WO2020121833A1 - 光伝送システムおよび電気光変換デバイス - Google Patents

光伝送システムおよび電気光変換デバイス Download PDF

Info

Publication number
WO2020121833A1
WO2020121833A1 PCT/JP2019/046625 JP2019046625W WO2020121833A1 WO 2020121833 A1 WO2020121833 A1 WO 2020121833A1 JP 2019046625 W JP2019046625 W JP 2019046625W WO 2020121833 A1 WO2020121833 A1 WO 2020121833A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
conversion device
electro
light source
Prior art date
Application number
PCT/JP2019/046625
Other languages
English (en)
French (fr)
Inventor
小池 康博
雄一 辻田
伊藤 聡
壮宗 田中
啓太 清島
篤史 山岸
梓 井上
Original Assignee
日東電工株式会社
小池 康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019084189A external-priority patent/JP6812490B2/ja
Application filed by 日東電工株式会社, 小池 康博 filed Critical 日東電工株式会社
Priority to CN201980082269.XA priority Critical patent/CN113454933B/zh
Priority to EP19895824.1A priority patent/EP3896874A4/en
Priority to US17/312,705 priority patent/US11411648B2/en
Priority to KR1020217017799A priority patent/KR102361071B1/ko
Publication of WO2020121833A1 publication Critical patent/WO2020121833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical transmission system and an electro-optical conversion device.
  • the optical transmission system includes an electro-optical conversion device that converts an RF signal into an optical signal.
  • Patent Document 1 it is proposed to increase the light emission output of the electro-optical conversion device in order to satisfy the above requirements.
  • the present invention provides an optical transmission system and an electro-optical conversion device capable of suppressing a communication error while ensuring a long transmission distance.
  • the present invention (1) is an optical transmission system that transmits an RF signal by a frequency division multiplexing method, and an electro-optical conversion device that receives an RF signal, converts the RF signal into an optical signal and transmits the optical signal, and the electro-optical conversion device.
  • the optical-electrical conversion device includes: an optical transmission line that transmits the optical signal transmitted from the optical transmission line; and an optical-electrical conversion device that converts the optical signal transmitted from the optical transmission line into an RF signal and transmits the RF signal.
  • An optical transmission system including a light source capable of emitting light with an output of 0.8 mW or more, and a noise index obtained by a measurement method including the following first to sixth steps is 10.0 dB ⁇ V or less.
  • Third step From the start of input of an electric signal by the constant current source, a waveform is acquired 3000 times by the frequency analyzer every 0.02 seconds, and is set as a maximum value of intensity at each frequency in the 3000 times waveform. Gets the maximum intensity graph to be drawn.
  • Step 4 Draw a graph obtained by subtracting the intensity of the baseline from the intensity of the maximum intensity graph with the frequency analyzer.
  • the frequency analyzer calculates the average value of the intensities for each specific frequency by dividing the graph into 1000 in the frequency domain.
  • Step 6 The value obtained by subtracting the average value from the maximum intensity in the graph is obtained as the noise index (unit: dB ⁇ V) by the frequency analyzer.
  • Step 7 Connect a constant current source to the light source, and arrange the light receiving part of the near-field image measuring device at a position where the light emitted from the light source enters the light receiving part most.
  • Eighth step A constant current is input to the light source from the constant current source, measurement is performed with a near-field image measuring device 60 seconds to 180 seconds after the input of an electric signal from the constant current source is started, and a beam diameter of the light source is measured. (FWHM) and a near-field image (intensity distribution) are acquired.
  • Ninth step The center of gravity of the intensity distribution of the near-field image is set as an origin (0, 0), and the average value of the intensities in a circle whose diameter is the beam diameter (FWHM) around the origin in the near-field image is set. calculate.
  • Step 10 Calculate the average value of the intensities within a circle with a diameter of 1 ⁇ m centered on the origin (0, 0) in the near-field image.
  • the SM similarity is calculated by dividing the average value calculated in the 10th step by the average value calculated in the 9th step.
  • the present invention (3) includes the optical transmission system according to (1) or (2), wherein the wavelength band of the optical signal emitted from the light source is 1100 nm or less.
  • the present invention (4) includes the optical transmission system according to any one of (1) to (3), wherein the light source is a surface emitting laser diode.
  • the present invention (5) includes the optical transmission system according to any one of (1) to (4), wherein the light source has a specification of 50 Mbps or more and 20 Gbps or less.
  • the present invention (7) is an optical transmission system for transmitting an RF signal by a frequency division multiplexing system, which receives an RF signal, converts the RF signal into an optical signal and transmits the optical signal, and the electro-optical conversion device.
  • the optical transmission system including an optical transmission line that transmits the optical signal transmitted from the optical transmission line, and an optoelectric conversion device that converts the optical signal transmitted from the optical transmission line into an RF signal and transmits the RF signal.
  • the electro-optical conversion device has a noise index of 10.0 dB ⁇ V or less.
  • Step 1 A constant current source is connected to the electro-optical conversion device on the upstream side in the transmission direction, and a frequency analyzer is connected to the photoelectric conversion device on the downstream side in the transmission direction.
  • Second step A constant current is input to the electro-optical conversion device from the constant current source, and at the same time, an electric signal input from the opto-electric conversion device is analyzed by the frequency analyzer, and 10 MHz to 3 MHz of the electric signal is analyzed.
  • a waveform whose frequency is on the horizontal axis and intensity is on the vertical axis is displayed by the frequency analyzer every 0.02 seconds after 60 seconds have elapsed from the start of the input of the electric signal by the constant current source. It is acquired 3000 times, and a baseline that is an average waveform of the 3000 times is acquired.
  • Step 4 Draw a graph obtained by subtracting the intensity of the baseline from the intensity of the maximum intensity graph with the frequency analyzer.
  • the frequency analyzer calculates the average value of the intensities for each specific frequency by dividing the graph into 1000 in the frequency domain.
  • Step 6 The value obtained by subtracting the average value from the maximum intensity in the graph is obtained as the noise index (unit: dB ⁇ V) by the frequency analyzer.
  • Step 7 Connect a constant current source to the light source, and arrange the light receiving part of the near-field image measuring device at a position where the light emitted from the light source enters the light receiving part most.
  • Ninth step The center of gravity of the intensity distribution of the near-field image is set as an origin (0, 0), and the average value of the intensities in a circle whose diameter is the beam diameter (FWHM) around the origin in the near-field image is set. calculate.
  • Step 10 Calculate the average value of the intensities within a circle with a diameter of 1 ⁇ m centered on the origin (0, 0) in the near-field image.
  • the SM similarity is calculated by dividing the average value calculated in the 10th step by the average value calculated in the 9th step.
  • the present invention includes the electro-optical conversion device according to (7) or (8), wherein the wavelength band of the optical signal emitted from the light source is 1100 nm or less.
  • the electro-optical conversion device includes a light source capable of emitting light with an output of 0.8 mW or more, and the noise index is 10.0 dB ⁇ V or less. It is possible to suppress a communication error while ensuring a long transmission range.
  • the electro-optical conversion device includes a light source capable of emitting light with an output of 0.8 mW or more, FWHM of 7.8 ⁇ m or more, or an SM-like light source. Since the degree is 0.85 or more, it is possible to suppress a communication error while ensuring a long transmission range.
  • FIG. 1 shows a schematic diagram of an embodiment of the optical transmission system of the present invention.
  • 2A and 2B show graphs obtained by measuring the noise index
  • FIG. 2A shows the baseline BL and the maximum intensity graph MAX-GF
  • FIG. 2B shows the graph GF, the average value AVE, and the noise index.
  • 3A to 3C are diagrams for explaining the maximum intensity graph MAX-GF.
  • FIG. 3A is a first waveform WF1 including the first peak P1
  • FIG. 3B is a second waveform including the second peak P2.
  • Waveform WF2 of FIG. 3C shows a maximum intensity graph MAX-GF including the first peak P1 and the second peak P2.
  • FIG. 3A is a first waveform WF1 including the first peak P1
  • FIG. 3B is a second waveform including the second peak P2.
  • Waveform WF2 of FIG. 3C shows a maximum intensity graph MAX-GF including the first peak P1 and the second peak P2.
  • an optical transmission system 1 which is an embodiment of the optical transmission system of the present invention transmits an RF signal by frequency division multiplexing.
  • the RF signal is not particularly limited as long as it is an electromagnetic wave having a frequency band used for wireless communication, and examples thereof include radio waves of television broadcasting, preferably BS signals used in BS broadcasting and CS. Examples thereof include signals used in broadcasting, CA-TV signals used in cable television broadcasting, and terrestrial signals used in digital terrestrial broadcasting. A plurality of frequency bands can be appropriately combined.
  • the frequency division multiplexing system is a system in which modulation is performed at a specific frequency in an RF signal, these are multiplexed in parallel on the frequency axis, and a plurality of channels are transmitted by one optical fiber 3 (described later). ..
  • FM frequency modulation: Frequency
  • QAM Quadrature Amplitude Modulation
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSK Phase Shift Keying Modulation
  • a method such as Phase Shift Keying may be used.
  • the optical transmission system 1 includes a TOSA 2 as an example of an electro-optical conversion device, an optical fiber 3 as an example of an optical transmission line, and a ROSA 4 as an example of an optical-electrical conversion device.
  • the TOSA2 is an optical transmission subassembly (Transmitter Optical SubAssembly).
  • the TOSA 2 is provided at the upstream end of the optical transmission system 1 in the light transmission direction.
  • the TOSA 2 is a device that receives an RF signal, converts the RF signal into an optical signal, and transmits the optical signal.
  • the TOSA 2 includes a stem 11, a submount 12, a surface emitting laser diode 13 as an example of a light source, a cap 14, and a receptacle 15. Note that the stem 11, the submount 12, the cap 14, and the receptacle 15 may be those equipped in a known TOSA.
  • the pin 22 has a substantially rod shape extending along the thickness direction of the base 21, and penetrates the through hole 37.
  • the material of the pin 22 may be the same as that of the base 21.
  • a wire 32 described below is connected to one end of the pin 22.
  • the RF signal primary receiving device 56 is connected to the other end of the pin 22.
  • the insulating filler 38 is filled in the through hole 37 so as to cover the intermediate portion in the longitudinal direction of the pin 22 inserted into the through hole 37.
  • the submount 12 is arranged on one surface of the base 21 of the stem 11. Further, the submount 12 is arranged inside the one end of the pin 22 in the surface direction.
  • the submount 12 has a substantially sheet (plate) shape along one surface of the base 21.
  • the surface emitting laser diode 13 is arranged on one surface of the submount 12.
  • the surface emitting laser diode 13 has a substantially rectangular parallelepiped shape, has one surface and the other surface in the thickness direction, the other surface faces the submount 12, and one surface faces one side in the thickness direction. ..
  • the surface emitting laser diode 13 has a terminal (not shown) and a light emitting port 26 on one surface.
  • a light source having a high SM similarity (specifically, 0.85 or more) is selected, whereby mode competition noise (described later) can be reduced, and a higher-order mode can be achieved. It is possible to reduce noise originating from itself (described later).
  • the terminal (not shown) is wire-bonded to one end of the pin 22 via the wire 32.
  • the output port 26 is spaced inward in the plane direction from the terminal.
  • the emission port 26 faces one side in the thickness direction of the surface emitting laser diode 13, and has a substantially circular shape in plan view.
  • the beam diameter (FWHM) of the surface-emission laser diode 13 emitted from the light emission port 26 is appropriately adjusted according to the output of the surface-emission laser diode 13 described below, but is preferably 3 ⁇ m or more, preferably Is 5 ⁇ m or more, and for example, 20 ⁇ m or less.
  • the beam diameter (FWHM) of the surface emitting laser diode 13 is obtained by measuring a near field image (Near Field Pattern: NFP).
  • the surface emitting laser diode 13 includes, for example, an active layer (a resonator layer including a light emitting layer) and a distributed Bragg reflection (DBR) layer.
  • an active layer a resonator layer including a light emitting layer
  • DBR distributed Bragg reflection
  • the thickness, size (dimension in the surface direction), refractive index, etc. of the active layer and the DBR layer are appropriately adjusted according to the ratio described later in this embodiment.
  • This surface emitting laser diode 13 is configured to emit light with an output of 0.8 mW or more. On the other hand, if the surface emitting laser diode 13 is configured to be capable of emitting light with an output of less than 0.8 mW, it is impossible to secure a long transmission range of the optical transmission system 1.
  • the surface emitting laser diode 13 is configured to emit light with an output of 1.0 mW or more, preferably 1.5 mW or more, more preferably 2.0 mW or more, and further preferably 2.5 mW or more. ..
  • the surface emitting laser diode 13 is configured to be capable of emitting light with an output of 5 mW or less.
  • the wavelength band of the optical signal emitted from the surface emitting laser diode 13 is not particularly limited and is, for example, 1100 nm or less, or 600 nm or more.
  • the wavelength band of the optical signal emitted from the surface-emitting laser diode 13 is 1100 nm or less, the noise index described later tends to be high, but in this embodiment, the noise index can be suppressed. Even if the optical fiber 3 is a plastic optical fiber (POF), a long transmission distance can be secured.
  • PPF plastic optical fiber
  • the mode of the optical signal emitted from the surface emitting laser diode 13 may be either a multi-mode or a single mode, and from the viewpoint of obtaining a high output, and thus a long transmissible distance, preferably a multi-mode. There are modes.
  • the bottom wall 6 is arranged apart from the surface emitting laser diode 13 and the wire 32. Specifically, the bottom wall 6 has a substantially disc shape, and faces the emission port 26 of the surface emitting laser diode 13 on the downstream side in the emission direction of light. Examples of the material of the bottom wall 6 include transparent materials such as glass such as quartz glass and synthetic glass. It is desirable that the bottom wall 6 has an antireflection coating on both sides in the thickness direction or on one side.
