WO2020122390A1 - 고흡수성 수지 및 이의 제조 방법 - Google Patents
고흡수성 수지 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2020122390A1 WO2020122390A1 PCT/KR2019/013302 KR2019013302W WO2020122390A1 WO 2020122390 A1 WO2020122390 A1 WO 2020122390A1 KR 2019013302 W KR2019013302 W KR 2019013302W WO 2020122390 A1 WO2020122390 A1 WO 2020122390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- surface crosslinking
- crosslinking agent
- superabsorbent polymer
- base resin
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/06—Making preforms by moulding the material
- B29B11/10—Extrusion moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/06—Conditioning or physical treatment of the material to be shaped by drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/071—Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1515—Three-membered rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0715—Preforms or parisons characterised by their configuration the preform having one end closed
Definitions
- the present invention relates to a superabsorbent polymer and a method for manufacturing the same, which not only has excellent basic absorption performance, but also exhibits improved pressurized liquid permeability, which can improve the rewet and leakage control properties of sanitary materials such as diapers.
- Super Absorbent Polymer is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight, and SAM (Super Absorbency Material), AGM (Absorbent Gel) for each developer Material).
- SAM Super Absorbency Material
- AGM Absorbent Gel
- the superabsorbent polymer as described above began to be put into practical use as a sanitary tool, and now, in addition to sanitary products such as children's paper diapers, soil repair agents for horticulture, civil engineering, construction index materials, nursery sheets, and freshness retention agents in the food distribution field, and It is widely used as a material for poultice.
- these superabsorbent polymers are widely used in the field of sanitary materials such as diapers and sanitary napkins. For this purpose, it is necessary to show a high absorption capacity for moisture, etc., and excellent pressurization that does not escape moisture absorbed by external pressure. It is necessary to show the absorption performance and the like.
- the superabsorbent polymer when the superabsorbent polymer is contained in a hygiene material such as a diaper, it is necessary to diffuse urine and the like as wide as possible even in an environment that is pressurized by a user's weight. Through this, it is possible to further improve the absorption performance and the absorption rate of the hygiene material by utilizing the superabsorbent polymer particles contained in the entire area of the hygienic material absorption layer as a whole. In addition, due to the diffusion characteristics under pressure, the rewet characteristics of diapers that suppress urine and the like once absorbed by the superabsorbent polymer can be further improved, and at the same time, the diaper leakage suppression characteristics can be improved. It becomes possible.
- the present invention is to provide a superabsorbent polymer and a method of manufacturing the same, which not only has excellent basic absorption performance, but also exhibits improved pressure and liquid permeability, which can further improve the rewet characteristics of hygiene materials such as diapers.
- the present invention is a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized;
- the first crosslinked polymer is a super absorbent polymer comprising a surface crosslinking layer comprising a second crosslinked polymer further crosslinked via a surface crosslinking agent,
- the surface crosslinking agent provides a superabsorbent polymer comprising a polymer type first surface crosslinking agent having a number average molecular weight of 300 or more and having a plurality of hydroxy groups or epoxy groups.
- the present invention in the presence of an internal crosslinking agent, crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized to form a hydrogel polymer comprising a first crosslinked polymer;
- the surface crosslinking agent has a number average molecular weight of 300 or more and provides a method for producing a super absorbent polymer comprising a polymer type first surface crosslinking agent having a plurality of hydroxy groups or epoxy groups.
- the base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least a partially neutralized acid group
- the first crosslinked polymer is a super absorbent polymer comprising a surface crosslinking layer comprising a second crosslinked polymer further crosslinked via a surface crosslinking agent,
- the surface crosslinking agent is provided with a superabsorbent polymer comprising a polymer type first surface crosslinking agent having a number average molecular weight of 300 or more and having a plurality of hydroxy groups or epoxy groups.
- the superabsorbent polymer of one embodiment is to include a polymer-type first surface crosslinking agent having a number average molecular weight of 300 or more and a crosslinkable functional group in order to form a surface crosslinking layer.
- the polymer type first surface crosslinking agent contains polymer chains having a molecular weight of a certain level or higher, it is difficult to penetrate deeply into the base resin powder when crosslinking the surface, and most of the crosslinking structure is formed by crosslinking near the surface of the base resin powder. Therefore, the superabsorbent polymer formed in this way can increase the crosslinking density of the surface near the surface without significantly increasing the overall amount of the surface crosslinking agent during the manufacturing process, and further, the high surface-derived crosslinking agent derived from the first surface crosslinking agent near the surface. A higher molecular weight polymer structure can be included.
- the superabsorbent polymer of one embodiment exhibits a harder surface property in the vicinity of the surface, it may exhibit improved pressure-permeable properties than previously known, and accordingly, it may further improve the hygroscopic material's repellent property or leak-inhibiting property. have.
- the superabsorbent polymer does not need to use an excessively high content of a surface crosslinking agent in order to realize such a hard surface property, so that the internal crosslinking density can maintain an appropriate level, and as a result, water absorption performance such as water retention capacity It can keep excellent.
- the superabsorbent polymer of one embodiment can improve the rewetting characteristics of hygiene materials, such as diapers, by exhibiting improved pressure-permeability while maintaining excellent basic absorption performance.
- the term'superabsorbent polymer' referred to herein refers to a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized; And it is formed on the base resin powder, the first crosslinked polymer means a superabsorbent polymer comprising a surface crosslinking layer including a second crosslinked polymer further crosslinked via a surface crosslinking agent.
- the water-soluble ethylenically unsaturated monomer may be any monomer commonly used in the production of super absorbent polymers.
- the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1 below:
- R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
- M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
- the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts of these acids.
- acrylic acid or a salt thereof is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a super absorbent polymer with improved water absorption.
- the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid, or 2-( Anionic monomers of meth)acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate or polyethylene glycol ( Nonionic hydrophilic monomers of meth)acrylate; And an amino group-containing unsaturated monomer of (N,N)-dimethylaminoethyl (meth)acrylate or (N,N)-dimethylaminopropyl (meth)acrylamide, and a quaternary product thereof.
- the water-soluble ethylenically unsaturated monomer has an acidic group, and at least a portion of the acidic group may be neutralized.
- the monomer may be partially neutralized with an alkali material such as sodium hydroxide, potassium hydroxide or ammonium hydroxide.
- the neutralization degree of the monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
- the range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may not proceed smoothly. It can exhibit properties such as elastic rubber that are difficult to handle.
- the'first crosslinked polymer' means that the aforementioned water-soluble ethylenically unsaturated monomer is crosslinked and polymerized in the presence of an internal crosslinking agent, and the'base resin powder' refers to such a first crosslinked polymer. It means a substance containing.
- the'second crosslinked polymer' means a material in which the first crosslinked polymer is additionally crosslinked through a surface crosslinking agent, and a surface crosslinking layer including the same is formed on the base resin powder.
- the first crosslinked polymer contained in the base resin powder includes bis(meth)acrylamide having 8 to 12 carbon atoms, poly(meth)acrylate of a polyol having 2 to 10 carbon atoms, and 2 to 10 carbon atoms.
- the monomer may be a crosslinked polymerized polymer.
- the internal crosslinking agent are not particularly limited, but trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and propylene glycol di(meth)acrylate , Polypropylene glycol di(meth)acrylate, butanediol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate , Triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythritol pentaacrylate, glycerin tri(meth)acrylate or pentaerythritol tetra Acrylate, and the like, and in addition, various internal crosslinking agents known to be usable for the production of super absorbent poly
- the A surface crosslinking layer is formed.
- the first surface crosslinking agent is 300 or more, or 300 to 30000, or a number average molecular weight of 350 to 15000, and a functional group capable of reacting with the carboxyl group, specifically, a polyhydric polymer having a plurality of hydroxyl groups or epoxy groups, all without particular limitations Can be used.
- a polymer-type crosslinking agent include polyglycidyl ether-based polyols such as polyethylene glycol-based polymers, polypropylene glycol-based polymers, and diglycidyl ethers of polyalkylene glycols. And one or more selected from the group consisting of polymers and polyvinyl alcohol-based polymers.
- a surface crosslinking agent having a molecular weight or a number average molecular weight not exceeding the above range is used as the first surface crosslinking agent (for example, when two types of surface crosslinking agents having no polymer form are used), pressurization of the superabsorbent polymer
- the liquid permeability may be poor, and as a result, the hygienic material's reset property or water leakage control property may not be sufficient.
- the superabsorbent polymer of one embodiment may include a crosslinking structure derived therefrom by using a second surface crosslinking agent having a molecular weight of less than 300 in addition to the polymer type first surface crosslinking agent.
- the second surface cross-linking agent a single-molecule type surface cross-linking agent that has been used in the manufacture of super absorbent polymers can be used without any limitation.
