WO2020120446A1 - Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug - Google Patents
Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug Download PDFInfo
- Publication number
- WO2020120446A1 WO2020120446A1 PCT/EP2019/084368 EP2019084368W WO2020120446A1 WO 2020120446 A1 WO2020120446 A1 WO 2020120446A1 EP 2019084368 W EP2019084368 W EP 2019084368W WO 2020120446 A1 WO2020120446 A1 WO 2020120446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- battery
- converter
- charging connection
- charging
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/007—Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
- H02J7/0045—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/28—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/61—Arrangements of controllers for electric machines, e.g. inverters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the invention relates to a circuit arrangement for a motor vehicle, in particular for a hybrid or electric vehicle according to the preamble of patent claim 1.
- the circuit arrangement has a high-voltage battery for storing electrical energy or electrical current.
- the circuit arrangement also has at least one electrical machine for, in particular electrical, driving of the motor vehicle.
- a converter is provided, by means of which high-voltage direct voltage that can be provided or provided by the high-voltage battery can be converted into high-voltage alternating voltage for operating the electrical machine.
- the electrical machine can be operated with the high-voltage AC voltage which results from the high-voltage DC voltage in that the converter converts the high-voltage DC voltage into the high-voltage AC voltage.
- the circuit arrangement comprises a charging connection for providing electrical energy for charging the high-voltage battery.
- the high-voltage battery can be charged with electrical energy which is provided by the charging connection.
- DE 10 2015 008 175 A1 discloses a circuit arrangement for charging a high-voltage battery in a motor vehicle, with a high-voltage battery train that has a series connection of battery cells that is electrically coupled between two load connection poles of a two-pole load connection, a first one using the high-voltage battery train High-voltage DC voltage can be provided at the load connection.
- DE 10 2016 218 304 A1 also shows a device for voltage conversion with a converter which has three half bridges, each with four transistors. The
- the device is also connected to a traction motor, a battery, a control unit and a charging connection and can be used in a method for charging the battery by means of an external DC voltage source.
- the object of the present invention is to further develop a circuit arrangement of the type mentioned at the outset in such a way that the high-voltage battery can be charged particularly advantageously.
- the converter is designed as a three-stage converter.
- the converter has at least one switch unit which, in particular precisely, is assigned to a phase of the, for example, multiphase, in particular three-phase, electrical machine.
- the switch unit is electrically connected or can be connected to the phase to which the switch unit is assigned.
- the phase can, for example, be supplied with electrical energy or with a high-voltage alternating voltage resulting from the high-voltage battery that is or can be provided by the high-voltage battery and that is or can be provided by the converter via the switch unit assigned to the phase.
- the switch unit has two switch groups connected in series to one another.
- the respective switch group has two IGBTs connected in series with one another.
- the IGBT is a bipolar transistor with an insulated gate electrode.
- connection also referred to as a tap
- the line can be flowed through by the electrical energy provided or can be provided by the charging connection for charging the high-voltage battery.
- the electrical energy provided by the charging connection and used to charge the high-voltage battery can flow through the line
- the converter has, for example, a first switching state, a second
- the high-voltage battery also referred to simply as the battery, has, for example, at least one first battery segment and at least one second battery segment, the battery segments being connected or to be connected in series with one another, for example.
- a first high-voltage DC voltage can be provided by means of the first battery segment, for example, a second high-voltage DC voltage can be provided by means of the second battery segment.
- the first battery segment of the high-voltage battery is electrically connected or coupled to the charging connection via the three-stage converter, while the second battery segment is decoupled from the charging connection by means of the converter.
- the first battery segment can be charged via the three-stage converter with electrical energy provided by the charging connection.
- the second battery segment of the high-voltage battery is electrically connected to the charging connection via the three-stage converter
- both the first battery segment and the second battery segment of the high-voltage battery are electrically connected to the charging connection via the three-stage converter, so that both the first battery segment and the second battery segment are connected via the three-stage converter electrical energy provided by the charging connection can be charged.
- the charging connection can be electrically connected, for example, to an energy source external to the motor vehicle, such as, for example, a so-called charging station, in particular a DC charging station, also referred to as a DC charging station.
- an electrical voltage provided by the energy source and configured, for example, as a high voltage, in particular electrical direct voltage and preferably an electrical high-voltage direct voltage are transmitted from the external energy source to the charging connection and are subsequently provided by the charging connection.
