or second channel) is configured with corresponding spatial relationship information, and the transmission of the first SRS resource and the second uplink signal (or second channel) overlap in the time domain, then according to the first
  • the signal parameters of an SRS and the signal parameters of the second uplink signal (or second channel) are used to determine the first spatial domain transmitting filter and the second spatial domain transmitting filter, or only on overlapping symbols, then according to the transmission signal or
  • the channel type determines the first spatial domain transmission filter and the second spatial domain transmission filter.
  • the rules between the spatial filters corresponding to multiple CCs are clarified to avoid the uncertainty of the behavior of the terminal equipment and improve the system performance.
  • the signal parameters include: signal/channel type, signal time domain characteristics, and content carried by the signal or channel, etc.
  • the signal time domain characteristics can include: periodic, non-periodic, semi-continuous
  • SRS follow PUCCH or PUSCH can be abbreviated as PUCCH>SRS, or PUSCH>SRS.
  • the UE determines the first spatial domain transmission filter according to the second spatial domain transmission filter.
  • the second spatial domain transmission filter corresponding to the PUCCH or PUSCH is determined according to the spatial relationship information corresponding to the second uplink signal, and then the SRS uses the same spatial domain transmission filter as the first spatial domain transmission filter.
  • PUSCH or PUCCH follow SRS can be abbreviated as PUCCH ⁇ SRS, or PUSCH ⁇ SRS.
  • the second spatial domain transmission filter is determined according to the first spatial domain transmission filter.
  • the first spatial domain transmission filter corresponding to the SRS is determined according to the method provided in the first embodiment, and then the PUSCH or PUCCH adopts the same spatial domain transmission filter as the second spatial domain transmission filter.
  • aperiodic SRS>periodic PUCCH optionally, aperiodic SRS>periodic PUCCH.
  • PUCCH carrying HARQ/SR>all SRS optionally, PUCCH carrying HARQ/SR>all SRS.
  • aperiodic SRS>PUCCH that only carries CSI report or L1-RSRP or L1-SINR.
  • Manner B3 If the second uplink signal (or second channel) is not configured with corresponding spatial relationship information, then if the transmission of the first SRS resource and the second uplink signal (or second channel) overlap in the time domain, then according to The transmission signal or channel type determines the first spatial domain transmission filter and the second spatial domain transmission filter, or only on overlapping symbols, the first spatial domain transmission filter and the second spatial domain are determined according to the transmission signal or channel type Domain transmit filter.
  • method B3 the rules between the spatial filters corresponding to multiple CCs are clarified to avoid the uncertainty of the behavior of the terminal equipment and improve the system performance.
  • the transmission signal or channel type includes: signal type, channel type, signal time domain characteristics, and content carried by the signal or channel, etc.
  • the signal time domain characteristics can include: periodic, non-periodic, semi-continuous
  • SRS follow PUCCH or PUSCH can be abbreviated as PUCCH>SRS, or PUSCH>SRS.
  • the UE determines the first spatial domain transmission filter according to the second spatial domain transmission filter.
  • the second spatial domain transmission filter corresponding to the PUCCH or PUSCH is determined according to the spatial relationship information corresponding to the second uplink signal, and then the SRS uses the same spatial domain transmission filter as the first spatial domain transmission filter.
  • PUSCH or PUCCH follow SRS can be abbreviated as PUCCH ⁇ SRS, or PUSCH ⁇ SRS.
  • the second spatial domain transmission filter is determined according to the first spatial domain transmission filter.
  • the first spatial domain transmission filter corresponding to the SRS is determined according to the method provided in the first embodiment, and then the PUSCH or PUCCH adopts the same spatial domain transmission filter as the second spatial domain transmission filter.
  • aperiodic SRS>periodic PUCCH optionally, aperiodic SRS>periodic PUCCH.
  • PUCCH carrying HARQ/SR>all SRS optionally, PUCCH carrying HARQ/SR>all SRS.
  • aperiodic SRS>PUCCH that only carries CSI report or L1-RSRP or L1-SINR.
  • the first spatial domain transmission filter and the second spatial domain transmission filter are determined by way of B4.
  • Manner B4 If the second uplink signal (or second channel) is not configured with corresponding spatial relationship information, then if the transmission of the first SRS resource and the second uplink signal (or second channel) overlap in the time domain, then according to The information of the first CC and the second CC is used to determine the first spatial domain transmission filter and the second spatial domain transmission filter, or only on the overlapping symbols, the first space is determined according to the information of the first CC and the second CC Domain transmission filter and second spatial domain transmission filter.
  • the rules between the spatial filters corresponding to multiple CCs are clarified to avoid the uncertainty of the behavior of the terminal equipment and improve the system performance.
  • the first spatial domain transmission filter is determined according to the method, and the second spatial domain transmission filter adopts the same as the first spatial domain transmission filter. The same filter.
  • method B4 optionally, if the number of the first CC is greater than the number of the second CC, the first spatial domain transmission filter is determined, and the second spatial domain transmission filter is the same as the first spatial domain transmission filter. Filter.
  • the method provided in the first embodiment may be used to determine the first spatial domain transmission filter.
  • the first spatial domain transmitting filter and the second spatial domain transmitting filter are the same.
  • the terminal device does not want the first spatial domain transmission filter and the second spatial domain transmission filter to be different.
  • Method B5 can avoid the U terminal equipment having to use two different uplink transmission beams, and reduce the complexity of UE implementation.
  • the terminal device sends signals in the following ways:
  • Transmission method 1 The terminal device itself decides which signal or channel to send, so as to send an uplink signal or channel through a spatial domain transmission filter.
  • Transmission mode 1 can avoid the UE having to use two different uplink transmission beams, and reduce the complexity of UE implementation.
  • Transmission mode 2 The terminal device decides which signal or channel to send according to the priority of the first SRS and the second uplink signal.
  • the priority of the first SRS and the second uplink signal is determined according to the type of the channel or signal.
  • the priority may also include the priority in mode B2 or mode B3.
  • the priority of the first SRS and the second uplink signal is determined according to the CC where the signal or channel is located.
  • the first SRS resource is sent.
  • the first SRS resource is sent.
  • the relationship satisfied by the first CC and the second CC includes one of the following relationships:
  • the first CC and the second CC are on the same frequency bandwidth (intra-band).
  • the first CC and the second CC can match typical hardware implementations, reducing the complexity of UE implementation.
  • the first CC and the second CC are in the same CC group configured in the network.
  • the network equipment can flexibly control which CCs use the same UL beam to increase network flexibility.
  • the same spatial domain transmission filter is used.
  • Relation 3 The first CC and the second CC (or the CC corresponding to the first BWP and the CC corresponding to the second BWP) are determined according to the reporting capability of the UE.
  • the UE reporting capability indicates which frequencies or frequency bands are used when transmitting at the same time, using the same spatial domain transmission filter.
  • the first CC and the second CC can match the reporting capabilities of the UE, reducing the complexity of UE implementation.
  • the group index is configured in the RRC configuration parameter of CORESET (for example, the RRC parameter ControlResourceSet), and the group index of different CORESET configurations can be the same or different.
  • a CORESET configured with the same index may be referred to as a CORESET group.
  • a CORESET with an index value of 0 is a CORESET group
  • a CORESET group with an index of 1 is another CORESET group.
  • the value of the group index is 0 or 1.
  • the group index may default to a fixed value, for example, 0 or 1.
  • the group index may be used to determine the HARQ-ACK codebook (Codebook), that is, according to the related information of the network configuration, the HARQ-ACK of the CORESET-scheduled PDSCH configured with different group indexes may adopt an independent HARQ-ACK Codebook .
  • Codebook HARQ-ACK codebook
  • the method for the terminal device to determine the first spatial domain transmission filter includes:
  • Method C1 according to the reference signal corresponding to type D ('QCL-TypeD') in the TCI-state (TCI state) corresponding to the first CORESET or the reference signal corresponding to type D ('QCL-TypeD') in the corresponding QCL information Determining the first spatial domain transmission filter.
  • Network configuration terminal equipment adopts joint HARQ-ACK feedback (joint HARQ-ACK feedback, that is, HARQ-ACK corresponding to downlink data sent by different TRPs can be multiplexed together for feedback. Generally, it is only suitable for backhaul between different TRPs.
  • the terminal device according to the reference signal corresponding to the type D ('QCL-TypeD') in the TCI-state (TCI state) corresponding to the second CORESET or the type D ('QCL-TypeD') corresponding to the corresponding QCL information
  • a reference signal is used to determine the first spatial domain transmission filter.
  • the second CORESET is the CORESET with the smallest ID among the CORESETs corresponding to the first group of indexes on the downlink time slot that the terminal device has recently detected on the first CC or the first BWP.
  • the first group index is 0 or 1.
  • the second CORESET is the CORESET with the smallest ID among the CORESETs corresponding to all the group indexes on the downlink timeslots recently detected by the terminal device on the first CC or the first BWP.
  • the terminal device always selects a fixed TRP for transmission, which is simple to implement, which reduces the complexity of UE and network implementation.
  • the terminal device determines, according to a network instruction, whether the second CORESET is the CORESET with the smallest ID among the CORESETs corresponding to all the group indexes on the downlink time slot that the terminal device has recently detected on the first CC or the first BWP, or whether the terminal device is in The CORESET with the smallest ID among the CORESETs corresponding to the first group of indexes on the most recently detected downlink time slot on the first CC or the first BWP.
  • the second CORESET is a CORESET that carries the first DCI.
  • the first SRS resource is replaced with the first PUCCH resource, if the transmission on the first PUCCH resource is triggered by the first DCI, or the carried information corresponds to the data scheduled by the first DCI.
  • Method C3 network configuration terminal equipment adopts separate HARQ-ACK feedback (separate HARQ-ACK feedback, that is, HARQ-ACK corresponding to the downlink data sent by different TRPs can be fed back separately, not multiplexed together, generally applicable to backhaul between different TRPs If the situation is not ideal, it can also be applied to the ideal situation of backhaul between different TRPs), the terminal equipment according to the reference signal corresponding to the type D ('QCL-TypeD') in the TCI-state (TCI state) corresponding to the third CORESET Or the reference signal corresponding to type D ('QCL-TypeD') in the corresponding QCL information is used to determine the first spatial domain transmitting filter
  • the third CORESET is the CORESET with the smallest ID among the CORESETs corresponding to the first group of indexes on the downlink time slot that the terminal device has recently detected on the first CC or the first BWP.
  • the first group index is 0 or 1.
  • the third CORESET is the CORESET with the smallest ID among all the group indexes corresponding to the downstream time slots detected by the terminal on the first CC or the first BWP.
  • the terminal device determines, according to the network instruction, whether the third CORESET is the CORESET with the smallest ID among the CORESETs corresponding to all the group indexes of the downlink time slots that the terminal device has recently detected on the first CC or the first BWP, or whether the terminal device is in the The CORESET with the smallest ID among the CORESETs corresponding to the first group of indexes on the most recently detected downlink time slot on the first CC or the first BWP.
  • the third CORESET corresponds to the second set of indexes on the downlink time slot that the terminal device has recently detected on the first CC or the first BWP.
  • the CORESET with the smallest ID in the CORESET if the first SRS resource is replaced with the first PUCCH resource, if the transmission on the first PUCCH resource is triggered by the first DCI, or the carried information corresponds to the data scheduled by the first DCI.
  • the second group index is a group index corresponding to CORESET carrying the first DCI.
  • the third CORESET is the CORESET that carries the first DCI.
  • the first SRS resource needs to be configured with corresponding spatial relationship information, that is, the UE does not want the first SRS resource to be configured with spatial relationship information.
  • the network configuration situation can be limited, the number of possible situations can be reduced, and the complexity of UE and network implementation can be reduced.
  • Manner C4 The first SRS resource needs to be configured with corresponding spatial relationship information.
  • the UE does not want the first SRS resource not to be configured with spatial relationship information.
  • the aforementioned default relationship or default spatial relationship information is not allowed to reduce the complexity of UE and network implementation.
  • Manner C5 The terminal device determines the first spatial domain transmission filter according to a path loss reference signal (Pathloss RS) corresponding to the first SRS resource.
  • Pathloss RS path loss reference signal
  • the first spatial domain transmitting filter and the spatial domain filter used for receiving the path loss reference signal are the same.
  • the drive test reference signal may be a CSI-RS resource, an SS/PBCH block or a PRS resource.
  • the first uplink signal is an SRS as an example.
  • the first uplink signal may also be a PUCCH.
  • the first BWP in the foregoing examples 1 to 3 is the downlink BWP corresponding to the first CC
  • the second BWP is the downlink BWP corresponding to the second CC.