- the surface crosslinking agent is ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,2-hexanediol, 1,3-hexanediol, 2- One selected from the group consisting of methyl-1,3-propanediol, 2,5-hexanediol, 2-methyl-1,3-pentanediol, 2-methyl-2,4-pentanediol, tripropylene glycol and glycerol Or more polyols; At least one alkylene carbonate-based compound selected from the group consisting of ethylene carbonate and propylene carbonate; Epoxy compounds such as alkylene glycol diglycidyl ether; Oxazoline compounds
- the superabsorbent polymer of one embodiment uses a plurality of surface crosslinking agents, in particular, a polymer type first surface crosslinking agent together with a second surface crosslinking agent, without significantly increasing the overall amount/content of the surface crosslinking agent.
- the crosslinking density in the vicinity can be further increased. Therefore, as the superabsorbent polymer of one embodiment exhibits a harder surface property in the vicinity of the surface, it may exhibit improved pressure-permeable properties than previously known, and accordingly, it may further improve the hygroscopic material's repellent property or leak-inhibiting property. have.
- the crosslinking structure derived from the first surface crosslinking agent is present in the highest ratio on the outermost surface of the surface crosslinking layer, and the deeper the depth of the surface crosslinking layer, The rate of existence may be lowered.
- first surface crosslinking agent: second surface crosslinking agent may be included in a weight ratio of 3:1 to 1:3, or 2.5:1 to 1:2.5, or 2:1 to 1:2.
- the surface of the superabsorbent polymer can be made more firm, and the pressure-permeable liquid of the superabsorbent polymer, the leakage property of the hygiene material, or the leak suppressing property can be further improved, and the absorbent performance of the superabsorbent polymer can also be excellently maintained.
- the superabsorbent polymer of the above-described embodiment may further use aluminum salts such as aluminum sulfate salts and various other polyvalent metal salts during surface crosslinking for further improvement such as liquid permeability.
- aluminum salts such as aluminum sulfate salts and various other polyvalent metal salts during surface crosslinking for further improvement such as liquid permeability.
- Such a polyvalent metal salt may be included on the surface crosslinked layer of the final superabsorbent polymer.
- the superabsorbent polymer of the above-described embodiment may have a particle diameter of 150 to 850 ⁇ m. More specifically, at least 95% by weight or more of the base resin powder and the superabsorbent polymer including the same may have a particle diameter of 150 to 850 ⁇ m, and may include 50% by weight or more of particles having a particle diameter of 300 to 600 ⁇ m, 150 The fine powder having a particle diameter of less than ⁇ m may be less than 3% by weight.
- the superabsorbent polymer of the above-described embodiment while maintaining excellent water absorption performance, such as basic water retention capacity, may exhibit improved pressure-permeability.
- the excellent absorption performance of the super absorbent polymer of one embodiment may be defined by water retention capacity and pressure absorption capacity. More specifically, the superabsorbent polymer may have a centrifugal water retention capacity (CRC) of 30 to 40 g/g for 30 minutes for physiological saline (0.9 wt% sodium chloride aqueous solution). . Such a centrifugal water retention capacity (CRC) range may define an excellent unpressurized absorption performance exhibited by the superabsorbent polymer of one embodiment.
- CRC centrifugal water retention capacity
- the superabsorbent polymer may have a pressure absorption capacity (AUP) of 0.7 psi, measured according to EDANA method WSP 242.3-10, of 15 to 27 g/g, or 20 to 25 g/g.
- AUP pressure absorption capacity
- Such a pressure absorbing capacity range may define an excellent absorbing performance under pressure indicated by the superabsorbent polymer of one embodiment.
- the improved pressure-permeability of the super absorbent polymer can be defined by the properties of GPUP.
- GPUPs were swelled in physiological saline (0.9 wt% sodium chloride aqueous solution) for 1 hour under the pressure of 0.3 psi of the superabsorbent polymer, and when the physiological saline was flowed into the superabsorbent polymer, 5 drops from the point of dropping. It can be measured at a flow rate for a minute. More specific measurement methods thereof are described in the experimental examples described later.
- the superabsorbent polymer of one embodiment may have the GPUP of 5 ⁇ 10E-13m 2 or more, or of 5 to 30 ⁇ 10E-13m 2 , or of 7 to 25 ⁇ 10E-13m 2 , thereby exhibiting excellent press-through properties. have.
- the superabsorbent polymer of the above-described embodiment can improve the resorption properties of the hygiene material and the like, while maintaining improved pressure-permeability than previously known, while maintaining excellent absorbent performance.
- the superabsorbent polymer that satisfies all the physical properties of the above-described one embodiment, after obtaining a hydrogel polymer by crosslinking polymerization, drying, grinding and classifying it to form a base resin powder, surface crosslinking process in the presence of a specific surface crosslinking agent It can be produced by a manufacturing method comprising a.
- a method for manufacturing the superabsorbent polymer described above comprises the steps of crosslinking and polymerizing a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized in the presence of an internal crosslinking agent to form a hydrogel polymer comprising a first crosslinked polymer; Drying, grinding and classifying the hydrogel polymer to form a base resin powder; And in the presence of a surface crosslinking agent, heat-treating the base resin powder to crosslink the surface,
- the surface crosslinking agent may have a number average molecular weight of 300 or more, and may include a polymer type first surface crosslinking agent having a functional group capable of reacting with a carboxyl group, specifically, a plurality of hydroxy groups or epoxy groups.
- the manufacturing method of another embodiment includes forming a hydrogel polymer by crosslinking polymerization. Specifically, it is a step of forming a hydrogel polymer by thermal polymerization or photopolymerization of a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator in the presence of an internal crosslinking agent.
- the water-soluble ethylenically unsaturated monomer contained in the monomer composition is as described above.
- the monomer composition may include a polymerization initiator generally used in the production of super absorbent polymers.
- the polymerization initiator may be a thermal polymerization initiator or a photo polymerization initiator depending on the polymerization method.
- a thermal polymerization initiator may be additionally included.
- benzoin ether (benzoin ether), dialkyl acetophenone (dialkyl acetophenone), hydroxyl alkyl ketone (hydroxyl alkylketone), phenyl glyoxylate (phenyl glyoxylate), benzyl dimethyl
- benzoin ether dialkyl acetophenone
- dialkyl acetophenone dialkyl acetophenone
- hydroxyl alkyl ketone hydroxyl alkylketone
- phenyl glyoxylate phenyl glyoxylate
- benzyl dimethyl One or more compounds selected from the group consisting of Benzyl Dimethyl Ketal, acyl phosphine, and a-aminoketone may be used.
- acylphosphine a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
- 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide
- More various photopolymerization initiators are disclosed on page 115 of Reinhold Schwalm's book “UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", which can be referred to.
- thermal polymerization initiator one or more compounds selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
- a persulfate-based initiator sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (Ammonium persulfate; (NH 4 ) 2 S 2 O 8 ) and the like.
- the polymerization initiator may be added in a concentration of 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow, and residual monomers in the final product may be extracted in large quantities, which is not preferable. On the contrary, when the concentration of the polymerization initiator is too high, the polymer chain forming the network is shortened, so the content of the water-soluble component is increased and the pressure absorption capacity is lowered.
- the monomer composition includes a crosslinking agent ("internal crosslinking agent”) for improving the physical properties of the resin by polymerization of the water-soluble ethylenically unsaturated monomer.
- the crosslinking agent is for internally crosslinking the hydrogel polymer, and can be used separately from the “surface crosslinking agent” described later.
- the internal crosslinking agent already described above for example, bis(meth)acrylamide having 8 to 12 carbons, poly(meth)acrylate of polyol having 2 to 10 carbons or 2 to 10 carbons
- Poly(meth)allyl ethers of polyols can be used, and as a result, a hydrogel polymer with appropriate internal crosslinking can be obtained.
- the type of the internal crosslinking agent has already been described above, additional description thereof will be omitted.
- the internal cross-linking agent may be a content of 0.4 parts by weight to 2 parts by weight, or 0.4 to 1.8 parts by weight with respect to 100 parts by weight of the monomer composition including the internal cross-linking agent and the monomer.
- the internal crosslinking degree of the hydrogel polymer and the base resin powder is adjusted, so that the absorption performance and liquid permeability of the super absorbent polymer can be optimized.
- the content of the internal crosslinking agent is too large, the basic absorption performance of the super absorbent polymer may be deteriorated.
- the monomer composition may further include additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
- additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
- the monomer composition may be prepared in the form of a solution in which raw materials such as the above-described monomer, polymerization initiator, and internal crosslinking agent are dissolved in a solvent.
- the solvent includes water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate, N,N-dimethylacetamide, or mixtures thereof.
- the formation of a hydrogel polymer through polymerization of the monomer composition may be performed by a conventional polymerization method, and the process is not particularly limited.
- the polymerization method is largely divided into thermal polymerization and photo polymerization according to the type of polymerization energy source.
- the thermal polymerization is performed, the polymerization method may be performed in a reactor having a stirring axis such as a kneader, and photo polymerization In the case of proceeding, it may proceed in a reactor equipped with a movable conveyor belt.
