WO2020124811A1 - 一种 goa 电路的驱动电压补偿装置及方法 - Google Patents

一种 goa 电路的驱动电压补偿装置及方法 Download PDF

Info

Publication number
WO2020124811A1
WO2020124811A1 PCT/CN2019/078017 CN2019078017W WO2020124811A1 WO 2020124811 A1 WO2020124811 A1 WO 2020124811A1 CN 2019078017 W CN2019078017 W CN 2019078017W WO 2020124811 A1 WO2020124811 A1 WO 2020124811A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compensation
value
driving voltage
goa circuit
Prior art date
Application number
PCT/CN2019/078017
Other languages
English (en)
French (fr)
Inventor
陈仁禄
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020124811A1 publication Critical patent/WO2020124811A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the invention relates to the technical field of liquid crystal display, and in particular to a driving voltage compensation device and method of a GOA circuit that can improve the stability of the GOA circuit in a low-temperature and high-temperature environment.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • GOA Gate driver On Array, array substrate row drive
  • the GOA circuit can save the Gate IC, it can be directly produced around the panel, simplifying the manufacturing process, and can also reduce the product cost, improve the integration of the TFT-LCD panel, and make the panel tend to be thinner. It has been widely used in liquid crystals. Panel.
  • FIG. 1A is a schematic diagram of a GOA circuit architecture in the prior art
  • FIG. 1B is a diagram of input signals and node waveforms of the GOA circuit shown in FIG. 1A.
  • the GOA circuit uses multiple TFTs (such as T11, T21, T22, T31, T321, T41, T42, T51, T52 in the figure), and the gate, source and drain of each TFT are overlapped
  • TFTs such as T11, T21, T22, T31, T321, T41, T42, T51, T52 in the figure
  • VDD is the power supply voltage
  • VSS is the common ground voltage
  • CK and XCK are the two AC signals with opposite phases
  • G(N-1) is the gate signal output terminal of the N-1th stage GOA unit
  • G(N) is The gate signal output terminal of the GOA unit of the Nth stage
  • G(N+1) is the gate signal output terminal of the GOA unit of the N+1th stage
  • ST(N-1) is the stage transmission of the GOA unit of the N-1th stage
  • the signal output terminal is the staged signal output terminal of the ST(N) Nth stage GOA unit
  • Q(N) and P(N) are the corresponding nodes of the Nth stage GOA unit.
  • LCD TV products currently use a lot of GOA technology.
  • high and low temperature operation is particularly important for the reliability test of GOA's luminous index (RA), and the voltage difference (Vgs, Vgd, Vds) of the signal is related to the life of the GOA circuit.
  • RA luminous index
  • Vgs, Vgd, Vds voltage difference
  • the TFTs are turned on differently, which results in different charging effects of the GOA circuit, which causes the liquid crystal molecule transmittance to change, resulting in different gray scale values, resulting in flickering of the screen.
  • the electron mobility becomes smaller at low temperatures, and the current flowing through the thin film transistor is lower, which reduces the charging ability of the thin film transistor.
  • the purpose of the present invention is to provide a driving voltage compensation device and method for a GOA circuit to solve the problem that the GOA circuit cannot be normally turned on in a low-temperature working environment, and the life of the TFT is shortened and the function of the GOA circuit is too high in a high-temperature working environment.
  • the problem of increased loss improves the stability of the GOA circuit at high/low temperatures, and reduces the risk of abnormal screen display after the RA reliability test.
  • the present invention provides a driving voltage compensation method for a GOA circuit.
  • the driving voltage compensation method includes the following steps: (1) Detecting the GOA circuit by a temperature sensor disposed under the GOA circuit Real-time temperature; and (2) look up a preset temperature compensation table according to the real-time temperature, when the real-time temperature is in the first temperature interval, obtain a first compensation voltage value to linearly increase according to the first compensation voltage value Increasing the driving voltage of the GOA circuit, when the real-time temperature is in the second temperature interval, acquiring a second compensation voltage value to linearly reduce the driving voltage of the GOA circuit according to the second compensation voltage value, wherein ,
  • the preset temperature compensation table records pre-acquired temperature intervals and corresponding compensation voltage values, the temperature value of the first temperature interval is lower than the first reference temperature value, and the temperature value of the second temperature interval Higher than the second reference temperature value, the first reference temperature value is lower than the second reference temperature value.
  • the present invention also provides a driving voltage compensation method for a GOA circuit.
  • the driving voltage compensation method includes the following steps: (1) detecting the real-time temperature of the GOA circuit; and (2) according to the real-time The temperature searches a preset temperature compensation table to obtain a compensation voltage value matching the real-time temperature to linearly adjust the driving voltage of the GOA circuit according to the compensation voltage value, wherein the preset temperature compensation table records pre-acquisition The corresponding temperature range and the corresponding compensation voltage value.
  • the present invention also provides a driving voltage compensation device for a GOA circuit.
  • the driving voltage compensation device includes: a temperature sensor disposed below the GOA circuit to detect the real-time time of the GOA circuit Temperature; and a voltage adjustment circuit for receiving the real-time temperature and searching a preset temperature compensation table according to the real-time temperature to obtain a compensation voltage value that matches the real-time temperature to linearly adjust the compensation voltage value according to the compensation voltage value.
  • the driving voltage of the GOA circuit, wherein the preset temperature compensation table records each temperature interval acquired in advance and the corresponding compensation voltage value.
  • the compensation curve of the driving voltage Vgh and the temperature compensation curve of the temperature interval can be defined to obtain each temperature interval and the corresponding compensation voltage value
  • a preset temperature compensation table is generated; according to the detected real-time temperature, the preset temperature compensation table is used to compensate the driving voltage Vgh of the GOA circuit at high and low temperatures, solving the problem that the GOA circuit cannot work in a low-temperature working environment Normally open, under the high temperature working environment, the working voltage of the GOA circuit is too high, resulting in shortened TFT life and increased functional loss. It improves the stability of the GOA circuit at high and low temperatures and reduces the risk of abnormal screen display after the RA reliability test. .
  • FIG. 1A a schematic diagram of the GOA circuit architecture in the prior art
