WO2020121714A1 - 有機よう素捕集装置及び有機よう素捕集方法 - Google Patents
有機よう素捕集装置及び有機よう素捕集方法 Download PDFInfo
- Publication number
- WO2020121714A1 WO2020121714A1 PCT/JP2019/044320 JP2019044320W WO2020121714A1 WO 2020121714 A1 WO2020121714 A1 WO 2020121714A1 JP 2019044320 W JP2019044320 W JP 2019044320W WO 2020121714 A1 WO2020121714 A1 WO 2020121714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic iodine
- liquid
- containment vessel
- reactor containment
- container
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/004—Pressure suppression
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/02—Details
- G21C13/022—Ventilating arrangements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/02—Treating gases
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to an organic iodine collecting device and a method for collecting organic iodine, which collects organic iodine contained in a fluid such as vapor, including radioactive organic iodine discharged from a nuclear reactor.
- the reactor facility is equipped with a filter vent device to prevent radioactive materials released from the reactor from leaking into the environment. If the core is damaged or the pressure in the containment vessel rises abnormally due to a reactor accident, the containment vessel will be damaged and lead to a large-scale leak, so that the steam in the containment vessel will be vented in advance. When the high temperature, high pressure steam is discharged from the reactor into the containment vessel, it is passed through a filter vent device to remove major radioactive substances before being discharged into the atmosphere.
- Radioactive substances generated in nuclear reactor accidents include noble gases, aerosols, inorganic iodine, and organic iodine.
- these radioactive substances except rare gas are collected in the container and prevented from being released to the environment.
- a filter vent device holds scrubbing water that functions as a wet filter in a container and has a built-in metal filter that is a dry filter.
- Scrubbing water is an aqueous solution in which sodium thiosulfate and sodium hydroxide are dissolved, and the vented steam is released into the scrubbing water.
- Inorganic iodine (elemental iodine) ionized by the reaction with sodium thiosulfate and hydrophilic aerosol are collected by dissolving in scrubbing water. Further, the aerosol released in the gas phase is collected by adhering to and colliding with the metal filter.
- Organic iodine is collected by a dry filter such as silver zeolite or activated carbon as described in Patent Document 2.
- Organic iodine released from the reactor is hardly soluble in water including methyl iodide, and even if it is introduced into pool water or scrubbing water in the pressure suppression chamber at the time of venting, it is not sufficiently collected. Further, organic iodine such as methyl iodide may be regenerated by the reaction of elemental iodine during the exhaust process from the nuclear reactor. For these reasons, organic iodine is a radioactive substance that is difficult to prevent from leaking, so there is a need for a filter vent device that can efficiently collect organic iodine.
- Patent Document 2 As a collection material for collecting organic iodine, silver zeolite and activated carbon are known (see Patent Document 2). However, these trapping materials have a lower trapping efficiency when moisture adheres, and thus require a mechanism for removing moisture as in Patent Document 2, which complicates the structure of the filter vent device. Further, since a large amount of these trapping materials is required, a special device design and a complicated device structure are required as in Patent Document 2, and the cost of the trapping material itself increases.
- an object of the present invention is to provide an organic iodine collection device and an organic iodine collection method capable of efficiently collecting organic iodine in a reactor containment vessel.
- an organic iodine collecting apparatus is an organic iodine collecting apparatus for collecting organic iodine in a reactor containment vessel, and is a non-volatile material capable of decomposing organic iodine.
- the reaction heat of the fluid in the reactor containment vessel the organic iodine is decomposed and collected.
- the organic iodine collection method is an organic iodine collection method for collecting organic iodine in a reactor containment vessel, wherein a non-volatile liquid capable of decomposing organic iodine is Heated by the heat in the reactor containment vessel or the reaction heat of the fluid in the reactor containment vessel, the fluid containing organic iodine in the reactor containment vessel is passed through the heated non-volatile liquid, Iodine is decomposed into the non-volatile liquid and collected.
- an organic iodine collection device and an organic iodine collection method capable of efficiently collecting organic iodine in a reactor containment vessel.
- the organic iodine collecting apparatus and the organic iodine collecting method according to the present embodiment are a gas (fluid containing an organic iodine released into a reactor containment vessel at the time of a filter vent performed at the time of an accident of a reactor). ) Is passed through a non-volatile liquid that functions as a wet filter, and the organic iodine in the gas is decomposed into the non-volatile liquid and collected.
- radioactive organic iodine is decomposed into an ionic state and collected in a container under isolation.
- non-volatile liquid a non-volatile liquid that does not substantially volatilize at a temperature lower than about 160°C is used.
- venting of high-temperature steam at around 160°C is assumed.
- the non-volatile liquid is more preferably one that does not substantially volatilize at a temperature lower than 200°C.
- the non-volatile liquid a liquid exhibiting an action of decomposing organic iodine is used. If the liquid acting as a wet filter is capable of decomposing organic iodine, it is possible to dissociate radioactive iodine ions from radioactive organic iodine. Since iodine ions are more stable in the liquid phase than organic iodine, radioactive organic iodine can be trapped in the liquid phase to reliably prevent leakage to the environment.
- non-volatile liquid for example, an ionic liquid, a surfactant solution, a mixed solution thereof, or the like can be used.
- a particularly preferred non-volatile liquid is an ionic liquid. According to the ionic liquid, it is possible to obtain nonvolatility that does not substantially volatilize at 160° C. or lower, heat resistance that can withstand high temperatures around 160° C., high radiation resistance, high chemical stability, high electrical stability, and the like. Further, it is possible to easily control the compatibility between liquids and the specific gravity between liquids based on various combinations of ions.
- Examples of the cation that constitutes the ionic liquid include organic cations such as phosphonium, ammonium, sulfonium, pyrrolidinium, and piperidinium.
- the cation constituting the ionic liquid may be an organic cation having a chain carbon chain, an organic cation having a cyclic carbon chain, or the like, but an organic cation having a carbon chain of 2 or more carbon atoms. Is preferred. With such a bulky organic cation, the reaction rate between the organic iodine and the cation becomes high, so that the organic iodine can be collected with high collection efficiency.
- anions that compose the ionic liquid include inorganic anions such as halogen, tetrafluoroborate and hexafluorophosphate, and organic anions such as acetate, sulfonate and imidate.
- examples of the halogen include fluoride ion, chloride ion, bromide ion, iodide ion and the like.
- an ion having a high nucleophilicity is preferable because it has a strong action of decomposing organic iodine.
- halogen, imidate, or tetrafluoromethane is used because of its high nucleophilicity, difficulty in thermal decomposition or hydrolysis, and difficulty in changing pH of scrubbing water when injected into a filter vent container. Borate is more preferred.
- chloride ion is preferable because of its high safety and high nucleophilicity. Further, non-radioactive iodide ions are preferable from the viewpoint of avoiding leakage of radioactive substances due to volatilization of elemental iodine. Even if the radioactive organic iodine is once decomposed and collected, the radioactive iodine ion trapped in the liquid phase may react with the iodine ion in the liquid phase to form volatile elemental iodine. There is. When the halogen constituting the ionic liquid is a non-radioactive iodide ion, the probability of producing elemental iodine can be reduced.
- non-volatile liquid examples include trihexyl(tetradecyl)phosphonium chloride and trihexyl(tetradecyl)phosphonium dicyanamide.
- trihexyl(tetradecyl)phosphonium chloride is particularly preferable because of its high ability to decompose organic iodine.
- the decomposition reaction of organic iodine is promptly started by attacking the binding iodine when a gas containing organic iodine is introduced into a highly nucleophilic liquid.
- the conventional general wet filter is kept at room temperature before the accident of the nuclear reactor. In the event of a nuclear reactor accident, high-temperature, high-pressure gas in the reactor containment vessel is vented and passed through a wet filter, but the wet filter may remain at a low temperature in the early stage of venting.
- the non-volatile liquid capable of decomposing the organic iodine is heated and then the organic iodine is decomposed.
- the non-volatile liquid can be heated to an arbitrary temperature exceeding normal temperature by utilizing the heat in the reactor containment vessel, the reaction heat of the substance in the reactor containment vessel, and both of them.
- the non-volatile liquid may be heated before introducing the gas containing organic iodine into the non-volatile liquid, or may be heated while introducing the gas containing organic iodine into the non-volatile liquid.
- FIG. 1 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel, and the non-volatile liquid is heated by heat in the reactor containment vessel.
- 1 shows a collection device that is used.
- a collection device 100 removes radioactive substances from a reactor containment vessel 10 including a reactor pressure vessel and steam (gas) in the reactor containment vessel 10. And a filter vent device 20 that releases to the environment.
- the collection device 100 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8. , And an exhaust stack 9.
- the reactor containment vessel 10 has a dry well 11 in which a reactor pressure vessel is housed and a wet well 12 in which a pressure suppression pool is formed. Pool water is stored in the wet well 12. The steam released into the dry well 11 and the steam escaped from the main steam system at an overpressure can flow into the wet well 12 via a vent pipe (not shown). By condensing the high temperature and high pressure gas with the pool water, the pressure in the reactor containment vessel 10 is suppressed.
- the dry well 11 is connected to upstream vent pipes (2a, 2b) for venting the gas in the reactor containment vessel 10.
- the liquid container 1 is connected in the middle of the upstream vent pipe (2a, 2b).
- the liquid container 1 is installed in the dry well 11 of the reactor containment vessel 10.
- the liquid container 1 is a hermetically sealed container in which a non-volatile liquid L1 capable of decomposing organic iodine is placed.
- the liquid container 1 is provided with a non-volatile liquid L1 that functions as a wet filter in preparation for an accident in a nuclear reactor.
- the shape and capacity of the liquid container 1 and the amount of the non-volatile liquid L1 are not particularly limited.
- the liquid container 1 may be provided with heat exchange fins, tubes, or the like in order to efficiently heat the nonvolatile liquid L1.
- an introduction pipe 2a that constitutes an upstream vent pipe is connected.
- the inlet of the introduction pipe 2a is open to the dry well 11 in the reactor containment vessel 10. Further, the outlet of the introduction pipe 2 a is opened at the upper part in the liquid container 1.
- the introduction pipe 2a is a pipe for venting a gas (fluid) in the reactor containment vessel 10, and is used for introducing a gas (fluid) containing organic iodine into the nonvolatile liquid L1.
- a pressure release valve 4 is provided in the introduction pipe 2a.
- the pressure release valve 4 is a normally closed valve that is opened at a predetermined set pressure exceeding atmospheric pressure.
- the outlet side of the liquid container 1 is connected to a discharge pipe 2b that constitutes an upstream vent pipe.
- the inlet of the discharge pipe 2b opens at the lower part inside the liquid container 1.
- the other end of the discharge pipe 2b is connected to the filter vent container 6.
- the outlet of the discharge pipe 2b opens to the liquid phase portion in the filter vent container 6.
- the exhaust pipe 2b is a pipe for venting the gas (fluid) in the reactor containment vessel 10, and is used for exhausting the gas (fluid) introduced into the nonvolatile liquid L1 from the liquid container 1.
- An isolation valve 5 is provided in the discharge pipe 2b.
- the isolation valve 5 is a normally closed valve that can be opened and closed manually or automatically.
- the filter vent container 6 is used for condensing the vented gas and removing radioactive substances contained in the gas.
- Scrubbing water L2 is prepared in the filter vent container 6.
- the scrubbing water L2 is an aqueous solution in which an alkali such as sodium thiosulfate or sodium hydroxide is dissolved.
- a scrubber nozzle (not shown) formed of multiple venturi nozzles or the like can be attached to the outlet of the discharge pipe 2b. According to the scrubber nozzle, the vented gas can be ejected as fine bubbles into the liquid.
- the filter vent container 6 is provided with a metal filter 7 in the upper part of the container.
- the metal filter 7 is formed by laminating metal fibers, metal mesh, and the like. According to the metal filter 7, the aerosol released to the gas phase in the container can be collected by adhesion to metal, collision, or the like.
- a downstream vent pipe 8 is connected to the secondary side of the metal filter 7.
- the other end of the downstream vent pipe 8 is connected to the exhaust pipe 9.
- the exhaust stack 9 is provided for discharging the gas vented from the reactor containment vessel 10 into the environment.
- the filter vent container 6 can also be provided with a baffle (not shown) that exerts resistance to the high temperature and high pressure gas jetted into the liquid.
- a baffle for example, an orifice-shaped baffle plate, a spiral plate, a perforated plate such as a metal mesh or a punching metal, or a porous body such as a ceramic is provided at the height of the liquid phase portion in the filter vent container 6. Can be provided.
- the organic iodine that flows into the filter vent container 6 is presumed to be gaseous. It is considered that the dissolution of the gaseous organic iodine in the liquid and the decomposition of the organic iodine proceed by diffusion migration in the bubbles, thermophoresis, Brownian diffusion, convection and the like.
- the baffle is provided in the filter vent container 6, the retention time of the bubbles ejected in the liquid becomes long and the contact time between the organic iodine and the liquid becomes long, so that the collection efficiency of the organic iodine is improved.
- the vented gas (vapor) contains a radioactive substance such as a rare gas, an aerosol, inorganic iodine, or organic iodine. These radioactive substances are collected by the filter vent device 20 and prevented from leaking to the environment.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 to contain the organic iodine in the dry well 11 of the reactor containment vessel 10.
- a gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the non-volatile liquid L1 is preheated in the liquid container 1 and then transferred to the filter vent container 6, and decomposes the organic iodine from the liquid container 1 to the filter vent container 6.
- the temperature and pressure inside the reactor containment vessel 10 rises.
- the liquid container 1 is installed in a dry well 11 inside the reactor containment vessel 10. Therefore, the non-volatile liquid L1 prepared in the liquid container 1 is heated by the heat in the dry well 11.
- the non-volatile liquid L1 is heated by any of heat conduction from the reactor structural material to the liquid container 1, heat transfer from the gas in the space to the liquid container 1, radiation from the reactor structural material and the gas in the space, and the like. May be.
- the pressure release valve 4 opens.
- the high temperature/high pressure gas in the dry well 11 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is judged that the dry well 11 needs to be vented, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the pressure release valve 4 or may be opened after the pressure release valve 4.
- the isolation valve 5 When the isolation valve 5 is opened, the non-volatile liquid L1 prepared in the liquid container 1 is pushed by the high-temperature and high-pressure gas to decompose the organic iodine and pass through the discharge pipe 2b to the filter vent container 6. Sent.
- the gas vented from the reactor containment vessel 10 is jetted into the liquid in the filter vent vessel 6 together with the non-volatile liquid L1.
- the vented gas is passed through the non-volatile liquid L1 in the filter vent container 6 after all of the prepared non-volatile liquid L1 is discharged from the liquid container 1.
- the organic iodine contained in the vented gas reacts with the non-volatile liquid L1 and is decomposed into iodine ions and organic matter. Further, dissociated iodine ions, aerosol contained in the vented gas, inorganic iodine, etc. are dissolved and collected in the non-volatile liquid L1 and the scrubbing water L2. The aerosol released into the gas phase without being collected into the liquid phase is collected into the metal filter 7. After that, the gas from which the radioactive substance has been removed is released into the environment through the exhaust stack 9.
- the non-volatile liquid L1 may be a liquid made of a hydrophilic (easy water-soluble) substance or a liquid made of a hydrophobic (poorly water-soluble) substance.
- the non-volatile liquid L1 is hydrophilic, the non-volatile liquid L1 and the scrubbing water L2 are easily mixed with each other. Hydrophilic radioactive substances are easily collected by dissolution, and hydrophobic radioactive substances are easily collected by aggregation/precipitation.
- the non-volatile liquid L1 is hydrophobic, the hydrophobic radioactive substance is easily collected by the non-volatile liquid L1 and the hydrophilic radioactive substance is easily collected by the scrubbing water L2.
- the non-volatile liquid L1 a liquid having a specific gravity larger than that of water or scrubbing water L2 may be used, or a liquid having a specific gravity smaller than that of water or scrubbing water L2 may be used.
- the hydrophobic non-volatile liquid L1 the liquids are easily phase-separated into a two-layer liquid.
- the upper layer is the nonvolatile liquid L1 and the lower layer is the scrubbing water L2. With such a layer structure, volatilization of the organic iodine and the elemental iodine that is secondarily generated can be surely prevented by the upper layer non-volatile liquid L1.
- the upper layer is the scrubbing water L2 and the lower layer is the non-volatile liquid L1.
- a radioactive substance having low volatility can be efficiently collected by aggregating and settling with the lower layer non-volatile liquid L1.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the nonvolatile liquid L1 is stored in the dry well 11 in the reactor containment vessel 10. Since it is heated by the heat of, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine, the collection efficiency can be increased over a wide range of time including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the outlet of the introduction pipe 2a is opened at the upper part inside the liquid container 1, and the inlet of the discharge pipe 2b is opened at the lower part inside the liquid container 1. Therefore, the non-volatile liquid L1 prepared in the liquid container 1 can be easily transferred to the filter vent container 6 by utilizing the pressure difference between the inside and the outside of the reactor containment vessel 10 and the head of the non-volatile liquid L1. Since the liquid container 1 after the non-volatile liquid L1 is transferred becomes depleted, it is possible to prevent the vented gas from having a large flow resistance. Further, since it is transferred to the filter vent container 6, it is possible to secure a sufficient reaction time between the non-volatile liquid L1 and the organic iodine, and it is possible to capture the reaction product in the mixed phase liquid.
- FIG. 2 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel, and the non-volatile liquid is heated by heat in the reactor containment vessel.
- 1 shows a collection device that is used.
- the collection device 200 is incorporated in the reactor containment vessel 10 and the filter vent device 20 in the same manner as the collection device 100 described above.
- the collection device 200 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8. , And an exhaust stack 9.
- the collecting device 200 is different from the collecting device 100 in the piping system related to the liquid container 1, the introduction pipe 2a, and the discharge pipe 2b.
- the other device configuration of the collection device 200 is substantially the same as that of the collection device 100 described above.
- the inlet of the introduction pipe 2 a is open to the dry well 11 in the reactor containment vessel 10.
- the outlet of the introduction pipe 2a is open to the liquid phase portion on the lower side in the liquid container 1.
- the inlet of the discharge pipe 2b is open to the gas phase portion on the upper side in the liquid container 1.
- the outlet of the discharge pipe 2b opens to the liquid phase portion in the filter vent container 6.
- the liquid container 1 can function as a wet filter.
- a scrubber nozzle formed of multiple venturi nozzles or the like can be attached to the outlet of the introduction pipe 2a.
- the liquid container 1 functioning as a wet filter may be provided with a baffle that exerts resistance to the high temperature and high pressure gas jetted into the liquid, as in the filter vent container 6.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 to contain the organic iodine in the dry well 11 of the reactor containment vessel 10.
- a gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 decomposes organic iodine while being heated in the liquid container 1.
- the pressure release valve 4 opens.
- the high temperature/high pressure gas in the dry well 11 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the organic iodine contained in the vented gas reacts with the non-volatile liquid L1 and is decomposed into iodine ions and organic matter. Further, dissociated iodine ions, aerosols contained in the vented gas, inorganic iodine, etc. are dissolved in the non-volatile liquid L1 and collected.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is judged that the dry well 11 and the liquid vessel 1 need to be vented, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the pressure release valve 4, may be opened before the pressure release valve 4, or may be opened after the pressure release valve 4.
- the isolation valve 5 When the isolation valve 5 is opened, the radioactive substance which is not collected in the liquid phase in the liquid container 1 and released in the gas phase is sent to the filter vent container 6 through the discharge pipe 2b.
- the radioactive substances remaining in the vented gas are dissolved/aggregated in the scrubbing water L2 and collected.
- the aerosol released into the gas phase without being collected into the liquid phase is collected into the metal filter 7. After that, the gas from which the radioactive substance has been removed is released into the environment through the exhaust stack 9.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the nonvolatile liquid L1 is contained in the dry well 11 in the reactor containment vessel 10. Since it is heated by the heat of, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine and is also heated during the reaction, the collection efficiency can be increased over a wide period including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the outlet of the introduction pipe 2a is opened to the liquid phase portion on the lower side in the liquid container 1, and the inlet of the discharge pipe 2b is the liquid container 1. Since it is open to the gas phase portion on the upper side of the inside, collection can be continued in the liquid container 1. Since organic iodine and other radioactive substances are collected in the containment boundary, the risk of leakage of the collected radioactive substances can be further reduced.
- FIG. 3 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed outside the nuclear reactor containment vessel, and the non-volatile liquid is heated by the heat inside the nuclear reactor containment vessel.
- the collection device 300 is incorporated in the reactor containment vessel 10 and the filter vent device 20, like the collection device 100 described above.
- the collection device 300 includes a liquid container 1, an upstream vent pipe (2a, 2b), an isolation valve 5, a filter vent container 6, a metal filter 7, a downstream vent pipe 8, and an exhaust pipe 9.
- the circulation pipe 13 is provided.
- the collection device 300 according to the present embodiment is different from the collection device 100 described above in that the liquid container 1 is installed outside the reactor containment vessel 10, and the circulation pipe 13 is connected to the liquid container 1. That is the point.
- the other device configuration of the collection device 300 is substantially the same as that of the collection device 100 described above.
- the liquid container 1 is connected in the middle of the upstream vent pipe (2a, 2b).
- the liquid container 1 is installed outside the reactor containment vessel 10.
- the liquid container 1 may be installed inside the reactor building or outside the reactor building as long as it is outside the reactor containment vessel 10.
- the inlet side of the liquid container 1 is connected to the introduction pipe 2a that constitutes the upstream side vent pipe, as in the collection device 100 described above.
- An isolation valve 5 is provided in the introduction pipe 2a.
- the outlet side of the liquid container 1 is connected to a discharge pipe 2b that constitutes an upstream side vent pipe, as in the collection device 100 described above.
- the liquid container 1 can function as a wet filter.
- a scrubber nozzle formed of multiple venturi nozzles or the like can be attached to the outlet of the introduction pipe 2a.
- the liquid container 1 functioning as a wet filter may be provided with a baffle that exerts resistance to the high temperature and high pressure gas jetted into the liquid, as in the filter vent container 6.
- the circulation pipe 13 forms a closed loop flow path that returns from the liquid container 1 to the liquid container 1 through the dry well 11 of the reactor containment vessel 10.
- One end of the circulation pipe 13 is connected to the lower portion of the liquid container 1, and the other end is connected to the upper side thereof.
- the middle portion of the circulation pipe 13 is inside the dry well 11, and the pipe line is laid vertically so as to extend along the vertical direction.
- the non-volatile liquid L1 in the circulation pipe 13 when the non-volatile liquid L1 in the circulation pipe 13 is heated by the heat in the reactor containment vessel 10, the non-volatile liquid L1 can be circulated by natural convection.
- the non-volatile liquid L1 in the middle part of the circulation pipe 13 rises and the non-volatile liquid L1 in the liquid container 1 having a lower temperature falls, The non-volatile liquid L1 naturally circulates.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 to contain the organic iodine in the dry well 11 of the reactor containment vessel 10.
- a gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 decomposes organic iodine while being heated in the liquid container 1.
- the isolation valve 5 is opened.
- the isolation valve 5 is opened, the high temperature and high pressure gas in the dry well 11 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1 as in the collection device 200 described above. Further, in the filter vent container 6, as in the case of the collection device 200 described above, the radioactive substance that is not collected in the liquid phase in the liquid container 1 but released in the gas phase is collected by the scrubbing water L2 and the metal filter 7. Gathered.
- the liquid container 1 is installed outside the reactor containment vessel 10, but the non-volatile liquid L1 is generated by the heat in the reactor containment vessel 10 through the circulation pipe 13. Since it is heated, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased without providing a place for installing the liquid container 1 in the reactor containment vessel 10. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine and is also heated during the reaction, the collection efficiency can be increased over a wide period including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the outlet of the introduction pipe 2a is opened to the liquid phase portion on the lower side in the liquid container 1, and the inlet of the discharge pipe 2b is the liquid container 1. Since it is open to the gas phase portion on the upper side of the inside, the collection can be continued in the liquid container 1 as in the case of the collection device 200 described above. Since the non-volatile liquid L1 in the liquid container 1 is wholly heated by natural circulation, it is not necessary to forcibly circulate it with a pump or the like, and high collection efficiency can be obtained even when power is lost. Further, the non-volatile liquid L1 and the organic iodine can be efficiently reacted because they are agitated by natural circulation.
- FIG. 4 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel, and the non-volatile liquid is heated by heat in the reactor containment vessel.
- 1 shows a collection device that is used.
- the collection device 400 is incorporated in the reactor containment vessel 10 and the filter vent device 20, as with the collection device 100 described above.
- the collection device 400 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8. , And an exhaust stack 9.
- the collecting device 400 according to the present embodiment is different from the collecting device 100 described above in the piping system related to the introduction pipe 2a.
- the other device configuration of the collection device 400 is substantially the same as that of the collection device 100 described above.
- the inlet of the introduction pipe 2a is open to the wet well 12 in the reactor containment vessel 10.
- the outlet of the introduction pipe 2a is open at the upper part in the liquid container 1.
- a pressure release valve 4 is provided in the introduction pipe 2a.
- the inlet of the discharge pipe 2b is opened at the lower part inside the liquid container 1.
- the outlet of the discharge pipe 2b opens to the liquid phase portion in the filter vent container 6.
- An isolation valve 5 is provided in the discharge pipe 2b.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 and contains the organic iodine in the wet well 12 of the reactor containment vessel 10.
- a gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the non-volatile liquid L1 is preheated in the liquid container 1 and then transferred to the filter vent container 6, and decomposes the organic iodine from the liquid container 1 to the filter vent container 6.
- the pressure release valve 4 opens.
- the high temperature and high pressure gas in the wet well 12 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is determined that the wet well 12 needs to be vented, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the pressure release valve 4 or may be opened after the pressure release valve 4.
- the isolation valve 5 When the isolation valve 5 is opened, the non-volatile liquid L1 prepared in the liquid container 1 is pushed by the high-temperature and high-pressure gas to decompose the organic iodine and pass through the discharge pipe 2b to the filter vent container 6. Sent.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1, the scrubbing water L2, and the metal filter 7 as in the case of the collection device 100 described above.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the non-volatile liquid L1 is in the dry well 11 in the reactor containment vessel 10. Since it is heated by the heat of, the reaction rate of the non-volatile liquid L1 and organic iodine at the time of venting can be increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine, the collection efficiency can be increased over a wide range of time including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the non-condensable gas in the wet well 12 is removed.
- efficient collection of organic iodine can be performed.
- the wet well 12 a part of the radioactive substance in the gas is collected in the pool water in advance, so that safer venting is performed.
- the liquid container 1 is installed in the dry well 11, it is possible to use higher temperature heat to heat the nonvolatile liquid L1 as compared with the case where the liquid container 1 is installed in the wet well 12.
- FIG. 5 is sectional drawing which shows typically an example of the organic iodine collection device which concerns on this invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed outside the reactor containment vessel, and the non-volatile liquid is heated by the heat inside the reactor containment vessel.
- the collection device 500 is incorporated in the reactor containment vessel 10 and the filter vent device 20, similarly to the collection device 300 described above.
- the collecting device 500 includes a liquid container 1, an upstream vent pipe (2a, 2b), an isolation valve 5, a filter vent container 6, a metal filter 7, a downstream vent pipe 8, an exhaust pipe 9,
- the circulation pipe 13 is provided.
- the different point of the collection device 500 according to the present embodiment from the collection device 300 is the piping system related to the introduction pipe 2a.
- the other device configuration of the collecting device 500 is substantially the same as that of the collecting device 300.
- the wet well 12 is connected to upstream vent pipes (2a, 2b) for venting gas in the reactor containment vessel 10.
- the liquid container 1 is connected in the middle of the upstream vent pipe (2a, 2b).
- the liquid container 1 is installed outside the reactor containment vessel 10.
- the liquid container 1 may be installed inside the reactor building or outside the reactor building as long as it is outside the reactor containment vessel 10.
- an introduction pipe 2a that constitutes an upstream vent pipe is connected.
- the inlet of the introduction pipe 2a is open to the wet well 12 in the reactor containment vessel 10.
- the outlet of the introduction pipe 2a is open to the liquid phase portion on the lower side in the liquid container 1.
- An isolation valve 5 is provided in the introduction pipe 2a.
- the outlet side of the liquid container 1 is connected to a discharge pipe 2b that constitutes an upstream vent pipe.
- the inlet of the discharge pipe 2b is open to the gas phase portion on the upper side in the liquid container 1.
- the other end of the discharge pipe 2b is connected to the filter vent container 6.
- the outlet of the discharge pipe 2b opens to the liquid phase portion in the filter vent container 6.
- the liquid container 1 can function as a wet filter.
- the circulation pipe 13 forms a closed annular flow path that returns from the liquid container 1 to the liquid container 1 through the dry well 11 of the reactor containment vessel 10 as in the case of the collection device 300.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 and contains the organic iodine in the wet well 12 of the reactor containment vessel 10.
- a gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 decomposes organic iodine while being heated in the liquid container 1.
- the isolation valve 5 is opened.
- the isolation valve 5 is opened, the high temperature/high pressure gas in the wet well 12 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1 as in the collection device 300 described above. Further, in the filter vent container 6, as in the case of the collection device 200 described above, radioactive substances released in the gas phase without being collected in the liquid phase in the liquid container 1 are collected by the scrubbing water L2 and the metal filter 7. Gathered.
- the liquid container 1 is installed outside the reactor containment vessel 10, but the non-volatile liquid L1 is generated by the heat in the reactor containment vessel 10 through the circulation pipe 13. Since it is heated, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased without providing a place for installing the liquid container 1 in the reactor containment vessel 10. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine and is also heated during the reaction, the collection efficiency can be increased over a wide period including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the outlet of the introduction pipe 2a is open to the liquid phase portion on the lower side in the liquid container 1, and the inlet of the discharge pipe 2b is the liquid container 1. Since it is opened to the gas phase portion on the upper side of the inside, the collection can be continued in the liquid container 1 as in the case of the collection device 300 described above. Since the non-volatile liquid L1 in the liquid container 1 is wholly heated by natural circulation, it is not necessary to forcibly circulate it with a pump or the like, and high collection efficiency can be obtained even when power is lost. Further, the non-volatile liquid L1 and the organic iodine can be efficiently reacted because they are agitated by natural circulation.
- FIG. 6 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a wet well in the reactor containment vessel, and the non-volatile liquid is heated by heat in the reactor containment vessel.
- 1 shows a collection device that is used.
- the collection device 600 is incorporated in the reactor containment vessel 10 and the filter vent device 20, like the collection device 100 described above.
- the collection device 600 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8. , And an exhaust stack 9.
- the collection device 600 according to the present embodiment is different from the collection device 100 in the installation position of the liquid container 1 and the piping system related to the introduction pipe 2a and the discharge pipe 2b.
- the other device configuration of the collection device 600 is substantially the same as that of the collection device 100 described above.
- the wet well 12 is connected to upstream vent pipes (2a, 2b) for venting the gas in the reactor containment vessel 10.
- the liquid container 1 is connected in the middle of the upstream vent pipe (2a, 2b).
- the liquid container 1 is installed in the wet well 12 of the reactor containment vessel 10.
- an introduction pipe 2a that constitutes an upstream vent pipe is connected.
- the inlet of the introduction pipe 2a is open to the wet well 12 in the reactor containment vessel 10.
- the outlet of the introduction pipe 2a is open at the upper part in the liquid container 1.
- a pressure release valve 4 is provided in the introduction pipe 2a.
- the outlet side of the liquid container 1 is connected to a discharge pipe 2b that constitutes an upstream vent pipe.
- the inlet of the discharge pipe 2b opens at the lower part inside the liquid container 1.
- the other end of the discharge pipe 2b is connected to the filter vent container 6.
- the outlet of the discharge pipe 2b opens to the liquid phase portion in the filter vent container 6.
- An isolation valve 5 is provided in the discharge pipe 2b.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the wet well 12 of the reactor containment vessel 10 and contains the organic iodine in the wet well 12 of the reactor containment vessel 10.
- a gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the non-volatile liquid L1 is preheated in the liquid container 1 and then transferred to the filter vent container 6, and decomposes the organic iodine from the liquid container 1 to the filter vent container 6.
- the pressure release valve 4 opens.
- the high temperature and high pressure gas in the wet well 12 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is determined that the wet well 12 needs to be vented, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the pressure release valve 4 or may be opened after the pressure release valve 4.
- the isolation valve 5 When the isolation valve 5 is opened, the non-volatile liquid L1 prepared in the liquid container 1 is pushed by the high-temperature and high-pressure gas to decompose the organic iodine and pass through the discharge pipe 2b to the filter vent container 6. Sent.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1, the scrubbing water L2, and the metal filter 7 as in the case of the collection device 100 described above.
- the liquid container 1 is installed in the wet well 12 in the reactor containment vessel 10, and the non-volatile liquid L1 is in the wet well 12 in the reactor containment vessel 10. Since it is heated by the heat of, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine, the collection efficiency can be increased over a wide range of time including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the inlet of the introduction pipe 2a opens to the wet well 12 in the reactor containment vessel 10, non-condensable gas in the wet well 12 is removed. Efficient collection of organic iodine can be performed when venting.
- the liquid container 1 since the liquid container 1 is installed in the wet well 12, it is possible to avoid exposing the liquid container 1 and the non-volatile liquid L1 to extremely high temperatures, as compared with the case where the liquid container 1 is installed in the dry well 11.
- FIG. 7 is sectional drawing which shows typically an example of the organic iodine collection device which concerns on this invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel.
- 3 shows a collector that is heated by the reaction heat of the fluid in the containment vessel.
- the collection device 700 As shown in FIG. 7, the collection device 700 according to the present embodiment is incorporated in the reactor containment vessel 10 and the filter vent device 20, similarly to the collection device 100 described above.
- the collection device 700 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8.
- An exhaust stack 9 and a reactor 14 are provided.
- the trap 700 according to the present embodiment is different from the trap 100 described above in that the collector 14 is provided around the liquid container 1 to generate heat of reaction.
- the other device configuration of the collection device 700 is substantially the same as that of the collection device 100 described above.
- the reactor 14 is a device that supports a reaction material that reacts with the substance released into the reactor containment vessel 10, and causes the gas (fluid) released into the reactor containment vessel 10 to react exothermically to generate reaction heat.
- a device that produces is used.
- the reaction material a substance that reacts with any substance released into the reactor containment vessel 10 can be used as long as an exothermic reaction occurs, but a substance that generates heat by reacting with hydrogen or steam is preferably used. Be done.
- a hydrogen recombination catalyst or a metal oxide catalyst that produces water by the reaction of hydrogen and oxygen, an ammonia synthesis catalyst that produces ammonia by the reaction of hydrogen and nitrogen, a hydrogen storage alloy, or the like is used. You can
- Examples of hydrogen recombination catalysts include catalysts in which metals such as palladium and platinum are attached to a carrier.
- Examples of the metal oxide catalyst include catalysts containing a metal such as lithium, sodium, magnesium, calcium, iron, nickel, copper, strontium, silver and cerium.
- Examples of the ammonia synthesis catalyst include catalysts having iron, molybdenum, ruthenium, osmium, etc. as active metals.
- Examples of the hydrogen storage alloy include alloys containing lithium, magnesium, titanium, iron, nickel, lanthanum and the like.
- an indoor installation device is arranged so as to surround the side surface of the liquid container 1.
- the arrangement, the number of installations, the shape, the reaction system, etc. are not particularly limited.
- the non-volatile liquid L1 contained in the liquid container 1 may be heated by any means such as heat conduction from the reactor 14 to the liquid container 1 and heat transfer from the gas heated by the exothermic reaction to the liquid container 1. Good.
- the indoor-installed reactor 14 may be, for example, a chimney type reactor in which a reaction material is placed inside a cylindrical container and a gas passage is provided in the center, or a plurality of reaction materials may be provided in a cylindrical container at intervals. And a parallel type in which gas passages are provided between adjacent reaction materials. The gas flows into the container containing the reaction material from the lower side of the gas passage and comes into contact with the surrounding reaction material to cause an exothermic reaction. The heated gas generates an upward flow in the gas passage and is discharged from the upper side of the gas passage.
- the liquid container 1 may be provided with a jacket type heat exchanger, and the gas discharged from the gas passage of the reactor 14 may be drawn into a heat exchanger provided around the liquid container 1.
- a blower in order to send the gas to the gas passage of the reactor 14.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 and the heat of reaction of the fluid in the reactor containment vessel.
- the gas (fluid) containing the organic iodine in the dry well 11 of the storage container 10 is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the non-volatile liquid L1 is preheated in the liquid container 1 and then transferred to the filter vent container 6, and decomposes the organic iodine from the liquid container 1 to the filter vent container 6.
- the pressure release valve 4 opens.
- the high temperature/high pressure gas in the dry well 11 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is judged that the dry well 11 needs to be vented, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the pressure release valve 4 or may be opened after the pressure release valve 4.
- the isolation valve 5 When the isolation valve 5 is opened, the non-volatile liquid L1 prepared in the liquid container 1 is pushed by the high-temperature and high-pressure gas to decompose the organic iodine and pass through the discharge pipe 2b to the filter vent container 6. Sent.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1, the scrubbing water L2, and the metal filter 7 as in the case of the collection device 100 described above.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the nonvolatile liquid L1 is stored in the dry well 11 in the reactor containment vessel 10.
- the reaction heat of the fluid in the reactor containment vessel 10 the reaction speed between the non-volatile liquid L1 and the organic iodine at the time of venting can be further increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine, the collection efficiency can be increased over a wide range of time including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the reactor 14 that generates reaction heat is provided around the liquid container 1, the reactor 14 is installed when the non-volatile liquid L1 is preheated by the reaction heat.
- the degree of freedom and the degree of freedom of the filling state of the reaction material in the reactor 14 are increased.
- the reactor 14 is arranged around the liquid container 1 and the vicinity of the inlet of the introduction pipe 2a is an open space, it is possible to prevent the vented gas from having a large flow resistance.
- FIG. 8 is sectional drawing which shows typically an example of the organic iodine collection device which concerns on this invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel.
- 3 shows a collector that is heated by the reaction heat of the fluid in the containment vessel.
- the collection device 800 is incorporated in the reactor containment vessel 10 and the filter vent device 20, similarly to the collection device 700 described above.
- the collection device 800 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8.
- An exhaust stack 9 and a reactor 14 are provided.
- the collecting device 800 is different from the collecting device 700 described above in that the collecting device 800 includes a reactor 14 that generates reaction heat in the middle of the introduction pipe 2a.
- the other device configuration of the collecting device 800 is substantially the same as that of the collecting device 700.
- an in-line type device is connected as the reactor 14 in the middle of the introduction pipe 2a.
- the arrangement, the number of connections, the shape, the reaction system, etc. are not particularly limited.
- the non-volatile liquid L1 contained in the liquid container 1 may be heated by any means such as heat conduction from the reactor 14 to the liquid container 1 and heat transfer from the gas heated by the exothermic reaction in the reactor 14. Good.
- Examples of the in-line type reactor 14 include a reactor in which a bulk reaction material is filled in a cylindrical container, a reactor in which a cartridge in which a reaction material is filled in a cylindrical container is incorporated, and a tubular container.
- the reactor and the like in which the reaction materials formed in the container are stacked and arranged. Gas flows into the cylindrical container from one end side of the gas passage and comes into contact with the surrounding reaction material to cause an exothermic reaction. The exothermic gas is discharged from the other end of the gas passage.
- a plurality of in-line type reactors 14 may be connected in parallel and connected to the liquid container 1.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 and the reaction heat of the fluid in the reactor containment vessel,
- the gas (fluid) containing the organic iodine in the dry well 11 of the storage container 10 is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 is preheated in the liquid container 1 and then transferred to the filter vent container 6, and decomposes organic iodine while being further heated by reaction heat from the liquid container 1 to the filter vent container 6.
- the pressure release valve 4 opens.
- the gas containing hydrogen and water vapor in the dry well 11 flows into the reactor 14 through the introduction pipe 2a. Since hydrogen and steam contact with a predetermined reaction material in the reactor 14 to cause an exothermic reaction, the gas flowing into the reactor 14 becomes hotter and flows into the liquid container 1.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by such a gas, and at the same time starts a reaction with the organic iodine in the gas.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is judged that venting of the dry well 11 is necessary at the time of accident of the reactor, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the pressure release valve 4 or may be opened after the pressure release valve 4.
- the isolation valve 5 When the isolation valve 5 is opened, the non-volatile liquid L1 prepared in the liquid container 1 is pushed by the high-temperature and high-pressure gas to decompose the organic iodine and pass through the discharge pipe 2b to the filter vent container 6. Sent.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1, the scrubbing water L2, and the metal filter 7, as in the collection device 700 described above.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the non-volatile liquid L1 is in the dry well 11 in the reactor containment vessel 10.
- the reaction heat of the fluid in the reactor containment vessel 10 the reaction speed between the non-volatile liquid L1 and the organic iodine at the time of venting can be further increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine, the collection efficiency can be increased over a wide range of time including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the reactor 14 which generates heat of reaction since the reactor 14 which generates heat of reaction is provided in the middle of the introduction pipe 2a, the substance inside the reactor containment vessel 10 which causes an exothermic reaction is transferred to the reactor containment vessel.
- the pressure difference between the inside and outside of 10 allows it to flow into the reactor 14. Since it is not necessary to install a blower or the like for sending gas, high collection efficiency can be obtained even when the power is lost.
- FIG. 9 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel, and the non-volatile liquid is heated by heat in the reactor containment vessel.
- 1 shows a collection device that is used.
- the collection device 900 is incorporated in the reactor containment vessel 10 and the filter vent device 20, like the collection device 100 described above.
- the collection device 900 includes a liquid container 1, an upstream vent pipe (2c, 2d, 2e), an isolation valve 5, a filter vent container 6, a metal filter 7, a downstream vent pipe 8, and an exhaust pipe 9.
- the collecting device 900 differs from the collecting device 100 described above in that the gas injection device 15 is connected to the liquid container 1 and that the upstream vent pipes (2c, 2d, 2e) are connected. It is in the piping system involved.
- the other device configuration of the collection device 900 is substantially the same as that of the collection device 100 described above.
- the dry well 11 is connected to a dry event pipe 2 c for venting the gas in the dry well 11.
- An isolation valve 5 is provided in the dry event pipe 2c.
- the wet well 12 is connected to a wet vent pipe 2d for venting the gas in the wet well 12.
- An isolation valve 5 is provided in the wet vent pipe 2d.
- the dry event pipe 2c and the wet vent pipe 2d are joined to the inlet pipe 2e connected downstream, and the other end of the inlet pipe 2e is connected to the filter vent container 6.
- the upstream side vent pipes (2c, 2d, 2e) are pipes for venting the gas (fluid) in the reactor containment vessel 10, and inject the gas (fluid) containing organic iodine into the filter vent vessel 6. It is used to introduce the non-volatile liquid L1.
- the liquid container 1 is installed in the dry well 11 of the containment vessel 10.
- a gas injection device 15 is connected to the inlet side of the liquid container 1 via a gas injection pipe 16.
- the gas injection device 15 is installed outside the reactor containment vessel 10.
- the outlet of the gas injection pipe 16 is open at the upper part inside the liquid container 1.
- a liquid injection pipe 17 is connected to the outlet side of the liquid container 1.
- the inlet of the liquid injection pipe 17 opens at the lower part inside the liquid container 1.
- the other end of the liquid injection pipe 17 is connected to the filter vent container 6.
- the outlet of the liquid injection pipe 17 opens to the liquid phase portion in the filter vent container 6.
- the liquid injection pipe 17 is used to inject the non-volatile liquid L1 prepared in the liquid container 1 into the filter vent container 6.
- the liquid injection pipe 17 is provided with the isolation valve 5.
- the gas injection device 15 is a device for injecting a pressurized gas into the liquid container 1.
- the gas injection pipe 16 is used to send the pressurized gas from the gas injection device 15 to the liquid container 1.
- the non-volatile liquid L1 prepared in the liquid container 1 can be forcibly injected into the filter vent container 6.
- Examples of the gas to be injected include inert gas such as nitrogen gas and argon gas, dry air, and the like.
- inert gas such as nitrogen gas and argon gas, dry air, and the like.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10, so that the dry well 11 of the reactor containment vessel 10 and the wet well 12 are heated.
- at least one gas (fluid) containing organic iodine is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the non-volatile liquid L1 is preheated in the liquid container 1 and then transferred to the filter vent container 6, and decomposes the organic iodine in the filter vent container 6.
- the isolation valve 5 of the liquid injection pipe 17 is opened. Further, the gas injection device 15 starts the pressure feeding of the gas.
- the isolation valve 5 of the liquid injection pipe 17 is opened, the non-volatile liquid L1 prepared in the liquid container 1 is pushed by the gas injected from the gas injection device 15 and pressurized by the gas injection device 15. It is sent to the filter vent container 6 through the liquid injection pipe 17 at a pressure of.
- isolation valve 5 of the dry event pipe 2c and the isolation valve 5 of the wet vent pipe 2d is opened.
- These isolation valves 5 may be opened simultaneously with the isolation valve 5 of the liquid injection pipe 17, or may be opened later than the isolation valve 5 of the liquid injection pipe 17.
- the isolation valve 5 is opened, the high temperature and high pressure gas in the dry well 11 and the high temperature and high pressure gas in the wet well 12 pass through the upstream side vent pipes (2c, 2d, 2e) and the filter vent container. Sent to 6.
- the radioactive substance contained in the vented gas is collected by the non-volatile liquid L1, the scrubbing water L2, and the metal filter 7 as in the case of the collection device 100 described above.
- FIG. 9 only one system is provided as a system constituted by the liquid container 1, the gas injection device 15, the gas injection pipe 16, and the liquid injection pipe 17, but such a system is It is also possible to provide a plurality. For example, a part of the system can be used when an accident occurs in the nuclear reactor, and the remaining system can be used when the accident in which the temperature in the filter vent container 6 is likely to drop is converged.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the nonvolatile liquid L1 is stored in the dry well 11 in the reactor containment vessel 10. Since it is heated by the heat of, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine, the collection efficiency can be increased over a wide range of time including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the gas inside the reactor containment vessel 10 does not pass through the liquid vessel 1 but only through the upstream side vent pipes (2c, 2d, 2e), and the filter vent Since the gas is sent to the container 6, it is possible to prevent the vented gas from having a large flow resistance. Further, since the gas injection device 15 is provided, the non-volatile liquid L1 can be forcibly injected into the filter vent container 6 without using the pressure difference between the inside and outside of the reactor containment vessel 10, and it is used. The degree of freedom of the head of the non-volatile liquid L1 can be increased.
- FIG. 10 is sectional drawing which shows typically an example of the organic iodine collection device which concerns on this invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed outside the reactor containment vessel, and the non-volatile liquid is heated by the reaction heat of the fluid in the reactor containment vessel.
- 1 shows a collection device that is used.
- the collection device 1000 As shown in FIG. 10, the collection device 1000 according to the present embodiment is incorporated in the filter vent device 20.
- the collecting apparatus 1000 like the collecting apparatus 800, has an upstream vent pipe (2c, 2d, 2e), an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8. And an exhaust stack 9 and a reactor 14.
- the collecting device 1000 according to the present embodiment is different from the collecting device 800 described above in that the liquid container 1 is not provided and the nonvolatile liquid L1 is prepared in the filter vent container 6, and the vent pipe (2c , 2d, 2e) is provided with a reactor 14 that generates heat of reaction.
- the other device configuration of the collection device 1000 is substantially the same as that of the collection device 800 described above.
- the dry well 11 is connected to a dry event pipe 2c for venting the gas in the dry well 11.
- An isolation valve 5 is provided in the dry event pipe 2c.
- the wet well 12 is connected to a wet vent pipe 2d for venting the gas in the wet well 12.
- An isolation valve 5 is provided in the wet vent pipe 2d.
- the dry event pipe 2c and the wet vent pipe 2d are joined to the inlet pipe 2e connected downstream, and the other end of the inlet pipe 2e is connected to the filter vent container 6.
- the upstream vent pipes (2c, 2d, 2e) are pipes for venting the gas (fluid) in the reactor containment vessel 10, and the gas (fluid) containing organic iodine is prepared in the filter vent vessel 6. It is used to introduce the non-volatile liquid L1.
- a non-volatile liquid L1 and scrubbing water L2 are prepared in the filter vent container 6.
- a liquid having a specific gravity smaller than that of the scrubbing water L2 is preferably used as the non-volatile liquid L1.
- the non-volatile liquid L1 is phase-separated from the scrubbing water L2 to form the upper layer, so that the volatilization of the organic iodine and the secondarily generated elemental iodine is prevented. It can be reliably blocked by L1.
- a scrubber nozzle (not shown) formed of, for example, multiple venturi nozzles can be attached to the outlet of the inlet pipe 2e.
- an in-line type device is connected as the reactor 14 in the middle of the inlet pipe 2e.
- the arrangement, the number of connections, the shape, the reaction system, etc. are not particularly limited.
- the non-volatile liquid L1 contained in the filter vent container 6 may be heated using any of heat conduction from the reactor 14 and heat transfer from the gas heated by the exothermic reaction in the reactor 14.
- the in-line type reactor 14 a reactor in which a bulk reaction material is filled in a cylindrical container or a cartridge in which the reaction material is filled in a cylindrical container is used as in the collecting device 800. It is possible to use a built-in reactor, a reactor in which reaction materials formed in a cylindrical container are stacked and arranged, and the like.
- a plurality of in-line type reactors 14 can be installed in parallel and attached to the filter vent container 6. Further, the filter vent container 6 may be arranged at a position in contact with the liquid phase portion or a position submerged in the liquid phase portion.
- the non-volatile liquid L1 contained in the filter vent container 6 is heated by the reaction heat of the fluid in the reactor containment vessel, so that the dry well 11 and the wet well 12 of the reactor containment vessel 10 are heated.
- at least one gas (fluid) containing organic iodine is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 decomposes organic iodine while being heated in the filter vent container 6.
- the isolation valve 5 of the dry event pipe 2c and the isolation valve 5 of the wet vent pipe 2d are determined. At least one of which is open.
- the isolation valve 5 is opened, the gas containing hydrogen and water vapor in the dry well 11 and the gas containing hydrogen and water vapor in the wet well 12 react through the upstream vent pipes (2c, 2d, 2e). Flows into the container 14. Since hydrogen and water vapor generate an exothermic reaction when coming into contact with a predetermined reaction material filled in the reactor 14, the gas flowing into the reactor 14 becomes higher in temperature and flows into the filter vent container 6.
- the non-volatile liquid L1 prepared in the filter vent container 6 is further heated by such a gas and at the same time starts a reaction with the organic iodine in the gas.
- the organic iodine contained in the vented gas reacts with the non-volatile liquid L1 and is decomposed into iodine ions and organic matter. Further, dissociated iodine ions, aerosols, inorganic iodine, etc. contained in the vented gas are dissolved and aggregated in the non-volatile liquid L1 and the scrubbing water L2 and collected. The aerosol released into the gas phase without being collected into the liquid phase is collected into the metal filter 7. After that, the gas from which the radioactive substance has been removed is released into the environment through the exhaust stack 9.
- the non-volatile liquid L1 is heated by the reaction heat of the fluid in the reactor containment vessel 10, the reaction between the non-volatile liquid L1 and the organic iodine during venting.
- the speed can be increased.
- the non-volatile liquid L1 can be preheated by the reaction heat before coming into contact with a large amount of organic iodine, and even if the temperature inside the reactor containment vessel 10 is not sufficiently high, if the hydrogen concentration or the water vapor concentration is high. Since it can be heated to a high temperature, the collection efficiency can be increased over a wide period including the early stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the reactor 14 that generates heat of reaction is provided in the middle of the inlet pipe 2e, the substance in the reactor containment vessel 10 that causes an exothermic reaction is removed from the reactor containment vessel.
- the pressure difference between the inside and outside of 10 allows it to flow into the reactor 14. Since it is not necessary to install a blower or the like for sending gas, high collection efficiency can be obtained even when the power is lost. Further, since the liquid container 1 is not required, the reaction rate of the non-volatile liquid L1 and the organic iodine can be increased without providing the installation place of the liquid container 1 inside and outside the reactor containment vessel 10.
- FIG. 11 is sectional drawing which shows typically an example of the organic iodine collection device which concerns on this invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed in a dry well in the reactor containment vessel, and the non-volatile liquid is heated by heat in the reactor containment vessel.
- 1 shows a collection device that is used.
- the collection device 1100 is incorporated in the reactor containment vessel 10 and the filter vent device 20, similarly to the collection device 200 described above.
- the collector 1100 includes a liquid container 1, an upstream vent pipe (2a, 2b), a pressure release valve 4, an isolation valve 5, a filter vent container 6, a metal filter 7, and a downstream vent pipe 8. , And an exhaust stack 9.
- the collection device 1100 according to the present embodiment is different from the collection device 200 described above in that it includes a heater 18 installed around the liquid container 1 and an emergency power supply 19 connected to the heater 18. That is the point.
- the other device configuration of the collection device 1100 is substantially the same as that of the collection device 200.
- the heater 18 is a device that is driven by an emergency power source 19 to generate heat, and is provided to further heat the nonvolatile liquid L1 heated by the heat in the reactor containment vessel 10.
- the output of the heater 18 may be controlled to be constant, or the output may be variably controlled.
- the heater 18 can be controlled, for example, so that the nonvolatile liquid L1 is maintained at a predetermined temperature or higher.
- a red heat radiant heater such as a halogen heater, a panel heater such as a ceramic heater or a quartz heater, a liquid filling radiant heater such as an oil heater, a fan heater such as an electric fan heater, an air conditioner, a duct heater, or the like.
- Various heating devices such as a convection heater can be used.
- the heater 18 an indoor installation device is arranged so as to surround the side surface of the liquid container 1.
- the heater 18 is an indoor installation type, the arrangement, the number of installations, the shape, the heating method, and the like are not particularly limited.
- the non-volatile liquid L1 contained in the liquid container 1 may be heated using any of heat conduction from the heater 18 to the liquid container 1 and heat transfer from the gas heated by the heater 18 to the liquid container 1. ..
- the emergency power supply 19 is a power supply that can operate even in the event of a nuclear reactor accident, and is used to supply power to the heater 18 when the power supply is lost.
- the emergency power source 19 various power sources such as a diesel generator, a gas turbine generator and a storage battery can be used.
- the emergency power supply 19 may be a stationary power supply that is always connected to the heater 18, or a mobile power supply such as a power supply vehicle that is connected in an emergency.
- the non-volatile liquid L1 contained in the liquid container 1 is heated by the heat in the dry well 11 of the reactor containment vessel 10 and the heat generated by the heater 18, and the non-volatile liquid L1 of the reactor containment vessel 10 is heated.
- the gas (fluid) containing the organic iodine in the dry well 11 is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 decomposes organic iodine while being heated in the liquid container 1.
- the pressure release valve 4 opens.
- the high temperature/high pressure gas in the dry well 11 flows into the liquid container 1 through the introduction pipe 2a.
- the non-volatile liquid L1 prepared in the liquid container 1 is further heated by the contact with the inflowing gas, and starts the reaction with the organic iodine in the gas.
- the heater 18 When the pressure inside the reactor containment vessel 10 becomes high and it is determined that the dry well 11 needs to be vented, the heater 18 is activated.
- the heater 18 may be activated simultaneously with the opening of the pressure release valve 4, may be activated before the opening of the pressure release valve 4, or may be activated after the opening of the pressure release valve 4. ..
- the heater 18 When the heater 18 is activated, the non-volatile liquid L1 prepared in the liquid container 1 is further heated to a temperature higher than the temperature inside the dry well 11.
- the organic iodine contained in the vented gas reacts with the non-volatile liquid L1 and is decomposed into iodine ions and organic matter. Further, dissociated iodine ions, aerosols contained in the vented gas, inorganic iodine, etc. are dissolved in the non-volatile liquid L1 and collected.
- the heating of the non-volatile liquid L1 by the heater 18 may be performed continuously while the vented gas flows into the liquid container 1, or may be performed intermittently.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is determined that the dry well 11 and the liquid vessel 1 need to be vented, the isolation valve 5 is opened.
- the isolation valve 5 may be opened simultaneously with the activation of the heater 18, or may be opened after the activation of the heater 18.
- the isolation valve 5 When the isolation valve 5 is opened, the radioactive substance which is not collected in the liquid phase in the liquid container 1 and released in the gas phase is sent to the filter vent container 6 through the discharge pipe 2b.
- the radioactive substances remaining in the vented gas are dissolved/aggregated in the scrubbing water L2 and collected.
- the aerosol released into the gas phase without being collected into the liquid phase is collected into the metal filter 7. After that, the gas from which the radioactive substance has been removed is released into the environment through the exhaust stack 9.
- the liquid container 1 is installed in the dry well 11 in the reactor containment vessel 10, and the non-volatile liquid L1 is in the dry well 11 in the reactor containment vessel 10. Since it is heated by the heat and the heater 18, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine and is also heated during the reaction, the collection efficiency can be increased over a wide period including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the heater 18 connected to the emergency power supply 19 is provided around the liquid container 1, even if the temperature inside the reactor containment vessel 10 is not sufficiently high, The nonvolatile liquid L1 can be reliably preheated to a temperature at which a high reaction rate can be obtained. Since the heater 18 can heat the non-volatile liquid L1 even when the power supply is lost or the accident in which the temperature inside the reactor containment vessel 10 becomes low, the heater 18 can improve the collection efficiency over a wider period. Can be maintained.
- FIG. 12 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed outside the reactor containment vessel, and the non-volatile liquid is heated by the heat inside the reactor containment vessel.
- FIG. 12 is a cross-sectional view schematically showing an example of the organic iodine collection device according to the present invention.
- a liquid container containing a non-volatile liquid capable of decomposing organic iodine is installed outside the reactor containment vessel, and the non-volatile liquid is heated by the heat inside the reactor containment vessel.
- the collection device 1200 is incorporated in the reactor containment vessel 10 and the filter vent device 20, similarly to the collection device 300 described above.
- the collection device 1200 includes a liquid container 1, an upstream vent pipe (introduction pipe) 2f, an isolation valve 5, a filter vent container 6, a metal filter 7, a downstream vent pipe 8, an exhaust pipe 9,
- the circulation pipe 13 is provided.
- the collection device 1200 according to the present embodiment is different from the collection device 300 described above in that the liquid container 1 is not provided and the non-volatile liquid L1 is prepared in the filter vent container 6.
- the other device configuration of the collection device 1200 is substantially the same as that of the collection device 300 described above.
- the dry well 11 is connected to an upstream vent pipe 2f for venting the gas in the dry well 11.
- the other end of the upstream vent pipe 2f is connected to the filter vent container 6.
- the outlet of the upstream vent pipe 2f opens at the liquid phase portion in the filter vent container 6.
- the upstream vent pipe 2f is used to introduce the gas (fluid) containing the organic iodine in the reactor containment vessel 10 into the non-volatile liquid L1.
- the isolation valve 5 is provided in the upstream vent pipe 2f.
- a non-volatile liquid L1 is prepared in the filter vent container 6.
- a scrubber nozzle (not shown) formed of, for example, multiple venturi nozzles can be attached to the outlet of the upstream vent pipe 2f. Further, it is possible to provide a baffle that exerts resistance to the high temperature and high pressure gas jetted into the liquid.
- the circulation pipe 13 forms a closed ring-shaped flow path that returns from the filter vent container 6 to the filter vent container 6 through the dry well 11 of the reactor containment vessel 10, similarly to the liquid container 1 of the collection device 300. doing.
- One end of the circulation pipe 13 is connected to the lower part of the filter vent container 6, and the other end is connected to the upper side thereof.
- the middle portion of the circulation pipe 13 is inside the dry well 11, and the pipe line is laid vertically so as to extend along the vertical direction.
- the non-volatile liquid L1 contained in the filter vent container 6 is heated by the heat in the dry well 11 of the reactor containment vessel 10 to remove the organic iodine in the dry well 11 of the reactor containment vessel 10.
- the contained gas (fluid) is passed through the heated non-volatile liquid L1, and the organic iodine contained in the gas is decomposed into the non-volatile liquid L1 and collected.
- the nonvolatile liquid L1 decomposes organic iodine while being heated in the filter vent container 6.
- the isolation valve 5 When the pressure inside the reactor containment vessel 10 becomes high and it is judged that the dry well 11 needs to be vented, the isolation valve 5 is opened. When the isolation valve 5 is opened, the high temperature/high pressure gas in the dry well 11 flows into the filter vent container 6 through the upstream vent pipe 2f. The non-volatile liquid L1 prepared in the filter vent container 6 is further heated by contact with the inflowing gas, and at the same time, starts to react with the organic iodine in the gas.
- the organic iodine contained in the vented gas reacts with the non-volatile liquid L1 and is decomposed into iodine ions and organic matter. Further, dissociated iodine ions, aerosols and inorganic iodine contained in the vented gas are dissolved and aggregated in the non-volatile liquid L1 and collected. The aerosol released into the gas phase without being collected into the liquid phase is collected into the metal filter 7. After that, the gas from which the radioactive substance has been removed is released into the environment through the exhaust stack 9.
- the liquid container 1 is installed outside the reactor containment vessel 10, but the non-volatile liquid L1 is generated by the heat in the reactor containment vessel 10 through the circulation pipe 13. Since it is heated, the reaction rate between the non-volatile liquid L1 and the organic iodine at the time of venting can be increased without providing a place for installing the liquid container 1 in the reactor containment vessel 10. Since the non-volatile liquid L1 is preheated before coming into contact with a large amount of organic iodine and is also heated during the reaction, the collection efficiency can be increased over a wide period including the initial stage of venting. Therefore, it is possible to provide an apparatus/method capable of efficiently collecting organic iodine in the reactor containment vessel.
- the nonvolatile liquid L1 in the filter vent container 6 is entirely heated by natural circulation, it is not necessary to forcibly circulate with the pump or the like, and power is lost. High collection efficiency can be obtained even at times. Further, the non-volatile liquid L1 and the organic iodine can be efficiently reacted because they are agitated by natural circulation.
- the present invention is not limited to the above embodiments and does not depart from the technical scope. As long as various modifications are included.
- the above embodiments are not necessarily limited to those having all the configurations described.
- each of the collection devices and collection methods described above may be applied to either dry event or wet vent.
- the system of the liquid container 1 and the discharge pipe can be moved to the wet well 12 side to configure the device.
- the collection devices 200, 700, 800, 1100, 1200 can be applied to the vent of the wet well 12.
- each of the above-mentioned collecting devices it is possible to incorporate a plurality of types of mechanisms in one liquid container 1 and filter vent container 6.
- At least one of the in-line reactor 14, the gas injection device 15 of the collection device 900, and the heater 18 of the collection device 1100 may be incorporated in one liquid container 1.
- each of the collection devices described above may be provided with a plurality of lines of the liquid container 1, the introduction pipe, and the discharge pipe.
- the plurality of series may be configured to have the same mechanism or different mechanisms.
- the first liquid container 1 including the indoor-installed reactor 14 and the gas injection device 15 and the second liquid container 1 including the in-line reactor 14 and the heater 18 are provided in the dry well 11. It can also be installed.
- the second liquid container 1 it is possible to use the preheated nonvolatile liquid L1 while supplementing the lack of reaction heat with the heater 18. Further, according to the first liquid container 1, the non-volatile liquid L1 preheated by using the reaction heat can be injected by the gas injection device 15 at a necessary time.
- the first liquid container 1 having the heater 18 and the second liquid container 1 having the indoor-installed reactor 14 and the in-line reactor 14 may be installed in the dry well 11. it can.
- the non-volatile liquid L1 can be preheated by maximally utilizing the heat of reaction.
- the non-volatile liquid L1 can be preheated by using the heater 18 even when the reaction heat is insufficient.
- the liquid container 1 with the circulation pipe 13 of the collection device 500 may be provided with the heater 18 and the in-line type reactor 14. According to such a liquid container 1, heat exchange with the dry well 11, heat of reaction of hydrogen/steam in the wet well 12, and heat of the heater 18 compensate for each other's lack of heat, and a stable nonvolatile liquid L1 is obtained. Can be preheated.
- the filter vent container 6 with the circulation pipe 13 of the collection device 1200 may be provided with the heater 18 and the in-line type reactor 14. According to such a filter vent container 6, heat exchange with the dry well 11, heat of reaction of hydrogen/steam in the dry well 11, and heat of the heater 18 compensate for the lack of heat and stabilize the nonvolatile liquid. L1 can be preheated.
- each of the above-mentioned collecting devices and collecting methods other ionic liquids, surfactant solutions and the like may be used in combination with the non-volatile liquid L1 and the scrubbing water L2.
- each of the above-mentioned collection devices may be provided with other pipes and equipment in addition to the illustrated pipes and equipment.
- each collecting device may be provided with a bypass pipe for dry well vent that does not pass the liquid container 1, a bypass pipe for wet well vent that does not pass the liquid container 1, and the like.
- the circulation pipe 13 may be passed through the dry well 11, the wet well 12, or both of them.
- the type of reactor is not particularly limited.
- reactors such as boiling water reactor (BWR), advanced boiling water reactor (ABWR), and pressurized water reactor (PWR).
- BWR boiling water reactor
- ABWR advanced boiling water reactor
- PWR pressurized water reactor
- Ionic liquids and the like that can be used as the non-volatile liquid L1 have been put to practical use for general industries. Ionic liquids and the like contaminated with radioactive substances can be treated and regenerated by, for example, the method described in JP-A-2003-507185.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Treating Waste Gases (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
本発明は、原子炉格納容器内の有機よう素を効率的に捕集可能な有機よう素捕集装置及び有機よう素捕集方法を提供するものである。原子炉格納容器(10)内の有機よう素を捕集する有機よう素捕集装置(100)であって、有機よう素を分解可能な不揮発性液体(L1)(例;イオン液体、界面活性剤溶液等)を入れた液体容器(1)と、原子炉格納容器(10)内の有機よう素を含む流体を不揮発性液体(L1)に導入するための導入配管(2a)とを備え、不揮発性液体(L1)は、原子炉格納容器(10)内の熱、又は、原子炉格納容器(10)内の流体の反応熱によって加熱されてから有機よう素を分解して捕集する。有機よう素捕集方法は、有機よう素を分解可能な不揮発性液体(L1)を、原子炉格納容器(10)内の熱、又は、原子炉格納容器(10)内の流体の反応熱によって加熱し、有機よう素を含む流体を加熱された不揮発性液体(L1)に通し、有機よう素を不揮発性液体(L1)に分解させて捕集する。
Description
本発明は、原子炉から放出される放射性有機よう素をはじめ、蒸気等の流体中に含まれる有機よう素を捕集する有機よう素捕集装置、及び、有機よう素捕集方法に関する。
原子炉施設には、原子炉から放出された放射性物質が環境中に漏洩するのを防止するために、フィルタベント装置が設置されている。原子炉の事故で炉心が損傷したり、格納容器内の圧力が異常上昇したりすると、格納容器が破損して大規模漏洩に至るため、格納容器内の蒸気が未然にベントされる。高温・高圧の蒸気は、原子炉から格納容器内に放出されると、フィルタベント装置に通され、大気中に放出される前に主要な放射性物質を除去される。
原子炉の事故時に発生する放射性物質としては、希ガス、エアロゾル、無機よう素、有機よう素等がある。フィルタベント装置によると、希ガスを除くこれらの放射性物質が容器内に捕集され、環境への放出が防止される。一般に、フィルタベント装置は、特許文献1に記載されるように、容器内に、湿式フィルタとして働くスクラビング水を保持し、乾式フィルタである金属フィルタを内蔵している。
スクラビング水は、チオ硫酸ナトリウムと水酸化ナトリウム等を溶解した水溶液であり、ベントされた蒸気は、スクラビング水中に放出される。チオ硫酸ナトリウムとの反応でイオン化した無機よう素(元素状よう素)や、親水性のエアロゾルは、スクラビング水に溶解することで捕集されている。また、気相に放出されたエアロゾルは、金属フィルタに付着・衝突して捕集されている。有機よう素は、特許文献2に記載されるように、銀ゼオライトや活性炭等の乾式フィルタで捕集されている。
原子炉から放出される有機よう素は、よう化メチルをはじめとして水に難溶であり、ベント時に圧力抑制室のプール水やスクラビング水に導入されても、十分には捕集されない。また、よう化メチル等の有機よう素は、原子炉からの排気過程で、元素状よう素の反応によって新生することもある。これらの理由で、有機よう素は漏洩を阻止するのが難しい放射性物質となるため、有機よう素を効率的に捕集できるフィルタベント装置が求められている。
有機よう素を捕集するための捕集材としては、銀ゼオライトや活性炭が知られている(特許文献2参照)。しかし、これらの捕集材は、水分が付着した場合に捕集効率が低下するため、特許文献2のように湿分を除去する機構を必要とし、フィルタベント装置の構造を複雑化させる。また、これらの捕集材は大量に必要なため、特許文献2のように特別な装置設計や複雑な装置構造を要したり、捕集材自体のコストが嵩んだりする。
そこで、本発明は、原子炉格納容器内の有機よう素を効率的に捕集可能な有機よう素捕集装置及び有機よう素捕集方法を提供することを目的とする。
前記課題を解決するために本発明に係る有機よう素捕集装置は、原子炉格納容器内の有機よう素を捕集する有機よう素捕集装置であって、有機よう素を分解可能な不揮発性液体を入れた液体容器と、原子炉格納容器内の有機よう素を含む流体を前記不揮発性液体に導入するための導入配管と、を備え、前記不揮発性液体は、前記原子炉格納容器内の熱、又は、前記原子炉格納容器内の流体の反応熱によって加熱されてから前記有機よう素を分解して捕集する。
また、本発明に係る有機よう素捕集方法は、原子炉格納容器内の有機よう素を捕集する有機よう素捕集方法であって、有機よう素を分解可能な不揮発性液体を、原子炉格納容器内の熱、又は、原子炉格納容器内の流体の反応熱によって加熱し、前記原子炉格納容器内の有機よう素を含む流体を、加熱された前記不揮発性液体に通し、前記有機よう素を前記不揮発性液体に分解させて捕集する。
本発明によると、原子炉格納容器内の有機よう素を効率的に捕集可能な有機よう素捕集装置及び有機よう素捕集方法を提供することができる。
以下、本発明の一実施形態に係る有機よう素捕集装置、及び、有機よう素捕集方法について、図を参照しながら説明する。なお、以下の各図において、主機能が共通する構成については同一の符号を付して重複した説明を省略する。
本実施形態に係る有機よう素捕集装置、及び、有機よう素捕集方法は、原子炉の事故時に実施するフィルタベントに際し、原子炉格納容器内に放出された有機よう素を含むガス(流体)を、湿式フィルタとして働く不揮発性液体に通し、ガス中の有機よう素を不揮発性液体に分解させて捕集するものである。この装置・方法では、放射性有機よう素をイオンの状態に分解して隔離下の容器内に捕集する。
不揮発性液体としては、160℃程度よりも低温で実質的に揮発しない不揮発性の液体が用いられる。原子炉の事故時には、160℃前後の高温の蒸気のベントが想定されている。湿式フィルタとして働く液体が不揮発性であれば、ベント時に高温・高圧のガスが導入されたとしても、液体自体が揮散するのを避けることができる。不揮発性液体としては、200℃よりも低温で実質的に揮発しないものがより好ましい。
また、不揮発性液体としては、有機よう素を分解する作用を示す液体が用いられる。湿式フィルタとして働く液体が有機よう素を分解可能であると、放射性有機よう素から放射性よう素イオンを解離させることができる。よう素イオンは、有機よう素と比較して液相中でより安定なため、放射性有機よう素を液相に捕集して環境への漏洩を確実に防止することができる。
不揮発性液体としては、例えば、イオン液体、界面活性剤溶液、これらの混合液等を用いることができる。特に好ましい不揮発性液体は、イオン液体である。イオン液体によると、160℃以下で実質的に揮発しない不揮発性、160℃前後の高温に耐える耐熱性、高い耐放射線性、高い化学的安定性、高い電気的安定性等が得られる。また、液体同士の相溶性の制御や、液体同士の比重の制御を、多種多様なイオンの組み合わせに基づいて容易に行うことができる。
イオン液体を構成するカチオンとしては、例えば、ホスホニウム、アンモニウム、スルホニウム、ピロリジニウム、ピペリジニウム等の有機カチオンが挙げられる。
イオン液体を構成するカチオンとしては、鎖状の炭素鎖を有する有機カチオンや、環状の炭素鎖を有する有機カチオン等のいずれであってもよいが、炭素数が2以上の炭素鎖を有する有機カチオンが好ましい。このような嵩高い有機カチオンであると、有機よう素とカチオンとの反応速度が高くなるため、有機よう素を高い捕集効率で捕集することができる。
イオン液体を構成するアニオンとしては、例えば、ハロゲン、テトラフルオロボレート、ヘキサフルオロホスフェート等の無機アニオンや、アセテート、スルホネート、イミデート等の有機アニオンが挙げられる。ハロゲンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、よう化物イオン等が挙げられる。
イオン液体を構成するアニオンとしては、有機よう素を分解する作用が強い点で、求核性が高いイオンが好ましい。アニオンとしては、求核性が高い点、熱分解や加水分解を生じ難い点、フィルタベント容器に注入された場合にスクラビング水のpHを変化させ難い点等から、ハロゲン、イミデート、又は、テトラフルオロボレートがより好ましい。
イオン液体を構成するハロゲンとしては、安全性と求核性が高い点で、塩化物イオンが好ましい。また、元素状よう素の揮発による放射性物質の漏洩を避ける点からは、非放射性のよう化物イオンが好ましい。放射性有機よう素を一旦分解して捕集したとしても、液相に捕捉した放射性よう素イオンが、液相中のよう素イオンと反応して、揮発性の元素状よう素を生成する可能性がある。イオン液体を構成するハロゲンが非放射性のよう化物イオンであると、元素状よう素を生成する確率を低くすることができる。
不揮発性液体の具体例としては、トリヘキシル(テトラデシル)ホスホニウムクロリド、トリヘキシル(テトラデシル)ホスホニウムジシアナミド等が挙げられる。不揮発性液体としては、有機よう素を分解する能力が高い点等から、トリヘキシル(テトラデシル)ホスホニウムクロリドが特に好ましい。
通常、有機よう素の分解反応は、有機よう素を含むガスが求核性が高い液体に導入されたとき、結合性よう素への攻撃によって速やかに開始される。しかし、従来一般的な湿式フィルタは、原子炉の事故前には、常温下におかれている。原子炉の事故時には、原子炉格納容器内の高温・高圧のガスがベントされて湿式フィルタに通されるが、ベントの初期には、湿式フィルタが低温のままである可能性がある。
そこで、本実施形態に係る有機よう素捕集装置、及び、有機よう素捕集方法では、有機よう素を分解可能な不揮発性液体を加熱してから有機よう素を分解する。不揮発性液体は、原子炉格納容器内の熱や、原子炉格納容器内の物質の反応熱や、これらの両方を利用して、常温を超える任意の温度まで加熱することができる。また、不揮発性液体は、有機よう素を含むガスを不揮発性液体に導入する前に加熱してもよいし、有機よう素を含むガスを不揮発性液体に導入しながら加熱してもよい。
図1は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図1には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図1には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図1に示すように、本実施形態に係る捕集装置100は、原子炉圧力容器を内包した原子炉格納容器10と、原子炉格納容器10内の蒸気(ガス)を放射性物質を除去して環境中に放出するフィルタベント装置20と、に組み込まれている。捕集装置100は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、を備えている。
原子炉格納容器10は、原子炉圧力容器が収納されたドライウェル11と、圧力抑制プールが形成されたウェットウェル12と、を有している。ウェットウェル12には、プール水が溜められる。ドライウェル11中に放出された蒸気や、主蒸気系から過圧で逃された蒸気は、不図示のベント管を介してウェットウェル12に流入することができる。高温・高圧のガスがプール水で凝縮されることにより、原子炉格納容器10内の圧力が抑制される。
捕集装置100において、ドライウェル11には、原子炉格納容器10内のガスをベントするための上流側ベント配管(2a,2b)が接続されている。上流側ベント配管(2a,2b)の途中には、液体容器1が連結されている。液体容器1は、原子炉格納容器10のドライウェル11内に設置されている。
液体容器1は、有機よう素を分解可能な不揮発性液体L1を入れる密閉型の容器である。液体容器1には、湿式フィルタとして働く不揮発性液体L1が、原子炉の事故に備えて用意される。液体容器1の形状、容量、不揮発性液体L1の量は、特に制限されるものではない。液体容器1には、不揮発性液体L1を効率的に加熱するために、熱交換用のフィン、チューブ等を設けてもよい。
液体容器1の入口側には、上流側ベント配管を構成する導入配管2aが接続されている。導入配管2aの入口は、原子炉格納容器10内のドライウェル11に開口している。また、導入配管2aの出口は、液体容器1内の上部に開口している。
導入配管2aは、原子炉格納容器10内のガス(流体)をベントするための配管であり、有機よう素を含むガス(流体)を不揮発性液体L1に導入するために用いられる。導入配管2aには、圧力開放弁4が設けられている。圧力開放弁4は、大気圧を超える所定の設定圧力で開放される常閉型の弁である。
また、液体容器1の出口側には、上流側ベント配管を構成する排出配管2bが接続されている。排出配管2bの入口は、液体容器1内の下部に開口している。また、排出配管2bの他端は、フィルタベント容器6に接続されている。排出配管2bの出口は、フィルタベント容器6内の液相部に開口している。
排出配管2bは、原子炉格納容器10内のガス(流体)をベントするための配管であり、不揮発性液体L1に導入されたガス(流体)を液体容器1から排出するために用いられる。排出配管2bには、隔離弁5が設けられている。隔離弁5は、手動操作又は自動操作により開閉自在な常閉型の弁である。
フィルタベント容器6は、ベントされたガスを凝縮させると共に、ガスに含まれている放射性物質を除去するために用いられる。フィルタベント容器6には、スクラビング水L2が用意される。スクラビング水L2は、チオ硫酸ナトリウムや、水酸化ナトリウム等のアルカリを溶解した水溶液とされる。排出配管2bの出口には、例えば、多連のベンチュリノズル等で形成される不図示のスクラバノズルを取り付けることができる。スクラバノズルによると、ベントされたガスを、微細な気泡として液体中に噴出させることができる。
フィルタベント容器6は、容器内の上部に金属フィルタ7を備えている。金属フィルタ7は、金属繊維、金属メッシュ等が積層されることによって形成される。金属フィルタ7によると、容器内の気相に放出されたエアロゾルを、金属への付着、衝突等によって捕集することができる。
フィルタベント容器6において、金属フィルタ7の二次側には、下流側ベント配管8が接続されている。下流側ベント配管8の他端は、排気筒9に接続されている。排気筒9は、原子炉格納容器10内からベントされたガスを環境中に放出するために備えられる。
フィルタベント容器6は、液体中に噴出させた高温・高圧のガスに対して抵抗を及ぼす不図示のバッフルを備えることもできる。バッフルとしては、例えば、オリフィス状の邪魔板や、螺旋板や、金属メッシュ、パンチングメタル等の多孔板や、セラミック等の多孔質体等を、フィルタベント容器6内の液相部の高さに設けることができる。
フィルタベント容器6に流入する有機よう素は、ガス状であると推定される。ガス状の有機よう素の液体への溶解や、有機よう素の分解は、気泡内での拡散泳動、熱泳動、ブラウン拡散、対流等で進行すると考えられる。フィルタベント容器6内にバッフルを設けると、液体中に噴出させた気泡の滞留時間が長くなり、有機よう素と液体との接触時間が長くなるため、有機よう素の捕集効率が高められる。
次に、捕集装置100を用いた有機よう素の捕集方法について具体的に説明する。
原子炉において、圧力容器が破損するような重大事故が発生したとき、格納容器内には、冷却水等の蒸発による高温・高圧の蒸気と共に、種々の放射性物質が放出される。原子炉の出力や事故のシナリオにもよるが、格納容器が破損する過酷事故時には、約1kg程度の放射性有機よう素が放出されると試算されている。有機よう素の主成分としては、揮発性を有するよう化メチル(CH3I)が想定されている。
原子炉に重大事故が発生し、格納容器内の圧力が過度に高くなると、格納容器が破損して放射性物質の大規模漏洩が生じる。そのため、このような事象を防ぐ措置として、ベントが実施される。ベントされるガス(蒸気)には、希ガス、エアロゾル、無機よう素、有機よう素等の放射性物質が含まれている。これらの放射性物質は、フィルタベント装置20によって捕集されて環境への漏洩が防止される。
捕集装置100では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で予熱されてからフィルタベント容器6に移送され、液体容器1からフィルタベント容器6にかけて有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。不揮発性液体L1は、原子炉構造材から液体容器1への熱伝導、空間中のガスから液体容器1への熱伝達、原子炉構造材や空間中のガスからの輻射等のいずれによって加熱してもよい。
原子炉の事故時に、原子炉格納容器10内に高温・高圧のガスが放出され、原子炉格納容器10内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ドライウェル11内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、圧力開放弁4と同時に開放してもよいし、圧力開放弁4よりも後に開放してもよい。隔離弁5が開放されると、液体容器1に用意された不揮発性液体L1は、高温・高圧のガスに押され、有機よう素を分解しながら、排出配管2bを通ってフィルタベント容器6に送られる。
原子炉格納容器10内からベントされたガスは、不揮発性液体L1と共にフィルタベント容器6の液体中に噴出する。ベントされたガスは、用意された不揮発性液体L1の全てが液体容器1から排出された後は、フィルタベント容器6内の不揮発性液体L1に通される。
フィルタベント容器6では、ベントされたガスに含まれる有機よう素が、不揮発性液体L1と反応して、よう素イオンと有機物とに分解される。また、解離したよう素イオンや、ベントされたガスに含まれるエアロゾル、無機よう素等が、不揮発性液体L1やスクラビング水L2に溶解して捕集される。液相に捕集されず気相に放出されたエアロゾルは、金属フィルタ7に捕集される。その後、放射性物質が除去されたガスは、排気筒9を通じて環境中に放出される。
不揮発性液体L1としては、親水性(易水溶性)の物質からなる液体を用いてもよいし、疎水性(難水溶性)の物質からなる液体を用いてもよい。不揮発性液体L1が親水性であると、不揮発性液体L1とスクラビング水L2とが混和し易くなる。親水性の放射性物質は、溶解によって捕集され易くなり、疎水性の放射性物質は、凝集・沈降によって捕集され易くなる。一方、不揮発性液体L1が疎水性であると、疎水性の放射性物質が不揮発性液体L1に捕集され易くなり、親水性の放射性物質がスクラビング水L2に捕集され易くなる。
また、不揮発性液体L1としては、水やスクラビング水L2よりも比重が大きい液体を用いてもよいし、水やスクラビング水L2よりも比重が小さい液体を用いてもよい。疎水性の不揮発性液体L1であると、液体同士が容易に相分離して二層液体になる。比重が小さい不揮発性液体L1であると、上層が不揮発性液体L1、下層がスクラビング水L2となる。このような層構成であると、有機よう素や二次的に生成した元素状よう素の揮発を、上層の不揮発性液体L1で確実に阻止することができる。一方、比重が大きい不揮発性液体L1であると、上層がスクラビング水L2、下層が不揮発性液体L1となる。このような層構成であると、揮発性が低い放射性物質を、下層の不揮発性液体L1で凝集・沈降させて効率的に捕集することができる。
以上の捕集装置100及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置100及び捕集方法によると、導入配管2aの出口が、液体容器1内の上部に開口しており、排出配管2bの入口が、液体容器1内の下部に開口しているため、液体容器1に用意した不揮発性液体L1を、原子炉格納容器10の内外の圧力差と不揮発性液体L1の水頭を利用して、容易にフィルタベント容器6に移すことができる。不揮発性液体L1を移した後の液体容器1は空乏になるため、ベントされるガスに大きな通流抵抗が及ぶのを避けることができる。また、フィルタベント容器6に移されるため、不揮発性液体L1と有機よう素との反応時間を十分に確保することができるし、反応生成物を混相の液体に捕捉させることができる。
図2は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図2には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図2には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図2に示すように、本実施形態に係る捕集装置200は、前記の捕集装置100と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置200は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、を備えている。
本実施形態に係る捕集装置200が、前記の捕集装置100と異なる点は、液体容器1、導入配管2a及び排出配管2bに関わる配管系統にある。捕集装置200の他の装置構成は、前記の捕集装置100と略同様である。
捕集装置200において、導入配管2aの入口は、原子炉格納容器10内のドライウェル11に開口している。導入配管2aの出口は、液体容器1内の下部側にある液相部に開口している。一方、排出配管2bの入口は、液体容器1内の上部側にある気相部に開口している。排出配管2bの出口は、フィルタベント容器6内の液相部に開口している。
このような配管系統によると、液体容器1を湿式フィルタとして機能させることができる。導入配管2aの出口には、例えば、多連のベンチュリノズル等で形成されるスクラバノズルを取り付けることができる。また、湿式フィルタとして機能する液体容器1には、フィルタベント容器6と同様に、液体中に噴出させた高温・高圧のガスに対して抵抗を及ぼすバッフルを設けることもできる。
次に、捕集装置200を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置200では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。
原子炉の事故時に、原子炉格納容器10内に高温・高圧のガスが放出され、ドライウェル11内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ドライウェル11内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
液体容器1では、ベントされたガスに含まれる有機よう素が、不揮発性液体L1と反応して、よう素イオンと有機物とに分解される。また、解離したよう素イオンや、ベントされたガスに含まれるエアロゾル、無機よう素等が、不揮発性液体L1に溶解して捕集される。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11や液体容器1のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、圧力開放弁4と同時に開放してもよいし、圧力開放弁4よりも前に開放してもよいし、圧力開放弁4よりも後に開放してもよい。隔離弁5が開放されると、液体容器1内の液相に捕集されず気相に放出された放射性物質は、排出配管2bを通じてフィルタベント容器6に送られる。
フィルタベント容器6では、ベントされたガスに残留している放射性物質が、スクラビング水L2中に溶解・凝集して捕集される。液相に捕集されず気相に放出されたエアロゾルは、金属フィルタ7に捕集される。その後、放射性物質が除去されたガスは、排気筒9を通じて環境中に放出される。
以上の捕集装置200及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱され、反応中にも加熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置200及び捕集方法によると、導入配管2aの出口が、液体容器1内の下部側にある液相部に開口しており、排出配管2bの入口が、液体容器1内の上部側にある気相部に開口しているため、液体容器1内で捕集を続けることができる。有機よう素や、その他の放射性物質は、格納容器バウンダリ内に捕集されるため、捕集した放射性物質の漏洩リスクを、より低減することができる。
図3は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図3には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図3には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図3に示すように、本実施形態に係る捕集装置300は、前記の捕集装置100と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置300は、液体容器1と、上流側ベント配管(2a,2b)と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、循環配管13と、を備えている。
本実施形態に係る捕集装置300が、前記の捕集装置100と異なる点は、液体容器1が、原子炉格納容器10外に設置されており、液体容器1に循環配管13が接続されている点である。捕集装置300の他の装置構成は、前記の捕集装置100と略同様である。
捕集装置200において、上流側ベント配管(2a,2b)の途中には、液体容器1が連結されている。液体容器1は、原子炉格納容器10外に設置されている。液体容器1は、原子炉格納容器10外であれば、原子炉建屋内に設置してもよいし、原子炉建屋外に設置してもよい。
液体容器1の入口側には、前記の捕集装置100と同様に、上流側ベント配管を構成する導入配管2aが接続されている。導入配管2aには、隔離弁5が設けられている。また、液体容器1の出口側には、前記の捕集装置100と同様に、上流側ベント配管を構成する排出配管2bが接続されている。
このような配管系統によると、液体容器1を湿式フィルタとして機能させることができる。導入配管2aの出口には、例えば、多連のベンチュリノズル等で形成されるスクラバノズルを取り付けることができる。また、湿式フィルタとして機能する液体容器1には、フィルタベント容器6と同様に、液体中に噴出させた高温・高圧のガスに対して抵抗を及ぼすバッフルを設けることもできる。
循環配管13は、液体容器1から原子炉格納容器10のドライウェル11内を通って液体容器1に戻る閉環状の流路を形成している。循環配管13の一端は、液体容器1の下部に接続しており、他端は、それよりも上部側に接続している。循環配管13の中間部は、ドライウェル11内にあり、管路が鉛直方向に沿うように縦向きに敷設されている。
循環配管13によると、原子炉格納容器10内の熱で循環配管13内の不揮発性液体L1が加熱されたとき、不揮発性液体L1を、自然対流によって循環させることができる。循環配管13の中間部で不揮発性液体L1が加熱されると、循環配管13の中間部の不揮発性液体L1が上昇し、より低温である液体容器1内の不揮発性液体L1が下降するため、不揮発性液体L1が自然循環する。
次に、捕集装置300を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置300では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10外に設置されているが、原子炉格納容器10内を通る循環配管13内の不揮発性液体L1が加熱される。そのため、不揮発性液体L1は、液体容器1内と原子炉格納容器10内との間を循環配管13を通じて自然循環しながら、原子炉格納容器10内の熱によって加熱される。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5が開放されると、ドライウェル11内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
液体容器1では、前記の捕集装置200と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1によって捕集される。また、フィルタベント容器6では、前記の捕集装置200と同様に、液体容器1内の液相に捕集されず気相に放出された放射性物質が、スクラビング水L2や、金属フィルタ7によって捕集される。
以上の捕集装置300及び捕集方法によると、液体容器1が、原子炉格納容器10外に設置されているが、不揮発性液体L1が、循環配管13を通じて原子炉格納容器10内の熱によって加熱されるため、原子炉格納容器10内に液体容器1の設置場所を設けなくとも、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱され、反応中にも加熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置300及び捕集方法によると、導入配管2aの出口が、液体容器1内の下部側にある液相部に開口しており、排出配管2bの入口が、液体容器1内の上部側にある気相部に開口しているため、前記の捕集装置200と同様に、液体容器1内で捕集を続けることができる。液体容器1内の不揮発性液体L1は、自然循環によって全体的に加熱されるため、ポンプ等で強制循環させる必要がなく、電源喪失時であっても高い捕集効率を得ることができる。また、自然循環によって攪拌されるため、不揮発性液体L1と有機よう素とを効率的に反応させることができる。
図4は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図4には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図4には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図4に示すように、本実施形態に係る捕集装置400は、前記の捕集装置100と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置400は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、を備えている。
本実施形態に係る捕集装置400が、前記の捕集装置100と異なる点は、導入配管2aに関わる配管系統にある。捕集装置400の他の装置構成は、前記の捕集装置100と略同様である。
捕集装置400において、導入配管2aの入口は、原子炉格納容器10内のウェットウェル12に開口している。導入配管2aの出口は、液体容器1内の上部に開口している。導入配管2aには、圧力開放弁4が設けられている。一方、排出配管2bの入口は、液体容器1内の下部に開口している。排出配管2bの出口は、フィルタベント容器6内の液相部に開口している。排出配管2bには、隔離弁5が設けられている。
次に、捕集装置400を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置400では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のウェットウェル12内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で予熱されてからフィルタベント容器6に移送され、液体容器1からフィルタベント容器6にかけて有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。
原子炉の事故時に、原子炉格納容器10内に高温・高圧のガスが放出され、ウェットウェル12内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ウェットウェル12内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
原子炉格納容器10内の圧力が高圧になり、ウェットウェル12のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、圧力開放弁4と同時に開放してもよいし、圧力開放弁4よりも後に開放してもよい。隔離弁5が開放されると、液体容器1に用意された不揮発性液体L1は、高温・高圧のガスに押され、有機よう素を分解しながら、排出配管2bを通ってフィルタベント容器6に送られる。
フィルタベント容器6では、前記の捕集装置100と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1や、スクラビング水L2や、金属フィルタ7によって捕集される。
以上の捕集装置400及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置400及び捕集方法によると、導入配管2aの入口が、原子炉格納容器10内のウェットウェル12に開口しているため、ウェットウェル12内の非凝縮性のガスをベントするとき、有機よう素の効率的な捕集を行うことができる。ウェットウェル12内では、ガス中の放射性物質の一部が、プール水に予め捕集されるため、より安全なベントが行われる。また、液体容器1がドライウェル11に設置されているため、ウェットウェル12に設置する場合と比較して、より高温の熱を不揮発性液体L1の加熱に利用することができる。
図5は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図5には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図5には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図5に示すように、本実施形態に係る捕集装置500は、前記の捕集装置300と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置500は、液体容器1と、上流側ベント配管(2a,2b)と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、循環配管13と、を備えている。
本実施形態に係る捕集装置500が、前記の捕集装置300と異なる点は、導入配管2aに関わる配管系統にある。捕集装置500の他の装置構成は、前記の捕集装置300と略同様である。
捕集装置500において、ウェットウェル12には、原子炉格納容器10内のガスをベントするための上流側ベント配管(2a,2b)が接続している。上流側ベント配管(2a,2b)の途中には、液体容器1が連結されている。液体容器1は、原子炉格納容器10外に設置されている。液体容器1は、原子炉格納容器10外であれば、原子炉建屋内に設置してもよいし、原子炉建屋外に設置してもよい。
液体容器1の入口側には、上流側ベント配管を構成する導入配管2aが接続されている。導入配管2aの入口は、原子炉格納容器10内のウェットウェル12に開口している。導入配管2aの出口は、液体容器1内の下部側にある液相部に開口している。導入配管2aには、隔離弁5が設けられている。
また、液体容器1の出口側には、上流側ベント配管を構成する排出配管2bが接続されている。排出配管2bの入口は、液体容器1内の上部側にある気相部に開口している。排出配管2bの他端は、フィルタベント容器6に接続されている。排出配管2bの出口は、フィルタベント容器6内の液相部に開口している。
このような配管系統によると、液体容器1を湿式フィルタとして機能させることができる。循環配管13は、前記の捕集装置300と同様に、液体容器1から原子炉格納容器10のドライウェル11内を通って液体容器1に戻る閉環状の流路を形成している。
次に、捕集装置500を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置500では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のウェットウェル12内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10外に設置されているが、原子炉格納容器10内を通る循環配管13内の不揮発性液体L1が加熱される。そのため、不揮発性液体L1は、液体容器1内と原子炉格納容器10内との間を循環配管13を通じて自然循環しながら、原子炉格納容器10内の熱によって加熱される。
また、原子炉の事故時に、ウェットウェル12のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5が開放されると、ウェットウェル12内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
液体容器1では、前記の捕集装置300と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1によって捕集される。また、フィルタベント容器6では、前記の捕集装置200と同様に、液体容器1内の液相に捕集されず気相に放出された放射性物質が、スクラビング水L2や、金属フィルタ7によって捕集される。
以上の捕集装置500及び捕集方法によると、液体容器1が、原子炉格納容器10外に設置されているが、不揮発性液体L1が、循環配管13を通じて原子炉格納容器10内の熱によって加熱されるため、原子炉格納容器10内に液体容器1の設置場所を設けなくとも、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱され、反応中にも加熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置500及び捕集方法によると、導入配管2aの出口が、液体容器1内の下部側にある液相部に開口しており、排出配管2bの入口が、液体容器1内の上部側にある気相部に開口しているため、前記の捕集装置300と同様に、液体容器1内で捕集を続けることができる。液体容器1内の不揮発性液体L1は、自然循環によって全体的に加熱されるため、ポンプ等で強制循環させる必要がなく、電源喪失時であっても高い捕集効率を得ることができる。また、自然循環によって攪拌されるため、不揮発性液体L1と有機よう素とを効率的に反応させることができる。
図6は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図6には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のウェットウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図6には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のウェットウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図6に示すように、本実施形態に係る捕集装置600は、前記の捕集装置100と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置600は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、を備えている。
本実施形態に係る捕集装置600が、前記の捕集装置100と異なる点は、液体容器1の設置位置と、導入配管2a及び排出配管2bに関わる配管系統にある。捕集装置600の他の装置構成は、前記の捕集装置100と略同様である。
捕集装置600において、ウェットウェル12には、原子炉格納容器10内のガスをベントするための上流側ベント配管(2a,2b)が接続している。上流側ベント配管(2a,2b)の途中には、液体容器1が連結されている。液体容器1は、原子炉格納容器10のウェットウェル12内に設置されている。
液体容器1の入口側には、上流側ベント配管を構成する導入配管2aが接続されている。導入配管2aの入口は、原子炉格納容器10内のウェットウェル12に開口している。導入配管2aの出口は、液体容器1内の上部に開口している。導入配管2aには、圧力開放弁4が設けられている。
また、液体容器1の出口側には、上流側ベント配管を構成する排出配管2bが接続されている。排出配管2bの入口は、液体容器1内の下部に開口している。排出配管2bの他端は、フィルタベント容器6に接続されている。排出配管2bの出口は、フィルタベント容器6内の液相部に開口している。排出配管2bには、隔離弁5が設けられている。
次に、捕集装置600を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置600では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のウェットウェル12内の熱によって加熱し、原子炉格納容器10のウェットウェル12内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で予熱されてからフィルタベント容器6に移送され、液体容器1からフィルタベント容器6にかけて有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のウェットウェル12に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ウェットウェル12内の熱によって加熱される。
原子炉の事故時に、原子炉格納容器10内に高温・高圧のガスが放出され、ウェットウェル12内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ウェットウェル12内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
原子炉格納容器10内の圧力が高圧になり、ウェットウェル12のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、圧力開放弁4と同時に開放してもよいし、圧力開放弁4よりも後に開放してもよい。隔離弁5が開放されると、液体容器1に用意された不揮発性液体L1は、高温・高圧のガスに押され、有機よう素を分解しながら、排出配管2bを通ってフィルタベント容器6に送られる。
フィルタベント容器6では、前記の捕集装置100と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1や、スクラビング水L2や、金属フィルタ7によって捕集される。
以上の捕集装置600及び捕集方法によると、液体容器1が、原子炉格納容器10内のウェットウェル12に設置されており、不揮発性液体L1が、原子炉格納容器10内のウェットウェル12の熱によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置600及び捕集方法によると、導入配管2aの入口が、原子炉格納容器10内のウェットウェル12に開口しているため、ウェットウェル12内の非凝縮性のガスをベントする際に、有機よう素の効率的な捕集を行うことができる。また、液体容器1がウェットウェル12に設置されているため、ドライウェル11に設置する場合と比較して、液体容器1や不揮発性液体L1が極端な高温に晒されるのを避けることができる。
図7は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図7には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱と、原子炉格納容器内の流体の反応熱と、によって加熱される捕集装置を示す。
図7には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱と、原子炉格納容器内の流体の反応熱と、によって加熱される捕集装置を示す。
図7に示すように、本実施形態に係る捕集装置700は、前記の捕集装置100と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置700は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、反応器14と、を備えている。
本実施形態に係る捕集装置700が、前記の捕集装置100と異なる点は、液体容器1の周囲に反応熱を発生する反応器14を備えている点である。捕集装置700の他の装置構成は、前記の捕集装置100と略同様である。
反応器14は、原子炉格納容器10内に放出された物質と反応する反応材を支持させた装置であり、原子炉格納容器10内に放出されたガス(流体)を発熱反応させて反応熱を生じる装置が用いられる。反応材としては、発熱反応を生じる限り、原子炉格納容器10内に放出された任意の物質と反応する物質を用いることができるが、特に、水素や水蒸気と反応して発熱する物質が好ましく用いられる。反応材としては、例えば、水素と酸素との反応により水を生成する水素再結合触媒や金属酸化物触媒、水素と窒素との反応によりアンモニアを生成するアンモニア合成触媒、水素吸蔵合金等を用いることができる。
水素再結合触媒としては、例えば、パラジウム、白金等の金属を担体に添着させた触媒が挙げられる。金属酸化物触媒としては、例えば、リチウム、ナトリウム、マグネシウム、カルシウム、鉄、ニッケル、銅、ストロンチウム、銀、セリウム等の金属を含む触媒が挙げられる。アンモニア合成触媒としては、例えば、鉄、モリブデン、ルテニウム、オスミウム等を活性金属とする触媒が挙げられる。水素吸蔵合金としては、例えば、リチウム、マグネシウム、チタン、鉄、ニッケル、ランタン等を含む合金が挙げられる。
捕集装置700において、反応器14としては、室内設置型の装置が液体容器1の側面を囲むように配置されている。但し、反応器14は、室内設置型である限り、配置、設置数、形状、反応方式等が、特に制限されるものではない。液体容器1に入れた不揮発性液体L1は、反応器14から液体容器1への熱伝導、発熱反応で加熱されたガスから液体容器1への熱伝達等、いずれを利用して加熱してもよい。
室内設置型の反応器14としては、例えば、円筒状の容器の内側に反応材を配置し、中央にガス通路を設けたチムニー型や、筒状の容器内に複数の反応材を間隔を空けて配置し、隣り合う反応材間にガス通路を設けた並列型等が挙げられる。反応材を内蔵した容器には、ガス通路の下側からガスが流入し、周囲の反応材に接触して発熱反応を生じる。発熱したガスは、ガス通路内に上向流を発生し、ガス通路の上側から排出される。
反応器14としては、交換容易なカートリッジ容器に反応材を充填するものが好ましく用いられる。液体容器1は、ジャケット式の熱交換器を備え、反応器14のガス通路から排出されたガスを、液体容器1の周囲に設けた熱交換器に引き込む構造とすることもできる。液体容器1の周囲に反応器14を設置する場合、反応器14のガス通路にガスを送るために、ブロアを設置することが好ましい。
次に、捕集装置700を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置700では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱と、原子炉格納容器内の流体の反応熱と、によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で予熱されてからフィルタベント容器6に移送され、液体容器1からフィルタベント容器6にかけて有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。
原子炉の事故時に、炉心が高温になると、冷却材である水と燃料棒被覆管のジルコニウム等とが反応して、多量の水素が発生する。原子炉格納容器10内に放出された水素や水蒸気は、反応器14の所定の反応材と接触して発熱反応を生じるため、液体容器1の不揮発性液体L1は、より高温に加熱される。
原子炉の事故時に、原子炉格納容器10内に高温・高圧のガスが放出され、ドライウェル11内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ドライウェル11内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、圧力開放弁4と同時に開放してもよいし、圧力開放弁4よりも後に開放してもよい。隔離弁5が開放されると、液体容器1に用意された不揮発性液体L1は、高温・高圧のガスに押され、有機よう素を分解しながら、排出配管2bを通ってフィルタベント容器6に送られる。
フィルタベント容器6では、前記の捕集装置100と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1や、スクラビング水L2や、金属フィルタ7によって捕集される。