- a hydrogel polymer may be obtained by introducing the monomer composition into a reactor such as a kneader equipped with a stirring shaft, and supplying hot air to it or heating the reactor to thermally polymerize it.
- a reactor such as a kneader equipped with a stirring shaft
- the hydrogel polymer discharged to the reactor outlet may be obtained as particles of several millimeters to several centimeters.
- the hydrogel polymer obtained can be obtained in various forms depending on the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a particle diameter of 2 to 50 mm (average weight) can be usually obtained.
- a hydrogel polymer in the form of a sheet may be obtained.
- the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected. In order to ensure the production speed and the like while allowing the entire sheet to be evenly polymerized, it is usually adjusted to a thickness of 0.5 to 10 cm. desirable.
- the normal water content of the hydrogel polymer obtained in this way may be 40 to 80% by weight.
- water content refers to a content of moisture occupied with respect to the total weight of the hydrogel polymer, which means the weight of the hydrogel polymer minus the dry polymer weight. Specifically, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating. At this time, the drying condition is a method of raising the temperature from room temperature to 180°C and then maintaining it at 180°C. The total drying time is set to 20 minutes including 5 minutes of the temperature rise step to measure the water content.
- a step of drying the obtained hydrogel polymer is performed. If necessary, in order to increase the efficiency of the drying step, the step of co-grinding the hydrogel polymer before drying may be further performed.
- the used grinder is not limited in configuration, but specifically, a vertical cutter (Vertical pulverizer), a turbo cutter (Turbo cutter), a turbo grinder (Turbo grinder), a rotary cutting mill (Rotary cutter mill), cutting Cutter mill, disc mill, shred crusher, crusher, chopper, and disc cutter
- a vertical cutter Very pulverizer
- turbo cutter Turbo cutter
- Turbo grinder turbo grinder
- rotary cutting mill Rotary cutting mill
- cutting Cutter mill disc mill
- shred crusher crusher
- chopper chopper
- disc cutter rotary cutting mill
- the coarse crushing step may be pulverized so that the particle diameter of the hydrogel polymer is 2 to 10 mm. Grinding to a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and there may also be a phenomenon of agglomeration between the crushed particles. On the other hand, when the particle diameter is crushed to more than 10 mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
- the drying temperature of the drying step may be 150 to 250 °C.
- the drying temperature is less than 150°C, the drying time is too long and there is a fear that the physical properties of the final superabsorbent polymer may be deteriorated.
- the drying temperature exceeds 250°C, only the polymer surface is dried excessively, and a subsequent grinding process is performed. In the fine powder may be generated, there is a fear that the physical properties of the superabsorbent polymer to be formed finally decreases. Therefore, preferably, the drying may be performed at a temperature of 150 to 200 °C, more preferably at a temperature of 170 to 195 °C.
- process efficiency may be considered, and may be performed for 20 to 90 minutes, but is not limited thereto.
- the drying method of the drying step is also commonly used as a drying process of the hydrogel polymer, it can be selected and used without limitation of its configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
- the moisture content of the polymer after the drying step may be about 0.1 to about 10% by weight.
- the polymer powder obtained after the grinding step may have a particle size of 150 to 850 ⁇ m.
- the pulverizer used for pulverizing to such a particle size is specifically, a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill or a jog. It is possible to use a mill (jog mill), but is not limited to the above example.
- a separate process of classifying the polymer powder obtained after crushing according to the particle size may be performed.
- a polymer having a particle diameter of 150 to 850 ⁇ m is classified, and only a polymer powder having such a particle diameter can be commercialized through a surface crosslinking reaction step.
- the classified base resin powder has a particle diameter of 150 to 850 ⁇ m, and may include 50 wt% or more of particles having a particle diameter of 300 to 600 ⁇ m.
- the base resin powder may be surface-crosslinked while heat-treating to form superabsorbent resin particles.
- the surface crosslinking is to induce a crosslinking reaction on the surface of the base resin powder in the presence of a surface crosslinking agent, and a surface crosslinking layer may be formed on the surface of the base resin powder through such surface crosslinking.
- a polymer type first surface crosslinking agent having a number average molecular weight of 300 or more is used, and a second surface crosslinking agent having no polymer form can be used together.
- a polymer type first surface crosslinking agent having a number average molecular weight of 300 or more is used, and a second surface crosslinking agent having no polymer form can be used together.
- the content of the surface crosslinking agent may be appropriately adjusted according to the specific type of crosslinking agent or reaction conditions, and preferably, the first and second surface crosslinking agents each have a base resin powder of 100 weight. With respect to parts, it may be used in an amount of 0.1 to 2.0 parts by weight, or 0.3 to 1.5 parts by weight, or 0.5 to 1.0.
- the content of the surface crosslinking agent is too low, surface modification may not be properly performed, and physical properties of the final resin may be deteriorated.
- the content of the polymer type first surface crosslinking agent is low, the pressure-permeable property of the super absorbent polymer may not be sufficient.
- the basic absorption performance of the resin may be lowered due to excessive surface crosslinking reaction, which is undesirable.
- the surface crosslinking agent is added to the base resin powder in the state of a surface crosslinking liquid containing the same, but there is no particular limitation on the structure of the method for adding the surface crosslinking liquid.
- the surface crosslinking solution and the base resin powder are mixed in a reaction tank, or the surface resin crosslinking solution is sprayed onto the base resin powder, and the base resin powder and the surface crosslinking solution are continuously supplied to the mixer to be mixed and mixed. Method, etc. can be used.
- the surface crosslinking solution may further include water and/or a hydrophilic organic solvent as a medium.
- water and/or a hydrophilic organic solvent as a medium.
- the surface crosslinking agent and the like can be evenly dispersed on the base resin powder.
- the content of the water and the hydrophilic organic solvent induces even dissolution/dispersion of the surface crosslinking agent and prevents agglomeration of the base resin powder, and at the same time, optimizes the surface penetration depth of the surface crosslinking agent and 100 parts by weight of the base resin powder It can be applied by adjusting the addition ratio to.
- the base resin powder to which the surface crosslinking solution is added may be heat-treated at a temperature of 140°C to 250°C, or 140°C to 220°C, or 170°C to 210°C for at least 30 minutes. More specifically, the surface crosslinking may be performed by performing the heat treatment for 30 to 80 minutes, or 40 to 70 minutes at the maximum reaction temperature, using the above-mentioned temperature as the maximum reaction temperature, and thereby proceed to the surface crosslinking reaction.
- the heating means for the surface crosslinking reaction is not particularly limited.
- the heating medium may be supplied or a heat source may be directly supplied to heat.
- heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited thereto
- the temperature of the supplied heat medium means the means of the heat medium, the rate of temperature increase and the target temperature of temperature increase. It can be appropriately selected in consideration.
- the heat source supplied directly may include a heating method through electricity and a gas, but is not limited to the above-described example.
- the superabsorbent polymer obtained according to the above-described manufacturing method has excellent absorption performance such as water retention capacity and liquid permeability, and can widely diffuse urine absorbed in the hygiene material, it greatly improves the recyclability characteristics of the hygiene material, etc. I can do it.
- the superabsorbent polymer according to the present invention while maintaining excellent basic absorbent performance and the like, exhibits improved pressurized liquid permeability, and the like, so that urine absorbed by the hygiene material can diffuse rapidly and widely along the surface of the superabsorbent polymer particles. have.
- the superabsorbent polymer of the present invention can improve the rewet characteristics and the water leakage suppression characteristics of hygiene materials.
- a monomer composition was prepared by adding 0.008 parts by weight of trimethylbenzoyl)-phosphine oxide and 0.22 parts by weight of polyethylene glycol diacrylate as an internal crosslinking agent.
- the internal temperature of the monomer composition is maintained at 80°C, and UV light is flowed at a flow rate of 243 kg/hr on a polymerization belt of a continuous belt polymerization reactor in which a UV irradiation device having an intensity of 10 mW is installed as a mercury UV lamp light source 1 Irradiation was performed for a minute, and then the polymerization reaction was performed in a light-free state for 2 minutes.
- the hydrogel type polymerization sheet was first cut using a shredder type cutter and then coarsely pulverized through a meat chopper. Thereafter, after drying through a hot air dryer at a temperature of 180° C. for 30 minutes, it was pulverized using a rotary mixer and classified into 150 ⁇ m to 850 ⁇ m to prepare a base resin powder.
- the prepared base resin powder is mixed at a particle size ratio of 10/70/19/1, and 200 parts by weight is prepared.
- the surface crosslinking solution is 5.4 parts by weight of water, 100 parts by weight of the base resin powder, 0.6 parts by weight of ethylene carbonate, 0.5 parts by weight of a polymer surface crosslinking agent of polyethylene glycol diglycidyl ether having a number average molecular weight of 500, 0.2 parts by weight of propylene glycol, After 0.4 parts by weight of aluminum sulfate 18 hydrate was evenly mixed, the mixture was heated to a temperature of 180° C. and heat-treated for 50 minutes or more to undergo a surface crosslinking reaction. After the surface treatment was completed, a superabsorbent polymer having a particle diameter of 850 ⁇ m or less was obtained using a sheave.
