WO2020122429A1 - 히알루론산 합성효소 변이 단백질 및 이를 이용한 히알루론산 생산 방법 - Google Patents
히알루론산 합성효소 변이 단백질 및 이를 이용한 히알루론산 생산 방법 Download PDFInfo
- Publication number
- WO2020122429A1 WO2020122429A1 PCT/KR2019/015081 KR2019015081W WO2020122429A1 WO 2020122429 A1 WO2020122429 A1 WO 2020122429A1 KR 2019015081 W KR2019015081 W KR 2019015081W WO 2020122429 A1 WO2020122429 A1 WO 2020122429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hyaluronic acid
- seq
- hasa
- gene
- promoter
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/18—Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
Definitions
- the present invention relates to a mutant protein of hyaluronic acid synthase having improved hyaluronic acid production activity, a gene encoding the mutant protein, and a method for producing hyaluronic acid using the same.
- Hyaluronic acid is a biopolymer composed of disaccharide units of D-gluconic acid and N-acetyl-D-glucosamine, according to molecular weight, filler for molding, and treatment for arthritis And anti-adhesion agents.
- the hyaluronic acid may be produced through fermentation of the Streptococcus spp. strain, and the Streptococcus strain is an infectious microorganism, and there is a possibility that pyrogens and the like are contaminated in the purification process.
- a method of producing hyaluronic acid by transforming a GRAS (Generally Recognized As Safe) strain with a recombinant vector has been developed.
- the most important gene in this method is a hyaluronic acid synthetic gene, which is a gene that does not exist in Bacillus subtilis. Therefore, the gene of the strain of the genus Streptococcus should be used. In addition, there is an urgent need for a mutant protein of hyaluronic acid synthase having improved hyaluronic acid production activity capable of stably producing hyaluronic acid in a high yield.
- An object of the present invention is to provide a hyaluronic acid synthase mutant protein with improved hyaluronic acid production yield and a gene encoding the mutant protein.
- Another object of the present invention is to provide an operon containing the mutant gene, a recombinant vector comprising the mutant gene or the operon, and a microorganism transformed by the recombinant vector.
- a further object of the present invention is a hyaluronic acid synthetase mutant protein having improved hyaluronic acid production yield, or a composition for producing hyaluronic acid comprising a transformed microorganism comprising a gene encoding the mutant protein.
- a further object of the present invention relates to a method for producing hyaluronic acid with high yield using a hyaluronic acid synthase mutant protein having improved hyaluronic acid production yield or a transformed microorganism containing a gene encoding the mutant protein.
- the present invention relates to a mutant protein of hyaluronic acid synthase having improved hyaluronic acid production activity, a gene encoding the mutant protein, and a method for producing hyaluronic acid using the same.
- the present inventors induced a mutation to obtain a hyaluronic acid synthase gene showing enhanced activity compared to a wild type, and conducted a selection process for a strain containing a gene with high activity, and synthesized hyaluronic acid through a combination of substitutions of specific amino acid sequences. It was confirmed that the function of the enzyme was improved.
- the present inventors have completed the hyaluronic acid synthetase mutant protein having improved hyaluronic acid production activity, a gene encoding the mutant protein, and a method for producing hyaluronic acid using the same.
- the 66th lysine of wild-type hyaluronic acid synthase (hasA) consisting of the amino acid sequence of SEQ ID NO: 74 is substituted with arginine
- the 148th glutamic acid with glycine and the 280th lysine with arginine relates to a hyaluronic acid synthase mutant protein comprising at least one selected amino acid variant, preferably a hyaluronic acid synthase mutant protein comprising all three of the above variants.
- the mutation protein is a mutation in which the 197th adenine is substituted with guanine in the gene encoding the wild-type hyaluronic acid synthase (hasA) containing the nucleotide sequence of SEQ ID NO: 75, the mutation in which 443th adenine is substituted for guanine, and the 839th adenine
- It may be a hyaluronic acid synthase mutant protein that is encoded by a nucleotide sequence comprising one or more nucleotide mutations selected from the group consisting of mutations substituted with guanine.
- the base sequence encoding the mutant protein may further include a mutation in which the 582th adenine is substituted with guanine.
- the variant protein may include the amino acid sequence of SEQ ID NO: 76, and may further include an additional amino acid sequence in a range that does not affect the properties and activity of the protein, if necessary.
- the mutant protein may be encoded by a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 77, and further includes substitution of a nucleotide sequence or a nucleotide sequence in a range that does not affect the properties and activity of the protein, if necessary. Additional nucleotide sequences may be added to both ends of or some nucleotide sequences may be removed.
- the range that does not affect the properties and activity of a protein means that the structure or activity of the protein after editing of the protein or gene containing the addition of an amino acid or nucleotide sequence is compared to the structure or activity of the protein before editing. It refers to a range in which structural changes occur and the expression of new activity or the existing activity does not decrease, and includes the range in which the original activity of the protein before editing increases after editing.
- the mutant protein is 1.3 to 5 times, 1.3 to 4 times, 1.3 to 3 times, 1.3 to 2.5 times, 1.3 to 2.3 times, 1.3 to 2 times, 1.5 to 5 times, 1.5 to 4 times 1.5 to 3 compared to the wild-type protein It may show a hyaluronic acid yield of 1.5 to 2.5 times, 1.5 to 2.3 times, or 1.5 to 2 times.
- the mutant protein after culturing in sucrose medium, the mutant protein showed a hyaluronic acid yield of 1.8 times that of the wild type.
- the present invention provides a gene encoding the hyaluronic acid synthase mutant protein.
- the gene may include a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 76, and may further include an additional nucleotide sequence in a range that does not affect the properties and activity of the protein, if necessary. .
- the gene may include mutations in which adenine 197, 443, and 839 of the wild-type hyaluronic acid synthase gene comprising the nucleotide sequence of SEQ ID NO: 75 is substituted for guanine, and a mutation in which 582 adenine is substituted for guanine It may be to further include.
- the mutation may be directly introduced or synthesized by a point mutation by a person skilled in the art according to a method known in the art.
- the gene may include the nucleotide sequence of SEQ ID NO: 77.
- the present invention also provides an expression system for producing hyaluronic acid containing the gene.
- the expression system may be an expression system for producing hyaluronic acid including a transcriptional promoter, a hyaluronic acid synthase mutation gene, a ribosome binding site (RBS), and a tuaD gene, which are operably linked.
- the tuaD gene and the gene encoding the hyaluronic acid synthase variant protein preferably constitute one operon, and more preferably the hyaluronic acid synthase mutation gene, RBS and tuaD gene sequentially in the 5'to 3'direction. It may be connected.
- the expression system for producing hyaluronic acid according to the present invention may be applied to a Bacillus strain, and may be, for example, Bacillus subtilis or Bacillus licheniformis, but is not limited thereto.
- the promoter applied to the expression system of the present invention can be used by appropriately selecting an inducible or constitutive expression promoter as needed.
- the constant expression promoter may be a promoter for constant expression used in Bacillus strains, for example, P43, Pmsm, Ppbp, Pylb, Pyob, Pyqe or Pyvl, preferably Psigx, Pyob, or Pyqe.
- the present invention is not limited thereto, and a person skilled in the art can select and use the hyaluronic acid without limitation as necessary in the range of production purpose.
- the constant expression promoter there is an advantage that hyaluronic acid can be produced without an expensive inducer such as IPTG.
- Each of the promoters can be obtained by performing PCR using the genomic DNA of Bacillus subtilis 168 strain as a template using the primer set shown in Table 2. Specifically, specifically, specifically, forward and reverse primers of the P43 promoter (SEQ ID NOs: 39 and 40), forward and reverse primers of the Pmsm promoter (SEQ ID NOs: 41 and 42), forward and reverse primers of the Ppbp promoter (SEQ ID NO: 43 and 44), forward and reverse primers of the Pylb promoter (SEQ ID NOs: 45 and 46), forward and reverse primers of the pyob promoter (SEQ ID NOs: 47 and 48), forward and reverse primers of the Pyqe promoter (SEQ ID NOS: 49 and 50) , Forward primers and reverse primers of the Pyvl promoter (SEQ ID NOs: 51 and 52), forward primers and reverse primers of the Psigx promoter (SEQ ID NOs: 53 and 54) were used.
- the hyaluronic acid yield of the Psigx promoter (SEQ ID NO: 62) obtained through PCR from the genome of Bacillus subtilis 168 strain (Bacillus Genetic Stock Center) as a primer of SEQ ID NO: 53 and SEQ ID NO: 54 is a P43 promoter It showed about 5 times higher than the case of using, and showed the best activity (Fig. 3).
- the transcription promoter is 1.1 to 10 times, 1.15 to 10 times, 1.5 to 10 times, 2 to 10 times, 3 to 10 times, 4 to 10 times the hyaluronic acid production amount compared to a transformed strain having an expression system containing the P43 promoter.
- Pear 5-10 times, 1.1-9 times, 1.15-9 times, 1.5-9 times, 2-9 times, 3-9 times, 4-9 times, 5-9 times, 1.1-8 times, 1.15-8 Pear, 1.5-8 times, 2-8 times, 3-8 times, 4-8 times, 5-8 times, 1.1-7 times, 1.15-7 times, 1.5-7 times, 2-7 times, 3-7 Pear, 4 to 7 times, 5 to 7 times, 1.1 to 6.5 times, 1.15 to 6.5 times, 1.5 to 6.5 times, 2 to 6.5 times, 3 to 6.5 times, 4 to 6.5 times, 5 to 6.5 times, 1.1 to 6 times Pear, 1.15 to 6 times, 1.5 to 6 times, 2 to 6 times, 3 to 6 times, 4 to 6 times, 5 to 6 times, 1.1 to 5.5 times, 1.15 to 5.5 times, 1.5 to 5.5 times, 2 to 5.5 times It may be a fold, 3 to 5.5 fold, 4 to 5.5 fold, or 5 to 5.5 fold promoter.
- the ribosome binding site (RBS) applicable to the expression system of the present invention is capable of producing hyaluronic acid in Bacillus by expressing the tuaD gene together with the hasA gene.
- the RBS can be selected without limitation as long as it can translate the UDP-glucose 6-dehydrogenase encoding gene to a high level, and the ribosome binding site is 1.1 to 3 times, 1.15 to 3, than when using tuaD RBS Pear, 1.2 to 3 times, 1.1 to 2.5 times, 1.15 to 2.5 times, 1.2 to 2.5 times, 1.1 to 2 times, 1.15 to 2 times, 1.2 to 2 times, 1.1 to 1.5 times, 1.15 to 1.5 times, 1.15 to 1.5 times, 1.15 to 1.5 times Pear, may have a hyaluronic acid yield of 1.1 to 1.3 times, 1.15 to 1.3 times or 1.2 to 1.3 times.
- the tuaD gene may be RBS (tuaD RBS, SEQ ID NO: 71) or pET plasmid RBS (SEQ ID NO: 72), but is not limited thereto.
- the expression system for producing hyaluronic acid includes a gene encoding a tuaD gene and a hyaluronic acid synthase variant protein, and the two genes preferably constitute one operon, more preferably 5' Genes encoding hyaluronic acid synthetase mutant proteins sequentially in the 3'direction, may be an operon linked with the RBS and tuaD genes of the tuaD gene.
- the tuaD gene according to the present invention may be a Bacillus strain, for example, a tuaD gene derived from Bacillus subtilis.
- the tuaD gene may be a tuaD gene derived from a species known to have a tuaD gene without limitation, and may be, for example, a Bacillus strain, preferably a tuaD gene derived from Bacillus subtilis.
- the tuaD gene may be a tuaD gene of Bacillus subtilis 2217 strain, but is not limited thereto, and may be a tuaD gene into which an appropriate mutation is introduced, if necessary, of UDP-glucose 6-dehydrogenase. It can be freely modified and used within a range that does not affect the activity.
