WO2020124357A1 - 温度控制装置、温度控制方法和加热非燃烧烟具 - Google Patents

温度控制装置、温度控制方法和加热非燃烧烟具 Download PDF

Info

Publication number
WO2020124357A1
WO2020124357A1 PCT/CN2018/121731 CN2018121731W WO2020124357A1 WO 2020124357 A1 WO2020124357 A1 WO 2020124357A1 CN 2018121731 W CN2018121731 W CN 2018121731W WO 2020124357 A1 WO2020124357 A1 WO 2020124357A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
temperature control
control device
value
Prior art date
Application number
PCT/CN2018/121731
Other languages
English (en)
French (fr)
Inventor
邹小龙
Original Assignee
绿烟实业(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绿烟实业(深圳)有限公司 filed Critical 绿烟实业(深圳)有限公司
Priority to PCT/CN2018/121731 priority Critical patent/WO2020124357A1/zh
Publication of WO2020124357A1 publication Critical patent/WO2020124357A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention relates to a temperature control device and a temperature control method, in particular to a temperature control device and a temperature control method for heating non-burning smoking articles.
  • the temperature error range that can be achieved by heating non-burning smoking articles on the market is generally about plus or minus 5 degrees. This temperature error range can currently be accepted by most companies and users.
  • temperature is a key factor that affects the taste. The temperature error directly affects the heating curve of the product, causing some places to be fully baked, while some places are not baked at all.
  • the present invention proposes a heating non-burning smoking set, adopting a precise temperature control device to realize precise temperature control.
  • the temperature control device of the invention adopts PID and Fuzzy mixed control, so as to realize precise temperature control. Accurate temperature can make the tobacco fully roasted fully, directly improving the user's experience.
  • a temperature control device for heating a non-burning smoking article.
  • the temperature control device includes a microprocessor.
  • the microprocessor includes a selector and a mixing control unit.
  • the mixing control unit includes A proportional integral derivative controller and a fuzzy controller, when the temperature deviation between the real-time temperature value of the heating piece of the non-burning smoking article and the set temperature value exceeds a predetermined deviation range, the selector selects the fuzzy controller to Controlling the temperature of the heating sheet, when the temperature deviation between the real-time temperature value of the heating sheet heating the non-burning smoking article and the set temperature value is within a predetermined deviation range, the selector selects the proportional integral differential controller To control the temperature of the heat generating sheet.
  • the temperature control device further includes a sampling circuit and an amplification circuit.
  • the real-time temperature signal of the heating sheet enters the microprocessor after the sampling circuit and the amplification circuit to obtain Describe the real-time temperature value of the heating sheet.
  • the temperature control device further includes a pulse width modulator and a temperature control circuit, and the output of the hybrid control unit is input to the pulse width modulator to control the heating of the heating sheet by the temperature control circuit .
  • the predetermined deviation range is set between -10 degrees and 10 degrees, so that the temperature error is limited to plus or minus 1 degree.
  • a heating non-burning smoking article characterized in that the heating non-burning smoking article includes the above temperature control device.
  • a temperature control method for heating a non-burning smoking article adopts the above control device, the temperature control device includes a microprocessor, and the microprocessor includes a selector And a hybrid control unit, the hybrid control unit includes a proportional integral derivative controller and a fuzzy controller, and the temperature control method includes the following steps: using a selector according to the real-time temperature value and setting of the heating piece of the non-burning smoking appliance The temperature deviation value of the temperature value selects the hybrid control unit, and when the temperature deviation value exceeds a predetermined deviation range, the selector selects the fuzzy controller to control the temperature of the heating sheet, when the temperature When the deviation value is within a predetermined deviation range, the selector selects the proportional integral derivative controller to control the temperature of the heating sheet.
  • Fig. 1 shows a block diagram of a temperature control device for heating a non-burning smoking article of the present invention.
  • FIG. 2 shows a partial block diagram of a microprocessor including a hybrid control unit used in the temperature control device according to the present invention.