  • an embodiment of the present invention also provides a terminal device.
  • the composition structure of the terminal device is shown in FIG. 9, and the terminal device 900 includes:
  • the first determining unit 901 is configured to determine transmission according to the first component carrier CC where the first uplink signal is located or the first downlink bandwidth part BWP corresponding to the first CC when the spatial relationship information is not configured for the first uplink signal.
  • the first spatial domain transmission filter used by the first uplink signal, or the first spatial domain transmission filter is determined according to a path loss reference signal corresponding to the first uplink signal.
  • the first determining unit 901 is further configured to:
  • the transmission configuration indicates that the first TCI state in the TCI state determines the first spatial domain transmission filter.
  • the first TCI state is the TCI state with the smallest identifier among the activated TCI states.
  • the PDSCH on the first CC or the first downlink BWP has a corresponding activated TCI state.
  • the terminal device further includes:
  • the activation unit is configured to: when there is no corresponding activated TCI state for the PDSCH on the first CC or the first downlink BWP, receive indication information sent by a network device, where the indication information is used to activate the At least one TCI state among the TCI states corresponding to the PDSCH on the first CC or the first downlink BWP.
  • the first TCI state when there is no corresponding activated TCI state for the PDSCH on the first CC or the first downlink BWP, the first TCI state is the smallest ID among the TCI states corresponding to the PDSCH The TCI status.
  • the terminal device further includes:
  • the first configuration unit is configured to receive the TCI state corresponding to the PDSCH configured by the network device when there is no corresponding TCI state for the PDSCH on the first CC or the first downlink BWP.
  • the first TCI state is the TCI state with the smallest identifier among the configured TCI states.
  • the first determining unit is further configured to determine the first spatial domain transmitting filter according to the reference signal corresponding to the type D in the first TCI state.
  • the first determining unit is further configured to:
  • a QCL signal corresponding to a CORESET determines the first spatial domain transmission filter, where the first CORESET is a CORESET configured on the first CC or the first downstream BWP.
  • the first determining unit 901 is further configured to:
  • the first spatial domain transmission filter is determined according to the reference signal corresponding to the type D in the TCI state corresponding to the first CORESET or the reference signal corresponding to the type D in the QCL signal corresponding to the first CORESET.
  • the group index is configured in the RRC configuration parameter corresponding to the at least one CORESET.
  • the first CORESET is the CORESET with the smallest identifier among the CORESETs on the most recently detected downstream time slot on the first CC or the first downstream BWP.
  • the first CORESET includes one of the following:
  • the first CORESET when the network device configures the terminal device to use independent HARQ-ACK feedback, includes one of the following:
  • the CORESET of the first DCI that triggers the first uplink signal is carried.
  • the value of the first group index includes: 0 or 1.
  • the terminal device further includes: a receiving unit configured to:
  • the corresponding group index configured by the network device is received The first spatial relationship information of the first uplink signal.
  • the first determining unit 901 is further configured to:
  • the first spatial domain transmitting filter is determined according to the configured first spatial relationship information.
  • the terminal device is configured to adopt independent HARQ-ACK feedback.
  • the first determining unit 901 is further configured to:
  • the PDSCH on the first CC or the first downlink BWP does not have a corresponding activated TCI state, or the first CC or the first downlink BWP corresponding to the first CC is in the CORESET configured on the first downlink BWP
  • At least one CORESET is configured with a corresponding group index, and the first spatial domain transmission filter is determined according to a path loss reference signal corresponding to the first uplink signal.
  • the signal/channel type of the first uplink signal includes at least one of the following:
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to run the computer program and execute the information executed by the terminal device. Processing method steps.
  • an embodiment of the present invention also provides a terminal device.
  • the composition structure of the terminal device is as shown in FIG. 10, the terminal device 1000 includes:
  • the second determining unit 1001 is configured to determine the first spatial domain transmission filter used for transmitting the first uplink signal on the first CC, and determine the second spatial domain transmission filter used for transmitting the second uplink signal on the second CC A filter, wherein the first uplink signal is not configured with spatial relationship information.
  • the second determining unit 1001 is further configured to: when the first uplink signal and the second uplink signal overlap in the time domain, and the second uplink signal is configured with a corresponding second
  • the spatial relationship information determines the first spatial domain transmitting filter and the second spatial domain transmitting filter according to the second spatial relationship information.
  • the second determining unit 1001 is further configured to: determine, based on the second spatial relationship information, on the overlapping symbols where the first uplink signal and the second uplink signal overlap in the time domain.
  • the first spatial domain transmission filter and the second spatial domain transmission filter are further configured to: determine, based on the second spatial relationship information, on the overlapping symbols where the first uplink signal and the second uplink signal overlap in the time domain.
  • the second determining unit 1001 is further configured to: when the first uplink signal and the second uplink signal overlap in the time domain, and the second uplink signal is configured with a second spatial relationship Information or unconfigured spatial relationship information, and determine the first spatial domain transmission filter and the second spatial domain transmission filter according to the signal parameter of the first uplink signal and the signal parameter of the second uplink signal.
  • the second determining unit 1001 is further configured to: on the overlapping symbols of the first uplink signal and the second uplink signal in the time domain, according to the signal parameter , The signal parameter of the second uplink signal, determining the first spatial domain transmitting filter and the second spatial domain transmitting filter.
  • the signal parameter includes at least one of the following: signal/channel type, signal time domain characteristics.
  • the second determining unit 1001 is further configured to:
  • the transmission filters are the same, wherein the spatial domain transmission filter with a high priority is an uplink signal with a high priority for transmitting signal parameters in the first spatial domain transmission filter and the second spatial domain transmission filter.
  • the spatial domain transmission filter used, the spatial domain transmission filter with a low priority is the one with the low priority of the transmission signal parameter among the first spatial domain transmission filter and the second spatial domain transmission filter.
  • the second determining unit 1001 is further configured to: when the first uplink signal and the second uplink signal overlap in the time domain, and the second uplink signal is not configured with a corresponding second
  • the spatial relationship information determines the first spatial domain transmission filter and the second spatial domain transmission filter according to the number of the first CC and the number of the second CC.
  • the second determining unit 1001 is further configured to: when the number of the first CC is less than the number of the second CC, determine the first spatial domain transmission filter, and the second spatial domain The domain transmission filter is the same as the first spatial domain transmission filter.
  • the second determining unit 1001 is further configured to: when the number of the first CC is greater than the number of the second CC, determine the first spatial domain transmission filter, and the second spatial domain The domain transmission filter is the same as the first spatial domain transmission filter.
  • the second determining unit 1001 is further configured to:
  • the second determining unit 1001 is further configured to: when the first CC or the first downlink BWP corresponding to the first CC is not configured with CORESET, according to the first CC or the first downlink BWP The first TCI state in the TCI state corresponding to the PDSCH on the first downlink BWP determines the first spatial domain transmission filter.
  • the second determining unit 1001 is further configured to:
  • a QCL signal corresponding to a CORESET determines the first spatial domain transmission filter, where the first CORESET is a CORESET configured on the first CC or the first downstream BWP.
  • the second determining unit 1001 is further configured to:
  • the first space configured by the network device is received.
  • the relationship information determines the determination method of the first spatial domain transmission filter according to the first spatial relationship information.
  • the second determining unit 1001 is further configured to:
  • the path loss reference signal corresponding to the first uplink signal determines that the first spatial domain transmitting filter, or at least one of the CORESETs configured on the first CC or the first downlink BWP corresponding to the first CC, is Configure a corresponding group index, and determine the first spatial domain transmission filter according to a path loss reference signal corresponding to the first uplink signal.
  • the first spatial domain transmission filter is the same as the second spatial domain transmission filter.
  • the first spatial domain transmission filter is different from the second spatial domain transmission filter.
  • the terminal device further includes:
  • the sending unit is configured as:
  • the first uplink signal is transmitted through the first spatial domain transmission filter, or the second uplink signal is transmitted through the second spatial domain transmission filter.
  • the sending unit is further configured to:
  • the uplink signal with the higher priority is transmitted through the first spatial domain transmission filter or the second transmission filter corresponding to the uplink signal with a higher priority in the first uplink signal and the second uplink signal.
  • the parameter for determining the uplink signal with a higher priority in the first uplink signal and the second uplink signal includes at least one of the following signal parameters:
  • Signal/channel type Signal/channel type, time domain characteristics of the signal, and CC where the signal is located.
  • the first CC and the second CC satisfy one of the following relationships: the first CC and the second CC belong to in-band carrier aggregation; the first CC and the second CC The CCs are in the same CC group; the first CC and the second CC are determined according to the reporting capability of the terminal device.
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned terminal device when the computer program is running. Information processing method steps.
  • the electronic device 1100 includes: at least one processor 1101, a memory 1102, and at least one network interface 1104.
  • the various components in the electronic device 1100 are coupled together through the bus system 1105.
  • the bus system 1105 is used to implement connection and communication between these components.
  • the bus system 1105 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 1105 in FIG. 11.
  • the memory 1102 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 1102 described in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 1102 in the embodiment of the present invention is used to store various types of data to support the operation of the electronic device 1100. Examples of such data include: any computer program used to operate on the electronic device 1100, such as an application program 11021.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 11021.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1101 or implemented by the processor 1101.
  • the processor 1101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1101 or instructions in the form of software.
  • the aforementioned processor 1101 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 1101 may implement or execute various methods, steps, and logical block diagrams disclosed in the embodiments of the present invention.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 1102.
  • the processor 1101 reads the information in the memory 1102, and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 1100 may be configured by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable Logic Device
  • controller MCU
  • MPU or other electronic components to implement the foregoing method.
  • the embodiment of the present invention also provides a storage medium for storing computer programs.
  • the storage medium can be applied to the terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present invention.