- Example 2 As the polymer type surface crosslinking agent, a superabsorbent polymer of Example 2 was obtained in the same manner as in Example 1, except that polyethylene glycol diglycidyl ether having a number average molecular weight of 380 was used.
- Example 3 As the polymer type surface crosslinking agent, a superabsorbent polymer of Example 3 was obtained in the same manner as in Example 1, except that polyvinyl alcohol having a number average molecular weight of 10,000 was used.
- the superabsorbent polymer of Example 4 was obtained in the same manner as in Example 1, except that the ethylene carbonate was not used and the content of the polymer surface crosslinking agent was changed to 1.1 parts by weight.
- the superabsorbent polymer of Comparative Example 1 was obtained in the same manner as in Example 1, except that the polymer type surface crosslinking agent was not used.
- the superabsorbent polymer of Comparative Example 2 was obtained in the same manner as in Example 1, except that the polymer type surface crosslinking agent was not used and the content of ethylene carbonate was changed to 1.1 parts by weight.
- the superabsorbent polymer of Comparative Example 3 was obtained in the same manner as in Example 1, except that ethylene glycol diglycidyl ether having a molecular weight of about 174 was used instead of the polymer type surface crosslinking agent.
- the superabsorbent polymer of Comparative Example 4 was obtained in the same manner as in Example 1, except that glycerol triglycidyl ether having a molecular weight of 260 was used instead of the polymer surface crosslinking agent.
- the particle diameters of the base resin powder and the super absorbent polymer used in Examples and Comparative Examples were measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
- EDANA European Disposables and Nonwovens Association
- CRC centrifugal water retention capacity by the unloaded absorption ratio was measured according to the EDANA WSP 241.3 standard of the European Disposables and Nonwovens Association (EDANA).
- the superabsorbent polymer W 0 g, about 0.2 g was uniformly placed in a nonwoven fabric bag and sealed, and then immersed in physiological saline of 0.9 wt% sodium chloride aqueous solution at room temperature. After 30 minutes, the envelope was centrifuged and drained at 250G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. In addition, after performing the same operation without using a super absorbent polymer, the mass W 1 (g) at that time was measured. Using each mass thus obtained, CRC (g/g) was calculated according to the following Equation 1 to check water retention capacity.
- AUP Absorbency under Pressure
- a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm.
- the resin W 0 (g, 0.90 g) obtained in Examples and Comparative Examples was uniformly spread on a wire mesh under a temperature of 23 ⁇ 2° C. and a relative humidity of 45%, and a load of 4.83 kPa (0.7 psi) was uniformly applied thereon.
- the piston which can be imparted more, has a slightly smaller outer diameter than 60 mm, has no gaps with the inner wall of the cylinder, and prevents vertical movement. At this time, the weight W 3 (g) of the device was measured.
- a 150 mm diameter petri dish was placed inside a 125 mm diameter glass filter with a thickness of 5 mm, and the physiological saline composed of 0.90% by weight sodium chloride was brought to the same level as the top surface of the glass filter.
- the measuring device was mounted on a glass filter, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted, and the weight W 4 (g) was measured.
- AUP (g/g) was calculated according to the following Equation 2 to check the absorbency under pressure.
- a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic cylinder having an inner diameter of 60 mm.
- a piston capable of uniformly adding a load of 2.1 kPa (0.3 psi) was slightly smaller than the outer diameter of 60 mm, installed without a gap with the inner wall of the cylinder, and the vertical movement was not disturbed and the height was measured (t0).
- a super absorbent polymer (approximately 1.8 ⁇ 0.05 g) was uniformly applied to the cylinder, and after raising the piston, a glass filter with a diameter of 90 mm and a thickness of 5 mm was placed inside a petri dish having a diameter of 200 mm.
- the filter was put about 5 mm high from the top surface and absorbed/swelled in a super absorbent polymer for 1 hour under load. Thereafter, a physiological saline solution consisting of 0.9% by weight sodium chloride was flowed and the weight of the physiological saline solution passed for 5 minutes was measured after the first drop passed through the swollen superabsorbent resin gel (F g ). After passing the saline for 5 minutes, the height (t1) of the measuring device was measured. From these measurement results, GPUP was calculated according to the following equations 3 and 4:
- F g saline weight through the gel per hour (g/s)
- A cylinder area, 28.27 cm 2
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Physics & Mathematics (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 가압 통액성을 나타내어 기저귀 등 위생재의 리웻(rewet) 특성 및 누수 억제 특성을 향상시킬 수 있는 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 상기 고흡수성 수지는 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서, 상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 것이다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2018년 12월 12일자 한국 특허 출원 제 10-2018-0160287 호 및 2019년 10월 8일자 한국 특허 출원 제 10-2019-0124302 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 가압 통액성을 나타내어 기저귀 등 위생재의 리웻(rewet) 특성 및 누수 억제 특성을 향상시킬 수 있는 고흡수성 수지 및 이의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수능을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않는 우수한 가압 하 흡수 성능 등을 나타낼 필요가 있다.
이에 더하여, 상기 고흡수성 수지는 기저귀 등 위생재에 포함되었을 때, 사용자의 체중에 의해 가압되는 환경에서도, 소변 등을 최대한 넓게 확산시킬 필요가 있다. 이를 통해, 위생재 흡수층의 전 면적에 포함된 고흡수성 수지 입자들을 전체적으로 활용하여 위생재의 흡수 성능 및 흡수 속도를 보다 향상시킬 수 있다. 또한, 이러한 가압 하 확산 특성으로 인해, 일단 고흡수성 수지에 흡수되었던 소변 등이 다시 베어나오는 것을 억제하는 기저귀의 리웻(rewet) 특성을 보다 향상시킬 수 있으며, 이와 함께 기저귀의 누수 억제 특성을 향상시킬 수 있게 된다.
이전에는 기저귀 등 위생재의 디자인 자체를 변경하여 상기 소변 등을 넓게 확산시키는 특성의 개선이 시도되었다. 예를 들어, 위생재에 ADL(Acquisition Distribution Layer) 등을 도입하거나, 흡수 채널을 활용하는 방법 등에 의해, 상기 소변 등의 확산 특성을 개선하는 방안이 시도된 바 있다.
그러나, 이러한 위생재 자체의 디자인 변경으로 인한 확산 특성의 개선은 충분치 않았다. 더 나아가, 최근에는 위생재가 박막화되고, 상대적으로 위생재 내의 고흡수성 수지 함량이 증가함에 따라, 상기 위생재 자체의 디자인 변경에 의한 확산 특성의 개선은 한계에 부딪혔으며, 고흡수성 수지 자체의 가압 하 확산 특성이 개선될 필요성이 보다 높아지고 있다.
이러한 기술적 요구로 인해, 상기 가압 하 확산 특성에 직접적으로 관련된 가압 통액성이 보다 향상되어, 기저귀 등 위생재의 리웻(rewet) 특성 및 누수 억제 특성을 보다 향상시킬 수 있는 고흡수성 수지에 대한 개발의 필요성이 증가하고 있다.
이에 본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 가압 통액성을 나타내어 기저귀 등 위생재의 리웻(rewet) 특성 등을 더욱 향상시킬 수 있는 고흡수성 수지 및 이의 제조 방법을 제공하는 것이다.
본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및
상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,
상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 고흡수성 수지를 제공한다.
또한, 본 발명은 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
표면 가교제의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함하고,
상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 고흡수성 수지의 제조 방법을 제공한다.
이하, 발명의 구체적인 구현예에 따른 고흡수성 수지 및 이의 제조 방법 등에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성요소(또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
발명의 일 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및
상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,
상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 고흡수성 수지가 제공된다.
상기 일 구현예의 고흡수성 수지는 표면 가교층의 형성을 위해, 300 이상의 수 평균 분자량 및 가교 가능한 작용기를 갖는 고분자형 제 1 표면 가교제를 함께 포함하는 것이다.
상기 고분자형 제 1 표면 가교제는 일정 수준 이상의 분자량을 갖는 고분자 쇄들을 포함함에 따라, 표면 가교시 베이스 수지 분말 내로 깊이 침투하기 어려우며, 대부분 베이스 수지 분말의 표면 근방에서 가교를 일으켜 가교 구조를 형성한다. 따라서, 이러한 방법으로 형성된 고흡수성 수지는 제조 과정 중의 표면 가교제의 전체적인 사용량을 크게 늘리지 않으면서도, 표면 근방의 가교 밀도를 보다 증가시킬 수 있으며, 더 나아가 표면 근방에 상기 제 1 표면 가교제에서 유래한 높은 분자량의 고분자 구조를 보다 높은 비율로 포함시킬 수 있다.