  • FIG. 1B is an input signal and node waveform diagram of the GOA circuit shown in FIG. 1A;
  • FIG. 2 is a flowchart of the driving voltage compensation method of the GOA circuit of the present invention
  • FIG. 3A a schematic diagram of a one-stage temperature compensation curve of the first embodiment of the present invention
  • 3B a schematic diagram of a two-stage temperature compensation curve of the second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the driving voltage compensation device of the GOA circuit of the present invention.
  • the first feature “above” or “below” the second feature may include the first and second features in direct contact, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the driving voltage compensation method includes: S21: detecting the real-time temperature of the GOA circuit; and S22: searching a preset temperature compensation table according to the real-time temperature to obtain a compensation voltage value that matches the real-time temperature, based on the compensation
  • the voltage value linearly adjusts the driving voltage of the GOA circuit, wherein the preset temperature compensation table records each temperature interval acquired in advance and the corresponding compensation voltage value, which will be explained in detail below with reference to the drawings.
  • a real-time temperature of the GOA circuit can be detected by a temperature sensor disposed below the GOA circuit.
  • the temperature sensor uses a negative temperature coefficient (Negative Temperature Coefficient, hereinafter referred to as NTC) thermistor.
  • NTC thermistor is made of manganese, cobalt, nickel and copper and other metal oxides as the main materials, and it is manufactured by ceramic process. These metal oxide materials have semiconductor properties, and are completely similar to semiconductor materials such as germanium and silicon in the conductive mode. When the temperature is low, the number of carriers (electrons and holes) of these oxide materials is small, and the resistance value is high; as the temperature increases, the number of carriers increases and the resistance value decreases, so it can be used for temperature measurement .
  • the driving voltage compensation device further includes an X board, and the negative temperature coefficient thermistor is bonded to the X board (X-Board). That is, by improving the signal design of the GOA circuit, binding an NTC thermistor to the X-Board to find out the optimal compensation voltage of the driving voltage Vgh of the GOA circuit with temperature, thereby defining the compensation voltage of the driving voltage Vgh Temperature compensation curve with temperature range.
  • X-Board X board
  • S22 Search for a preset temperature compensation table according to the real-time temperature to obtain a compensation voltage value that matches the real-time temperature to linearly adjust the driving voltage of the GOA circuit according to the compensation voltage value.
  • the preset temperature compensation table records each temperature interval acquired in advance and the corresponding compensation voltage value.
  • the optimal compensation voltage of the driving voltage Vgh of the GOA circuit with temperature can be found through a temperature sensor (such as an NTC thermistor) in advance, so that the compensation voltage of the driving voltage Vgh and the temperature compensation curve of the temperature interval can be defined.
  • a one-to-one correspondence between each temperature interval and the corresponding compensation voltage value is obtained, and a preset temperature compensation table is generated.
  • the preset temperature compensation table may be stored in a memory.
  • a first compensation voltage value is acquired to linearly increase the driving voltage of the GOA circuit according to the first compensation voltage value, wherein the first temperature The temperature value in the interval is lower than the first reference temperature value.
  • the first temperature interval is a low temperature operation temperature interval
  • the first reference temperature value is a low temperature operation reference temperature value.
  • the temperature value range of the first temperature interval may be -30 degrees to 10 degrees, and the first compensation voltage value may be 10-14V; the specific values may depend on the IC manufacturing process of the liquid crystal panel.
  • FIG. 3A a schematic diagram of a one-stage temperature compensation curve according to the first embodiment of the present invention.
  • the voltage value of the driving voltage Vgh increases the first compensation voltage V1 on the basis of the reference driving voltage Vgh0 (driving voltage at normal temperature), and linearly increases to achieve the driving voltage Vgh
  • T1 -10 ⁇ C
  • T2 0 ⁇ C
  • the corresponding first reference temperature value is 0 ⁇ C
  • V1 10V.
  • a second compensation voltage value is acquired to linearly reduce the driving voltage of the GOA circuit according to the second compensation voltage value, where, The temperature value in the second temperature interval is higher than the second reference temperature value.
  • the second temperature interval is a high temperature operating temperature interval
  • the second reference temperature value is a high temperature operating reference temperature value
  • the first reference temperature value is lower than the second reference temperature value.
  • the drive voltage Vgh is compensated for high-temperature linear reduction in the high-temperature stage, and the voltage value of the drive voltage Vgh is reduced, thereby optimizing the stress characteristics of each TFT in the high-temperature RA process (high-temperature and high-humidity operation). Thereby optimizing the RA stability of the GOA circuit.
  • the driving voltage Vgh is compensated with temperature, reducing the risk of RA.
  • the temperature value range of the second temperature interval may be 40 degrees to 55 degrees, and the second compensation voltage value may be 3-15V; specific values may depend on the IC manufacturing process of the liquid crystal panel.
  • the low-temperature and high-temperature piecewise linear compensations can be separately performed on the driving voltage Vgh; that is, when the real-time temperature is in the first temperature interval, the first compensation voltage value is acquired to determine the value according to the first compensation voltage value Linearly increase the driving voltage of the GOA circuit; when the real-time temperature is in the second temperature interval, obtain a second compensation voltage value to linearly decrease the driving voltage of the GOA circuit according to the second compensation voltage value ; Wherein the temperature value of the first temperature interval is lower than the first reference temperature value, the temperature value of the second temperature interval is higher than the second reference temperature value, the first reference temperature value is lower than the second Reference temperature value. Therefore, the compensation value for the compensation of the driving voltage Vgh with temperature is further optimized, and the risk of RA is reduced.
  • FIG. 3B a schematic diagram of a two-stage temperature compensation curve according to a second embodiment of the present invention.