  • the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present invention.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息处理方法,包括:当第一上行信号未配置空间关系信息,终端设备根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。本发明还公开了一种信息处理方法、终端设备及存储介质。

Description

信息处理方法、终端设备及存储介质 技术领域
本发明涉及移动通信技术,尤其涉及一种信息处理方法、终端设备及存储介质。
背景技术
新无线(New Radio,NR)/5G系统的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。能够有效地保证高频段NR系统的覆盖的一种有效的技术方案是基于大规模天线阵列(Massive Multiple-Input Multiple-Output,Massive MIMO)采用多路波束(multiple beam)技术来提高覆盖能力。其中,multiple beam技术也可称为混合波束(hybrid beam)技术。
目前,针上行信号,网络设备通过下行信号向终端设备配置,以通过配置的空间关系信息指示终端设备使用哪个上行发送波束来发送上行信号,但这样会存在较大的信令开销。因此,终端设备在网络设备未配置空间关系信息的情况下如何确定发送上行信号的上行发送波束成为待解决的问题。
发明内容
本发明实施例提供一种信息处理方法、终端设备及存储介质,能够在网络设备未配置空间关系信息的情况下,确定发送上行信号的上行发送波束。
第一方面,本发明实施例提供一种信息处理方法,包括:
当第一上行信号未配置空间关系信息,终端设备根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP确定传输所述第一上行信号的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
第二方面,本发明实施例提供一种信息处理方法,包括:
终端设备确定在第一CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,其中,所述第一上行信号未配置空间关系信息。
第三方面,本发明实施例提供一种终端设备,包括:
第一确定单元,配置为当第一上行信号未配置空间关系信息,根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
第四方面,本发明实施例提供一种终端设备,包括:
第二确定单元,配置为确定在第一CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,其中,所述第一上行信号未配置第一空间关系信息。
第五方面,本发明实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的信息处理方法的步骤。
第六方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的信息处理方法。
本发明实施例提供的信息处理方法,包括:当第一上行信号未配置空间关系信息,终端设备根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP 确定传输所述第一上行空间信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器;从而在网络设备未配置空间关系信息的情况下,确定发送上行信号的上行发送波束。
附图说明
图1为本发明实施例单波束的一种可选的系统示意图;
图2为本发明实施例多波束的一种可选的系统示意图;
图3为本发明实施例CA的一种可选的时域示意图;
图4为本发明实施例多TRP的一种可选的系统示意图;
图5为本发明实施例通信系统的一种可选的组成结构示意图;
图6为本发明实施例提供的信息处理方法的一种可选的处理流程示意图;
图7为本发明实施例提供的信息处理方法的一种可选的处理流程示意图;
图8为本发明实施例的一种可选的重叠示意图;
图9为本发明实施的提供的终端设备的一个可选的结构示意图;
图10是本发明实施例提供的终端设备的一个可选的结构示意图;
图11是本发明实施例提供的电子设备的一个可选的结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点和技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
在对本发明实施例提供的信息处理方法进行详细说明之前,先对多波束系统、载波聚合(Carrier Aggregation,CA)和多发送接收节点(transmit-receive point,TRP)进行说明。
NR/5G的多波束(Multi-beam)系统在下行链路(downlink)中把发射功率集中在一个较窄的波束(beam)来覆盖小区中的部分区域,从而达到增强整个系统的覆盖范围。
传统网络部署(例如,3G、4G/LTE)使用一个波束(在传统系统中,不需要额外提波束整个概念,因为只有一个)来覆盖整个小区。在一示例中,如图1中,网络使用一个相对宽的波束:波束101覆盖整个小区,可以同时为小区中的终端设备:UE1、UE2、UE3、UE4和UE5服务。因此在每个时刻,小区覆盖范围内终端设备都有机会获得系统分配的传输资源。
NR中使用相对较窄的多路波束,因此,可以把能量集中,从而使得离小区较远的终端设备也可以获得良好的接收性能。
多波束系统通过时间上的波束扫描(beam sweeping)来实现覆盖整个小区的效果,即不同时刻使用不同的波束来覆盖不同的区域,每个波束覆盖一个较小的范围,通过时间上的扫描来实现多个波束覆盖整个小区的效果。在一示例中,如图2所示,多波束系统在不同时刻使用4个不同的波束:波束201、波束202、波束203和波束204分别覆盖不同的区域,其中,波束201在时刻1覆盖UE1对应的区域、波束202在时刻2覆盖UE对应的区域、波束203在时刻3覆盖UE3和UE4对应的区域,波束204在在时刻4覆盖UE5对应的区域。小区中的终端设备只有当某个时刻某个波束正好覆盖到其对应的区域,其才能和网络设备进行通信,比如,在时刻3,系统使用波束3覆盖UE3和UE4,UE3和UE 4能够与通信设备通信。
在上述描述中,对下行采用多个发送波束(transmit beam)的情况进行了介绍,同样地,终端设备也可以使用多个发送波束进行上行发送,原理类似,这里不再赘述。
波束是在日常讨论中使用的术语,在实际协议中,波束这个词往往不可见,不同的波束是通过所承载的不同信号来进行识别或者指示的,例如:
●不同的波束上传输不同的同步信号(Synchronization Signal,SS)/物理广播信道(Physical broadcast channel,PBCH)块(block);终端设备可以通过不同的SS/PBCH block来区分下行发送波束。
●不同的波束上传输不同的信道状态信息参考信号(Channel state information reference signal,CSI-RS)资源(resource)对应的CSI-RS信号;终端设备通过CSI-RS信号/CSI-RS资源来区分下行发送波束。
●不同的波束上传输不同的信道探测参考信号(Sounding Reference Signal,SRS)资源(resource)对应的SRS信号,网络设备通过SRS信号/SRS资源识来区分上行发送波束。
●当在终端设备侧存在波束对应性(beam correspondence)(此处指的是不需要上行波束扫描(UL beam sweeping)就能成立的波束对应性,即如果接收波束X是接收下行信号的较佳/最佳选择,终端设备根据接收波束X推断出其对应的发射波束Y是较佳/最佳的上行发送波束)时,如果网络设备指示某个下行发送波束的对应下行信号为下行信号A,则终端设备能够根据接收下行信号A对应的接收波束B知道其对应的发送波束C。在这种情况下,网络设备中指示终端设备的上行发送波束C,往往可以直接指示下行信号A来间接的指示上行发送波束C。
因此,对于波束的描述基于所承载的上行信号或下行信号进行。
其中,波束对应性包括两种:
第一种、不需要UL beam sweeping的波束对应性。
第二种、要UL beam sweeping的波束对应性。
在本发明实施例中,将第一种简称为波束对应性;提到第二种时,明确说明是需要UL beam sweeping的波束对应性,或者简称为波束对应性不理想或不满足波束对应性。
如果终端设备中存在多个上行发送波束时,网络设备确定终端设备使用哪个上行发送波束的方式可以包括:
方式一、网络设备配置多个SRS resource,让终端设备使用不同的上行发送波束进行对应的SRS发送,其中,不同的上行发送波束发送不同的SRS resource对应的SRS信号。网络设备通过测量SRS信号,可以知道哪个上行发送波束进行传输效果较佳。
方式二、若终端设备侧存在beam correspondence时,网络设备根据这一特性,认为终端设备根据其对应的较佳的下行发送波束可以知道其对应的接收波束,并根据波束对应性知道此终端设备对应的较佳的上行发送波束。
其中,方式一可以用于波束对应性情况(即不需要UL beam sweeping就可以满足波束对应性)以及波束对应性不理想的情况(即需要通过UL beam sweeping来满足波束对应性),方式二一般只用于波束对应性的情况。
网络设备指示终端设备使用哪个上行发送波束时,可以通过指示下列标识来间接地指示对应的上行发送波束:
·SRS资源指示标识(SRS resource indicator,SRI),(可选地,部分信令同时包含)SRS资源所在的上行带宽部分(Bandwidth Part,BWP)标识(BWP ID)对应的指示信息。
·同步信号块(Synchronization Signal Block,SSB)索引(index)。
·CSI-RS资源标识(CSI-RS resource indicator)。
其中,SSB也就是SS/PBCH block。
这里,在描述上行发送波束时,可通过空间域发送滤波器来体现。比如:当上行信号传输SRS时,描述如下:
如果终端设备配置有包括参考SSB索引的标识的高层参数空间关系信息,终端设备将使用与接收参考SSB相同的空间域滤波器来传输目标SRS资源。
如果高层参数空间关系信息包括参考CSI-RS索引的标识,终端设备将使用与接收参考周期性CSI-RS或参考半持续CSI-RS相同的空间域滤波器来传输目标SRS资源。
如果高层参数空间关系信息包括参考SRS的标识,终端设备将使用与发送参考周期性SRS相同的空间域发送滤波器来传输目标SRS资源。
对于上行信号,传输的信号和信道可包括:SRS、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理上行控制信道(Physical Uplink Control CHannel,PUCCH)。
对于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输,包括:动态调度的PUSCH和半持续调度的PUSCH。
动态调度的PUSCH:
如果网络设备只配置了一个用来指示上行发送波束的SRS资源,则UE根据网络设备配置的信息(例如,对应的无线资源控制(Radio Resource Control,RRC)信令)确定使用哪个上行发送波束。
如果网络设备配置了多个(目前协议支持最大2)用来指示上行发送波束的SRS资源,则UE根据网络设备配置的信息(例如,对应的RRC信令)和下行控制信息(Downlink control information,DCI)所指示的SRS资源确定使用哪个上行发送波束。
持续调度的PUSCH:
如果RRC消息元素(Information Element,IE)配置的授权配置(configuredGrantConfig)中包含参数:rrc-ConfiguredUplinkGrant,UE根据RRC参数中指示的SRS资源标识确定使用哪个上行发送波束;如果RRC IE configuredGrantConfig中不包含参数rrc-ConfiguredUplinkGrant,UE根据DCI指示信息所指示的SRS资源确定使用哪个上行发送波束。
对于SRS传输:通过参数SRS空间关系信息(SRS-SpatialRelationInfo)来指示。
网络设备针对SRS resource配置SRS-SpatialRelationInfo,其中,SRS-SpatialRelationInfo可以指示以下三种信息中的任一种:SRI(可选地,同时包含SRS资源所在的上行BWP ID对应的指示信息),SSB index和CSI-RS资源标识。
对于物理上行控制信道(Physical Uplink Control CHannel,PUCCH)传输:通过参数PUCCH-SpatialRelationInfo来指示。
网络设备针对PUCCH配置PUCCH-SpatialRelationInfo(空间关系信息),可以指示以下三种信息中的任一种:SRI(可选地,同时包含SRS资源所在的上行BWP ID对应的指示信息),SSB index和CSI-RS资源标识。
如果针对PUCCH,网络配置了一个PUCCH-SpatialRelationInfo,则所有的PUCCH resource都根据网络设备配置这一信息来确定使用哪个上行发送波束。
如果针对PUCCH,网络配置了多个PUCCH-SpatialRelationInfo,则每个PUCCH resource都根据网络设备的进一步指示/配置/激活信息(例如MAC CE)指示的空间关系信息来确定使用哪个上行发送波束。
在后续描述中,空间关系信息可以指PUCCH空间关系信息,和/或SRS空间关系信息。
在后续描述中,如果只提到载波上的描述,并且所述描述内容与BWP有关联性,如果没有针对BWP进行专门说明,则一般默认都是针对所述载波上的当前激活BWP。
在实际网络应用中,如果对于SRS或者PUCCH都配置空间关系信息(SRS-SpatialRelationInfo或PUCCH-SpatialRelationInfo),在一些场景下会有较大的信令开销。
为了满足高速率业务的需求,5G中支持CA技术。CA是通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得5G系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。根据所聚合的载波在频谱上的连续性可以分为如图3中301所示的非连续性载波聚合和图3中302所示的连续性载波聚合;根据聚合的载波所在的频带是否相同,分为带间(Inter-band)载波聚合和带内(Intra-band)载波聚合。其中,在图3中的301中,对两个不连续的成员载波(成员载波A和成员载波B)进行聚合,一个成员载波的带宽为20MHz,载波聚合后的总带宽为40MHz;在图3中的302中,对五个连续的载波进行聚合,一个成员载波的带宽为20MHz,载波聚合后的总带宽为100MHz。
通常的,目标下行信号(或目标下行信道)与其的参考SSB或参考CSI-RS资源在网络侧由同一个发送接收节点(transmit-receive point,TRP)来发送。如果传输两个下行信号的TRP不同,通常会配置不同的TCI状态。包括多个TRP的网络结构可如图4所示,UE通过波束401和波束402分别与TRP1和TRP2进行通信。
这里,TCI状态用于在一到两个下行参考信号和PDSCH的DMRS之间配置准共址关系。
关于QCL的说明如下:一个天线端口上的信道的大尺度参数可以从另一个天线端口推导出,则认为这两个天线端口具有QCL关系,大尺度参数包括:多普勒时延、平均时延、空间接收参数等。也就是说,当两个SSB具有QCL关系的时候,可以认为这两个SSB的大尺度参数(如多普勒时延、平均时延、空间接收参数等)是可以相互推断的,或者可以认为是类似的。
如果网络设备通过TCI状态配置目标下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeA,typeB或typeC,则终端可以假设所述目标下行信号与所述参考SSB或参考CSI-RS资源的大尺度参数是相同的,所述大尺度参数通过QCL类型配置来确定。
如果网络设备通过TCI状态配置目标下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为类型D,则终端设备可以采用与接收参考SSB或参考CSI-RS资源相同的接收波束或空间接收参数(Spatial Rx parameter),来接收目标下行信号。
因此,终端设备在网络设备未配置空间关系信息的情况下如何确定发送上行信号的上行发送波束成为待解决的问题,也未涉及多个成员载波(Component Carrier,CC)即CA、多个TRP等场景的空间关系信息的确定。
基于上述问题,本发明实施例提供一种信息处理方法,本发明实施例的信息处理方法可以应用 于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G系统或未来的通信系统等。