따라서, 일 구현예의 고흡수성 수지는 표면 근방에서 보다 단단한 표면 특성을 나타냄에 따라, 이전에 알려진 것보다 향상된 가압 통액성을 나타낼 수 있으며, 이에 따라 위생재의 리웻 특성이나 누수 억제 특성을 보다 향상시킬 수 있다.
이와 동시에, 상기 고흡수성 수지는 이러한 단단한 표면 특성의 구현을 위해, 지나치게 높은 함량의 표면 가교제를 사용할 필요가 없게 되므로, 내부의 가교 밀도는 적절한 수준을 유지할 수 있고, 그 결과 보수능 등의 흡수 성능을 우수하게 유지할 수 있다.
그러므로, 일 구현예의 고흡수성 수지는 기본적인 흡수 성능을 우수하게 유지하면서도, 보다 향상된 가압 통액성을 나타내어 기저귀 등 위생재의 리웻(rewet) 특성을 더욱 향상시킬 수 있다.
이하, 일 구현예의 고흡수성 수지 및 이의 제조 방법에 대해 보다 구체적으로 설명하기로 한다.
본 명세서에서 지칭하는 '고흡수성 수지'란, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제1 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제2 가교 중합체를 포함한 표면 가교층을 포함하는 고흡수성 수지를 의미한다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
상기 화학식 1에서,
R1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
적절하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산, 또는 2-(메트)아크릴아미드-2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸(메트)아크릴레이트, 2-히드록시프로필(메트)아크릴레이트, 메톡시폴리에틸렌글리콜(메트)아크릴레이트 또는 폴리에틸렌 글리콜(메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)-디메틸아미노에틸(메트)아크릴레이트 또는 (N,N)-디메틸아미노프로필(메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.
이때, 상기 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수성이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
일 구현예의 고흡수성 수지에서, 상기 '제1 가교 중합체'란, 상술한 수용성 에틸렌계 불포화 단량체가 내부 가교제의 존재 하게 가교 중합된 것을 의미하고, 상기 '베이스 수지 분말'이란, 이러한 제1 가교 중합체를 포함하는 물질을 의미한다. 또한, 상기 '제2 가교 중합체'란, 상기 제1 가교 중합체가 표면 가교제를 매개로 추가 가교된 물질을 의미하며, 이를 포함하는 표면 가교층이 상기 베이스 수지 분말 상에 형성되어 있다.
상기 일 구현예의 고흡수성 수지에서, 상기 베이스 수지 분말에 포함된 제1 가교 중합체는 탄소수 8 내지 12의 비스(메트)아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리(메트)아크릴레이트 및 탄소수 2 내지 10의 폴리올의 폴리(메트)알릴에테르로 이루어진 군에서 선택된 1종 이상의 내부 가교제의 존재 하에, 상기 단량체가 가교 중합된 고분자로 될 수 있다. 상기 내부 가교제의 보다 구체적인 예는, 특히 제한되지 않으나, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜 다이(메트)아크릴레이트, 프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜 다이(메트)아크릴레이트, 부탄다이올다이(메트)아크릴레이트, 부틸렌글리콜다이(메트)아크릴레이트, 다이에틸렌글리콜 다이(메트)아크릴레이트, 헥산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트 또는 펜타에리스톨 테트라아크릴레이트 등을 들 수 있으며, 이외에도 고흡수성 수지의 제조에 사용 가능한 것으로 알려진 다양한 내부 가교제를 별다른 제한 없이 사용할 수 있다.
한편, 상기 일 구현예의 고흡수성 수지에서는, 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기와 같이 베이스 수지 분말 표면의 카르복시기와 반응할 수 있는 작용기를 갖는 고분자형 제 1 표면 가교제를 사용하여, 상기 표면 가교층을 형성한다.
상기 제 1 표면 가교제로는 300 이상, 혹은 300 내지 30000, 혹은 350 내지 15000의 수 평균 분자량을 가지며, 상기 카르복시기와 반응 가능한 작용기, 구체적으로, 복수의 히드록시기 또는 에폭시기를 갖는 다가 고분자라면 별다른 제한 없이 모두 사용할 수 있다. 이러한 고분자형 가교제의 구체적인 예로는, 상술한 수 평균 분자량을 갖는 고분자로서, 폴리에틸렌 글리콜계 고분자, 폴리프로필렌 글리콜계 고분자, 폴리알킬렌글리콜의 디글리시딜 에테르 등의 폴리올의 폴리글리시딜 에테르계 고분자 및 폴리비닐알코올계 고분자로 이루어진 군에서 선택된 1종 이상을 들 수 있다.
만일, 위 범위에 못미치는 분자량 또는 수 평균 분자량을 갖는 표면 가교제를 제 1 표면 가교제로 사용할 경우 (예를 들어, 고분자 형태를 갖지 않는 2종의 표면 가교제를 사용한 경우 등), 고흡수성 수지의 가압 통액성이 열악하게 될 수 있으며, 그 결과, 위생재의 리웻 특성이나 누수 억제 특성이 충분치 못하게 될 수 있다.
또한, 일 구현예의 고흡수성 수지는 상기 고분자형 제 1 표면 가교제 외에, 고분자 형태를 갖지 않는 분자량 300 미만의 제 2 표면 가교제를 함께 사용하여, 이들로부터 유래한 가교 구조를 함께 포함할 수도 있다.
이러한 제 2 표면 가교제로는 기존부터 고흡수성 수지의 제조에 사용되던 단분자 형태의 표면 가교제를 별다른 제한 없이 모두 사용할 수 있다. 예를 들어, 상기 표면 가교제는 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올; 에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1 종 이상의 알킬렌 카보네이트계 화합물; 알킬렌글리콜 디글리시딜 에테르 등의 에폭시 화합물; 옥사졸리디논 등의 옥사졸린 화합물; 옥사졸린 화합물; 또는 환상 우레아 화합물; 등을 포함할 수 있다. 바람직하게는 상기 알킬렌 카보네이트계 화합물을 보다 적절히 사용할 수 있다.
일 구현예의 고흡수성 수지는 이들 복수 종의 표면 가교제, 특히, 고분자형 제 1 표면 가교제를 제 2 표면 가교제와 함께 사용함에 따라, 표면 가교제의 전체적인 사용량/함유량을 크게 늘리지 않으면서도, 고흡수성 수지 표면 근방의 가교 밀도를 보다 증가시킬 수 있다. 따라서, 일 구현예의 고흡수성 수지는 표면 근방에서 보다 단단한 표면 특성을 나타냄에 따라, 이전에 알려진 것보다 향상된 가압 통액성을 나타낼 수 있으며, 이에 따라 위생재의 리웻 특성이나 누수 억제 특성을 보다 향상시킬 수 있다.
이러한 특성이 발현될 수 있도록 상기 일 구현예의 고흡수성 수지에서, 상기 제 1 표면 가교제에서 유래한 가교 구조는 표면 가교층의 최외각 표면에 가장 높은 비율로 존재하며, 표면 가교층의 깊이가 깊을수록 존재 비율이 낮아질 수 있다.
상술한 제 1 표면 가교제 : 제 2 표면 가교제는 3 : 1 내지 1 : 3, 혹은 2.5 : 1 내지 1 : 2.5, 혹은 2 : 1 내지 1 : 2의 중량비로 포함될 수 있다. 이로서, 고흡수성 수지 표면을 보다 단단히 하여, 고흡수성 수지의 가압 통액성이나, 위생재의 리웻 특성 또는 누수 억제 특성을 보다 향상시킬 수 있으면서도, 고흡수성 수지의 흡수 성능 역시 우수하게 유지할 수 있다.
한편, 상술한 일 구현예의 고흡수성 수지는 통액성 등의 추가적인 향상을 위해, 표면 가교시 황산알루미늄염 등의 알루미늄염 기타 다양한 다가 금속염을 더 사용할 수 있다. 이러한 다가 금속염은 최종 제조된 고흡수성 수지의 표면 가교층 상에 포함될 수 있다.
한편, 상술한 일 구현예의 고흡수성 수지는 150 내지 850 ㎛의 입경을 가질 수 있다. 보다 구체적으로, 상기 베이스 수지 분말 및 이를 포함한 고흡수성 수지의 적어도 95 중량% 이상이 150 내지 850㎛의 입경을 가지며, 300 내지 600㎛의 입경을 갖는 입자를 50 중량% 이상 포함할 수 있으며, 150㎛ 미만의 입경을 갖는 미분이 3 중량% 미만으로 될 수 있다.
또, 상기 일 구현예의 고흡수성 수지는, 기본적인 보수능 등 흡수 성능이 우수하게 유지되면서도, 보다 향상된 가압 통액성을 나타낼 수 있다.