  • Fig. 1 shows a block diagram of a temperature control device for heating a non-burning smoking article of the present invention.
  • MCU micro control unit
  • the signal collection and the control of all peripheral devices are completed by MCU1.
  • the signal will first pass through the sampling circuit 2 and then be amplified by the amplifier circuit 3 before the MCU1 can collect it. Due to the process of the chip itself, the actual accuracy generally does not reach the theoretical value, so the signal must be amplified to be received by MCU1.
  • MCU1 integrates the received information to calculate the real-time resistance value of the starting hot sheet.
  • the resistance value of the heating element is proportional to the temperature. The higher the temperature, the greater the resistance value. According to the calculated resistance value, combined with the corresponding formula of the heating plate specification You can find the real-time temperature value of the starting hot sheet, where R25 is the normal temperature resistance, ⁇ R is the resistance change, and ⁇ T is the temperature change.
  • the above temperature control algorithm combines the control principle of proportional integral differential control device (PID), fuzzy control (Fuzzy) and PWM pulse width modulation principle.
  • PID proportional integral differential control device
  • Fuzzy fuzzy control
  • PWM pulse width modulation principle
  • temperature control is generally finally adjusted by PWM.
  • the output voltage can be changed by adjusting the proportion of its high and low levels.
  • the higher the proportion of high levels the greater the output voltage and the corresponding current.
  • the larger the temperature the faster the temperature rises.
  • the lower the proportion of the high level the smaller the output voltage, and the slower the temperature rise.
  • the heating plate is also dissipating heat at the same time as the temperature rises. If the PWM pulse width setting value is small, it may cause the temperature to reach the set temperature, and if the pulse width setting is too large, then the The punching temperature is too high. When the temperature drops slowly and approaches the set temperature, the PWM pulse width is adjusted, and the heating plate is reheated. However, the resistance value of the heating plate used for heating non-combustion products is very small, and the temperature will rise a lot immediately after heating. , Which causes large fluctuations in temperature deviation.
  • FIG. 2 shows a partial block diagram of a microprocessor including a fuzzy-PID hybrid control unit used in the temperature control device according to the present invention.
  • the microprocessor includes a selector 5, a PID controller 6, and a Fuzzy controller 7.
  • the selector 5 selects different temperature controllers according to the temperature deviation value between the real-time temperature value of the heat generating sheet and the set temperature value, so as to control the control object such as the heat generating sheet.
  • Kp proportional magnification
  • Ki proportional magnification
  • Kp proportional magnification
  • its function is to obtain the control amount after amplifying according to a certain proportion according to the difference between the current temperature value and the set temperature value. That is, when the temperature deviation value is large, the Kp output control amount is large. When the temperature deviation value is getting smaller and smaller, the Kp output control amount also gradually decreases. When the actual temperature exceeds the set temperature, the Kp output control amount is 0. Let it cool naturally without heating. Ki is an integral term.
  • the heating element When the temperature is close to the set temperature, because the ambient temperature is usually very low, the heating element is also radiating heat.
  • the control amount provided by Kp just offsets the heat lost to the air, the temperature is constant Yes, but there may be a difference of several degrees from the set temperature.
  • the role of Ki is to reduce this difference, eliminate the steady-state error, and make the temperature closer to the set temperature.
  • the integral of Ki is increasing with time.
  • Kd is a derivative of time, it is a speed trend judgment of temperature rise. In the heating process, even if the heating is stopped, the temperature will not stop rising immediately, but the speed of the rise is predicted by the differential quantity, and the output control amount is appropriately reduced, which can effectively prevent the temperature from overshooting the head. .
  • the input value is directly assigned to the PWM after the proportional, integral, and differential triple operations, and then the PWM will control the heating of the heating chip, that is, the temperature is controlled to be constant, thereby reducing the temperature
  • the deviation value is to reduce the temperature fluctuation.