- the ribosome binding site and tuaD were obtained from a Bacillus subtilis 2217 strain through polymerase chain reaction (PCR) using primers of SEQ ID NOs: 37 and 38.
- the hyaluronic acid synthase mutant gene may include a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 76, and a range that does not affect the properties and activity of the protein as necessary. In can further include additional sequencing.
- the gene may include mutations in which adenine 197, 443, and 839 of the wild-type hyaluronic acid synthetase gene having the nucleotide sequence of SEQ ID NO: 75 is substituted with guanine, and a mutation in which 582 adenine is substituted with guanine. It may be further included.
- the mutation may be directly introduced or synthesized by a point mutation by a person skilled in the art according to a method known in the art.
- the gene may include the nucleotide sequence of SEQ ID NO: 77.
- the strain in which the hyaluronic acid synthase mutation gene having the nucleotide sequence of SEQ ID NO: 77 is introduced has a hyaluronic acid concentration in the culture solution that is 1.8 times higher than that of the strain in which the wild type hyaluronic acid synthase was introduced (FIG. 5). .
- the mutant protein expressed by the mutant gene is 1.3 to 5 times, 1.3 to 4 times, 1.3 to 3 times, 1.3 to 2.5 times, 1.3 to 2.3 times, 1.3 to 2 times, 1.5 to 5 times, 1.5 compared to the wild type protein To 4 times 1.5 to 3 times 1.5 to 2.5 times, 1.5 to 2.3 times or 1.5 to 2 times hyaluronic acid yield may be exhibited.
- An example of the present invention may be a transforming strain or a recombinant strain for producing hyaluronic acid including the expression system for producing hyaluronic acid.
- the strain may be a GRAS grade strain, and may be a Gram-positive bacterium, for example, Bacillus strain, preferably Bacillus subtilis or Bacillus licheniformis .
- Bacillus strain preferably Bacillus subtilis or Bacillus licheniformis .
- the expression system for producing hyaluronic acid was introduced into the Bacillus subtilis 2217 strain to obtain a hyaluronic acid producing strain without a derivative such as IPTG.
- the recombinant vector for synthesizing hyaluronic acid is transformed into Bacillus subtilis 2217 strain, and the hyaluronic acid yield is 1.8 times higher than that of a strain in which wild-type hyaluronic acid synthase is introduced without a derivative such as IPTG, and non-pathogenicity. A strain having characteristics was obtained.
- the present invention relates to a method for producing hyaluronic acid using non-pathogenic bacteria comprising culturing a transforming strain for producing hyaluronic acid containing the hyaluronic acid expression system to obtain a culture. More specifically, the method for producing hyaluronic acid according to the present invention may further include the step of separating and/or purifying hyaluronic acid in addition to the step of culturing the transforming strain for producing hyaluronic acid, for example, in a culture medium. The method may include removing the strain and precipitating hyaluronic acid in the culture medium from which the strain is removed.
- the transcription promoter In the transforming strain for producing hyaluronic acid and the method for producing hyaluronic acid, the transcription promoter, the hyaluronic acid synthase (hasA) mutant gene, the ribosome binding site for tuaD gene expression, and the tuaD gene are as described above.
- the step of culturing the strain may use sucrose as a carbon source, but is not limited thereto.
- the culture of the strain, the removal of the strain and the precipitation step of hyaluronic acid can be performed by methods known in the art, and can be used by appropriate modifications by a person skilled in the art as necessary.
- the step of culturing the strain is cultured for 50 to 80 hours, 50 to 75 hours, 50 to 72 hours, 50 to 70 hours, 55 to 80 hours, 55 to 75 hours, 55 to 70 hours, or 60 to 65 hours after the start of culture. It may be, but is not limited thereto, and the culture time may be appropriately adjusted according to the culture conditions such as the carbon source and the culture temperature.
- the incubation time may be preferably performed in sucrose medium, 37°C, 180 rpm culture conditions.
- the method for producing hyaluronic acid may further include a step of concentration, purification or concentration and purification of hyaluronic acid after the precipitation step of hyaluronic acid.
- the hyaluronic acid obtained using the above production method may have a molecular weight of 100 to 10,000 kDa, 500 to 10,000 kDa, 500 to 8,000 kDa, 3,000 to 8,000 kDa, or 5,000 to 6,000 kDa.
- the hyaluronic acid synthase mutant protein of the present invention has improved hyaluronic acid yield compared to wild-type hyaluronic acid synthase protein, and has high stability and yield by expressing a hyaluronic acid synthesis system containing the gene encoding the mutant protein in Bacillus strains. It provides a method for producing hyaluronic acid.
- 1 shows a vector process of a vector of the pHCMC02-hasA plasmid and pHCMCO2-hasA plasmid prepared according to an embodiment of the present invention.
- Figure 2 shows a vector process of the production process and pHCMC02-hasA-RBS34-tuaD of the pHCMC02-hasA-RBS34-tuaD plasmid prepared according to an embodiment of the present invention.
- FIG. 3 is a graph showing the concentration of hyaluronic acid produced after introducing an expression system including various promoters into a Bacillus strain according to an embodiment of the present invention, based on P43.
- FIG. 4 is a graph showing the relative concentration of hyaluronic acid as the culture time elapses when the Bacillus strain in which the pSigX-hasA-RBS34-tuaD plasmid is introduced is cultured in sucrose medium according to an embodiment of the present invention.
- FIG. 5 is a graph showing the relative concentration of hyaluronic acid in the DHPHA2217-MT mutant strain based on the hyaluronic acid production concentration of the DHPHA2217-WT strain according to an embodiment of the present invention.
- the hyaluronic acid synthase gene derived from Strepto coccus zooepidemicus (base sequence 1 to 1254 of GenA No. AY173078) (SEQ ID NO: 75) (SEQ ID NO: 75) is shown in Tables 1 to 36 shown in Table 1 below.
- PCR-based two-step DNA synthesis (PCR-based two-step DNA synthesis, PTDS; Xiong, 2004, Nucleic Acids Research 32:e98) was synthesized. Specifically, DNA fragment 1 was prepared using SEQ ID NOs: 1 to 12, and similarly, DNA fragments 2 and 3 were prepared using SEQ ID NOs: 13 to 24 and 25 to 36, respectively.
- the obtained DNA fragment 1, fragment 2 and fragment 3 were mixed and PCR was performed using a primer pair consisting of SEQ ID NO: 1 and SEQ ID NO: 36 to obtain the hasA gene.
- PCR conditions were performed 25 times in total for 15 seconds at 94°C, 15 seconds at 55°C, 15 minutes at 55°C, and stretching at 72°C for 1 minute and 30 seconds using Veriti® Thermal Cycler (applied biosystem).
- the obtained full-length hasA gene was digested with restriction enzymes BamHI and XbaI, and linked to a pHCMC02 (Bacillus Genetic Stock Center) plasmid digested with BamHI and XbaI using T4 DNA ligase (NEB).
- the vector was introduced into E. coli DH5alpha (Enzynomics), and the plasmid pHCMC02-hasA was isolated from the ampicillin-resistant transformant obtained by plating on a plate medium containing ampicillin.
- the obtained plasmid pHCMC02-hasA confirmed that the normal hasA gene was cloned through sequencing.
- the schematic diagram of the method for preparing the plasmid of pHCMC02-hasA and the vector map of pHCMC02-hasA are shown in FIG. 1.
- a ribose binding site (RBS) must exist in front of the tuaD gene
- the DNA of Bacillus subtilis 2217 strain (Bioresource Center (KCTC)) is used as a template using primers of SEQ ID NOs: 37 and 38 .
- the tuaD gene was amplified to include RBS34 (BioBrick BBa_B0034) at the 5 end of the tuaD gene.
- PCR was performed 30 times in total by denaturing at 94°C for 15 seconds, binding at 55°C for 15 seconds, and stretching at 72°C for 1 minute and 30 seconds using a Veriti® Thermal Cycler (applied biosystem).
- SEQ ID NO: 37 5'-aatctagaaagaggagaaatactagatgaaaaaatagctgtcattgg-3'
- SEQ ID NO: 38 5'-gggttataaattgacgcttcccaagtctttagccaatt-3'
- the amplified RBS34-tuaD gene was digested with restriction enzymes XbaI, and linked to pBluescriptII SK+ (Stratagene) plasmids cut with XbaI and SmaI using T4 DNA ligase (NEB). This was introduced into E. coli DH5alpha (Enzynomics), and the plasmid pBSIISK-RBS34-tuaD was isolated from the ampicillin-resistant transformant obtained by plating on a plate medium containing ampicillin. The obtained plasmid pBSIISK-RBS34-tuaD was analyzed by sequencing to Genbank No. It was confirmed that the base sequences 3599 to 4984 of AF015609 (SEQ ID NO: 73, protein coding region of the tuaD gene) were cloned normally.
- pBSIISK-RBS34-tuaD was digested with restriction enzymes XbaI and SmaI, and the truncated RBS34-tuaD gene was treated with the same restriction enzyme in the pHCMC02-hasA plasmid T4 DNA ligase. (NEB).
- the production method of the pHCMC02-hasA-RBS34-tuaD plasmid and the vector map of the plasmid are shown in FIG. 2.
- Example 4 Selection of a promoter for the expression of hasA-tuaD operon
- the expression of the hasA-tuaD operon is regulated by the PlepA promoter, which is known to have weak activity. Accordingly, the promoter having high hasA-tuaD operon expression activity was selected by replacing the PlepA promoter with various promoters.
- the candidate promoters were selected as those having higher expression activity than P43, which is a constitutive expression promoter used in Bacillus strains (Yu, 2015, Scientific Reports, 5:18405; Song, 2016, PLoS One. 11:e0158447).
- each promoter was amplified by PCR using a pair of primers shown in Table 2 as a template of Bacillus subtilis 168 strain DNA (Bacillus Genetic Stock Center).
- forward and reverse primers of the P43 promoter (SEQ ID NOs: 39 and 40), forward and reverse primers of the Pmsm promoter (SEQ ID NOs: 41 and 42), forward and reverse primers of the Ppbp promoter (SEQ ID NOs: 43 and 44), Forward and reverse primers of the Pylb promoter (SEQ ID NOs: 45 and 46), forward and reverse primers of the pyob promoter (SEQ ID NOs: 47 and 48), forward and reverse primers of the Pyqe promoter (SEQ ID NOs: 49 and 50), and Pyvl promoter Forward and reverse primers (SEQ ID NOs: 51 and 52), forward and reverse primers (SEQ ID NOs: 53 and 54) of the Psigx promoter were used.
- Each promoter amplified through PCR was digested with restriction enzymes NheI and BamHI, and linked to pHCMC02-hasA-RBS34-tuaD digested with the same restriction enzyme using T4 DNA ligase (NEB). This was introduced into E. coli DH5alpha (Enzynomics), and each plasmid was isolated from the ampicillin-resistant transformant obtained by plating on a plate medium containing ampicillin. Through sequencing, it was confirmed that each promoter was normally cloned into each plasmid isolated.
- Plasmids having different promoters were introduced into the Bacillus 2217 strain by electroporation (Sun, 2015, Applied Microbiology and Biotechnology, 99:5151-5162) to prepare transforming strains having chloroamphenicol resistance.
- each transformed strain was inoculated into LB medium and cultured overnight. 50 mL of 50 mM potassium phosphate (pH7.) containing 20 mL sucrose medium (50 g sucrose per 1 L, 20 g yeast extract, 1.5 g magnesium sulfate (MgSO4)) in a 250 mL Erlenmeyer flask containing 0.2 mL of overnight cultured strain. After inoculation at 0)), the cells were shaken and cultured at 180 rpm at a temperature of 37° C. Each culture was taken at 65 hours after the start of culture, and centrifuged at 10,000 rpm for 1 minute, and then passed through a 0.45 ⁇ m filter to remove the strain.