구체적으로, 일 구현예의 고흡수성 수지의 우수한 흡수 성능은 보수능 및 가압 흡수능에 의해 정의될 수 있다. 보다 구체적으로, 상기 고흡수성 수지는 생리 식염수(0.9 중량% 염화나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 28 내지 43 g/g, 혹은 30 내지 40 g/g로 될 수 있다. 이러한 원심분리 보수능(CRC) 범위는 일 구현예의 고흡수성 수지가 나타내는 우수한 무가압 하 흡수 성능을 정의할 수 있다.
또한, 상기 고흡수성 수지는 EDANA 법 WSP 242.3-10에 따라 측정된 0.7psi의 가압 흡수능(AUP)이 15 내지 27 g/g, 혹은 20 내지 25 g/g로 될 수 있다. 이러한 가압 흡수능 범위는 일 구현예의 고흡수성 수지가 나타내는 우수한 가압 하 흡수 성능을 정의할 수 있다.
이에 더하여, 상기 고흡수성 수지의 향상된 가압 통액성은 GPUP의 물성에 의해 정의될 수 있다. 이러한 GPUP는 상기 고흡수성 수지를 0.3psi의 가압 하에, 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 1시간 동안 팽윤시킨 후, 상기 생리 식염수를 상기 고흡수성 수지에 흘려 주었을 때 첫 방울이 떨어지는 시점부터 5분 동안 흐르는 유량으로 측정될 수 있다. 이의 보다 구체적인 측정 방법은 후술하는 실험예에 기재되어 있다.
일 구현예의 고흡수성 수지는 상기 GPUP가 5·10E-13m2 이상, 혹은 5 내지 30·10E-13m2, 혹은 7 내지 25·10E-13m2로 될 수 있으며, 이로서 우수한 가압 통액성을 나타낼 수 있다.
상술한 일 구현예의 고흡수성 수지는 이전에 알려진 것보다 향상된 가압 통액성을 나타냄에 따라 위생재의 리웻 특성 등을 향상시킬 수 있으면서도, 우수한 흡수 성능을 유지할 수 있다.
한편, 상술한 일 구현예의 제반 물성을 충족하는 고흡수성 수지는 가교 중합에 의해 함수겔 중합체를 얻은 후, 이를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하고, 특정 표면 가교제의 존재 하에 표면 가교 공정을 포함하는 제조 방법에 의해 제조될 수 있다.
이에 발명의 다른 구현예에 따르면, 상술한 고흡수성 수지의 제조 방법이 제공된다. 이러한 제조 방법은 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및 표면 가교제의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함하고,
상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며, 카르복시기와 반응 가능한 작용기, 구체적으로, 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 것으로 될 수 있다.
이하, 각 단계 별로 상기 제조 방법을 상세히 설명한다.
먼저, 다른 구현예의 제조 방법은 가교 중합에 의해 함수겔 중합체를 형성하는 단계를 포함한다. 구체적으로, 내부 가교제의 존재 하에 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함하는 단량체 조성물을 열 중합 또는 광 중합하여 함수겔 중합체를 형성하는 단계이다.
상기 단량체 조성물에 포함되는 수용성 에틸렌계 불포화 단량체는 앞서 설명한 바와 같다.
또한, 상기 단량체 조성물에는 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 포함될 수 있다. 비제한적인 예로, 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 열 중합 개시제가 추가로 포함될 수 있다.
여기서, 상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(a-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)"의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다.
그리고, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등을 예로 들 수 있다. 또한, 아조(Azo)계 개시제로는 2,2-아조비스-(2-아미디노프로판)이염산염(2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다.
이러한 중합 개시제는 상기 단량체 조성물에 대하여 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.
한편, 상기 단량체 조성물에는 상기 수용성 에틸렌계 불포화 단량체의 중합에 의한 수지의 물성을 향상시키기 위한 가교제("내부 가교제")가 포함된다. 상기 가교제는 함수겔 중합체를 내부 가교시키기 위한 것으로서, 후술할 "표면 가교제"와 별개로 사용될 수 있다.
특히, 상기 다른 구현예의 제조 방법에서는, 이미 상술한 내부 가교제, 예를 들어, 탄소수 8 내지 12의 비스(메트)아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리(메트)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의 폴리(메트)알릴에테르 등을 사용할 수 있으며, 이로서 내부 가교 결합이 적절히 부여된 함수겔 중합체를 얻을 수 있다. 다만, 내부 가교제의 종류에 관해서는 이미 상술한 바 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
또, 이러한 내부 가교제는 상기 내부 가교제 및 단량체 등을 포함하는 단량체 조성물의 100 중량부에 대해 0.4 중량부 내지 2 중량부, 혹은 0.4 내지 1.8 중량부의 함량으로 될 수 있다. 이로서, 함수겔 중합체 및 베이스 수지 분말의 내부 가교도가 조절되어, 고흡수성 수지의 흡수 성능 및 통액성 등이 최적화될 수 있다. 다만, 상기 내부 가교제의 함량이 지나치게 커지면, 고흡수성 수지의 기본적인 흡수 성능이 저하될 수 있다.
이 밖에도, 상기 단량체 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.
그리고, 이러한 단량체 조성물은 전술한 단량체, 중합 개시제, 내부 가교제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다.
이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일렌, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트, N,N-디메틸아세트아미드, 또는 이들의 혼합물 등 사용될 수 있다.
그리고, 상기 단량체 조성물의 중합을 통한 함수겔 중합체의 형성은 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반응기에서 진행될 수 있다.
일 예로, 교반축이 구비된 니더와 같은 반응기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔 중합체를 얻을 수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔 중합체는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 2 내지 50 mm인 함수겔 중합체가 얻어질 수 있다.
그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반응기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 10 cm의 두께로 조절되는 것이 바람직하다.
이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 40 내지 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.
다음에, 얻어진 함수겔 중합체를 건조하는 단계를 수행한다. 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 상기 함수겔 중합체를 조분쇄하는 단계를 더 거칠 수 있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 조분쇄 단계는 함수겔 중합체의 입경이 2 내지 10mm로 되도록 분쇄할 수 있다. 입경이 2 mm 미만으로 분쇄하는 것은 함수겔 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10 mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 150 내지 250 ℃일 수 있다. 건조 온도가 150 ℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250 ℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 150 내지 200 ℃의 온도에서, 더욱 바람직하게는 170 내지 195 ℃의 온도에서 진행될 수 있다.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 20 내지 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.
상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량%일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850㎛ 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 150 내지 850㎛인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반응 단계를 거쳐 제품화할 수 있다. 보다 구체적으로, 상기 분급이 진행된 베이스 수지 분말은 150 내지 850㎛의 입경을 가지며, 300 내지 600㎛의 입경을 갖는 입자를 50 중량% 이상 포함할 수 있다.
한편, 상술한 분급 공정까지를 거쳐 베이스 수지 분말을 제조한 후에는, 표면 가교제의 존재 하에, 상기 베이스 수지 분말을 열처리하면서 표면 가교하여 고흡수성 수지 입자를 형성할 수 있다. 상기 표면 가교는 표면 가교제의 존재 하에 상기 베이스 수지 분말의 표면에 가교 반응을 유도하는 것으로, 이러한 표면 가교를 통해 상기 베이스 수지 분말의 표면에는 표면 가교층이 형성될 수 있다.
보다 구체적으로, 상술한 다른 구현예의 제조 방법에서는, 300 이상의 수 평균 분자량을 갖는 고분자형 제 1 표면 가교제를 사용하게 되며, 선택적으로 고분자 형태를 갖지 않는 제 2 표면 가교제를 함께 사용할 수 있다. 다만, 이들 표면 가교제의 종류에 관해서는 이미 충분히 설명한 바와 같으므로, 추가적인 설명은 생략하기로 한다.
상기 표면 가교제를 사용한 표면 가교 공정에서, 상기 표면 가교제의 함량은 가교제의 구체적 종류나 반응 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는, 상기 제 1 및 제 2 표면 가교제는 각각 베이스 수지 분말 100 중량부에 대해, 0.1 내지 2.0 중량부, 혹은 0.3 내지 1.5 중량부, 혹은 0.5 내지 1.0의 함량으로 사용될 수 있다.
상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 개질이 제대로 이루어지지 못해, 최종 수지의 물성이 저하될 수 있다. 특히, 고분자형 제 1 표면 가교제의 함량이 낮아지면, 고흡수성 수지의 가압 통액성이 충분치 못할 수 있다. 반대로 과량의 표면 가교제가 사용되면 과도한 표면 가교 반응으로 인해 수지의 기본적인 흡수 성능이 오히려 저하될 수 있어 바람직하지 않다.
한편, 상기 표면 가교제는 이를 포함하는 표면 가교액 상태로 베이스 수지 분말에 첨가되는데, 이러한 표면 가교액의 첨가 방법에 대해서는 그 구성의 특별한 한정은 없다. 예를 들어, 표면 가교액과, 베이스 수지 분말을 반응조에 넣고 혼합하거나, 베이스 수지 분말에 표면 가교액를 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 가교액을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
그리고, 상기 표면 가교액은 매질로서 물 및/또는 친수성 유기 용매를 더 포함할 수 있다. 이로서, 표면 가교제 등이 베이스 수지 분말 상에 골고루 분산될 수 있는 이점이 있다. 이때, 물 및 친수성 유기 용매의 함량은 표면 가교제의 고른 용해/분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 베이스 수지 분말 100 중량부에 대한 첨가 비율을 조절하여 적용할 수 있다.