  • the PID controller 6 can achieve precise temperature control, but it can not be controlled by the PID controller 6 because the PID controller 6 will fail for products whose temperature rises rapidly, and the overshoot temperature and shock temperature are also very large. Yes, the PID controller 6 can only play a very good control effect on the heating element whose temperature rises slowly.
  • the PID controller 6 is essentially linear control, and the Fuzzy controller 7 does not need to know the precise model of the controlled object, the parameters can be automatically adjusted, and it is easy to control the nonlinear object. Therefore, by combining the PID controller 6 and the Fuzzy controller 7 to control the heating plate, the temperature curve of the heating plate can be well controlled as a linear straight line.
  • the fuzzy controller 7 is used in a large temperature deviation range, and it is converted into a PID controller in a small temperature deviation range. This is mainly because in the initial stage of temperature control, the temperature deviation of the system will be relatively large. At this time, the main purpose of the Fuzzy controller 7 is to eliminate the temperature deviation, and when the control process tends to a stable stage, the system temperature deviation is already very small At this time, the PID controller 6 is mainly used to reduce the amount of overshoot and make the entire system stable as soon as possible.
  • U the output
  • E the temperature deviation
  • Ec the change in temperature deviation
  • Kp When the temperature deviation is in a medium size, in order to make the system response have a small overshoot, Kp should be made smaller. In this case, the value of Kd has a greater impact on the system response, and the value of Ki should be appropriate. When the temperature deviation is small, in order to make the system have better stability performance, both Kp and Ki should be made larger. At the same time, in order to avoid the system from oscillating near the set value, the Kd value is selected according to the change of the temperature deviation. When the temperature deviation When the change is large, Kd takes a small value, and usually Kd is a medium size. As an example, the value of Kp may be 10, the value of Ki may be 2, and the value of Kd may be 25.
  • the selector 5 of the fuzzy-PID hybrid control unit is an intelligent selection controller based on the deviation value of the set value and the actual value, and a control method is selected according to the change of the deviation value.
  • the Fuzzy controller 7 is used, and when the deviation value is within the predetermined deviation range, the PID controller 6 is used, which can effectively reduce the accumulation of points brought by KI, reduce the amount of overshoot, and finally make The temperature accuracy of the product is between plus and minus 1 degree.
  • the predetermined deviation range may be selected according to actual temperature control requirements. As an example, the predetermined deviation range may be set within a range of -10 degrees to 10 degrees.
  • the temperature control device of the present invention uses a Fuzzy controller to stabilize the temperature first, and then uses a PID controller to further reduce the temperature deviation and more accurately control the heating effect. Through the precise temperature control device, the best smoking taste is achieved.
  • Table 1 gives the experimental data measured by the temperature control device of the present invention (as an example, the target temperature setting value is 380 degrees, and the predetermined deviation range is set from -10 degrees to 10 degrees):
  • the temperature control device of the present invention uses a hybrid control unit including a Fuzzy controller and a PID controller, the predetermined deviation range is set from -10 degrees to 10 degrees, and the temperature error finally obtained is controlled at 1 degree Right and left, improved smoking taste.
  • the Fuzzy-PID hybrid control unit according to the present invention shown in FIG. 2 is integrated in the MCU1 (microprocessor) shown in FIG. 1, MCU1 is the core of the entire system, the implementation of the PID controller 6 and the Fuzzy controller 7 and PWM The output is done by the MCU.
  • the sampling signal obtained by the sampling circuit 2 is collected and stored by the MCU1 after the amplification circuit 3, and at the same time, the MCU1 inputs the sampling data into the Fuzzy-PID hybrid control unit, and the output is obtained through the Fuzzy-PID operation, and the MCU1 passes the output to the PWM, Finally, the temperature control circuit 4 is controlled by PWM to achieve constant temperature.
  • the smoking set of the present invention adopts more advanced technology in temperature control, which makes the temperature control more precise and the operation more convenient. It can realize the precise adjustment according to the heating requirements of different tobaccos and achieve the best smoking taste effect.

