WO2020121436A1 - 制御装置、制御方法、およびプログラム - Google Patents

制御装置、制御方法、およびプログラム Download PDF

Info

Publication number
WO2020121436A1
WO2020121436A1 PCT/JP2018/045680 JP2018045680W WO2020121436A1 WO 2020121436 A1 WO2020121436 A1 WO 2020121436A1 JP 2018045680 W JP2018045680 W JP 2018045680W WO 2020121436 A1 WO2020121436 A1 WO 2020121436A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen production
power
control
control command
Prior art date
Application number
PCT/JP2018/045680
Other languages
English (en)
French (fr)
Inventor
雅彦 村井
慎悟 田丸
秋葉 剛史
史之 山根
新 加藤
浩史 森田
田上 哲治
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to PCT/JP2018/045680 priority Critical patent/WO2020121436A1/ja
Priority to EP18943123.2A priority patent/EP3896814A4/en
Priority to JP2020559604A priority patent/JP7090177B2/ja
Publication of WO2020121436A1 publication Critical patent/WO2020121436A1/ja
Priority to US17/344,879 priority patent/US11710839B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/52The controlling of the operation of the load not being the total disconnection of the load, i.e. entering a degraded mode or in current limitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/54The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads according to a pre-established time schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the embodiment of the present invention relates to a control device, a control method, and a program.
  • a hydrogen system that produces and stores hydrogen by power supply is known.
  • a demand and supply adjustment time zone for adjusting the demand and supply of electric power such as demand response is set.
  • this supply and demand adjustment time zone it is necessary to adjust the input power to the hydrogen production device to the target value.
  • the hydrogen production device produces hydrogen by a method such as electrolysis of water, so the rate of change when changing the hydrogen production amount is small. Therefore, if the supply and demand adjustment time period is short, the hydrogen production amount may not be changed as planned within the supply and demand adjustment time period even if the control device controls the input power to the hydrogen production device.
  • the embodiment of the present invention aims to provide a control device, a control method, and a program capable of increasing the certainty of power supply and demand adjustment for hydrogen production.
  • the control device controls a hydrogen system including at least a hydrogen production device in which received power is planned in advance and a hydrogen production amount changes according to the received power.
  • the input power input to the hydrogen production device as the received power is the target value at the start of the supply and demand adjustment time period in the preparation time period before the demand and supply adjustment time period in which the target value of the received power is preset.
  • a control command unit that outputs the control command value calculated by the calculation unit to the hydrogen production apparatus.
  • (A) is a figure which shows an example of the time-dependent change of the hydrogen production amount which concerns on a comparative example
  • (b) is a figure which shows an example of the time-dependent change of the received electric power which concerns on a comparative example.
  • (A) is a figure which shows an example of the time-dependent change of the hydrogen production amount which concerns on 1st Embodiment
  • (b) is a figure which shows an example of the time-dependent change of the received electric power which concerns on 1st Embodiment.
  • Is. is a figure which shows an example of the time-dependent change of the hydrogen production amount which concerns on a modification
  • (b) is a figure which shows an example of a time-dependent change of the received electric power which concerns on a modification.
  • It is a block diagram showing an example of 1 composition of a control device concerning a 2nd embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a hydrogen production management system according to the first embodiment.
  • the hydrogen production management system shown in FIG. 1 includes a hydrogen system 1, a power system 2, an energy management system 3, a control device 4, and a hydrogen load 5.
  • the hydrogen system 1 includes a power generation device 11, a hydrogen production device 12, and a hydrogen storage device 13.
  • the power generation device 11 generates power with renewable energy.
  • the power generation device 11 for example, a photovoltaic power generation device or a wind power generation device can be applied.
  • the electric power generated by the power generation device 11 is supplied to the hydrogen production device 12.
  • the hydrogen production device 12 receives the electric power supplied from the power generation device 11 and the electric power supplied from the power system 2 to produce hydrogen.
  • the power system 2 is a power transmission and distribution network managed by a power company. Further, the hydrogen production device 12 stores the produced hydrogen in the hydrogen storage device 13.
  • the hydrogen storage device 13 supplies the stored hydrogen to the hydrogen load 5.
  • the hydrogen load 5 is, for example, a fuel cell power generator or a hydrogen supply device for a fuel cell vehicle or the like.
  • the energy management system 3 creates an operation plan for the hydrogen system 1.
  • the control device 4 controls the hydrogen system 1 based on the operation plan created by the energy management system 3.
  • the control device 4 includes an interface unit 41, a calculation unit 42, and a control command unit 43.
  • the interface unit 41 receives various signals from the hydrogen system 1 and the energy management system 3.
  • the calculation unit 42 calculates a control command value, specifically, a command value of the input power to the hydrogen production device 12, based on the signal received by the interface unit 41.
  • the control command unit 43 controls the hydrogen production device 12 based on the control command value calculated by the calculation unit 42.
  • FIG. 2 is a flowchart showing a processing procedure of the control device 4 according to the first embodiment. The operation of the control device 4 will be described with reference to FIG.
  • the interface unit 41 receives a signal indicating control data from the hydrogen system 1 and a signal indicating plan data related to the operation plan of the hydrogen system 1 from the energy management system 3 (step S101). In step S101, the interface unit 41 transmits these received signals to the arithmetic unit 42.
  • the control data is the power received from the power grid 2, the PV power generated by the power generator 11, the input power to the hydrogen generator 12, and the hydrogen generator 12 actually manufactured. It includes the amount of hydrogen produced and the power consumption of the hydrogen storage device 13.
  • the plan data includes the planned values of the hydrogen production amount of the hydrogen production device 12 and the received power amount, the predicted value of the PV power generation amount of the power generation device 11, and the supply and demand adjustment time zone for adjusting the supply and demand of hydrogen. Including.
  • step S102 calculates the control command value based on the signal received from the interface unit 41 (step S102).
  • the method of calculating the control command value differs depending on the time zone.
  • step S102 will be described in detail while explaining the configuration of the calculation unit 42.
  • FIG. 3 is a block diagram showing the configuration of the arithmetic unit 42 according to the first embodiment. 3 includes a switch 421, subtractors 422 and 423, integration circuits 424 and 425, a first control circuit 426, a second control circuit 427, a third control circuit 428, and an adder. 429 and.
  • the switch 421 switches the calculation processing according to the supply and demand adjustment time signal indicating whether or not it is the supply and demand adjustment time zone. That is, the processing content of the calculation unit 42 differs depending on whether it is in the supply and demand adjustment time zone.
  • the switch 421 connects the subtractor 422 and the integration circuit 424 to the first control circuit 426 when the demand-supply adjustment time signal indicates a non-demand-supply adjustment time zone that is not the demand-supply adjustment time zone.
  • the subtractor 422 calculates the difference between the hydrogen production amount planned value acquired from the energy management system 3 and the hydrogen production amount of the hydrogen production device 12 obtained from the hydrogen system 1.
  • the integration circuit 424 integrates the difference calculated by the subtractor 422.
  • the first control circuit 426 performs, for example, PI (Proportional Integral) control so that this difference becomes zero.
  • PI Proportional Integral
  • the switch 421 connects the subtractor 423 and the integration circuit 425 to the first control circuit 426.
  • the subtractor 423 calculates the difference between the received power amount plan value acquired from the energy management system 3 and the received power amount acquired from the hydrogen system 1.
  • the integration circuit 425 integrates the difference calculated by the subtractor 423.