示例性的,本发明实施例应用的通信系统500,如图5所示。该通信系统500可以包括网络设备510,网络设备510可以是与终端设备520(或称为通信终端、终端)通信的设备。网络设备510可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备510可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是NR/5G系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器。
通信系统500还可包括:云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统500还包括位于至少一个网络设备510覆盖范围内的至少一个终端设备520。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图5示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统500可以包括多个终端设备以及多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。
可选地,该通信系统500还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例对此不作限定。
可选地,本发明实施例提供的信息处理方法适用于终端设备与网络设备之间的传输。
可选地,本发明实施例提供的信息处理方法适用于终端设备与终端设备之间的传输。
在后续描述中,为了描述简洁,可选地,上行信号可以用于指上行信号或者传输上行信号所使用的信道,例如上行信号可以包括上行的SRS信号,也可以指上行的物理层信道,例如PUCCH;可选地,上行信号可以用于指承载上行信号或上行信道的资源。
本发明实施例提供的信息处理方法的一种可选处理流程,如图6所示,包括以下步骤:
S601、当第一上行信号未配置空间关系信息,终端设备根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
可选地,当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,或所述第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
本发明实施例中,将第一上行信号或第一上行信道以及承载第一上行信号或第一上行信道的资源简称为第一上行信号。
可选地,所述第一上行信号的信号/信道类型包括以下至少之一:SRS(或者SRS对应的SRS资源)和PUCCH(或者PUCCH对应的PUCCH资源)。
以第一上行信号的信号类型为SRS为例,使用第一空间域发送滤波器在第一SRS资源上进行SRS的传输。以第一上行信号的信道类型为PUCCH为例,使用第一空间域发送滤波器在第一PUCCH资源上进行PUCCH的传输。
可选地,第一上行信号的传输场景为单TRP场景。可选地,第一上行信号的传输场景为多TRP场景。
以第一上行信号的传输场景为单TRP场景为例,终端设备根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,包括:
当所述第一上行信号所在的第一CC或所述第一下行BWP未配置控制资源集合CORESET,根据所述第一CC上或所述第一下行BWP上的物理下行共享信道PDSCH对应的传输配置指示TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
可选地,所述第一TCI状态为激活的TCI状态。
在一示例中,以所述第一TCI状态为激活的TCI状态为例,第一TCI状态为激活的TCI状态中标识最小的TCI状态。
本发明实施例中,根据第一选取规则从PDCCH对应的TCI状态选取第一TCI状态,第一选取规则除了标识最小以外,还可为标识最大、标识为固定值等其他规则,且根据第一选取规则所选取的第一TCI状态包括一个或多个TCI状态。第一选取规则的内容可预先定义,也可由网络设备配置,本发明实施例对第一选取规则的内容不进行任何限定。
可选地,根据第一TCI状态中类型D对应的参考信号确定第一空间域发送滤波器。
可选地,所述第一CC上或所述第一下行BWP上的PDSCH存在对应的激活的TCI状态。
这里,当第一CC上或第一下行BWP上的PDSCH存在对应的TCI状态,且对应的TCI状态中存在激活的TCI状态,则使用激活的TCI状态中ID最小的TCI状态确定第一空间域发送滤波器。
可选地,当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,在S601之前,所述方法还包括:
S600A,所述终端设备接收网络设备发送的指示信息。
所述指示信息用于激活所述第一CC上或所述第一下行BWP上的PDSCH所对应TCI状态中的至少一个TCI状态。
可选地,所述指示信息可以通过MAC CE来传输。
此时,所述第一TCI状态为所激活的TCI状态。
这里,当第一CC上或第一下行BWP上的PDSCH存在对应的TCI状态,且对应的TCI状态中不存在激活的TCI状态,则通过网络设备激活存在的TCI状态,且使用当前激活的TCI状态中标识最小的TCI状态确定第一空间域发送滤波器。
可选地,所述终端设备不希望下列情况同时出现:
1、第一上行信号未配置空间关系信息,并且所述第一上行信号所在的第一CC或所述第一下行BWP未配置控制资源集合CORESET。
2、所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态。
这里,如果第一上行信号未配置空间关系信息,并且所述第一上行信号所在的第一CC或所述第一下行BWP未配置控制资源集合CORESET,则UE不希望出现所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态的情况。
可选地,当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,所述终端设备根据所述第一上行信号对应的路损参考信确定所述第一空间域发送滤波器。
可选地,当第一CC上或第一下行BWP上的PDSCH存在对应的TCI状态,且对应的TCI状态中不存在激活的TCI状态,则使用路损参考信号确定第一空间域发送滤波器。
可选地,所述路损参考信号可以对应CSI-RS资源,或SS/PBCH块,或定位参考信号(positioning RS,PRS)资源。
可选地,当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,第一TCI状态为所述PDSCH对应的TCI状态中标识最小的TCI状态。
这里,当第一CC上或第一下行BWP上的PDSCH存在对应的TCI状态,且对应的TCI状 态中不存在激活的TCI状态,则使用存在的TCI状态中ID最小的TCI状态确定第一空间域发送滤波器。
可选地,当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的TCI状态,在S601之前,所述方法还包括:
S600B,所述终端设备接收所述网络设备配置的所述PDSCH对应的TCI状态。
此时,所述第一TCI状态为所配置的TCI状态中标识最小的TCI状态。
这里,当第一CC上或第一下行BWP上的PDSCH不存在对应的TCI状态,则通过网络设备配置TCI状态,且使用配置的TCI状态中标识最小的TCI状态确定第一空间域发送滤波器。
以第一上行信号的传输场景为多TRP场景为例(如无特别说明,则第一上行信号未配置对应的空间关系信息),所述终端设备根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,包括:
确定方式1、当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
确定方式2、当第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所配置的第一上行信号对应的第一空间关系信息确定所述第一空间域发送滤波器。或者,当第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,所述终端希望第一上行信号配置对应的第一空间关系信息。
本发明实施例中,根据第二选取规则从第一CC或第一下行BWP上配置的CORESET中选取第一CORESET,第二选取规则除了标识最小以外,还可为标识最大、标识为固定值等其他规则,且根据第二选取规则所选取的第一CORESET包括一个或多个CORESET。第二选取规则的内容可预先定义,也可由网络设备配置,本发明实施例对第二选取规则的内容不进行任何限定。
这里,第一上行信号的传输场景为多TRP场景可通过第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引体现。一个组索引可以对应一个TRP。
可选地,所述组索引配置在所述至少一个CORESET对应的RRC配置参数中。
可选地,不同的CORESET配置的组索引可以相同,也可以不同。
本发明实施例中,配置相同组索引的CORESET可以称为一个CORESET组。在一示例中,组索引的取值包括0和1,组索引取值为0的CORESET为一个CORESET组,组索引取值为1的CORESET为另一个CORESET组。
本发明实施例中,当至少有一个CORESET配置了组索引,则未配置组索引的CORESET认为其组索引的取值为固定值(例如0或者1),或者为所述配置了的组索引的不同值。
本发明实施例中,组索引可以用于确定混合自动重传请求响应(Hybrid Automatic Repeat request ACK,HARQ-ACK)码本(Codebook),即根据网络相关配置参数,配置不同组索引的CORESET调度的PDSCH的HARQ-ACK可以采用独立的HARQ-ACK Codebook。
可选地,终端设备可以网络相关配置参数,配置不同组索引的CORESET调度的PDSCH的HARQ-ACK可以为联合的HARQ-ACK Codebook,即此时不同组索引的CORESET使用同一HARQ-ACK Codebook。
以终端设备确定所述第一空间域发送滤波器和第二空间域发送滤波器方式为确定方式1为例,可选地,所述根据第一CORESET对应的TCI状态或所述第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,包括:根据所述第一CORESET对应的TCI状态中类型D对应的参考信号或所述第一CORESET对应的QCL信号中类型D对应的参考信号,确定所述第一空间域发送滤波器。
以终端设备确定所述第一空间域发送滤波器和第二空间域发送滤波器方式为确定方式1为例,可选地,所述第一CORESET为所述第一CC或所述第一下行BWP上最近检测的下行时隙上的CORESET中标识最小的CORESET。
以终端设备确定所述第一空间域发送滤波器和第二空间域发送滤波器的确定方式为确定方式1为例,当网络设备配置所述终端设备采用联合HARQ-ACK反馈,所述第一CORESET包括以下之一:
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
承载触发所述第一上行信号的第一下行指示信息DCI的CORESET。
这里,网络设备配置所述终端设备采用联合HARQ-ACK反馈,不同TRP发送的下行数据对应的HARQ-ACK可以复用在一起反馈。
以终端设备确定所述第一空间域发送滤波器的确定方式为确定方式1为例,当网络设备配置所述终端设备采用独立HARQ-ACK反馈,所述第一CORESET包括以下之一:
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第二组索引对应的CORESET中标识最小的CORESET,所述第二组索引为承载触发第一上行信号的第一DCI的CORESET对应的组索引;
承载触发所述第一上行信号的第一DCI的CORESET。
这里,网络设备配置所述终端设备采用独立HARQ-ACK反馈,不同TRP发送的下行数据对应的HARQ-ACK可以各自反馈,不复用在一起。
可选地,所述第一组索引的取值包括:0或1。
以终端设备确定所述第一空间域发送滤波器的确定方式为确定方式2为例,当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,所述方法还包括:接收网络设备配置的对应所述第一上行信号的第一空间关系信息。
这里,当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引时,终端设备不希望不配置第一空间关系信息。所述终端设备接收网络设备配置的第一空间关系信息。
以终端设备确定所述第一空间域发送滤波器的确定方式为确定方式2为例,可选地,所述终端设备被配置为采用独立HARQ-ACK反馈。
可选地,当第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
本发明实施例还提供一种信息处理方法,如图7所示,包括:
S701,终端设备确定在第一CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器。
本发明实施例中,所述第一上行信号未配置空间关系信息。
本发明实施例中,将对应第一上行信号配置的空间关系信息称为第一空间关系信息,对应第二上行信号配置的空间关系信息称为第二空间关系信息。
可选地,所述第二上行信号的信号/信道类型包括以下之一:SRS(或SRS资源)、PUCCH(或PUCCH资源)和PUSCH。
本发明实施例中,终端设备在第一CC上当前激活的BWP上传输第一上行信号。
第一上行信号和第二上行信号的信号/信道类型可相同,也可不同
确定第一空间域发送滤波器和第二空间域发送滤波器的方式包括以下之一:
方式一、当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置了对应的第二空间关系信息,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
方式二、当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置有对应的第二空间关系信息或未配置空间关系信息,根据所述第一上行信号的信号参数和所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
方式三、当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号未配置对应的第二空间关系信息,根据所述第一CC的编号和所述第二CC的编号确定所述第一空 间域发送滤波器和所述第二空间域发送滤波器。
以通过方式一确定第一空间域发送滤波器和第二空间域发送滤波器为例,第一空间域发送滤波器和第二空间域发送滤波器都是根据第二空间关系信息确定。
可选地,所述终端设备在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
第一上行信号和所述第二上行信号在时域上有重叠的方式如图8所示,包括:801所示的部分重叠,802所示的包含以及803所示的完全重叠。
以通过方式二确定第一空间域发送滤波器和第二空间域发送滤波器为例,根据第一上行信号的信号参数和第二上行信号的信号参数确定第一上行信号和第二上行信号的优先级,从而确定第一空间域发送滤波器和第二空间域发送滤波器的优先级,根据第一空间域发送滤波器和第二空间域发送滤波器的优先级确定第一空间域发送滤波器和第二空间域发送滤波器。
可选地,所述终端设备在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第一上行信号的信号参数、所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
所述信号参数包括以下至少之一:信号/信道类型、信号时域特点。
在一示例中,信号/信道类型包括:SRS、PUCCH和PUSCH。
在一示例中,信号时域特点包括:周期性、非周期性和半持续性。
本发明实施例中,确定第一上行信号的信号参数和第二上行信号的信号参数的优先级的规则可根据实际需求进行设置。在一示例中,SRS的优先级高于PUCCH的优先级(SRS>PUCCH)。在一示例中,PUCCH<SRS。在一示例中,非周期SRS>周期或半持续SRS。
可选地,信号参数还可包括:所携带的内容。在一示例中,携带HARQ/SR的PUCCH>SRS。
以SRS>PUCCH为例,第一上行信号为SRS,第二上行信号为PUCCH,则第一上行信号的优先级高于第二上行信号。
以SRS<PUCCH为例,第一上行信号为SRS,第二上行信号为PUCCH,则第二上行信号的优先级高于第一上行信号。
可选地,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器的确定方式包括:
确定所述第一空间域发送滤波器和所述第二空间域发送滤波器中优先级高的空间域发送滤波器,并且优先级低的空间域发送滤波器与所述优先级高的空间域发送滤波器相同,其中,所述优先级高的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级高的上行信号所使用的空间域发送滤波器,所述优先级低的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级低的上行信号所使用的空间域发送滤波器。