- 50 mM potassium phosphate pH7.
- sucrose medium 50 g sucrose per 1 L, 20 g yeast extract, 1.5 g magnesium sulfate (MgSO4)
- MgSO4 magnesium sulfate
- FIG. 3 the relative hyaluronic acid content produced by the transformed strain containing each promoter is shown in a graph.
- the Psigx promoter (SEQ ID NO: 62), the Pyob promoter (SEQ ID NO: 63), and the Pyqe promoter (SEQ ID NO: 64) had higher expression levels than the P43 promoter, and it was confirmed that the Psigx promoter was more effective in producing hyaluronic acid than other promoters. .
- the plasmid cloned with the Psigx promoter was named pSigx-hasA-RBS34-tuaD, and the pSigx-hasA-RBS34-tuaD recombinant plasmid was used in subsequent experiments.
- Example 5 RBS screening for overexpression of the tuaD gene
- D-glucuronic acid is a component of hyaluronic acid and can be produced by the tuaD gene originally possessed by Bacillus, but over-expression of the tuaD gene is required for efficient hyaluronic acid production.
- the hasA gene and the tuaD gene are produced in the form of an operon to induce overexpression of the tuaD gene together with the hasA gene.
- a highly active RBS sequence exists at the 5'end of the tuaD gene, and thus the translation of the tuaD gene must be controlled.
- RBS Since the activity of RBS is sequence context-dependent to the surrounding sequence, it may vary according to the sequence of the gene to be regulated (Mutalik, 2013, Nature Methods, 10:347-353). For this reason, it is advantageous for the translation of the actual tuaD, and as a result, an RBS selection process suitable for hyaluronic acid production was performed.
- RBS RBS screening
- 6 synthetic RBSs BBa_B0030, BBa_B0031, BBa_B0032, BBa_B0033, BBa_B0034, BBa_B0035
- native RBS tuaD RBS
- RBS plasmids commonly used as pET RBS
- Table 8 shows the 8 RBS sequences tested.
- PCR was performed using the DNA of Bacillus subtilis 168 strain (Bacillus Genetic Stock Center) as a template using the primers shown in Table 4 and SEQ ID NO: 38. .
- the tuaD gene containing each amplified RBS was digested with XbaI, and then cut with XbaI and SmaI to connect pSigx-hasA-RBS34-tuaD plasmid with RBS34-tuaD removed using T4 DNA ligase (NEB).
- NEB T4 DNA ligase
- Plasmids having different RBSs obtained above were introduced into Bacillus subtilis 2217 strain by electroporation, and transformed strains having chloroamphenicol resistance were prepared. Next, the method and practical method of Example 4 were prepared. In the same way, each transformed strain was cultured and the culture solution was taken to measure the hyaluronic acid content, and the content (g/L) of the hyaluronic acid produced by the transformed strain using RBS of the pET plasmid was set to 100, The hyaluronic acid content produced by the transformed strain containing the test RBS sequence is relatively displayed, and the results are shown in Table 5 below.
- BBa_B0035 has more expression efficiency compared to BBa_B0034 (corresponding to RBS of Example 1-2). It is known to be excellent.
- the expression system according to the present invention confirmed the highest yield of hyaluronic acid production when using the BBa_B0034 RBS sequence.
- the pSigX-hasA-RBS34-tuaD plasmid was introduced into the Bacillus 2217 strain by electroporation (Sun, 2015, Applied Microbiology and Biotechnology, 99:5151-5162), and chloramphenicol resistance
- the eggplant was transformed and named DHPHA2217-WT.
- DHPHA2217-WT was inoculated into LB medium and cultured overnight.
- 20 mL sucrose medium 50 g sucrose per liter, 20 g Yeast extract
- 1.5 g magnesium sulfate (MgSO4) in 20 mL sucrose medium in 250 mL Erlenmeyer flask
- potassium phosphate potassium phosphate (potassium phosphate (pH7.0)
- the culture solution was taken, centrifuged at 10,000 rpm for 1 minute, and passed through a 0.45 ⁇ m filter to remove the strain. 3 times the volume of ethanol was added to the culture medium from which the strain was removed, the mixture was allowed to stand at 4°C for 2 hours, and hyaluronic acid was precipitated by centrifugation at 45,000°C for 10 minutes. After drying the precipitated hyaluronic acid and dissolving it in water, the hyaluronic acid content was measured using a HA quantitative Test Kit (Corgenix, Riverside, CO, USA).
- FIG. 4 A graph of relative hyaluronic acid concentration over time is shown in FIG. 4.
- the hyaluronic acid concentration when cultured for 65 hours was set to 100%, the hyaluronic acid concentration was 101% after culture for 48 hours, and 31% after 72 hours.
- a mutant library was constructed to induce mutations in hyaluronic acid synthase and to select clones with high activity.
- the hasA gene was mutated through the error prone PCR (EP-PCR) technique described in Wilson, 2001, Current Protocols in Molecular Biology, Chapter 8, Unit8.3.
- EP-PCR error prone PCR
- the reaction solution of Table 6 below was denatured at 94°C for 1 minute, 60°C for 1 minute, and extended for 72°C for 3 minutes in a total of 18 times.
- the amplified hasA mutant gene was digested with restriction enzymes BamHI and XbaI, and digested with the same restriction enzymes and linked to pSigX-hasA-RBS34-tuaD from which wild type hasA was removed using T4 DNA ligase (NEB). This was introduced into E. coli DH5alpha (Enzynomics), and the mutant library plasmid was isolated from the ampicillin-resistant transformants obtained by plating on a plate medium containing ampicillin.
- Example 8 Selection of mutant library Among the mutant libraries obtained in Example 7, the completed library plasmid was transformed into a Bacillus subtilis 2217 strain using electroporation to select a clone having a higher yield of hyaluronic acid synthesis compared to the wild type. .
- the strain was cultured for 65 hours in the same manner as in Example 5, and the concentration of hyaluronic acid in the culture was measured.
- the DHPHA2217-WT strain was also cultured and sampled in the same manner as DHPHA2217-MT, and the hyaluronic acid concentration in the culture medium was measured.
- the plasmid was isolated from the strain, and then the base sequence of the hasA gene was analyzed using primer pairs of SEQ ID NO: 78 and SEQ ID NO: 79.
- -SEQ ID NO: 78 (hasA_Seq_forward): cttccaaattccagttactcgt
- -SEQ ID NO: 79 (hasA_Seq_reverse): caaagcaagtgcctgatacg
- mutations occurred in 4 nucleotides of the hasA wild type gene DNA sequence, resulting in 3 amino acid substitutions.
- adenine (A) of 197, 443, 582, and 839 of the base sequence of the hasA gene was substituted with guanine (G) (SEQ ID NO: 77), and accordingly, lysine 66 of the amino acid sequence of the hasA protein ( Lys, K) was replaced with Arginine (R), Glutamic acid (E) 148 was replaced with Glycine (G), and lysine 280 was replaced with arginine (SEQ ID NO: 76).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 스트렙토코커스 속 균주의 히알루론산 합성효소(hasA)의 아미노산 치환으로 비병원성인 바실러스속 균주에서 높은 수율로 히알루론산을 생산하는 히알루론산 합성효소 변이 단백질, 상기 변이 단백질을 암호화하는 유전자, 상기 유전자를 포함하는 재조합 벡터, 및 상기 벡터로 형질전환된 히알루론산 생산용 균주를 제공하며, 또한 상기 히알루론산 합성효소 변이 단백질을 생산하는 바실러스속 균주를 이용하여 높은 수율과 안정성으로 히알루론산을 생산하는 방법을 제공한다.
Description
본 발명은 히알루론산 생산 활성이 향상된 히알루론산 합성효소의 변이 단백질, 상기 변이 단백질을 암호화하는 유전자, 및 이를 이용한 히알루론산의 생산 방법에 관한 것이다.
히알루론산은 D-글루쿠론산(D-gluconic acid)과 N-아세틸-D-글루코사민(N-acetyl-D-glucosamine)의 이당체단위로 이루어진 생체 고분자로 분자량에 따라, 성형용 필러, 관절염 치료제 및 유착방지제 등 다양한 용도로 활용되고 있다.
이러한, 히알루론산은 스트렙토코커스 속(Streptococcus spp.) 균주의 발효를 통해 생산할 수 있는데, 스트렙토코커스 속 균주는 감염성 미생물로 발열성 물질 등이 정제과정에서 오염될 가능성이 있다. 이러한 점을 개선하고자, GRAS(Generally Recognized As Safe) 균주를 재조합벡터로 형질전환시켜 히알루론산을 생산하는 방법이 개발되었다.
등록특허 10-0879908 과 등록특허 10-0885163 (US 2003/175902)에서는 항시발현용 프로모터 (바실러스 아밀로리쿼파시엔스(Bacillus amyloliquefaciens) 알파-아밀라제 유전자 (amyQ) 프로모터)에 의해 조절되는 오페론 (스트렙토코커스 에퀴시미리스(Streptococcus equisimilis) 유래의 히알루론산 합성효소 유전자 (hasA), 바실러스 서브틸리스(Bacillus subtilis) 유래의 UDP-글루코스 6-디하이드로제나아제(UDP-glucose 6-dehydrogenase) 유전자 (tuaD) 및 UDP-글루코스 피로포스포리라아제 (UDP-glucose pyrophosphorylase, gtaB)로 구성)을 바실러스 서브틸리스 게놈에 삽입시켜 히알루론산 생산이 가능하게 하였다.
이후, US2016/0237465에서는 히알루론산 생산 수율과 히알루론산 분자량을 향상시키고자, IPTG 유도용이며 강력한 프로모터 (Pgrac)에 의해 조절되는 오페론 (스트렙토코커스 쥬에피데미쿠스 유래의 hasA 유전자와 바실러스 서브틸리스 유래의 tuaD 유전자로 구성)을 포함하는 플라스미드를 이용하여 바실러스 서브틸리스를 형질전환하였고, 향상된 수율과 분자량을 보인 바 있다.
이러한 방식에서 가장 핵심이 되는 유전자는 히알루론산 합성 유전자로 이는 바실러스 서브틸리스에 존재하지 않는 유전자이므로, 스트렙토코커스 속 균주의 유전자를 사용하여야 한다. 또한, 히알루론산을 안정적으로 높은 수율로 생산할 수 있는, 히알루론산 생산 활성이 향상된 히알루론산 합성효소의 변이 단백질에 대한 요구가 절실하다.
본 발명의 목적은 히알루론산 생산 수율이 향상된 히알루론산 합성효소 변이 단백질 및 상기 변이 단백질을 암호화하는 유전자를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 변이 유전자를 포함하는 오페론, 상기 변이 유전자 또는 상기 오페론을 포함하는 재조합 벡터, 및 상기 재조합 벡터에 의하여 형질전환된 미생물을 제공하는 것이다.
본 발명의 추가 목적은, 히알루론산 생산 수율이 향상된 히알루론산 합성효소 변이 단백질, 또는 상기 변이 단백질을 암호화하는 유전자를 포함하는 형질전환된 미생물을 포함하는 히알루론산 생산용 조성물에 관한 것이다.
본 발명의 추가 목적은, 히알루론산 생산 수율이 향상된 히알루론산 합성효소 변이 단백질, 또는 상기 변이 단백질을 암호화하는 유전자를 포함하는 형질전환된 미생물을 이용하여 높은 수율로 히알루론산을 생산하는 방법에 관한 것이다.
본 발명은 히알루론산 생산 활성이 향상된 히알루론산 합성효소의 변이 단백질, 상기 변이 단백질을 암호화하는 유전자, 및 이를 이용한 히알루론산의 생산 방법에 관한 것이다.