  • the first control circuit 426 performs, for example, PI control so that this difference becomes zero.
  • the instruction value of the input power corresponding to the received power amount planned value is calculated as the control command value.
  • the energy supply and demand adjustment time zone is predetermined by the energy management system 3 every 30 minutes, and therefore the calculation unit 42 determines the time before and after the electricity supply and demand adjustment time zone based on the electricity supply and demand adjustment time signal.
  • the preparation time zone which is the time zone, can be grasped in advance.
  • the switch 421 connects the subtractor 423 and the integrating circuit 425 to the first control circuit 426, and the second control circuit 427 is driven.
  • the second control circuit 427 determines, based on the difference calculated by the subtractor 423, that the input power input to the hydrogen production device 12 as the received power at the start of the supply and demand adjustment time zone is the received power amount in the supply and demand adjustment time zone. Feedforward control is performed so as to match the target value that is the planned value. The output value of the second control circuit 427 is added by the adder 429 to the output value of the first control circuit 426. Then, the added value of the adder 429 is calculated as the control command value.
  • the third control circuit 428 is a circuit for preventing reverse power flow in which the electric power generated by the power generation device 11 flows to the electric power system 2.
  • the third control circuit 428 compares the received power of the hydrogen production device 12 with the threshold value regardless of the time zone. When the received power becomes smaller than the threshold value, the output value of the third control circuit 428 increases. The output value of the third control circuit 428 is increased by the adder 429, and thereby the control command value for increasing the input power to the hydrogen production device 12 is calculated. Since the output power of the power generation device 11 is consumed more in the hydrogen production device 12 by increasing the input power to the hydrogen production device 12, reverse power flow can be prevented.
  • control by the calculation unit 42 in the supply and demand adjustment time zone is not limited to the supply and demand adjustment time zone, and may be performed in the baseline calculation time zone for setting the target value in the supply and demand adjustment time zone.
  • the energy management system 3 sets the baseline calculation time zone to, for example, the same time zone as the supply and demand adjustment time zone one day before or one week before the date on which the demand and supply adjustment is performed.
  • the switch 421 connects the subtractor 423 and the integration circuit 425 to the first control circuit 426. Then, the control command value is calculated so that the received power matches the planned value.
  • step S102 The control command value calculated in step S102 described above is output to the hydrogen production apparatus 12 by the control command unit 43 (step S103).
  • the hydrogen production device 12 produces hydrogen based on the control command value from the control command unit 43.
  • step S104 the control device 4 repeats the operations of steps S101 to S103 described above until a predetermined end condition is satisfied (step S104).
  • the condition for ending the operation of the control device 4 is set by the energy management system 3, for example.
  • FIG. 4A is a diagram showing an example of changes over time in the hydrogen production amount according to the comparative example.
  • FIG. 4B is a diagram showing an example of a change with time of the received power according to the comparative example.
  • the actual hydrogen production amount is matched with the planned value Hdr1 and the received power, that is, the input power is matched with the planned value Pdr1. I do.
  • control is performed so that the actual hydrogen production amount matches the target value Hdr2 and the received power matches the target value Pdr2.
  • control is started to reduce the received power from the planned value Pdr1 to the target value Pdr2 at the start time T1 of the supply and demand adjustment time zone.
  • the hydrogen production amount decreases according to the changing speed of the received power. For this reason, the actual hydrogen production amount exceeds the target value Hdr2 within the supply and demand adjustment time zone, resulting in a hydrogen surplus state.
  • FIG. 5A is a diagram showing an example of changes over time in the hydrogen production amount according to the present embodiment.
  • FIG. 5B is a diagram showing an example of changes over time in the received power according to the present embodiment.
  • the second control circuit 427 causes the feed-forward to match the received power of the hydrogen production device 12 with the target value. Start control.
  • the control start time Ts is the received power P(kW) at the start time T0 in the preparation time period, the target value Pdr2(kW) of the received power in the supply and demand adjustment time period, and the maximum input power change rate R( of the hydrogen production device 12 kW/min) and the following equations (1) and (2).
  • the planned value Pdr1 in the non-demand adjustment period may be used instead of the received power P.
  • Ts T1- ⁇ T1 (1)
  • ⁇ T1 (P-Pdr2)/R (2)
  • the switch 421 is switched, and the received power decreases according to the output change speed of the hydrogen production device 12 by the feedback control by the first control circuit 426 and the feedforward control by the second control circuit 427.
  • the received power matches the target value Pdr2 at the start time T1 of the supply and demand adjustment time zone.
  • the feedback control by the first control circuit 426 calculates the control command value so that the received power maintains the state where it matches the target value Pdr2.
  • control is switched to make the hydrogen production amount match the planned value Hdr1.
  • the hydrogen production amount is in a hydrogen shortage state that is smaller than the target value Hdr2, so control is performed to reduce the error from the target value Hdr2.
  • the hydrogen production amount in the supply and demand adjustment time zone matches the target value Hdr2
  • the error from the target value Hdr2 is smaller than that in the comparative example described above. Therefore, the value of overshoot also becomes small, and the control performance can be improved.
  • the received power is adjusted in advance during the preparation time period before the supply and demand adjustment time period.
  • the received power matches the target value at the start time of the supply and demand adjustment time zone. Therefore, the supply and demand can be adjusted reliably regardless of the response speed of the hydrogen production device 12 to the input power.
  • the hydrogen production volume is controlled to match the planned value, so it is possible to reliably supply hydrogen to the hydrogen load.
  • control is performed to increase the input power to the hydrogen production device 12.
  • the electric power generated by the power generation device 11 can be effectively utilized without causing reverse power flow.
  • FIG. 6A is a diagram showing an example of changes over time in the hydrogen production amount according to the modification.
  • FIG.6(b) is a figure which shows an example of the time-dependent change of the received electric power which concerns on a modification.
  • the received power is reduced from the control start time Ts to the start time T1 of the supply and demand adjustment time zone, so the hydrogen production amount becomes smaller than the planned value Hdr1. Therefore, the hydrogen stored in the hydrogen storage device 13 may be insufficient.
  • the control device 4 performs control for compensating for the shortage of hydrogen during the preparation time period.
  • the control start time Ts is calculated by the following equations (3) and (4) in order to generate a hydrogen surplus amount equal to the hydrogen deficiency amount.
  • Ts T1- ⁇ T1- ⁇ T2 (3)
  • ⁇ T2 ⁇ 2 ⁇ T1 (4)
  • the control command unit 43 increases the received power to the target value Pdr3 at the maximum input power change rate. After that, the control command unit 43 reduces the received power at the maximum input power change rate to the target value Pdr2 until the start time T1 of the supply and demand adjustment time zone. After the supply and demand adjustment time zone, the same control as in the first embodiment is performed.
  • the received power matches the target value at the start time of the supply and demand adjustment time period. I am letting you. Therefore, it becomes possible to reliably adjust the supply and demand of the hydrogen production device 12.
  • FIG. 7 is a block diagram showing a configuration example of the control device 40 according to the second embodiment.
  • the control device 40 includes a storage unit 44 in addition to the components of the control device 4 of the first embodiment. Further, the control device 40 includes a calculation unit 45 in place of the calculation unit 42 of the first embodiment.