Landscapes

  • Control Of Temperature (AREA)

Abstract

一种用于加热非燃烧烟具的温度控制装置,温度控制装置包括微处理器(1),微处理器(1)包括选择器(5)和混合控制单元,混合控制单元包括比例积分微分控制器(6)和模糊控制器(7),当加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值超出预定偏差范围时,选择器(5)选择模糊控制器(7)以控制发热片的温度,当加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值在预定偏差范围内时,选择器(5)选择比例积分微分控制器(6)以控制发热片的温度。

Description

温度控制装置、温度控制方法和加热非燃烧烟具 技术领域
本发明涉及一种温度控制装置和温度控制方法,尤其涉及一种用于加热非燃烧烟具的温度控制装置和温度控制方法。
背景技术
目前市面上的加热非燃烧烟具所能做到的温度误差范围一般都在正负5度左右,这个温度误差范围目前能够被大多数的公司和用户所接受。但是对于加热非燃烧烟具来说,温度是影响口感的一个关键因素,温度的误差直接影响了产品的加热曲线,会导致有些地方烘烤充分,而有些地方却完全没有烤到。
发明内容
针对市面上产品温度误差大的问题,本发明提出了一种加热非燃烧烟具,采用精准的温度控制装置,实现精准的温度控制。
本发明的温度控制装置采用PID和Fuzzy混合控制,从而实现精准的温度控制。精准的温度能使烟草完全烘烤充分,直接提升用户的体验度。
根据本发明的一个方面,提供一种用于加热非燃烧烟具的温度控制装置,所述温度控制装置包括微处理器,所述微处理器包括选择器和混合控制单元,所述混合控制单元包括比例积分微分控制器和模糊控制器,当所述加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值超出预定偏差范围时,所述选择器选择所述模糊控制器以控制所述发热片的温度,当所述加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值在预定偏差范围内时,所述选择器选择所述比例积分微分控制器以控制所述发热片的温度。
作为优选,所述温度控制装置还包括取样电路和放大电路,在所述加热非燃烧烟具加热时,所述发热片的实时温度信号经取样电路和放大电路后进入所述微处理器以获得所述发热片的实时温度值。
作为优选,所述温度控制装置还包括脉冲宽度调制器和温控电路,所述混合控制单元的输出量输入到所述脉冲宽度调制器,以控制所述温控电路对所述发热片的加热。
作为优选,所述预定偏差范围设定在-10度至10度之间,从而将温度误差限制在 正负1度以内。
根据本发明的另一方面,提供一种加热非燃烧烟具,其特征在于,所述加热非燃烧烟具包括上述温度控制装置。
根据本发明的另一方面,提供一种用于加热非燃烧烟具的温度控制方法,所述温度控制方法采用上述控制装置,所述温度控制装置包括微处理器,所述微处理器包括选择器和混合控制单元,所述混合控制单元包括比例积分微分控制器和模糊控制器,所述温度控制方法包括以下步骤:采用选择器根据所述加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值对所述混合控制单元进行选择,当所述温度偏差值超出预定偏差范围时,所述选择器选择所述模糊控制器以控制所述发热片的温度,当所述温度偏差值在预定偏差范围内时,所述选择器选择所述比例积分微分控制器以控制所述发热片的温度。
附图说明
图1示出了用于本发明的加热非燃烧烟具的温度控制装置的方框图。
图2示出了根据本发明温度控制装置所采用的包括混合控制单元的微处理器的局部方框图。
具体实施方式
图1示出了用于本发明的加热非燃烧烟具的温度控制装置的方框图。首先,要进行温度控制,就必须先采集并计算出加热非燃烧烟具的发热片的实时温度。如图1所示,微控制单元(MCU)1是整个系统的核心,信号的采集以及所有外围器件的控制都由MCU1来完成。系统加热时,信号先会经过取样电路2,再通过放大电路3将信号放大,MCU1才能采集到。因为芯片本身工艺的问题,实际精度一般达不到理论值,所以信号必须要经过放大处理才能被MCU1接收。MCU1将接收到的信息进行整合计算出发热片的实时电阻值。发热片的电阻值和温度是成正比对应关系的,温度越高,电阻值就越大。根据算出来的电阻值,结合发热片规格对应公式
Figure PCTCN2018121731-appb-000001
便能求出发热片的实时温度值,其中,R25为常温电阻,ΔR为电阻变化量,ΔT为温度变化量。
上述控温算法结合比例积分微分控制装置(PID)的控制原理、模糊控制(Fuzzy)的控制原理、PWM脉宽调制原理,由MCU 1来分配资源,达到控温最大合理化,从 而缩小偏差值,使当前温度与设定温度逐步趋于稳定,并最终两者之间差值的绝对值在1度以内。
具体地,温度控制一般最后由PWM进行调节,在一个周期内,调整其高低电平所占比例就可以改变输出电压,高电平所占比例越高,输出电压也就越大,电流也相应的更大,温度升高的也就越快,相反,高电平所占比例越低,输出电压就小,那温度升高的就会缓慢。但是,实际上,发热片在温度升高的同时一边也在散热,如果PWM脉宽设定值小了,就有可能导致温度到不了设定温度,而如果脉宽设定太大,则上冲温度太高。等温度自己缓慢降下来临近设定温度时,再调整PWM脉宽,则发热片重新加热,可是因为加热非燃烧产品选用的发热片阻值都是很小的,稍微一加热温度马上会上升很多,这就造成温度上下偏差震荡大。