  • This two-stage temperature compensation curve function is especially suitable for high-resolution (such as: 8K, UD three-dimensional transistor (Trigate) and other models with short charging time) GOA architecture products.
  • the NTC thermistor is bound to the X-board to realize the two-stage temperature compensation curve function.
  • the driving voltage compensation method of the GOA circuit of the present invention finds the optimal compensation voltage of the driving voltage Vgh of the GOA circuit with temperature by using a temperature sensor in advance, so that the compensation voltage of the driving voltage Vgh and the temperature compensation curve of the temperature interval can be defined. Obtain a one-to-one correspondence between each temperature interval and the corresponding compensation voltage value to generate a preset temperature compensation table; according to the detected real-time temperature, the preset temperature compensation table is used to compensate the driving voltage Vgh of the GOA circuit at high and low temperatures , Thereby reducing the risk of RA and improving the stability of GOA.
  • the TFT life is shortened and the functional loss is increased due to the high operating voltage of the GOA circuit in a high-temperature working environment, improve the stability of the GOA circuit at high/low temperature, and reduce the reliability of RA
  • the screen after the degree test shows the risk of abnormality.
  • the driving voltage compensation device of the real-time GOA circuit includes: a temperature sensor 42 disposed below the GOA circuit 40 to detect the real-time temperature of the GOA circuit 40; and a voltage adjustment circuit 44 to receive the real-time Temperature, and look up a preset temperature compensation table 43 according to the real-time temperature to obtain a compensation voltage value that matches the real-time temperature to linearly adjust the driving voltage Vgh of the GOA circuit 40 according to the compensation voltage value.
  • the preset temperature compensation table 43 records each temperature interval acquired in advance and the corresponding compensation voltage value.
  • the driving voltage compensation device further includes an X-board (X-Board), the temperature sensor uses a negative temperature coefficient thermistor, and the negative temperature coefficient thermistor is bound to the X-board. That is, by improving the signal design of the GOA circuit, binding an NTC thermistor to the X-Board to find out the optimal compensation voltage of the driving voltage Vgh of the GOA circuit with temperature, thereby defining the compensation voltage of the driving voltage Vgh Temperature compensation curve with temperature range.
  • X-Board X-board
  • the temperature sensor uses a negative temperature coefficient thermistor
  • the negative temperature coefficient thermistor is bound to the X-board. That is, by improving the signal design of the GOA circuit, binding an NTC thermistor to the X-Board to find out the optimal compensation voltage of the driving voltage Vgh of the GOA circuit with temperature, thereby defining the compensation voltage of the driving voltage Vgh Temperature compensation curve with temperature range.
  • the driving voltage compensation device further includes: a memory 45 connected to the voltage adjustment circuit 44 for storing the preset temperature compensation table 43.
  • the voltage adjusting circuit 44 is further configured to obtain a first compensation voltage value when the real-time temperature is in the first temperature interval to linearly increase the driving voltage of the GOA circuit 40 according to the first compensation voltage value, Wherein, the temperature value in the first temperature interval is lower than the first reference temperature value.
  • the first temperature interval is a low temperature operation temperature interval
  • the first reference temperature value is a low temperature operation reference temperature value.
  • the temperature value range of the first temperature interval may be -30 degrees to 10 degrees, and the first compensation voltage value may be 10-14V; the specific values may depend on the IC manufacturing process of the liquid crystal panel.
  • the voltage adjusting circuit 44 is further configured to obtain a second compensation voltage value when the real-time temperature is in the second temperature interval to linearly reduce the driving voltage of the GOA circuit 40 according to the second compensation voltage value,
  • the temperature value in the second temperature interval is higher than the second reference temperature value.
  • the second temperature interval is a high-temperature operating temperature interval
  • the second reference temperature value is a high-temperature operating reference temperature value.
  • the temperature value range of the second temperature interval may be 40 degrees to 55 degrees, and the second compensation voltage value may be 3-15V; specific values may depend on the IC manufacturing process of the liquid crystal panel.
  • the low-temperature and high-temperature piecewise linear compensations can be separately performed on the driving voltage Vgh; that is, when the real-time temperature is in the first temperature interval, the first compensation voltage value is acquired to determine the value according to the first compensation voltage value Linearly increase the driving voltage of the GOA circuit; when the real-time temperature is in the second temperature interval, obtain a second compensation voltage value to linearly decrease the driving voltage of the GOA circuit according to the second compensation voltage value ; Wherein the temperature value of the first temperature interval is lower than the first reference temperature value, the temperature value of the second temperature interval is higher than the second reference temperature value, the first reference temperature value is lower than the second Reference temperature value. Therefore, the compensation value for the compensation of the driving voltage Vgh with temperature is further optimized, and the risk of RA is reduced.
  • the driving voltage compensation device of the GOA circuit of the present invention finds the optimal compensation voltage of the driving voltage Vgh of the GOA circuit with temperature by using a temperature sensor in advance, so that the compensation voltage of the driving voltage Vgh and the temperature compensation curve of the temperature interval can be defined. Obtain a one-to-one correspondence between each temperature interval and the corresponding compensation voltage value to generate a preset temperature compensation table; according to the detected real-time temperature, the preset temperature compensation table is used to compensate the driving voltage Vgh of the GOA circuit at high and low temperatures , Thereby reducing the risk of RA and improving the stability of GOA.
  • the TFT life is shortened and the functional loss is increased due to the high operating voltage of the GOA circuit in a high-temperature working environment, improve the stability of the GOA circuit at high/low temperature, and reduce the reliability of RA
  • the screen after the degree test shows the risk of abnormality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种GOA电路(40)的驱动电压(Vgh)补偿装置及方法,可以解决在低温工作环境下GOA电路(40)不能正常开启与在高温工作环境下GOA电路(40)工作电压过高导致的TFT寿命缩短、功能损耗增大的问题,提高GOA电路(40)在高/低温的稳定性,降低RA可靠度测试之后的画面显示异常的风险。