  • the storage unit 44 includes data received by the interface unit 41, a model showing a correlation between the received power and the hydrogen production amount in the hydrogen production device 12, and actual data of the hydrogen production amount actually produced by the hydrogen production device 12. Store various data such as.
  • the storage unit 44 is configured by a storage device such as a semiconductor memory. Further, the calculation unit 45 calculates the control command value based on the signal and the model stored in the storage unit 44.
  • FIG. 8 is a flowchart showing a processing procedure of the control device 40 according to the second embodiment. The operation of the control device 40 will be described with reference to FIG.
  • the interface unit 41 receives a signal indicating control data related to control from the hydrogen system 1, and outputs plan data related to the operation plan of the hydrogen system 1 from the energy management system 3.
  • the signal shown is received (step S201).
  • the data received by the interface unit 41 is stored in the storage unit 44 (step S202).
  • the calculation unit 45 determines whether it is necessary to estimate the model stored in the storage unit 44 (step S203).
  • this model shows the correlation between the received power and the hydrogen production amount in the hydrogen production device 12. This correlation may change due to deterioration or replacement of the hydrogen production apparatus 12 over time.
  • the calculation unit 45 uses the actual data of the hydrogen production device 12 stored in the storage unit 44 to calculate the model. Estimate (step S204).
  • the calculation unit 45 determines whether the estimated model needs to be updated (step S205). In the present embodiment, for example, when the difference between the estimated model and the actual data is outside the allowable range, the calculation unit 45 updates the model stored in the storage unit 44 (step S206).
  • the calculation unit 45 calculates the control command value in each of the non-demand adjustment period, the preparation time period, and the demand adjustment period (step S207).
  • the calculated control command value is output to the hydrogen production apparatus 12 by the control command unit 43 (step S208).
  • the control device 40 repeats the operations of steps S201 to S208 described above until the predetermined termination condition is satisfied (step S209).
  • the received power is adjusted to the target value at the start time of the supply and demand adjustment time period by adjusting the received power using the data stored in the storage unit 44 during the preparation time period. ing. Therefore, the supply and demand can be adjusted reliably regardless of the response speed of the hydrogen production device 12 to the input power.
  • the model used for adjusting the received power is estimated and updated based on the actual data. As a result, it is possible to accurately control the replacement of the hydrogen production apparatus 12 and deterioration over time.
  • FIG. 9 is a block diagram showing a configuration example of the hydrogen production management system according to the third embodiment.
  • the hydrogen production management system shown in FIG. 9 includes a hydrogen system 10, a power system 2, an energy management system 30, a control device 400, a hydrogen load 5, and a heat load 6.
  • the hydrogen system 10 includes a fuel cell power generator 14 in addition to the configuration of the hydrogen system 1 (see FIG. 1) according to the first embodiment.
  • the fuel cell power generation device 14 produces electric power and heat from the hydrogen stored in the hydrogen storage device 13. This electric power, together with the electric power generated by the power generation device 11 and the electric power from the electric power system 2, is supplied to the hydrogen production device 12 and used for producing hydrogen. Further, the heat produced by the fuel cell power generator 14 is supplied to the heat load 6.
  • the heat load 6 is a hot water supply load or a heat load.
  • the energy management system 30 creates an operation plan for the hydrogen system 10.
  • the control device 400 controls the hydrogen system 10 based on the operation plan created by the energy management system 3.
  • the control device 400 includes an interface unit 401, a calculation unit 402, and a control command unit 403 in place of the control command unit 43.
  • the interface unit 401 receives signals from the hydrogen system 10 and the energy management system 30.
  • the calculation unit 402 calculates the control command values of the hydrogen production device 12 and the fuel cell power generation device 14 based on the signal.
  • the control command value to the hydrogen production device 12 indicates the command value of the input power.
  • the control command value to the fuel cell power generator 14 indicates a power generation command value.
  • the control command unit 403 individually controls the hydrogen production device 12 and the fuel cell power generation device 14 based on the control command value calculated by the calculation unit 402.
  • control device 400 operates according to the same flowchart (see FIG. 2) as the control device 4 according to the first embodiment.
  • FIG. 2 the points different from the first embodiment will be mainly described.
  • control data provided from the hydrogen system 10 to the interface unit 401 includes the actual power generation amount of the fuel cell power generator 14 and the fuel cell power generation in addition to the data of the first embodiment described above.
  • plan data provided from the energy management system 30 to the interface unit 401 includes the planned value of the power generation amount of the fuel cell power generator 14 in addition to the data of the first embodiment described above.
  • step S102 the calculation unit 402 calculates the control command values for the hydrogen production device 12 and the fuel cell power generation device 14 based on the signal received from the interface unit 401.
  • step S102 of the present exemplary embodiment will be described in detail while describing the configuration of the calculation unit 402.
  • FIG. 10 is a block diagram showing the configuration of the arithmetic unit 402 according to the third embodiment.
  • the arithmetic unit 402 shown in FIG. 10 includes a switch 431, a subtractor 432, a fourth control circuit 433, and a fifth control circuit 434 in addition to the configuration of the arithmetic unit 42 according to the first embodiment (see FIG. 3). And a sixth control circuit 435 and an adder 436.
  • the control operation of the hydrogen production device 12 by the calculation unit 402 in the non-demand adjustment time zone, the preparation time zone, and the demand adjustment time zone is the same as that in the first embodiment, and therefore the description thereof is omitted.
  • the operation in which the calculation unit 402 controls the power generation amount of the fuel cell power generation device 14 will be described.
  • the switch 431 connects the subtractor 432 to the fourth control circuit 433 as shown in FIG.
  • the subtractor 432 calculates the difference between the planned power generation amount of the fuel cell power generator 14 and the power generation amount of the fuel cell power generator 14 acquired from the hydrogen system 10.
  • the fourth control circuit 433 performs feedback control so that this difference becomes zero.
  • the switch 431 connects the integrating circuit 425 to the fourth control circuit 433.
  • the fourth control circuit 433 feedback-controls the power generation amount of the fuel cell power generation device 14 so that the received power of the hydrogen production device 12 matches the planned value.
  • the fifth control circuit 434 feed-forward controls the power generation amount of the fuel cell so that the received power matches the target value at the supply and demand adjustment start time.
  • the sixth control circuit 435 compares the received power with the threshold value regardless of the time zone. When the received power becomes smaller than the threshold value, the output value of the sixth control circuit 435 increases. The output value of the sixth control circuit 435 is added by the adder 436, and the control command value for reducing the power generation amount of the fuel cell power generation device 14 is calculated. As a result, the power supply from the fuel cell power generation device 14 to the hydrogen production device 12 decreases, while the power supply from the power generation device 11 to the hydrogen production device 12 increases. Therefore, reverse power flow can be prevented.
  • this received power is set at the target value at the start time of the supply and demand adjustment time period. Is consistent with. Therefore, it becomes possible to reliably adjust the supply and demand of hydrogen.
  • At least part of the processing performed by the calculation unit may be configured by software.
  • a program that realizes a part of the processing may be stored in a non-transitory recording medium such as a flexible disk, a magnetic disk, or an optical disk, and read by a computer to be executed.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a solid state drive device, a hard disk device, or a memory element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一実施形態に係る制御装置は、受電電力が予め計画され、水素製造量が受電電力に応じて変化する水素製造装置を少なくとも含む水素システムを制御する。この制御装置は、受電電力の目標値が予め設定された需給調整時間帯の前の準備時間帯において、受電電力として水素製造装置へ入力される入力電力が、需給調整時間帯の開始時に目標値に一致するような制御指令値を算出する演算部と、演算部で算出された制御指令値を水素製造装置へ出力する制御指令部と、を備える。