其中,确定第一空间域发送滤波器和第二空间域发送滤波器的优先级后,使得优先级低的空间域发送滤波器跟随(follow)优先级高的空间域发送滤波器。
在一示例中,第一空间域发送滤波器的优先级高于第二空间域发送滤波器,即第一空间域发送滤波器的优先级高,第二空间域发送滤波器的优先级低,则确定第一空间域发送滤波器,并且第二空间域发送滤波器与第一空间域发送滤波器相同,使第二空间域发送滤波器跟随第一空间发送与滤波器。
在一示例中,第二空间域发送滤波器的优先级高于第一空间域发送滤波器,即第二空间域发送滤波器的优先级高,第一空间域发送滤波器的优先级低,则确定第二空间域发送滤波器,并且第一空间域发送滤波器与第二空间域发送滤波器相同,使第一空间域发送滤波器跟随第二空间域发送滤波器。
本发明实施例中,优先级高的空间域发送滤波器为传输信号参数的优先级高的上行信号的空间域发送滤波器。
在一示例中,第一上行信号的信号参数的优先级高于第二上行信号的信号参数的优先级,则第一空间域发送滤波器的优先级高于第二空间域发送滤波器的优先级。
可选地,信号参数还包括:CC的编号。当根据信号/信道类型或信号时域特点中的一种或多种确定第一上行信号和第二上行信号的优先级相同时,根据第一CC的编号和第二CC的编号确定第一上行信号和第二上行信号的优先级。
在一示例中,第一上行信号和第二上行信号中所在的CC的编号大的优先级高。在一示例中,第一上行信号和第二上行信号中所在的CC的编号小的优先级高。
以通过方式三确定第一空间域发送滤波器和第二空间域发送滤波器为例,根据所述第一CC的编号和所述第二CC的编号确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
可选地,当所述第一CC的编号小于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同,此时,对应的CC的编号大的空间域发送滤波器跟随对应的CC的编号小的空间域发送滤波器。
可选地,当所述第一CC的编号大于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。此时,对应的CC的编号小的空间域发送滤波器跟随对应的CC的编号大的空间域发送滤波器。
本发明实施例中,以第一空间域发送滤波器跟随第二空间域发送滤波器为例,在第二上行信号配置第二空间关系信息的情况下,根据第二空间关系信息确定第二空间域发送滤波器;在第二上行信号未配置第二空间关系信息的情况下,可根据图6所示的信息处理方法确定第二空间域发送滤波器。以第二空间域发送滤波器跟随第一空间域发送滤波器为例,可根据图6所示的信息处理方法确定第一空间域发送滤波器。
可选地,当所述第一CC和所述第二CC属于带内载波聚合,所述第一空间域发送滤波器与所述第二空间域发送滤波器相同。
可选地,所述第一空间域发送滤波器与所述第二空间域发送滤波器不同。
可选地,当第一空间域发送滤波器与所述第二空间域发送滤波器不同,所述方法还包括:
所述终端设备通过所述第一空间域发送滤波器发送所述第一上行信号,或通过所述第二空间域发送滤波器发送所述第二上行信号。
终端设备仅通过第一空间域发送滤波器和第二空间域发送滤波器中的一个发送对应的上行信号。
可选地,所述终端设备通过所述第一上行信号和第二上行信号中优先级高的上行信号对应的所述第一空间域发送滤波器或所述第二发送滤波器发送所述优先级高的上行信号。
可选地,确定所述第一上行信号和第二上行信号中优先级高的上行信号的参数包括以下参数至少之一:
信号/信道类型、信号时域特点和信号所在的CC。
这里,确定不同的参数的优先级的规则可根据实际需求进行设定。
在一示例中,SRS<PUCCH。在一示例中,SRS>PUCCH。在一示例中,SRS<PUSCH。在一示例中,SRS>PUSCH。在一示例中,CC编号小的上行信号的优先级高。在一示例中,CC编号大的上行信号的优先级高。
可选地,所述第一CC和所述第二CC满足以下关系之一:
所述第一CC和所述第二CC属于带内载波聚合;
所述第一CC和所述第二CC在同一个CC组内;
所述第一CC和所述第二CC根据所述终端设备的上报能力确定。
本发明实施例提供的信息处理方法,能够在网络设备未配置空间关系信息的情况下,确定发送上行信号的上行发送波束,并且适用于CA场景或多TRP场景,在CA场景或多TRP场景中且网络设备未配置空间关系信息的情况下,确定发送上行信号的上行发送波束。
下面,以第一上行信号为SRS为例,通过不同的实例对本发明实施例提供的信息处理方法进行举例说明。
实例一、单TRP场景
终端设备使用第一空间域发送滤波器对第一SRS资源进行传输,其中第一SRS资源未配置对应的空间关系信息。
可选地,传输第一SRS资源所使用的频段为毫米波频段。
可选地,第一SRS资源对应的SRS资源集合(SRS resource set)用于支持码本传输。
可选地,第一SRS资源对应的SRS资源集合的usage为codebook。
可选地,第一SRS资源对应的SRS资源集合用于支持非码本传输。
可选地,第一SRS资源对应的SRS资源集合的usage为nonCodebook。
可选地,第一SRS资源对应的SRS资源集合用于支持天线切换。
可选地,第一SRS资源对应的SRS资源集合的usage为antennaSwitching。
可选地,所述第一SRS资源对应的SRS资源集合用于支持定位(positioning)。
可选地,第一SRS资源对应的SRS资源集合的usage为positioning。
可选地,终端设备满足波束对应性。
可选地,第一SRS资源可以是非周期的,或周期性的,或者半持续的(semi-persistent)。
在单TRP场景下,终端设备确定第一空间域发送滤波器的方式包括:
方式A1、当第一SRS资源所在的第一CC或第一BWP配置有一个或多个CORESET,终端设备根据第一CORESET对应的TCI-state中类型D(QCL-TypeD)对应的参考信号或者对应的QCL信息中类型D('QCL-TypeD')对应的参考信号来确定第一空间域发送滤波器。
在方式A1中,可选地,第一CORESET为终端设备在所述第一CC或第一BWP上最近检测的下行时隙上的CORESET中ID最小的CORESET。
在方式A1中,可选地,当所述第一SRS资源为非周期,第一CORESET为触发第一SRS资源传输DCI对应的CORESET。
方式A2、当第一SRS资源所在的第一CC或第一BWP未配置CORESET,终端设备根据第一CC或第一BWP上PDSCH对应的激活TCI state中ID最小的TCI状态中类型D('QCL-TypeD')对应的参考信号来确定第一空间域发送滤波器。
方式A3、当第一SRS资源所在的第一CC或第一BWP未配置CORESET,并且第一CC或第一BWP上没有PDSCH对应的激活的TCI state,第一CC或第一BWP上必须激活PDSCH所对应的至少一个TCI state,终端设备基于所激活的TCI state确定第一空间域发送滤波器。
在方式A3中,当所述第一SRS资源所在的第一CC或第一BWP未配置CORESET,并且第一CC或第一BWP上没有PDSCH对应的激活的TCI state,第一SRS资源需要配置对应的空间关系信息。
对于方式A3,能够通过对网络配置进行限制,减少可能情况的数量,降低协议复杂度,降低UE和网络实现复杂度。
方式A4、当第一SRS资源所在的第一CC或第一BWP未配置CORESET,并且第一CC或第一BWP上没有PDSCH对应的激活的TCI state,终端设备根据第一CC或第一BWP上为PDSCH配置的TCI state中的一个TCI state中类型D('QCL-TypeD')对应的参考信号来确定所述第一空间域发送滤波器。可选地,所述一个TCI state是所述PDSCH对应的TCI state中标识最小的TCI state。
方式A4同方式A3相比,不需要是激活的TCI state,能够节约激活PDSCH TCI state的信令。
方式A5、当第一SRS资源所在的第一CC或第一BWP未配置CORESET,并且第一CC或第一BWP上未配置PDSCH所对应的至少一个TCI state,第一CC或第一BWP上配置PDSCH所对应的至少一个TCI state,终端设备通过所配置的TCI state确定第一空间域发送滤波器。
在方式A5中,当所述第一SRS资源所在的第一CC或第一BWP未配置CORESET,并且第一CC或第一BWP上没有配置PDSCH对应的TCI state,第一SRS资源需要配置对应的空间关系信息。
方式A5能够通过对网络配置进行限制,减少可能情况的数量,降低协议复杂度,降低UE和网络实现复杂度。
方式A6、当第一SRS资源所在的第一CC或第一BWP未配置CORESET,并且第一CC或第一BWP上没有PDSCH对应的激活的TCI state,终端设备根据第一SRS资源所对应的路损参考信号(Pathloss RS)来确定所述第一空间域发送滤波器。
基于方式A6,用已有的路损参考信号,降低终端设备确定第一空间域发送滤波器的实现复杂度。
在方式A6中,可选地,第一空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同。
在方式A6中,可选地,路损参考信号包括以下资源之一:CSI-RS资源、SS/PBCH块、定位参考信号(positioning RS,PRS)资源。
实例二、CA场景
终端设备使用第一空间域发送滤波器在第一CC或第二BWP上对第一SRS资源进行传输,使用第二空间域发送滤波器在第二CC或第二BWP上传输第二上行信号。其中,第二上行信号也可描述为第二信道,第一SRS资源未配置空间关系信息。
可选地,传输第二上行信号所使用的频段为毫米波频段。
可选地,第二上行信号可以为SRS信号或者定位参考信号。
可选地,第二信道可以为PDSCH,或者PDCCH。
可选地,第一CC和第二CC是两个不同的CC,两者属于载波聚合中的两个不同CC。
可选地,第一BWP和第二BWP分别是是载波聚合中的两个不同CC上的BWP。
在多TRP场景下,终端设备确定第一空间域发送滤波器和第二空间域发送滤波器的方式包括:
方式B1、如果第二上行信号(或者第二信道)配置了对应的空间关系信息,且第一SRS资源 和第二上行信号(或第二信道)的传输在时域上有重叠,则终端设备根据第二上行信号(或第二信道)对应的空间关系信息来确定第一空间域发送滤波器,或者只在交叠符号上,根据第二上行信号(或第二信道)对应的空间关系信息来确定第一空间域发送滤波器。
方式B1中,默认的第一空间域发送滤波器跟随(follow)网络明确指示的第二空间域发送滤波器,能够更好的在CA场景下有效降低信令开销。
方式B2、如果第二上行信号(或者第二信道)配置了对应的空间关系信息,且第一SRS资源和第二上行信号(或第二信道)的传输在时域上有重叠,则根据第一SRS的信号参数和第二上行信号(或第二信道)的信号参数来确定第一空间域发送滤波器和第二空间域发送滤波器,或者只在交叠符号上,则根据传输信号或者信道类型来确定第一空间域发送滤波器和第二空间域发送滤波器。
在方式B2中,明确多个CC对应的空间滤波器之间的规则,避免终端设备行为的不确定性,提高系统性能。
在方式B2中,可选地,信号参数包括:信号/信道类型、信号时域特点以及信号或信道携带的内容等。
可选地,信号时域特点可包括:周期性、非周期性、半持续性
在方式B2中,可选地,SRS follow PUCCH或PUSCH,可以简写为PUCCH>SRS,或者PUSCH>SRS。
如果第二上行信号是PUCCH或PUSCH,则UE根据第二空间域发送滤波器来确定第一空间域发送滤波器。这里,根据第二上行信号对应的空间关系信息确定PUCCH或PUSCH对应的第二空间域发送滤波器,然后SRS采用相同的空间域发送滤波器作为第一空间域发送滤波器。
在方式B2中,可选地,PUSCH或PUCCH follow SRS,可以简写为PUCCH<SRS,或者PUSCH<SRS。
如果第二上行信号是PUCCH或者PUSCH,则根据第一空间域发送滤波器来确定第二个空间域发送滤波器。这里,根据实施例一提供的方法确定SRS对应的第一空间域发送滤波器,然后PUSCH或者PUCCH采用相同的空间域发送滤波器作为第二空间域发送滤波器。
在方式B2中,可选地,非周期SRS>周期的PUCCH。
在方式B2中,可选地,非周期SRS>周期或半持续SRS。
在方式B2中,可选地,PUCCH>周期或半持续SRS。
在方式B2中,可选地,携带HARQ/SR的PUCCH>所有SRS。
在方式B2中,可选地,非周期SRS>只携带CSI上报或者L1-RSRP或者L1-SINR的PUCCH。
方式B3、如果第二上行信号(或者第二信道)未配置对应的空间关系信息,则如果第一SRS资源和第二上行信号(或第二信道)的传输在时域上有重叠,则根据传输信号或者信道类型来确定第一空间域发送滤波器和第二空间域发送滤波器,或者只在交叠符号上,根据传输信号或者信道类型来确定第一空间域发送滤波器和第二空间域发送滤波器。
在方式B3中,明确多个CC对应的空间滤波器之间的规则,避免终端设备行为的不确定性,提高系统性能。
在方式B3中,可选地,传输信号或信道类型包括:信号种类、信道种类、信号时域特点以及信号或信道携带的内容等。
可选地,信号时域特点可包括:周期性、非周期性、半持续性
在方式B3中,可选地,SRS follow PUCCH或PUSCH,可以简写为PUCCH>SRS,或者PUSCH>SRS。
如果第二上行信号是PUCCH或PUSCH,则UE根据第二空间域发送滤波器来确定第一空间域发送滤波器。这里,根据第二上行信号对应的空间关系信息确定PUCCH或PUSCH对应的第二空间域发送滤波器,然后SRS采用相同的空间域发送滤波器作为第一空间域发送滤波器。
在方式B3中,可选地,PUSCH或PUCCH follow SRS,可以简写为PUCCH<SRS,或者PUSCH<SRS。
如果第二上行信号是PUCCH或者PUSCH,则根据第一空间域发送滤波器来确定第二个空间域发送滤波器。这里,根据实施例一提供的方法确定SRS对应的第一空间域发送滤波器,然后PUSCH或者PUCCH采用相同的空间域发送滤波器作为第二空间域发送滤波器。
在方式B3中,可选地,非周期SRS>周期的PUCCH。
在方式B3中,可选地,非周期SRS>周期或半持续SRS。
在方式B3中,可选地,PUCCH>周期或半持续SRS。
在方式B3中,可选地,携带HARQ/SR的PUCCH>所有SRS。
在方式B3中,可选地,非周期SRS>只携带CSI上报或者L1-RSRP或者L1-SINR的PUCCH。
可选地,如果第二上行信号是SRS,则通过方式B4确定第一空间域发送滤波器和第二空间域发送滤波器。
方式B4、如果第二上行信号(或者第二信道)未配置对应的空间关系信息,则如果第一SRS资源和第二上行信号(或第二信道)的传输在时域上有重叠,则根据第一CC和第二CC的信息来确定第一空间域发送滤波器和第二空间域发送滤波器,或者只在交叠符号上,根据第一CC和第二CC的信息来确定第一空间域发送滤波器和第二空间域发送滤波器。
在方式B4中,明确多个CC对应的空间滤波器之间的规则,避免终端设备行为的不确定性,提高系统性能。
在方式B4中,可选地,如果第一CC的编号小于第二CC的编号,则根据确定第一空间域发送滤波器,并且第二空间域发送滤波器采用和第一空间域发送滤波器相同的滤波器。
在方式B4中,可选地,如果第一CC的编号大于第二CC的编号,则确定第一空间域发送滤波器,并且第二空间域发送滤波器采用和第一空间域发送滤波器相同的滤波器。
这里,可采用实施例一中提供的方法确定第一空间域发送滤波器。
方式B5、第一空间域发送滤波器和第二空间域发送滤波器相同。这里,终端设备不希望第一空间域发送滤波器和第二空间域发送滤波器不同。
方式B5能够避免U终端设备必须使用两个不同的上行发送beam,降低UE实现复杂度。
如果第一空间域发送滤波器和第二空间域发送滤波器不同,终端设备发送信号的发送方式包括:
发送方式1、终端设备自己决定发送哪个信号或信道,从而通过一个空间域发送滤波器发送一个上行信号或信道。
发送方式1能够避免UE必须使用两个不同的上行发送beam,降低UE实现复杂度。
发送方式2,终端设备根据第一SRS和第二上行信号的优先级决定发送哪个信号或信道。
对于发送方式2,可选地,第一SRS和第二上行信号的优先级根据信道或信号的类型决定。可选地,SRS<PUCCH。可选地,SRS>PUCCH。可选地,SRS<PUSCH。可选地,SRS>PUSCH。
这里,优先级还可包括方式B2或方式B3中的优先级。
对于发送方式2,可选地,第一SRS和第二上行信号的优先级根据信号或信道所在CC来决定。可选地,第一CC编号小于第二CC编号,则发送第一SRS资源。可选地,第一CC编号大于第二CC编号,则发送第一SRS资源。
本发明实施例中,第一CC和第二CC满足的关系包括以下关系之一:
关系1、第一CC和第二CC(或者第一BWP对应的CC和第二BWP对应的CC)在同一个频率带宽上(intra-band)。
此时,第一CC和第二CC能够匹配典型硬件实现,降低UE实现复杂度。
关系2、第一CC和第二CC(或者第一BWP对应的CC和第二BWP对应的CC)在网络配置的同一个CC组内。