本发明中采用PID控制和Fuzzy控制来实现精准控温,使PWM输出稳定。图2示出了根据本发明的温度控制装置所采用的包括Fuzzy-PID混合控制单元的微处理器的局部方框图。该微处理器包括选择器5、PID控制器6、Fuzzy控制器7。选择器5根据发热片的实时温度值与设定温度值的温度偏差值选择不同的温度控制器,从而对控制对象例如发热片进行控制。
首先介绍PID控制原理,PID调温最重要的三个参数比例系数Kp、积分系数Ki和微分系数Kd,温度调节实际就是调整这三个参数的值。Kp:比例放大倍数,它的作用是根据当前温度值和设定温度值的差值按照一定比例放大后得到控制量。就是温度偏差值很大时,Kp输出控制量就大,当温度偏差值越来越小时,Kp输出控制量也慢慢变小,当实际温度超过设定温度时,Kp输出控制量为0,不加热让其自然冷却。Ki是积分项,当温度快到设定温度时,因为环境温度通常很低,发热体在加热同时也是在散热的,当Kp提供的控制量刚好抵消散失到空气中的热量时候,温度就恒定了,但与设定温度可能还会有几度的差值。那Ki的作用就是减小这段差值的,消除稳态误差,使温度更接近于设定温度。Ki随着时间积分在不断增加,当控制量超过一定值时候,系统温度就会重新开始上升,但是因为积分从一开始加热就开始累积,所以Ki的作用也会导致温度有一定的超调。Kd是对时间的微分量,它是对温度上升的一种速度趋势判断。发热体在加热过程中,即使停止加热,温度依然不会立即停止上升,而通过微分量预测上升的速度,对输出的控制量进行适当的减小,可以有效的防止温度上冲过头的情况出现。
在PID控制器6中,输入量在经过比例、积分、微分三重运算之后,得到的输出量直接赋值给到PWM,然后PWM会控制发热片的加热,也就是控制了温度的恒定, 从而缩小温度偏差值,也就是减小温度上下震荡。
PID控制器6能够实现精准控温,但是又不能整个加热过程都用PID控制器6来控制,因为PID控制器6对于温度升高很快的产品会失效,上冲温度和震荡温度也是很大的,PID控制器6只对温度升高缓慢的发热体能起到很好的控制效果。PID控制器6本质是线性控制,而Fuzzy控制器7不需要知道被控对象的精确模型,参数可以自动调整,易于控制非线性对象。所以将PID控制器6和Fuzzy控制器7两者结合起来对发热片进行控制,就可以很好地控制发热片的温度曲线为一条线性直线。在大温度偏差范围内采用模糊控制器7,在小温度偏差范围内转换成PID控制器。这样做主要是因为在温控的初始阶段,系统的温度偏差会比较大,此时Fuzzy控制器7的主要目的是消除温度偏差,而当控制过程趋于稳定阶段,系统温度偏差已经很小了,此时采用PID控制器6主要是为了减小超调量,使整个系统尽快稳定。
Fuzzy控制器7根据PID控制的三个参数与温度偏差和温度偏差的变化之间的模糊关系,在运行时不断检测温度偏差和温度偏差的变化,通过事先确定的关系(U=-(E+Ec)/2,其中U代表输出量,E代表温度偏差,Ec代表温度偏差的变化),利用模糊推理的方法,在线修改PID控制的三个参数,让PID参数可自动调整。具体地,当温度偏差较大时,为使系统具有较好的跟踪性能,应取较大的Kp和较小的Kd,同时为避免系统响应出现较大的超调,应对积分作用加以限制,通常取Ki=0。当温度偏差处于中等大小时,为使系统响应具有较小的超调,Kp应取得小些。在这种情况下,Kd的取值对系统响应的影响较大,Ki的取值要适当。当温度偏差较小时,为使系统具有较好的稳定性能,Kp与Ki均应取得大些,同时为避免系统在设定值附近出现振荡,Kd值根据温度偏差的变化进行选择,当温度偏差变化较大时,Kd取较小值,通常Kd为中等大小。作为示例,Kp的取值可以为10、Ki的取值可以为2、Kd的取值可以为25。
Fuzzy-PID混合控制单元的选择器5是根据设定值与实际值的偏差值智能选择控制器,根据偏差值的变化选择控制手段。当偏差值超出预定偏差范围时,采用Fuzzy控制器7,当偏差值在预定偏差范围内时,采用PID控制器6,这样可以有效减小KI带来的积分累计,缩小超调量,最终使产品的温度精确度在正负1度之间。预定偏差范围可以根据实际温度控制需求进行选择,作为示例,预定偏差范围可以设定为在-10度至10度的范围内。本发明的温度控制装置采用Fuzzy控制器先使温度稳定下来,再用PID控制器进一步缩小温度偏差,更加精准的控制发热效果。通过精准的温度控制装置,实现了最佳的吸烟口感。下表1给出了采用本发明的温度控制装置测得的实 验数据(作为示例目标温度设定值为380度,预定偏差范围设定为-10度至10度):
表1
Figure PCTCN2018121731-appb-000002
从表1可以看出,本发明的温度控制装置采用包括Fuzzy控制器和PID控制器的混合控制单元,预定偏差范围设定为-10度至10度,将最终获得的温度误差控制在1度左右,改进了吸烟口感。
图2所示的根据本发明的Fuzzy-PID混合控制单元集成在图1所示的MCU1(微处理器)中,MCU1是整个系统的核心,PID控制器6和Fuzzy控制器7的实现和PWM的输出都是由MCU来调用完成的。取样电路2获得的采样信号经过放大电路3后被MCU1采集存储,同时MCU1将采样数据输入Fuzzy-PID混合控制单元中,通过Fuzzy-PID运算得出输出量,MCU1将该输出量传递给PWM,最终由PWM来控制温控电路4,实现温度恒定。
不同品牌、不同公司生产的新烟草,所需要的加温温度是不同的。本发明的烟具在温控方面采用更为先进的技术,使得温控更为精准,操作更便捷,可以实现根据不同烟草的加温需求,实现精准调整,达到最佳吸烟口感效果。