Description

制御装置、制御方法、およびプログラム
 本発明の実施形態は、制御装置、制御方法、およびプログラムに関する。
 電力供給によって水素を製造および貯蔵する水素システムが知られている。このような水素システムには、デマンドレスポンスなどの電力需給を調整する需給調整時間帯が設定されている。この需給調整時間帯では、水素製造装置への入力電力を目標値に調整する必要がある。
 そこで、水素製造装置への入力電力を制御する制御装置が提案されている。この制御装置によれば、水素システムから負荷へエネルギーを適切に供給することができる。
2016-140161号公報
 水素製造装置は、水の電気分解などの方法により水素を製造しているため、水素製造量を変更する際の変化速度が小さい。そのため、需給調整時間帯が短いと、制御装置が水素製造装置への入力電力を制御しても、水素製造量が需給調整時間帯内で計画通りに変化できない可能性がある。
 本発明の実施形態は、水素製造に関する電力需給調整の確実性を高めることが可能な制御装置、制御方法、およびプログラムを提供することを目的とする。
 一実施形態に係る制御装置は、受電電力が予め計画され、水素製造量が受電電力に応じて変化する水素製造装置を少なくとも含む水素システムを制御する。この制御装置は、受電電力の目標値が予め設定された需給調整時間帯の前の準備時間帯において、受電電力として水素製造装置へ入力される入力電力が、需給調整時間帯の開始時に目標値に一致するような制御指令値を算出する演算部と、演算部で算出された制御指令値を水素製造装置へ出力する制御指令部と、を備える。
 本実施形態によれば、水素製造に関する電力需給調整の確実性を高めることが可能となる。
第1実施形態に係る水素製造管理システムの一構成例を示すブロック図である。 第1実施形態に係る制御装置の処理手順を示すフローチャートである。 第1実施形態に係る演算部の構成を示すブロック図である。 (a)は、比較例に係る水素製造量の経時的な変化の一例を示す図であり、(b)は、比較例に係る受電電力の経時的な変化の一例を示す図である。 (a)は、第1実施形態に係る水素製造量の経時的な変化の一例を示す図であり、(b)は、第1実施形態に係る受電電力の経時的な変化の一例を示す図である。 (a)は、変形例に係る水素製造量の経時的な変化の一例を示す図であり、(b)は、変形例に係る受電電力の経時的な変化の一例を示す図である。 第2実施形態に係る制御装置の一構成例を示すブロック図である。 第2実施形態に係る制御装置の処理手順を示すフローチャートである。 第3実施形態に係る水素製造管理システムの一構成例を示すブロック図である。 第3実施形態に係る演算部の構成を示すブロック図である。
 以下、本発明の実施形態を、図面を参照して説明する。本実施形態は、本発明を限定するものではない。
 (第1実施形態)
 図1は、第1実施形態に係る水素製造管理システムの一構成例を示すブロック図である。図1に示す水素製造管理システムは、水素システム1と、電力系統2と、エネルギー管理システム3と、制御装置4と、水素負荷5と、を備える。
 水素システム1は、発電装置11と、水素製造装置12と、水素貯蔵装置13と、を含む。本実施形態では、発電装置11は、再生可能なエネルギーで発電する。発電装置11には、例えば、太陽光発電(Photovoltaics)装置や風力発電装置を適用できる。発電装置11で発電された電力は、水素製造装置12へ供給される。
 水素製造装置12は、発電装置11から供給された電力と、電力系統2から供給された電力と、を受電して水素を製造する。電力系統2は、電力会社が管理する送配電網である。また、水素製造装置12は、製造した水素を水素貯蔵装置13に貯蔵する。
 水素貯蔵装置13は、貯蔵された水素を水素負荷5へ供給する。水素負荷5は、燃料電池発電装置や、燃料電池自動車などへの水素供給装置などである。
 エネルギー管理システム3は、水素システム1の運転計画を作成する。制御装置4は、エネルギー管理システム3で作成された運転計画に基づいて水素システム1を制御する。
 制御装置4は、インターフェース部41と、演算部42と、制御指令部43と、を含む。インターフェース部41は、水素システム1およびエネルギー管理システム3から種々の信号を受信する。演算部42は、インターフェース部41で受信された信号に基づいて、制御指令値、具体的には水素製造装置12への入力電力の指示値を算出する。制御指令部43は、演算部42で算出された制御指令値に基づいて水素製造装置12を制御する。
 図2は、第1実施形態に係る制御装置4の処理手順を示すフローチャートである。図2を参照して、制御装置4の動作について説明する。
 まず、インターフェース部41が、水素システム1から制御データを示す信号を受信するとともに、エネルギー管理システム3から水素システム1の運転計画に関連する計画データを示す信号を受信する(ステップS101)。ステップS101では、インターフェース部41は、受信したこれらの信号を演算部42へ送信する。
 本実施形態では、制御データは、電力系統2からの受電電力と、発電装置11で発電されたPV発電電力と、水素製造装置12への入力電力と、水素製造装置12で実際に製造された水素製造量と、水素貯蔵装置13の消費電力と、を含む。一方、計画データは、水素製造装置12の水素製造量および受電電力量の各々の計画値と、発電装置11におけるPV発電量の予測値と、水素の需給を調整する需給調整時間帯と、を含む。
 次に、演算部42は、インターフェース部41から受信した信号に基づいて、制御指令値を算出する(ステップS102)。制御指令値の算出方法は、時間帯によって異なる。ここで、図3を参照して、演算部42の構成を説明しつつ、ステップS102を詳しく説明する。
 図3は、第1実施形態に係る演算部42の構成を示すブロック図である。図3に示す演算部42は、スイッチ421と、減算器422、423と、積分回路424、425と、第1制御回路426と、第2制御回路427と、第3制御回路428と、加算器429と、を有する。
 演算部42では、スイッチ421が、需給調整時間帯か否かを示す需給調整時間信号に応じて演算処理を切り替える。すなわち、需給調整時間帯か否かによって、演算部42の処理内容が異なる。
 需給調整時間信号が需給調整時間帯でない非需給調整時間帯であることを示す場合、スイッチ421は、減算器422および積分回路424を第1制御回路426に接続する。これにより、減算器422が、エネルギー管理システム3から取得した水素製造量計画値と、水素システム1から取得した水素製造装置12の水素製造量との差を算出する。続いて、積分回路424が、減算器422で算出された差を積分する。続いて、第1制御回路426が、この差をゼロにするように、例えばPI(Proportional Integral)制御を行う。その結果、水素製造量計画値に対応する入力電力の指示値が、制御指令値として算出される。
 また、需給調整時間信号が需給調整時間帯であることを示す場合、スイッチ421は、減算器423および積分回路425を第1制御回路426へ接続する。これにより、減算器423が、エネルギー管理システム3から取得した受電電力量計画値と、水素システム1から取得した受電電力との差を算出する。続いて、積分回路425が、減算器423で算出された差を積分する。続いて、第1制御回路426が、この差をゼロにするように、例えばPI制御を行う。その結果、受電電力量計画値に対応する入力電力の指示値が、制御指令値として算出される。
 さらに、本実施形態では、需給調整時間帯が、エネルギー管理システム3によって、30分ごとに予め決められているので、演算部42は、需給調整時間信号に基づいて、需給調整時間帯の前の時間帯である準備時間帯を事前に把握することができる。準備時間帯内において、後述する制御開始時刻になると、スイッチ421が、減算器423および積分回路425を第1制御回路426へ接続するとともに、第2制御回路427が駆動する。
 第2制御回路427は、減算器423で算出された差に基づいて、需給調整時間帯の開始時に、受電電力として水素製造装置12に入力される入力電力が、需給調整時間帯における受電電力量計画値である目標値に一致するようにフィードフォワード制御を行う。第2制御回路427の出力値は、加算器429で第1制御回路426の出力値と加算される。その後、加算器429の加算値が、制御指令値として算出される。
 第3制御回路428は、発電装置11で発電された電力が電力系統2へ流れる逆潮流を防止するための回路である。第3制御回路428は、時間帯に関わらず、水素製造装置12の受電電力としきい値を比較する。受電電力がしきい値よりも小さくなると、第3制御回路428の出力値が増加する。第3制御回路428の出力値は加算器429で増加され、これにより、水素製造装置12への入力電力を増加させる制御指令値が算出される。水素製造装置12への入力電力が増えることによって、発電装置11の出力電力が、水素製造装置12でより多く消費されるので、逆潮流を防止することができる。
 なお、需給調整時間帯における演算部42による制御は、需給調整時間帯に限らず、需給調整時間帯における目標値を設定するためのベースライン計算時間帯に行ってもよい。エネルギー管理システム3によって、ベースライン計算時間帯は、例えば、需給調整を行う日の1日前または1週間前の需給調整時間帯と同じ時間帯に設定される。ベースライン計算時間帯になると、スイッチ421が、減算器423および積分回路425を第1制御回路426へ接続する。その後、受電電力が計画値に一致するように、制御指令値が算出される。
 上述したステップS102で算出された制御指令値は、制御指令部43によって、水素製造装置12へ出力される(ステップS103)。水素製造装置12は、制御指令部43からの制御指令値に基づいて水素を製造する。その後、所定の終了条件を満たすまで、制御装置4は、上述したステップS101~S103の動作を繰り返す(ステップS104)。制御装置4の動作終了の条件は、例えばエネルギー管理システム3によって設定されている。
 以下、需給調整の制御方法について、比較例との違いを説明する。図4(a)は、比較例に係る水素製造量の経時的な変化の一例を示す図である。図4(b)は、比較例に係る受電電力の経時的な変化の一例を示す図である。
 図4(a)および図4(b)に示すように、非需給調整時間帯では、実際の水素製造量を計画値Hdr1に一致させ、受電電力、すなわち入力電力を計画値Pdr1に一致させる制御を行う。一方、需給調整時間帯では、実際の水素製造量を目標値Hdr2に一致させ、受電電力を目標値Pdr2に一致させる制御を行う。
 しかし、図4(b)に示すように、比較例では、需給調整時間帯の開始時刻T1に受電電力を計画値Pdr1から目標値Pdr2へ低下させる制御を開始する。この場合、図4(a)に示すように、水素製造量は、受電電力の変化速度に応じて低下する。そのため、需給調整時間帯内で、実際の水素製造量が目標値Hdr2を超え、水素余剰状態となる。
 また、図4(a)に示すように、需給調整時間帯の終了時刻T2を経過すると非需給調整時間帯に切り替わるので、水素製造量を計画値Hdr1に一致させる制御が開始される。需給調整時間帯から非需給調整時間帯に切り替わった直後では、水素製造量が目標値Hdr2よりも少ない水素不足状態となっているので、目標値Hdr2との誤差を減らす制御を行う。その結果、水素製造量が目標値Hdr2を超えるオーバーシュートの値が大きくなって、制御性能が低下するおそれがある。
 一方、図5(a)は、本実施形態に係る水素製造量の経時的な変化の一例を示す図である。図5(b)は、本実施形態に係る受電電力の経時的な変化の一例を示す図である。
 図5(b)に示すように、本実施形態では、準備時間帯の中で制御開始時刻Tsになると、第2制御回路427が、水素製造装置12の受電電力を目標値に一致させるフィードフォワード制御を開始する。
 制御開始時刻Tsは、準備時間帯の開始時刻T0における受電電力P(kW)と、需給調整時間帯における受電電力の目標値Pdr2(kW)と、水素製造装置12の最大入力電力変化率R(kW/分)と、を用いて下記の式(1)、(2)により計算される。なお、下記の式(2)では、受電電力Pの代わりに、非需給調整時間帯における計画値Pdr1を用いてもよい。
Ts=T1-ΔT1   (1)
ΔT1=(P-Pdr2)/R   (2)
 制御開始時刻Tsになると、スイッチ421が切り替わって、第1制御回路426によるフィードバック制御および第2制御回路427によるフィードフォワード制御によって、受電電力は水素製造装置12の出力変化速度に従って低下する。その結果、需給調整時間帯の開始時刻T1には、受電電力は目標値Pdr2に一致する。
 需給調整時間帯では、第1制御回路426によるフィードバック制御によって、受電電力が目標値Pdr2と一致した状態を維持するように、制御指令値が算出される。
 その後、需給調整時間帯の終了時刻T2を経過すると、水素製造量を計画値Hdr1に一致させる制御に切り替わる。需給調整時間帯から非需給調整時間帯に切り替わった直後では、水素製造量が目標値Hdr2よりも少ない水素不足状態となっているので、目標値Hdr2との誤差を減らす制御を行う。ただし、本実施形態では、需給調整時間帯における水素製造量は、目標値Hdr2に一致しているので、目標値Hdr2との誤差は、上述した比較例に比べて小さい。そのため、オーバーシュートの値も小さくなり、制御性能を向上させることができる。
 以上説明した本実施形態によれば、需給調整時間帯の前の準備時間帯に、前もって受電電力を調整する。これにより、需給調整時間帯の開始時刻には、受電電力が目標値に一致している。そのため、水素製造装置12の入力電力に対する応答速度に関わらず、需給調整を確実に行うことが可能となる。
 また、需給調整時間帯が終了すると、水素製造量を計画値に一致させる制御を行うため、水素負荷に対して確実に水素供給を行うことができる。
 さらに、受電電力がしきい値よりも小さくなると、水素製造装置12への入力電力を増加させる制御を行う。これにより、発電装置11で発電された電力を、逆潮流させることなく有効に活用することができる。
 (変形例)
 以下、本変形例について説明する。本変形例は、準備時間帯における受電電力の制御方法が第1実施形態と異なる。
 図6(a)は、変形例に係る水素製造量の経時的な変化の一例を示す図である。図6(b)は、変形例に係る受電電力の経時的な変化の一例を示す図である。
 上述した第1実施形態では、制御開始時刻Tsから需給調整時間帯の開始時刻T1まで受電電力を低下させるので、水素製造量が計画値Hdr1よりも小さくなる。そのため、水素貯蔵装置13に貯蔵される水素が不足する可能性がある。
 そこで、本変形例では、準備時間帯において、制御装置4が水素の不足を補う制御を行う。この制御では、水素不足量と等しい水素余剰量を発生させるために、制御開始時刻Tsは、下記の式(3)、(4)によって算出される。
 Ts=T1-ΔT1-ΔT2   (3)
 ΔT2=√2ΔT1   (4)
 制御開始時刻TsからΔT2/2経過するまでの時間帯において、制御指令部43は、受電電力を最大入力電力変化率で目標値Pdr3まで増加させる。その後、制御指令部43は、需給調整時間帯の開始時刻T1になるまで、受電電力を最大入力電力変化率で目標値Pdr2まで減少させる。需給調整時間帯以降は、第1実施形態と同様の制御が行われる。
 以上説明した本変形例によれば、第1実施形態と同様に、準備時間帯に水素製造装置12の受電電力を調整することによって、需給調整時間帯の開始時刻に受電電力を目標値に一致させている。そのため、水素製造装置12の需給調整を確実に行うことが可能となる。
 さらに、本変形例では、準備時間帯で水素を余剰に製造している。これにより、準備時間帯で発生する水素不足を解消することも可能となる。
 (第2実施形態)
 以下、図7、8を参照して第2実施形態に係る制御装置を説明する。なお第1実施形態と同一の構成要素には同一の符号を付し、重複する説明は省略する。
 図7は、第2実施形態に係る制御装置40の一構成例を示すブロック図である。制御装置40は、第1実施形態の制御装置4の構成要素に加えて、記憶部44を含む。また、制御装置40は、第1実施形態の演算部42に替えて、演算部45を含む。
 記憶部44は、インターフェース部41で受信されたデータ、水素製造装置12における受電電力と水素製造量との相関関係を示すモデル、および水素製造装置12で実際に製造された水素製造量の実績データ等の種々のデータを記憶する。記憶部44は、例えば半導体メモリなどの記憶装置で構成される。また、演算部45は、記憶部44に記憶された信号およびモデルに基づいて、制御指令値を演算する。
 図8は、第2実施形態に係る制御装置40の処理手順を示すフローチャートである。図8を参照して制御装置40の動作について説明する。
 まず、第1実施形態と同様に、インターフェース部41が、水素システム1から制御に関連する制御データを示す信号を受信するとともに、エネルギー管理システム3から水素システム1の運転計画に関連する計画データを示す信号を受信する(ステップS201)。インターフェース部41で受信されたデータは、記憶部44に保存される(ステップS202)。
 次に、演算部45は、記憶部44に記憶されたモデルを推定する必要があるか否か判定する(ステップS203)。このモデルは、上述したように、水素製造装置12における受電電力と水素製造量との相関関係を示す。この相関関係は、水素製造装置12の経年劣化や交換を起因として変動する可能性がある。
 そこで、本実施形態では、例えば、水素製造装置12の稼働時間が基準値を超えている場合、演算部45は、記憶部44に記憶されている水素製造装置12の実績データを用いてモデルを推定する(ステップS204)。
 次に、演算部45は、推定したモデルの更新が必要であるか否かを判定する(ステップS205)。本実施形態では、例えば、推定したモデルと実績データとの差が許容範囲外である場合、演算部45は、記憶部44に記憶されたモデルを更新する(ステップS206)。
 次に、第1実施形態と同様に、演算部45は、非需給調整時間帯、準備時間帯、および需給調整時間帯の各々において、制御指令値を算出する(ステップS207)。算出された制御指令値は、制御指令部43によって、水素製造装置12へ出力される(ステップS208)。その後、所定の終了条件を満たすまで、制御装置40は、上述したステップS201~S208の動作を繰り返す(ステップS209)。
 以上説明した本実施形態によれば、準備時間帯に、記憶部44に記憶されたデータを用いて受電電力を調整することによって、需給調整時間帯の開始時刻に受電電力を目標値に一致させている。そのため、水素製造装置12の入力電力に対する応答速度に関わらず、需給調整を確実に行うことが可能となる。
 さらに、本実施形態では、受電電力の調整に用いるモデルが、実績データに基づいて推定され、更新される。これにより、水素製造装置12の交換や経年劣化に対して精度良く制御することができる。
 (第3実施形態)
 以下、図9~図11を参照して第3実施形態に係る制御装置を説明する。なお、第1実施形態と同一の構成要素には同一の符号を付し、重複する説明は省略する。
 図9は、第3実施形態に係る水素製造管理システムの一構成例を示すブロック図である。図9に示す水素製造管理システムは、水素システム10と、電力系統2と、エネルギー管理システム30と、制御装置400と、水素負荷5と、熱負荷6と、を備える。
 水素システム10は、第1実施形態に係る水素システム1(図1参照)の構成に加えて、燃料電池発電装置14を含む。燃料電池発電装置14は、水素貯蔵装置13に貯蔵された水素から、電力と熱を製造する。この電力は、発電装置11で発電された電力と、電力系統2からの電力とともに、水素製造装置12に供給され、水素を製造するために用いられる。また、燃料電池発電装置14で製造された熱は、熱負荷6に供給される。熱負荷6は、給湯負荷や、温熱負荷である。
 エネルギー管理システム30は、水素システム10の運転計画を作成する。制御装置400は、エネルギー管理システム3で作成された運転計画に基づいて水素システム10を制御する。
 制御装置400は、図9に示すように、インターフェース部401と、演算部402と、制御指令部43に替えて制御指令部403と、を含む。インターフェース部401は、水素システム10およびエネルギー管理システム30から信号を受信する。
 演算部402は、その信号に基づいて水素製造装置12および燃料電池発電装置14の制御指令値をそれぞれ算出する。水素製造装置12への制御指令値は、入力電力の指示値を示す。燃料電池発電装置14への制御指令値は、発電の指示値を示す。制御指令部403は、演算部402で算出された制御指令値に基づいて、水素製造装置12および燃料電池発電装置14を個別に制御する。
 以下、制御装置400の動作について説明する。制御装置400は、第1実施形態に係る制御装置4と同様のフローチャート(図2参照)に従って動作する。ここでは、第1実施形態と異なる点を中心に説明する。
 本実施形態のステップS101では、水素システム10からインターフェース部401に提供される制御データは、上述した第1実施形態のデータに加えて、燃料電池発電装置14の実際の発電量と、燃料電池発電装置14の燃料消費量と、を含む。また、エネルギー管理システム30からインターフェース部401に提供される計画データは、上述した第1実施形態のデータに加えて、燃料電池発電装置14の発電量の計画値を含む。
 ステップS102では、演算部402は、インターフェース部401から受信した信号に基づいて、水素製造装置12および燃料電池発電装置14の制御指令値をそれぞれ算出する。ここで、図10を参照して、演算部402の構成を説明しつつ、本実施形態のステップS102を詳しく説明する。
 図10は、第3実施形態に係る演算部402の構成を示すブロック図である。図10に示す演算部402は、第1実施形態に係る演算部42の構成(図3参照)に加えて、スイッチ431と、減算器432と、第4制御回路433と、第5制御回路434と、第6制御回路435と、加算器436と、を有する。
 非需給調整時間帯、準備時間帯、および需給調整時間帯において、演算部402による水素製造装置12の制御動作については、第1実施形態と同様であるため説明を省略する。ここでは、演算部402が燃料電池発電装置14の発電量を制御する動作について説明する。
 非需給調整時間帯では、スイッチ431は、図10に示すように減算器432を第4制御回路433に接続する。これにより、減算器432が、燃料電池発電装置14の発電量計画値と、水素システム10から取得した燃料電池発電装置14の発電量との差を算出する。続いて、第4制御回路433が、この差をゼロにするように、フィードバック制御する。
 また、需給調整時間帯では、スイッチ431は、積分回路425を第4制御回路433へ接続する。第4制御回路433は、水素製造装置12の受電電力を計画値に一致させるように燃料電池発電装置14の発電量をフィードバック制御する。
 また、準備時間帯には、第5制御回路434が、需給調整開始時刻に受電電力を目標値に一致させるように燃料電池の発電量をフィードフォワード制御する。
 さらに、時間帯に関わらず、第6制御回路435は、受電電力としきい値とを比較する。受電電力がしきい値よりも小さくなると、第6制御回路435の出力値が増加する。第6制御回路435の出力値は加算器436で加算され、燃料電池発電装置14の発電量を低減させる制御指令値が算出される。これにより、燃料電池発電装置14から水素製造装置12への電力供給が減少する一方で、発電装置11から水素製造装置12への電力供給が増加する。よって、逆潮流を防止することができる。
 以上説明した本実施形態によれば、第1実施形態と同様に、準備時間帯に前もって水素製造装置12の受電電力を調整することによって、この受電電力は需給調整時間帯の開始時刻に目標値に一致している。そのため、水素の需給調整を確実に行うことが可能となる。
 さらに本実施形態では、燃料電池発電装置14の発電量も制御することにより、デマンドレスポンスなどの需給調整時間帯の受電電力の制御範囲を拡大することができる。
 なお、上述した各実施形態において、演算部によって行われる処理の少なくとも一部は、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、一部の処理を実現するプログラムをフレキシブルディスクや磁気ディスク、光ディスク等の非一時的な記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ソリッドステートドライブ装置、ハードディスク装置、メモリ素子などの固定型の記録媒体でもよい。
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置、方法、プログラム、及びシステムは、その他の様々な形態で実施することができる。また、本明細書で説明した装置、方法、プログラム、及びシステムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。