본 발명자들은 야생형에 비해 향상된 활성을 보이는 히알루론산 합성효소 유전자를 얻기 위해 돌연변이를 유도하고 활성이 높은 유전자를 포함하는 균주에 대한 선별과정을 진행하였고, 특정 아미노산 서열의 치환의 조합을 통해 히알루론산 합성효소의 기능이 향상됨을 확인하였다. 이에, 본 발명자들은 상기 히알루론산 생산 활성이 향상된 히알루론산 합성효소의 변이 단백질, 상기 변이 단백질을 암호화하는 유전자, 및 이를 이용한 히알루론산의 생산 방법을 완성하였다.
본 발명의 일 예는 서열번호 74 의 아미노산 서열로 이루어진 야생형 히알루론산 합성효소(hasA)의 66번째 리신이 아르기닌으로, 148번째 글루탐산이 글리신으로 및 280번째 리신이 아르기닌으로 치환된 변이로 이루어지는 군에서 선택된 1종 이상의 아미노산 변이를 포함하는, 히알루론산 합성효소 변이 단백질, 바람직하게는 상기 3종의 변이를 모두 포함하는 히알루론산 합성효소 변이 단백질에 관한 것이다.
상기 변이 단백질은, 서열번호 75 의 염기서열을 포함하는 야생형 히알루론산 합성효소(hasA)를 암호화하는 유전자에서 197번째 아데닌이 구아닌으로 치환된 변이, 443번째 아데닌이 구아닌으로 치환된 변이 및 839번째 아데닌이 구아닌으로 치환된 변이로 이루어지는 군에서 선택된 1종 이상의 뉴클레오티드 변이를 포함하는 염기서열에 의해 암호화되는 것인 히알루론산 합성효소 변이 단백질일 수 있다. 상기 변이 단백질을 암호화하는 염기서열은, 582번째 아데닌이 구아닌으로 치환된 변이를 추가로 포함할 수 있다.
상기 변이 단백질은 서열번호 76 의 아미노산 서열을 포함하는 것일 수 있으며, 필요에 따라 단백질의 특성 및 활성에 영향을 주지 않는 범위에서 부가적인 아미노산 서열을 추가로 더 포함할 수 있다.
상기 변이 단백질은 서열번호 77 의 염기서열을 포함하는 폴리뉴클레오티드에 의해서 암호화되는 것일 수 있으며, 필요에 따라 단백질의 특성 및 활성에 영향을 주지 않는 범위에서 염기서열의 치환을 추가로 더 포함하거나 염기서열의 양 말단에 추가적인 염기 서열이 더 부가되거나 일부 염기서열이 제거될 수 있다.
본 발명에서 "단백질의 특성 및 활성에 영향을 주지 않는 범위"란, 아미노산 또는 염기서열의 부가를 포함하는 단백질 또는 유전자의 편집 후 단백질의 구조 또는 활성이 편집 전 단백질의 구조 또는 활성에 비교할 때 현저한 구조 변화가 일어나 새로운 활성의 발현 또는 기존의 활성이 감소하지 않는 범위를 의미하며, 편집 전 단백질이 가지고 있던 본래 활성이 편집 후 증가하는 범위를 포함한다.
상기 변이 단백질은 야생형 단백질에 비해 1.3 내지 5배, 1.3 내지 4배, 1.3 내지 3배, 1.3 내지 2.5배, 1.3 내지 2.3배, 1.3 내지 2배, 1.5 내지 5배, 1.5 내지 4배 1.5 내지 3배 1.5 내지 2.5배, 1.5 내지 2.3배 또는 1.5 내지 2배의 히알루론산 수율을 나타낼 수 있다.
본 발명의 일 실시예에서, 수크로즈 배지에서 배양 후 상기 변이 단백질은 야생형 대비 1.8배의 히알루론산 수율을 보였다.
본 발명은 상기 히알루론산 합성효소 변이단백질을 암호화하는 유전자를 제공한다. 바람직하게는, 상기 유전자는 서열번호 76 의 아미노산 서열을 암호화하는 염기서열을 포함하는 것일 수 있으며, 필요에 따라 단백질의 특성 및 활성에 영향을 주지 않는 범위에서 부가적인 염기서열을 더 포함할 수 있다.
상기 유전자는 서열번호 75 의 염기서열을 포함하는 야생형 히알루론산 합성효소 유전자의 197번째, 443번째 및 839번째 아데닌이 구아닌으로 치환된 돌연변이를 포함하는 것일 수 있으며, 582번째 아데닌이 구아닌으로 치환되는 변이를 추가로 더 포함하는 것일 수 있다.
상기 돌연변이는 당업계에 알려진 방법에 따라 통상의 기술자가 직접 점돌연변이를 도입 또는 합성하여 사용할 수 있다. 상기 유전자는 서열번호 77 의 염기서열을 포함하는 것일 수 있다.
본 발명은 또한 상기 유전자를 포함하는 히알루론산 생산용 발현 시스템을 제공한다. 상기 발현 시스템은 작동 가능하도록 연결된, 전사 프로모터, 히알루론산 합성효소 변이 유전자, 리보솜 결합부위(RBS), tuaD 유전자를 포함하는 히알루론산 생산용 발현 시스템일 수 있다. 상기 tuaD 유전자 및 히알루론산 합성효소 변이 단백질을 암호화하는 유전자는 하나의 오페론을 구성하는 것이 바람직하며, 더욱 바람직하게는 5'에서 3'방향으로 순차적으로 히알루론산 합성효소 변이 유전자, RBS 및 tuaD 유전자가 연결된 것일 수 있다.
본 발명에 따른 히알루론산 생산용 발현 시스템은 바실러스속 균주에 적용되는 것일 수 있으며, 예를 들면 바실러스 서브틸리스 또는 바실러스 리케니포르미스일 수 있으나, 이에 한정되지 않는다.
본 발명의 발현 시스템에 적용되는 프로모터는 필요에 따라 유도형 또는 항시 발현형 프로모터(constitutive expression promoter)를 적절히 선택하여 사용할 수 있다. 상기 항시 발현 프로모터는 바실러스속 균주에서 사용되는 항시발현용 프로모터일 수 있으며, 예를 들어, P43, Pmsm, Ppbp, Pylb, Pyob, Pyqe 또는 Pyvl일 수 있으며, 바람직하게는 Psigx, Pyob, 또는 Pyqe일 수 있으나 이에 한정되는 것은 아니며, 당업자가 히알루론산 생산 목적 범위에서 필요에 따라 제한 없이 선택하여 사용할 수 있다. 상기 항시 발현 프로모터를 사용하는 경우, IPTG등 고가의 유도제 없이도 히알루론산을 생산할 수 있는 장점이 있다.
상기 각 프로모터는 표 2에 나타낸 프라이머 세트를 사용하여 바실러스 서브틸리스 168 균주의 유전체 DNA를 주형으로 하여 PCR을 수행하여 얻을 수 있다. 구체적으로, 구체적으로 P43 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 39 및 40), Pmsm 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 41 및 42), Ppbp 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 43 및 44), Pylb 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 45 및 46), pyob 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 47 및 48), Pyqe 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 49 및 50), Pyvl 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 51 및 52), Psigx 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 53 및 54) 를 사용하였다.
본 발명의 일 실시예에서 서열번호 53 및 서열번호 54의 프라이머로 바실러스 서브틸리스 168 균주(Bacillus Genetic Stock Center)의 유전체로부터 PCR을 통해 얻은 Psigx 프로모터 (서열번호 62)의 히알루론산 수율이 P43 프로모터를 사용한 경우에 비해 약 5배 높게 나타나, 가장 좋은 활성을 나타내었다 (도 3).
상기 전사 프로모터는 P43 프로모터를 포함하는 발현 시스템을 갖는 형질전환 균주에 비해 히알루론산 생산량이 1.1 내지 10배, 1.15 내지 10배, 1.5 내지 10배, 2 내지 10배, 3 내지 10배, 4 내지 10배, 5 내지 10배, 1.1 내지 9배, 1.15 내지 9배, 1.5 내지 9배, 2 내지 9배, 3 내지 9배, 4 내지 9배, 5 내지 9배, 1.1 내지 8배, 1.15 내지 8배, 1.5 내지 8배, 2 내지 8배, 3 내지 8배, 4 내지 8배, 5 내지 8배, 1.1 내지 7배, 1.15 내지 7배, 1.5 내지 7배, 2 내지 7배, 3 내지 7배, 4 내지 7배, 5 내지 7배, 1.1 내지 6.5배, 1.15 내지 6.5배, 1.5 내지 6.5배, 2 내지 6.5배, 3 내지 6.5배, 4 내지 6.5배, 5 내지 6.5배, 1.1 내지 6배, 1.15 내지 6배, 1.5 내지 6배, 2 내지 6배, 3 내지 6배, 4 내지 6배, 5 내지 6배, 1.1 내지 5.5배, 1.15 내지 5.5배, 1.5 내지 5.5배, 2 내지 5.5배, 3 내지 5.5배, 4 내지 5.5배, 또는 5 내지 5.5배인 프로모터일 수 있다.
본 발명의 발현 시스템에 적용 가능한 리보솜결합부위(RBS)는 상기 tuaD 유전자를 hasA 유전자와 함께 발현시킴으로써 바실러스에서 히알루론산을 생산할 수 있게 된다. 상기 RBS는 UDP-글루코스 6-디하이드로제나아제 암호화 유전자를 높은 수준으로 번역할 수 있는 것이면 제한 없이 선택될 수 있으며, 상기 리보솜결합부위는 tuaD RBS를 사용하였을 때보다 1.1 내지 3배, 1.15 내지 3배, 1.2 내지 3배, 1.1 내지 2.5배, 1.15 내지 2.5배, 1.2 내지 2.5배, 1.1 내지 2배, 1.15 내지 2배, 1.2 내지 2배, 1.1 내지 1.5배, 1.15 내지 1.5배, 1.15 내지 1.5배, 1.1 내지 1.3배, 1.15 내지 1.3배 또는 1.2 내지 1.3배의 히알루론산 수율을 갖는 것일 수 있다.
예를 들면, 상기 RBS는, BBa_B0030(서열번호 65), BBa_B0031(서열번호 66), BBa_B0032(서열번호 67), BBa_B0033(서열번호 68), BBa_B0034(서열번호 69), BBa_B0035(서열번호 70), tuaD 유전자의 RBS(tuaD RBS, 서열번호 71), 또는 pET 플라스미드의 RBS(서열번호 72)일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 히알루론산 생산용 발현 시스템은 tuaD 유전자와 히알루론산 합성효소 변이 단백질을 암호화하는 유전자를 포함하며, 상기 두 가지 유전자는 하나의 오페론을 구성하는 것이 바람직하며, 더욱 바람직하게는 5'에서 3' 방향으로 순차적으로 히알루론산 합성효소 변이 단백질을 암호화하는 유전자, tuaD 유전자의 RBS 및 tuaD 유전자가 연결된 오페론일 수 있다.
본 발명에 따른 상기 tuaD 유전자는 바실러스속 균주, 예를 들어 바실러스 서브틸리스 균에서 유래한 tuaD 유전자일 수 있다. 상기 tuaD 유전자는 tuaD 유전자를 가지고 있는 것으로 알려져 있는 종으로부터 유래된 tuaD 유전자를 제한 없이 사용할 수 있으며, 예를 들어 바실러스속 균주, 바람직하게는 바실러스 서브틸리스 균에서 유래한 tuaD 유전자일 수 있다. 상기 tuaD 유전자는 바람직하게는 바실러스 서브틸리스 2217 균주의 tuaD 유전자일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 적절한 돌연변이가 도입된 tuaD 유전자일 수 있고, UDP-글루코스 6-디하이드로제나아제의 활성에 영향을 주지 않는 범위에서 자유롭게 변형되어 사용될 수 있다.