此时,网络设备能够灵活控制哪些CC使用相同的UL beam,增加网络灵活性。
可选地,所述CC组内的CC如果同时上传输时,使用同一个空间域发送滤波器。
关系3,第一CC和第二CC(或者第一BWP对应的CC和第二BWP对应的CC)根据UE上报能力确定。
可选地,UE上报能力指示哪些频率或者频带上如果同时上传输时,使用同一个空间域发送滤波器。这里,第一CC和第二CC能够匹配UE上报能力,降低UE实现复杂度。
实例三、多TRP场景
当所述第一SRS资源所在的第一CC或第一BWP上的CORESET被配置对应的组索引值。
可选地,组索引配置在CORESET的RRC配置参数中(例如RRC参数ControlResourceSet),不同的CORESET配置的组索引可以相同,也可以不同。可选地,配置相同索引的CORESET可以称为一个CORESET组,例如,索引取值为0的CORESET为一个CORESET组,索引取值为1的为另一个CORESET组。
可选地,所述组索引的取值为0或1
可选地,如果组索引不配置,可以默认为一个固定值,例如,0或者1。
可选地,所述组索引可以用于确定HARQ-ACK码本(Codebook),即根据网络配置的相关信息,配置不同组索引的CORESET调度的PDSCH的HARQ-ACK可以采用独立的HARQ-ACK Codebook。
当所述第一SRS资源所在的第一CC或第一BWP上的CORESET被配置对应的组索引值,终端设备确定第一空间域发送滤波器的方式包括:
方式C1、根据第一CORESET对应的TCI-state(TCI状态)中类型D('QCL-TypeD')对应的参考信号或者对应的QCL信息中类型D('QCL-TypeD')对应的参考信号来确定所述第一空间域发送滤波器。
方式C2、网络配置终端设备采用联合HARQ-ACK反馈(joint HARQ-ACK feedback,即不同TRP发送的下行数据对应的HARQ-ACK可以复用在一起反馈,一般只适用于不同TRP之间backhaul较为理想的情况),终端设备根据第二CORESET对应的TCI-state(TCI状态)中类型D('QCL-TypeD')对应的参考信号或者对应的QCL信息中类型D('QCL-TypeD')对应的参考信号来确定所述第一空间域发送滤波器。
在方式C2中,可选地,第二CORESET为终端设备在第一CC或第一BWP上最近检测的下行时隙上的第一组索引对应的CORESET中ID最小的CORESET。此时,不同时刻能够选择不同的TRP进行传输,可以获得分集效果。可选地,所述第一组索引为0或1。
在方式C2中,可选地,所述第二CORESET为终端设备在第一CC或第一BWP上最近检测的下行时隙上的所有组索引对应的CORESET中ID最小的CORESET。此时,终端设备始终选择一个固定的TRP进行传输实现简单,降低UE和网络实现复杂度。
可选地,终端设备根据网络指示,确定第二CORESET为终端设备在第一CC或第一BWP上最近检测的下行时隙上的所有组索引对应的CORESET中ID最小的CORESET,还是终端设备在第一CC或第一BWP上最近检测的下行时隙上的第一组索引对应的CORESET中ID最小的CORESET。
在方式C2中,可选地,如果第一SRS资源传输是第一DCI触发,则所述第二CORESET为承载第一DCI的CORESET。这里,如果将第一SRS资源替换为第一PUCCH资源,则如果第一PUCCH资源上传输是第一DCI触发,或者承载的信息对应于第一DCI调度的数据。
方式C3、网络配置终端设备采用独立HARQ-ACK反馈(separate HARQ-ACK feedback,即不同TRP发送的下行数据对应的HARQ-ACK可以各自反馈,不复用在一起,一般适用于不同TRP之间backhaul不理想的情况,同时也可以适用于不同TRP之间backhaul较为理想的情况),终端设备根据第三CORESET对应的TCI-state(TCI状态)中类型D('QCL-TypeD')对应的参考信号或者对应的QCL信息中类型D('QCL-TypeD')对应的参考信号来确定所述第一空间域发送滤波器
在方式C3中,可选地,第三CORESET为终端设备在第一CC或第一BWP上最近检测的下行时隙上的第一组索引对应的CORESET中ID最小的CORESET。可选地,所述第一组索引为0或1。
在方式C3中,可选地,所述第三CORESET为终端备在第一CC或第一BWP上最近检测的下行时隙上的所有组索引对应的CORESET中ID最小的CORESET。
可选地,终端设备根据网络指示,确定第三CORESET为终端设备在第一CC或第一BWP上最近检测的下行时隙上的所有组索引对应的CORESET中ID最小的CORESET,还是终端设备在第一CC或第一BWP上最近检测的下行时隙上的第一组索引对应的CORESET中ID最小的CORESET。
在方式C3中,可选地,如果第一SRS资源传输是第一DCI触发,则第三CORESET为终端设备在第一CC或第一BWP上最近检测的下行时隙上的第二组索引对应的CORESET中ID最小的CORESET。这里,如果将第一SRS资源替换为第一PUCCH资源,则如果第一PUCCH资源上传输是第一DCI出触发,或者承载的信息对应于第一DCI调度的数据。
可选地,所述第二组索引为承载所述第一DCI的CORESET对应的组索引。
在方式C3中,如果第一SRS资源传输是第一DCI触发,则第三CORESET为承载第一DCI的CORESET。
在方式C3中,可选地,第一SRS资源需要配置对应的空间关系信息,即UE不希望第一SRS资源不配置空间关系信息。这里,能够限制网络配置情况,减少可能情况的数目,降低UE和网络实现复杂度。
方式C4、所述第一SRS资源需要配置对应的空间关系信息。这里。UE不希望第一SRS资源不配置空间关系信息,在基于多DCI的多TRP系统中,不允许采用上述的default关系,或者default的空间关系信息,降低UE和网络实现复杂度。
方式C5、终端设备根据第一SRS资源所对应的路损参考信号(Pathloss RS)来确定所述第一空间域发送滤波器。
可选地,第一空间域发送滤波器与接收路损参考信号使用的空间域滤波器相同。
可选地,路测参考信号可以为CSI-RS资源、SS/PBCH块或PRS资源。
需要说明的是,上述实例一至实例三以第一上行信号为SRS为例,在实际应用中,第一上行信号还可为PUCCH。
需要说明的是,上述实例一至实例三中的第一BWP为第一CC对应的下行BWP,第二BWP为第二CC对应的下行BWP。
为实现上述信息处理方法,本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图9所示,终端设备900包括:
第一确定单元901,配置为当第一上行信号未配置空间关系信息,根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
本发明实施例中,第一确定单元901,还配置为:
当所述第一上行信号所在的第一CC或所述第一下行BWP未配置控制资源集合CORESET,根据所述第一CC上或所述第一下行BWP上的物理下行共享信道PDSCH对应的传输配置指示TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
本发明实施例中,所述第一TCI状态为激活的TCI状态中标识最小的TCI状态。
本发明实施例中,所述第一CC上或所述第一下行BWP上的PDSCH存在对应的激活的TCI状态。
本发明实施例中,所述终端设备还包括:
激活单元,配置为:当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,接收网络设备发送的指示信息,所述指示信息用于激活所述第一CC上或所述第一下行BWP上的PDSCH所对应TCI状态中的至少一个TCI状态。
本发明实施例中,当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,所述第一TCI状态为所述PDSCH对应的TCI状态中标识最小的TCI状态。
本发明实施例中,所述终端设备还包括:
第一配置单元,配置为当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的TCI状态,接收所述网络设备配置的所述PDSCH对应的TCI状态。
本发明实施例中,所述第一TCI状态为所配置的TCI状态中标识最小的TCI状态。
本发明实施例中,所述第一确定单元,还配置为根据所述第一TCI状态中类型D对应的参考信号确定所述第一空间域发送滤波器。
本发明实施例中,所述第一确定单元,还配置为:
当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
本发明实施例中,第一确定单元901,还配置为:
根据所述第一CORESET对应的TCI状态中类型D对应的参考信号或所述第一CORESET对应的QCL信号中类型D对应的参考信号,确定所述第一空间域发送滤波器。
本发明实施例中,所述组索引配置在所述至少一个CORESET对应的RRC配置参数中。
本发明实施例中,所述第一CORESET为所述第一CC或所述第一下行BWP上最近检测的下行时隙上的CORESET中标识最小的CORESET。
本发明实施例中,当网络设备配置所述终端设备采用联合混合自动重传请求响应HARQ-ACK反馈,所述第一CORESET包括以下之一:
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
承载触发所述第一上行信号的第一下行指示信息DCI的CORESET。
本发明实施例中,当网络设备配置所述终端设备采用独立HARQ-ACK反馈时,所述第一CORESET包括以下之一:
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第二组索引对应的CORESET中标识最小的CORESET,所述第二组索引为承载触发第一上行信号的第一DCI的CORESET对应的组索引;
承载触发所述第一上行信号的第一DCI的CORESET。
本发明实施例中,所述第一组索引的取值包括:0或1。
本发明实施例中,所述终端设备还包括:接收单元,配置为:
当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,接收所述网络设备配置的对应所述第一上行信号的第一空间关系信息。
本发明实施例中,第一确定单元901,还配置为:
根据所配置的第一空间关系信息确定所述第一空间域发送滤波器。
本发明实施例中,所述终端设备被配置为采用独立HARQ-ACK反馈。
本发明实施例中,第一确定单元901,还配置为:
当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,或所述第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
本发明实施例中,所述第一上行信号的信号/信道类型包括以下至少之一:
信道探测参考信号SRS和物理上行控制信道PUCCH。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序,执行上述终端设备执行的信息处理方法的步骤。
为实现上述信息处理方法,本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图10所示,终端设备1000包括:
第二确定单元1001,配置为确定在第一CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,其中,所述第一上行信号未配置空间关系信息。
本发明实施例中,第二确定单元1001,还配置为:当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置了对应的第二空间关系信息,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置有第二空间关系信息或未配置空间关系信息,根据所述第一上行信号的信号参数和所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第一上行信号的信号参数、所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
本发明实施例中,所述信号参数包括以下至少之一:信号/信道类型、信号时域特点。
本发明实施例中,第二确定单元1001,还配置为:
确定所述第一空间域发送滤波器和所述第二空间域发送滤波器中优先级高的空间域发送滤波器,并且优先级低的空间域发送滤波器与所述优先级高的空间域发送滤波器相同,其中,所述优先级高的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级高的上行信号所使用的空间域发送滤波器,所述优先级低的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级低的上行信号所使用的空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号未配置对应的第二空间关系信息,根据所述第一CC的编 号和所述第二CC的编号确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:当所述第一CC的编号小于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。
本发明实施例中,第二确定单元1001,还配置为:当所述第一CC的编号大于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。
本发明实施例中,第二确定单元1001,还配置为:
根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定所述第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:当所述的第一CC或所述第一CC对应的第一下行BWP未配置CORESET,根据所述第一CC上或所述第一下行BWP上的PDSCH对应的TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
本发明实施例中,第二确定单元1001,还配置为:
当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
本发明实施例中,第二确定单元1001,还配置为:
当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,接收所述网络设备配置的第一空间关系信息,根据所述第一空间关系信息确定所述第一空间域发送滤波器的确定方式。
本发明实施例中,第二确定单元1001,还配置为:
当第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器,或所述第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
本发明实施例中,当所述第一CC和所述第二CC属于带内载波聚合,所述第一空间域发送滤波器与所述第二空间域发送滤波器相同。
本发明实施例中,所述第一空间域发送滤波器与所述第二空间域发送滤波器不同。
本发明实施例中,所述终端设备还包括:
发送单元,配置为:
通过所述第一空间域发送滤波器发送所述第一上行信号,或通过所述第二空间域发送滤波器发送所述第二上行信号。
本发明实施例中,所述发送单元,还配置为:
通过所述第一上行信号和第二上行信号中优先级高的上行信号对应的所述第一空间域发送滤波器或所述第二发送滤波器发送所述优先级高的上行信号。
本发明实施例中,确定所述第一上行信号和第二上行信号中优先级高的上行信号的参数包括以下信号参数至少之一:
信号/信道类型、信号的时域特点和信号所在的CC。
本发明实施例中,所述第一CC和所述第二CC满足以下关系之一:所述第一CC和所述第二CC属于带内载波聚合;所述第一CC和所述第二CC在同一个CC组内;所述第一CC和所述第二CC根据所述终端设备的上报能力确定。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的信息处理方法的步骤。
图11是本发明实施例的电子设备(终端设备)的硬件组成结构示意图,电子设备1100包括:至少一个处理器1101、存储器1102和至少一个网络接口1104。电子设备1100中的各个组件通过总线系统1105耦合在一起。可理解,总线系统1105用于实现这些组件之间的连接通信。总线系统1105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图11中将各种总线都标为总线系统1105。
可以理解,存储器1102可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器1102旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器1102用于存储各种类型的数据以支持电子设备1100的操作。这些数据的示例包括:用于在电子设备1100上操作的任何计算机程序,如应用程序11021。实现本发明实施例方法的程序可以包含在应用程序11021中。