Claims (10)

  1.  受電電力が予め計画され、水素製造量が前記受電電力に応じて変化する水素製造装置を少なくとも含む水素システムを制御する制御装置であって、
     前記受電電力の目標値が予め設定された需給調整時間帯の前の準備時間帯において、前記受電電力として前記水素製造装置へ入力される入力電力が、前記需給調整時間帯の開始時に前記目標値に一致するような制御指令値を算出する演算部と、
     前記演算部で算出された前記制御指令値を前記水素製造装置へ出力する制御指令部と、
    を備える制御装置。
  2.  前記演算部が、
     前記需給調整時間帯においては、前記入力電力に基づいて前記制御指令値を算出し、
     非需給調整時間帯においては、前記水素製造量に基づいて前記制御指令値を算出する、請求項1に記載の制御装置。
  3.  前記演算部が、前記目標値を設定するためのベースライン計算時間帯において、前記入力電力に基づいて前記制御指令値を算出する、請求項2に記載の制御装置。
  4.  前記受電電力と前記水素製造量との相関関係を示すモデルを記憶する記憶部をさらに備え、
     前記演算部は、前記準備時間帯に前記モデルを用いて前記制御指令値を算出する、請求項1から3のいずれかに記載の制御装置。
  5.  前記演算部は、前記水素製造装置で実際に製造された前記水素製造量を示す実績データから前記モデルを推定し、推定した前記モデルを用いて前記制御指令値を算出する、請求項4に記載の制御装置。
  6.  前記水素システムが、前記水素製造装置に電力を供給する発電装置を含み、
     前記演算部は、前記発電装置から前記水素製造装置への供給電力を前記入力電力の一部として用いて前記制御指令値を算出する、請求項1から5のいずれかに記載の制御装置。
  7.  前記受電電力がしきい値よりも小さい場合、前記演算部は、前記入力電力を増加させる、請求項6に記載の制御装置。
  8.  前記水素システムが、前記水素製造装置で製造された水素を貯蔵する水素貯蔵装置と、前記水素貯蔵装置に貯蔵された前記水素で発電する燃料電池発電装置と、を含み、
     前記演算部は、前記準備時間帯において、前記燃料電池発電装置の発電量を計画値に一致させるような制御指令値を算出する、請求項1から7のいずれかに記載の制御装置。
  9.  受電電力および水素製造量が予め計画された水素製造装置を少なくとも含む水素システムを制御する方法であって、
     前記受電電力の目標値が予め設定された需給調整時間帯の前の準備時間帯に、前記受電電力が前記需給調整時間帯の開始時に前記目標値に一致するように制御指令値を算出し、
     算出した制御指令値を前記水素製造装置へ出力する、制御方法。
  10.  受電電力および水素製造量が予め計画された水素製造装置を少なくとも含む水素システムの制御をコンピュータに実行させるためのプログラムであって、
     前記受電電力の目標値が予め設定された需給調整時間帯の前の準備時間帯に、前記受電電力が前記需給調整時間帯の開始時に前記目標値に一致するように制御指令値を算出し、
     算出した制御指令値を前記水素製造装置へ出力する、プログラム。
PCT/JP2018/045680 2018-12-12 2018-12-12 制御装置、制御方法、およびプログラム WO2020121436A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/045680 WO2020121436A1 (ja) 2018-12-12 2018-12-12 制御装置、制御方法、およびプログラム
EP18943123.2A EP3896814A4 (en) 2018-12-12 2018-12-12 CONTROL DEVICE, CONTROL METHOD AND PROGRAM
JP2020559604A JP7090177B2 (ja) 2018-12-12 2018-12-12 制御装置、制御方法、およびプログラム
US17/344,879 US11710839B2 (en) 2018-12-12 2021-06-10 Controller, controlling method, and record medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045680 WO2020121436A1 (ja) 2018-12-12 2018-12-12 制御装置、制御方法、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/344,879 Continuation US11710839B2 (en) 2018-12-12 2021-06-10 Controller, controlling method, and record medium