본 발명의 일 실시예에서, 상기 리보솜결합부위 및 tuaD는 바실러스 서브틸리스 2217 균주로부터 서열번호 37 및 38의 프라이머를 사용하여 중합효소연쇄반응(PCR)을 통해 수득되었다.
본 발명의 히알루론산 생산용 발현 시스템에서 상기 히알루론산 합성효소 변이 유전자는 서열번호 76의 아미노산 서열을 암호화하는 염기서열을 포함하는 것일 수 있으며, 필요에 따라 단백질의 특성 및 활성에 영향을 주지 않는 범위에서 부가적인 염기서열을 더 포함할 수 있다.
상기 유전자는 서열번호 75 의 염기서열을 가지는 야생형 히알루론산 합성효소 유전자의 197번째, 443번째 및 839번째 아데닌이 구아닌으로 치환된 돌연변이를 포함하는 것일 수 있으며, 582번째 아데닌이 구아닌으로 치환되는 변이를 추가로 더 포함하는 것일 수 있다. 상기 돌연변이는 당업계에 알려진 방법에 따라 통상의 기술자가 직접 점돌연변이를 도입 또는 합성하여 사용할 수 있다.
상기 유전자는 서열번호 77 의 염기서열을 포함하는 것일 수 있다.
본 발명의 일 실시예에서 서열번호 77의 염기서열을 가지는 히알루론산 합성효소 변이 유전자가 도입된 균주는 야생형 히알루론산 합성효소가 도입된 균주에 비해 배양액 내 히알루론산 농도가 1.8배 높았다 (도 5).
상기 변이 유전자에 의해 발현된 변이 단백질은 야생형 단백질에 비해 1.3 내지 5배, 1.3 내지 4배, 1.3 내지 3배, 1.3 내지 2.5배, 1.3 내지 2.3배, 1.3 내지 2배, 1.5 내지 5배, 1.5 내지 4배 1.5 내지 3배 1.5 내지 2.5배, 1.5 내지 2.3배 또는 1.5 내지 2배의 히알루론산 수율을 나타낼 수 있다.
본 발명의 일예는 상기 히알루론산 생산용 발현 시스템을 포함하는 히알루론산 생산용 형질전환 균주 또는 재조합 균주일 수 있다.
상기 균주는 GRAS 등급의 균주일 수 있으며, 그람 양성균, 예를 들어, 바실러스속 균주, 바람직하게는 바실러스 서브틸리스 또는 바실러스 리케니포르미스(B. licheniformis)일 수 있다. GRAS 등급의 균주를 사용함으로써 히알루론산 합성시의 안전성이 증가할 수 있다. 본 발명의 일 실시예에서는 바실러스 서브틸리스 2217 균주에 상기 히알루론산 생산용 발현 시스템을 도입시켜 IPTG와 같은 유도체 없이도 히알루론산을 생산하는 균주를 획득하였다.
본 발명의 일 실시예에서는 바실러스 서브틸리스 2217 균주에 상기 히알루론산 합성용 재조합 벡터를 형질전환시켜 IPTG와 같은 유도체 없이도 야생형 히알루론산 합성효소를 도입한 균주에 비해 1.8배 높은 히알루론산 수율, 및 비병원성 특성을 가지는 균주를 획득하였다.
본 발명은 상기 히알루론산 발현 시스템을 포함하는 히알루론산 생산용 형질전환 균주를 배양하여 배양물을 얻는 단계를 포함하는 비병원성 세균을 이용한 히알루론산 생산방법에 관한 것이다. 더욱 자세하게는, 본 발명에 따른 히알루론산 생산방법은 히알루론산 생산용 형질전환 균주를 배양하는 단계에 더하여, 히알루론산을 분리 및/또는 정제하는 단계를 추가로 포함할 수 있으며, 예를 들면 배양액에서 균주를 제거하는 단계 및 상기 균주가 제거된 배양액에서 히알루론산을 침전시키는 단계를 포함할 수 있다.
상기 히알루론산 생산용 형질전환 균주 및 히알루론산 생산방법에서, 전사 프로모터, 히알루론산 합성효소(hasA) 변이 유전자, tuaD 유전자 발현용 리보솜 결합부위 및 tuaD 유전자 등에 대해서는 상술한 바와 같다.
상기 균주를 배양하는 단계는 탄소원으로 수크로즈를 사용할 수 있으나 이에 제한되는 것은 아니다. 상기 균주의 배양, 균주 제거 및 히알루론산의 침전 단계는 당업계에 알려진 방법으로 수행될 수 있으며, 필요에 따라 통상의 기술자가 적절히 변형하여 사용할 수 있다.
상기 균주를 배양하는 단계는 배양 시작 후 50 내지 80시간, 50 내지 75시간, 50 내지 72시간, 50 내지 70시간, 55 내지 80시간, 55 내지 75시간, 55 내지 70시간 또는 60 내지 65시간 배양하는 것일 수 있으나, 이에 제한되지 않으며, 탄소원, 배양 온도 등 배양 조건에 따라 배양 시간을 적절히 조절할 수 있다. 상기 배양 시간은, 바람직하게는 수크로즈 배지, 37℃, 180rpm 배양 조건에서 수행되는 것일 수 있다.
본 발명의 일 실시예에서, 배양 시작 후 65시간 경과 후와 72시간 경과 후의 상대적 히알루론산 농도에 유의미한 차이가 없었고, 48시간 경과시의 히알루론산 수율은 65시간 경과시의 히알루론산 수율에 비해 매우 낮았다 (도 4). 적절한 배양 시간을 선택함으로써 히알루론산 합성을 위한 배양 비용을 최소화하면서 히알루론산 수율을 극대화할 수 있다.
상기 히알루론산의 생산 방법은 히알루론산의 침전단계 이후 히알루론산의 농축, 정제 또는 농축 및 정제 단계를 추가로 포함할 수 있다.
상기 제조 방법을 사용하여 수득된 히알루론산은 분자량이 100 내지 10,000kDa, 500 내지 10,000kDa, 500 내지 8,000kDa, 3,000 내지 8,000kDa, 또는 5,000 내지 6,000kDa일 수 있다.
본 발명의 히알루론산 합성효소 변이 단백질은 야생형 히알루론산 합성효소 단백질에 비해 향상된 히알루론산 수율을 가지며, 상기 변이 단백질을 암호화하는 유전자를 포함하는 히알루론산 합성 시스템을 바실러스속 균주에서 발현함으로써 높은 안정성 및 수율로 히알루론산을 생산하는 방법을 제공한다.
도 1은 본 발명의 일예에 따라 제조된 pHCMC02-hasA 플라스미드의 벡터의 제조 과정 및 pHCMCO2-hasA 플라스미드의 벡터맵을 나타낸다.
도 2는 본 발명의 일예에 따라 제조된 pHCMC02-hasA-RBS34-tuaD 플라스미드의 제작 과정과 pHCMC02-hasA-RBS34-tuaD의 벡터맵을 나타낸다.
도 3은 본 발명의 일예에 따라 다양한 프로모터를 포함하는 발현 시스템을 바실러스속 균주에 도입한 후 생산된 히알루론산의 농도를 P43을 기준으로 상대적으로 표시한 그래프이다.
도 4는 본 발명의 일예에 따라 pSigX-hasA-RBS34-tuaD 플라스미드가 도입된 바실러스 균주를 수크로즈 배지에서 배양하였을 때, 배양 시간이 경과함에 따른 상대적 히알루론산의 농도를 나타낸 그래프이다.
도 5는 본 발명의 일예에 따라 DHPHA2217-WT 균주의 히알루론산 생산 농도를 기준으로 DHPHA2217-MT 돌연변이 균주의 히알루론산의 상대적 농도를 나타낸 그래프이다.
이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나 하기 실시예는 본 발명을 설명하기 위한 것이고, 하기 실시예의 기재에 의해 본 발명의 범위가 제한되는 것은 아니다.
실시예 1: 히알루론산 합성효소 유전자 (hasA)의 클로닝
스트렙토코커스 쥬에피데미쿠스(Streptococcus zooepidemicus) 유래의 히알루론산 합성효소 유전자 (hasA, Genbank No. AY173078의 염기서열 1~1254) (서열번호 75) 는 하기 표 1에 나타낸 서열번호 1부터 36까지의 프라이머들을 이용하여, PCR 기반의 2단계 DNA 합성 방식(PCR-based two step DNA synthesis, PTDS; Xiong, 2004, Nucleic Acids Research 32:e98)으로 합성하였다. 구체적으로, 서열번호 1부터 12까지를 이용하여 DNA 단편 1을 만들고, 마찬가지로 서열번호 13부터 24까지, 25부터 36까지를 이용하여 각각 DNA 단편 2와 단편 3을 제조하였다. 전체 길이의 hasA 유전자를 얻기 위해, 상기 얻어진 DNA 단편 1, 단편 2 및 단편 3을 혼합하고 서열번호 1 및 서열번호 36로 구성된 프라이머쌍을 이용하여 PCR을 진행하여, hasA 유전자를 획득하였다. PCR조건은 Veriti® Thermal Cycler (applied biosystem)을 이용하여 94℃에서 15초 변성, 55℃에서 15초 결합, 72℃에서 1분30초 신장하는 단계를 총 25회 실시하였다.