  • the side wall 7 has a substantially cylindrical shape extending from the peripheral edge of the bottom wall 6 toward the base 21.
  • the free end surface of the side wall 7 contacts one surface of the base 21.
  • Examples of the material of the side wall 7 include metals such as aluminum and stainless steel.
  • the receptacle 15 is made of, for example, a transparent material, and integrally includes a lens 27, an outer wall 28, and an optical fiber housing wall 29.
  • the outer wall 28 has a substantially cylindrical shape extending from the peripheral edge of the lens 27 toward the other side in the thickness direction of the lens 27.
  • the inner side surface of the outer wall 28 is adhered to the outer side surface of the side wall 7 of the cap 14 via an adhesive (UV curable adhesive or the like) 5.
  • the RF signal input to the stem 11 is input to the surface emitting laser diode 13 via the wire 32. Then, the surface emitting laser diode 13 converts the RF signal into an optical signal. The optical signal is emitted (emitted) from the emission port 26 of the surface emitting laser diode 13, passes through the bottom wall 6 of the cap 14 and the lens 27, and is transmitted (input) to the optical fiber 3.
  • the optical fiber 3 transmits the optical signal transmitted from the TOSA 2.
  • the optical fiber 3 is made of a transparent material, and includes a core 35 and a clad 36 arranged on the peripheral surface (the outer surface in the direction orthogonal to the light transmission direction).
  • the core 35 has, for example, a substantially columnar shape.
  • the clad 36 has a substantially cylindrical shape that shares the central axis with the core 35.
  • the inner diameter of the core 35 is, for example, 1 ⁇ m or more and 500 ⁇ m or less. Both end faces of the optical fiber 3 in the light transmission direction are exposed.
  • a first ferrule 33 and a second ferrule 53 (described later) are arranged on the peripheral surfaces of the cladding 36 at both ends in the transmission direction.
  • the length of the optical fiber 3 in the transmission direction is not particularly limited and is appropriately adjusted according to the transmissible distance, and for example, 1 m or more, preferably 5 m or more, more preferably, It is 10 m or more, and for example, 300 m or less.
  • the second ferrule 53 has the same configuration as the first ferrule 33.
  • optical fiber 3 for example, a plastic optical fiber (POF), a glass optical fiber, etc. may be mentioned.
  • a GI (graded index) type POF having a refractive index distribution is suitable.
  • ROSA4 is an optical receiver subassembly (Receiver Optical SubAssembly).
  • the ROSA 4 is provided at the downstream end of the optical transmission system 1 in the light transmission direction.
  • the ROSA 4 converts the optical signal transmitted from the optical fiber 3 into an RF signal and transmits it.
  • a well-known thing is mentioned as ROSA4.
  • the ROSA 4 includes a second stem 41, a second submount 42, a photodiode (PD) 43, a second cap 44, and a second receptacle 45, and their arrangements are as described above.
  • the TOSA 2 stem 11, the submount 12, the surface emitting laser diode 13, the cap 14, the receptacle 15, and the optical fiber 3 are substantially symmetrical.
  • the second cap 44 and the second receptacle 45 have the same structure as the cap 14 and the receptacle 15 of the TOSA 2.
  • the photodiode 43 is an element that converts an optical signal transmitted from the optical fiber 3 into an RF signal.
  • the second submount 42 and the second stem 41 output the RF signal converted by the photodiode 43 to the RF signal secondary receiving device 57 such as a television broadcast receiving device (virtual line).
  • the RF signal secondary receiving device 57 can include an amplifier 30 for amplifying the RF signal output from the ROSA 4.
  • the amplifier 30 amplifies the intensity of all signals (carrier waves) including the frequency where the modulation is performed.
  • the noise index obtained by the measurement method including the following first to sixth steps is 10.0 dB ⁇ V or less.
  • the constant current source 70 is connected to the TOSA 2 on the upstream side in the transmission direction, and the frequency analyzer (spectrum analyzer) 61 is connected to the ROSA 4 on the downstream side in the transmission direction.
  • Step 6 The frequency analyzer 61 obtains a value obtained by subtracting the average value AVE from the maximum intensity MAX-I in the graph GF as a noise index (unit: dB ⁇ V).
  • the above 1st to 6th steps can be carried out sequentially. Further, the above-mentioned first to sixth steps can be carried out by the arithmetic device incorporated in the frequency analyzer 61.
  • the constant current source 70 is electrically connected to the other end of the pin 22.
  • the frequency analyzer 61 is electrically connected to the ROSA 4 via the RF signal secondary receiving device 57.
  • the frequency analyzer 61 is a device that analyzes an electric signal having a wide range of frequencies to know the frequency and its strength. A commercially available product can be used as the frequency analyzer 61.
  • the “average number of acquisitions” in the frequency analyzer 61 is set to 3000 times. Then, the baseline BL which is the average waveform is set to be drawn based on the calculation.
  • baseline BL acquired in the second step is a component that does not substantially include noise in the frequency range of 10 MHz to 3.5 GHz, unlike the maximum intensity graph MAX-GF described below.
  • the maximum intensity graph MAX-GF contains a predetermined peak P.
  • the peak P is generated due to the mixing of an external signal (eg, PHS signal, mobile phone signal, WiFi signal, etc.) into TOSA2.
  • an external signal eg, PHS signal, mobile phone signal, WiFi signal, etc.
  • this peak P is unnecessary in the optical transmission system 1, but it is a peak that inevitably appears in the configuration of the optical transmission system 1.
  • the intensity of the maximum intensity graph MAX-GF is higher than the intensity of the baseline BL at each frequency.
  • the maximum intensity graph MAX-GF is a waveform including the peak P and the baseline BL is a waveform similar to the maximum intensity graph MAX-GF except in the region of the peak P
  • FIG. 2A if the maximum intensity graph MAX-GF is a waveform including the peak P and the baseline BL is a waveform similar to the maximum intensity graph MAX-GF except in the region of the peak P, then FIG. As shown in, the graph GF has a peak P3 corresponding to the peak P of the maximum intensity graph MAX-GF, and the region other than the peak P3 has a waveform of a flat line FL substantially parallel to the frequency axis.
  • the graph GF is drawn by the arithmetic device incorporated in the frequency analyzer 61.
  • the “average number of acquisitions” in the frequency analyzer 61 is set to 0, and the waveform
  • the acquisition setting is set to “Max.hold” (maximum hold), and the maximum intensity graph MAX-GF is drawn based on the calculation.
  • the average value AVE of the intensities for each specific frequency is calculated by dividing the graph GF into 1000 in the frequency range of 10 MHz to 3.5 GHz.
  • the specific frequency is obtained by dividing the frequency range of 10 MHz to 3.5 GHz by 1000 in a common logarithmic plot, and the number is 1001.
  • the specific frequency on the lowest frequency side is 10 MHz
  • the specific frequency on the highest frequency side is 3.5 GHz
  • the number of specific frequencies between them is 999.
  • the interval (measurement pitch) between adjacent specific frequencies is a value obtained by dividing a value obtained by subtracting 10 MHz from 3.5 GHz by 1000 in the common logarithm.
  • a method of setting the beam diameter (FWHM) of the surface emitting laser diode 13 in the above range for example, the surface emitting laser diode 13
  • the method of changing the beam intensity distribution (SM similarity) in, for example, the method of changing the thickness, the size (dimension in the surface direction), the refractive index, etc. of the active layer and the DBR layer in the surface emitting laser diode 13 can be mentioned. ..
  • the TOSA2 includes the surface emitting laser diode 13 configured to emit light with an output of 0.8 mW or more, and the noise index described above is 10.0 dB ⁇ V or less. It is possible to suppress communication errors while ensuring a long transmission range.
  • the optical transmission system 1 exhibits the effect of the present invention is evaluated by the noise index, but, for example, the (light source) beam diameter (FWHM) of the surface-emitting laser diode 13 or the SM similarity. Depending on the degree, it is possible to evaluate whether or not the optical transmission system 1 has the effect of the present invention.
  • the noise index but, for example, the (light source) beam diameter (FWHM) of the surface-emitting laser diode 13 or the SM similarity.
  • the constant current source 70 is connected to the surface emitting laser diode 13, and the light receiving portion 81 of the near-field image measuring device 80 is located at a position where the light emitted from the surface emitting laser diode 13 is most incident on the light receiving portion.
  • the near-field image measuring device 80 has a substantially box shape, and includes a light receiving portion 81 on the lower surface.
  • Step 10 Calculate the average value AV2 of the intensities within the second circle C2 with a diameter of 1 ⁇ m centered on the origin (0, 0) in the near-field image.
  • Eleventh step The SM similarity is calculated by dividing the average value AV2 calculated in the tenth step by the average value AV1 calculated in the ninth step.
  • the SM similarity is a value obtained by dividing the average strength value AV2 in the second circle C2 by the average strength value AV1 in the first circle C1.
  • the optical transmission system 1 can suppress a communication error while ensuring a long transmission distance.
  • the SM similarity is as high as 0.85 or more, the influence of the basic mode can be strengthened. In other words, since the SM similarity is as high as 0.85 or more, it is possible to weaken the influence of higher order modes. Therefore, it is possible to reduce mode conflict noise that conflicts between the basic mode and the higher-order modes.
  • the SM similarity is as high as 0.85 or higher, it is possible to reduce the noise derived from the higher-order modes themselves.
  • the beam diameter is preferably 8.0 ⁇ m or more, more preferably 8.25 ⁇ m or more, further preferably 8.5 ⁇ m or more, particularly preferably 9.0 ⁇ m or more, most preferably 12.25 ⁇ m or more, Furthermore, 13.0 ⁇ m or more is suitable.
  • the beam diameter is, for example, 1000 ⁇ m or less.
  • Example 10 has an SM similarity of 0.95, which is within the scope of the present invention.
  • the SM similarity of Comparative Example 4 is 0.75, which is outside the range of the present invention.
  • the SM similarity is preferably 0.90 or more, more preferably 0.93 or more, further preferably 1.0 or more, and particularly preferably 1.1 or more.
  • the SM similarity is 10 or less.
  • the surface emitting laser diode 13 is given as an example of the light source, but the light source is not particularly limited as long as it is a light source capable of reducing the above-described noise index including noise.
  • another light source specifically, a side-emission type laser diode can be mentioned.
  • a surface emitting laser diode 13 is used as an example of the light source.
  • the surface emitting laser diode 13 can emit a high-power optical signal.
  • the noise index tends to increase.
  • the method described above for example, the beam diameter of the surface emitting laser diode 13 (described later) is used).
  • the noise index can be suppressed by a method such as setting the above range).
  • the RF signal input to the stem 11 is input to the surface emitting laser diode 13 via the wire 32.
  • a part of the RF signal may be input to the surface emitting laser diode 13 via the submount 12.
  • the FPC 8 has a substantially plate shape having one surface and the other surface in the thickness direction facing each other.
  • a terminal 9 is provided on one surface of the FPC 8. The terminal 9 is connected to the RF signal primary receiving device 56 via the wiring 34.
  • the surface emitting laser diode 13 is mounted on the one surface of the FPC 8 at a distance from the terminal 9 in the surface direction.
  • the emission port 26 of the surface emitting laser diode 13 faces one end surface of the optical fiber 3.
  • the noise index, FWHM and SM similarity measured with the configuration of this modification is substantially the same as those measured above.
  • the present invention will be described more specifically by showing Examples and Comparative Examples below.
  • the present invention is not limited to the examples and comparative examples.
  • specific numerical values such as a blending ratio (ratio), physical property values, and parameters used in the following description are described in the above-mentioned "Description of Embodiments", and a corresponding blending ratio (ratio ), physical property values, parameters, etc., can be replaced by the upper limit (a numerical value defined as “below” or “less than”) or the lower limit (a numerical value defined as “greater than” or “exceeded”).
  • Example 1 and Comparative Example 1 (Fabrication of Optical Transmission System and Measurement of Noise Index Corresponding to One Embodiment of FIG. 1) As shown in FIG. 1, an optical transmission system 1 including a TOSA 2, an optical fiber 3 and a ROSA 4 was prepared.
  • Table 1 shows the emission diameter, wavelength band, specifications, light output mode, and output of the surface-emitting laser diode 13 in TOSA2.
  • the optical fiber 3 is a GI type glass optical fiber.
  • the inner diameter of the core 36 is 50 ⁇ m.
  • TO-56 manufactured by Optron Science was used as ROSA4.
  • constant current source 70 was connected to the TOSA 2 in the first step. Further, a signal analyzer N9000A manufactured by Keysight as the frequency analyzer 61 was connected to the ROSA 4 via the RF signal secondary receiving device 57.
  • the output was 0.8 mW or more and the noise index was 10.0 dB ⁇ V or less.
  • the output was less than 0.8 mW or the noise index was more than 10.0 dB ⁇ V.
  • Output was 0.8 mW or more and FWHM was 7.8 ⁇ m or more. Alternatively, the output was 0.8 mW or higher and the SM similarity was 0.85 or higher.
  • Output was 0.8 mW or more, FWHM was less than 7.8 ⁇ m, and SM similarity was less than 0.85.
  • Examples 2-10 and Comparative Examples 2-6 Fabrication of optical transmission system corresponding to modified example of FIG. 6 and measurement of noise index
  • the optical transmission distance and the communication error are calculated according to the following criteria in the same manner as in the first embodiment. evaluated. The results are shown in Table 2.
  • the output was 0.8 mW or more and the noise index was 10.0 dB ⁇ V or less.
  • the output was less than 0.8 mW or the noise index was more than 10.0 dB ⁇ V.
  • a near-field image measuring device 80 was placed instead of the optical fiber 3, the FWHM and SM similarity were calculated, and the optical transmission distance and communication error were evaluated according to the following criteria.
  • Output was 0.8 mW or more and FWHM was 7.8 ⁇ m or more. Alternatively, the output was 0.8 mW or higher and the SM similarity was 0.85 or higher.
  • the output was less than 0.8 mW. Moreover, although the output was 0.8 mW or more, the FWHM was less than 7.8 ⁇ m, and the SM similarity was less than 0.85.
  • Table 2 shows the types of the surface emitting laser diode 13 and the evaluation results.
  • 7 shows the relationship between the beam diameter (FWHM) and SM similarity in Examples 2 to 10 and Comparative Examples 3 to 6.
  • the hatched area in FIG. 7 is within the scope of the invention of claim 2 in which the beam diameter is 7.8 ⁇ m or more, or the SM (single mode) similarity is 0.85 or more.
  • the optical transmission system is included in the electro-optical conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