상기 표면 가교액이 첨가된 베이스 수지 분말에 대해 140℃ 내지 250℃, 혹은 140℃ 내지 220℃, 혹은 170℃ 내지 210℃의 온도에서 30분 이상 열처리하여 진행할 수 있다. 보다 구체적으로, 상기 표면 가교는 상술한 온도를 최고 반응 온도로 하여, 이로한 최고 반응 온도에서, 30 내지 80분, 혹은 40분 내지 70분 동안 열처리하여 표면 가교 반응을 진행할 수 있다.
이러한 표면 가교 공정 조건(특히, 승온 조건 및 반응 최고 온도에서의 반응 조건)의 충족에 의해 보다 우수한 가압 통액성 등의 물성을 적절히 충족하는 고흡수성 수지가 제조될 수 있다.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
상술한 제조방법에 따라 수득된 고흡수성 수지는 보수능 등의 흡수 성능 및 통액성 등이 우수하게 유지되면서도, 위생재에 흡수된 소변 등을 넓게 확산시킬 수 있으므로, 위생재의 리웻 특성 등을 크게 향상시킬 수 있다.
본 발명에 따른 고흡수성 수지는, 기본적인 흡수 성능 등을 우수하게 유지할 수 있으면서도, 보다 향상된 가압 통액성 등을 나타내어 위생재에 흡수된 소변 등이 고흡수성 수지 입자들의 표면을 따라 빠르고 넓게 확산되도록 할 수 있다. 그 결과, 본 발명의 고흡수성 수지는 위생재의 리웻(rewet) 특성 및 누수 억제 특성 등을 향상시킬 수 있다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
실시예 1
아크릴산 단량체 100 중량부에 대하여, 가성소다(NaOH) 40.6 중량부 및 물 131.2 중량부를 혼합하고, 상기 혼합물에 열중합 개시제인 소디움 퍼설페이트 0.12 중량부, 광중합 개시제인 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥사이드 0.008 중량부 및 내부 가교제인 폴리에틸렌글리콜 다이아크릴레이트 0.22 중량부를 첨가하여 단량체 조성물을 준비하였다.
상기 단량체 조성물을 내부 온도가 80℃로 유지되며 수은 UV 램프 광원으로 10mW의 세기를 가지는 자외선 조사 장치가 상부에 설치된 연속식 벨트 중합 반응기의 중합벨트 위에서 243 kg/hr의 유량으로 흘려주면서 자외선을 1분간 조사하고, 추가로 2분간 무광원 상태에서 중합 반응을 진행하였다.
중합이 완료되어 나오는 함수겔 타입 중합 시트는 슈레더타입 커터를 이용하 1차 커팅한 후 미트 쵸퍼를 통해 조분쇄하였다. 이후 180℃의 온도에서 30분간 열풍 건조기를 통하여 건조한 뒤, 회전식 믹서를 이용하여 분쇄하고 150㎛ 내지 850㎛로 분급하여 베이스 수지 분말을 제조하였다.
제조된 베이스 수지 분말을 10/70/19/1의 입도 비율로 섞고, 200 중량부를 준비한다. 표면 가교액은 상기 베이스 수지 분말 100 중량부에 물 5.4 중량부, 에틸렌 카보네이트 0.6 중량부, 수 평균 분자량 500인 폴리에틸렌글리콜 디글리시딜에테르의 고분자형 표면 가교제 0.5 중량부, 프로필렌 글리콜 0.2 중량부, 알루미늄 설페이트 18수화물 0.4중량부를 고르게 혼합 한 후, 180℃ 온도로 승온시켜 50분 이상 열처리하면서 표면 가교 반응을 진행하였다. 상기 표면처리 완료 후 시브를 이용하여 입경 850㎛ 이하인 고흡수성 수지를 얻었다.
실시예 2
상기 고분자형 표면 가교제로서, 수 평균 분자량 380인 폴리에틸렌글리콜 디글리시딜에테르를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 2의 고흡수성 수지를 얻었다.
실시예 3
상기 고분자형 표면 가교제로서, 수 평균 분자량 10,000인 폴리비닐알코올을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 3의 고흡수성 수지를 얻었다.
실시예 4
상기 에틸렌 카보네이트를 사용하지 않고, 고분자형 표면 가교제의 함량을 1.1 중량부로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 4의 고흡수성 수지를 얻었다.
비교예 1
상기 고분자형 표면 가교제를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 비교예 1 의 고흡수성 수지를 얻었다.
비교예 2
상기 고분자형 표면 가교제를 사용하지 않고, 에틸렌 카보네이트의 함량을 1.1 중량부로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 비교예 2 의 고흡수성 수지를 얻었다.
비교예 3
상기 고분자형 표면 가교제 대신, 분자량이 약 174인 에틸렌글리콜 디글리시딜에테르를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 비교예 3 의 고흡수성 수지를 얻었다.
비교예 4
상기 고분자형 표면 가교제 대신, 분자량이 260인 글리세롤 트리글리시딜에테르를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 비교예 4의 고흡수성 수지를 얻었다.
실험예
실시예 및 비교예에서 제조한 각 고흡수성 수지의 물성을 다음의 방법으로 측정 및 평가하였다.
(1) 입경평가
실시예 및 비교예에서 사용된 베이스 수지 분말 및 고흡수성 수지의 입경은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정을 하였다.
(2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)
유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 무하중하 흡수배율에 의한 원심분리 보수능(CRC)을 측정하였다. 고흡수성 수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후에, 상온에 0.9 중량%의 염화나트륨 수용액의 생리 식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또한, 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정했다. 이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[계산식 1]
(3) 가압 흡수능(Absorbing under Pressure, AUP)
실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회(European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3-10의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을 측정하였다.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23±2℃의 온도 및 45%의 상대 습도 조건하에서 철망상에 실시예 및 비교예에서 얻어진 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa(0.7 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤(piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 유리 필터 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라 AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.
[계산식 2]
(4) GPUP
상기 실시예 및 비교예의 고흡수성 수지를 0.3psi의 가압 하에, 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 1시간 동안 팽윤시킨 후, 상기 생리 식염수를 상기 고흡수성 수지에 흘려 주었을 때 첫 방울이 떨어지는 시점부터 5분 동안 흐르는 유량으로 GPUP를 측정하였다. 구체적인 측정 방법/조건은 다음과 같이 하였다.
먼저, 내경 60mm의 플라스틱 실린더의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 그 위에 2.1 kPa(0.3 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 60mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해받지 않게 설치하고 높이를 측정하였다(t0). 실린더에 고흡수성 수지(약 1.8 ±0.05g)을 균일하게 도포하고 피스톤을 올린 후 직경 200mm의 페트리 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를 두고, 0.9중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면에서 5mm가량 높게 넣어주고 하중 하에서 1시간 동안 고흡수성 수지에 흡수/팽윤시켰다. 이후, 0.9중량% 염화나트륨으로 구성된 생리식염수를 흘려 보내주고 첫 한 방울이 팽윤된 고흡수성 수지 겔을 통과한 이후 시점부터 5분 간 통과된 생리식염수의 무게를 측정하였다(Fg). 5분 간 생리식염수를 통과 시간 후 측정 장치의 높이(t1)를 측정하였다. 이러한 측정 결과로부터, 하기 계산식 3 및 4에 따라 GPUP를 산출하였다:
[계산식 3]
Fg = 시간 당 겔을 통과한 생리식염수 무게 (g/s)
t(cm) = 고흡수성 수지 겔 두께 (t1-t0)/10
ρ= 생리 식염수 밀도 (~1g/cm3)
A = 실린더 면적, 28.27cm2
P = 정수압, 4920 dyn/cm2
[계산식 4]
η = 생리 식염수 점도 (~0.0009xx [Pa s])
위 방법으로 측정된 실시예 1 내지 4 및 비교예 1 내지 4의 각 물성 값을 하기 표 1에 정리하여 나타내었다.
상기 표 1을 참고하면, 실시예 1 내지 4는 기본적인 흡수 성능(CRC, AUP) 이 비교예 1 내지 4와 동등 수준 이상으로 나타나면서도, 가압 통액성(GPUP)이 비교예에 비해 우수하여 소변 등을 넓게 확산시킬 수 있는 것으로 확인되었다.
Claims (13)
- 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 고흡수성 수지.
- 제 1 항에 있어서, 상기 표면 가교제는 300 미만의 분자량을 가지며,에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올;에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1 종 이상의 알킬렌 카보네이트계 화합물;알킬렌글리콜 디글리시딜 에테르의 에폭시 화합물; 옥사졸린 화합물; 옥사졸린 화합물; 또는 환상 우레아 화합물;의 제 2 표면 가교제를 더 포함하는 고흡수성 수지.