以上の捕集装置700及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱と、原子炉格納容器10内の流体の反応熱と、によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を更に高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置700及び捕集方法によると、反応熱を生じる反応器14を液体容器1の周囲に備えるため、不揮発性液体L1を反応熱で予熱するにあたって、反応器14の設置の自由度や、反応器14中における反応材の充填状態の自由度が高くなる。反応器14を液体容器1の周囲に配置し、導入配管2aの入口付近を開放空間とすると、ベントされるガスに大きな通流抵抗が及ぶのを避けることができる。
図8は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図8には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱と、原子炉格納容器内の流体の反応熱と、によって加熱される捕集装置を示す。
図8には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱と、原子炉格納容器内の流体の反応熱と、によって加熱される捕集装置を示す。
図8に示すように、本実施形態に係る捕集装置800は、前記の捕集装置700と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置800は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、反応器14と、を備えている。
本実施形態に係る捕集装置800が、前記の捕集装置700と異なる点は、導入配管2aの途中に反応熱を発生する反応器14を備えている点である。捕集装置800の他の装置構成は、前記の捕集装置700と略同様である。
捕集装置800において、反応器14としては、インライン型の装置が導入配管2aの途中に連結されている。但し、反応器14は、インライン型である限り、配置、連結数、形状、反応方式等が、特に制限されるものではない。液体容器1に入れた不揮発性液体L1は、反応器14から液体容器1への熱伝導、反応器14における発熱反応で加熱されたガスからの熱伝達等、いずれを利用して加熱してもよい。
インライン型の反応器14としては、例えば、筒状の容器内にバルク状の反応材を充填した反応器や、筒状の容器内に反応材を充填したカートリッジを内蔵した反応器や、筒状の容器内に成形された反応材を積層・配置した反応器等が挙げられる。筒状の容器には、ガス通路の一端側からガスが流入し、周囲の反応材に接触して発熱反応を生じる。発熱したガスは、ガス通路の他端側から排出される。インライン型の反応器14は、複数個を並列化させて液体容器1に連結することもできる。
次に、捕集装置800を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置800では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱と、原子炉格納容器内の流体の反応熱と、によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で予熱されてからフィルタベント容器6に移送され、液体容器1からフィルタベント容器6にかけて反応熱で更に加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。
原子炉の事故時に、炉心が高温になると、冷却材である水と燃料棒被覆管のジルコニウム等とが反応して、多量の水素が発生する。また、原子炉格納容器10内に高温・高圧のガスが放出され、ドライウェル11内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ドライウェル11内の水素や水蒸気を含むガスが、導入配管2aを通って反応器14に流入する。水素や水蒸気は、反応器14の所定の反応材と接触して発熱反応を生じるため、反応器14に流入したガスは、より高温になって液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、このようなガスによって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
原子炉格納容器10内の圧力が高圧になり、原子炉の事故時に、ドライウェル11のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、圧力開放弁4と同時に開放してもよいし、圧力開放弁4よりも後に開放してもよい。隔離弁5が開放されると、液体容器1に用意された不揮発性液体L1は、高温・高圧のガスに押され、有機よう素を分解しながら、排出配管2bを通ってフィルタベント容器6に送られる。
フィルタベント容器6では、前記の捕集装置700と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1や、スクラビング水L2や、金属フィルタ7によって捕集される。
以上の捕集装置800及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱と、原子炉格納容器10内の流体の反応熱と、によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を更に高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置800及び捕集方法によると、反応熱を生じる反応器14を導入配管2aの途中に備えるため、発熱反応を生じる原子炉格納容器10内の物質を、原子炉格納容器10の内外の圧力差によって、反応器14に流入させることができる。ガスを送るためのブロア等を設置する必要がないため、電源喪失時であっても、高い捕集効率を得ることができる。
図9は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図9には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図9には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図9に示すように、本実施形態に係る捕集装置900は、前記の捕集装置100と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置900は、液体容器1と、上流側ベント配管(2c,2d,2e)と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、ガス注入装置15と、ガス注入配管16と、液体注入配管17と、を備えている。
本実施形態に係る捕集装置900が、前記の捕集装置100と異なる点は、ガス注入装置15が液体容器1に接続している点と、上流側ベント配管(2c,2d,2e)に関わる配管系統にある。捕集装置900の他の装置構成は、前記の捕集装置100と略同様である。
捕集装置900において、ドライウェル11には、ドライウェル11内のガスをベントするためのドライベント配管2cが接続されている。ドライベント配管2cには、隔離弁5が設けられている。また、ウェットウェル12には、ウェットウェル12内のガスをベントするためのウェットベント配管2dが接続されている。ウェットベント配管2dには、隔離弁5が設けられている。
ドライベント配管2cとウェットベント配管2dとは、下流に連結された入口配管2eに合流しており、入口配管2eの他端は、フィルタベント容器6に接続されている。上流側ベント配管(2c,2d,2e)は、原子炉格納容器10内のガス(流体)をベントするための配管であり、有機よう素を含むガス(流体)を、フィルタベント容器6に注入された不揮発性液体L1に導入するために用いられる。
液体容器1は、原子炉格納容器10のドライウェル11内に設置されている。液体容器1の入口側には、ガス注入装置15が、ガス注入配管16を介して接続されている。ガス注入装置15は、原子炉格納容器10外に設置されている。ガス注入配管16の出口は、液体容器1内の上部に開口している。
液体容器1の出口側には、液体注入配管17が接続されている。液体注入配管17の入口は、液体容器1内の下部に開口している。また、液体注入配管17の他端は、フィルタベント容器6に接続されている。液体注入配管17の出口は、フィルタベント容器6内の液相部に開口している。液体注入配管17は、液体容器1に用意された不揮発性液体L1をフィルタベント容器6に注入するために用いられる。液体注入配管17には、隔離弁5が設けられている。
ガス注入装置15は、加圧されたガスを液体容器1内に注入するための装置である。ガス注入配管16は、加圧されたガスをガス注入装置15から液体容器1に送るために用いられる。加圧されたガスを液体容器1内に注入することにより、液体容器1に用意された不揮発性液体L1をフィルタベント容器6に強制的に注入することができる。
注入するガスとしては、例えば、窒素ガス、アルゴンガス等の不活性ガスや、乾燥空気等が挙げられる。注入するガスとしては、不揮発性液体L1の酸化劣化や加水分解を避ける観点からは、不活性ガスを用いることが好ましい。
次に、捕集装置900を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置900では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のドライウェル11内、及び、ウェットウェル12内のうち、少なくとも一方の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で予熱されてからフィルタベント容器6に移送され、フィルタベント容器6において有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11やウェットウェル12のベントが必要であると判断されると、液体注入配管17の隔離弁5が開放される。また、ガス注入装置15によって、ガスの圧送が開始される。液体注入配管17の隔離弁5が開放されると、液体容器1に用意された不揮発性液体L1は、ガス注入装置15から注入されるガスに押され、ガス注入装置15で加圧されたガスの圧力で液体注入配管17を通ってフィルタベント容器6に送られる。
また、原子炉の事故時に、ドライウェル11やウェットウェル12のベントが必要であると判断されると、ドライベント配管2cの隔離弁5や、ウェットベント配管2dの隔離弁5の少なくとも一方が開放される。これらの隔離弁5は、液体注入配管17の隔離弁5と同時に開放してもよいし、液体注入配管17の隔離弁5よりも後に開放してもよい。隔離弁5が開放されると、ドライウェル11内の高温・高圧のガスや、ウェットウェル12内の高温・高圧のガスが、上流側ベント配管(2c,2d,2e)を通ってフィルタベント容器6に送られる。
フィルタベント容器6では、前記の捕集装置100と同様に、ベントされたガスに含まれる放射性物質が、不揮発性液体L1や、スクラビング水L2や、金属フィルタ7によって捕集される。
なお、図9において、液体容器1、ガス注入装置15、ガス注入配管16、及び、液体注入配管17によって構成される系統としては、一系統のみが備えられているが、このような系統は、複数備えることもできる。例えば、一部の系統を、原子炉の事故の発生時に使用し、残りの系統を、フィルタベント容器6内の温度が下がり易い事故の収束時に使用することもできる。
以上の捕集装置900及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置900及び捕集方法によると、原子炉格納容器10内のガスが、液体容器1を通らず、上流側ベント配管(2c,2d,2e)のみを通って、フィルタベント容器6に送られるため、ベントされるガスに大きな通流抵抗が及ぶのを避けることができる。また、ガス注入装置15が備えられるため、原子炉格納容器10の内外の圧力差を利用しなくとも、不揮発性液体L1をフィルタベント容器6に強制的に注入することが可能であり、利用する不揮発性液体L1の水頭の自由度を高くすることができる。
図10は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図10には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の流体の反応熱によって加熱される捕集装置を示す。
図10には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の流体の反応熱によって加熱される捕集装置を示す。
図10に示すように、本実施形態に係る捕集装置1000は、フィルタベント装置20に組み込まれている。捕集装置1000は、前記の捕集装置800と同様に、上流側ベント配管(2c,2d,2e)と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、反応器14と、を備えている。
本実施形態に係る捕集装置1000が、前記の捕集装置800と異なる点は、液体容器1が備えられてなく、不揮発性液体L1がフィルタベント容器6に用意されており、ベント配管(2c,2d,2e)の途中に反応熱を発生する反応器14を備えている点である。捕集装置1000の他の装置構成は、前記の捕集装置800と略同様である。
捕集装置1000において、ドライウェル11には、ドライウェル11内のガスをベントするためのドライベント配管2cが接続されている。ドライベント配管2cには、隔離弁5が設けられている。また、ウェットウェル12には、ウェットウェル12内のガスをベントするためのウェットベント配管2dが接続されている。ウェットベント配管2dには、隔離弁5が設けられている。
ドライベント配管2cとウェットベント配管2dとは、下流に連結された入口配管2eに合流しており、入口配管2eの他端は、フィルタベント容器6に接続されている。上流側ベント配管(2c,2d,2e)は、原子炉格納容器10内のガス(流体)をベントするための配管であり、有機よう素を含むガス(流体)を、フィルタベント容器6に用意された不揮発性液体L1に導入するために用いられる。
フィルタベント容器6には、不揮発性液体L1と、スクラビング水L2と、が用意される。不揮発性液体L1としては、スクラビング水L2よりも比重が小さい液体が好ましく用いられる。このような液体であると、不揮発性液体L1がスクラビング水L2から相分離して上層を形成するため、有機よう素や二次的に生成した元素状よう素の揮発を、上層の不揮発性液体L1で確実に阻止することができる。入口配管2eの出口には、例えば、多連のベンチュリノズル等で形成される不図示のスクラバノズルを取り付けることができる。
捕集装置1000において、反応器14としては、インライン型の装置が入口配管2eの途中に連結されている。但し、反応器14は、インライン型である限り、配置、連結数、形状、反応方式等が、特に制限されるものではない。フィルタベント容器6に入れた不揮発性液体L1は、反応器14からの熱伝導、反応器14における発熱反応で加熱されたガスからの熱伝達等、いずれを利用して加熱してもよい。
インライン型の反応器14としては、前記の捕集装置800と同様に、筒状の容器内にバルク状の反応材を充填した反応器や、筒状の容器内に反応材を充填したカートリッジを内蔵した反応器や、筒状の容器内に成形された反応材を積層・配置した反応器等を用いることができる。インライン型の反応器14は、複数個を並列化させてフィルタベント容器6に取り付けることもできる。また、フィルタベント容器6内の液相部に接する位置や液相部に没する位置に配置することもできる。
次に、捕集装置1000を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置1000では、フィルタベント容器6に入れた不揮発性液体L1を、原子炉格納容器内の流体の反応熱によって加熱し、原子炉格納容器10のドライウェル11内、及び、ウェットウェル12内のうち、少なくとも一方の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、フィルタベント容器6内で加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。炉心が高温になると、冷却材である水と燃料棒被覆管のジルコニウム等とが反応して、多量の水素が発生する。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11やウェットウェル12のベントが必要であると判断されると、ドライベント配管2cの隔離弁5や、ウェットベント配管2dの隔離弁5の少なくとも一方が開放される。隔離弁5が開放されると、ドライウェル11内の水素や水蒸気を含むガスや、ウェットウェル12内の水素や水蒸気を含むガスが、上流側ベント配管(2c,2d,2e)を通って反応器14に流入する。水素や水蒸気は、反応器14に充填された所定の反応材と接触すると発熱反応を生じるため、反応器14に流入したガスは、より高温になってフィルタベント容器6に流入する。フィルタベント容器6に用意された不揮発性液体L1は、このようなガスによって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
フィルタベント容器6では、ベントされたガスに含まれる有機よう素が、不揮発性液体L1と反応して、よう素イオンと有機物とに分解される。また、解離したよう素イオンや、ベントされたガスに含まれるエアロゾル、無機よう素等が、不揮発性液体L1やスクラビング水L2に溶解・凝集して捕集される。液相に捕集されず気相に放出されたエアロゾルは、金属フィルタ7に捕集される。その後、放射性物質が除去されたガスは、排気筒9を通じて環境中に放出される。
以上の捕集装置1000及び捕集方法によると、不揮発性液体L1が、原子炉格納容器10内の流体の反応熱によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に反応熱によって予熱することができるし、原子炉格納容器10内の温度が十分に高くなくとも、水素濃度や水蒸気濃度が高い場合に高温に加熱することができるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置1000及び捕集方法によると、反応熱を生じる反応器14を入口配管2eの途中に備えるため、発熱反応を生じる原子炉格納容器10内の物質を、原子炉格納容器10の内外の圧力差によって、反応器14に流入させることができる。ガスを送るためのブロア等を設置する必要がないため、電源喪失時であっても、高い捕集効率を得ることができる。また、液体容器1が必要ないため、原子炉格納容器10の内外に液体容器1の設置場所を設けなくとも、不揮発性液体L1と有機よう素との反応速度を高くすることができる。
図11は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図11には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図11には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器内のドライウェルに設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図11に示すように、本実施形態に係る捕集装置1100は、前記の捕集装置200と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置1100は、液体容器1と、上流側ベント配管(2a,2b)と、圧力開放弁4と、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、を備えている。
本実施形態に係る捕集装置1100が、前記の捕集装置200と異なる点は、液体容器1の周囲に設置されたヒータ18と、ヒータ18に接続された非常用電源19と、を備えている点である。捕集装置1100の他の装置構成は、前記の捕集装置200と略同様である。
ヒータ18は、非常用電源19によって駆動されて熱を発生する装置であり、原子炉格納容器10内の熱によって加熱される不揮発性液体L1を更に加熱するために備えられる。ヒータ18は、出力が一定に制御されてもよいし、出力が可変的に制御されてもよい。ヒータ18は、例えば、不揮発性液体L1が所定温度以上に保たれるように制御することができる。
ヒータ18としては、ハロゲンヒータ等の赤熱放射ヒータや、セラミックヒータ、石英ヒータ等のパネルヒータや、オイルヒータ等の液体充填放熱ヒータや、電気ファンヒータ等のファンヒータや、エアーコンディショナ、ダクトヒータ等の対流ヒータ等、各種の加熱装置を用いることができる。
捕集装置1100において、ヒータ18としては、室内設置型の装置が液体容器1の側面を囲むように配置されている。但し、ヒータ18は、室内設置型である限り、配置、設置数、形状、発熱方式等が、特に制限されるものではない。液体容器1に入れた不揮発性液体L1は、ヒータ18から液体容器1への熱伝導、ヒータ18で加熱されたガスから液体容器1への熱伝達等、いずれを利用して加熱してもよい。
非常用電源19は、原子炉の事故時においても作動可能な電源であり、電源喪失時等にヒータ18に給電するために用いられる。非常用電源19としては、ディーゼル発電機、ガスタービン発電機、蓄電池等の各種の電源を用いることができる。非常用電源19は、ヒータ18に常時接続される定置電源であってもよいし、非常時に接続される電源車等の移動電源であってもよい。
次に、捕集装置1100を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置1100では、液体容器1に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱と、ヒータ18が発生した熱と、によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、液体容器1内で加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10内のドライウェル11に設置されている。そのため、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の熱によって加熱される。
原子炉の事故時に、原子炉格納容器10内に高温・高圧のガスが放出され、ドライウェル11内の圧力が設定圧力を超えると、圧力開放弁4が開く。圧力開放弁4が開くと、ドライウェル11内の高温・高圧のガスが、導入配管2aを通って液体容器1に流入する。液体容器1に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11のベントが必要であると判断されると、ヒータ18が起動される。ヒータ18は、圧力開放弁4の開放と同時に起動してもよいし、圧力開放弁4の開放よりも前に起動してもよいし、圧力開放弁4の開放よりも後に起動してもよい。ヒータ18が起動されると、液体容器1に用意された不揮発性液体L1は、ドライウェル11内の温度よりも高温になるように、更に加熱される。
液体容器1では、ベントされたガスに含まれる有機よう素が、不揮発性液体L1と反応して、よう素イオンと有機物とに分解される。また、解離したよう素イオンや、ベントされたガスに含まれるエアロゾル、無機よう素等が、不揮発性液体L1に溶解して捕集される。ヒータ18による不揮発性液体L1の加熱は、ベントされたガスが液体容器1に流入する間、連続的に行ってもよいし、間欠的に行ってもよい。
また、原子炉格納容器10内の圧力が高圧になり、ドライウェル11や液体容器1のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5は、ヒータ18の起動と同時に開放してもよいし、ヒータ18の起動よりも後に開放してもよい。隔離弁5が開放されると、液体容器1内の液相に捕集されず気相に放出された放射性物質は、排出配管2bを通じてフィルタベント容器6に送られる。
フィルタベント容器6では、ベントされたガスに残留している放射性物質が、スクラビング水L2中に溶解・凝集して捕集される。液相に捕集されず気相に放出されたエアロゾルは、金属フィルタ7に捕集される。その後、放射性物質が除去されたガスは、排気筒9を通じて環境中に放出される。
以上の捕集装置1100及び捕集方法によると、液体容器1が、原子炉格納容器10内のドライウェル11に設置されており、不揮発性液体L1が、原子炉格納容器10内のドライウェル11の熱と、ヒータ18と、によって加熱されるため、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱され、反応中にも加熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置1100及び捕集方法によると、非常用電源19に接続されるヒータ18を液体容器1の周囲に備えるため、原子炉格納容器10内の温度が十分に高くなくとも、不揮発性液体L1を、高い反応速度が得られる温度まで確実に予熱することができる。ヒータ18は、電源喪失時や、原子炉格納容器10内の温度が低くなる事故の収束時であっても、不揮発性液体L1を加熱することができるため、より広範な時期にわたって捕集効率を維持することができる。
図12は、本発明に係る有機よう素捕集装置の一例を模式的に示す断面図である。
図12には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図12には、有機よう素を分解可能な不揮発性液体を入れた液体容器が、原子炉格納容器外に設置されており、不揮発性液体が、原子炉格納容器内の熱によって加熱される捕集装置を示す。
図12に示すように、本実施形態に係る捕集装置1200は、前記の捕集装置300と同様に、原子炉格納容器10と、フィルタベント装置20と、に組み込まれている。捕集装置1200は、液体容器1と、上流側ベント配管(導入配管)2fと、隔離弁5と、フィルタベント容器6と、金属フィルタ7と、下流側ベント配管8と、排気筒9と、循環配管13と、を備えている。
本実施形態に係る捕集装置1200が、前記の捕集装置300と異なる点は、液体容器1が備えられてなく、不揮発性液体L1がフィルタベント容器6に用意されている点である。捕集装置1200の他の装置構成は、前記の捕集装置300と略同様である。
捕集装置1200において、ドライウェル11には、ドライウェル11内のガスをベントするための上流側ベント配管2fが接続している。上流側ベント配管2fの他端は、フィルタベント容器6に接続されている。上流側ベント配管2fの出口は、フィルタベント容器6内の液相部に開口している。
上流側ベント配管2fは、原子炉格納容器10内の有機よう素を含むガス(流体)を不揮発性液体L1に導入するために用いられる。上流側ベント配管2fには、隔離弁5が設けられている。
フィルタベント容器6には、不揮発性液体L1が用意される。上流側ベント配管2fの出口には、例えば、多連のベンチュリノズル等で形成される不図示のスクラバノズルを取り付けることができる。また、液体中に噴出させた高温・高圧のガスに対して抵抗を及ぼすバッフルを設けることもできる。