【解決手段】光伝送システム1は、RF信号を周波数分割多重方式で伝送する。光伝送システム1は、TOSA2と、光ファイバ3と、ROSA4とを備える。TOSA2は、0.8mW以上の出力で発光可能に構成される面発光型レーザーダイオード13を含む。面発光型レーザーダイオード13を備える光伝送システム1では、所定の工程を含む測定方法により得られるノイズ指標が、10.0dBμV以下である。

Description

光伝送システムおよび電気光変換デバイス
 本発明は、光伝送システムおよび電気光変換デバイスに関する。
 テレビジョン放送の無線電波などのTV-RF信号を光信号へ変換し、光ファイバでこれを伝送し、光信号をTV-RF信号に変換する光伝送システムが知られている(例えば、下記特許文献1参照。)。
 特許文献1では、光伝送システムが、RF信号を光信号へ変換する電気光変換装置を備えている。
特開2014-53879号公報
 しかるに、光伝送システムにおける長い伝送可能距離を確保したい要求がある。
 そこで、特許文献1において、上記要求を満足すべく、電気光変換装置の発光出力を高くすることが試案される。
 一方で、電気光変換装置の発光出力を高くすれば、電気光変換装置の発光出力のフロアノイズが大きくなり、そのため、通信エラーが増大するという不具合がある。
 本発明は、伝送可能距離を長く確保できながら、通信エラーを抑制することのできる光伝送システムおよび電気光変換デバイスを提供する。
 本発明(1)は、RF信号を周波数分割多重方式で伝送する光伝送システムであり、RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備え、前記電気光変換デバイスは、0.8mW以上の出力で発光可能な光源を含み、下記の第1工程~第6工程を含む測定方法により得られるノイズ指標が、10.0dBμV以下である、光伝送システムを含む。
 第1工程:定電流源を前記電気光変換デバイスにその伝送方向上流側において接続し、周波数分析機を前記光電気変換デバイスにその伝送方向下流側において接続する。
 第2工程:前記定電流源から前記電気光変換デバイスに定電流を入力すると同時に、前記光電気変換デバイスから入力される電気信号を前記周波数分析機により分析し、前記電気信号のうち10MHz~3.5GHzの周波数領域において、前記定電流源による電気信号の入力開始から60秒経過時から、0.02秒間毎に、横軸が周波数、縦軸が強度である波形を、前記周波数分析機によって3000回取得し、前記3000回の平均波形であるベースラインを取得する。
 第3工程:前記定電流源による電気信号の入力開始から、0.02秒間毎に、波形を、前記周波数分析機によって3000回取得し、前記3000回の波形における各周波数における強度の最大値として描画される最大強度グラフを取得する。
 第4工程:前記周波数分析機により、前記最大強度グラフの強度から前記ベースラインの強度を差し引いたグラフを描画する。
 第5工程:前記周波数分析機により、前記グラフを前記周波数領域において1000分割した特定周波数毎の強度の平均値を算出する。
 第6工程:前記周波数分析機により、前記グラフにおける最大の強度から前記平均値を差し引いた値を前記ノイズ指標(単位:dBμV)として得る。
 本発明(2)は、RF信号を周波数分割多重方式で伝送する光伝送システムであり、RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備え、前記電気光変換デバイスは、0.8mW以上の出力で発光可能な光源を含み、前記光源の近視野像測定によって取得されるビーム径(FWHM:半値全幅)が7.8μm以上、または、下記の第7工程~第11工程を含む測定方法により得られる前記光源のSM(シングルモード)類似度が0.85以上である、光伝送システムを含む。
 第7工程:定電流源を前記光源に接続し、近視野像測定装置の受光部を前記光源から出射される光が最も多く前記受光部に入る位置に配置する。
 第8工程:前記定電流源から前記光源に定電流を入力し、前記定電流源による電気信号の入力開始から60秒~180秒経過時に近視野像測定装置で測定し、前記光源のビーム径(FWHM)と近視野像(強度分布)とを取得する。
 第9工程:前記近視野像の強度分布の重心を原点(0、0)とし、前記近視野像において前記原点を中心に直径が前記ビーム径(FWHM)となる円内の強度の平均値を算出する。
 第10工程:前記近視野像において前記原点(0、0)を中心に直径1μmの円内の強度の平均値を算出する。
 第11工程:前記第10工程で算出した前記平均値を前記第9工程で算出した前記平均値で割ることにより、前記SM類似度を算出する。
 本発明(3)は、前記光源から発光される光信号の波長帯域が、1100nm以下である、(1)または(2)に記載の光伝送システムを含む。
 本発明(4)は、前記光源が、面発光型レーザーダイオードである、(1)~(3)のいずれか一項に記載の光伝送システムを含む。
 本発明(5)は、前記光源が、50Mbps以上、20Gbps以下の仕様である、(1)~(4)のいずれか一項に記載の光伝送システムを含む。
 本発明(6)は、前記RF信号が、BS信号、CS信号、CA-TV信号、および/または、地上波信号である、(1)~(5)のいずれか一項に記載の光伝送システムを含む。
 本発明(7)は、RF信号を周波数分割多重方式で伝送する光伝送システムであり、RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備える前記光伝送システムにおける前記電気光変換デバイスであり、RF信号を光信号に変換可能であり、前記光源は、0.8mW以上の出力で発光可能な光源を含み、下記の第1工程~第6工程を含む測定方法により得られるノイズ指標が、10.0dBμV以下である、電気光変換デバイスを含む。
 第1工程:定電流源を前記電気光変換デバイスにその伝送方向上流側において接続し、周波数分析機を前記光電気変換デバイスにその伝送方向下流側において接続する。
 第2工程:前記定電流源から前記電気光変換デバイスに定電流を入力すると同時に、前記光電気変換デバイスから入力される電気信号を前記周波数分析機により分析し、前記電気信号のうち10MHz~3.5GHzの周波数領域において、前記定電流源による電気信号の入力開始から60秒経過時から、0.02秒間毎に、横軸が周波数、縦軸が強度である波形を、前記周波数分析機によって3000回取得し、前記3000回の平均波形であるベースラインを取得する。
 第3工程:前記定電流源による電気信号の入力開始から、0.02秒間毎に、波形を、前記周波数分析機によって3000回取得し、前記3000回の波形における各周波数における強度の最大値として描画される最大強度グラフを取得する。
 第4工程:前記周波数分析機により、前記最大強度グラフの強度から前記ベースラインの強度を差し引いたグラフを描画する。
 第5工程:前記周波数分析機により、前記グラフを前記周波数領域において1000分割した特定周波数毎の強度の平均値を算出する。
 第6工程:前記周波数分析機により、前記グラフにおける最大の強度から前記平均値を差し引いた値を前記ノイズ指標(単位:dBμV)として得る。
 本発明(8)は、RF信号を周波数分割多重方式で伝送する光伝送システムであり、RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備える前記光伝送システムにおける前記電気光変換デバイスであり、RF信号を光信号に変換可能であり、0.8mW以上の出力で発光可能な光源を含み、前記光源の近視野像測定によって取得されるビーム径(FWHM:半値全幅)が7.8μm以上、または、下記の第7工程~第11工程を含む測定方法により得られる前記光源のSM(シングルモード)類似度が0.85以上である、電気光変換デバイスを含む。
 第7工程:定電流源を前記光源に接続し、近視野像測定装置の受光部を前記光源から出射される光が最も多く前記受光部に入る位置に配置する。
 第8工程:前記定電流源から前記光源に定電流を入力し、前記定電流源による電気信号の入力開始から60秒~180秒経過時に近視野像測定装置で測定し、前記光源のビーム径(FWHM)と近視野像(強度分布)とを取得する。
 第9工程:前記近視野像の強度分布の重心を原点(0、0)とし、前記近視野像において前記原点を中心に直径が前記ビーム径(FWHM)となる円内の強度の平均値を算出する。
 第10工程:前記近視野像において前記原点(0、0)を中心に直径1μmの円内の強度の平均値を算出する。
 第11工程:前記第10工程で算出した前記平均値を前記第9工程で算出した前記平均値で割ることにより、前記SM類似度を算出する。
 本発明(9)は、前記光源から発光される光信号の波長帯域が、1100nm以下である、(7)または(8)に記載の電気光変換デバイスを含む。
 本発明(10)は、前記光源が、面発光型レーザーダイオードである、(7)~(9)のいずれか一項に記載の電気光変換デバイスを含む。
 本発明の電気光変換デバイスを備える本発明の光伝送システムによれば、電気光変換デバイスが、0.8mW以上の出力で発光可能な光源を含み、ノイズ指標が、10.0dBμV以下であるので、伝送可能距離を長く確保できながら、通信エラーを抑制することができる。
 本発明の電気光変換デバイスを備える本発明の光伝送システムによれば、電気光変換デバイスが、0.8mW以上の出力で発光可能な光源を含み、FWHM7.8μm以上、または、光源のSM類似度が0.85以上であるので、伝送可能距離を長く確保できながら、通信エラーを抑制することができる。
図1は、本発明の光伝送システムの一実施形態の概略図を示す。 図2A~図2Bは、ノイズ指標を測定方法により得られるグラフを示し、図2Aが、ベースラインBLおよび最大強度グラフMAX-GF、図2Bが、グラフGF、平均値AVEおよびノイズ指標を示す。 図3A~図3Cは、最大強度グラフMAX-GFを説明する図であり、図3Aが、第1ピークP1を含む第1回目の波形WF1、図3Bが、第2ピークP2を含む第2回目の波形WF2、図3Cが、第1ピークP1および第2ピークP2を含む最大強度グラフMAX-GFを示す。 図4は、面発光型レーザーダイオードのFWHMおよびSM類似度の測定に用いられる構成の概略図を示す。 図5は、FWHMおよびSM類似度の測定で取得される近視野像を示す。 図6は、図1に示す光伝送システムの変形例の概略図を示す。 図7は、実施例2~10および比較例3~6におけるFWHMおよびSM類似度の関係をプロットした図である。
 本発明の光伝送システムの一実施形態を、図1を参照して説明する。
 図1に示すように、本発明の光伝送システムの一実施形態である光伝送システム1は、RF信号を周波数分割多重方式で伝送する。
 RF信号は、無線通信に使用される周波数帯域を有する電磁波であれば、特に限定されず、例えば、テレビジョン放送の無線電波などが挙げられ、好ましくは、BS放送で使用されるBS信号、CS放送で使用される信号、ケーブルテレビジョン放送で使用されるCA-TV信号、デジタル地上波放送で使用される地上波信号が挙げられる。周波数帯域は、複数を適宜組み合わせることができる。
 周波数分割多重方式は、RF信号における特定周波数において変調を実施した上で、これらを周波数軸上で並列に多重して、複数のチャンネルを1本の光ファイバ3(後述)で伝送する方式である。
 各周波数における変調方式としては、例えば、FM(周波数変調:Frequency
 Modulation)、QAM(直交位相振幅変調:Quadrature Amplitude Modultaion )、OFDM(直交周波数分割多重方式:Othogonal Frequency Division Multiplexing)、PSK(位相シフトキーイング変調:Phase Shift Keying)、APSK(振幅位相シフトキーイング変調:Amplitude Phase Shift Keying)などの方式が挙げられる。
 この光伝送システム1は、電気光変換デバイスの一例としてのTOSA2と、光伝送路の一例としての光ファイバ3と、光電気変換デバイスの一例としてのROSA4とを備える。
 TOSA2は、光学送信サブアセンブリ(Transmitter Optical SubAssebmly)である。TOSA2は、光伝送システム1における光の伝送方向上流側端部に設けられている。TOSA2は、RF信号を受信し、これを光信号に変換して伝送するデバイスである。TOSA2は、ステム11と、サブマウント12と、光源の一例としての面発光型レーザーダイオード13と、キャップ14と、レセプタクル15とを備える。なお、ステム11と、サブマウント12と、キャップ14と、レセプタクル15とは、公知のTOSAに装備されるものが挙げられる。
 ステム11には、RF信号アンテナ(具体的には、テレビジョン放送アンテナ)などのRF信号1次受信機器56(仮想線)からRF信号が入力される。ステム11は、土台21と、ピン22と、絶縁性充填材38とを一体的に有する。
 土台21は、厚み方向に間隔を隔てて対向配置される一方面および他方面を有しており、具体的には、略円盤形状を有する。土台21の材料としては、例えば、金属などの導体が挙げられる。土台21は、厚み方向に貫通する貫通孔37がピン22に対応して設けられる。
 ピン22は、土台21の厚み方向に沿って延びる略棒形状を有しており、貫通孔37を貫通している。ピン22の材料としては、土台21と同一の材料が挙げられる。ピン22の一端部には、後述するワイヤ32が接続される。ピン22の他端部には、RF信号1次受信機器56が接続される。
 絶縁性充填材38は、貫通孔37に挿入されるピン22の長手方向中間部を被覆するように、貫通孔37に充填されている。
 サブマウント12は、ステム11の土台21の一方面に配置されている。また、サブマウント12は、ピン22の一端部の面方向内側に配置されている。サブマウント12は、土台21の一方面に沿う略シート(板)形状を有する。
 面発光型レーザーダイオード13は、サブマウント12の一方面に配置されている。面発光型レーザーダイオード13は、略直方体形状を有しており、厚み方向一方面および他方面を有し、他方面が、サブマウント12に面し、一方面が厚み方向一方側に向いている。面発光型レーザーダイオード13は、一方面において、端子(図示せず)、および、光の出射口26を有する。
 面発光型レーザーダイオード13は、SM類似度(後述)が高く(具体的には、0.85以上)なる光源が選択され、これによって、モード競合ノイズ(後述)を低減できるとともに、高次モード(後述)自体に由来するノイズを低減できる。
 図示しない端子は、ピン22の一端部と、ワイヤ32を介して、ワイヤボンディングされる。
 出射口26は、端子と面方向内側に間隔が隔てられている。出射口26は、面発光型レーザーダイオード13の厚み方向一方側を向いており、平面視略円形状を有する。
 光の出射口26から出射される面発光型レーザーダイオード13のビーム径(FWHM)は、次に説明する面発光型レーザーダイオード13の出力に応じて適宜調整されるが、例えば、3μm以上、好ましくは、5μm以上であり、また、例えば、20μm以下である。面発光型レーザーダイオード13のビーム径(FWHM)は、近視野像(NearField Pattern:NFP)測定によって求められる。
 光の出射口26から出射されるレーザーダイオード13のビーム径(FWHM)が上記した下限以上であれば、後述する比を所望範囲に調整することができる。
 また、この面発光型レーザーダイオード13は、例えば、活性層(発光層を含む共振器層)と、分布ブラッグ反射(DBR)層とを備える。活性層およびDBR層の、厚み、サイズ(面方向の寸法)、屈折率などは、この一実施形態における後述する比に対応して、適宜調整される。
 この面発光型レーザーダイオード13は、0.8mW以上の出力で発光可能に構成される。他方、面発光型レーザーダイオード13が0.8mW未満の出力で発光可能に構成されると、光伝送システム1の伝送可能距離を長く確保することができない。
 好ましくは、面発光型レーザーダイオード13は、1.0mW以上、好ましくは、1.5mW以上、より好ましくは、2.0mW以上、さらに好ましくは、2.5mW以上の出力で発光可能に構成される。なお、面発光型レーザーダイオード13は、5mW以下の出力で発光可能に構成される。
 また、この面発光型レーザーダイオード13は、例えば、50Mbps以上、好ましくは、77Mbps以上、また、例えば、20Gbps以下、好ましくは、10Gbps以下、より好ましくは、5Gbps以下の仕様に構成されている。面発光型レーザーダイオード13の仕様が上記した範囲内であれば、光伝送システム1の伝送可能距離を長く確保することができる。
 また、面発光型レーザーダイオード13から発光される光信号の波長帯域は、特に限定されず、例えば、1100nm以下、また、600nm以上である。
 面発光型レーザーダイオード13から発光される光信号の波長帯域が1100nm以下であれば、後述するノイズ指標が高くなる傾向にあるが、この一実施形態では、ノイズ指標を抑制することができる。また、光ファイバ3がプラスチック光ファイバ(POF)であっても、長い伝送可能距離を確保することができる。
 一方、面発光型レーザーダイオード13から発光される光信号の波長帯域が600nm以上であれば、光ファイバ3の種類によらず、長い伝送可能距離を確保することができる。
 また、面発光型レーザーダイオード13から発光される光信号のモードとしては、マルチモード、シングルモードのいずれであってもよく、高い出力、ひいては、長い伝送可能距離を得る観点から、好ましくは、マルチモードが挙げられる。
 キャップ14は、略有底円筒形状を有する。キャップ14は、具体的には、底壁6および側壁7を備える。
 底壁6は、面発光型レーザーダイオード13およびワイヤ32と間隔を隔てて配置されている。具体的には、底壁6は、略円盤形状を有しており、面発光型レーザーダイオード13の出射口26と、光の出射方向下流側において対向している。底壁6の材料としては、例えば、石英ガラス、合成ガラスなどのガラスなどの透明材料が挙げられる。底壁6の厚み方向両面、または、片面に反射防止コートを施していることが望ましい。
 側壁7は、底壁6の周端から土台21に向かって延びる略円筒形状を有する。側壁7の遊端面は、土台21の一方面に接触する。側壁7の材料としては、例えば、アルミニウム、ステンレスなどの金属が挙げられる。
 レセプタクル15は、例えば、透明材料からなっており、レンズ27と、外壁28と、光ファイバ収容壁29とを一体的に備える。
 レンズ27は、キャップ14の底壁6に対して面発光型レーザーダイオード13の反対側に、間隔を隔てて対向配置されている。レンズ27は、面方向中央に向かうに従って底壁6に近接するように湾曲する凸面、および、凸面に対向する平坦面を有する。レンズ27の平坦面は、凸面と厚み方向一方側に間隔が隔てられている。
 外壁28は、レンズ27の周端縁から、レンズ27の厚み方向他方側に向かって延びる略円筒形状を有する。なお、外壁28の内側面は、キャップ14の側壁7の外側面と、接着剤(UV硬化型接着剤など)5を介して、接着されている。
 光ファイバ収容壁29は、レンズ27の周端縁から、レンズ27の厚み方向一方側に向かって延びる略円筒形状を有する。光ファイバ収容壁29は、第1フェルール33(後述)を介して光ファイバの伝送方向上端部を収容(固定)する。
 TOSA2として、市販品、具体的には、TO-56またはTO-46(いずれもオプトロンサイエンス社製)のCanパッケージに面発光型レーザーダイオード13を装備したものを挙げることができる。
 TOSA2では、ステム11に入力されたRF信号が、ワイヤ32を介して面発光型レーザーダイオード13に入力される。そして、面発光型レーザーダイオード13においてRF信号が光信号に変換される。光信号は、面発光型レーザーダイオード13の出射口26から発光(出射)され、キャップ14の底壁6およびレンズ27を通過して、光ファイバ3に伝送(入力)される。
 光ファイバ3は、TOSA2から伝送された光信号を伝送する。光ファイバ3は、透明材料からなっており、コア35と、その周面(光の伝送方向に直交する方向における外表面)に配置されるクラッド36とを備える。コア35は、例えば、略円柱形状を有する。
クラッド36は、中心軸線をコア35と共有する略円筒形状を有する。コア35の内径は、例えば、1μm以上、500μm以下である。なお、光ファイバ3における光の伝送方向両端面は、露出されている。また、クラッド36の伝送方向両端部の周面には、第1フェルール33および第2フェルール53(後述)が配置されている。
 第1フェルール33は、略円筒形状をなし、光ファイバ収容壁29の内面と、クラッド36の伝送方向上流側端部の周面との間に介在する(挿入される)。光ファイバ3の光の伝送方向上流側端面(光の入射面)は、レンズ27の平坦面と対向配置されている。
 なお、光ファイバ3の伝送方向長さ(両端面間の光学距離)は、特に限定されず、伝送可能距離に応じて適宜調整され、例えば、1m以上、好ましくは、5m以上、より好ましくは、10m以上であり、また、例えば、300m以下である。
 第2フェルール53は、第1フェルール33と同一構成を有する。
 光ファイバ3としては、例えば、プラスチック光ファイバ(POF)、ガラス光ファイバなどが挙げられる。特に、屈折率分布を有するGI(グレーデッド・インデックス)型のPOFが好適である。
 ROSA4は、光学受信サブアセンブリ(Receiver Optical SubAssebmly)である。ROSA4は、光伝送システム1における光の伝送方向下流側端部に設けられている。ROSA4は、光ファイバ3から伝送された光信号をRF信号に変換し、これを伝送する。ROSA4としては、公知のものが挙げられる。例えば、ROSA4は、第2ステム41と、第2サブマウント42と、フォトダイオード(PD)43と、第2キャップ44と、第2レセプタクル45とを備えており、これらの配置は、それぞれ、上記したTOSA2のステム11と、サブマウント12と、面発光型レーザーダイオード13と、キャップ14と、レセプタクル15と、と光ファイバ3に対して略対称である。
 第2キャップ44および第2レセプタクル45は、TOSA2のキャップ14およびレセプタクル15と同一構成を有する。フォトダイオード43は、光ファイバ3から伝送された光信号をRF信号に変換する素子である。第2サブマウント42および第2ステム41は、フォトダイオード43で変換されたRF信号をテレビジョン放送受像機器(仮想線)などのRF信号2次受信機器57に出力する。
 RF信号2次受信機器57は、ROSA4から出力されるRF信号を増幅する増幅器30を内蔵することができる。なお、増幅器30は、変調が実施された周波数を含む全ての信号(搬送波)の強度を増幅する。
 この光伝送システム1では、TOSA2において、RF信号を光信号に変換して光ファイバ3に入力し、光ファイバ3で伝送された光信号がROSA4に入力され、ROSA4において、RF信号に変換する。
 次に、図2A~図3Cを参照して、ノイズ指標およびその測定方法を詳説する。なお、図2A~図3Cの各グラフでは、横軸が周波数、縦軸が強度を示すが、各グラフの高さなどは、本発明の一実施形態を容易に理解するために誇張して描画しており、実際の強度と異なる。
 この光伝送システム1では、下記の第1工程~第6工程を含む測定方法により得られるノイズ指標が、10.0dBμV以下である。
 第1工程:図1に示すように、定電流源70をTOSA2にその伝送方向上流側において接続し、周波数分析機(スペクトルアナライザ)61をROSA4にその伝送方向下流側において接続する。
 第2工程:定電流源70からTOSA2に定電流を入力すると同時に、ROSA4から入力される電気信号を周波数分析機61により分析する。具体的には、電気信号のうち10MHz~3.5GHzの周波数領域において、定電流源70による電気信号の入力開始から60秒経過時から、0.02秒間毎に、横軸が周波数、縦軸が強度である波形を、周波数分析機61によって3000回取得して、図2Aに示すように、10回の平均波形であるベースラインBLを取得する。
 第3工程:定電流源70による電気信号の入力開始から、0.02秒間毎に、波形を、周波数分析機61によって3000回取得し、3000回の波形における各周波数における強度の最大値として描画される最大強度グラフMAX-GFを取得する。
 第4工程:図2Bに示すように、周波数分析機61により、最大強度グラフMAX-GFの強度からベースラインBLの強度を差し引いたグラフGFを描画する。
 第5工程:周波数分析機61により、グラフGFを周波数領域において1000分割した特定周波数毎の強度の平均値AVEを算出する。
 第6工程:周波数分析機61により、グラフGFにおける最大の強度MAX-Iから平均値AVEを差し引いた値をノイズ指標(単位:dBμV)として得る。
 上記した第1工程~第6工程は、順次実施することができる。また、上記した第1工程~第6工程は、周波数分析機61に内蔵される演算デバイスで実施することができる。
 図1に示すように、第1工程では、定電流源70を、ピン22の他端部と、電気的に接続する。
 また、周波数分析機61を、RF信号2次受信機器57を介して、ROSA4と電気的に接続する。周波数分析機61は、広範囲の周波数からなる電気信号を分析して、周波数とその強度を知る装置である。周波数分析機61は、市販品を用いることができる。
 第2工程および第3工程において、定電流源70からTOSA2に入力する定電流の電流値は、一定であれば、特に限定されず、例えば、1mA以上、例えば、1A以下の範囲から、一定値が適宜選択される。
 第2工程における3000回分の波形およびベースラインBLの取得を、周波数分析機61に内蔵される演算デバイスで実施する場合には、例えば、周波数分析機61における「取得平均回数」を3000回に設定し、平均波形であるベースラインBLを演算に基づいて描画する設定にする。
 なお、第2工程で取得するベースラインBLは、次に説明する最大強度グラフMAX-GFと異なり、10MHz~3.5GHzの周波数領域においてノイズを実質的に含まない成分である。
 第3工程において、「3000回の波形における各周波数における強度の最大値」は、3000回の波形を全て記録し、各周波数における強度の最大値のみを反映した最大値グラフである。
 最大強度グラフMAX-GFが所定のピークPを含むことは、許容される。
 ピークPは、外部信号(例えば、PHS信号、携帯電話信号、WiFi信号など)がTOSA2に混入することに起因して生成される。
 このピークPは、本来、光伝送システム1において不要であるが、この光伝送システム1の構成上不可避的に現れるピークである。
 上記のピークPは、通常、電気信号の入力開始から、例えば、第2工程におけるベースラインBLの取得後、具体的には、60秒(=0.02秒×3000回分)後)に記録される。
 なお、最大強度グラフMAX-GFの強度は、各周波数において、ベースラインBLの強度よりも高い。
 図3Aに示すように、例えば、第1回目の波形WF1が、周波数f1において、第1ピークP1を含み、図3Bに示すように、第2回目の波形WF2が、周波数f1と異なる周波数f2において、第2ピークP2を含むが、第1ピークP1を含まない場合には、第1回目の波形WF1および第2回目の波形WF2はいずれも、演算デバイスに記録される。
そして、図3Cに示すように、最大強度グラフMAX-GFは、2つのピーク(第1ピークP1および第2ピークP2)を成分として含む。
 図2Bに示すように、第4工程で描画されるグラフGFは、周波数領域10MHz~3.5GHzの各周波数において、最大強度グラフMAX-GF(図2A参照)の強度からベースラインBL(図2A参照)の強度を差し引いたものである。なお、グラフGFの強度は、最大強度グラフMAX-GFの強度がベースラインBLの強度よりも高いことから、正である(0より高い)。
 図2Aに示すように、最大強度グラフMAX-GFがピークPを含む波形であり、ベースラインBLが、ピークPの領域以外において、最大強度グラフMAX-GFと類似する波形であれば、図2Bに示すように、グラフGFは、最大強度グラフMAX-GFのピークPに対応するピークP3を有し、ピークP3以外の領域は、周波数軸に略平行する平坦ラインFLの波形となる。第4工程では、グラフGFは、周波数分析機61に内蔵される演算デバイスにより描画される。
 第3工程における最大強度グラフMAX-GFの取得を周波数分析機61に内蔵される演算デバイスで実施する場合には、例えば、周波数分析機61における「取得平均回数」を0回に設定し、波形取得設定を「Max.hold」(最大保持)に設定して、最大強度グラフMAX-GFを演算に基づいて描画する設定にする。
 図2Bの縦軸(強度軸)上に示されるように、第5工程では、グラフGFを周波数領域10MHz~3.5GHzにおいて1000分割した特定周波数毎の強度の平均値AVEを算出する。特定周波数は、周波数領域10MHz~3.5GHzを常用対数プロットで1000分割したものであり、その数は、1001である。最も低周波数側の特定周波数が10MHzであり、最も高周波数側の特定周波数が3.5GHzであり、それらの間の特定周波数の数が999である。隣接する特定周波数の間隔(測定ピッチ)は、常用対数において、3.5GHzから10MHzを差し引いた値を1000で割った値である。
 第5工程では、特定周波数毎の強度を取得し、それらの平均値AVEを求める。図2Bに示すように、グラフGFが、ピークP3および平坦ラインFLを有すれば、平均値AVEは、ピークP3の強度および平坦ラインFLの強度の間に位置する。第5工程では、演算デバイスにより、平均値AVEが、例えば、単位:dBμVで、算出される。
 第6工程では、演算デバイスにより、ノイズ指標が算出される。
 そして、ノイズ指標を上記した10.0dBμV以下にするには、例えば、具体的には、面発光レーザーダイオード13のビーム径(FWHM)を上記した範囲に設定する方法、例えば、面発光レーザーダイオード13におけるビーム強度分布(SM類似度)を変更する方法、例えば面発光型レーザーダイオード13における活性層およびDBR層の、厚み、サイズ(面方向の寸法)、屈折率などを変更する方法などが挙げられる。
 好ましくは、ノイズ指標として、好ましくは、8以下、より好ましくは、5以下、さらに好ましくは、3以下であり、また、例えば、0超過である。
 そして、TOSA2を備える光伝送システム1では、TOSA2が、0.8mW以上の出力で発光可能に構成される面発光型レーザーダイオード13を含み、上記したノイズ指標が、10.0dBμV以下であるので、伝送可能距離を長く確保できながら、通信エラーを抑制することができる。
  変形例
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
 また、上記では、ノイズ指標によって、光伝送システム1が本発明の効果を奏するか否かを評価しているが、例えば、面発光型レーザーダイオード13の(光源)ビーム径(FWHM)またはSM類似度によって、光伝送システム1が本発明の効果を奏するか否かを評価することもできる。
 具体的には、面発光型レーザーダイオード13の近視野像測定によって取得されるビーム径(FWHM:半値全幅)が7.8μm以上、または、下記の第7工程~第11工程を含む測定方法により得られる面発光型レーザーダイオード13のSM(シングルモード)類似度が0.85以上である。
 第7工程:定電流源70を面発光型レーザーダイオード13に接続し、近視野像測定装置80の受光部81を面発光型レーザーダイオード13から出射される光が最も多く受光部に入る位置に配置する。近視野像測定装置80は、図4に示すように、略箱形状を有しており、下面において、受光部81を備える。
 第8工程:定電流源70から面発光型レーザーダイオード13に定電流を入力し、定電流源70による電気信号の入力開始から60秒~180秒経過時に近視野像測定装置で測定し、図5に示すように、面発光型レーザーダイオード13のビーム径(FWHM)と近視野像(強度分布)とを取得する。
 第9工程:近視野像の強度分布の重心CGを原点(0、0)とし、近視野像において原点(0、0)を中心に直径Dがビーム径(FWHM)となる第1円C1内の強度の平均値AV1を算出する。
 第10工程:近視野像において原点(0、0)を中心に直径1μmの第2円C2内の強度の平均値AV2を算出する。
 第11工程:第10工程で算出した平均値AV2を第9工程で算出した平均値AV1で割り、SM類似度を算出する。
 つまり、第2円C2内の強度の平均値AV2を、第1円C1内の強度の平均値AV1で割った値が、SM類似度である。
 面発光型レーザーダイオード13の近視野像測定によって取得されるビーム径が7.8μm以上、または、上記した測定方法により得られる面発光型レーザーダイオード13のSM類似度が0.85以上であるので、この光伝送システム1は、伝送可能距離を長く確保できながら、通信エラーを抑制することができる。
 また、SM類似度が0.85以上と高いので、基本モードの影響を強くできる。換言すれば、SM類似度が0.85以上と高いので、高次モードの影響を弱くできる。そのため、基本モードおよび高次モード間で競合するモード競合ノイズを低減できる。
 さらに、SM類似度が0.85以上と高いので、高次モード自体に由来するノイズを低減できる。
 なお、ビーム径は、好ましくは、8.0μm以上、より好ましくは、8.25μm以上、さらに好ましくは、8.5μm以上、とりわけ好ましくは、9.0μm以上、最も好ましくは、12.25μm以上、さらには、13.0μm以上が好適である。また、ビーム径は、例えば、1000μm以下である。
 ビーム径が上記した下限以上であれば、モード競合ノイズを低減できる。
 なお、上記したビーム径およびSM類似度は、相関関係にない場合がある。例えば、図7から分かるように、互いに近似するビーム径を有する実施例10および比較例4のうち、実施例10は、SM類似度が0.95で、本発明の範囲内である。一方、比較例4のSM類似度が、0.75で、本発明の範囲外である。
 また、SM類似度は、好ましくは、0.90以上、より好ましくは、0.93以上、さらに好ましくは、1.0以上、とりわけ好ましくは、1.1以上である。また、SM類似度は、10以下である。
 この変形例では、RF信号2次受信機器57が増幅器30を内蔵せずに、光伝送システム1を構成することができる。そのような光伝送システム1であれば、所定のピークを含む最大強度グラフMAX-GFの強度が減少するが、その分、同じ割合で、ベースラインBLの強度も減少する。そうすると、増幅器30の有無に拘わらず、結果として、上記したノイズ指標に変動がない。
 この変形例でも、面発光型レーザーダイオード13は、SM類似度が0.85以上と高くなる光源が選択される。これによって、モード競合ノイズを低減できるとともに、高次モード自体に由来するノイズを低減できる。
 一実施形態では、光源の一例として、面発光型レーザーダイオード13を挙げたが、上記したノイズを含むノイズ指標を低減できる光源であれば特に限定されない。例えば、他の光源、具体的には、側面発光型レーザーダイオードを挙げることもできる。光源の一例として、好ましくは、面発光型レーザーダイオード13が挙げられる。面発光型レーザーダイオード13であれば、高い出力の光信号を発射することができる。一方で、光源が面発光型レーザーダイオード13であれば、ノイズ指標が増大する傾向にあるが、この一実施形態では、上記した方法(例えば、面発光型レーザーダイオード13のビーム径(後述)を上記した範囲に設定する方法など)によって、ノイズ指標を抑制することができる。
 一実施形態では、TOSA2において、ステム11に入力されたRF信号は、ワイヤ32を介して面発光型レーザーダイオード13に入力されている。しかし、変形例では、RF信号は、その一部が、サブマウント12を介して面発光型レーザーダイオード13に入力されていてもよい。
 また、TOSA2は、面発光型レーザーダイオード13を備えれば、上記の構成に限定されない。例えば、図6に示すように、TOSA2において、面発光型レーザーダイオード13がFPC(フレキシブルプリント基板)8に実装されてもよい。つまり、このTOSA2は、FPC8と、面発光型レーザーダイオード13とを備える。
 FPC8は、互いに対向する厚み方向一方面および他方面を有する略板形状を有する。FPC8の一方面には、端子9が設けられる。端子9は、配線34を介して、RF信号1次受信機器56と接続される。
 面発光型レーザーダイオード13は、FPC8の一方面において、端子9と面方向に間隔を隔てて実装される。
 面発光型レーザーダイオード13の出射口26は、光ファイバ3の一端面に面する。
 また、FPC8を備えるTOSA2を用いるノイズ指標の測定方法において、第1工程では、定電流源70を配線34を介してFPC8に電気的に接続する。
 この変形例の構成で測定されるノイズ指標、FWHMおよびSM類似度は、上記で測定されるそれらと実質的に同一である。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1および比較例1
 (図1の一実施形態に対応する光伝送システムの作製およびノイズ指標の測定)
 図1に示すように、TOSA2と、光ファイバ3と、ROSA4とを備える光伝送システム1を準備した。
 TOSA2における面発光型レーザーダイオード13の出射径、波長帯域、仕様、光の出力モード、出力は、表1に記載の通りである。
 光ファイバ3は、GI型のガラス光ファイバである。コア36の内径は、50μmである。
 ROSA4として、TO-56(オプトロンサイエンス社製)を用いた。
 上記した第1工程~第6工程を含む測定方法により、ノイズ指標を得た。その結果を表1に示す。
 なお、第1工程において、定電流源70をTOSA2に接続した。また、周波数分析機61としてのkeysight社製のシグナル-アナライザN9000Aを、ROSA4には、RF信号2次受信機器57を介して、接続した。
  光伝送システムにおける光伝送距離および通信エラーの評価
 実施例1および比較例1のそれぞれの光伝送システムにおける光伝送距離および通信エラーを、下記の基準に従って、評価した。その結果を表1に示す。
 ○:出力が0.8mW以上、かつ、ノイズ指標が10.0dBμV以下であった。
 ×:出力が0.8mW未満、または、ノイズ指標が10.0dBμV超過であった。
 併せて、面発光型レーザーダイオード13に対して近視野像測定装置80を配置をした構成(図4の変形例に対応する構成)に変更して、FWHMおよびSM類似度を算出することにより、光伝送距離および通信エラーを評価した。
 ○:出力が0.8mW以上であって、FWHMが7.8μm以上であった。
または、出力が0.8mW以上であって、SM類似度が0.85以上であった。
 ×:出力が0.8mW以上であって、FWHMが7.8μm未満、SM類似度が0.85未満であった。
  実施例2~10および比較例2~6
 (図6の変形例に対応する光伝送システムの作製およびノイズ指標の測定)
 図6に示すように、TOSA2の構成を、FPC8に実装される面発光型レーザーダイオード13に変更した以外は、実施例1と同様にして、光伝送距離および通信エラーを、下記の基準に従って、評価した。その結果を表2に示す。
 ○:出力が0.8mW以上、かつ、ノイズ指標が10.0dBμV以下であった。
 ×:出力が0.8mW未満、または、ノイズ指標が10.0dBμV超過であった。
 別途、図4に示すように、光ファイバ3に代えて、近視野像測定装置80を配置し、FWHMおよびSM類似度を算出し、下記の基準で、光伝送距離および通信エラーを評価した。
 ○:出力が0.8mW以上であって、FWHMが7.8μm以上であった。
または、出力が0.8mW以上であって、SM類似度が0.85以上であった。
 ×:出力が0.8mW未満であった。
また、出力が0.8mW以上であるが、FWHMが7.8μm未満、SM類似度が0.85未満であった。
 面発光型レーザーダイオード13の種類等、および、評価結果を表2に示す。また、実施例2~10および比較例3~6におけるビーム径(FWHM)およびSM類似度の関係を図7に示す。なお、図7中、ハッチングした領域は、ビーム径7.8μm以上、または、SM(シングルモード)類似度が0.85以上である請求項2の発明の範囲である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
光伝送システムは、電気光変換デバイスに備えられる。
1 光伝送システム
2 TOSA
3 光ファイバ
4 ROSA
13 面発光型レーザーダイオード
61 周波数分析機
70 定電流源
80 近視野像測定装置
81 受光部
BL ベースライン
MAX-GF 最大強度グラフ
AVE 平均値
CG 強度分布の重心
FWHM ビーム径
C1 第1円
C2 第2円
AV1 第1円内の強度の平均値(第9工程で算出)
AV2 第2円内の強度の平均値(第10工程で算出)

Claims (10)

  1.  RF信号を周波数分割多重方式で伝送する光伝送システムであり、
     RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、
     前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、
     前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備え、
     前記電気光変換デバイスは、0.8mW以上の出力で発光可能な光源を含み、
     下記の第1工程~第6工程を含む測定方法により得られるノイズ指標が、10.0dBμV以下であることを特徴とする、光伝送システム。
     第1工程:定電流源を前記電気光変換デバイスにその伝送方向上流側において接続し、
    周波数分析機を前記光電気変換デバイスにその伝送方向下流側において接続する。
     第2工程:前記定電流源から前記電気光変換デバイスに定電流を入力すると同時に、前記光電気変換デバイスから入力される電気信号を前記周波数分析機により分析し、前記電気信号のうち10MHz~3.5GHzの周波数領域において、前記定電流源による電気信号の入力開始から60秒経過時から、0.02秒間毎に、横軸が周波数、縦軸が強度である波形を、前記周波数分析機によって3000回取得し、前記3000回の平均波形であるベースラインを取得する。
     第3工程:前記定電流源による電気信号の入力開始から、0.02秒間毎に、波形を、前記周波数分析機によって3000回取得し、前記3000回の波形における各周波数における強度の最大値として描画される最大強度グラフを取得する。
     第4工程:前記周波数分析機により、前記最大強度グラフの強度から前記ベースラインの強度を差し引いたグラフを描画する。
     第5工程:前記周波数分析機により、前記グラフを前記周波数領域において1000分割した特定周波数毎の強度の平均値を算出する。
     第6工程:前記周波数分析機により、前記グラフにおける最大の強度から前記平均値を差し引いた値を前記ノイズ指標(単位:dBμV)として得る。
  2.  RF信号を周波数分割多重方式で伝送する光伝送システムであり、
     RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、
     前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、
     前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備え、
     前記電気光変換デバイスは、0.8mW以上の出力で発光可能な光源を含み、
     前記光源の近視野像測定によって取得されるビーム径(FWHM:半値全幅)が7.8μm以上、または、下記の第7工程~第11工程を含む測定方法により得られる前記光源のSM(シングルモード)類似度が0.85以上であることを特徴とする、光伝送システム。
     第7工程:定電流源を前記光源に接続し、近視野像測定装置の受光部を前記光源から出射される光が最も多く前記受光部に入る位置に配置する。
     第8工程:前記定電流源から前記光源に定電流を入力し、前記定電流源による電気信号の入力開始から60秒~180秒経過時に近視野像測定装置で測定し、前記光源のビーム径(FWHM)と近視野像(強度分布)とを取得する。
     第9工程:前記近視野像の強度分布の重心を原点(0、0)とし、前記近視野像において前記原点を中心に直径が前記ビーム径(FWHM)となる円内の強度の平均値を算出する。
     第10工程:前記近視野像において前記原点(0、0)を中心に直径1μmの円内の強度の平均値を算出する。
     第11工程:前記第10工程で算出した前記平均値を前記第9工程で算出した前記平均値で割ることにより、前記SM類似度を算出する。
  3.  前記光源から発光される光信号の波長帯域が、1100nm以下であることを特徴とする、請求項1に記載の光伝送システム。
  4.  前記光源が、面発光型レーザーダイオードであることを特徴とする、請求項1に記載の光伝送システム。
  5.  前記光源が、50Mbps以上、20Gbps以下の仕様であることを特徴とする、請求項1に記載の光伝送システム。
  6.  前記RF信号が、BS信号、CS信号、CA-TV信号、および/または、地上波信号であることを特徴とする、請求項1に記載の光伝送システム。
  7.  RF信号を周波数分割多重方式で伝送する光伝送システムであり、RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備える前記光伝送システムにおける前記電気光変換デバイスであり、
     RF信号を光信号に変換可能であり、
     0.8mW以上の出力で発光可能な光源を含み、
     下記の第1工程~第6工程を含む測定方法により得られるノイズ指標が、10.0dBμV以下であることを特徴とする、電気光変換デバイス。
     第1工程:定電流源を前記電気光変換デバイスにその伝送方向上流側において接続し、
    周波数分析機を前記光電気変換デバイスにその伝送方向下流側において接続する。
     第2工程:前記定電流源から前記電気光変換デバイスに定電流を入力すると同時に、前記光電気変換デバイスから入力される電気信号を前記周波数分析機により分析し、前記電気信号のうち10MHz~3.5GHzの周波数領域において、前記定電流源による電気信号の入力開始から60秒経過時から、0.02秒間毎に、横軸が周波数、縦軸が強度である波形を、前記周波数分析機によって3000回取得し、前記3000回の平均波形であるベースラインを取得する。
     第3工程:前記定電流源による電気信号の入力開始から、0.02秒間毎に、波形を、前記周波数分析機によって3000回取得し、前記3000回の波形における各周波数における強度の最大値として描画される最大強度グラフを取得する。
     第4工程:前記周波数分析機により、前記最大強度グラフの強度から前記ベースラインの強度を差し引いたグラフを描画する。
     第5工程:前記周波数分析機により、前記グラフを前記周波数領域において1000分割した特定周波数毎の強度の平均値を算出する。
     第6工程:前記周波数分析機により、前記グラフにおける最大の強度から前記平均値を差し引いた値を前記ノイズ指標(単位:dBμV)として得る。
  8.  RF信号を周波数分割多重方式で伝送する光伝送システムであり、RF信号を受信し、これを光信号に変換して伝送する電気光変換デバイスと、前記電気光変換デバイスから伝送された光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号をRF信号に変換し、これを伝送する光電気変換デバイスとを備える前記光伝送システムにおける前記電気光変換デバイスであり、
     RF信号を光信号に変換可能であり、
     0.8mW以上の出力で発光可能な光源を含み、
     前記光源の近視野像測定によって取得されるビーム径(FWHM:半値全幅)が7.8μm以上、または、下記の第7工程~第11工程を含む測定方法により得られる前記光源のSM(シングルモード)類似度が0.85以上であることを特徴とする、電気光変換デバイス。
     第7工程:定電流源を前記光源に接続し、近視野像測定装置の受光部を前記光源から出射される光が最も多く前記受光部に入る位置に配置する。
     第8工程:前記定電流源から前記光源に定電流を入力し、前記定電流源による電気信号の入力開始から60秒~180秒経過時に近視野像測定装置で測定し、前記光源のビーム径(FWHM)と近視野像(強度分布)とを取得する。
     第9工程:前記近視野像の強度分布の重心を原点(0、0)とし、前記近視野像において前記原点を中心に直径が前記ビーム径(FWHM)となる円内の強度の平均値を算出する。
     第10工程:前記近視野像において前記原点(0、0)を中心に直径1μmの円内の強度の平均値を算出する。
     第11工程:前記第10工程で算出した前記平均値を前記第9工程で算出した前記平均値で割ることにより、前記SM類似度を算出する。
  9.  前記光源から発光される光信号の波長帯域が、1100nm以下であることを特徴とする、請求項7に記載の電気光変換デバイス。
  10.  前記光源が、面発光型レーザーダイオードであることを特徴とする、請求項7に記載の電気光変換デバイス。
PCT/JP2019/046625 2018-12-11 2019-11-28 光伝送システムおよび電気光変換デバイス WO2020121833A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980082269.XA CN113454933B (zh) 2018-12-11 2019-11-28 光传输系统和电光转换设备
EP19895824.1A EP3896874A4 (en) 2018-12-11 2019-11-28 OPTICAL TRANSMISSION SYSTEM AND ELECTRO-OPTICAL CONVERSION DEVICE
US17/312,705 US11411648B2 (en) 2018-12-11 2019-11-28 Optical transmission system and electro-optical conversion device
KR1020217017799A KR102361071B1 (ko) 2018-12-11 2019-11-28 광 전송 시스템 및 전기 광 변환 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018231520 2018-12-11
JP2018-231520 2018-12-11
JP2019084189A JP6812490B2 (ja) 2018-12-11 2019-04-25 光伝送システムおよび電気光変換デバイス
JP2019-084189 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020121833A1 true WO2020121833A1 (ja) 2020-06-18

Family

ID=71077302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046625 WO2020121833A1 (ja) 2018-12-11 2019-11-28 光伝送システムおよび電気光変換デバイス

Country Status (3)

Country Link
US (1) US11411648B2 (ja)
KR (1) KR102361071B1 (ja)
WO (1) WO2020121833A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685373A (ja) * 1992-09-01 1994-03-25 Matsushita Electric Ind Co Ltd 光伝送方式
JPH0818537A (ja) * 1994-06-30 1996-01-19 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置
JPH08274714A (ja) * 1995-03-30 1996-10-18 Nippon Telegr & Teleph Corp <Ntt> 光信号送信機
JPH10215223A (ja) * 1996-11-29 1998-08-11 Matsushita Electric Ind Co Ltd 光伝送装置およびシステム
JP2014053879A (ja) 2012-09-06 2014-03-20 E-Lambdanet Corp Tv光伝送システム構成
JP2015025867A (ja) * 2013-07-24 2015-02-05 日本電信電話株式会社 光トランシーバ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933929A (en) * 1987-06-29 1990-06-12 Nec Corporation Wavelength multiplexed optical transmitter for generating constant-amplitude angle-modulated beams to eliminate phase noise in adjacent transmission channels
JPH07270841A (ja) * 1994-03-31 1995-10-20 Ando Electric Co Ltd 掃引光周波数発生装置
US6271942B1 (en) * 1996-11-26 2001-08-07 Matsushita Electric Industrial Co., Ltd. Optical transmission device and system
EP1130702B1 (en) * 2000-02-29 2008-07-23 Nec Corporation Method and device for laser amplification
JP2003324393A (ja) 2002-02-26 2003-11-14 Matsushita Electric Ind Co Ltd 双方向光伝送システム並びにそれに用いられる親局及び子局
JP2004035412A (ja) 2002-06-28 2004-02-05 Mitsubishi Chemicals Corp オキセタン誘導体の製造方法
JP2004295066A (ja) * 2002-08-27 2004-10-21 Fujikura Ltd 光導波路の製造方法
JP4301963B2 (ja) 2004-01-27 2009-07-22 三菱電機株式会社 光・電気一括接続コネクタ
US20060228117A1 (en) 2004-03-10 2006-10-12 Matsushita Electric Industrial Co., Ltd. Optical transmission device and optical transmission system
JP4160918B2 (ja) 2004-03-12 2008-10-08 富士フイルム株式会社 光通信方法
CN101039161B (zh) 2007-03-05 2011-10-26 华为技术有限公司 电光转换模块、光电转换模块
JP5448510B2 (ja) 2008-03-18 2014-03-19 学校法人慶應義塾 光信号伝送システム及び方法
JP5039825B2 (ja) 2010-11-17 2012-10-03 日本電信電話株式会社 光伝送装置
JP5977211B2 (ja) 2013-01-30 2016-08-24 日本電信電話株式会社 光伝送システム、及び信号処理方法
JP6729152B2 (ja) 2016-08-04 2020-07-22 富士通オプティカルコンポーネンツ株式会社 光伝送システムおよび光送信器
JP2018041957A (ja) 2016-08-31 2018-03-15 国立大学法人 東京大学 光電変換デバイスおよび光電変換デバイスの動作波長の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685373A (ja) * 1992-09-01 1994-03-25 Matsushita Electric Ind Co Ltd 光伝送方式
JPH0818537A (ja) * 1994-06-30 1996-01-19 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置
JPH08274714A (ja) * 1995-03-30 1996-10-18 Nippon Telegr & Teleph Corp <Ntt> 光信号送信機
JPH10215223A (ja) * 1996-11-29 1998-08-11 Matsushita Electric Ind Co Ltd 光伝送装置およびシステム
JP2014053879A (ja) 2012-09-06 2014-03-20 E-Lambdanet Corp Tv光伝送システム構成
JP2015025867A (ja) * 2013-07-24 2015-02-05 日本電信電話株式会社 光トランシーバ

Also Published As

Publication number Publication date
US20220045756A1 (en) 2022-02-10
KR20210075205A (ko) 2021-06-22
US11411648B2 (en) 2022-08-09
KR102361071B1 (ko) 2022-02-09

Similar Documents

Publication Publication Date Title
US9977200B2 (en) Optical component assembly with a vertical mounting structure for multi-angle light path alignment and an optical subassembly using the same
US8515285B2 (en) RF communications device including an optical link and related devices and methods
Dong et al. Ten-channel discrete multi-tone modulation using silicon microring modulator array
US10833775B1 (en) Techniques for magnetic shielding of an optical isolator to maintain nominal magnetic flux density and a transmitter or transceiver system implementing same
US20170023750A1 (en) NxN PARALLEL OPTICAL TRANSCEIVER
CN108072944A (zh) 一种光收发器
US20140217270A1 (en) Light-receiving module
CN108476066A (zh) 光收发组件
WO2020121833A1 (ja) 光伝送システムおよび電気光変換デバイス
JP6812490B2 (ja) 光伝送システムおよび電気光変換デバイス
WO2021206117A1 (ja) 光伝送システムおよび光ファイバ
US10795098B2 (en) Mode division multiplexing using vertical-cavity surface emitting lasers
Alnajjar et al. The effect of atmospheric turbulence on the performance of end-users antenna based on WDM and hybrid amplifier
US20190101714A1 (en) Optical module
JP2005318532A (ja) 光信号伝送システム及びcatv伝送システム
CN207908744U (zh) 一种光收发器
Shih et al. High-performance and low-cost 10-Gb/s bidirectional optical subassembly modules
US8588572B2 (en) Electromagnetic interference (EMI) waveguide device for use in a parallel optical communications module, and a method
US6529306B1 (en) Electromagnetic interference reduction method and apparatus
KR20140021483A (ko) 광송신기 및 이를 포함한 광송수신기
US20230421263A1 (en) Optical transmitter and optical transmission system
US20240146412A1 (en) Optical transmission system and optical transmission method
Zhang et al. Frequency response equalization using fiber Bragg grating tilted filter in RoF systems
WO2023214198A1 (en) Devices with optical-electrical-optical converter
JP2021056362A (ja) 光導波路素子及び光軸調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217017799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895824

Country of ref document: EP

Effective date: 20210712