- 제 1 항에 있어서, 상기 제 1 표면 가교제는 폴리에틸렌 글리콜계 고분자, 폴리프로필렌 글리콜계 고분자, 폴리올의 폴리글리시딜 에테르계 고분자 및 폴리비닐알코올계 고분자로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지.
- 제 1 항에 있어서, 상기 제 1 표면 가교제에서 유래한 가교 구조는 표면 가교층의 최외각 표면에 가장 높은 비율로 존재하며, 표면 가교층의 깊이가 깊을수록 존재 비율이 낮아지는 고흡수성 수지.
- 제 1 항에 있어서, 상기 표면 가교층 상의 다가 금속염을 더 포함하는 고흡수성 수지.
- 제 2 항에 있어서, 상기 제 1 표면 가교제 : 제 2 표면 가교제는 3 : 1 내지 1 : 3의 중량비로 포함되는 고흡수성 수지.
- 제 1 항에 있어서, 상기 고흡수성 수지는 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 28 내지 43 g/g이고,EDANA 법 WSP 242.3-10에 따라 측정된 0.7psi의 가압 흡수능(AUP)이 15 내지 27 g/g인 고흡수성 수지.
- 제 1 항에 있어서, 상기 고흡수성 수지를 0.3psi의 가압 하에, 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 1시간 동안 팽윤시킨 후, 상기 생리 식염수를 상기 고흡수성 수지에 흘려 주었을 때 첫 방울이 떨어지는 시점부터 5분 동안 흐르는 유량으로 측정되는 GPUP가 5·10E-13m2 이상인 고흡수성 수지.
- 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및표면 가교제의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교하는 단계를 포함하고,상기 표면 가교제는 300 이상의 수 평균 분자량을 가지며 복수의 히드록시기 또는 에폭시기를 갖는 고분자형 제 1 표면 가교제를 포함하는 고흡수성 수지의 제조 방법.
- 제 9 항에 있어서, 상기 표면 가교제는 300 미만의 분자량을 가지며,에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올;에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1 종 이상의 알킬렌 카보네이트계 화합물;알킬렌글리콜 디글리시딜 에테르의 에폭시 화합물; 옥사졸린 화합물; 옥사졸린 화합물; 또는 환상 우레아 화합물;의 제 2 표면 가교제를 더 포함하는 고흡수성 수지의 제조 방법.
- 제 9 항에 있어서, 상기 베이스 수지 분말은 150 내지 850㎛의 입경을 가지며, 300 내지 600㎛의 입경을 갖는 입자를 50 중량% 이상 포함하도록 분쇄 및 분급되는 고흡수성 수지의 제조 방법.
- 제 10 항에 있어서, 상기 제 1 및 제 2 표면 가교제는 각각 베이스 수지 분말 100 중량부에 대해, 0.1 내지 2.0 중량부의 함량으로 사용되는 고흡수성 수지의 제조 방법.
- 제 9 항에 있어서, 상기 표면 가교 단계는 140℃ 내지 250℃의 반응 온도에서 30분 이상 열처리 및 반응시켜 진행하는 고흡수성 수지의 제조 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980053547.9A CN112585194B (zh) | 2018-12-12 | 2019-10-10 | 超吸收性聚合物组合物及用于制备其的方法 |
JP2020556904A JP7191403B2 (ja) | 2018-12-12 | 2019-10-10 | 高吸水性樹脂およびその製造方法 |
EP19896240.9A EP3819329A4 (en) | 2018-12-12 | 2019-10-10 | SUPERABSORBENT POLYMER AND METHOD FOR MANUFACTURING THEREOF |
US17/270,338 US20210322953A1 (en) | 2018-12-12 | 2019-10-10 | Superabsorbent Polymer Composition And Method For Preparing The Same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0160287 | 2018-12-12 | ||
KR20180160287 | 2018-12-12 | ||
KR10-2019-0124302 | 2019-10-08 | ||
KR1020190124302A KR102417829B1 (ko) | 2018-12-12 | 2019-10-08 | 고흡수성 수지 및 이의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020122390A1 true WO2020122390A1 (ko) | 2020-06-18 |
Family
ID=71076116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/013302 WO2020122390A1 (ko) | 2018-12-12 | 2019-10-10 | 고흡수성 수지 및 이의 제조 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020122390A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023513062A (ja) * | 2020-10-29 | 2023-03-30 | エルジー・ケム・リミテッド | 高吸水性樹脂の製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10244151A (ja) | 1997-03-06 | 1998-09-14 | Sanyo Chem Ind Ltd | 吸水剤の製造方法および吸水剤 |
EP0937736A2 (en) | 1998-02-24 | 1999-08-25 | Nippon Shokubai Co., Ltd. | Crosslinking a water-absorbing agent |
WO2014021388A1 (ja) | 2012-08-01 | 2014-02-06 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法 |
CN105754754A (zh) * | 2016-02-16 | 2016-07-13 | 广州市浪奇实业股份有限公司 | 具有增强去污特性的洗涤助剂及其制备方法与应用 |
KR20170033634A (ko) * | 2015-09-17 | 2017-03-27 | 한화케미칼 주식회사 | 고 흡수성 수지 및 이의 제조방법 |
KR101797391B1 (ko) * | 2016-09-20 | 2017-11-14 | 롯데케미칼 주식회사 | 고흡수성 수지 및 그 제조방법 |
KR20180067940A (ko) * | 2016-12-13 | 2018-06-21 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
US20180179329A1 (en) * | 2015-06-23 | 2018-06-28 | Arkema lnc. | Water soluble polymers and polymer adducts along with aqueous solutions thereof |
-
2019
- 2019-10-10 WO PCT/KR2019/013302 patent/WO2020122390A1/ko unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10244151A (ja) | 1997-03-06 | 1998-09-14 | Sanyo Chem Ind Ltd | 吸水剤の製造方法および吸水剤 |
EP0937736A2 (en) | 1998-02-24 | 1999-08-25 | Nippon Shokubai Co., Ltd. | Crosslinking a water-absorbing agent |
WO2014021388A1 (ja) | 2012-08-01 | 2014-02-06 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法 |
US20180179329A1 (en) * | 2015-06-23 | 2018-06-28 | Arkema lnc. | Water soluble polymers and polymer adducts along with aqueous solutions thereof |
KR20170033634A (ko) * | 2015-09-17 | 2017-03-27 | 한화케미칼 주식회사 | 고 흡수성 수지 및 이의 제조방법 |
CN105754754A (zh) * | 2016-02-16 | 2016-07-13 | 广州市浪奇实业股份有限公司 | 具有增强去污特性的洗涤助剂及其制备方法与应用 |
KR101797391B1 (ko) * | 2016-09-20 | 2017-11-14 | 롯데케미칼 주식회사 | 고흡수성 수지 및 그 제조방법 |
KR20180067940A (ko) * | 2016-12-13 | 2018-06-21 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
Non-Patent Citations (3)
Title |
---|
"Principle of Polymerization", 1981, WILEY, pages: 203 |
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115 |
See also references of EP3819329A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023513062A (ja) * | 2020-10-29 | 2023-03-30 | エルジー・ケム・リミテッド | 高吸水性樹脂の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101704789B1 (ko) | 고흡수성 수지 | |
KR102069312B1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
WO2020122442A1 (ko) | 고흡수성 수지의 제조 방법 | |
KR20180074384A (ko) | 고흡수성 수지 및 이의 제조 방법 | |
WO2020145533A1 (ko) | 고흡수성 수지의 제조 방법 | |
KR20160061743A (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR20180067941A (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR20180046905A (ko) | 고흡수성 수지 및 이의 제조방법 | |
EP3404058A1 (en) | Super absorbent polymer and manufacturing method therefor | |
WO2016200054A1 (ko) | 고흡수성 수지 및 그의 제조 방법 | |
KR101595037B1 (ko) | 고흡수성 수지의 제조 방법 | |
US11383221B2 (en) | Preparation method of super absorbent polymer | |
WO2020067705A1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
WO2020116760A1 (ko) | 고흡수성 수지의 제조 방법 | |
KR102577709B1 (ko) | 고흡수성 수지의 제조 방법 | |
KR102417829B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
KR102634904B1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
US20210179790A1 (en) | Super Absorbent Polymer and Method for Preparing Same | |
WO2020122390A1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
WO2020067662A1 (ko) | 고흡수성 수지 시트의 제조 방법 | |
WO2020122426A1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
WO2020122559A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2022169227A1 (ko) | 고흡수성 수지의 제조 방법 | |
US11865511B2 (en) | Preparation method for super absorbent polymer sheet, super absorbent polymer sheet prepared therefrom | |
KR102616695B1 (ko) | 고흡수성 수지 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19896240 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020556904 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |