WO2020121706A1 - ガードカラム、およびガードカラムの製造方法 - Google Patents

ガードカラム、およびガードカラムの製造方法 Download PDF

Info

Publication number
WO2020121706A1
WO2020121706A1 PCT/JP2019/044053 JP2019044053W WO2020121706A1 WO 2020121706 A1 WO2020121706 A1 WO 2020121706A1 JP 2019044053 W JP2019044053 W JP 2019044053W WO 2020121706 A1 WO2020121706 A1 WO 2020121706A1
Authority
WO
WIPO (PCT)
Prior art keywords
guard column
silica gel
column
porous silica
mpa
Prior art date
Application number
PCT/JP2019/044053
Other languages
English (en)
French (fr)
Inventor
弘嗣 中西
律子 若山
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP19895920.7A priority Critical patent/EP3895796A4/en
Priority to JP2020559837A priority patent/JP7331866B2/ja
Priority to US17/311,437 priority patent/US20220023832A1/en
Publication of WO2020121706A1 publication Critical patent/WO2020121706A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/288Polar phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3092Packing of a container, e.g. packing a cartridge or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • G01N2030/562Packing methods or coating methods packing
    • G01N2030/565Packing methods or coating methods packing slurry packing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/885Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving polymers

Definitions

  • the present invention relates to a guard column, a liquid chromatograph, a polymer compound analysis method, and a guard column production method.
  • the present application claims priority based on Japanese Patent Application No. 2018-230896 filed in Japan on December 10, 2018, the contents of which are incorporated herein by reference.
  • a light scattering detector has been widely used as a detector for high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the light scattering detector is a detector based on the principle of the static light scattering method.
  • the light scattering detector irradiates the sample solution with laser light having a constant wavelength, and measures the intensity of scattered light generated from the sample by Rayleigh scattering.
  • the absolute molecular weight and molecular size of the eluted sample can be measured by utilizing the information on the scattered light intensity.
  • a column for size exclusion chromatography is often used because the absolute molecular weight of a sample can be measured.
  • the size exclusion chromatography column separates the sample according to the size of the molecule, and the light scattering detector measures the absolute molecular weight and the molecular size.
  • size exclusion chromatography there are cases where an organic solvent is used and cases where an aqueous solvent is used, depending on the nature of the sample to be analyzed.
  • size exclusion chromatography using a water solvent a water-soluble sample is analyzed. Examples of water-soluble samples include water-soluble polymers and proteins.
  • the size exclusion chromatography column is packed with a packing material that has pores according to the size of the sample.
  • a silica gel-based packing material that utilizes the characteristics of the pore distribution is preferably used.
  • silica gel-based filler silica gel whose surface is hydrophilized in order to suppress adsorption of proteins to the filler is widely used.
  • size exclusion chromatography of a protein using a liquid chromatograph that combines a column using a silica gel-based packing material and a light scattering detector information on the absolute molecular weight of the protein as well as the molecular shape of the protein can be obtained. Therefore, the size exclusion chromatography is expected to be applied to elucidation of protein function.
  • Patent Document 1 describes a method of reducing a ghost peak obtained by a light scattering detector during exclusion chromatography. Specifically, size exclusion chromatography is described in which a stationary phase material comprising an organic-inorganic hybrid core material is loaded with a sample at a column inlet pressure greater than 1000 psi.
  • Injection noise refers to a broad “ghost peak” that is generated due to pressure fluctuation (injection shock) accompanying injection of a sample into a column and is observed near the exclusion limit on a chromatogram. Injection noise is a problem peculiar to using a column using a silica gel-based packing material. If injection noise occurs, the peak of the separated sample and the injection noise may overlap on the chromatogram, and it may be difficult to analyze the sample.
  • the present invention has been made in view of the above circumstances, a column using a packing material containing porous silica gel, and a guard column that can be used for size exclusion chromatography using a light scattering detector and can suppress injection noise. Another object is to provide a method for manufacturing a guard column. Another object of the present invention is to provide a liquid chromatograph that is equipped with the guard column described above and in which injection noise is unlikely to occur. Another object of the present invention is to provide a method for analyzing a high molecular compound in which injection noise is less likely to occur, using the liquid chromatograph.
  • the present inventor has paid attention to a guard column arranged on the upstream side of a column using a packing material containing porous silica gel and has made earnest studies.
  • a filled portion having a length of 2.0 cm to 3.5 cm formed of a filler, and the filler has an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m, and the surface is made hydrophilic and has pores.
  • a guard column made of high quality silica gel and having a pressure difference of 4.0 MPa or more when a water solvent is sent at a linear flow rate of 2.1 cm/min may be used.
  • the first aspect of the present invention is a guard column described in [1] below.
  • the filler has a filling part formed of a filler and having a length of 2.0 cm to 3.5 cm,
  • the filler is made of porous silica gel having an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m and having a hydrophilic surface,
  • a guard column having a pressure difference of 4.0 MPa or more when a water solvent is sent at a linear flow rate of 2.1 cm/min.
  • the guard column of the first aspect preferably has the features described in [2], [3], and [7] to [11] below, as described below. It is also preferable to combine two or more of these features.
  • [2] The guard column according to [1], wherein the porous silica gel has an average pore diameter of 25 nm to 35 nm and a specific surface area of 100 m 2 /g to 300 m 2 /g.
  • [3] The guard column according to [1] or [2], which is used for size exclusion chromatography using a column containing a packing material containing the porous silica gel and a light scattering detector.
  • the second aspect of the present invention is the following liquid chromatograph.
  • the guard column according to any one of [1] to [3]
  • a third aspect of the present invention is the following method for analyzing a polymer compound.
  • a method for analyzing a high molecular compound which comprises analyzing the high molecular compound by size exclusion chromatography using the liquid chromatograph described in [4] above.
  • a fourth aspect of the present invention is the following guard column manufacturing method.
  • [6] The method for producing a guard column according to any one of the above [1] to [3], By filling a filler made of porous silica gel having an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m and having a hydrophilic surface with a filling pressure of 12 MPa to 40 MPa per 1 cm of length, a length of 2.0 cm to A method of manufacturing a guard column, comprising a filling step of forming a 3.5 cm filled portion. [7] The guard column according to [1], wherein the packed portion has a diameter of 0.4 cm to 0.9 cm.
  • the hydrophilic porous silica gel on the surface is Porous silica gel whose surface is not hydrophilized is treated with a silane coupling agent to form a functional group derived from the silane coupling agent, and then the functional group is further reacted with a hydrophilic compound, silica gel.
  • the silane coupling agent is a silane coupling agent having an epoxy group
  • the guard column according to [8] wherein the hydrophilic compound is water, a polyhydric alcohol compound, or a compound having an epoxy group.
  • the hydrophilic porous silica gel on the surface is The guard column according to [1], which is a silica gel obtained by surface-treating porous silica gel whose surface is not hydrophilized with glycidoxypropyltrimethoxysilane and ring-opening the epoxy groups formed on the surface with water.
  • a liquid chromatograph equipped with a guard column of the present invention, a column for size exclusion chromatography packed with a packing containing porous silica gel, and a light scattering detector in this order from the upstream side is a size exclusion chromatography column. Injection noise is less likely to occur.
  • 2 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Example 1.
  • 3 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Example 2.
  • 5 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Example 3.
  • 5 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Comparative Example 1.
  • 5 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Comparative Example 2.
  • 5 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Comparative Example 3.
  • 9 is a chromatogram showing the results of analyzing a polymer compound using the liquid chromatograph of Comparative Example 4.
  • 6 is a chromatogram for explaining a method of calculating a noise level.
  • the guard column of the present invention the method for producing the guard column, the liquid chromatograph, and the method for analyzing a polymer compound will be described in detail.
  • the present invention is not limited to the embodiments described below. Modifications, additions, and omissions can be made without departing from the scope of the present invention. For example, additions, omissions, changes, exchanges, etc. can be made with respect to types, numbers, amounts, materials, configurations, etc. without departing from the spirit of the present invention.
  • the present inventors have developed a column packed with a packing material containing porous silica gel, not a stationary phase material containing an organic-inorganic hybrid core material, LW-403 4D (Showa Denko KK, column size, inner diameter 0
  • the examination was carried out using 0.46 cm and a length of 15.0 cm.
  • the reason for using the column is to confirm whether the same effect can be obtained with a packing material containing porous silica gel.
  • the above column was connected to a high performance liquid chromatography (HPLC) device, and 50 mM phosphate buffer was used as an eluent at 0.35 ml/min (corresponding to a linear flow rate of 2.1 cm/min).
  • HPLC high performance liquid chromatography
  • 50 mM phosphate buffer was used as an eluent at 0.35 ml/min (corresponding to a linear flow rate of 2.1 cm/min).
  • the solution was delivered at the delivery rate.
  • DAWN8 + manufactured by Wyatt technology
  • the sample was injected in the apparatus under such conditions.
  • the present inventors confirmed that in the chromatogram obtained at this time, large injection noise was generated near the exclusion limit.
  • the pressure at the column inlet at this time was 14 MPa ( ⁇ 2030 psi).
  • the guard column is a column that is used by being installed between the injector and the analytical column in order to protect the analytical column.
  • the present inventors preferably use, as an index of the packing state of the packing material in the packing portion of the guard column, the pressure difference when the water solvent is sent to the guard column at a linear flow rate of 2.1 cm/min. Found. It is presumed that the guard column having a sufficiently large pressure difference has a good packing state in which the packing materials are arranged substantially uniformly in the packing section without a gap, and injection noise can be effectively reduced. Because.
  • the “pressure difference when a water solvent is sent at a linear flow rate of 2.1 cm/min” in the guard column means the difference between pressure A and pressure B described below.
  • the pump, the guard column, and the analysis column are connected in this order from the upstream side using, for example, a pipe.
  • the pressure (pressure A) when the water solvent is sent to the guard column at a linear flow rate of 2.1 cm/min is measured.
  • An empty column from which the packing material has been removed from the guard column is connected to the guard column instead of the guard column, and the pressure (pressure B) when the water solvent is sent to this empty column at a linear flow rate of 2.1 cm/min is similarly measured.
  • the difference between these pressures is the pressure difference.
  • a known water solvent specifically, a known water solvent used when analyzing a water-soluble sample such as a protein by size exclusion chromatography, Can be used.
  • the water solvent include a phosphate buffer solution to which one or more salts selected from sodium chloride, potassium chloride, sodium sulfate and the like are added.
  • a 50 mM phosphate buffer solution pH 6.7, containing 0.3 M NaCl
  • a 50 mM phosphate buffer solution pH 6.7, containing 0.3 M NaCl
  • the linear flow velocity for measuring the pressure difference 2.1 cm/min, which is a general flow velocity of an eluent when analyzing a water-soluble sample such as protein by size exclusion chromatography, was used. ..
  • the linear flow rate of 2.1 cm/min corresponds to a volume flow rate of 0.35 ml/min when the inner diameter of the guard column is 0.46 cm, and 1.0 ml/min when the inner diameter of the guard column is 0.8 cm. Corresponding to the volume flow rate of.
  • the present inventors have found that by using a specific guard column, that is, having a packing portion formed of a packing material and having a length of 2.0 cm to 3.5 cm,
  • the filler is made of porous silica gel having an average particle size of 1.5 ⁇ m to 2.5 ⁇ m and whose surface is hydrophilized, and the pressure difference is 4.0 MPa or more. It was found that the suppression effect was sufficiently obtained.
  • the guard column having an excellent effect can be formed by a specific method. That is, a filler made of porous silica gel having an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m and having a hydrophilized surface was filled at a filling pressure of 12 MPa to 40 MPa per 1 cm length to obtain a length of 2.0 cm. It has been found that an excellent guard column having a pressure difference of 4.0 MPa or more can be obtained by the method of forming a packed portion having a size of ⁇ 3.5 cm. In this way, the present invention was completed.
  • the guard column of the present embodiment is a guard column that can be preferably used for size exclusion chromatography using a column using a packing material containing porous silica gel and a light scattering detector.
  • the guard column of this embodiment can be preferably arranged on the upstream side of the column. Specifically, from the upstream side, a guard column, a column for size exclusion chromatography packed with a packing containing porous silica gel (hereinafter sometimes referred to as “analysis column”), and a light scattering detector. And can be suitably used as a guard column in the liquid chromatograph provided in this order.
  • the guard column of the present embodiment essentially includes a packing section.
  • the guard column of the present embodiment includes an inlet part, an outlet part, a cylindrical part extending from the inlet side to the outlet side, and a filling part made of a filler filled in the cylindrical part.
  • the inlet part is fixed to the inlet side of the cylindrical part
  • the outlet part is fixed to the outlet side of the cylindrical part.
  • a filling part is formed in the cylindrical part.
  • the inlet part and the outlet part are respectively fixed to the cylindrical part, the connecting part for connecting the cylindrical part to the pipe, and the filter for preventing the filler from flowing out from the cylindrical part.
  • the cylindrical part may be integrally molded with the part of the outlet part.
  • the cylindrical part may be completely covered by the inlet part and the outlet part.
  • the cylindrical part has a constant cross-sectional area and has an inner wall surface extending in the longitudinal direction.
  • the length of the inner wall surface of the cylindrical part can be arbitrarily selected, but is generally 0.5 cm to 4.5 cm, preferably 2.0 cm to 3.5 cm, and more preferably 2 cm. It is from 0.0 cm to 3.0 cm.
  • the inner diameter of the cylindrical part can be arbitrarily selected, but it is generally 0.1 cm to 20 cm, preferably 0.1 cm to 6 cm, and as described later, 0.1 cm to 2 cm. Is more preferable, and further preferably 0.2 to 1.0 cm.
  • the length and diameter of the guard column of this embodiment can be arbitrarily selected.
  • the guard column of this embodiment preferably has a cylindrical shape or a substantially cylindrical shape, but is not limited thereto.
  • a mechanism for fixing the inlet part and the outlet part to the cylindrical part can be arbitrarily selected.
  • the inlet part and the outlet part, or the inlet part and the outlet part may be directly coupled to each other with a cylindrical part by a screwing type with a male screw structure and a female screw structure. Good.
  • the materials of the inlet part, the outlet part, and the cylindrical part can be arbitrarily selected as needed as described later.
  • the filling part is formed of a filler.
  • the filling part is formed in a cylindrical part which is separated from the outside by a part of the inlet part and a part of the outlet part.
  • the outer shape of the filling portion in the present embodiment has a cylindrical shape that follows the inner wall shape of the cylindrical part. More specifically, the filling portion preferably has a cylindrical shape having the same length as the inner wall surface of the cylindrical part and the diameter having the same dimension as the inner diameter of the cylindrical part.
  • the length of the filling portion is 2.0 cm to 3.5 cm, preferably 2.0 cm to 3.0 cm.
  • the length of the filling portion may be 2.0 cm to 2.8 cm or 2.0 to 2.5 cm, if necessary.
  • injection noise can be sufficiently suppressed in size exclusion chromatography using an analysis column and a light scattering detector.
  • the length of the packed portion is 3.5 cm or less, it is possible to suppress the influence on the analysis time and the analysis result by disposing the guard column upstream of the analysis column.
  • the guard column of this embodiment may be a plurality of guard columns of this embodiment that are connected in series as a guard unit.
  • the length of the packing part of the guard column is the sum of the lengths of the packing parts respectively included in the plurality of guard units. It may mean the combined total length.
  • the inner diameter of the cylindrical part (sometimes referred to as the inner diameter of the guard column) can be, for example, 0.1 cm to 2 cm, and can be appropriately selected according to the type and amount of the sample to be analyzed. For example, when a protein is analyzed using a liquid chromatograph equipped with the guard column, the analysis column, and the light-scattering detector of this embodiment in this order from the upstream side, the inner diameter is 0.4 cm to 0.9 cm. Is preferably used.
  • the inner diameter of the cylindrical part may be considered as the diameter of the filling part.
  • the materials used for the inlet part, the outlet part, and the cylindrical part that form the guard column are appropriately selected according to the eluent used in size exclusion chromatography and the sample to be measured. it can.
  • a material for each of the above components specifically, for example, stainless steel may be used, or a synthetic resin such as polyether ether ketone resin (PEEK) may be used.
  • PEEK polyether ether ketone resin
  • each of the above components may be formed of a different material, or a part or all of the components may be formed of the same material.
  • the cylindrical component is filled with the filler.
  • the filler porous silica gel whose surface is hydrophilized is used.
  • the porous silica gel whose surface is hydrophilized may be crushed or spherical. It is preferably spherical.
  • the surface-hydrophilized porous silica gel used as a filler has an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m, and preferably 1.7 ⁇ m to 2.2 ⁇ m.
  • the average particle size is 1.5 ⁇ m or more, excessive pressure rise does not occur when the water solvent is sent to the guard column at a linear flow rate of 2.1 cm/min.
  • a guard column having a pressure difference of 4.0 MPa or more when the water solvent is fed at a linear flow rate of 2.1 cm/min can be easily obtained.
  • the surface-hydrophilized porous silica gel having an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m can be obtained by an arbitrarily selected method.
  • a filler made of hydrophilized porous silica gel having various particle diameters is prepared, on the other hand, sieve classification using a mesh, particle size control using an air classifier, or centrifugal classification treatment. And the like.
  • the average particle size of the porous silica gel whose surface has been hydrophilized can be measured using a Coulter counter or an image analysis type particle size distribution measuring device. It is preferably measured with a Coulter counter.
  • the average particle size of the surface-hydrophilized porous silica gel used as the filler is the volume average size.
  • the average pore diameter of the porous silica gel whose surface has been hydrophilized can be appropriately selected according to the molecular size of the sample measured by chromatography.
  • the average pore diameter of the surface-hydrophilized porous silica gel contained in this guard column is , 25 nm to 35 nm is preferable, and 28 nm to 32 nm is more preferable.
  • An average pore size of 25 nm to 35 nm is preferable because the proteins are easily separated in size exclusion chromatography of the proteins.
  • the specific surface area of the porous silica gel whose surface is hydrophilized can be arbitrarily selected, but the specific surface area is preferably 100 m 2 /g to 300 m 2 /g, and more preferably 100 m 2 /g to 200 m 2 /g. More preferable.
  • the specific surface area of the porous silica gel whose surface is hydrophilized is 100 m 2 /g or more, the function of preventing the analysis column from being contaminated by the guard column becomes more prominent, so that the length of the packed portion can be further shortened.
  • the porous silica gel having a specific surface area of 300 m 2 /g or less and having a hydrophilic surface does not have an excessively large pore volume.
  • the surface-hydrophilized porous silica gel having a specific surface area of 300 m 2 /g or less is a packing material having sufficiently high strength, and an aqueous solvent is applied to the guard column at a linear flow rate of 2.1 cm/min. It is possible to prevent the pressure applied to the guard column when the liquid is sent from becoming too high.
  • the average pore diameter and specific surface area of the surface-hydrophilized porous silica gel can be measured using a gas adsorption type specific surface area measuring device or a mercury porosimeter. Preferably, it is measured by a gas adsorption type specific surface area measuring device.
  • porous silica gel whose surface is hydrophilized is used as a packing material for the guard column. Therefore, when a protein is analyzed using the liquid chromatograph equipped with the guard column of the present embodiment upstream of the analysis column, it is difficult for the protein to be adsorbed on the surface of the packing material of the guard column. Therefore, the influence on the separation performance of the sample in the analysis column caused by providing the guard column is small.
  • a surface-hydrophilized porous silica gel means that a silanol group existing on the surface of the porous silica gel is modified with a hydrophilic organic compound. In other words, it means a porous silica gel in which protein adsorption is suppressed by the modification.
  • the surface-hydrophilized porous silica gel preferably contains a structure derived from the reaction with the silane coupling agent, more specifically, an organic siloxane structure derived from the reaction.
  • the surface-hydrophilized porous silica gel can be obtained, for example, by hydrophilizing the surface of a porous silica gel substrate whose surface is not hydrophilized by the method described below.
  • the porous silica gel base material one having a desired average particle diameter is preferably used.
  • porous silica gel having a desired average particle diameter and having a hydrophilic surface can be easily obtained.
  • the average particle size of the porous silica gel base material can be measured by the same method as the average particle size of the porous silica gel whose surface is hydrophilized. Further, they can have the same average particle diameter.
  • the porous silica gel base material having a desired average particle diameter is prepared, for example, by preparing porous silica gel base materials having various particle diameters, on the other hand, a sieve classification using a mesh and a particle diameter using an air classifier. It can be obtained by a method such as control or centrifugal classification.
  • the method for making the surface of the porous silica gel base material hydrophilic can be arbitrarily selected, but for example, a method of performing a two-step process is preferably mentioned. Specifically, a porous silica gel base material and a silane coupling agent are reacted to obtain a base material having a functional group derived from the silane coupling agent, followed by a functional group derived from the silane coupling agent. A method of performing a second reaction step of reacting a base material having a group with a hydrophilic compound to obtain a porous silica gel whose surface is hydrophilized can be used.
  • the silanol group of the porous silica gel is preferably modified by the hydrophilic organic compound obtained by the reaction between the functional group derived from the silane coupling agent and the hydrophilic compound. it can. If the surface of the substrate can be made hydrophilic only by the first reaction step, the second reaction step may be omitted.
  • the reaction between the porous silica gel base material and the silane coupling agent in the first reaction step may be carried out under arbitrarily selected conditions, for example, in an organic solvent and/or an aqueous solvent, using a base or an acid as a catalyst, and the porous silica gel. It can be carried out by a method of heating and stirring the base material and the silane coupling agent.
  • the silane coupling agent include a silane coupling agent having an epoxy group, a silane coupling agent having an unsaturated group, a silane coupling agent having an amino group, and a silane coupling agent introducing an isocyanate group. You can
  • silane coupling agent having an epoxy group examples include, for example, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, Examples thereof include 3-glycidoxypropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane. Among these, it is particularly preferable to use 3-glycidoxypropyltrimethoxysilane.
  • a silane coupling agent having an epoxy group it is preferable to use water, a polyhydric alcohol compound, and/or a compound having an epoxy group as the hydrophilic compound used in the second reaction step.
  • the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3-pentanediol, Polypropylene glycol, glycerin, polyglycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2- Any one or more selected from cyclohexanedimethanol and the like can be used.
  • the second reaction step as a method of reacting the polyhydric alcohol compound with the base material having the epoxy group derived from the silane coupling agent obtained in the first reaction step, for example, a method using an acid or a base, A known method can be used.
  • the compound having an epoxy group is selected from, for example, epoxy compounds such as ethylene glycol diglycidyl ether and glycidol, haloepoxy compounds such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin, and the like.
  • epoxy compounds such as ethylene glycol diglycidyl ether and glycidol
  • haloepoxy compounds such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin, and the like.
  • glycidol is particularly preferably used.
  • the epoxy group introduced by reacting the epoxy group-containing base material derived from the silane coupling agent obtained in the first reaction step with the epoxy group-containing compound can be prepared by a known method. It can be opened to make it hydrophilic.
  • silane coupling agent having an unsaturated group examples include vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxy. Examples thereof include silane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxysilane.
  • hydrophilic monomers include N-vinyl-2-pyrrolidone, N-vinylacetamide, (meth)acrylamide, N-isopropyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide-2-hydroxyethyl( Use of one or more selected from (meth)acrylic acid esters such as (meth)acrylate, ethylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate and the like. You can
  • (meth)acrylic means at least one selected from acrylic and methacrylic.
  • (meth)acrylate means at least one selected from acrylate and methacrylate.
  • a known method is known. Examples thereof include a method of graft polymerization under the conditions.
  • silane coupling agent having an amino group examples include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, and 3-amino. Examples thereof include propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine and the like.
  • an acid anhydride it is preferable to use an acid anhydride as the hydrophilic compound.
  • the surface of the base material having an amino group derived from the silane coupling agent obtained in the first reaction step is hydrophilic without performing the second reaction step. It may be used as a modified porous silica gel.
  • silane coupling agent that introduces an isocyanate group examples include tris-(trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltrialkoxysilane, and 3-isocyanatepropyltriethoxysilane.
  • silane coupling agent that introduces an isocyanate group the above-mentioned polyhydric alcohol compound or an amine compound may be used as the hydrophilic compound.
  • silane coupling agent for example, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, or the like may be used.
  • the above-mentioned polyhydric alcohol compound may be used as the hydrophilic compound, or an amine compound may be used.
  • the pressure difference when the water solvent is sent at a linear flow rate of 2.1 cm/min is 4.0 MPa or more, more preferably 4.5 MPa or more, and 5.0 MPa or more. Is more preferable.
  • the pressure difference is 4.0 MPa or more, in the size exclusion chromatography using the liquid chromatograph provided in this order from the upstream side, the guard column, the analysis column, and the light scattering detector, the injection noise. Can be reduced. If it is 4.0 MPa or more, the pressure difference can be arbitrarily selected as needed, and for example, 6.0 MPa or more, 7.0 MPa or more, 8.0 MPa or more, 9.0 MPa or more, 10.0 MPa or more.
  • the upper limit value of the pressure difference can be arbitrarily selected, but if the pressure difference is too large, the durability of the guard column may decrease, and the measurable device is also limited. Therefore, the pressure difference is 12.0 MPa.
  • the following is preferable. For example, it may be 11.5 MPa or less, or 11.0 MPa or less.
  • the effect of the pressure difference of 4.0 MPa or more is obtained because the filling state of the filler is suitable. That is, in the packing portion of the specific length that the guard column of the present embodiment has, the filling state of the above-mentioned packing material is suitable, so that the cause of the injection noise generated by the injection shock is removed by the guard column. It is estimated to be.
  • the pressure difference when the water solvent is sent at a linear flow rate of 2.1 cm/min in the guard column is preferably 12 MPa or less as described above.
  • the pressure difference is 12 MPa or less, it is possible to suppress deterioration of the durability of the guard column due to the pressure difference being too large, and there are few restrictions on devices such as pumps and pipes used for measuring the pressure difference. preferable.
  • the pressure difference when the water solvent is sent at a linear flow rate of 2.1 cm/min through the guard column can be measured by the method described below.
  • a pump having a pressure sensor, a guard column, and an analysis column are prepared, and connected by piping in this order from the upstream side.
  • the water solvent is sent at a linear flow rate of 2.1 cm/min from the inlet into the cylindrical part of the guard column using a pump.
  • the feeding pressure of the water solvent at this time is measured by a pressure sensor included in the pump. In this way, the pressure on the inlet side is measured.
  • the empty column used here has the same structure as the guard column except that the packing portion is not formed. That is, the empty column is formed by attaching the inlet part and the outlet part to the same cylindrical part as that used for the guard column. This cylindrical part contains only water solvent. Then, using a pump, the water solvent is sent to the empty column and the analytical column at a linear flow rate of 2.1 cm/min. The feeding pressure of the water solvent at this time is measured by a pressure sensor included in the pump. Then, the difference between the pressure when the guard column thus obtained is connected and the pressure when the empty column is connected is calculated. The calculated value is used as the pressure difference when the water solvent is sent through the guard column at a linear flow rate of 2.1 cm/min.
  • a plurality of guard columns of this embodiment may be used by connecting them in series. In this case, it is estimated that the injection noise reduction effect of each column is added.
  • the number to be connected can be arbitrarily selected and may be, for example, 2 to 4.
  • guard columns of the present embodiment When a plurality of guard columns of the present embodiment are connected in series and used, when a guard column is deteriorated in a liquid chromatograph including the guard column, only a part of these guard columns may be replaced. However, you may exchange all. The number of guard columns to be replaced can be appropriately determined according to the state of deterioration of the guard columns.
  • the guard column of the present embodiment can be preferably manufactured by an arbitrarily selected manufacturing method, for example, the manufacturing method shown below.
  • the present invention is not limited to the following examples.
  • a cylindrical part having a constant cross-sectional area and extending in the length direction and having an inner wall surface of 2.0 cm to 3.5 cm is prepared.
  • the outlet part is attached to the outlet side of the cylindrical part.
  • a filler is prepared, which is made of porous silica gel having a hydrophilic surface and has an average particle diameter of 1.5 ⁇ m to 2.5 ⁇ m.
  • the cylindrical part is filled with a filler at a filling pressure of 12 MPa to 40 MPa, preferably 15 MPa to 30 MPa per 1 cm in length.
  • a filling portion having a length of 2.0 cm to 3.5 cm is formed (filling step).
  • the part at the entrance is fixed to the entrance side of the cylindrical part. This makes it possible to manufacture a guard column.
  • the filler when the filler is filled at a filling pressure of 12 MPa or more per 1 cm of the length of the filling portion, when the length of the filling portion is 2.0 cm to 3.5 cm, the linear velocity of the water solvent is 2.1 cm/min. It is possible to preferably obtain a card column having a pressure difference of 4.0 MPa or more when the solution is fed in.
  • the filler is less likely to be crushed due to the filling of the filler, and the filled state of the filler is not adversely affected.
  • the filling agent is filled at a filling pressure of 30 MPa or less per 1 cm of the length of the filling portion, the pressure difference will not be too large. Therefore, it is possible to prevent the durability of the guard column from being lowered due to the pressure difference being too large.
  • devices such as pumps and pipes used for measuring the pressure difference, which is preferable.
  • the method of filling the filler in the cylindrical part is not particularly limited.
  • a known filling method such as an equilibrium density method or a slurry filling method can be used. It is preferable to use a slurry filling method.
  • the filler is dispersed in a dispersion solvent to form a slurry.
  • the amount of the filler used to form the filling portion can be determined according to the internal volume of the cylindrical part. Specifically, the amount of the filler used is preferably equal to or more than the volume surrounded by the inner wall surface of the cylindrical part and 1.5 times or less than the volume surrounded by the inner wall surface. The amount of the filler used is more preferably 1.1 to 1.4 times the volume surrounded by the inner wall surface.
  • the dispersion solvent that can be used for the slurry can be arbitrarily selected, and examples thereof include methanol, ethanol, and isopropanol.
  • the content of the filler in the slurry is not particularly limited, but is preferably in the range of 5% by mass to 10% by mass, for example.
  • the filler in the slurry supplied into the housing easily moves together with the dispersion solvent, and the filler is easily arranged substantially uniformly without any gap.
  • the liquid can be easily sent, so that the filling pressure of the filler can be adjusted with high accuracy.
  • the pushing liquid can be arbitrarily selected, and water may be used, or a mixed liquid of water and a water-soluble alcohol may be used.
  • the filling pressure of the filler to be filled in the cylindrical part at the time of filling can be adjusted by adjusting the feeding pressure of the pushing liquid according to the feeding speed of the pushing liquid.
  • the liquid feeding pressure at the end of liquid feeding of the pushing liquid may be the target filling pressure of the filler. That is, the feeding pressure at the end of feeding the pushing liquid is 12 MPa to 40 MPa per 1 cm of the length of the filling portion, and preferably 15 MPa to 30 MPa per 1 cm of the length of the filling portion.
  • the liquid feeding pressure at the end of the feeding of the pushing liquid is preferably 25 MPa to 50 MPa, and more preferably 30 MPa to 40 MPa.
  • the liquid feed of the slurry and the pushing liquid is preferably performed until the slurry and the pushing liquid having a volume three times or more the volume of the slurry all pass through the cylindrical part.
  • the liquid feeding pressure at the end of liquid feeding of the pushing liquid is the filling pressure of the filler at the time of filling.
  • the formation of the filling portion is completed by completing the feeding of the pushing liquid.
  • the filling packer is removed from the cylindrical part to which the part of the outlet part is attached, and the part of the inlet part is fixed and sealed on the inlet side of the cylindrical part.
  • the liquid chromatograph of the present embodiment is an apparatus that includes, from the upstream side, the guard column of the present embodiment, an analysis column, and a light scattering detector in this order.
  • the injector connected to the pump is connected to the upstream side of the guard column via a pipe.
  • the liquid chromatograph of the present embodiment may further include a detector such as a differential refractive index detector and an ultraviolet absorption detector, in addition to the light scattering detector, if necessary.
  • an in-line filter may be further connected to a place as necessary, if necessary.
  • a size exclusion chromatography column packed with a packing material containing porous silica gel is preferably used as the analysis column.
  • the analytical column use the one in which the packing material is filled in the housing.
  • the length of the analytical column can be arbitrarily selected, but it is preferable to use a packing portion formed of a packing material having a length of 15.0 cm to 30.0 cm.
  • the length of the packed portion is 15.0 cm or more, good protein separation performance is easily obtained when performing protein analysis using the liquid chromatograph of the present embodiment, which is preferable.
  • the length of the packed portion is 30.0 cm or less, the pressure load applied to the analytical column is likely to be appropriate, which is preferable.
  • the inner diameter of the analytical column (inner diameter of the housing) can be arbitrarily selected, but like the inner diameter of the cylindrical part (inner diameter of the guard column) in the guard column of the present embodiment, it is preferably 0.1 cm to 2 cm. More preferably, it is 0.4 cm to 0.9 cm.
  • the inner diameter of the analysis column housing is preferably the same as the inner diameter of the cylindrical part of the guard column of the present embodiment (the inner diameter of the guard column). In this case, since the analysis column and the guard column are similar to each other, the injection noise in the size exclusion chromatography using the liquid chromatograph of this embodiment can be further reduced.
  • the inner diameter of the housing of the analysis column can be appropriately selected according to the type and amount of the sample to be analyzed. For example, when the protein is analyzed using the liquid chromatograph of the present embodiment, the inner diameter of the housing of the analysis column is more preferably 0.4 cm to 0.9 cm.
  • the material used for the parts of the analysis column can be appropriately selected according to the eluent used for the size exclusion chromatography and the sample to be measured, like the parts of the guard column of the present embodiment.
  • stainless steel may be used, or synthetic resin such as polyether ether ketone resin (PEEK) may be used.
  • PEEK polyether ether ketone resin
  • the packing material of the analytical column comprises porous silica gel.
  • the filler preferably consists only of porous silica gel whose surface is hydrophilized.
  • a filler other than porous silica gel may be included. Examples of the filler that is not porous silica gel include those made of organic polymers.
  • the packing material for the analytical column is preferably composed only of porous silica gel having a hydrophilic surface, and more preferably the same packing material as the packing material for the guard column of the present embodiment.
  • the packing material of the analytical column is porous silica gel whose surface is hydrophilized
  • the protein when the protein is analyzed using the liquid chromatograph of the present embodiment, it is difficult for the protein to be adsorbed on the surface of the packing material of the analytical column. , Highly accurate analysis results can be obtained.
  • the packing material of the analytical column is the same as the packing material of the guard column of this embodiment, the analytical column and the guard column are similar. Therefore, injection noise in size exclusion chromatography using the liquid chromatograph of the present embodiment can be further reduced.
  • the pore size distribution of the porous silica gel used as the packing material for the analytical column is preferably 25 nm to 35 nm, more preferably 28 nm to 32 nm.
  • the average pore diameter of the porous silica gel is measured by a gas adsorption type specific surface area measuring device.
  • a commercially available column may be used as the analysis column.
  • Examples of commercially available columns include KW-803 series, KW-400 series, LW-403 4D, LW-803 (all manufactured by Showa Denko KK, which are commercially available as columns for size exclusion chromatography suitable for protein analysis. ) And the like.
  • a known device can be used as the light scattering detector, and an appropriate one can be selected according to the sample to be measured and the purpose.
  • Examples of commercially available light scattering detectors include DAWN8 + (manufactured by Wyatt technology), PL-RTLS, PL-HTLS (all manufactured by Agilent Technologies).
  • Methods for analyzing high molecular compounds In the method for analyzing a polymer compound according to this embodiment, the polymer compound can be analyzed by size exclusion chromatography using the liquid chromatograph according to this embodiment.
  • the analysis method of the present embodiment uses a polymer compound as an analysis target, and can be suitably used particularly when a protein is analyzed.
  • an aqueous eluent in which a salt is dissolved in water.
  • the salt contained in the eluent include sodium chloride, potassium chloride and sodium sulfate.
  • the eluent may contain a buffer to improve the reproducibility of the analysis. A phosphate buffer or the like is preferably used as the buffer.
  • the eluent may contain a water-soluble organic solvent as long as the precipitation of salt does not matter. Specifically, the content of the water-soluble organic solvent in the eluent is preferably 10% by mass or less. Examples of the water-soluble organic solvent include, for example, methanol, acetonitrile and the like.
  • the polymer compound is analyzed by size exclusion chromatography using the liquid chromatograph including the guard column according to the present embodiment. Therefore, injection noise can be suppressed when the light scattering detector is used. Therefore, the polymer compound can be analyzed with high accuracy by the method for analyzing a polymer compound according to the present embodiment.
  • the method for analyzing a polymer compound according to this embodiment is suitable for measuring the absolute molecular weight of a protein.
  • the filler is made of porous silica gel having a hydrophilic surface, and the average particle diameter of the porous silica gel is 1.5 ⁇ m to 2.5 ⁇ m.
  • the length of the filling portion is 2.0 cm to 3.5 cm.
  • the pressure difference when the water solvent is sent at a linear flow rate of 2.1 cm/min is 4.0 MPa or more.
  • the guard column of this embodiment also has the performance as the original “guard column”. That is, the guard column of the present embodiment removes contaminants in the eluent and the measurement sample, so that the effect of preventing contamination of the analytical column can be obtained. Therefore, in the liquid chromatograph of the present embodiment, in addition to the effect of suppressing injection noise, deterioration of the analysis column is suppressed, and the life of the analysis column can be extended. That is, when the guard column is deteriorated by repeatedly analyzing the polymer compound using the liquid chromatograph of this embodiment, the guard column may be replaced.
  • Example 1 [Manufacture of filler]
  • the guard column of Example 1 was manufactured by the method described below. 100 g of a spherical porous silica gel base material (trade name: MS GEL EP-DF-1.9-250A, manufactured by AGC SII Tech Co., Ltd.) was used as a solvent in a 20 mM acetate buffer solution (pH 5.5; acetic acid 0. It was dispersed in 500 g of Junsei Kagaku Co., Ltd. containing 063 g and 0.75 g of sodium acetate to obtain a dispersion liquid.
  • a spherical porous silica gel base material trade name: MS GEL EP-DF-1.9-250A, manufactured by AGC SII Tech Co., Ltd.
  • a silane coupling agent (glycidoxypropyltrimethoxysilane, manufactured by JNC) was added to the obtained dispersion liquid, and the mixture was stirred at 70° C. for 17 hours. Then, suction filtration was performed to separate and collect the base material having the epoxy group derived from the silane coupling agent, which is a solid phase (first reaction step).
  • the separated and recovered solid phase was washed successively with water and methanol and dried.
  • the washed and dried solid phase is dispersed in a 50 mM aqueous sulfuric acid solution and heated and stirred at 80° C. for 2 hours to separate the base material having an epoxy group derived from the silane coupling agent and water which is a hydrophilic compound. It was made to react.
  • suction filtration was carried out to separate and collect the target solid phase, which was sequentially washed with water and acetone, respectively, and dried (second reaction step).
  • the obtained surface-hydrophilized porous silica gel is spherical.
  • the average particle size thereof was measured using a Coulter counter (Multisizer 4 manufactured by Beckman Coulter, Inc.) and was 1.9 ⁇ m.
  • the average pore diameter and the specific surface area of the surface-hydrophilized porous silica gel were measured using a gas adsorption type specific surface area measuring device (manufactured by BELSORP-miniII Microtrac Bell). As a result, the average pore diameter was 28 nm and the specific surface area was 150 m 2 /g.
  • 0.2 g of the thus obtained surface-hydrophilized porous silica gel was dispersed in 4 ml of isopropanol to prepare a dispersion liquid (slurry). Further, a filling packer having an inner diameter of 0.46 cm and a length of 30 cm was connected to a cylindrical part to which a part for the outlet was attached. As the outlet part and the cylindrical part, those made of stainless steel were used. As the cylindrical part, a part having an inner wall surface extending in the longitudinal direction with a constant cross-sectional area of 2.0 cm in length and an inner diameter of 0.46 cm was used.
  • the slurry was put into the filling packer, and a pump (Alliance 2695, manufactured by Waters) was connected to the filling packer. Then, using a pump, water as a pushing liquid was fed for 8 minutes at a maximum liquid feeding speed of 3.0 ml/min. The liquid feeding of the pushing liquid was performed while increasing the liquid feeding pressure from the start of the liquid feeding until the liquid feeding pressure reaches the maximum liquid feeding pressure of 30 MPa (15 MPa per 1 cm of the length of the filling portion). Then, from the time when the liquid feed pressure reached the maximum liquid feed pressure to the end of the liquid feed, the pushing liquid was fed at the maximum liquid feed pressure. As a result, the cylindrical part was filled with the filler to form a 2.0 cm-long filled portion.
  • a pump Alliance 2695, manufactured by Waters
  • the pressure difference when the water solvent was sent at a linear flow rate of 2.1 cm/min of the guard column was measured by the method described below. Specifically, a pump (Alliance 2695, manufactured by Waters) having a pressure sensor, a guard column of Example 1, an analytical column (trade name; LW-40 3D, manufactured by Showa Denko KK), and a light scattering detector. (DAWN8+, manufactured by Wyatt technology) was connected in this order from the upstream side using a pipe.
  • an aqueous solvent consisting of 50 mM phosphate buffer (pH 6.7, containing 0.3 M NaCl) was introduced into the cylindrical part of the guard column of Example 1 to obtain a linear flow rate of 2.1 cm.
  • the solution was delivered at a rate of /minute.
  • the feeding pressure of the water solvent at this time was measured by a pressure sensor included in the pump. The pressure was 20.5 MPa.
  • the eluent 50 mM phosphate buffer solution (pH 6.7, containing 0.3 M NaCl) was applied to the guard column of Example 1 for about 60 minutes at a solution transfer rate of 0.35 ml. /Min, and it was confirmed that the baseline of the obtained chromatogram was stable.
  • 5 ⁇ l of 2.4 mg/ml of BSA bovine serum albumin, manufactured by SIGMA ALDRICH
  • BSA bovine serum albumin
  • Example 2 A filling portion having a length of 2.0 cm was formed and carried out in the same manner as in Example 1 except that the feeding pressure at the end of feeding the pushing liquid was 40 MPa (20 MPa per 1 cm of the length of the filling portion).
  • the guard column of Example 2 was obtained.
  • the pressure difference when the aqueous solvent was sent at a linear flow rate of 2.1 cm/min was measured in the same manner as in Example 1, and the result was 10.4 MPa.
  • a liquid chromatograph of Example 2 was prepared in the same manner as in Example 1 except that the guard column of Example 2 was used, and the polymer compound (BSA) was analyzed. The obtained chromatogram is shown in FIG.
  • Example 3 Similar to Example 1 except that a cylindrical part having an inner wall surface length of 1.0 cm was used and the amount of porous silica gel was set to 0.1 g to form a 1.0 cm long filled portion. Then, two guard columns used as a guard unit were manufactured.
  • the liquid feeding pressure at the end of liquid feeding of the pushing liquid is 30 MPa, which is the same as in Example 1, but since the length of the filling portion is different from that in Example 1, the filling pressure per 1 cm of the length of the filling portion is Unlike Example 1, it is 30 MPa.
  • the guard columns used as two guard units were connected in series via a pipe to obtain the guard column of Example 3.
  • the pressure difference when the water solvent was sent at a linear flow rate of 2.1 cm/min was measured in the same manner as in Example 1.
  • the pressure difference was 10.0 MPa.
  • a liquid chromatograph of Example 3 was prepared in the same manner as in Example 1 except that the guard column of Example 3 was used, and the polymer compound (BSA) was analyzed. The obtained chromatogram is shown in FIG.
  • Example 1 The polymer compound (BSA) was analyzed in the same manner as in Example 1 except that the guard column was removed. The obtained chromatogram is shown in FIG.
  • the pressure difference when the water solvent was sent at a linear flow rate of 2.1 cm/min in the analytical column was calculated according to the method for measuring the pressure difference in the guard column of Example 1. That is, the pump and the analytical column were connected, and the pressure when the aqueous solvent was sent to the analytical column at a linear flow rate of 2.1 cm/min and the empty column with the packing material removed from the analytical column were replaced with the analytical column. It was connected, and the pressure when a water solvent was sent to this empty column at a linear flow rate of 2.1 cm/min was measured.
  • Example 2 A filling part having a length of 2.0 cm was formed in the same manner as in Example 1 except that the feeding pressure at the end of feeding the pushing liquid was 20 MPa (10 MPa per 1 cm of the length of the filling part).
  • the guard column of Example 2 was obtained.
  • the water solvent was sent at a linear flow rate of 2.1 cm/min in the same manner as in Example 1, and the pressure was measured. Further, the pressure difference was measured and found to be 3.4 MPa.
  • a liquid chromatograph of Comparative Example 2 was prepared in the same manner as in Example 1 except that the guard column of Comparative Example 2 was used, and the polymer compound (BSA) was analyzed. The obtained chromatogram is shown in FIG.
  • Comparative example 3 Using a cylindrical part having an inner wall surface length of 1.0 cm, 0.1 g of the same porous silica gel as in Example 1 was used to form a 1.0 cm long filled portion. A guard column of Comparative Example 3 was produced in the same manner as in Example 1 except for this.
  • the liquid feeding pressure at the end of liquid feeding of the pushing liquid is 30 MPa as in Example 1, but the length of the filling portion is different from that in Example 1. Therefore, the filling pressure per 1 cm of the length of the filling portion is 30 MPa, which is different from the first embodiment.
  • Example 4 As a spherical porous silica gel substrate, M. S. A porous silica gel having a hydrophilized surface was obtained in the same manner as in Example 1 except that GEL EP-DF-3-250A (trade name, manufactured by AGC SITEC Co., Ltd.) was used. The obtained surface-hydrophilized porous silica gel was spherical, and had an average particle diameter of 3.0 ⁇ m, an average pore diameter of 28 nm, and a specific surface area of 135 m 2 /g.
  • GEL EP-DF-3-250A trade name, manufactured by AGC SITEC Co., Ltd.
  • a guard column of Comparative Example 4 was obtained in the same manner as in Example 1 except that the thus obtained porous silica gel having a hydrophilic surface was used to form a packed portion having a length of 2.0 cm. It was Regarding the guard column of Comparative Example 4, the pressure difference when the water solvent was sent at a linear flow rate of 2.1 cm/min was measured in the same manner as in Example 1. As a result, the pressure difference was 1.4 MPa. Then, a liquid chromatograph of Comparative Example 4 was prepared in the same manner as in Example 1 except that the guard column of Comparative Example 4 was used, and the polymer compound (BSA) was analyzed. The obtained chromatogram is shown in FIG. 7.
  • Table 1 shows the average particle diameters of the porous silica gels of Examples 1 to 3 and Comparative Examples 1 to 4 with which the surface of the guard column is hydrophilized, the length of the filling portion, and the filling pressure of the filler at the time of filling. (Liquid feeding pressure at the end of feeding of the pushing liquid), filling pressure per 1 cm of the length of the filling portion, and pressure difference when the water solvent is fed at a linear flow rate of 2.1 cm/min are combined. Show.
  • 1 to 7 are chromatograms showing the results of analyzing a polymer compound (BSA: bovine serum albumin) using the liquid chromatographs of Examples 1 to 3 and Comparative Examples 1 to 4.
  • BSA bovine serum albumin
  • the vertical axis represents signal intensity (mv) and the horizontal axis represents retention time (min).
  • mv signal intensity
  • min retention time
  • FIGS. 1 to 3 in Examples 1 to 3, a peak corresponding to BSA as a sample was obtained near a retention time of 5.3 min.
  • Example 1 shown in FIG. 4 injection noise is suppressed as compared with Comparative Example 1 shown in FIG. From this, it is understood that the injection noise can be reduced by connecting the guard column of Example 1 on the upstream side of the analysis column.
  • Comparative Example 2 the pressure difference when the water solvent in the guard column was sent at a linear flow rate of 2.1 cm/min was small. Therefore, as shown in FIG. 5, it is presumed that the substance causing the injection shock was not sufficiently reduced by the guard column. Further, in Comparative Example 3, since the guard column having the insufficient length of the filling portion was used, the substance causing the injection shock was not sufficiently reduced by the guard column as shown in FIG. 6. It is estimated to be. In Comparative Example 4, the average particle size of the porous silica gel whose surface was hydrophilized was too large, so that the pressure difference was small when the water solvent was sent at a linear flow rate of 2.1 cm/min, and thus the guard column was used. As shown in FIG. 7, it is presumed that the substance causing the injection shock was not sufficiently reduced by the guard column.
  • FIG. 8 is a chromatogram for explaining the method of calculating the noise level.
  • FIG. 8 shows the peak area (A) of injection noise and the peak area (B) of BSA. Each peak area is obtained as follows. First, the total area of all peaks observed within the retention time range in which injection noise appears (in the example shown in FIG. 8, from the start of measurement to 10 minutes later) is determined. Next, the peak derived from BSA is determined as the peak area (B) of the portion on the injection noise.
  • the area (B) is an area obtained by dividing the peak derived from BSA from the peak of the injection noise by processing the valley, and is the peak area up to the line indicated by the symbol L in FIG. 8.
  • the area obtained by subtracting the area (B) from the total area of all peaks observed within the retention time range is determined as the peak area (A) of injection noise.
  • the noise level in Examples 1 to 3 was 1.2 or less, which was sufficiently smaller than the noise levels in Comparative Examples 1 to 4.
  • the present invention provides a guard column used for size exclusion chromatography using a column containing a packing material containing porous silica gel and a light scattering detector and capable of suppressing injection noise, and a method for producing the guard column. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

充填剤で形成された長さ2.0cm~3.5cmの充填部を有し、前記充填剤が、平均粒子径が1.5μm~2.5μmである、表面が親水化された多孔質シリカゲルからなり、線流速2.1cm/分で水溶媒を送液した時の圧力差が4.0MPa以上である、ガードカラムとする。

Description

ガードカラム、およびガードカラムの製造方法
  本発明は、ガードカラム、液体クロマトグラフ、高分子化合物の分析方法およびガードカラムの製造方法に関する。
 本願は、2018年12月10日に、日本に出願された特願2018-230896号に基づき優先権を主張し、その内容をここに援用する。
 従来、高速液体クロマトグラフィー(HPLC)の検出器として、光散乱検出器が広く使用されている。光散乱検出器は、静的光散乱法の原理に基づく検出器である。光散乱検出器は、試料溶液に一定波長のレーザー光を照射し、レイリー散乱によって試料から生じた散乱光強度を計測する。光散乱検出器を使用したHPLCでは、散乱光強度の情報を利用することにより、溶出した試料の絶対分子量および分子サイズを測定できる。
 光散乱検出器を使用したHPLCでは、試料の絶対分子量を測定できるため、サイズ排除クロマトグラフィー用カラムが多く使用される。この場合、サイズ排除クロマトグラフィー用カラムにより、分子の大きさに応じて試料を分離し、光散乱検出器により、絶対分子量および分子サイズを測定する。
 サイズ排除クロマトグラフィーでは、分析する試料の性質に応じて、有機溶媒を使用する場合と、水溶媒を使用する場合とがある。水溶媒を使用するサイズ排除クロマトグラフィーでは、水溶性の試料が分析対象となる。水溶性の試料としては、水溶性高分子やタンパク質などが挙げられる。
 サイズ排除クロマトグラフィー用カラムには、試料の大きさに応じた細孔を有する充填剤が充填されている。タンパク質を試料とするサイズ排除クロマトグラフィーでは、細孔分布の特質を利用したシリカゲル系の充填剤が好適に使用される。シリカゲル系の充填剤としては、充填剤へのタンパク質の吸着を抑えるために表面を親水化したシリカゲルが広く用いられている。
 シリカゲル系の充填剤を利用したカラムと光散乱検出器とを組み合わせた液体クロマトグラフを用いるタンパク質のサイズ排除クロマトグラフィーでは、タンパク質の絶対分子量と同時に、タンパク質の分子形状の情報が得られる。このため、上記のサイズ排除クロマトグラフィーは、タンパク質の機能解明への応用が期待されている。
 特許文献1には、排除クロマトグラフィー中に光散乱検出器によって得られるゴーストピークを低減する方法が記載されている。具体的には、有機-無機ハイブリッドコア材料を含む固定相材料に、試料を1000psiより大きいカラム入口圧で負荷するサイズ排除クロマトグラフィーが記載されている。
 シリカゲル系の充填剤を用いたカラムと、光散乱検出器とを用いるサイズ排除クロマトグラフィーにおいて、インジェクションノイズを抑制することが要求されている。インジェクションノイズとは、カラムへの試料注入に伴う圧力変動(インジェクションショック)により発生し、クロマトグラム上の排除限界付近に観察される広い「ゴーストピーク」のことを云う。インジェクションノイズは、シリカゲル系の充填剤を用いたカラムを利用する場合に特有の問題である。インジェクションノイズが発生すると、クロマトグラム上で、分離された試料のピークとインジェクションノイズとが重なり、試料の分析が困難となる場合がある。
特許第6219569号公報
 本発明は、上記事情を鑑みてなされたものであり、多孔質シリカゲルを含む充填剤を用いたカラムと、光散乱検出器とを用いるサイズ排除クロマトグラフィーに用いられ、インジェクションノイズを抑制できるガードカラムおよびガードカラムの製造方法を提供することを課題とする。
 また、本発明は、上記ガードカラムを備え、インジェクションノイズが発生しにくい液体クロマトグラフを提供することを課題とする。
 また、本発明は、上記液体クロマトグラフを用いる、インジェクションノイズが発生しにくい高分子化合物の分析方法を提供することを課題とする。
 本発明者は、上記課題を解決するために、多孔質シリカゲルを含む充填剤を用いたカラムの上流側に配置されるガードカラムに着目し、鋭意検討を重ねた。
 その結果、充填剤で形成された長さ2.0cm~3.5cmの充填部を有し、前記充填剤が、平均粒子径1.5μm~2.5μmである、表面が親水化された多孔質シリカゲルからなり、線流速2.1cm/分で水溶媒を送液した時の圧力差が4.0MPa以上であるガードカラムを用いればよいことを見出した。
 そして、上流側から、上記ガードカラムと、多孔質シリカゲルを含む充填剤が充填されたサイズ排除クロマトグラフィー用カラムと、光散乱検出器とがこの順に備えられた液体クロマトグラフを用いることで、サイズ排除クロマトグラフィーにおけるインジェクションノイズを抑制できることを確認し、本発明を完成するに至った。
 すなわち、本発明の第一の態様は、以下の[1]に記載されるガードカラムである。
[1]充填剤で形成された長さ2.0cm~3.5cmの充填部を有し、
 前記充填剤が、平均粒子径が1.5μm~2.5μmである、表面が親水化された多孔質シリカゲルからなり、
 線流速2.1cm/分で水溶媒を送液した時の圧力差が4.0MPa以上である、ガードカラム。
 第一の態様のガードカラムは、以下に述べるように、以下の[2]、[3]、及び[7]~[11]に記載される特徴を好ましく有する。これらの特徴を2つ以上組み合わせることも好ましい。
[2]前記多孔質シリカゲルは、平均細孔径が25nm~35nmであり、比表面積が100m/g~300m/gである、[1]に記載のガードカラム。
[3]前記多孔質シリカゲルを含む充填剤を用いたカラムと、光散乱検出器とを用いるサイズ排除クロマトグラフィーに用いられる、[1]または[2]に記載のガードカラム。
 本発明の第二の態様は、以下の液体クロマトグラフである。
[4]上流側から、[1]~[3]のいずれかに記載のガードカラムと、多孔質シリカゲルを含む充填剤が充填されたサイズ排除クロマトグラフィー用カラムと、光散乱検出器とがこの順に備えられた、液体クロマトグラフ。
 本発明の第三の態様は、以下の高分子化合物の分析方法である。
[5]上記[4]に記載の液体クロマトグラフを用いて、サイズ排除クロマトグラフィーにより高分子化合物を分析する、高分子化合物の分析方法。
 本発明の第四の態様は、以下のガードカラムの製造方法である。
[6]上記[1]~[3]のいずれかに記載のガードカラムの製造方法であり、
 平均粒子径が1.5μm~2.5μmである表面が親水化された多孔質シリカゲルからなる充填剤を、長さ1cm当たり12MPa~40MPaの充填圧で充填することにより、長さ2.0cm~3.5cmの充填部を形成する充填工程を有する、ガードカラムの製造方法。
[7] 前記充填部の直径が0.4cm~0.9cmである、[1]に記載のガードカラム。
[8] 前記表面の親水化された多孔質シリカゲルが、
 表面が親水化されていない多孔質シリカゲルを、シランカップリング剤で処理してシランカップリング剤由来の官能基を形成し、その後、更に、前記官能基と親水性化合物とを反応させた、シリカゲルである、[1]に記載のガードカラム。
[9] 前記シランカップリング剤が、エポキシ基を有するシランカップリング剤であり、
 前記親水性化合物が、水、多価アルコール化合物、またはエポキシ基を有する化合物である、[8]に記載のガードカラム。
[10] 前記表面の親水化された多孔質シリカゲルが、
 表面が親水化されていない多孔質シリカゲルをグリシドキシプロピルトリメトキシシランで表面処理し、表面に形成されたエポキシ基を水で開環させたシリカゲルである、[1]に記載のガードカラム。
[11] 前記高分子化合物がタンパク質である、[5]に記載の高分子化合物の分析方法。
 本発明のガードカラムと、多孔質シリカゲルを含む充填剤が充填されたサイズ排除クロマトグラフィー用カラムと、光散乱検出器とが、上流側からこの順に備えられた液体クロマトグラフは、サイズ排除クロマトグラフィーにおけるインジェクションノイズが発生しにくい。
実施例1の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 実施例2の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 実施例3の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 比較例1の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 比較例2の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 比較例3の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 比較例4の液体クロマトグラフを用いて高分子化合物を分析した結果を示したクロマトグラムである。 ノイズレベルの計算方法を説明するためのクロマトグラムである。
 以下、本発明のガードカラムおよびガードカラムの製造方法、液体クロマトグラフ、高分子化合物の分析方法について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明の要旨を逸脱しない範囲で、変更や追加や省略をする事ができる。例えば、本発明の趣旨を逸脱しない範囲で、種類、数、量、材料、構成等について、追加、省略、変更、交換などが可能である。
 (本発明者らによる検討)
 本発明者らは、多孔質シリカゲルを含む充填剤が充填されたサイズ排除クロマトグラフィー用カラムと、光散乱検出器とを用いるサイズ排除クロマトグラフィーにおいて、インジェクションノイズを抑制すべく、以下に示すように検討を重ねた。
 まず、特許文献1に記載の技術に基づいて検討を行った。特許文献1には、サイズ排除クロマトグラフィーにおいて、有機-無機ハイブリッドコア材料を含む固定相材料に対して、試料を、1000psiより大きいカラム入口圧で負荷することにより、光散乱検出器によって検出されるノイズの発生率を、低減する方法が記載されている。
 本発明者らは、有機-無機ハイブリッドコア材料を含む固定相材料ではなく、多孔質シリカゲルを含む充填剤が、充填されたカラムであるLW-403 4D(昭和電工株式会社製、カラムサイズ 内径0.46cm、長さ15.0cm)を用いて、検討を行った。前記カラムを用いた理由は、多孔質シリカゲルを含む充填剤でも同様の効果が得られるかどうかを、確認する為である。
 評価において、具体的には、上記カラムを、高速液体クロマトグラフィー(HPLC)装置につなぎ、溶離液として50mMリン酸緩衝液を、0.35ml/分(線流速2.1cm/分に相当)の送液速度で送液した。光散乱検出器としては、DAWN8(Wyatt technology社製)を用いた。このような条件の装置において、試料を注入した。本発明者らは、この時に得られたクロマトグラムにおいて、排除限界付近に大きなインジェクションノイズが発生することを確認した。後述する比較例1に示すように、この時のカラム入口の圧力は、14MPa(≒2030psi)であった。
 このような結果は、多孔質シリカゲルを含む充填剤が充填されたカラムを用いる場合には、試料を、1000psiよりも大きいカラム入口圧で負荷をする特許文献1の技術を適用しても、インジェクションノイズを抑制する効果は十分に得られないことを示している。
 そこで、本発明者らは、多孔質シリカゲルを含む充填剤が充填されたカラムの上流に、ガードカラムを設置することにより、インジェクションノイズを抑制することができるかどうか、更に鋭意検討を重ねた。より詳細には、本発明者らは、ガードカラムの充填部の形状、充填剤の種類および平均粒子径、及び、充填剤の充填状態に着目して、様々な検討を行った。
 なおガードカラムとは、分析カラムを保護するなどのために、インジェクターと分析カラムの間に取り付けて、使用するカラムである。
 検討の結果、特定の充填剤を、特定の充填圧で充填することにより、そして、特定の長さの充填部を形成したガードカラムを用いることにより、高分子化合物の分析において問題にならない程度に、インジェクションノイズを抑制できることを見出した。
 また、本発明者らは、ガードカラムの充填部における充填剤の充填状態の指標として、ガードカラムに線流速2.1cm/分で水溶媒を送液した時の圧力差が、好ましく用いられることを見出した。上記圧力差が十分に大きいガードカラムは、充填部に充填剤が隙間なく略均一に並べられており、インジェクションノイズを効果的に減少できる、良好な充填状態を有している、と推定されるからである。
 本明細書において、ガードカラムの「線流速2.1cm/分で水溶媒を送液した時の圧力差」とは、以下に述べる圧力Aと圧力Bとの差を意味する。具体的には、まずポンプと、ガードカラムと、分析カラムとを、例えば配管を用いて、上流側からこの順に、接続する。そして、ガードカラムに線流速2.1cm/分で水溶媒を送液した時の圧力(圧力A)を測定する。ガードカラムから充填剤を取り除いた空カラムをガードカラムに代えて接続し、この空カラムに線流速2.1cm/分で水溶媒を送液した時の圧力(圧力B)を同様に測定する。そしてこれらの圧力の差を、前記圧力差とする。
 上記圧力差の測定に用いることができる水溶媒としては、公知の水溶媒、具体的には、サイズ排除クロマトグラフィーによりタンパク質などの水溶性の試料を分析する際に用いられる公知の水溶媒、を用いることができる。具体的な水溶媒の例としては、塩化ナトリウム、塩化カリウム、及び硫酸ナトリウムなどから選ばれる1種以上の塩が添加された、リン酸緩衝液などが挙げられる。これらの水溶媒を用いた場合には、上記圧力差を得る場合に、水溶媒の種類の違いによる差異は見られない。より具体的な例としては、例えば、50mMリン酸緩衝液(pH6.7,0.3MのNaClを含む)などを、水溶媒として好ましく使用することができる。
 また、上記圧力差を測定する際の線流速は、サイズ排除クロマトグラフィーにより、タンパク質などの水溶性の試料を分析する際における一般的な溶離液の流速である、2.1cm/分を使用した。線流速2.1cm/分は、ガードカラムの内径が0.46cmである場合の0.35ml/分の体積流速に相当し、ガードカラムの内径が0.8cmである場合の1.0ml/分の体積流速に相当する。
 このようにして、本発明者らは、様々な検討の結果、特定のガードカラムを用いることで、すなわち、充填剤で形成された長さ2.0cm~3.5cmの充填部を有し、前記充填剤が、平均粒子径が1.5μm~2.5μmである表面が親水化された多孔質シリカゲルからなり、上記圧力差が4.0MPa以上である、ガードカラムを用いることで、インジェクションノイズ抑制効果が十分に得られることを見出した。
 また、様々な検討の結果、特定の方法により、優れた効果を有する前記ガードカラムを形成できることを見出した。すなわち、平均粒子径1.5μm~2.5μmである、表面が親水化された多孔質シリカゲルからなる充填剤を、長さ1cm当たり12MPa~40MPaの充填圧で充填して、長さ2.0cm~3.5cmの充填部を形成する方法により、上記の圧力差が4.0MPa以上である優れたガードカラムが得られることを見出した。このようにして、本発明を完成させたのである。
「ガードカラム」
 本実施形態のガードカラムは、多孔質シリカゲルを含む充填剤を用いたカラムと、光散乱検出器とを用いる、サイズ排除クロマトグラフィーに、好ましく用いることができるガードカラムである。
 本実施形態のガードカラムは、カラムの上流側に、好ましく配置されることができる。具体的には、上流側から、ガードカラムと、多孔質シリカゲルを含む充填剤が充填されたサイズ排除クロマトグラフィー用カラム(以下、「分析カラム」と称する場合がある。)と、光散乱検出器とが、この順に備えられた液体クロマトグラフ中の、ガードカラムとして好適に用いることができる。
 本実施形態のガードカラムは、充填部を、必須で含む。本実施形態のガードカラムは、入り口部の部品と、出口部の部品と、入口側から出口側に延在する円筒状部品と、円筒状部品内に充填された充填剤からなる充填部とを好ましく含む。
 本実施形態のガードカラムでは、円筒状部品の入口側に入り口部の部品が固定され、円筒状部品の出口側に出口部の部品が固定される。円筒状部品内には、充填部が形成される。入り口部の部品と出口部の部品は、それぞれ、円筒状部品に固定される仕組みと、円筒状部品を配管に接続するための接続部と、円筒状部品からの充填剤の流出を防ぐフィルターと、を有する。円筒状部品は、出口部の部品と一体成型されていてもよい。円筒状部品は、入り口部の部品と出口部の部品により完全に覆われても良い。
 円筒状部品は、一定の断面積を有し、長さ方向に延在する、内壁面を有する。円筒状部品の内壁面の長さは、任意に選択できるが、0.5cm~4.5cmであることが一般的であり、2.0cm~3.5cmであることが好ましく、より好ましくは2.0cm~3.0cmである。円筒状部品の内径は任意に選択できるが、0.1cm~20cmであることが一般的であり、0.1cm~6cmであることが好ましく、後述するように、0.1cm~2cmであることがより好ましく、さらに好ましくは0.2~1.0cmである。
 本実施形態のガードカラムの長さや直径は任意に選択できる。本実施形態のガードカラムは、好ましくは円筒形又は略円筒形を有するが、これらのみに限定されない。入り口部の部品と出口部の部品とを、円筒状部品に固定する仕組みは、任意に選択できる。例えば、入り口部の部品と出口部の部品とが、あるいは、入り口部の部品や出口部の部品が円筒状部品と、互いの雄ネジ構造と雌ネジ構造によるねじ込み式で、直接結合してもよい。ただし、これらの例のみに限定されない。入り口部の部品、出口部の部品、及び円筒状部品の材料は、後述するように必要に応じて任意に選択できる。
(充填部)
 充填部は、充填剤で形成されている。充填部は、入り口部の部品と出口部の部品とによって外部と仕切られた、円筒状部品内に形成されている。本実施形態における充填部の外形は、円筒状部品の内壁形状に沿う、円柱状の形状を有する。より詳細には、充填部は、円筒状部品の内壁面の長さと同じ長さを有し、かつ円筒状部品の内径と同じ寸法の直径を有する、円柱状の形状を有することが好ましい。
 充填部の長さは、2.0cm~3.5cmであり、2.0cm~3.0cmであることが好ましい。充填部の長さは、必要に応じて、2.0cm~2.8cmであったり、2.0~2.5cmであっても良い。充填部の長さが2.0cm以上であると、分析カラムと光散乱検出器とを用いるサイズ排除クロマトグラフィーにおいて、インジェクションノイズを十分に抑制できる。充填部の長さが3.5cm以下であると、分析カラムの上流にガードカラムを配置することよる分析時間および分析結果への影響を抑制できる。
 本実施形態のガードカラムは、本実施形態のガードカラムをガードユニットとして複数個直列に連結したものであってもよい。本実施形態のガードカラムが、複数個のガードユニットを直列に連結したものである場合、ガードカラムの充填部の長さとは、複数個のガードユニットにそれぞれ含まれる充填部の長さを全て足し合わせた合計の長さを意味してよい。
 円筒状部品の内径(ガードカラムの内径ともいう場合がある。)は、例えば、0.1cm~2cmとすることができ、分析する試料の種類および量などに応じて適宜選択できる。例えば、本実施形態のガードカラムと分析カラムと光散乱検出器とを、上流側からこの順に備える液体クロマトグラフを用いて、タンパク質を分析する場合、内径が0.4cm~0.9cmであるものを用いることが好ましい。円筒状部品の内径は、充填部の直径として考えても良い。
 ガードカラムを形成している入り口部の部品、出口部の部品および円筒状部品の各部品に用いられる材料は、それぞれサイズ排除クロマトグラフィーに用いられる溶離液および測定する試料に応じて、適宜を選択できる。上記各部品の材料としては、具体的には、例えば、ステンレスを用いてもよいし、ポリエーテルエーテルケトン樹脂(PEEK)などの合成樹脂を用いてもよい。また、上記各部品は、それぞれ異なる材料で形成されていてもよいし、一部または全部が同じ材料で形成されていてもよい。
(充填剤)
 本実施形態のガードカラムでは、円筒状部品に充填剤が充填されている。充填剤としては、表面が親水化された多孔質シリカゲルを用いる。表面が親水化された多孔質シリカゲルは、破砕状であってもよいし、球状であってもよい。球状であることが好ましい。
 充填剤として用いられる表面が親水化された多孔質シリカゲルは、平均粒子径が1.5μm~2.5μmであり、1.7μm~2.2μmであることが好ましい。平均粒子径が1.5μm以上であると、ガードカラムに水溶媒を線流速2.1cm/分で送液した時に過剰な圧力上昇が起こらない。また、平均粒子径が2.5μm以下であると、水溶媒を線流速2.1cm/分で送液した時の圧力差が4.0MPa以上であるガードカラムが容易に得られる。
 平均粒子径が1.5μm~2.5μmである表面が親水化された多孔質シリカゲルは、任意に選択される方法で得ることができる。例えば、様々な粒子径を有する親水化された多孔質シリカゲルからなる充填剤を用意し、これに対して、メッシュを用いた篩分級、風力分級機を用いた粒径制御、あるいは遠心式分級処理などの方法を行うことによって、得ることができる。
 表面が親水化された多孔質シリカゲルの平均粒子径は、コールターカウンターあるいは画像解析式粒度分布測定器を用いて測定できる。好ましくはコールターカウンターで測定される。本実施形態において、充填剤として用いられる表面が親水化された多孔質シリカゲルの平均粒子径は、体積平均径である。
 表面が親水化された多孔質シリカゲルの平均細孔径は、クロマトグラフィーで測定する試料の分子の大きさに応じて、適宜選択できる。分析カラムの上流側に本実施形態のガードカラムを備えた、液体クロマトグラフを用いて、タンパク質を分析する場合、このガードカラムに含まれる、表面が親水化された多孔質シリカゲルの平均細孔径は、25nm~35nmであることが好ましく、28nm~32nmであることがより好ましい。平均細孔径が25nm~35nmであると、タンパク質のサイズ排除クロマトグラフィーにおいて、タンパク質が分離されやすく、好ましい。
 表面が親水化された多孔質シリカゲルの比表面積は任意に選択できるが、比表面積が100m/g~300m/gであることが好ましく、100m/g~200m/gであることがより好ましい。表面が親水化された多孔質シリカゲルの比表面積が100m/g以上であると、ガードカラムによる分析カラムの汚染を防ぐ機能がより顕著となるため、充填部の長さをより短くできる。また、比表面積が300m/g以下である、表面が親水化された多孔質シリカゲルは、細孔容積が大きくなりすぎることがない。このため、比表面積が300m/g以下である、表面が親水化された多孔質シリカゲルは、十分に高い強度を有する充填剤であり、ガードカラムに水溶媒を線流速2.1cm/分で送液した時のガードカラムにかかる圧力が高くなりすぎることを防止できる。
 表面が親水化された多孔質シリカゲルの平均細孔径および比表面積は、ガス吸着式比表面積測定器、あるいは水銀ポロシメータを用いて測定できる。好ましくは、ガス吸着式比表面積測定器で測定される。
 本実施形態では、ガードカラムの充填剤として、表面が親水化された多孔質シリカゲルを用いる。このため、分析カラムの上流に本実施形態のガードカラムを備える液体クロマトグラフを用いてタンパク質を分析した場合に、ガードカラムの充填剤の表面にタンパク質が吸着しにくい。このため、ガードカラムを備えることに起因しておこる、分析カラムにおける試料の分離性能への影響が、小さいものとなる。
 本実施形態において、「表面が親水化された多孔質シリカゲル」とは、多孔質シリカゲルの表面に存在するシラノール基が、親水性の有機化合物によって修飾されていることを意味する。言い換えると、前記修飾により、タンパク質の吸着が抑えられた状態にある、多孔質シリカゲルであることを意味する。表面が親水化された多孔質シリカゲルは、シランカップリング剤との反応に由来する構造、より具体的には、前記反応に由来する有機シロキサン構造を含むことが好ましい。
 表面が親水化された多孔質シリカゲルは、例えば、以下に示す方法により、表面が親水化されていない多孔質シリカゲル基材の表面を親水化することによって得られる。
 多孔質シリカゲル基材としては、所望の平均粒子径を有するものを用いることが好ましい。このことにより、所望の平均粒子径を有する表面が親水化された多孔質シリカゲルが容易に得られる。多孔質シリカゲル基材の平均粒子径は、表面が親水化された多孔質シリカゲルの平均粒子径と、同様の方法により測定できる。また同様の平均粒子径を有することもできる。
 所望の平均粒子径を有する多孔質シリカゲル基材は、例えば、様々な粒子径を有する多孔質シリカゲル基材を用意し、これに対し、メッシュを用いた篩分級、風力分級機を用いた粒径制御、あるいは遠心式分級処理などを行う方法により、得ることができる。
 多孔質シリカゲル基材の表面を親水化する方法としては、任意に選択できるが、例えば、2段階の工程を行う方法が好ましく挙げられる。具体的には、多孔質シリカゲル基材とシランカップリング剤とを反応させて、シランカップリング剤由来の官能基を有する基材を得る第1反応工程と、その後、シランカップリング剤由来の官能基を有する基材と親水性化合物とを反応させて、表面が親水化された多孔質シリカゲルを得る第2反応工程と、を行う方法を用いることができる。この方法を行うことにより、多孔質シリカゲルのシラノール基は、シランカップリング剤由来の官能基と親水性化合物との反応に起因して得られる、親水性の有機化合物によって、好ましく修飾されることができる。なお第1反応工程のみで基材の表面を親水化できる場合、第2反応工程を省略しても良い。
 第1反応工程における多孔質シリカゲル基材とシランカップリング剤との反応は、任意に選択される条件によって、例えば、有機溶媒および/または水溶媒中で、塩基または酸を触媒として、多孔質シリカゲル基材とシランカップリング剤とを加熱攪拌する方法などによって、実施できる。
 シランカップリング剤の例としては、エポキシ基を有するシランカップリング剤、不飽和基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、イソシアネート基を導入するシランカップリング剤などを用いることができる。
 エポキシ基を有するシランカップリング剤の例としては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどが挙げられる。これらの中でも特に、3-グリシドキシプロピルトリメトキシシラン、を用いることが好ましい。
 エポキシ基を有するシランカップリング剤を用いた場合、第2反応工程において使用される親水性化合物として、水、多価アルコール化合物、および/またはエポキシ基を有する化合物を用いることが好ましい。
 多価アルコール化合物としては、例えば、モノ,ジ,トリ,テトラまたはポリエチレングリコール、モノプロピレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,3,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール等から選ばれる、いずれか1種以上を用いることができる。
 第2反応工程において、第1反応工程により得られたシランカップリング剤由来のエポキシ基を有する基材と、多価アルコール化合物とを反応させる方法としては、例えば、酸もしくは塩基を用いる方法など、公知の方法を用いることができる。
 エポキシ基を有する化合物としては、例えば、エチレングリコールジグリシジルエーテルやグリシドール等のエポキシ化合物、エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物などから選ばれる、いずれか1種以上を用いることができる。これらの中でも特に、グリシドールを用いることが好ましい。
 第2反応工程において、第1反応工程により得られたシランカップリング剤由来のエポキシ基を有する基材と、エポキシ基を有する化合物とを反応させることにより導入されるエポキシ基は、公知の方法で開環させて親水化することができる。
 不飽和基を有するシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどが挙げられる。
 不飽和基を有するシランカップリング剤を用いた場合、親水性化合物として親水性モノマーを用いることが好ましい。
 親水性のモノマーとしては、例えば、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド-2-ヒドロキシエチル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等の(メタ)アクリル酸エステル等から選ばれる、1種以上を用いることができる。
 本明細書中において「(メタ)アクリル」とは、アクリルおよびメタクリルから選択される少なくとも一種を意味する。
 また、本明細書中において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートから選択される少なくとも一種を意味する。
 第2反応工程において、第1反応工程により得られたシランカップリング剤由来の不飽和基(2重結合)を有する基材と、親水性のモノマーとを反応させる方法としては、例えば、公知の条件でグラフト重合する方法などが挙げられる。
 アミノ基を有するシランカップリング剤としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンなどが挙げられる。
 アミノ基を有するシランカップリング剤を用いた場合、親水性化合物として酸無水物を用いることが好ましい。
 また、アミノ基を有するシランカップリング剤を用いた場合、第2反応工程を行うことなく、第1反応工程により得られたシランカップリング剤由来のアミノ基を有する基材を、そのまま表面が親水化された多孔質シリカゲルとして用いてもよい。
 イソシアネート基を導入するシランカップリング剤としては、例えば、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。
 イソシアネート基を導入するシランカップリング剤を用いた場合、親水性化合物としては、上述した多価アルコール化合物を用いてもよいし、アミン化合物を用いてもよい。
 また、その他として、シランカップリング剤としては、例えば、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどを用いてもよい。
 この場合、親水性化合物としては、上述した多価アルコール化合物を用いてもよいし、アミン化合物を用いてもよい。
 本実施形態のガードカラムにおいて、線流速2.1cm/分で水溶媒を送液した時の圧力差は、4.0MPa以上であり、4.5MPa以上であることがより好ましく、5.0MPa以上であることがさらに好ましい。上記圧力差が4.0MPa以上であると、本実施形態のガードカラムと分析カラムと光散乱検出器とが、上流側からこの順に備えられた液体クロマトグラフを用いるサイズ排除クロマトグラフィーにおいて、インジェクションノイズを低減できる。4.0MPa以上であれば、圧力差は必要に応じて任意に選択でき、例えば、6.0MPa以上や、7.0MPa以上や、8.0MPa以上や、9.0MPa以上や、10.0MPa以上であってもよい。圧力差の上限値は任意に選択できるが、上記圧力差が大きすぎると、ガードカラムの耐久性が低下する恐れがあり、また測定可能な装置も制約されるため、上記圧力差は12.0MPa以下であることが好ましい。例えば、11.5MPa以下や、11.0MPa以下であってもよい。
 上記圧力差が4.0MPa以上であることによる効果は、充填剤の充填状態が好適であることに由来して得られる、と推測される。すなわち、本実施形態のガードカラムの有する特定の長さの充填部において、上記の充填剤の充填状態が好適であることにより、インジェクションショックにより発生するインジェクションノイズの原因が、ガードカラムによって取り除かれるものと推定される。
 また、ガードカラムの線流速2.1cm/分で水溶媒を送液した時の圧力差は、上述したように、12MPa以下であることが好ましい。上記圧力差が12MPa以下であると、上記圧力差が大きすぎることによるガードカラムの耐久性低下を抑制できるとともに、上記圧力差の測定に使用するポンプ、配管などの装置に対する制約が少なくて済み、好ましい。
[ガードカラムの圧力差の測定方法]
 ガードカラムの線流速2.1cm/分で水溶媒を送液した時の圧力差は、以下に示す方法により測定できる。
 圧力センサーを有するポンプと、ガードカラムと、分析カラムとを用意し、配管を用いて、上流側からこの順に接続する。そして、ポンプを用いてガードカラムの円筒状部品内に入口から、線流速2.1cm/分で、水溶媒を送液する。この時の水溶媒の送液圧力を、ポンプの有する圧力センサーにより測定する。このようにして、入り口側での圧力の測定を行う。
 次に、ガードカラムを取り外し、充填部のかわりに、水溶媒を満たした、空カラムを、ガードカラムと同様にして、接続する。ここで使用する空カラムは、充填部が形成されていないこと以外は、ガードカラムと同じ構造である。すなわち、空カラムは、ガードカラムに使用したものと同じ円筒状部品に、入り口部の部品および出口部の部品を取り付けて、形成されたものである。この円筒状部品には、水溶媒のみが含まれている。
 そして、ポンプを用いて、空カラムと分析カラムに、線流速2.1cm/分で、水溶媒を送液する。この時の水溶媒の送液圧力を、ポンプの有する圧力センサーにより測定する。
 その後、このようにして得られたガードカラムを接続したときの圧力と、空カラムを接続したときの圧力との差を算出する。算出された値を、ガードカラムの、線流速2.1cm/分で水溶媒を送液した時の圧力差とする。
 本実施形態のガードカラムは、複数個を、直列に連結して使用しても良い。この場合、各カラムのインジェクションノイズ低減効果が、加算されることが推測される。連結する数は任意に選択でき、例えば、2~4個であっても良い。
 本実施形態のガードカラムを、直列に複数個連結して使用する場合、これを備える液体クロマトグラフにおいてガードカラムが劣化した際には、これらガードカラムの内、一部のみを交換してもよいし、全てを交換してもよい。ガードカラムの劣化の状態に応じて、交換するガードカラムの数を、適宜決定できる。
「ガードカラムの製造方法」
 本実施形態のガードカラムは、任意に選択される製造方法によって、例えば、以下に示す製造方法により、好ましく製造できる。ただし以下の例のみに限定されない。
 まず、一定の断面積を有し、長さ方向に延在する、内壁面の長さが、2.0cm~3.5cmである円筒状部品を用意する。次に、円筒状部品の出口側に、出口部の部品を取り付ける。また、表面が親水化された多孔質シリカゲルからなり、平均粒子径が1.5μm~2.5μmである、充填剤を用意する。
 その後、前記円筒状部品に、充填剤を、長さ1cm当たり、12MPa~40MPa、好ましくは15MPa~30MPaの充填圧で充填する。この作業により、長さ2.0cm~3.5cmの充填部を形成する(充填工程)。充填剤の充填後、円筒状部品の入り口側に入り口部の部品を固定する。このことにより、ガードカラムが製造できる。
 充填工程において、充填剤を充填部の長さ1cm当たり12MPa以上の充填圧で充填すると、充填部の長さが2.0cm~3.5cmである時に、水溶媒を線流速2.1cm/分で送液した時の圧力差が、4.0MPa以上である、カードカラムを、好ましく得ることができる。上記充填剤を充填部の長さ1cm当たり40MPa以下の充填圧で充填すると、充填剤を充填することによる充填剤の破砕が生じにくく、充填剤の充填状態に悪影響を来すことがない。また、上記充填剤を充填部の長さ1cm当たり30MPa以下の充填圧で充填すると、上記圧力差が大きくなりすぎることがない。よって、上記圧力差が大きすぎることによるガードカラムの耐久性低下を抑制できる。また、上記圧力差の測定に使用するポンプ、配管などの装置に対する制約が少なくて済み、好ましい。
 本実施形態のガードカラムの製造方法において、円筒状部品内に充填剤を充填する方法としては、特に限定されるものではない。例えば、平衡密度法、スラリー充填法等の公知の充填方法を用いることができる。スラリー充填法を用いることが好ましい。
 スラリー充填法を用いて円筒状部品内に充填剤を充填する場合、例えば、以下に示す方法を好ましく用いることができる。
 まず、充填剤を分散溶媒に分散させてスラリーとする。充填部を形成するために使用する充填剤の使用量は、円筒状部品の内容積に応じて決定できる。具体的には、充填剤の使用量は、円筒状部品の内壁面に囲まれた容積と同体積以上かつ内壁面に囲まれた容積の1.5倍以下の範囲内であることが好ましい。充填剤の使用量は、内壁面に囲まれた容積の1.1倍~1.4倍の範囲内であることがより好ましい。また、スラリーに用いることができる分散溶媒としては、任意に選択できるが、例えば、メタノール、エタノール、イソプロパノールなどが挙げられる。
 スラリー中の充填剤の含有量は、特に限定されないが、例えば、5質量%~10質量%の範囲であることが好ましい。スラリー中の充填剤の含有量が上記範囲内であると、ハウジング内に供給されたスラリー中の充填剤が分散溶媒とともに移動しやすく、充填剤が隙間なく略均一に配置されやすい。また、スラリー中の充填剤の含有量が上記範囲内であると、容易に送液できるため、充填剤の充填圧を高精度で調整できる。
 次に、出口部の部品が取り付けられた円筒状部品と、充填用パッカーとを接続する。その後、充填用パッカーに、分散溶媒と充填剤とからなるスラリーを投入し、続いて、充填用パッカーにポンプを接続する。そして、ポンプを用いて、所定の送液圧力で、押し液を前記パッカーに送液する。これにより、スラリーおよび押し液が、円筒状部品内に送られる。押し液としては任意に選択でき、水を用いてもよいし、水と水溶性アルコールの混合液を用いてもよい。
 円筒状部品内に充填される充填剤の、充填時の充填圧は、押し液の送液速度によって、押し液の送液圧力を調節することにより、調整できる。具体的には、押し液の送液終了時の送液圧力が、目標とする充填剤の充填圧となるようにすればよい。すなわち、押し液の送液終了時の送液圧力は、充填部の長さ1cm当たり12MPa~40MPaとし、好ましくは充填部の長さ1cm当たり15MPa~30MPaとすることがよい。例えば、充填部の長さが2.0cm~3.5cmである場合、押し液の送液終了時の送液圧力は25MPa~50MPaとすることが好ましく、30MPa~40MPaとすることがより好ましい。
 スラリーおよび押し液の送液は、スラリー、およびスラリーの体積の3倍以上の体積の押し液が、全て円筒状部品内を通液するまで行うことが好ましい。押し液の送液終了時の送液圧力は、充填時の充填剤の充填圧である。押し液の送液が完了することにより、充填部の形成が完了する。
 充填部の形成が終了した後、充填用パッカーを出口部の部品が取り付けられた円筒状部品から外し、円筒状部品の入り口側に入り口部の部品を固定して密閉する。
 以上の工程により、本実施形態のガードカラムが得られる。
「液体クロマトグラフ」
 本実施形態の液体クロマトグラフは、上流側から、本実施形態のガードカラムと、分析カラムと、光散乱検出器とが、この順に備えられた装置である。本実施形態の液体クロマトグラフでは、ポンプに接続されたインジェクターが、ガードカラムの上流側に、配管を介して、接続されていることが好ましい。
 本実施形態の液体クロマトグラフでは、必要に応じて、光散乱検出器とともに、示差屈折率検出器、紫外吸収検出器などの検出器が更に備えられていてもよい。
 また、本実施形態の液体クロマトグラフでは、必要に応じて、必要に応じた場所に、インラインフィルターが更に接続されていてもよい。
(分析カラム)
 本実施形態では、分析カラムとして、多孔質シリカゲルを含む充填剤が充填された、サイズ排除クロマトグラフィー用カラムを好ましく用いる。
 分析カラムとしては、ハウジング内に充填剤が充填されたものを用いる。本実施形態では、分析カラムの長さは、任意に選択できるが、充填剤で形成された充填部の長さが15.0cm~30.0cmのものを用いることが好ましい。充填部の長さが15.0cm以上であると、本実施形態の液体クロマトグラフを用いてタンパク質の分析を行う場合に、良好なタンパク質の分離性能が得られやすく、好ましい。充填部の長さが30.0cm以下であると、分析カラムにかかる圧力負荷が適正となりやすく、好ましい。
 分析カラムの内径(ハウジングの内径)は、任意に選択できるが、本実施形態のガードカラムにおける円筒状部品の内径(ガードカラムの内径)と同様に、0.1cm~2cmであることが好ましく、0.4cm~0.9cmであることがより好ましい。分析カラムのハウジングの内径は、本実施形態のガードカラムの円筒状部品の内径(ガードカラムの内径)と同じであることが好ましい。この場合、分析カラムとガードカラムとが類似するものとなるため、本実施形態の液体クロマトグラフを用いるサイズ排除クロマトグラフィーにおけるインジェクションノイズを、より一層低減できる。
 また、分析カラムのハウジングの内径は、分析する試料の種類および量に応じて適宜選択できる。例えば、本実施形態の液体クロマトグラフを用いてタンパク質を分析する場合、分析カラムのハウジングの内径は0.4cm~0.9cmであることがより好ましい。
 分析カラムの部品に用いられる材料は、本実施形態のガードカラムの部品と同様に、サイズ排除クロマトグラフィーに用いられる溶離液および測定する試料に応じて、適宜を選択できる。具体的には、例えば、ステンレスを用いてもよいし、ポリエーテルエーテルケトン樹脂(PEEK)などの合成樹脂を用いてもよい。
 分析カラムの充填剤は、多孔質シリカゲルを含む。前記充填剤は、好ましくは表面が親水化された多孔質シリカゲルのみからなる。多孔質シリカゲルでない充填剤を含んでもよい。多孔質シリカゲルでない充填剤としては、例えば、有機高分子からなるものなどが挙げられる。
 分析カラムの充填剤は、表面が親水化された多孔質シリカゲルのみからなることが好ましく、本実施形態のガードカラムの充填剤と同じ充填剤であることがより好ましい。
 分析カラムの充填剤が、表面が親水化された多孔質シリカゲルである場合、本実施形態の液体クロマトグラフを用いてタンパク質を分析した場合に、分析カラムの充填剤の表面にタンパク質が吸着しにくく、高精度の分析結果が得られる。
 分析カラムの充填剤が、本実施形態のガードカラムの充填剤と同じである時、分析カラムとガードカラムとが類似するものとなる。このため、本実施形態の液体クロマトグラフを用いるサイズ排除クロマトグラフィーにおけるインジェクションノイズを、より一層低減できる。
 分析カラムの充填剤として用いる多孔質シリカゲルの細孔径分布は、25nm~35nmであることが好ましく、28nm~32nmであることがより好ましい。多孔質シリカゲルの細孔径分布が28nm~32nmであると、タンパク質のサイズ排除クロマトグラフィーにおいて、良好なタンパク質の分離性能が得られやすく、好ましい。多孔質シリカゲルの平均細孔径は、ガス吸着式比表面積測定器で測定される。
 分析カラムとしては、市販のカラムを用いてもよい。市販のカラムとしては、例えば、タンパク質分析に好適なサイズ排除クロマトグラフィー用カラムとして市販されているKW-803シリーズ、KW-400シリーズ、LW-403 4D、LW-803(いずれも昭和電工株式会社製)などが挙げられる。
 本実施形態では、光散乱検出器として、公知の装置を用いることができ、測定する試料および目的などに応じて適宜を選択できる。市販の光散乱検出器としては、例えば、DAWN8(Wyatt technology社製)、PL-RTLS、PL-HTLS(いずれもアジレント・テクノロジー株式会社製)などが挙げられる。
「高分子化合物の分析方法」
 本実施形態の高分子化合物の分析方法では、本実施形態の液体クロマトグラフを用いて、サイズ排除クロマトグラフィーにより、高分子化合物を分析することができる。本実施形態の分析方法は、分析対象を高分子化合物とし、特に、タンパク質を分析する場合に、好適に用いることができる。
 本実施形態の高分子化合物の分析方法では、溶離液として、水に塩が溶解された水系のものを用いることが好ましい。溶離液に含まれる塩としては、塩化ナトリウム、塩化カリウム、硫酸ナトリウムなどが好ましく挙げられる。
 溶離液は、分析の再現性を向上させるために、緩衝液を含有していてもよい。緩衝液としては、リン酸緩衝液などが好適に用いられる。
 さらに、溶離液は、塩の析出が問題とならない範囲で、水溶性の有機溶媒を含有していてもよい。具体的には、溶離液中の水溶性の有機溶媒の含有量は、10質量%以下であることが好ましい。水溶性の有機溶媒の例としては、例えば、メタノール、アセトニトリルなどが挙げられる。
 本実施形態の高分子化合物の分析方法では、本実施形態のガードカラムを含む液体クロマトグラフを用いて、サイズ排除クロマトグラフィーにより、高分子化合物を分析する。このため、光散乱検出器を用いる場合における、インジェクションノイズが抑えられる。したがって、本実施形態の高分子化合物の分析方法により、高精度で、高分子化合物を分析できる。特に、本実施形態の高分子化合物の分析方法は、タンパク質の絶対分子量の測定に好適である。
 本実施形態の分析方法におけるインジェクションノイズの抑制効果は、本実施形態の液体クロマトグラフが、本実施形態のガードカラムを備えていることによって得られるものである、と推定される。より詳細には、本実施形態のガードカラムが、以下に示す(1)~(3)を全て満たすことによる相乗効果によって、試料中の分析カラムを汚染する物質が、ガードカラムの充填剤に吸着されることによるものである、と推定される。
(1)充填剤が、表面が親水化された多孔質シリカゲルからなり、多孔質シリカゲルの平均粒子径が1.5μm~2.5μmである。
(2)充填部の長さが2.0cm~3.5cmである。
(3)水溶媒を、線流速2.1cm/分で送液した時の圧力差が、4.0MPa以上である。
 また、本実施形態のガードカラムは、本来の「ガードカラム」としての性能も有している。すなわち、本実施形態のガードカラムが、溶離液および測定試料中の汚染物質を除去することにより、分析カラムの汚染を防止する効果が得られる。したがって、本実施形態の液体クロマトグラフでは、インジェクションノイズの抑制効果に加え、分析カラムの劣化が抑制され、分析カラムの長寿命化を図ることができる。つまり、本実施形態の液体クロマトグラフを用いて高分子化合物を繰り返し分析することにより、ガードカラムが劣化した場合には、ガードカラムを交換すればよい。
 以下、実施例および比較例により、本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例のみに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施できる。
(実施例1)
[充填剤の製造]
 以下に示す方法により、実施例1のガードカラムを製造した。
 球形の多孔質シリカゲル基材(商品名:M.S.GEL EP-DF-1.9-250A、AGCエスアイテック社製)100gを、溶媒である20mM酢酸緩衝液(pH5.5;酢酸0.063gおよび酢酸ナトリウム0.75gを含む、純正化学社製)500g中に分散させて分散液とした。得られた分散液に、シランカップリング剤(グリシドキシプロピルトリメトキシシラン、JNC社製)50gを加え、70℃で17時間攪拌した。
その後、吸引濾過して固体相であるシランカップリング剤由来のエポキシ基を有する基材を分離回収した(第1反応工程)。
 分離回収した固体相を、水とメタノールをそれぞれ用いて順次洗浄し、乾燥した。洗浄して乾燥させた固体相を、50mM硫酸水溶液中に分散させて80℃で2時間加熱攪拌することにより、シランカップリング剤由来のエポキシ基を有する基材と親水性化合物である水とを反応させた。その後、吸引濾過して目的物である固体相を分離回収し、水とアセトンをそれぞれ用いて順次洗浄し、乾燥させた(第2反応工程)。以上の工程により、表面が親水化された多孔質シリカゲル106gを得た。
 得られた表面が親水化された多孔質シリカゲルは球状である。コールターカウンター(Multisizer4 ベックマン・コールター社製)を用いて測定した、これの平均粒子径は、1.9μmであった。また、表面が親水化された多孔質シリカゲルの平均細孔径および比表面積を、ガス吸着式比表面積測定器(BELSORP-miniII マイクロトラック・ベル社製)を用いて測定した。その結果、平均細孔径は28nm、比表面積は150m/gであった。
[ガードカラムの製造]
 このようにして得られた表面が親水化された多孔質シリカゲル0.2gを、イソプロパノール4mlに分散させて分散液(スラリー)とした。
 また、内径0.46cm、長さ30cmの充填用パッカーと、出口部の部品が取り付けられた円筒状部品とを接続した。出口部の部品および円筒状部品としては、ステンレスからなるものを用いた。また、円筒状部品としては、一定の断面積で長さ方向に延在する内壁面の長さが2.0cmであり、内径が0.46cmであるものを用いた。
 その後、充填用パッカーにスラリーを投入し、充填用パッカーにポンプ(Alliance2695、Waters社製)を接続した。そして、ポンプを用いて、押し液としての水を、8分間、最大送液速度3.0ml/minで送液した。押し液の液送は、液送開始から、送液圧力が最大液送圧力である30MPa(充填部の長さ1cm当たり15MPa)になるまで、液送圧力を上昇させながら行った。そして、液送圧力が最大液送圧力に到達した時点から、液送終了まで、最大液送圧力で押し液を液送した。このことにより、円筒状部品内に充填剤を充填し、長さ2.0cmの充填部を形成した。
 円筒状部品内への充填剤の充填が終了した後、ポンプによる送液圧力が低下するのを待って、充填用パッカーから出口部の部品が取り付けられた円筒状部品を外した。そして、円筒状部品の入り口側に入り口部の部品を固定して密閉した。
 以上の工程により、実施例1のガードカラムを得た。
 次に、実施例1のガードカラムについて、以下に示す方法により、ガードカラムの線流速2.1cm/分で、水溶媒を送液した時の、圧力差を測定した。
 具体的には、圧力センサーを有するポンプ(Alliance2695、Waters社製)と、実施例1のガードカラムと、分析カラム(商品名;LW-403 4D、昭和電工株式会社製)と、光散乱検出器(DAWN8+、Wyatt technology社製)とを、配管を用いて、上流側から、この順に接続した。そして、ポンプを用いて、実施例1のガードカラムの円筒状部品内に、50mMリン酸緩衝液(pH6.7,0.3MのNaClを含む。)からなる水溶媒を、線流速2.1cm/分で送液した。この時の水溶媒の送液圧力を、ポンプの有する圧力センサーにより測定した。圧力は20.5MPaであった。
 次に、実施例1のガードカラムのみを取り外し、実施例1のガードカラムに代えて、空カラムを、これの内部に50mMリン酸緩衝液(pH6.7,0.3MのNaClを含む。)からなる水溶媒を満たしてから、接続した。そして、ポンプを用いて、空カラムに水溶媒を、線流速2.1cm/分で送液した。この時の水溶媒の送液圧力を、ポンプの有する圧力センサーにより測定した。圧力は、14.7MPaであった。
 その後、このようにして得られた二つの圧力の差を算出した。その結果、実施例1のガードカラムの水溶媒を線流速2.1cm/分で送液した時の圧力差は、5.8MPaであった。
[インジェクションノイズの確認]
 ポンプ(Alliance2695、Waters社製)に、インジェクターと、実施例1のガードカラムと、分析カラムと、光散乱検出器(DAWN8、Wyatt technology社製)とを、上流側から、この順に接続した。分析カラム(サイズ排除クロマトグラフィー用カラム)としては、充填部の長さが15cm、ハウジングの内径が0.46cmであり、表面が親水化された多孔質シリカゲルからなる平均粒子径1.9μmの充填剤が充填されたもの(商品名;LW-403 4D、昭和電工株式会社製)を用いた。
 そして、インジェクターと、実施例1のガードカラムと、分析カラムを、30℃に設定したカラムオーブン(Waters社製)内に設置した。
 その後、ポンプを用いて、実施例1のガードカラムに、溶離液である50mMリン酸緩衝液(pH6.7,0.3MのNaClを含む。)を、約60分間、送液速度0.35ml/分で流し、得られたクロマトグラムのベースラインが安定したことを確認した。
 続いて、インジェクターを用いて、実施例1のガードカラムに、試料であるBSA(牛血清アルブミン、SIGMA ALDRICH社製)2.4mg/mlを、5μl注入した。そして、光散乱検出器における90度における信号(90度方向の散乱光の強度)から、実施例1のクロマトグラムを得た。
(実施例2)
 押し液の送液終了時の送液圧力を40MPa(充填部の長さ1cm当たり20MPa)としたこと以外は、実施例1と同様にして、長さ2.0cmの充填部を形成し、実施例2のガードカラムを得た。実施例2のガードカラムについて、実施例1と同様にして、水溶媒を線流速2.1cm/分で送液した時の圧力差を測定した結果、10.4MPaであった。
 そして、実施例2のガードカラムを用いたこと以外は、実施例1と同様にして実施例2の液体クロマトグラフを作成し、高分子化合物(BSA)の分析を行った。得られたクロマトグラムを図2に示す。
(実施例3)
 内壁面の長さが1.0cmである円筒状部品を用いて、多孔質シリカゲルの量を0.1gにして、長さ1.0cmの充填部を形成したこと以外は、実施例1と同様にして、ガードユニットとして用いるガードカラムを、2本製造した。なお、押し液の送液終了時の送液圧力は、実施例1と同じく30MPaであるが、実施例1とは充填部の長さが異なるため、充填部の長さ1cm当たりの充填圧は、実施例1と異なり30MPaである。
 2本のガードユニットとして用いるガードカラムを、配管を介して直列に連結し、実施例3のガードカラムとした。実施例3のガードカラムについて、実施例1と同様にして、水溶媒を線流速2.1cm/分で送液した時の圧力差を測定した。その結果、圧力差は、10.0MPaであった。
 そして、実施例3のガードカラムを用いたこと以外は、実施例1と同様にして実施例3の液体クロマトグラフを作成し、高分子化合物(BSA)の分析を行った。得られたクロマトグラムを図3に示す。
(比較例1)
 ガードカラムを取り除いたこと以外は、実施例1と同様にして高分子化合物(BSA)の分析を行った。得られたクロマトグラムを図4に示す。
 分析カラムの線流速2.1cm/分で水溶媒を送液した時の圧力差は、実施例1のガードカラムの圧力差の測定方法に準じて算出した。すなわち、ポンプと分析カラムとを接続し、分析カラムに線流速2.1cm/分で水溶媒を送液した時の圧力と、分析カラムから充填剤を取り除いた空カラムを、分析カラムに代えて接続し、この空カラムに線流速2.1cm/分で水溶媒を送液した時の圧力とを測定した。そして得られた値から、その圧力差を算出することにより求めた。
水溶媒としては、50mMリン酸緩衝液(pH6.7,0.3MのNaClを含む。)を用いた。その結果、分析カラムの線流速2.1cm/分で水溶媒を送液した時の圧力差は、14MPaであった。
(比較例2)
 押し液の送液終了時の送液圧力を20MPa(充填部の長さ1cm当たり10MPa)としたこと以外は、実施例1と同様にして、長さ2.0cmの充填部を形成し、比較例2のガードカラムを得た。比較例2のガードカラムについて、実施例1と同様にして、水溶媒を線流速2.1cm/分で送液し、圧力を測定した。さらに圧力差を測定した結果、3.4MPaであった。
 そして、比較例2のガードカラムを用いたこと以外は、実施例1と同様にして比較例2の液体クロマトグラフを作成し、高分子化合物(BSA)の分析を行った。得られたクロマトグラムを図5に示す。
(比較例3)
 内壁面の長さが1.0cmである円筒状部品を用いて、実施例1と同様の多孔質シリカゲル0.1gを使用し、長さ1.0cmの充填部を形成した。このこと以外は、実施例1と同様にして、比較例3のガードカラムを製造した。なお、押し液の送液終了時の送液圧力は、実施例1と同じく30MPaであるが、実施例1とは充填部の長さが異なる。このため、充填部の長さ1cm当たりの充填圧は、実施例1と異なり30MPaである。比較例3のガードカラムについて、実施例1と同様にして、水溶媒を線流速2.1cm/分で送液した時の圧力差を測定した結果、4.5MPaであった。
 そして、比較例3のガードカラムを用いたこと以外は、実施例1と同様にして比較例3の液体クロマトグラフを作成し、高分子化合物(BSA)の分析を行った。得られたクロマトグラムを図6に示す。
(比較例4)
 球形の多孔質シリカゲル基材として、M.S.GEL EP-DF-3-250A(商品名、AGCエスアイテック社製)を用いたこと以外は、実施例1と同様にして、表面が親水化された多孔質シリカゲルを得た。
 得られた表面が親水化された多孔質シリカゲルは球状であり、平均粒子径が3.0μm、平均細孔径は28nm、比表面積が135m/gであった。
 このようにして得た表面が親水化された多孔質シリカゲルを用いたこと以外は、実施例1と同様にして、長さ2.0cmの充填部を形成し、比較例4のガードカラムを得た。比較例4のガードカラムについて、実施例1と同様にして、水溶媒を線流速2.1cm/分で送液した時の圧力差を測定した。その結果、圧力差は、1.4MPaであった。
 そして、比較例4のガードカラムを用いたこと以外は、実施例1と同様にして比較例4の液体クロマトグラフを作成し、高分子化合物(BSA)の分析を行った。得られたクロマトグラムを図7に示す。
 表1に、実施例1~3、比較例1~4の、ガードカラムの有する表面が親水化された多孔質シリカゲルの平均粒子径と、充填部の長さと、充填時の充填剤の充填圧(押し液の送液終了時の送液圧力)と、充填部の長さ1cm当たりの充填圧と、水溶媒を線流速2.1cm/分で送液した時の圧力差とを、合わせて示す。
Figure JPOXMLDOC01-appb-T000001
 図1~図7は、実施例1~3、比較例1~4の液体クロマトグラフを用いて高分子化合物(BSA:牛血清アルブミン)を分析した結果を示したクロマトグラムである。図1~図7に示したグラフにおいて、縦軸は信号強度(mv)であり、横軸は保持時間(min)である。
 図1~図3に示すように、実施例1~3では、保持時間5.3min付近に試料であるBSAに対応するピークが得られた。
 これに対し、図4に示すように、比較例1では、試料であるBSAに対応するピークが得られているものの、BSAに対応するピークを観測しにくくする大きなインジェクションノイズが発生した。
 図1に示す実施例1では、図4に示す比較例1と比較して、インジェクションノイズが抑制されている。このことから、分析カラムの上流側に実施例1のガードカラムを接続することにより、インジェクションノイズを低減できることが分かる。
 また、図5~7に示すように、比較例2~4では、保持時間5.2min付近に試料であるBSAに対応するピークが得られている。しかしながら、比較例2~4では、いずれもBSAに対応するピークを観測しにくくする大きなインジェクションノイズが発生した。
 比較例2では、ガードカラムの水溶媒を線流速2.1cm/分で送液した時の圧力差が小さい。このため、図5に示すように、インジェクションショックの原因となる物質が、ガードカラムによって十分に低減されなかったためである、と推定される。
 また、比較例3では、充填部の長さが不足しているガードカラムを用いたため、図6に示すように、インジェクションショックの原因となる物質が、ガードカラムによって十分に低減されなかったためであると推定される。
 また、比較例4では、表面が親水化された多孔質シリカゲルの平均粒子径が大きすぎるため、水溶媒を線流速2.1cm/分で送液した時の圧力差が小さいガードカラムとなり、図7に示すように、インジェクションショックの原因となる物質が、ガードカラムによって十分に低減されなかったためであると推定される。
 また、実施例1~3、比較例1~4のクロマトグラムにおけるインジェクションノイズの影響を比較するために、インジェクションノイズをピークとみなし、以下に示す方法により算出したノイズレベルを用いて評価した。その結果を表1に示す。
「ノイズレベル評価方法」
 図8は、ノイズレベルの計算方法を説明するためのクロマトグラムである。図8には、インジェクションノイズのピーク面積(A)とBSAのピーク面積(B)が示されている。それぞれのピーク面積は、次のようにして求められる。
 まず、インジェクションノイズが現れた保持時間範囲内(図8に示す例では、測定開始から10分後まで)に観測された全てのピークの合計面積を求める。次に、BSAに由来するピークを、インジェクションノイズの上に乗った部分のピーク面積(B)として求める。面積(B)は、BSAに由来するピークを谷渡り処理することによりインジェクションノイズのピークと分割された面積であり、図8において符号Lで表す線までのピーク面積である。その後、保持時間範囲内に観測された全てのピークの合計面積から面積(B)を引いた面積を、インジェクションノイズのピーク面積(A)として求める。
 これらの値を用いて、ノイズレベルとして、下記式に示すように、インジェクションノイズのピーク面積(A)を面積(B)で除した値を計算した。ノイズレベルの数値が小さいほど、インジェクションノイズの影響が少ないと評価できる。
ノイズレベル=(A)/(B)
 表1に示すように、実施例1~3におけるノイズレベルは1.2以下であり、比較例1~4のノイズレベルと比較して十分に小さいものであった。
本発明は、多孔質シリカゲルを含む充填剤を用いたカラムと、光散乱検出器とを用いるサイズ排除クロマトグラフィーに用いられ、インジェクションノイズを抑制できるガードカラムおよびガードカラムの製造方法を提供することができる。