上述本发明实施例揭示的方法可以应用于处理器1101中,或者由处理器1101实现。处理器1101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1101可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器1101可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备1100可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本发明实施例还提供了一种存储介质,用于存储计算机程序。
可选地,该存储介质可应用于本发明实施例中的终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (86)

  1. 一种信息处理方法,所述方法包括:
    当第一上行信号未配置空间关系信息,终端设备根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  2. 根据权利要求1所述的方法,其中,所述终端设备根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,包括:
    当所述第一上行信号所在的第一CC或所述第一下行BWP未配置控制资源集合CORESET,所述终端设备根据所述第一CC上或所述第一下行BWP上的物理下行共享信道PDSCH对应的传输配置指示TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
  3. 根据权利要求2所述的方法,其中,所述第一TCI状态为激活的TCI状态中标识最小的TCI状态。
  4. 根据权利要求3所述的方法,其中,所述第一CC上或所述第一下行BWP上的PDSCH存在对应的激活的TCI状态。
  5. 根据权利要求3所述的方法,其中,当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,所述方法还包括:
    所述终端设备接收网络设备发送的指示信息,所述指示信息用于激活所述第一CC上或所述第一下行BWP上的PDSCH所对应TCI状态中的至少一个TCI状态。
  6. 根据权利要求2所述的方法,其中,当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,所述第一TCI状态为所述PDSCH对应的TCI状态中标识最小的TCI状态。
  7. 根据权利要求1或2所述的方法,其中,当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的TCI状态,所述方法还包括:
    所述终端设备接收所述网络设备配置的所述PDSCH对应的TCI状态。
  8. 根据权利要求7所述的方法,其中,所述第一TCI状态为所配置的TCI状态中标识最小的TCI状态。
  9. 根据权利要求2至6、8中任一项所述的方法,其中,所述终端设备根据所述第一TCI状态中类型D对应的参考信号确定所述第一空间域发送滤波器。
  10. 根据权利要求1-9任一所述的方法,其中,所述终端设备根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,包括:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
  11. 根据权利要求10所述的方法,其中,所述根据第一CORESET对应的TCI状态或所述第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,包括:
    根据所述第一CORESET对应的TCI状态中类型D对应的参考信号或所述第一CORESET对应的QCL信号中类型D对应的参考信号,确定所述第一空间域发送滤波器。
  12. 根据权利要求10或11所述的方法,其中,所述组索引配置在所述至少一个CORESET对应的RRC配置参数中。
  13. 根据权利要求10至12任一项所述的方法,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上最近检测的下行时隙上的CORESET中标识最小的CORESET。
  14. 根据权利要求10至12任一项所述的方法,其中,当网络设备配置所述终端设备采用联合混合自动重传请求响应HARQ-ACK反馈,所述第一CORESET包括以下之一:
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
    承载触发所述第一上行信号的第一下行指示信息DCI的CORESET。
  15. 根据权利要求10至12任一项所述的方法,其中,当网络设备配置所述终端设备采用独立HARQ-ACK反馈,所述第一CORESET包括以下之一:
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第二组索引对应的CORESET中标识最小的CORESET,所述第二组索引为承载触发第一上行信号的第一DCI的CORESET对应的组索引;
    承载触发所述第一上行信号的第一DCI的CORESET。
  16. 根据权利要求14或15所述的方法,其中,所述第一组索引的取值包括:0或1。
  17. 根据权利要求1至9任一所述的方法,其中,当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,所述方法还包括:
    接收网络设备配置的对应所述第一上行信号的第一空间关系信息。
  18. 根据权利要求17所述的方法,其中,所述终端设备根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,包括:
    根据所配置的第一空间关系信息确定所述第一空间域发送滤波器。
  19. 根据权利要求18所述的方法,其中,所述终端设备被配置为采用独立HARQ-ACK反馈。
  20. 根据权利要求1所述的方法,其中,所述终端设备根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器,包括:
    当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,或所述第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  21. 根据权利要求1至20任一项所述的方法,其中,所述第一上行信号的信号/信道类型包括以下至少之一:
    信道探测参考信号SRS和物理上行控制信道PUCCH。
  22. 一种信息处理方法,包括:
    终端设备确定在第一成员载波CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,其中,所述第一上行信号未配置空间关系信息。
  23. 根据权利要求22所述的方法,其中,所述终端设备确定在CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,包括:
    当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置有对应的第二空间关系信息,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  24. 根据权利要求23所述的方法,其中,所述终端设备在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  25. 根据权利要求22所述的方法,其中,所述终端设备确定在CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,包括:
    当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置有对应的第二空间关系信息或未配置空间关系信息,根据所述第一上行信号的信号参数和所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  26. 根据权利要求25所述的方法,其中,所述终端设备在所述第一上行信号和所述第二上 行信号在时域上重叠的重叠符号上,根据所述第一上行信号的信号参数、所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  27. 根据权利要求25或26所述的方法,其中,所述信号参数包括以下至少之一:信号/信道类型、信号时域特点。
  28. 根据权利要求25至27任一项所述的方法,其中,所述根据所述第一上行信号的信号参数和所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器,包括:
    确定所述第一空间域发送滤波器和所述第二空间域发送滤波器中优先级高的空间域发送滤波器,并且优先级低的空间域发送滤波器与所述优先级高的空间域发送滤波器相同,其中,所述优先级高的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级高的上行信号所使用的空间域发送滤波器,所述优先级低的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级低的上行信号所使用的空间域发送滤波器。
  29. 根据权利要求22所述的方法,其中,所述终端设备确定在CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,包括:
    当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号未配置对应的第二空间关系信息,根据所述第一CC的编号和所述第二CC的编号确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  30. 根据权利要求29所述的方法,其中,当所述第一CC的编号小于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。
  31. 根据权利要求29所述的方法,其中,当所述第一CC的编号大于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。
  32. 根据权利要求22、28、30或31所述的方法,其中,所述确定所述第一空间域发送滤波器,包括:
    根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定所述第一空间域发送滤波器;或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  33. 根据权利要求32所述的方法,其中,所述根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定所述第一空间域发送滤波器,包括:
    当所述的第一CC或所述第一CC对应的第一下行BWP未配置CORESET,根据所述第一CC上或所述第一下行BWP上的PDSCH对应的TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
  34. 根据权利要求32所述的方法,其中,所述根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定所述第一空间域发送滤波器,包括:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
  35. 根据权利要求32所述的方法,其中,所述根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定所述第一空间域发送滤波器,包括:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,接收所述网络设备配置的所述第一上行控制信号对应的第一空间关系信息,根据所述第一空间关系信息确定所述第一空间域发送滤波器的确定方式。
  36. 根据权利要求32所述的方法,其中,所述根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器,包括:
    当第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器,或所述第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索 引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  37. 根据权利要求22所述的方法,其中,当所述第一CC和所述第二CC属于带内载波聚合,所述第一空间域发送滤波器与所述第二空间域发送滤波器相同。
  38. 根据权利要求22所述的方法,其中,所述第一空间域发送滤波器与所述第二空间域发送滤波器不同。
  39. 根据权利要求38所述的方法,其中,所述方法还包括:
    所述终端设备通过所述第一空间域发送滤波器发送所述第一上行信号,或通过所述第二空间域发送滤波器发送所述第二上行信号。
  40. 根据权利要求39所述的方法,其中,所述终端设备通过所述第一上行信号和第二上行信号中优先级高的上行信号对应的所述第一空间域发送滤波器或所述第二发送滤波器发送所述优先级高的上行信号。
  41. 根据权利要求40所述的方法,其中,确定所述第一上行信号和第二上行信号中优先级高的上行信号的参数包括以下参数至少之一:
    信号/信道类型、信号时域特点和信号所在的CC。
  42. 根据权利要求22至41任一项所述的方法,其中,所述第一CC和所述第二CC满足以下关系之一:
    所述第一CC和所述第二CC属于带内载波聚合;
    所述第一CC和所述第二CC在同一个CC组内;
    所述第一CC和所述第二CC根据所述终端设备的上报能力确定。
  43. 一种终端设备,包括:
    第一确定单元,配置为当第一上行信号未配置空间关系信息,根据所述第一上行信号所在的第一成员载波CC或者所述第一CC对应的第一下行带宽部分BWP确定传输所述第一上行信号使用的第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  44. 根据权利要求43所述的终端设备,其中,所述第一确定单元,还配置为:
    当所述第一上行信号所在的第一CC或所述第一下行BWP未配置控制资源集合CORESET,根据所述第一CC上或所述第一下行BWP上的物理下行共享信道PDSCH对应的传输配置指示TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
  45. 根据权利要求44所述的终端设备,其中,所述第一TCI状态为激活的TCI状态中标识最小的TCI状态。
  46. 根据权利要求45所述的终端设备,其中,所述第一CC上或所述第一下行BWP上的PDSCH存在对应的激活的TCI状态。
  47. 根据权利要求45所述的终端设备,其中,所述终端设备还包括:
    激活单元,配置为:当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,接收网络设备发送的指示信息,所述指示信息用于激活所述第一CC上或所述第一下行BWP上的PDSCH所对应TCI状态中的至少一个TCI状态。
  48. 根据权利要求44所述的终端设备,其中,当所述第一CC上或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,所述第一TCI状态为所述PDSCH对应的TCI状态中标识最小的TCI状态。
  49. 根据权利要求43或44所述的终端设备,其中,所述终端设备还包括:
    第一配置单元,配置为当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的TCI状态,接收所述网络设备配置的所述PDSCH对应的TCI状态。
  50. 根据权利要求49所述的终端设备,其中,所述第一TCI状态为所配置的TCI状态中标识最小的TCI状态。
  51. 根据权利要求44至48、50中任一项所述的终端设备,其中,所述第一确定单元,还配置为根据所述第一TCI状态中类型D对应的参考信号确定所述第一空间域发送滤波器。
  52. 根据权利要求43-51任一所述的终端设备,其中,所述第一确定单元,还配置为:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
  53. 根据权利要求52所述的终端设备,其中,所述第一确定单元,还配置为:
    根据所述第一CORESET对应的TCI状态中类型D对应的参考信号或所述第一CORESET对应的QCL信号中类型D对应的参考信号,确定所述第一空间域发送滤波器。
  54. 根据权利要求52或53所述的终端设备,其中,所述组索引配置在所述至少一个CORESET对应的RRC配置参数中。