명명 | 서열번호 | hasA CDS증폭부위 | 염기서열(5'-> 3') |
hasA_frag1_forward1 | 1 | (1~42) | cgggatccatgagaacattaaaaaacctcataactgttgtggcctttagt |
hasA_frag1_forward2 | 2 | (28~77) | gttgtggcctttagtattttttgggtactgttgatttacgtcaatgttta |
hasA_frag1_forward3 | 3 | (63~112) | ttacgtcaatgtttatctctttggtgctaaaggaagcttgtcaatttatg |
hasA_frag1_forward4 | 4 | (98~147) | gcttgtcaatttatggctttttgctgatagcttacctattagtcaaaatg |
hasA_frag1_forward5 | 5 | (133~182) | ctattagtcaaaatgtccttatcctttttttacaagccatttaagggaag |
hasA_frag1_forward6 | 6 | (168~217) | gccatttaagggaagggctgggcaatataaggttgcagccattattccct |
hasA_frag1_reverse1 | 7 | (203~252) | ggtctctagcaatgactcagcatcttcgttataagagggaataatggctg |
hasA_frag1_reverse2 | 8 | (238~287) | gctaggggataggtttgctgctgaacactttttaaggtctctagcaatga |
hasA_frag1_reverse3 | 9 | (273~322) | catcagcacttccatcgtcaacaacataaatttctgctaggggataggtt |
hasA_frag1_reverse4 | 10 | (308~357) | acgcacatagtcttcaatgcgcttaatacctgtctcatcagcacttccat |
hasA_frag1_reverse5 | 11 | (343~392) | tgaacaatgacattgcttgataggtcaccagtgtcacgcacatagtcttc |
hasA_frag1_reverse6 | 12 | (378~427) | gtgcatgacgctttccttgatttttctctgaccgatgaacaatgacattg |
hasA_frag2_forward1 | 13 | (413~462) | gaaagcgtcatgcacaggcctgggcctttgaaagatcagacgctgatgtc |
hasA_frag2_forward2 | 14 | (448~497) | tcagacgctgatgtctttttgaccgttgactcagatacttatatctaccc |
hasA_frag2_forward3 | 15 | (483~532) | tacttatatctaccctgatgctttagaggagttgttaaaaacctttaatg |
hasA_frag2_forward4 | 16 | (518~567) | taaaaacctttaatgacccaactgtttttgctgcgacgggtcaccttaat |
hasA_frag2_forward5 | 17 | (553~602) | acgggtcaccttaatgtcagaaatagacaaaccaatctcttaacacgctt |
hasA_frag2_forward6 | 18 | (588~637) | tctcttaacacgcttgacagatattcgctatgataatgcttttggcgttg |
hasA_frag2_reverse1 | 19 | (623~672) | aaggatattacctgtaacggattgggcagctcgttcaacgccaaaagcat |
hasA_frag2_reverse2 | 20 | (658~707) | tcgcgtctgtaaacgctaagcggacctgagcaaacaaggatattacctgt |
hasA_frag2_reverse3 | 21 | (693~742) | ggttgatgtatctatctatgttaggaacaaccacctcgcgtctgtaaacg |
hasA_frag2_reverse4 | 22 | (728~777) | atcaccaatacttacaggaatacccaggaaggtctggttgatgtatctat |
hasA_frag2_reverse5 | 23 | (763~812) | cctaaatcagttgcatagttggtcaagcacctgtcatcaccaatacttac |
hasA_frag2_reverse6 | 24 | (798~847) | taatacatttagcagtggattgataaacagtctttcctaaatcagttgca |
hasA_frag3_forward1 | 25 | (833~882) | ctgctaaatgtattacagatgttcctgacaagatgtctacttacttgaag |
hasA_frag3_forward2 | 26 | (868~917) | tctacttacttgaagcagcaaaaccgctggaacaagtccttctttagaga |
hasA_frag3_forward3 | 27 | (903~952) | gtccttctttagagagtccattatttctgttaagaaaatcatgaacaatc |
hasA_frag3_forward4 | 28 | (938~987) | aaatcatgaacaatccttttgtagccctatggaccatacttgaggtgtct |
hasA_frag3_forward5 | 29 | (973~1022) | atacttgaggtgtctatgtttatgatgcttgtttattctgtggtggattt |
hasA_frag3_forward6 | 30 | (1008~1057) | ttctgtggtggatttctttgtaggcaatgtcagagaatttgattggctca |
hasA_frag3_reverse1 | 31 | (1043~1092) | aacaatgaagataatcaccagaaaggctaaaaccctgagccaatcaaatt |
hasA_frag3_reverse2 | 32 | (1078~1127) | tgcttaagcatgtaatgaatgttccgacacagggcaacaatgaagataat |
hasA_frag3_reverse3 | 33 | (1113~1162) | ccccataaaacggagataacaagaaggacagcgggtgcttaagcatgtaa |
hasA_frag3_reverse4 | 34 | (1148~1197) | taatttcaagggctgtaggacaaacaaatgcagcaccccataaaacggag |
hasA_frag3_reverse5 | 35 | (1183~1232) | ccccagtcagcatttctaatagtaaaaagagaatataatttcaagggctg |
hasA_frag3_reverse6 | 36 | (1218~1254) | gctctagattataataattttttacgtgttccccagtcagcattt |
획득한 전체 길이의 hasA 유전자를 제한효소 BamHI과 XbaI으로 절단하고, BamHI과 XbaI으로 절단된 pHCMC02 (Bacillus Genetic Stock Center) 플라스미드에 T4 DNA 라이게이즈 (NEB)를 사용하여 연결하였다. 상기 벡터를 E. coli DH5alpha (Enzynomics)에 도입하였고, 엠피실린이 포함된 평판배지에 도말하여 얻어진 엠피실린 내성 형질전환체로부터 플라스미드 pHCMC02-hasA를 단리하였다. 확보된 플라스미드 pHCMC02-hasA는 염기서열 분석을 통해 정상적인 hasA 유전자가 클로닝되었음을 확인하였다. 상기 pHCMC02-hasA의 플라스미드 제작 방법의 모식도 및 pHCMC02-hasA의 벡터맵을 도 1에 나타내었다.
실시예 2: UDP-글루코스 6-디하이드로제나아제 유전자(tuaD)의 클로닝
바실러스속 균주에서 히알루론산을 생산하기 위해서는 히알루론산 합성효소만으로는 부족하고, UDP-글루코스 6-디하이드로제나아제(UDP-glucose 6-dehydrogenase)가 동시에 발현되어야 하며 (Winder, 2005, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71:3747-3752), 이를 위해서는 hasA와 tuaD로 이루어진 오페론을 완성하여야 한다.
오페론을 구성하기 위해서는 tuaD 유전자 앞에 RBS (ribosome binding site)가 존재해야 하므로, 바실러스 서브틸리스 2217 균주 (생물자원센터(KCTC))의 DNA를 주형으로 서열번호 37 및 서열번호 38의 프라이머를 이용하여, tuaD 유전자 5말단에 RBS34 (BioBrick BBa_B0034)가 포함되도록 tuaD 유전자를 증폭하였다. PCR은 Veriti® Thermal Cycler (applied biosystem)를 이용하여 94℃에서 15초 변성, 55℃에서 15초 결합, 72℃에서 1분30초 신장하는 단계를 총 30회 실시하였다.
서열번호 37: 5'-aatctagaaaagaggagaaatactagatgaaaaaaatagctgtcattgg-3'
서열번호 38: 5'-gggttataaattgacgcttcccaagtctttagccaatt-3'
증폭된 RBS34-tuaD 유전자는 제한 효소 XbaI로 절단하였고, XbaI과 SmaI으로 절단된 pBluescriptII SK+ (Stratagene) 플라스미드에 T4 DNA 라이게이즈 (NEB)를 사용하여 연결하였다. 이를 E. coli DH5alpha (Enzynomics)에 도입하였고, 엠피실린이 포함된 평판배지에 도말하여 얻어진 엠피실린 내성 형질전환체로부터 플라스미드 pBSIISK-RBS34-tuaD를 단리하였다. 확보된 플라스미드 pBSIISK-RBS34-tuaD는 염기서열 분석을 통해 Genbank No. AF015609의 염기서열 3599~4984 (서열번호 73, tuaD 유전자의 단백질 코딩 부위)가 정상적으로 클로닝되었음을 확인하였다.
실시예 3: hasA 및 tuaD 오페론의 클로닝
hasA와 tuaD유전자로 구성된 오페론을 완성하기 위해서, pBSIISK-RBS34-tuaD를 제한효소 XbaI과 SmaI으로 절단하고, 절단된 RBS34-tuaD유전자를 동일한 제한효소로 처리된 pHCMC02-hasA 플라스미드에 T4 DNA 라이게이즈 (NEB)를 사용하여 연결하였다. 이를 E. coli DH5alpha (Enzynomics)에 도입하였고, 엠피실린이 포함된 평판배지에 도말하여 얻어진 엠피실린 내성 형질전환체로부터 플라스미드 pHCMC02-hasA-RBS34-tuaD 플라스미드를 단리하였다.
상기 pHCMC02-hasA-RBS34-tuaD 플라스미드의 제작 방법과 상기 플라스미드의 벡터맵을 도 2에 나타내었다.
실시예 4: hasA-tuaD 오페론 발현용 프로모터 선별
실시예 1에서 제조된 플라스미드 pHCMC02-hasA-RBS34-tuaD에서 hasA-tuaD 오페론의 발현은 PlepA 프로모터에 의해 조절되는데, PlepA 프로모터는 활성이 약한 것으로 알려져 있다. 이에, PlepA 프로모터를 다양한 프로모터로 교체하여 hasA-tuaD 오페론 발현 활성이 높은 프로모터를 선별하였다. 상기 후보 프로모터들은 바실러스속 균주에서 사용되는 항시 발현용 프로모터(constitutive expression promoter)인 P43에 비해 발현 활성이 높은 것들로 선정하였다 (Yu, 2015, Scientific Reports, 5:18405; Song, 2016, PLoS One. 11:e0158447).
상기 시험된 각 프로모터에 의해 조절되는 플라스미드를 제작하기 위해서, 바실러스 서브틸리스 168 균주 DNA (Bacillus Genetic Stock Center)를 주형으로 표 2에 기재된 프라이머쌍을 이용하여 각각의 프로모터들을 PCR로 증폭하였다. 구체적으로 P43 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 39 및 40), Pmsm 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 41 및 42), Ppbp 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 43 및 44), Pylb 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 45 및 46), pyob 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 47 및 48), Pyqe 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 49 및 50), Pyvl 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 51 및 52), Psigx 프로모터의 정방향 프라이머 및 역방향 프라이머(서열번호 53 및 54) 를 사용하였다.
프로모터 | 프라이머 방향 | 서열번호 | 염기서열(5'-> 3') |
P43 | forward | 39 | gatcgctagctgataggtggtatgttttcg |
reverse | 40 | gatcggatccgtgtacattcctctcttacctataa | |
Pmsm | forward | 41 | gatcgctagcagtgtctgcgaaaacattac |
reverse | 42 | gatcggatccctaacatccccctttgttat | |
Ppbp | forward | 43 | gatcgctagcagatggcaagttagttacgc |
reverse | 44 | gatcggatcctcctccacctcccatatctc | |
Pylb | forward | 45 | gatcgctagccatcgtcgaacgcgctccat |
reverse | 46 | gatcggatccacgttctacctttgtcaaacaa | |
pyob | forward | 47 | gatcgctagcattcggcgttttggttttaggc |
reverse | 48 | gatcggatccttaagcttctccccttctct | |
Pyqe | forward | 49 | gatcgctagccttcttgagcgtctcaacca |
reverse | 50 | gatcggatcctcctttgatttgaagcaagg | |
Pyvl | forward | 51 | gatcgctagcttcaaaacaaaaaaggcaagat |
reverse | 52 | gatcggatccttcattccacactcctattg | |
Psigx | forward | 53 | gatcgctagcaggttataaatttgaggtcggcg |
reverse | 54 | gatcggatccttgaaacccctccgttcacttt |
PCR을 통해 증폭된 각각의 프로모터를 제한효소 NheI과 BamHI으로 절단하고, 동일한 제한효소로 절단된 pHCMC02-hasA-RBS34-tuaD에 T4 DNA 라이게이즈 (NEB)를 사용하여 연결하였다. 이를 E. coli DH5alpha (Enzynomics)에 도입하였고, 엠피실린이 포함된 평판배지에 도말하여 얻어진 엠피실린 내성 형질전환체로부터 각각의 플라스미드를 단리하였다. 염기서열 분석을 통해 단리된 각각의 플라스미드들에 정상적으로 각 프로모터들이 클로닝되었음을 확인하였다.
서로 다른 프로모터를 가지고 있는 플라스미드들을 전기천공법(Sun, 2015, Applied Microbiology and Biotechnology, 99:5151-5162)에 의해 바실러스 2217 균주에 도입하여, 클로로암페니콜 내성을 가지는 형질전환 균주들을 제조하였다.
다음으로, 각각의 형질전환 균주들을 LB배지에 접종하고 밤샘 배양을 하였다. 밤샘 배양된 균주 0.2 mL을 250mL 삼각플라스크에 들어 있는 20 mL sucrose배지 (1L당 50g 의 수크로즈, 20g 의 효모추출물, 1.5g 의 황산마그네슘 (MgSO4)이 포함된 50mM 인산칼륨 (potassium phosphate (pH7.0))에 접종한 후, 37℃ 온도에서 180rpm으로 진탕 배양하였다. 배양시작 후 65시간에 각각의 배양액을 취하고, 10,000 rpm으로 1분간 원심분리 후 0.45 μm 필터를 통과시켜 균주를 제거하였다.