Claims (6)

  1. 一种用于加热非燃烧烟具的温度控制装置,所述温度控制装置包括微处理器,其特征在于,所述微处理器包括选择器和混合控制单元,所述混合控制单元包括比例积分微分控制器和模糊控制器,当所述加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值超出预定偏差范围时,所述选择器选择所述模糊控制器以控制所述发热片的温度,当所述加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值在预定偏差范围内时,所述选择器选择所述比例积分微分控制器以控制所述发热片的温度。
  2. 根据权利要求1所述的用于加热非燃烧烟具的温度控制装置,其特征在于,所述温度控制装置还包括取样电路和放大电路,在所述加热非燃烧烟具加热时,所述发热片的实时温度信号经取样电路和放大电路后进入所述微处理器以获得所述发热片的实时温度值。
  3. 根据权利要求1所述的用于加热非燃烧烟具的温度控制装置,其特征在于,所述温度控制装置还包括脉冲宽度调制器和温控电路,所述混合控制单元的输出量输入到所述脉冲宽度调制器,以控制所述温控电路对所述发热片的加热。
  4. 根据权利要求1-3中任一项所述的用于加热非燃烧烟具的温度控制装置,其特征在于,所述预定偏差范围设定在-10度至10度之间。
  5. 一种加热非燃烧烟具,其特征在于,所述加热非燃烧烟具包括权利要求1-4中任一项所述的温度控制装置。
  6. 一种用于加热非燃烧烟具的温度控制方法,其特征在于,所述温度控制方法采用权利要求1-4中任一项所述的温度控制装置,所述温度控制装置包括微处理器,所述微处理器包括选择器和混合控制单元,所述混合控制单元包括比例积分微分控制器和模糊控制器,所述温度控制方法包括以下步骤:
    采用选择器根据所述加热非燃烧烟具的发热片的实时温度值与设定温度值的温度偏差值对所述混合控制单元进行选择,当所述温度偏差值超出预定偏差范围时,所述选择器选择所述模糊控制器以控制所述发热片的温度,当所述温度偏差值在预定偏差范围内时,所述选择器选择所述比例积分微分控制器以控制所述发热片的温度。
PCT/CN2018/121731 2018-12-18 2018-12-18 温度控制装置、温度控制方法和加热非燃烧烟具 WO2020124357A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121731 WO2020124357A1 (zh) 2018-12-18 2018-12-18 温度控制装置、温度控制方法和加热非燃烧烟具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121731 WO2020124357A1 (zh) 2018-12-18 2018-12-18 温度控制装置、温度控制方法和加热非燃烧烟具