Claims (11)

  1.  充填剤で形成された長さ2.0cm~3.5cmの充填部を有し、
     前記充填剤が、平均粒子径が1.5μm~2.5μmである、表面が親水化された多孔質シリカゲルからなり、
     線流速2.1cm/分で水溶媒を送液した時の圧力差が4.0MPa以上である、ガードカラム。
  2.  前記多孔質シリカゲルは、平均細孔径が25nm~35nmであり、比表面積が100m/g~300m/gである、請求項1に記載のガードカラム。
  3.  多孔質シリカゲルを含む充填剤を用いたカラムと、光散乱検出器とを用いるサイズ排除クロマトグラフィーに用いられる、請求項1または請求項2に記載のガードカラム。
  4.  上流側から、請求項1~請求項3のいずれか一項に記載のガードカラムと、多孔質シリカゲルを含む充填剤が充填されたサイズ排除クロマトグラフィー用カラムと、光散乱検出器とがこの順に備えられた、液体クロマトグラフ。
  5.  請求項4に記載の液体クロマトグラフを用いて、サイズ排除クロマトグラフィーにより高分子化合物を分析する、高分子化合物の分析方法。
  6.  請求項1~請求項3のいずれか一項に記載のガードカラムの製造方法であり、
     平均粒子径が1.5μm~2.5μmである表面が親水化された多孔質シリカゲルからなる充填剤を、長さ1cm当たり12MPa~40MPaの充填圧で充填することにより、長さ2.0cm~3.5cmの充填部を形成する充填工程を有する、ガードカラムの製造方法。
  7.  前記充填部の直径が0.4cm~0.9cmである、請求項1に記載のガードカラム。
  8.  前記表面の親水化された多孔質シリカゲルが、
     表面が親水化されていない多孔質シリカゲルを、シランカップリング剤で処理してシランカップリング剤由来の官能基を形成し、その後、更に、前記官能基と親水性化合物とを反応させた、シリカゲルである、
    請求項1に記載のガードカラム。
  9.  前記シランカップリング剤が、エポキシ基を有するシランカップリング剤であり、
     前記親水性化合物が、水、多価アルコール化合物、またはエポキシ基を有する化合物である、請求項8に記載のガードカラム。
  10.  前記表面の親水化された多孔質シリカゲルが、
     表面が親水化されていない多孔質シリカゲルをグリシドキシプロピルトリメトキシシランで表面処理し、表面に形成されたエポキシ基を水で開環させたシリカゲルである、請求項1に記載のガードカラム。
  11.  前記高分子化合物がタンパク質である、請求項5に記載の高分子化合物の分析方法。
PCT/JP2019/044053 2018-12-10 2019-11-11 ガードカラム、およびガードカラムの製造方法 WO2020121706A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19895920.7A EP3895796A4 (en) 2018-12-10 2019-11-11 GUARD COLUMN AND GUARD COLUMN PRODUCTION METHOD
JP2020559837A JP7331866B2 (ja) 2018-12-10 2019-11-11 ガードカラム、およびガードカラムの製造方法
US17/311,437 US20220023832A1 (en) 2018-12-10 2019-11-11 Guard column and method for producing guard column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-230896 2018-12-10
JP2018230896 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020121706A1 true WO2020121706A1 (ja) 2020-06-18

Family

ID=71076379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044053 WO2020121706A1 (ja) 2018-12-10 2019-11-11 ガードカラム、およびガードカラムの製造方法

Country Status (4)

Country Link
US (1) US20220023832A1 (ja)
EP (1) EP3895796A4 (ja)
JP (1) JP7331866B2 (ja)
WO (1) WO2020121706A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219569B2 (ja) 2009-12-15 2017-10-25 ウオーターズ・テクノロジーズ・コーポレイシヨン サイズ排除クロマトグラフィーを行うための装置および方法
JP2018062440A (ja) * 2016-10-12 2018-04-19 Agcエスアイテック株式会社 ジルコニア被覆多孔質シリカの製造方法
JP2018189441A (ja) * 2017-04-28 2018-11-29 日立化成テクノサービス株式会社 超臨界流体クロマトグラフィー用カラム充填剤、超臨界流体クロマトグラフィー用カラム及びそれらの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443622B (zh) * 2011-03-22 2015-10-14 积水医疗株式会社 液相色谱法用柱和血红蛋白类的分析方法
US9733222B2 (en) * 2012-10-03 2017-08-15 Waters Technologies Corporation Rapid analysis of steroids and steroid derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219569B2 (ja) 2009-12-15 2017-10-25 ウオーターズ・テクノロジーズ・コーポレイシヨン サイズ排除クロマトグラフィーを行うための装置および方法
JP2018062440A (ja) * 2016-10-12 2018-04-19 Agcエスアイテック株式会社 ジルコニア被覆多孔質シリカの製造方法
JP2018189441A (ja) * 2017-04-28 2018-11-29 日立化成テクノサービス株式会社 超臨界流体クロマトグラフィー用カラム充填剤、超臨界流体クロマトグラフィー用カラム及びそれらの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AHN, JOOMI ET AL.: "Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7[im sorbent", JOURNAL OF CHROMATOGRAPHY B, vol. 878, 2010, pages 403 - 408, XP026857416 *
ANONYMOUS: "HILIC Columns. InterSustain Amide Analytical Columns", 7 November 2016 (2016-11-07), XP055722424, Retrieved from the Internet <URL:https://www.glsciences.com/product/lc_columns/hilic_column/01804.html> [retrieved on 20200120] *
ANONYMOUS: "InterSustain Amide Guard Column for UHPLC", 19 July 2017 (2017-07-19), pages 1 - 3, XP055809887, Retrieved from the Internet <URL:https://www.gls.co.jp/product/lc_columns/lc_columns/02653.html> [retrieved on 20200120] *
ANONYMOUS: "Intrada SEC", 5 June 2017 (2017-06-05), pages 1 - 4, XP055722432, Retrieved from the Internet <URL:www.imtakt.com/Brochure/TR07AJ.pdf> [retrieved on 20200120] *
TOHRU IKEGAMI , HIROTAKA TAKUBO , NOBUO TANANKA : "A Perspective of Hydrophilic Interaction Chromatography-Development and the Characteristics of the separation mode", CHROMATOGRAPHY, vol. 29, no. 2, 30 November 2007 (2007-11-30), pages 1 - 6, XP009520314, ISSN: 1342-8284 *

Also Published As

Publication number Publication date
JPWO2020121706A1 (ja) 2021-10-21
JP7331866B2 (ja) 2023-08-23
US20220023832A1 (en) 2022-01-27
EP3895796A4 (en) 2022-08-31
EP3895796A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
Hu et al. Recent advances and applications of molecularly imprinted polymers in solid‐phase extraction for real sample analysis
Behbahani et al. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples
Parisi et al. Surface modifications of molecularly imprinted polymers for improved template recognition in water media
WO2007063701A1 (ja) 親水性高分子微粒子、イオン交換液体クロマトグラフィー用充填剤及びイオン交換液体クロマトグラフィー用充填剤の製造方法
Azodi‐Deilami et al. Magnetic molecularly imprinted polymer nanoparticles coupled with high performance liquid chromatography for solid‐phase extraction of carvedilol in serum samples
Wang et al. Polymer monolith containing an embedded covalent organic framework for the effective enrichment of benzophenones
JP2017102130A (ja) 液体クロマトグラフィー用カラム
WO2020121706A1 (ja) ガードカラム、およびガードカラムの製造方法
CN109632985B (zh) 一种基于金属有机框架纳米材料的萃取技术检测双酚类化合物及其衍生物的方法
JP2018096943A (ja) 無機陽イオンの分析方法
JP6392318B2 (ja) 液体クロマトグラフィー用充填剤及び液体クロマトグラフィー用カラム
Witos et al. Surface initiated polymerization of a cationic monomer on inner surfaces of silica capillaries: Analyte separation by capillary electrophoresis versus polyelectrolyte behavior
JP6916798B2 (ja) アミン類化合物の分析方法
JP2012073184A (ja) ヘモグロビン類の測定方法
JP5294941B2 (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP5901081B2 (ja) ヘモグロビン類測定用カラム充填剤、ヘモグロビン類測定用カラム充填剤の製造方法、及び、液体クロマトグラフィーによるヘモグロビン類の測定方法
JP2011047859A (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1cの測定方法、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
CN104558155B (zh) 从血浆中纯化前白蛋白和视黄醇结合蛋白的方法
JP2010236909A (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
Xia et al. Preparation and evaluation of C18 modified capillary open-tubular column based on thiol-ene click chemistry for capillary electrochromatography
EP3505929A1 (en) Filler for hilic columns, hilic column filled with same, and method for analyzing oligosaccharide with use of same
JP5522772B2 (ja) カラム充填剤及びカラム充填剤の製造方法
Dzherayan et al. Detection and quantification of chitosan aggregates by pressure-assisted capillary zone electrophoresis
JP2007327821A (ja) イオン交換液体クロマトグラフィー用充填剤、及び、糖化ヘモグロビンの分析方法
JP2018054302A (ja) イオンクロマトグラフィー分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895920

Country of ref document: EP

Effective date: 20210712