Description

一种GOA电路的驱动电压补偿装置及方法 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种可以提升GOA电路在低温和高温环境下的稳定性的GOA电路的驱动电压补偿装置及方法。
背景技术
随着光电与半导体技术的发展,薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,简称TFT-LCD)因其具有高空间利用效率、低消耗功率、无辐射以及低电磁干扰等优越特性,已经广泛应用于生活的各个方面。GOA(Gate driver On Array,阵列基板行驱动)技术是直接将薄膜晶体管的栅极驱动电路制作在阵列基板上,以代替由外接硅芯片制作的驱动芯片的一种技术。由于GOA电路可以节省Gate IC,可直接制作于面板周围,简化了制程工艺,而且还可降低产品成本,提高TFT-LCD面板的集成度,使面板趋向于更加薄型化,目前已经普遍应用于液晶面板中。
参考图1A-1B,其中,图1A为现有技术中GOA 电路架构示意图,图1B为图1A所示GOA 电路的输入信号和节点波形图。随著影像品质的提升,GOA电路运用了多颗TFT(例如图示中T11、T21、T22、T31、T321、T41、T42、T51、T52),各TFT的闸、源与汲极上搭接的信号攸关整个电路的运作功能正常与稳定性。其中,VDD为电源电压,VSS为公共接地电压,CK、XCK为相位相反的两交流信号,G(N-1)为第N-1级GOA单元的栅极信号输出端,G(N)为第N级GOA单元的栅极信号输出端,G(N+1)为第N+1级GOA单元的栅极信号输出端,ST(N-1)为第N-1级GOA单元的级传信号输出端,ST(N)第N级GOA单元的级传信号输出端,Q(N)、P(N)为第N级GOA单元的相应节点。
技术问题
LCD TV产品目前也大量使用GOA技术,对于产品而言,高低温操作对于GOA的显光指数(RA)可靠度测试尤其重要,而信号的电压差(Vgs,Vgd,Vds)攸关GOA电路寿命。然而,在GOA电路的实际操作过程中,在不同温度下,TFT导通程度不同,使得GOA电路的充电效果不同,使得液晶分子透过率改变,产生不同的灰阶值,从而导致画面闪烁。而低温条件下电子迁移率在低温下变小,流经薄膜晶体管的电流较低,致使该薄膜晶体管的充电能力下降。在温度过低时,GOA电路在正常的工作电压下不能工作,导致薄膜晶体管无法正常工作;此时,需要调高GOA电路的驱动电压Vgh,但若把Vgh的值设置的过高,在每次启动GOA电路时都需要达到较高的电压值,一方面会缩短TFT的寿命,另一方面还增加了功能损耗。
因此,如何根据GOA电路的高/低温来提供驱动电压VGH补偿,进而提高GOA电路在高/低温的稳定性,降低RA可靠度测试之后的画面显示异常的风险,成为亟待解决的技术问题。
技术解决方案
本发明的目的在于,提供一种GOA电路的驱动电压补偿装置及方法,以解决在低温工作环境下GOA电路不能正常开启,在高温工作环境下GOA电路工作电压过高导致的TFT寿命缩短、功能损耗增大的问题,提高GOA电路在高/低温的稳定性,降低RA可靠度测试之后的画面显示异常的风险。
为实现上述目的,本发明提供了一种GOA电路的驱动电压补偿方法,所述驱动电压补偿方法包括如下步骤:(1)通过一设置于所述GOA电路下方的温度传感器检测所述GOA电路的实时温度;以及(2)根据所述实时温度查找预设温补表,当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压,当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值,所述第一温度区间的温度值低于第一基准温度值,所述第二温度区间的温度值高于第二基准温度值,所述第一基准温度值低于所述第二基准温度值。
为实现上述目的,本发明还提供了一种GOA电路的驱动电压补偿方法,所述驱动电压补偿方法包括如下步骤:(1)检测所述GOA电路的实时温度;以及(2)根据所述实时温度查找预设温补表,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值。
为实现上述目的,本发明还提供了一种GOA电路的驱动电压补偿装置,所述驱动电压补偿装置包括:一温度传感器,设置于所述GOA电路的下方,用以检测所述GOA电路的实时温度;以及一电压调整电路,用于接收所述实时温度,并根据所述实时温度查找预设温补表,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值。
有益效果
通过预先采用温度传感器找出GOA电路的驱动电压Vgh随温度变化的最佳补偿电压,从而可以定义出驱动电压Vgh的补偿电压与温度区间的温补曲线,获取各个温度区间与对应的补偿电压值的一一对应关系,生成预设温补表;根据检测的实时温度,通过预设温补表,在高/低温分别对GOA电路的驱动电压Vgh进行补偿,解决在低温工作环境下GOA电路不能正常开启,在高温工作环境下GOA电路工作电压过高导致的TFT寿命缩短、功能损耗增大的问题,提高GOA电路在高/低温的稳定性,降低RA可靠度测试之后的画面显示异常的风险。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A,现有技术中GOA 电路架构示意图;
图1B为图1A所示GOA 电路的输入信号和节点波形图;
图2,本发明GOA电路的驱动电压补偿方法的流程图
图3A,本发明第一实施例的一阶段温补曲线示意图;
图3B,本发明第二实施例的两阶段温补曲线示意图;
图4,本发明GOA电路的驱动电压补偿装置的架构示意图。
本发明的实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
参考图2,本发明GOA电路的驱动电压补偿方法的流程图。所述驱动电压补偿方法包括:S21:检测所述GOA电路的实时温度;以及S22:根据所述实时温度查找预设温补表,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值,以下结合附图给出详细解释。
S21:检测所述GOA电路的实时温度。
具体的,可以通过一设置于所述GOA电路下方的温度传感器检测所述GOA电路的实时温度。优选的,所述温度传感器采用负温度系数(Negative Temperature Coefficient,以下简称NTC)热敏电阻。NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,其电阻值较高;随着温度的升高,载流子数目增加,其电阻值降低,因此可以用于测温。
优选的,所述驱动电压补偿装置还包括X板,所述负温度系数热敏电阻绑定(Bonding)于所述X板(X-Board)上。也即,通过改进GOA电路的信号设计,在X-Board上绑定NTC热敏电阻,找出GOA电路的驱动电压Vgh随温度变化的最佳补偿电压,从而可以定义出驱动电压Vgh的补偿电压与温度区间的温补曲线。
S22:根据所述实时温度查找预设温补表,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路的驱动电压。
其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值。具体的,可以预先通过温度传感器(例如NTC热敏电阻)找出GOA电路的驱动电压Vgh随温度变化的最佳补偿电压,从而可以定义出驱动电压Vgh的补偿电压与温度区间的温补曲线,获取各个温度区间与对应的补偿电压值的一一对应关系,生成预设温补表。所述预设温补表可以存储在一存储器中。
具体的,当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压,其中,所述第一温度区间的温度值低于第一基准温度值。所述第一温度区间为低温操作温度区间,第一基准温度值为低温操作基准温度值。通过检测实时温度,在低温阶段对驱动电压Vgh进行低温线性增加补偿,拉高驱动电压Vgh的电压值,从而改善在低温RA过程(例如-25˚C低温操作,低温快速开关机)中GOA电路里充电不足的问题。驱动电压Vgh随温度进行补偿,降低RA风险。
具体的,所述第一温度区间的温度值范围可以为-30度至10度,所述第一补偿电压值可以为10-14V;具体各值可以视液晶面板的IC制程而定。
参考图3A,本发明第一实施例的一阶段温补曲线示意图。本实施例中,在低温阶段(T1-T2):驱动电压Vgh的电压值在基准驱动电压Vgh0(常温下的驱动电压)的基础上增加第一补偿电压V1,线性增加,实现对驱动电压Vgh的低温补偿,即Vgh= Vgh0+ V1,获取一阶段温补曲线。本实施例中,T1=-10˚C,T2=0˚C,相应的第一基准温度值为0˚C,V1=10V。
继续参考图2,具体的,当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压,其中,所述第二温度区间的温度值高于第二基准温度值。所述第二温度区间为高温操作温度区间,第二基准温度值为高温操作基准温度值,所述第一基准温度值低于所述第二基准温度值。通过检测实时温度,在高温阶段对驱动电压Vgh进行高温线性减小补偿,降低驱动电压Vgh的电压值,从而优化在高温RA过程(高温高湿操作)中各颗TFT的压力(Stress)特性,从而优化GOA电路的RA稳定性。驱动电压Vgh随温度进行补偿,降低RA风险。
具体的,所述第二温度区间的温度值范围可以为40度至55度,所述第二补偿电压值可以为3-15V;具体各值可以视液晶面板的IC制程而定。
优选的,可以分别对驱动电压Vgh进行低温、高温分段线性补偿;也即,当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压;当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压;其中,所述第一温度区间的温度值低于第一基准温度值,所述第二温度区间的温度值高于第二基准温度值,所述第一基准温度值低于所述第二基准温度值。从而更加优化驱动电压Vgh随温度进行补偿的补偿值,降低RA风险。
参考图3B,本发明第二实施例的两阶段温补曲线示意图。本实施例中,在低温阶段(T1-T2):驱动电压Vgh的电压值在基准驱动电压Vgh0的基础上增加第一补偿电压V1,线性增加,实现对驱动电压Vgh的低温补偿,即Vgh= Vgh0+ V1;在高温阶段(T3-T4):驱动电压Vgh的电压值在基准驱动电压Vgh0的基础上减小第二补偿电压V2,线性减小,实现对驱动电压Vgh的高温补偿,即Vgh= Vgh0- V2,获取两阶段温补曲线。此两阶段温补曲线功能特别适用于高分辨率(如:8K,UD三维晶体管(Trigate)等充电时间短的机种)GOA架构的产品。通过在产品中时序控制电路(Tcon)的支持下,在X-board上绑定NTC热敏电阻,实现两阶段温补曲线功能。T1、T2、T3、T4的具体温度值视实际状况而定,本实施例中,低温段T1=-5˚C、T2=10˚C,高温段T3=40˚C、T4=55˚C,相应的第一基准温度值为10˚C、第二基准温度值为40˚C。V1、V2的具体电压值视IC制程而定,本实施例中,V1=12V、V2=4V。
本发明GOA电路的驱动电压补偿方法,通过预先采用温度传感器找出GOA电路的驱动电压Vgh随温度变化的最佳补偿电压,从而可以定义出驱动电压Vgh的补偿电压与温度区间的温补曲线,获取各个温度区间与对应的补偿电压值的一一对应关系,生成预设温补表;根据检测的实时温度,通过预设温补表,在高/低温分别对GOA电路的驱动电压Vgh进行补偿,从而降低RA风险,改善GOA稳定性。解决在低温工作环境下GOA电路不能正常开启,在高温工作环境下GOA电路工作电压过高导致的TFT寿命缩短、功能损耗增大的问题,提高GOA电路在高/低温的稳定性,降低RA可靠度测试之后的画面显示异常的风险。
参考图4,本发明GOA电路的驱动电压补偿装置的架构示意图。实时GOA电路的驱动电压补偿装置包括:一温度传感器42,设置于所述GOA电路40的下方,用以检测所述GOA电路40的实时温度;以及一电压调整电路44,用于接收所述实时温度,并根据所述实时温度查找预设温补表43,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路40的驱动电压Vgh。其中,所述预设温补表43中记载有预先获取的各个温度区间与对应的补偿电压值。
优选的,所述驱动电压补偿装置还包括X板(X-Board),所述温度传感器采用负温度系数热敏电阻,所述负温度系数热敏电阻绑定于所述X板上。也即,通过改进GOA电路的信号设计,在X-Board上绑定NTC热敏电阻,找出GOA电路的驱动电压Vgh随温度变化的最佳补偿电压,从而可以定义出驱动电压Vgh的补偿电压与温度区间的温补曲线。
优选的,所述驱动电压补偿装置还包括:一存储器45,与所述电压调整电路44连接,用于存储所述预设温补表43。
所述电压调整电路44进一步用于当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路40的驱动电压,其中,所述第一温度区间的温度值低于第一基准温度值。所述第一温度区间为低温操作温度区间,第一基准温度值为低温操作基准温度值。通过检测实时温度,在低温阶段对驱动电压Vgh进行低温线性增加补偿,拉高驱动电压Vgh的电压值,从而改善在低温RA过程(例如-25˚C低温操作,低温快速开关机)中GOA电路里充电不足的问题。驱动电压Vgh随温度进行补偿,降低RA风险。
具体的,所述第一温度区间的温度值范围可以为-30度至10度,所述第一补偿电压值可以为10-14V;具体各值可以视液晶面板的IC制程而定。
所述电压调整电路44进一步用于当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路40的驱动电压,其中,所述第二温度区间的温度值高于第二基准温度值。所述第二温度区间为高温操作温度区间,第二基准温度值为高温操作基准温度值。通过检测实时温度,在高温阶段对驱动电压Vgh进行高温线性减小补偿,降低驱动电压Vgh的电压值,从而优化在高温RA过程(高温高湿操作)中各颗TFT的压力(Stress)特性,从而优化GOA的RA稳定性。驱动电压Vgh随温度进行补偿,降低RA风险。
具体的,所述第二温度区间的温度值范围可以为40度至55度,所述第二补偿电压值可以为3-15V;具体各值可以视液晶面板的IC制程而定。
优选的,可以分别对驱动电压Vgh进行低温、高温分段线性补偿;也即,当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压;当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压;其中,所述第一温度区间的温度值低于第一基准温度值,所述第二温度区间的温度值高于第二基准温度值,所述第一基准温度值低于所述第二基准温度值。从而更加优化驱动电压Vgh随温度进行补偿的补偿值,降低RA风险。
本发明GOA电路的驱动电压补偿装置,通过预先采用温度传感器找出GOA电路的驱动电压Vgh随温度变化的最佳补偿电压,从而可以定义出驱动电压Vgh的补偿电压与温度区间的温补曲线,获取各个温度区间与对应的补偿电压值的一一对应关系,生成预设温补表;根据检测的实时温度,通过预设温补表,在高/低温分别对GOA电路的驱动电压Vgh进行补偿,从而降低RA风险,改善GOA稳定性。解决在低温工作环境下GOA电路不能正常开启,在高温工作环境下GOA电路工作电压过高导致的TFT寿命缩短、功能损耗增大的问题,提高GOA电路在高/低温的稳定性,降低RA可靠度测试之后的画面显示异常的风险。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (16)

  1. 一种GOA电路的驱动电压补偿方法,其中,所述驱动电压补偿方法包括如下步骤:(1)通过一设置于所述GOA电路下方的温度传感器检测所述GOA电路的实时温度;以及(2)根据所述实时温度查找预设温补表,当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压,当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值,所述第一温度区间的温度值低于第一基准温度值,所述第二温度区间的温度值高于第二基准温度值,所述第一基准温度值低于所述第二基准温度值。
  2. 如权利要求1所述的驱动电压补偿方法,其中,所述温度传感器采用负温度系数热敏电阻。
  3. 如权利要求1所述的驱动电压补偿方法,其中,所述第一温度区间的温度值范围为-30度至10度,所述第一补偿电压值为10-14V;所述第二温度区间的温度值范围为40度至55度,所述第二补偿电压值为3-15V。
  4. 一种GOA电路的驱动电压补偿方法,其中,所述驱动电压补偿方法包括如下步骤:(1)检测所述GOA电路的实时温度;以及(2)根据所述实时温度查找预设温补表,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值。
  5. 如权利要求4所述的驱动电压补偿方法,其中,步骤(1)进一步包括:通过一设置于所述GOA电路下方的温度传感器检测所述GOA电路的实时温度。
  6. 如权利要求5所述的驱动电压补偿方法,其中,所述温度传感器采用负温度系数热敏电阻。
  7. 如权利要求4所述的驱动电压补偿方法,其中,步骤(2)进一步包括:当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压,其中,所述第一温度区间的温度值低于第一基准温度值。
  8. 如权利要求7所述的驱动电压补偿方法,其中,所述第一温度区间的温度值范围为-30度至10度,所述第一补偿电压值为10-14V。
  9. 如权利要求4所述的驱动电压补偿方法,其中,步骤(2)进一步包括:当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压,其中,所述第二温度区间的温度值高于第二基准温度值。
  10. 如权利要求9所述的驱动电压补偿方法,其中,所述第二温度区间的温度值范围为40度至55度,所述第二补偿电压值为3-15V。
  11. 一种GOA电路的驱动电压补偿装置,其中,所述驱动电压补偿装置包括:一温度传感器,设置于所述GOA电路的下方,用以检测所述GOA电路的实时温度;以及一电压调整电路,用于接收所述实时温度,并根据所述实时温度查找预设温补表,获取匹配所述实时温度的补偿电压值,以根据所述补偿电压值线性调整所述GOA电路的驱动电压,其中,所述预设温补表中记载有预先获取的各个温度区间与对应的补偿电压值。
  12. 如权利要求11所述的驱动电压补偿装置,其中,所述驱动电压补偿装置还包括X板,所述温度传感器采用负温度系数热敏电阻,所述负温度系数热敏电阻绑定于所述X板上。
  13. 如权利要求11所述的驱动电压补偿装置,其中,所述电压调整电路进一步用于当所述实时温度位于第一温度区间时,获取第一补偿电压值,以根据所述第一补偿电压值来线性增大所述GOA电路的驱动电压,其中,所述第一温度区间的温度值低于第一基准温度值。
  14. 如权利要求13所述的驱动电压补偿装置,其中,所述第一温度区间的温度值范围为-30度至10度,所述第一补偿电压值为10-14V。
  15. 如权利要求11所述的驱动电压补偿装置,其中,所述电压调整电路进一步用于当所述实时温度位于第二温度区间时,获取第二补偿电压值,以根据所述第二补偿电压值来线性减小所述GOA电路的驱动电压,其中,所述第二温度区间的温度值高于第二基准温度值。
  16. 如权利要求15所述的驱动电压补偿装置,其中,所述第二温度区间的温度值范围为40度至55度,所述第二补偿电压值为3-15V。
PCT/CN2019/078017 2018-12-17 2019-03-13 一种 goa 电路的驱动电压补偿装置及方法 WO2020124811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811540919.4 2018-12-17
CN201811540919.4A CN109473076A (zh) 2018-12-17 2018-12-17 一种goa电路的驱动电压补偿装置及方法

Publications (1)

Publication Number Publication Date
WO2020124811A1 true WO2020124811A1 (zh) 2020-06-25

Family

ID=65675443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078017 WO2020124811A1 (zh) 2018-12-17 2019-03-13 一种 goa 电路的驱动电压补偿装置及方法

Country Status (2)

Country Link
CN (1) CN109473076A (zh)
WO (1) WO2020124811A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110097859B (zh) * 2019-04-10 2020-10-13 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039719A (ko) * 2006-11-01 2008-05-07 엘지디스플레이 주식회사 액정표시장치
CN102663980A (zh) * 2012-04-13 2012-09-12 北京京东方光电科技有限公司 一种栅极驱动电路的控制电路及其工作方法、液晶显示器
CN102982778A (zh) * 2012-12-11 2013-03-20 友达光电(厦门)有限公司 一种用于goa电路的驱动电压补偿系统
CN103869866A (zh) * 2012-12-14 2014-06-18 力智电子股份有限公司 栅极驱动电路的参考电压产生器及参考电压产生方法
CN104036740A (zh) * 2014-05-16 2014-09-10 京东方科技集团股份有限公司 栅极驱动电路的控制电路、工作方法和显示装置
CN105070261A (zh) * 2015-08-26 2015-11-18 武汉华星光电技术有限公司 一种液晶显示模组及其电压调整方法
CN108831398A (zh) * 2018-07-25 2018-11-16 深圳市华星光电半导体显示技术有限公司 Goa电路及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238913B2 (ja) * 2006-12-19 2009-03-18 ソニー株式会社 表示装置の温度制御方法及び表示装置
CN101324715B (zh) * 2007-06-15 2011-04-20 群康科技(深圳)有限公司 液晶显示装置及其驱动方法
KR101519917B1 (ko) * 2012-10-31 2015-05-21 엘지디스플레이 주식회사 액정 표시장치의 구동장치와 그 구동방법
KR102422744B1 (ko) * 2015-10-01 2022-07-19 삼성디스플레이 주식회사 표시장치 및 그의 구동방법
KR102582656B1 (ko) * 2016-08-31 2023-09-25 삼성디스플레이 주식회사 표시 장치의 온도 보상 전원 회로

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039719A (ko) * 2006-11-01 2008-05-07 엘지디스플레이 주식회사 액정표시장치
CN102663980A (zh) * 2012-04-13 2012-09-12 北京京东方光电科技有限公司 一种栅极驱动电路的控制电路及其工作方法、液晶显示器
CN102982778A (zh) * 2012-12-11 2013-03-20 友达光电(厦门)有限公司 一种用于goa电路的驱动电压补偿系统
CN103869866A (zh) * 2012-12-14 2014-06-18 力智电子股份有限公司 栅极驱动电路的参考电压产生器及参考电压产生方法
CN104036740A (zh) * 2014-05-16 2014-09-10 京东方科技集团股份有限公司 栅极驱动电路的控制电路、工作方法和显示装置
CN105070261A (zh) * 2015-08-26 2015-11-18 武汉华星光电技术有限公司 一种液晶显示模组及其电压调整方法
CN108831398A (zh) * 2018-07-25 2018-11-16 深圳市华星光电半导体显示技术有限公司 Goa电路及显示装置

Also Published As

Publication number Publication date
CN109473076A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US8957882B2 (en) Gate drive circuit and display apparatus having the same
US10467946B2 (en) Display panel
CN104240639B (zh) 一种像素电路、有机电致发光显示面板及显示装置
US10217393B2 (en) Source driver, display device with the same and driving method thereof
US9286847B2 (en) Repairable GOA circuit and display device for flat panel display
US7450681B2 (en) Shift register
US9035865B2 (en) Gate driving circuit and display apparatus using the same
US8031160B2 (en) Shift register, shift register array, and flat display apparatus
CN102005197B (zh) 液晶显示器驱动电路及相关驱动方法
CN103700342A (zh) Oled像素电路及驱动方法、显示装置
US9412315B2 (en) Gate driving circuit and display apparatus having the same
WO2017107286A1 (zh) 基于ltps半导体薄膜晶体管的goa电路
CN102005196A (zh) 具低功率损耗的移位寄存器
CN105469760A (zh) 基于ltps半导体薄膜晶体管的goa电路
WO2020238013A1 (zh) Goa 电路及阵列基板
JPWO2011104945A1 (ja) 表示装置
US9581873B2 (en) Gate driver on array circuit repair method
JP6290576B2 (ja) 液晶表示装置及びその駆動方法
WO2016149994A1 (zh) Pmos栅极驱动电路
KR20180105237A (ko) Ltps 반도체 박막 트랜지스터 기반의 goa 회로
KR101970489B1 (ko) 액정표시장치 및 그 구동방법과 제조방법
WO2016173105A1 (zh) Goa电路修复方法
KR20190002694A (ko) 저온 폴리 실리콘 반도체 박막 트랜지스터에 기초한 게이트 드라이버 온 어레이 회로
US10803835B2 (en) Method for driving multiplexer and display device
KR102126799B1 (ko) Dcdc 컨버터, 이를 구비한 표시 장치 및 이를 이용한 표시 패널의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900701

Country of ref document: EP

Kind code of ref document: A1