Publications (1)

Publication Number Publication Date
WO2020121436A1 true WO2020121436A1 (ja) 2020-06-18

Family

ID=71077176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045680 WO2020121436A1 (ja) 2018-12-12 2018-12-12 制御装置、制御方法、およびプログラム

Country Status (4)

Country Link
US (1) US11710839B2 (ja)
EP (1) EP3896814A4 (ja)
JP (1) JP7090177B2 (ja)
WO (1) WO2020121436A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420272B2 (ja) 2020-09-11 2024-01-23 株式会社Ihi 電力調整方法および電力調整装置
WO2024058142A1 (ja) * 2022-09-14 2024-03-21 三浦工業株式会社 電力管理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7177854B2 (ja) * 2018-12-12 2022-11-24 東芝エネルギーシステムズ株式会社 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061251A (ja) * 2001-08-08 2003-02-28 Hitachi Ltd 電力供給システム
JP2004362857A (ja) * 2003-06-03 2004-12-24 Hitachi Ltd 学習制御を有する燃料電池発電システム
JP2007523580A (ja) * 2004-01-23 2007-08-16 スチュアート エナジー システムズ コーポレーション エネルギーネットワーク
JP2016111871A (ja) * 2014-12-09 2016-06-20 株式会社デンソー 電力供給システム
JP2016140161A (ja) 2015-01-26 2016-08-04 株式会社東芝 電力供給システムおよびその制御方法
WO2018078875A1 (ja) * 2016-10-31 2018-05-03 株式会社 東芝 水素エネルギーシステム、水素エネルギーシステムの制御方法、及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2455689A1 (en) 2004-01-23 2005-07-23 Stuart Energy Systems Corporation System for controlling hydrogen network
EP3517653B1 (en) * 2008-10-30 2021-06-30 Next Hydrogen Corporation Power dispatch system for electrolytic production of hydrogen from wind power
TW201411538A (zh) * 2012-09-05 2014-03-16 Hung-Wei Lin 供電設備之備轉電力管控方法與管控系統
JP6096735B2 (ja) 2014-10-09 2017-03-15 横河電機株式会社 産業用デマンドレスポンス実現システム
KR101829311B1 (ko) * 2017-04-28 2018-02-20 아크로랩스 주식회사 주파수 조정용 친환경 에너지 저장 시스템
JP7073997B2 (ja) * 2018-09-14 2022-05-24 トヨタ自動車株式会社 燃料電池車両および燃料電池車両を用いた方法
CN112349938A (zh) * 2020-10-24 2021-02-09 安徽伯华氢能源科技有限公司 一种低能耗压力可控式制氢供氢装置及燃料电池系统
CN112510233A (zh) * 2020-11-04 2021-03-16 国网浙江省电力有限公司衢州供电公司 一种家庭用氢储能燃料电池发电系统
CN113113646B (zh) * 2021-03-05 2022-06-14 嘉寓氢能源科技(辽宁)有限公司 使用氢燃料电池的供电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061251A (ja) * 2001-08-08 2003-02-28 Hitachi Ltd 電力供給システム
JP2004362857A (ja) * 2003-06-03 2004-12-24 Hitachi Ltd 学習制御を有する燃料電池発電システム
JP2007523580A (ja) * 2004-01-23 2007-08-16 スチュアート エナジー システムズ コーポレーション エネルギーネットワーク
JP2016111871A (ja) * 2014-12-09 2016-06-20 株式会社デンソー 電力供給システム
JP2016140161A (ja) 2015-01-26 2016-08-04 株式会社東芝 電力供給システムおよびその制御方法
WO2018078875A1 (ja) * 2016-10-31 2018-05-03 株式会社 東芝 水素エネルギーシステム、水素エネルギーシステムの制御方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896814A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420272B2 (ja) 2020-09-11 2024-01-23 株式会社Ihi 電力調整方法および電力調整装置
WO2024058142A1 (ja) * 2022-09-14 2024-03-21 三浦工業株式会社 電力管理装置
JP7490180B1 (ja) 2022-09-14 2024-05-27 三浦工業株式会社 電力管理装置

Also Published As

Publication number Publication date
US11710839B2 (en) 2023-07-25
EP3896814A4 (en) 2022-08-24
JPWO2020121436A1 (ja) 2021-10-21
US20210305606A1 (en) 2021-09-30
JP7090177B2 (ja) 2022-06-23
EP3896814A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
US11710839B2 (en) Controller, controlling method, and record medium
EP3068007B1 (en) System and method for improved reactive power speed-of-response for a wind farm
US8234015B2 (en) Method for controlling a grid voltage
JP6320539B2 (ja) ハイブリッドエネルギ蓄積システムを制御する方法および装置
US20100141030A1 (en) Method for operating a low-voltage electrical system
US20140162091A1 (en) Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
JP2009174329A (ja) 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP6618659B1 (ja) 電力変換システム及びその管理装置、並びに、分散電源装置
JP6928670B2 (ja) 電力管理サーバ及び電力管理方法
EP3496226A1 (en) Method of operating an energy system
JP6297522B2 (ja) 再生可能エネルギー出力システム、再生可能エネルギー出力変動抑制方法および再生可能エネルギー出力変動抑制プログラム
CN108197788B (zh) 一种对等控制模式下微电网电压频率偏差估计方法
JP2012080680A (ja) 電源出力制御装置、需要電力制御システム、電源出力制御方法、および電源出力制御プログラム
KR101249469B1 (ko) 업다운 모드를 구비하며 데드존을 회피하는 반도체 제조 설비의 온도제어시스템
JP4603992B2 (ja) 消費電力制御装置
EP2867735A1 (en) A method for optimization of control and fault analysis in a thermal power plant
JP2011222427A (ja) 空気二次電池蓄電装置
JP7326808B2 (ja) ネガワット取引支援装置、ネガワット取引システム、およびネガワット取引方法
JP7331587B2 (ja) ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
JP7412674B2 (ja) ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
Corradini et al. Boost converter load estimation by a sliding mode approach
CN110768276A (zh) 一种火储联合系统的控制方法、储能装置及系统
JP2009296853A (ja) ガスタービン発電プラントの発電量制御方法および装置
WO2020034240A1 (zh) 再生能源管理系统
JP7354726B2 (ja) ネガワット取引支援装置およびネガワット取引方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018943123

Country of ref document: EP

Effective date: 20210712