循環配管13は、前記の捕集装置300の液体容器1と同様に、フィルタベント容器6から原子炉格納容器10のドライウェル11内を通ってフィルタベント容器6に戻る閉環状の流路を形成している。循環配管13の一端は、フィルタベント容器6の下部に接続しており、他端は、それよりも上部側に接続している。循環配管13の中間部は、ドライウェル11内にあり、管路が鉛直方向に沿うように縦向きに敷設されている。
次に、捕集装置1200を用いた有機よう素の捕集方法について具体的に説明する。
捕集装置1200では、フィルタベント容器6に入れた不揮発性液体L1を、原子炉格納容器10のドライウェル11内の熱によって加熱し、原子炉格納容器10のドライウェル11内の有機よう素を含むガス(流体)を、加熱された不揮発性液体L1に通し、ガスに含まれている有機よう素を不揮発性液体L1に分解させて捕集する。不揮発性液体L1は、フィルタベント容器6内で加熱されながら有機よう素を分解する。
原子炉の事故時に、原子炉格納容器10内に高温・高圧の蒸気(ガス)が放出されると、原子炉格納容器10内の温度・圧力が上昇する。液体容器1は、原子炉格納容器10外に設置されているが、原子炉格納容器10内を通る循環配管13内の不揮発性液体L1が加熱される。そのため、不揮発性液体L1は、液体容器1内と原子炉格納容器10内との間を循環配管13を通じて自然循環しながら、原子炉格納容器10内の熱によって加熱される。
原子炉格納容器10内の圧力が高圧になり、ドライウェル11のベントが必要であると判断されると、隔離弁5が開放される。隔離弁5が開放されると、ドライウェル11内の高温・高圧のガスが、上流側ベント配管2fを通ってフィルタベント容器6に流入する。フィルタベント容器6に用意された不揮発性液体L1は、流入するガスとの接触によって更に加熱されると共に、ガス中の有機よう素との反応を開始する。
フィルタベント容器6では、ベントされたガスに含まれる有機よう素が、不揮発性液体L1と反応して、よう素イオンと有機物とに分解される。また、解離したよう素イオンや、ベントされたガスに含まれるエアロゾル、無機よう素等が、不揮発性液体L1に溶解・凝集して捕集される。液相に捕集されず気相に放出されたエアロゾルは、金属フィルタ7に捕集される。その後、放射性物質が除去されたガスは、排気筒9を通じて環境中に放出される。
以上の捕集装置1200及び捕集方法によると、液体容器1が、原子炉格納容器10外に設置されているが、不揮発性液体L1が、循環配管13を通じて原子炉格納容器10内の熱によって加熱されるため、原子炉格納容器10内に液体容器1の設置場所を設けなくとも、ベント時の不揮発性液体L1と有機よう素との反応速度を高くすることができる。不揮発性液体L1は、多量の有機よう素と接触する以前に予熱され、反応中にも加熱されるため、ベントの初期を含む広範な時期にわたって捕集効率を高くすることができる。よって、原子炉格納容器内の有機よう素を効率的に捕集可能な装置・方法を提供することができる。
また、以上の捕集装置1200及び捕集方法によると、フィルタベント容器6内の不揮発性液体L1は、自然循環によって全体的に加熱されるため、ポンプ等で強制循環させる必要がなく、電源喪失時であっても高い捕集効率を得ることができる。また、自然循環によって攪拌されるため、不揮発性液体L1と有機よう素とを効率的に反応させることができる。
以上、本発明に係る有機よう素捕集装置、及び、有機よう素捕集方法の実施形態について説明したが、本発明は前記の実施形態に限定されるものではなく、技術的範囲を逸脱しない限り、様々な変形例が含まれる。例えば、前記の実施形態は、必ずしも説明した全ての構成を備えるものに限定されない。また、或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成に他の構成を加えたりすることが可能である。また、或る実施形態の構成の一部について、他の構成の追加、構成の削除、構成の置換をすることも可能である。
例えば、前記の各捕集装置や捕集方法は、ドライベント及びウェットベントのいずれに適用してもよい。前記の捕集装置100,200,800,900,1100において、液体容器1と排出配管の系統を、ウェットウェル12側に移して装置を構成することもできる。また、前記の捕集装置200,700,800,1100,1200をウェットウェル12のベントに適用することもできる。
また、前記の各捕集装置において、一つの液体容器1やフィルタベント容器6に、複数種類の機構を組み込むこともできる。例えば、捕集装置300,500の循環配管13付きの液体容器1、捕集装置1200の循環配管13付きのフィルタベント容器6、捕集装置700の室内設置型の反応器14、捕集装置800のインライン型の反応器14、捕集装置900のガス注入装置15、及び、捕集装置1100のヒータ18のうち、少なくとも一つ以上の機構を、一つの液体容器1に組み込んでもよい。
また、前記の各捕集装置において、液体容器1や導入配管及び排出配管の系統を、複数系列備えることもできる。複数の系列は、互いに同一の機構となるように構成してもよいし、互いに異なる機構となるように構成してもよい。
例えば、室内設置型の反応器14とガス注入装置15とを備えた第1液体容器1と、インライン型の反応器14とヒータ18とを備えた第2液体容器1とを、ドライウェル11に設置することもできる。第2液体容器1によると、反応熱の不足をヒータ18で補いつつ、予熱した不揮発性液体L1を用いることができる。また、第1液体容器1によると、反応熱を利用して予熱した不揮発性液体L1をガス注入装置15で必要な時期に注入することができる。
また、例えば、ヒータ18を備えた第1液体容器1と、室内設置型の反応器14とインライン型の反応器14とを備えた第2液体容器1とを、ドライウェル11に設置することもできる。第2液体容器1によると、反応熱を最大限利用して不揮発性液体L1を予熱することができる。また、第1液体容器1によると、反応熱が不足する状況であっても、ヒータ18を利用して不揮発性液体L1を予熱することができる。
また、例えば、捕集装置500の循環配管13付きの液体容器1に、ヒータ18と、インライン型の反応器14と、を備えることもできる。このような液体容器1によると、ドライウェル11との熱交換、ウェットウェル12の水素・水蒸気の反応熱、及び、ヒータ18の熱で、互いに熱不足を補いながら、安定して不揮発性液体L1を予熱することができる。
また、例えば、捕集装置1200の循環配管13付きのフィルタベント容器6に、ヒータ18と、インライン型の反応器14と、を備えることもできる。このようなフィルタベント容器6によると、ドライウェル11との熱交換、ドライウェル11の水素・水蒸気の反応熱、及び、ヒータ18の熱で、互いに熱不足を補いながら、安定して不揮発性液体L1を予熱することができる。
また、前記の各捕集装置や捕集方法において、不揮発性液体L1やスクラビング水L2の他に、その他のイオン液体、界面活性剤溶液等を併用してもよい。また、前記の各捕集装置において、図示した配管や機器の他に、その他の配管や機器を備えてもよい。例えば、各捕集装置に、液体容器1を通らないドライウェルベント用のバイパス配管、液体容器1を通らないウェットウェルベント用のバイパス配管等を備えることもできる。また、循環配管13は、ドライウェル11に通してもよいし、ウェットウェル12に通してもよいし、これらの両方に通してもよい。
また、前記の各捕集装置や捕集方法において、原子炉の形式は、特に制限されるものではない。原子炉としては、沸騰水型原子炉(Boiling Water Reactor:BWR)、改良型沸騰水型原子炉(Advanced Boiling Water Reactor:ABWR)、加圧水型原子炉(Pressurized Water Reactor:PWR)等の各種の形式に適用することができる。不揮発性液体L1として用い得るイオン液体等は、一般産業向けに実用化されている。放射性物質で汚染されたイオン液体等は、例えば、特表2003-507185号に記載された方法等で処理・再生することができる。
1 液体容器
2a 上流側ベント配管(導入配管)
2b 上流側ベント配管(排出配管)
4 圧力開放弁
5 隔離弁
6 フィルタベント容器
7 金属フィルタ
8 下流側ベント配管
9 排気筒
10 原子炉格納容器
11 ドライウェル
12 ウェットウェル
13 循環配管
14 反応器
15 ガス注入装置
16 ガス注入配管
17 液体注入配管
18 ヒータ
19 非常用電源
20 フィルタベント装置
L1 不揮発性液体
L2 スクラビング水
100 捕集装置
200 捕集装置
300 捕集装置
400 捕集装置
500 捕集装置
600 捕集装置
700 捕集装置
800 捕集装置
900 捕集装置
1000 捕集装置
1100 捕集装置
1200 捕集装置
2a 上流側ベント配管(導入配管)
2b 上流側ベント配管(排出配管)
4 圧力開放弁
5 隔離弁
6 フィルタベント容器
7 金属フィルタ
8 下流側ベント配管
9 排気筒
10 原子炉格納容器
11 ドライウェル
12 ウェットウェル
13 循環配管
14 反応器
15 ガス注入装置
16 ガス注入配管
17 液体注入配管
18 ヒータ
19 非常用電源
20 フィルタベント装置
L1 不揮発性液体
L2 スクラビング水
100 捕集装置
200 捕集装置
300 捕集装置
400 捕集装置
500 捕集装置
600 捕集装置
700 捕集装置
800 捕集装置
900 捕集装置
1000 捕集装置
1100 捕集装置
1200 捕集装置
Claims (15)
- 原子炉格納容器内の有機よう素を捕集する有機よう素捕集装置であって、
有機よう素を分解可能な不揮発性液体を入れた液体容器と、
原子炉格納容器内の有機よう素を含む流体を前記不揮発性液体に導入するための導入配管と、を備え、
前記不揮発性液体は、前記原子炉格納容器内の熱、又は、前記原子炉格納容器内の流体の反応熱によって加熱されてから前記有機よう素を分解して捕集する有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記液体容器は、前記原子炉格納容器内のドライウェルに設置されており、
前記不揮発性液体は、前記原子炉格納容器内の熱によって加熱される有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記液体容器は、前記原子炉格納容器内のウェットウェルに設置されており、
前記不揮発性液体は、前記原子炉格納容器内の熱によって加熱される有機よう素捕集装置。 - 請求項2又は請求項3に記載の有機よう素捕集装置であって、
前記液体容器の周囲に反応器を備え、
前記反応器は、前記原子炉格納容器内の流体を発熱反応させて反応熱を生じる有機よう素捕集装置。 - 請求項2又は請求項3に記載の有機よう素捕集装置であって、
加圧されたガスを前記液体容器内に注入するためのガス注入装置と、
前記原子炉格納容器からベントされた流体が通されるフィルタベント容器と、を備え、
前記不揮発性液体は、前記原子炉格納容器内の熱によって加熱されてから、加圧された前記ガスの圧力で前記フィルタベント容器に送られ、前記フィルタベント容器において前記有機よう素を分解する有機よう素捕集装置。 - 請求項2又は請求項3に記載の有機よう素捕集装置であって、
前記液体容器の周囲にヒータを備え、
前記ヒータは、前記原子炉格納容器内の熱によって加熱される前記不揮発性液体を更に加熱する有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記液体容器は、前記原子炉格納容器外に設置されており、
前記不揮発性液体は、前記原子炉格納容器内の熱によって加熱される有機よう素捕集装置。 - 請求項7に記載の有機よう素捕集装置であって、
前記液体容器から前記原子炉格納容器内を通って前記液体容器に戻る循環配管を備え、
前記不揮発性液体は、前記液体容器内と前記原子炉格納容器内との間を循環しながら、前記原子炉格納容器内の熱によって加熱される有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記液体容器は、前記原子炉格納容器外に設置されており、
前記不揮発性液体は、前記原子炉格納容器内の流体の反応熱によって加熱される有機よう素捕集装置。 - 請求項9に記載の有機よう素捕集装置であって、
前記導入配管に反応器を備え、
前記反応器は、有機よう素を含む前記流体を発熱反応させて反応熱を生じる有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記不揮発性液体に導入された前記流体を前記液体容器から排出するための排出配管を備え、
前記導入配管の出口は、前記液体容器内の上部に開口しており、
前記排出配管の入口は、前記液体容器内の下部に開口している有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記不揮発性液体に導入された前記流体を前記液体容器から排出するための排出配管を備え、
前記導入配管の出口は、前記液体容器内の液相部に開口しており、
前記排出配管の入口は、前記液体容器内の気相部に開口している有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記導入配管の入口は、前記原子炉格納容器内のドライウェルに開口している有機よう素捕集装置。 - 請求項1に記載の有機よう素捕集装置であって、
前記導入配管の入口は、前記原子炉格納容器内のウェットウェルに開口している有機よう素捕集装置。 - 原子炉格納容器内の有機よう素を捕集する有機よう素捕集方法であって、
有機よう素を分解可能な不揮発性液体を、原子炉格納容器内の熱、又は、原子炉格納容器内の流体の反応熱によって加熱し、
前記原子炉格納容器内の有機よう素を含む流体を、加熱された前記不揮発性液体に通し、
前記有機よう素を前記不揮発性液体に分解させて捕集する有機よう素捕集方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19894475.3A EP3896704B1 (en) | 2018-12-14 | 2019-11-12 | Organic iodine collection device and organic iodine collection method |
US17/298,693 US20220051813A1 (en) | 2018-12-14 | 2019-11-12 | Organic iodine trapping apparatus and organic iodine trapping method |
US18/616,833 US20240233967A1 (en) | 2018-12-14 | 2024-03-26 | Organic iodine trapping apparatus and organic iodine trapping method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-234582 | 2018-12-14 | ||
JP2018234582A JP2020094979A (ja) | 2018-12-14 | 2018-12-14 | 有機よう素捕集装置及び有機よう素捕集方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/298,693 A-371-Of-International US20220051813A1 (en) | 2018-12-14 | 2019-11-12 | Organic iodine trapping apparatus and organic iodine trapping method |
US18/616,833 Division US20240233967A1 (en) | 2018-12-14 | 2024-03-26 | Organic iodine trapping apparatus and organic iodine trapping method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020121714A1 true WO2020121714A1 (ja) | 2020-06-18 |
Family
ID=71076866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/044320 WO2020121714A1 (ja) | 2018-12-14 | 2019-11-12 | 有機よう素捕集装置及び有機よう素捕集方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20220051813A1 (ja) |
EP (1) | EP3896704B1 (ja) |
JP (1) | JP2020094979A (ja) |
WO (1) | WO2020121714A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3996110A1 (en) * | 2020-11-05 | 2022-05-11 | Hitachi-Ge Nuclear Energy, Ltd. | Iodine trapping apparatus and nuclear power structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7470491B2 (ja) * | 2019-02-25 | 2024-04-18 | 日立Geニュークリア・エナジー株式会社 | 有機よう素除去剤 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57153286A (en) * | 1981-03-17 | 1982-09-21 | Mitsubishi Atom Power Ind Inc | Measuring method and device for humid gaseous radioactive iodine |
JPS5875100A (ja) * | 1981-10-30 | 1983-05-06 | 株式会社日立製作所 | 放射性よう素除去装置 |
JP2003507185A (ja) | 1999-08-19 | 2003-02-25 | ブリテイツシユ・ニユークリア・ヒユーエルズ・ピー・エル・シー | イオン性液体をリサイクルする方法 |
JP2016053488A (ja) * | 2014-09-03 | 2016-04-14 | 日立Geニュークリア・エナジー株式会社 | ヨウ素除去装置および原子力プラント |
JP2017223535A (ja) * | 2016-06-15 | 2017-12-21 | 日立Geニュークリア・エナジー株式会社 | フィルタベント装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2071136T3 (es) * | 1991-02-07 | 1995-06-16 | Siemens Ag | Procedimiento e instalacion para descargar la presion del confinamiento de una central nuclear. |
DE19532366C1 (de) * | 1995-09-01 | 1996-12-05 | Siemens Ag | Vorrichtung und Verfahren zur Inertisierung und zum Venting der Containment-Atmosphäre in einem Kernkraftwerk |
DE102013205524A1 (de) * | 2013-03-27 | 2014-10-02 | Areva Gmbh | Ventingsystem für das Containment einer kerntechnischen Anlage |
DE102013205525A1 (de) * | 2013-03-27 | 2014-10-02 | Areva Gmbh | Ventingsystem für das Containment einer kerntechnischen Anlage |
JP6876447B2 (ja) * | 2017-01-24 | 2021-05-26 | 日立Geニュークリア・エナジー株式会社 | 原子力発電プラント |
JP6754719B2 (ja) * | 2017-04-11 | 2020-09-16 | 日立Geニュークリア・エナジー株式会社 | 原子炉格納容器ベントシステム |
-
2018
- 2018-12-14 JP JP2018234582A patent/JP2020094979A/ja active Pending
-
2019
- 2019-11-12 US US17/298,693 patent/US20220051813A1/en not_active Abandoned
- 2019-11-12 EP EP19894475.3A patent/EP3896704B1/en active Active
- 2019-11-12 WO PCT/JP2019/044320 patent/WO2020121714A1/ja unknown
-
2024
- 2024-03-26 US US18/616,833 patent/US20240233967A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57153286A (en) * | 1981-03-17 | 1982-09-21 | Mitsubishi Atom Power Ind Inc | Measuring method and device for humid gaseous radioactive iodine |
JPS5875100A (ja) * | 1981-10-30 | 1983-05-06 | 株式会社日立製作所 | 放射性よう素除去装置 |
JP2003507185A (ja) | 1999-08-19 | 2003-02-25 | ブリテイツシユ・ニユークリア・ヒユーエルズ・ピー・エル・シー | イオン性液体をリサイクルする方法 |
JP2016053488A (ja) * | 2014-09-03 | 2016-04-14 | 日立Geニュークリア・エナジー株式会社 | ヨウ素除去装置および原子力プラント |
JP2017223535A (ja) * | 2016-06-15 | 2017-12-21 | 日立Geニュークリア・エナジー株式会社 | フィルタベント装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3896704A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3996110A1 (en) * | 2020-11-05 | 2022-05-11 | Hitachi-Ge Nuclear Energy, Ltd. | Iodine trapping apparatus and nuclear power structure |
JP2022074625A (ja) * | 2020-11-05 | 2022-05-18 | 日立Geニュークリア・エナジー株式会社 | ヨウ素捕集装置及び原子力構造物 |
JP7456916B2 (ja) | 2020-11-05 | 2024-03-27 | 日立Geニュークリア・エナジー株式会社 | ヨウ素捕集装置及び原子力構造物 |
Also Published As
Publication number | Publication date |
---|---|
EP3896704A4 (en) | 2022-08-10 |
EP3896704B1 (en) | 2024-09-18 |
EP3896704A1 (en) | 2021-10-20 |
US20220051813A1 (en) | 2022-02-17 |
JP2020094979A (ja) | 2020-06-18 |
US20240233967A1 (en) | 2024-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240233967A1 (en) | Organic iodine trapping apparatus and organic iodine trapping method | |
JP6876447B2 (ja) | 原子力発電プラント | |
EP2704153B1 (en) | Gas treatment equipment of nuclear power plant | |
JP6798912B2 (ja) | 原子炉格納容器ベントシステム | |
WO2020248530A1 (zh) | 核电厂安全壳过滤排放系统及方法 | |
JP6339898B2 (ja) | 放射性ヨウ素除去装置および原子力プラント | |
JP2020041834A (ja) | 水素処理システム、原子炉施設および水素処理方法 | |
JPH07209488A (ja) | 放出放射能低減装置 | |
JP7304470B2 (ja) | 有機よう素捕集装置及び有機よう素捕集方法 | |
EP1059116A2 (en) | Hydrogen removing apparatus | |
JP7223518B2 (ja) | 有機よう素捕集装置 | |
EP3893253A1 (en) | Organic iodine trapping apparatus | |
JP4356012B2 (ja) | 原子力プラント | |
RU90609U1 (ru) | Реакторная установка | |
JPH1194992A (ja) | 触媒式再結合器 | |
JP7456916B2 (ja) | ヨウ素捕集装置及び原子力構造物 | |
RU2523436C1 (ru) | Устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора | |
JP2006322768A (ja) | 原子炉格納容器の水素除去装置及びその除去方法 | |
JP7457617B2 (ja) | 原子炉格納容器ベントシステムおよび原子力発電プラント | |
JP7281393B2 (ja) | 有機よう素除去剤および有機よう素除去装置 | |
JP2024025247A (ja) | フィルタベント装置 | |
JP7348814B2 (ja) | 原子力発電プラント | |
JP2012247331A (ja) | 原子力発電プラント及びその運転方法 | |
WO2020174938A1 (ja) | 有機よう素除去剤 | |
JPH1130694A (ja) | 水素ガス処理設備を備えた原子炉格納容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19894475 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019894475 Country of ref document: EP Effective date: 20210714 |