균주가 제거된 배양액에 3배 부피의 에탄올을 첨가하고 4℃ 온도에서 2 시간 동안 정치시키고, 4℃ 온도에서 15,000 rpm으로 10분간 원심분리하여 히알루론산을 침전시켰다. 침전된 히알루론산을 건조시키고, 물에 녹인 후, HA quantitative Test Kit (Corgenix, Westminster, CO, USA)를 사용하여 히알루론산 함량을 측정하고, 항시 발현용 프로모터(constitutive expression promoter)인 P43을 포함하는 형질전환 균주가 생산하는 히알루론산의 함량(g/L)을 100% 로 설정하고, 시험 프로모터를 포함하는 형질전환 균주가 생산하는 히알루론산 함량을 상대적으로 표시하여 그 결과를 도 3에 나타냈다.
프로모터 | 상대적 히알루론산 생산량(%) |
P43 | 100.0 ± 4.2 |
Pmsm | 15.1 ± 1.9 |
Ppbp | 3.9 ± 0.8 |
Pylb | 38.1 ± 2.3 |
pyob | 31.6 ± 7.1 |
Pyqe | 134.3 ± 6.7 |
Pyvl | 15.0 ± 11.1 |
Psigx | 488.2 ± 13.4 |
도 3에 각 프로모터를 포함하는 형질전환 균주가 생산하는 상대적 히알루론산의 함량을 그래프로 나타내었다. Psigx 프로모터(서열번호 62), Pyob 프로모터(서열번호 63), 및 Pyqe 프로모터(서열번호 64)가 P43 프로모터 보다 발현양이 높았으며, 특히 Psigx 프로모터가 다른 프로모터에 비해 히알루론산 생산에 효과적임을 확인하였다. 이후 Psigx 프로모터가 클로닝된 플라스미드를 pSigx-hasA-RBS34-tuaD로 명명하였으며, 이후 실험에는 상기 pSigx-hasA-RBS34-tuaD 재조합 플라스미드를 이용하였다.
실시예 5: tuaD 유전자의 과발현용 RBS 선별
D-글루쿠론산은 히알루론산의 구성요소로 본래 바실러스가 가지고 있는 tuaD 유전자에 의해 생성될 수 있지만, 효율적인 히알루론산 생산을 위해서는 tuaD 유전자의 과발현이 필요하다. 이를 위해 전술한 바와 같이 hasA 유전자와 tuaD 유전자를 오페론 형태로 제작하여 hasA 유전자와 함께 tuaD 유전자의 과발현을 유도한다. 오페론을 구성하기 위해서는 tuaD 유전자 5'말단에 활성이 높은 RBS서열이 존재하여 tuaD 유전자의 번역을 조절해야 한다. RBS의 활성도는 주변 서열에 상황 의존적(sequence context-dependent)이므로, 조절받는 유전자의 서열에 따라 다를 수 있다 (Mutalik, 2013, Nature Methods, 10:347-353). 이러한 이유로 실제 tuaD의 번역에 유리하며 결과적으로 히알루론산 생산에 적합한 RBS 선별과정을 진행하였다.
구체적으로, RBS 선별에는 BioBrick Registry of standard biological parts로부터 6개의 합성 RBS (BBa_B0030, BBa_B0031, BBa_B0032, BBa_B0033, BBa_B0034, BBa_B0035), tuaD 유전자 본래의 RBS (tuaD RBS), 그리고 pET 와 같이 일반적으로 사용되는 플라스미드의 RBS (RBS)를 비교하였다. 상기 시험한 8개 RBS 서열을 표 4에 나타냈다. 각각의 RBS서열이 5'말단에 포함된 tuaD 유전자를 확보하기 위해서 표 4에 나타낸 프라이머 및 서열번호 38을 사용하여 바실러스 서브틸리스 168 균주 (Bacillus Genetic Stock Center)의 DNA를 주형으로 PCR을 진행하였다.
증폭된 각각의 RBS를 포함한 tuaD유전자는 XbaI으로 절단하였고, XbaI과 SmaI으로 절단하여 RBS34-tuaD가 제거된 pSigx-hasA-RBS34-tuaD 플라스미드에 T4 DNA 라이게이즈 (NEB)를 사용하여 연결하였다. 이를 E. coli DH5alpha (Enzynomics)에 도입하였고, 엠피실린이 포함된 평판배지에 도말하여 얻어진 엠피실린 내성 형질전환체로부터 각각의 플라스미드를 단리하였다. 염기서열 분석을 통해 단리된 각각의 플라스미드들에 정상적으로 해당하는 RBS를 포함한 tuaD유전자가 클로닝 되었음을 확인하였다.
명명 | 서열번호 | 염기서열 (5'->3') |
BBa_B0030-RBS | 65 | attaaagaggagaaatactag |
BBa_B0031-RBS | 66 | tcacacaggaaacctactag |
BBa_B0032-RBS | 67 | tcacacaggaaagtactag |
BBa_B0033-RBS | 68 | tcacacaggactactag |
BBa_B0034-RBS | 69 | aaagaggagaaatactag |
BBa_B0035-RBS | 70 | attaaagaggagaatactag |
tuaD RBS | 71 | gacactgcgaccattataaattggaagatcattttacaggagagggttgagcgct |
pET RBS | 72 | aataattttgtttaactttaagaaggagatatacat |
BBa_B0030-PCR | 55 | aatctagaattaaagaggagaaatactagatgaaaaaaatagctgtc |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
BBa_B0031-PCR | 56 | aatctagatcacacaggaaacctactagatgaaaaaaatagctgtc |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
BBa_B0032-PCR | 57 | aatctagatcacacaggaaagtactagatgaaaaaaatagctgtc |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
BBa_B0033-PCR | 58 | aatctagatcacacaggactactagatgaaaaaaatagctgtc |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
BBa_B0034-PCR | 37 | aatctagaaaagaggagaaatactagatgaaaaaaatagctgtcattgg |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
BBa_B0035-PCR | 59 | aatctagaattaaagaggagaatactagatgaaaaaaatagctgtc |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
tuaD-RBS-PCR | 60 | aatctagagacactgcgaccattataaattgg |
38 | gggttataaattgacgcttcccaagtctttagccaatt | |
pET-RBS-PCR | 61 | aatctagaaataattttgtttaactttaagaaggagatatacatatgaaaaaaatagctgtc |
38 | gggttataaattgacgcttcccaagtctttagccaatt |
상기에서 얻어진, 서로 다른 RBS를 가지고 있는 플라스미드들을 전기천공법으로 바실러스 서브틸리스 2217 균주에 도입하고, 클로로암페니콜 내성을 가지는 형질전환 균주들을 제조하였다.다음으로, 실시예 4의 방법과 실질적으로 동일한 방법으로, 각각의 형질전환 균주들을 배양하고 배양액을 취하여 히알루론산 함량을 측정하였으며, pET 플라스미드의 RBS를 사용한 형질전환 균주가 생산하는 히알루론산의 함량(g/L)을 100으로 설정하고, 시험 RBS 서열을 포함하는 형질전환 균주가 생산하는 히알루론산 함량을 상대적으로 표시하여 그 결과를 하기 표 5에 나타냈다.
RBS 종류 | 상대적 히알루론산의 생산량(%) |
BBa_B0030-RBS | 83.6 ± 8.9 |
BBa_B0031-RBS | 4.2 ± 1.4 |
BBa_B0032-RBS | 4.7 ± 0.5 |
BBa_B0033-RBS | 5.7 ± 0.9 |
BBa_B0034-RBS | 123.3 ± 1.8 |
BBa_B0035-RBS | 80.5 ± 1.0 |
tuaD RBS | 75.7 ± 9.5 |
pET RBS | 100.0 ± 6.4 |
BioBrick Registry of standard biological parts (http://parts.igem.org/Ribosome_Binding_Sites/Prokaryotic/Constitutive/Community_Collection)의 비교 결과에 따르면 BBa_B0035가 BBa_B0034 (실시예 1-2의 RBS에 해당)에 비해 더욱 발현 효율이 우수한 것으로 알려져 있다. 그러나, 본 실시예의 실험결과에 따르면 RBS 자체 특성과 달리, 본 발명에 따른 발현시스템의 경우 BBa_B0034 RBS서열을 사용할 때 가장 높은 히알루론산 생산 수율을 확인하였다.
실시예 6: 히알루론산 수율 확인
히알루론산을 생산하는 바실러스 균주를 만들기 위해, pSigX-hasA-RBS34-tuaD 플라스미드를 전기천공법 (Sun, 2015, Applied Microbiology and Biotechnology, 99:5151-5162)으로 바실러스 2217 균주에 도입하고, 클로람페니콜 내성을 가지는 형질전환균주를 완성하여 DHPHA2217-WT로 명명하였다.
다음으로, DHPHA2217-WT을 LB배지에 접종하고 밤샘 배양을 하였다. 밤샘 배양된 균주 0.2 mL을 250mL 삼각플라스크에 들어 있는 20 mL 수크로즈(sucrose)배지 (1L당 50g 의 수크로즈, 20g 의 효모추출물(Yeast extract), 1.5g 의 황산마그네슘 (MgSO4)이 포함된 50mM 인산칼륨 (potassium phosphate (pH7.0))에 접종한 후, 37℃에서 180rpm으로 진탕 배양하였다.
시간별 히알루론산 수율을 측정하기 위해서, 배양시작 후 48시간, 65시간, 72시간 경과 후 각각 배양액을 취하고, 10,000 rpm으로 1분간 원심분리 후 0.45 μm 필터를 통과시켜 균주를 제거하였다. 균주가 제거된 배양액에 3배 부피의 에탄올을 첨가하고 4℃에서 2 시간 동안 정치시키고, 4℃에서 15,000 rpm으로 10분간 원심분리하여 히알루론산을 침전시켰다. 침전된 히알루론산을 건조시키고, 물에 녹인 후, HA quantitative Test Kit (Corgenix, Westminster, CO, USA)을 사용하여 히알루론산 함량을 측정하였다.
시간의 경과에 따른 상대적 히알루론산 농도 그래프를 도 4에 나타내었다. 65시간 배양하였을 때의 히알루론산 농도를 100%로 두었을 때, 48시간 배양하였을 때에는 31 %, 72시간 경과 후에는 101% 의 히알루론산 농도를 보였다.
이를 통해 배양액 내에 히알루론산이 존재한다는 사실 및 상기 조건에서는 약 65시간 가량의 배양으로 충분한 수율을 얻을 수 있음을 확인할 수 있었다.
실시예 7: 돌연변이 라이브러리 제작
다음으로, 히알루론산 합성효소에 변이를 유발하고 활성이 높아진 클론을 선별하기 위해 돌연변이 라이브러리를 제작하였다. Wilson, 2001, Current Protocols in Molecular Biology, Chapter 8, Unit8.3에 기술되어 있는 error prone PCR (EP-PCR)기법을 통해 hasA 유전자에 돌연변이를 유발하였다. 구체적인 방법으로, 하기 표 6의 반응액을 94℃에서 1분 변성, 60℃ 1분 결합, 72℃ 3분 신장하는 단계를 총 18회 진행하였다. 증폭된 hasA 돌연변이 유전자는 제한효소 BamHI과 XbaI으로 절단하고, 동일한 제한효소로 절단하여 야생형 hasA가 제거된 pSigX-hasA-RBS34-tuaD에 T4 DNA 라이게이즈 (NEB)를 사용하여 연결하였다. 이를 E. coli DH5alpha (Enzynomics)에 도입하였고, 엠피실린이 포함된 평판배지에 도말하여 얻어진 엠피실린 내성 형질전환체들로부터 돌연변이 라이브러리 플라스미드를 단리하였다.