Publications (1)

Publication Number Publication Date
WO2020124357A1 true WO2020124357A1 (zh) 2020-06-25

Family

ID=71100043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121731 WO2020124357A1 (zh) 2018-12-18 2018-12-18 温度控制装置、温度控制方法和加热非燃烧烟具

Country Status (1)

Country Link
WO (1) WO2020124357A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736535A (zh) * 2005-07-31 2006-02-22 湖南大学 中药生产过程中提取罐的模糊-自调整pid控制方法
CN101769800A (zh) * 2010-02-04 2010-07-07 北京印刷学院 基于arm的高精度温度校验方法及仪器
CN105045137A (zh) * 2015-08-12 2015-11-11 中国航空工业集团公司西安飞机设计研究所 一种执行机构自适应pid控制方法及控制系统
CN107037842A (zh) * 2017-05-15 2017-08-11 济南大学 一种基于模糊控制和pid控制的焓差实验室温度切换控制的方法
CN107479593A (zh) * 2017-09-19 2017-12-15 苏州英威腾电力电子有限公司 一种温度控制的方法、温度控制装置以及计算机存储介质
US20180053668A1 (en) * 2016-08-17 2018-02-22 Kelk Ltd. Temperature Controller of Semiconductor Wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736535A (zh) * 2005-07-31 2006-02-22 湖南大学 中药生产过程中提取罐的模糊-自调整pid控制方法
CN101769800A (zh) * 2010-02-04 2010-07-07 北京印刷学院 基于arm的高精度温度校验方法及仪器
CN105045137A (zh) * 2015-08-12 2015-11-11 中国航空工业集团公司西安飞机设计研究所 一种执行机构自适应pid控制方法及控制系统
US20180053668A1 (en) * 2016-08-17 2018-02-22 Kelk Ltd. Temperature Controller of Semiconductor Wafer
CN107037842A (zh) * 2017-05-15 2017-08-11 济南大学 一种基于模糊控制和pid控制的焓差实验室温度切换控制的方法
CN107479593A (zh) * 2017-09-19 2017-12-15 苏州英威腾电力电子有限公司 一种温度控制的方法、温度控制装置以及计算机存储介质

Similar Documents

Publication Publication Date Title
CN106509998A (zh) 电子雾化装置的温度控制方法和系统
US4257395A (en) Fluid flow controller
CN108397853A (zh) 空调机组控制方法和装置
CN109237798B (zh) 一种燃气燃烧装置的控制方法及燃气燃烧装置
CN110470032B (zh) 出风温度控制方法、装置、空调器及计算机可读存储介质
WO2012055222A1 (zh) 明火加热炉炉温控制方法及控制设备
CN105241029A (zh) 辐射空调的运行控制方法
CN107816793A (zh) 一种智能坐便器瞬时加热系统、装置及控制方法
CN103279155B (zh) 一种温度控制系统
US20230229180A1 (en) Control method and control system for high-precision rapid temperature trajectory tracking
CN104850151B (zh) 一种气流式烘丝机燃烧室温度控制方法
CN114322238B (zh) 用于控制空调的方法、装置和多联机空调
CN109588782A (zh) 温度控制装置、温度控制方法和加热非燃烧烟具
CN109253099A (zh) 一种基站风扇控制方法及装置
CN110094838B (zh) 一种基于空调系统的可变参数无模型自适应控制方法
CN114288502A (zh) 呼吸治疗装置的温度和湿度控制方法及呼吸治疗装置
CN107062532B (zh) 空调器的控制方法
WO2020124357A1 (zh) 温度控制装置、温度控制方法和加热非燃烧烟具
WO2024082742A1 (zh) 空调器的控制方法和空调器
CN110925937B (zh) 一种空调的控制方法、终端设备和系统
RU2699836C1 (ru) Способ управления системой обогрева или охлаждения
CN113465020A (zh) 智能恒温控制系统、控制方法及浴霸
CN112000013A (zh) 一种基于滑模-pid复合控制的电热毯温度控制系统
CN113485482A (zh) 一种烹饪设备的自适应温度控制方法
CN205594335U (zh) 适用于高真空环境的动态赋值pid加热控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943719

Country of ref document: EP

Kind code of ref document: A1