  55. 根据权利要求52至54任一项所述的终端设备,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上最近检测的下行时隙上的CORESET中标识最小的CORESET。
  56. 根据权利要求52至54任一项所述的终端设备,其中,当网络设备配置所述终端设备采用联合混合自动重传请求响应HARQ-ACK反馈,所述第一CORESET包括以下之一:
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
    承载触发所述第一上行信号的第一下行指示信息DCI的CORESET。
  57. 根据权利要求52至54任一项所述的终端设备,其中,当网络设备配置所述终端设备采用独立HARQ-ACK反馈,所述第一CORESET包括以下之一:
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第一组索引对应的CORESET中标识最小的CORESET;
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的所有组索引对应的CORESET中标识最小的CORESET;
    在所述第一CC或所述第一下行BWP上最近检测的下行时隙上的第二组索引对应的CORESET中标识最小的CORESET,所述第二组索引为承载触发第一上行信号的第一DCI的CORESET对应的组索引;
    承载触发所述第一上行信号的第一DCI的CORESET。
  58. 根据权利要求56或57所述的终端设备,其中,所述第一组索引的取值包括:0或1。
  59. 根据权利要求43至51任一所述的终端设备,其中,所述终端设备还包括:接收单元,配置为:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,接收所述网络设备配置的对应所述第一上行信号的第一空间关系信息。
  60. 根据权利要求59所述的终端设备,其中,所述第一确定单元,还配置为:
    根据所配置的第一空间关系信息确定所述第一空间域发送滤波器。
  61. 根据权利要求60所述的终端设备,其中,所述终端设备被配置为采用独立HARQ-ACK反馈。
  62. 根据权利要求43所述的终端设备,其中,所述第一确定单元,还配置为:
    当所述第一CC或所述第一下行BWP上的PDSCH不存在对应的激活的TCI状态,或所述第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  63. 根据权利要求43至62任一项所述的终端设备,其中,所述第一上行信号的信号/信道类型包括以下至少之一:
    信道探测参考信号SRS和物理上行控制信道PUCCH。
  64. 一种终端设备,包括:
    第二确定单元,配置为确定在第一成员载波CC上传输第一上行信号所使用的第一空间域发送滤波器,并确定在第二CC上传输第二上行信号所使用的第二空间域发送滤波器,其中,所述第一上行信号未配置空间关系信息。
  65. 根据权利要求64所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置了对应的第二空间关系信息,根据所述第二空间关系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  66. 根据权利要求65所述的终端设备,其中,所述第二确定单元,还配置为:
    在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第二空间关 系信息确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  67. 根据权利要求64所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号配置有对应的第二空间关系信息或未配置空间关系信息,根据所述第一上行信号的信号参数和所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  68. 根据权利要求67所述的终端设备,其中,所述第二确定单元,还配置为:
    在所述第一上行信号和所述第二上行信号在时域上重叠的重叠符号上,根据所述第一上行信号的信号参数、所述第二上行信号的信号参数,确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  69. 根据权利要求67或68所述的终端设备,其中,所述信号参数包括以下至少之一:信号/信道类型、信号时域特点。
  70. 根据权利要求67至69任一项所述的终端设备法,其中,所述第二确定单元,还配置为:
    确定所述第一空间域发送滤波器和所述第二空间域发送滤波器中优先级高的空间域发送滤波器,并且优先级低的空间域发送滤波器与所述优先级高的空间域发送滤波器相同,其中,所述优先级高的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级高的上行信号所使用的空间域发送滤波器,所述优先级低的空间域发送滤波器为所述第一空间域发送滤波器和所述第二空间域发送滤波器中,传输信号参数的优先级低的上行信号所使用的空间域发送滤波器。
  71. 根据权利要求64所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一上行信号和所述第二上行信号在时域上有重叠,且所述第二上行信号未配置对应的第二空间关系信息,根据所述第一CC的编号和所述第二CC的编号确定所述第一空间域发送滤波器和所述第二空间域发送滤波器。
  72. 根据权利要求71所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一CC的编号小于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。
  73. 根据权利要求71所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一CC的编号大于所述第二CC的编号,确定所述第一空间域发送滤波器,并且所述第二空间域发送滤波器与所述第一空间域发送滤波器相同。
  74. 根据权利要求64、70、72或73所述的终端设备,其中,所述第二确定单元,还配置为:
    根据所述第一上行信号所在的第一CC或者所述第一CC对应的第一下行BWP确定所述第一空间域发送滤波器,或根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  75. 根据权利要求74所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述的第一CC或所述第一CC对应的第一下行BWP未配置CORESET,根据所述第一CC上或所述第一下行BWP上的PDSCH对应的TCI状态中的第一TCI状态确定所述第一空间域发送滤波器。
  76. 根据权利要求74所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据第一CORESET对应的TCI状态或第一CORESET对应的QCL信号,确定所述第一空间域发送滤波器,其中,所述第一CORESET为所述第一CC或所述第一下行BWP上配置的CORESET。
  77. 根据权利要求74所述的终端设备,其中,所述第二确定单元,还配置为:
    当所述第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,接收所述网络设备配置的所述第一上行信号对应的第一空间关系信息,根据所述第一空间关系信息确定所述第一空间域发送滤波器的确定方式。
  78. 根据权利要求74所述的终端设备,其中,所述第二确定单元,还配置为:
    当第一上行信号所在的第一CC或所述第一CC对应的第一下行BWP上配置的CORESET中至少一个CORESET被配置对应的组索引,根据所述第一上行信号对应的路损参考信号确定所述第一空间域发送滤波器。
  79. 根据权利要求64所述的终端设备,其中,当所述第一CC和所述第二CC属于带内载波 聚合,所述第一空间域发送滤波器与所述第二空间域发送滤波器相同。
  80. 根据权利要求64所述的终端设备,其中,所述第一空间域发送滤波器与所述第二空间域发送滤波器不同。
  81. 根据权利要求80所述的终端设备,其中,所述终端设备还包括:
    发送单元,配置为:
    通过所述第一空间域发送滤波器发送所述第一上行信号,或通过所述第二空间域发送滤波器发送所述第二上行信号。
  82. 根据权利要求81所述的终端设备,其中,所述发送单元,还配置为:
    通过所述第一上行信号和第二上行信号中优先级高的上行信号对应的所述第一空间域发送滤波器或所述第二发送滤波器发送所述优先级高的上行信号。
  83. 根据权利要求82所述的终端设备,其中,确定所述第一上行信号和第二上行信号中优先级高的上行信号的参数包括以下参数至少之一:
    信号/信道类型、信号的时域特点和信号所在的CC。
  84. 根据权利要求64至83任一项所述的终端设备,其中,所述第一CC和所述第二CC满足以下关系之一:
    所述第一CC和所述第二CC属于带内载波聚合;
    所述第一CC和所述第二CC在同一个CC组内;
    所述第一CC和所述第二CC根据所述终端设备的上报能力确定。
  85. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求1至21任一项所述的信息处理方法的步骤,或者执行权利要求22至42任一项所述的信息处理方法的步骤。
  86. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至21任一项所述的信息处理方法,或者实现权利要求22至42任一项所述的信息处理方法。
PCT/CN2019/116833 2019-11-08 2019-11-08 信息处理方法、终端设备及存储介质 WO2021088044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980099926.1A CN114342510A (zh) 2019-11-08 2019-11-08 信息处理方法、终端设备及存储介质
PCT/CN2019/116833 WO2021088044A1 (zh) 2019-11-08 2019-11-08 信息处理方法、终端设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116833 WO2021088044A1 (zh) 2019-11-08 2019-11-08 信息处理方法、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021088044A1 true WO2021088044A1 (zh) 2021-05-14

Family

ID=75849520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116833 WO2021088044A1 (zh) 2019-11-08 2019-11-08 信息处理方法、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN114342510A (zh)
WO (1) WO2021088044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066329A1 (zh) * 2021-10-20 2023-04-27 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US20190190582A1 (en) * 2017-12-19 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
WO2019195528A1 (en) * 2018-04-04 2019-10-10 Idac Holdings, Inc. Beam indication for 5g new radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190190582A1 (en) * 2017-12-19 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
WO2019195528A1 (en) * 2018-04-04 2019-10-10 Idac Holdings, Inc. Beam indication for 5g new radio

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Corrections to UCI Feedback", R1-1901978, 16 February 2019 (2019-02-16), XP051599672 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066329A1 (zh) * 2021-10-20 2023-04-27 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN114342510A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
RU2610470C2 (ru) СПОСОБ ПЕРИОДИЧЕСКОЙ ПЕРЕДАЧИ ИНФОРМАЦИИ О СОСТОЯНИИ КАНАЛА В СИСТЕМАХ С КООРДИНИРОВАННЫМИ МНОГОТОЧЕЧНЫМИ ПЕРЕДАЧЕЙ И ПРИЕМОМ (СоМР)
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
US20220110074A1 (en) Method for transmitting sidelink data, terminal device, and network device
US11533722B2 (en) Method for transmitting sidelink data and terminal device
US11963173B2 (en) Data transmission method and terminal device
US20220264537A1 (en) Information processing method, terminal device and storage medium
US11963205B2 (en) Resource management method and apparatus
WO2021051392A1 (zh) 优先级确定方法以及装置
US20220368454A1 (en) Method for Determining Transmission Mode in Sidelink, Terminal Apparatus, and Network Apparatus
JP7429242B2 (ja) 測定管理方法及び装置、通信デバイス
WO2020034163A1 (zh) 一种上行信号传输方法、终端和存储介质
TWI741018B (zh) 發送或接收通道狀態資訊的方法和裝置
WO2022061544A1 (zh) 无线通信方法、终端设备和网络设备
WO2021088044A1 (zh) 信息处理方法、终端设备及存储介质
WO2018177549A1 (en) Method, apparatus and computer program for use in power headroom reporting
WO2020061804A1 (zh) 一种载波处理方法、终端、网络设备和存储介质
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
EP3965495B1 (en) Information processing method, network device, and user equipment
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
US20220201658A1 (en) Configuration information determination method and apparatus, and terminal
WO2023142122A1 (zh) 通信方法、装置、终端设备、芯片、介质、产品及程序
WO2020107147A1 (zh) 一种信息生成及指示方法、装置、终端
CN117998627A (zh) 一种冲突处理方法、装置、终端及网络设备
WO2019028754A1 (zh) 无线通信方法和网络节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951378

Country of ref document: EP

Kind code of ref document: A1