조성 | 함량 (μL) |
물 | 51 |
100mM Tris pH8.3 | 10 |
2M KCl 2.5 | 2.5 |
200mM MgCl2 | 3.5 |
25mM dCTP | 4 |
25mM dTTP | 4 |
5mM dATP | 4 |
5mM dGTP | 4 |
100uM hasA-a1 | 2 |
100uM hasA-c12 | 2 |
0.2 ng/uL pHCMC02-hasA | 10 |
25mM MnCl2 | 2 |
5 unit/uL Taq polymerase (solgent) | 1 |
실시예 8: 돌연변이 라이브러리 선별실시예 7에서 얻은 돌연변이 라이브러리 중 야생형에 비해 히알루론산 합성 수율이 높은 클론을 선별하기 위해 완성된 라이브러리 플라스미드를 바실러스 서브틸리스 2217 균주에 전기천공법을 사용하여 형질 전환하였다.
각각의 형질전환된 균주의 히알루론산 생산 수율을 확인하기 위해서, 상기 실시예 5와 동일한 방법으로 65시간 동안 균주를 배양하고 배양액 내 히알루론산의 농도를 측정하였다. 이 때 야생형과의 비교를 위해 DHPHA2217-WT균주도 DHPHA2217-MT와 동일한 방법으로 배양 및 시료를 취하여 배양액 내 히알루론산 농도를 측정하였다.
다수의 돌연변이 라이브러리에 의해 형질전환된 균주를 테스트해 본 결과, 야생형(DHPHA2217-WT)에 비해 약 1.8배 가량 높은 히알루론산 수율을 보이는 균주 선별에 성공하였으며, 상기 균주를 DHPHA2217-MT로 명명하였다. 야생형과 DHPHA2217-MT의 히알루론산 수율을 비교한 그래프를 도 5에 나타내었다.
실시예 9: 돌연변이 서열 분석
DHPHA2217-MT 균주의 hasA 유전자 서열을 확인하기 위해, 상기 균주로부터 플라스미드를 분리 한 후, 하기 서열번호 78 과 서열번호 79 의 프라이머 쌍을 이용하여 hasA유전자의 염기서열을 분석하였다.
- 서열번호 78 (hasA_Seq_forward): cttccaaattccagttactcgt
- 서열번호 79 (hasA_Seq_reverse): caaagcaagtgcctgatacg
분석 결과, 하기 표 7에 나타낸 바와 같이 hasA 야생형 유전자 DNA서열 중 4개의 뉴클레오티드에 변이가 발생하였고, 이로 인해 3개의 아미노산 치환이 발생하였다. 구체적으로, hasA 유전자의 염기서열 중 197번, 443번, 582번, 839번 아데닌(A)이 구아닌(G)으로 치환되었고 (서열번호 77), 이에 따라 hasA 단백질의 아미노산 서열 중 66번 리신(Lys, K)이 아르기닌(Arginine, R)으로, 148번 글루탐산(Glutamic acid, E)이 글리신(Glycine, G)으로, 280번 리신이 아르기닌으로 치환되었다(서열번호 76).
DNA 염기서열 변이 | 아미노산 변이 |
197 A->G | K66R |
443 A->G | E148G |
582 A->G | Silent mutation |
839 A->G | K280R |
Claims (15)
- 서열번호 74의 아미노산 서열로 이루어진 히알루론산 합성효소(hasA)의 66번째 리신이 아르기닌으로, 148번째 글루탐산이 글리신으로 및 280번째 리신이 아르기닌으로 치환된 변이로 이루어지는 군에서 선택된 1종 이상의 아미노산 변이를 포함하는, 히알루론산 합성효소 변이 단백질.
- 제1항에 있어서, 상기 변이 단백질은, 서열번호 75의 염기서열로 이루어진 야생형 히알루론산 합성효소(hasA)를 암호화하는 유전자에서 197번째 아데닌이 구아닌으로 치환된 변이, 443번째 아데닌이 구아닌으로 치환된 변이, 및 839번 아데닌이 구아닌으로 치환된 변이로 이루어지는 군에서 선택된 1종 이상의 뉴클레오티드 변이를 포함하는 염기서열에 의해 암호화되는 것인 히알루론산 합성효소 변이 단백질.
- 제1항에 있어서, 상기 변이 단백질은 서열번호 76의 아미노산 서열로 이루어진, 히알루론산 합성효소 변이 단백질.
- 제3항에 있어서, 상기 변이 단백질은 서열번호 77의 염기서열로 이루어진 폴리뉴클레오티드에 의해서 암호화되는 것인, 히알루론산 합성효소 변이 단백질.
- 제1항 내지 제4항 중 어느 한 항에 따른 히알루론산 합성효소 변이 단백질을 암호화하는, 히알루론산 합성효소 변이 유전자.
- 작동 가능하도록 연결된, 전사 프로모터, 제1항 내지 제5항 중 어느 한 항에 따른 히알루론산 합성효소 변이 단백질을 암호화하는 히알루론산 합성효소 변이 유전자, 리보솜 결합 부위 및 tauD 유전자를 포함하는, 히알루론산 생산용 발현 시스템.
- 제6항에 있어서, 상기 전사 프로모터는 항시 발현 프로모터인, 히알루론산 생산용 발현 시스템.
- 제7항에 있어서, 상기 항시 발현 프로모터는 P43, Pmsm, Ppbp, Pylb, Pyob, Pyqe, Pyvl 또는 Psigx인, 히알루론산 생산용 발현 시스템.
- 제8항에 있어서, 상기 항시 발현 프로모터는 서열번호 39 및 40, 서열번호 41 및 42, 서열번호 43 및 44, 서열번호 45 및 46, 서열번호 47 및 48, 서열번호 49 및 50, 서열번호 51 및 52, 또는 서열번호 53 및 54로 이루어진 프라이머 쌍을 이용하여 증폭된 것인 히알루론산 생산용 발현 시스템.
- 제8항에 있어서, 상기 항시 발현 프로모터는 서열번호 62 내지 64 중 어느 하나의 염기서열로 이루어지는 폴리뉴클레오타이드인, 히알루론산 생산용 발현 시스템.
- 제6항에 있어서, 상기 리보솜 결합부위는 BBa_B0030(서열번호 65), BBa_B0034(서열번호 69), 또는 BBa_B0035(서열번호 70)인 것인, 히알루론산 생산용 발현 시스템.
- 제6항에 있어서, 상기 발현 시스템은 바실러스 서브틸리스 또는 바실러스 리케니포르미스에서 히알루론산을 생산하는 것인, 히알루론산 생산용 발현 시스템.
- 제6항에 따른 히알루론산 생산용 발현 시스템을 포함하는 히알루론산 생산용 재조합 균주.
- 제13항에 있어서, 상기 재조합 균주는 바실러스 서브틸리스 또는 바실러스 리케니포르미스인, 히알루론산 생산용 재조합 균주.
- 제6항에 따른 히알루론산 생산용 발현 시스템을 포함하는 히알루론산 생산용 재조합 균주를 배양하여 배양물을 얻는 단계를 포함하는 재조합 균주를 이용한 히알루론산의 생산 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0158626 | 2018-12-10 | ||
KR20180158626 | 2018-12-10 | ||
KR10-2019-0016266 | 2019-02-12 | ||
KR1020190016266A KR102135044B1 (ko) | 2018-12-10 | 2019-02-12 | 히알루론산 합성효소 변이 단백질 및 이를 이용한 히알루론산 생산 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020122429A1 true WO2020122429A1 (ko) | 2020-06-18 |
Family
ID=71077449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/015081 WO2020122429A1 (ko) | 2018-12-10 | 2019-11-07 | 히알루론산 합성효소 변이 단백질 및 이를 이용한 히알루론산 생산 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020122429A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020737A1 (en) * | 2001-12-03 | 2007-01-25 | Pummill Philip E | Hyaluronan synthases and methods of making and using same |
US7811806B2 (en) * | 2001-12-21 | 2010-10-12 | Novozymes, Inc. | Methods for producing hyaluronan in a recombinant host cell |
CN104293726A (zh) * | 2014-10-17 | 2015-01-21 | 江南大学 | 一种产小分子透明质酸的重组枯草芽孢杆菌 |
CN105838688A (zh) * | 2016-06-07 | 2016-08-10 | 江南大学 | 一种透明质酸合酶突变体及其应用 |
US20170073719A1 (en) * | 2015-09-10 | 2017-03-16 | Jiangnan University | Method of constructing a recombinant Bacillus subtilis that can produce specific-molecular-weight hyaluronic acids |
-
2019
- 2019-11-07 WO PCT/KR2019/015081 patent/WO2020122429A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020737A1 (en) * | 2001-12-03 | 2007-01-25 | Pummill Philip E | Hyaluronan synthases and methods of making and using same |
US7811806B2 (en) * | 2001-12-21 | 2010-10-12 | Novozymes, Inc. | Methods for producing hyaluronan in a recombinant host cell |
CN104293726A (zh) * | 2014-10-17 | 2015-01-21 | 江南大学 | 一种产小分子透明质酸的重组枯草芽孢杆菌 |
US20170073719A1 (en) * | 2015-09-10 | 2017-03-16 | Jiangnan University | Method of constructing a recombinant Bacillus subtilis that can produce specific-molecular-weight hyaluronic acids |
CN105838688A (zh) * | 2016-06-07 | 2016-08-10 | 江南大学 | 一种透明质酸合酶突变体及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019027267A2 (ko) | Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법 | |
WO2018124440A2 (ko) | 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법 | |
WO2020022547A1 (ko) | 신규 5'-이노신산 디하이드로게나아제 및 이를 이용한 5'-이노신산 제조방법 | |
SE453513B (sv) | Forfarande for effektivisering av produktionen av eggviteemne | |
WO2021112469A1 (ko) | 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법 | |
WO2020032590A1 (en) | Nucleic acid molecules comprising a variant rpoc coding sequence | |
WO2022005225A1 (ko) | 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도 | |
WO2020122429A1 (ko) | 히알루론산 합성효소 변이 단백질 및 이를 이용한 히알루론산 생산 방법 | |
US6569668B2 (en) | Isolated nucleic acids from Micromonospora rosaria plasmid pMR2 and vectors made therefrom | |
WO2020122430A1 (ko) | 비병원성 세균을 이용하여 히알루론산 생산을 위한 발현 시스템 및 상기 발현 시스템을 이용한 히알루론산 생산방법 | |
WO2020184889A1 (ko) | 알룰로스를 생산하는 스태필로코커스 속 미생물 및 이를 이용한 알룰로스 제조방법 | |
WO2021125867A1 (ko) | 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법 | |
WO2015046978A1 (ko) | 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법 | |
WO2016159536A1 (ko) | 신규 프로모터 및 이의 용도 | |
WO2015182941A1 (ko) | 신규 카탈라아제 신호서열 및 이를 이용한 카탈라아제 발현방법 | |
WO2018230953A1 (ko) | 글루코실글리세롤 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 글루코실글리세롤 제조방법 | |
KR102135044B1 (ko) | 히알루론산 합성효소 변이 단백질 및 이를 이용한 히알루론산 생산 방법 | |
WO2018117773A2 (ko) | 변형된 당 대사 경로를 갖는 재조합 균주 및 이를 이용한 당이성화 효소의 스크리닝 방법 | |
WO2023128004A1 (ko) | 항시발현용 신규 프로모터 변이체 및 이의 용도 | |
WO2024135948A1 (ko) | 항시발현용 신규 프로모터 변이체 및 이의 용도 | |
WO2017115993A1 (ko) | 지방산 생산능이 향상된 재조합 미생물 및 이를 이용한 지방산의 제조방법 | |
WO2020180132A1 (ko) | D-글루타메이트 영양요구성 대장균 및 이를 이용한 목적 물질 생산 방법 | |
WO2021133030A1 (ko) | 사이토크롬 c 활성이 강화된 l-아미노산 생산 미생물 및 이를 이용한 l-아미노산 생산방법 | |
WO2022146110A1 (ko) | 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주 | |
WO2022145589A1 (ko) | 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19895842 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19895842 Country of ref document: EP Kind code of ref document: A1 |