- the energy source can provide electrical energy which can be transmitted to the charging connection and can thus be provided by the charging connection.
- the high-voltage battery can be charged via the charging connection with the electrical energy provided by the external energy source.
- the three-stage converter provided according to the invention makes it possible, in particular as a function of the
- Power source provided electrical voltage, optionally the first
- the third switching state is set.
- the first battery segment and the second battery segment in particular the entire high-voltage battery, are electrically connected to the charging connection, so that the first battery segment and the second battery segment, in particular the entire high-voltage battery, simultaneously with that of the charging connection or via the charging connection electrical energy provided by the energy source can be charged.
- the first switching state or the second switching state is set. This allows the first
- Battery segment or the second battery segment are charged via the three-stage converter with the electrical energy provided by the energy source via the charging connection. It is preferably during one
- the first switching state is initially set during a first part of the charging process.
- the second switching state is set, for example, during a second charging process following the first part of the charging process.
- the first switching state and the second switching state alternate several times during the charging process.
- the first battery segment is Converter charged
- the second battery segment is charged via the three-stage converter.
- the battery segments are charged sequentially and, for example, several times during the charging process, so that the high-voltage battery as a whole is charged during the charging process. For example, while the first battery segment is being charged, the second battery segment is not being charged, and while the second battery segment is being charged, for example, the first is not being charged
- provided electrical energy is less than the high-voltage DC voltage of the high-voltage battery.
- the high-voltage direct voltage, the high-voltage alternating voltage and the aforementioned high voltage and a high voltage generally mean an electrical voltage which is greater than 50 volts, in particular greater than 60 volts.
- The is preferably
- Battery segments add up to the total high-voltage DC voltage of the high-voltage battery.
- the respective high-voltage DC voltage of the respective battery segment is preferably 400 volts, it being preferably provided that the high-voltage DC voltage of the battery segments is the same.
- the high-voltage direct voltage of the high-voltage battery is thus preferably 800 volts.
- the three-stage converter used according to the invention makes it possible to charge the high-voltage battery both by means of such a charging infrastructure, which can provide electrical energy with 800 volts DC, and by means of such a charging infrastructure, which have electrical energy at 400 volts Can provide DC voltage.
- the three-stage inverter also has a dual function.
- a first function of the three-stage converter includes that the high-voltage battery can be charged via the three-stage converter in the manner described.
- the battery segments can be charged individually or separately from one another via an intermediate voltage tap provided between them, in particular in the first switching state and in the second switching state. In the third switching state, the battery segments can be operated simultaneously or be loaded together.
- a second function of the three-stage converter comprises that, for example, in motor operation and thus as an electric motor for
- Electrical drive of the motor vehicle operated electrical machine is supplied with high-voltage AC voltage via the three-stage converter and by means of the
- High-voltage AC voltage can be operated.
- the three-stage converter converts, for example in a fourth switching state, the high-voltage DC voltage of the high-voltage battery provided by the high-voltage battery into the aforementioned high-voltage AC voltage, which is supplied by the three-stage converter, in particular in the fourth switching state is provided.
- the three-stage converter operates in the fourth switching state as a three-stage inverter
- the electrical machine in particular in the fourth switching state, can or will be supplied with the high-voltage alternating voltage provided by the three-stage converter
- This double function of the three-stage converter means that the number of parts and the weight and cost of the circuit arrangement and thus of the motor vehicle as a whole can be kept particularly low.
- Fig. 1 is a schematic representation of an inventive
- Fig. 2 is a schematic representation of the circuit arrangement in a first
- Fig. 3 is a schematic representation of the circuit arrangement in a second
- Fig. 4 is a schematic representation of the circuit arrangement in a third
- FIG. 1 shows a circuit arrangement 10 for a motor vehicle in a schematic illustration.
- the motor vehicle has the circuit arrangement 10 in its completely manufactured state.
- the motor vehicle is designed, for example, as a hybrid or preferably as an electric vehicle, in particular as a battery-electric vehicle.
- the circuit arrangement 10 has a flochvolt battery 12, which is shown particularly schematically in FIG. 1 and is also simply referred to as a battery, for storing electrical energy or electrical current.
- the circuit arrangement comprises at least one electrical machine 14, which, in particular exactly, has three phases u, v and w, the electrical machine 14 can be operated, for example, in motor operation and thus as an electric motor.
- the electrical machine 14 is supplied with an electrical AC voltage, in particular with an electrical high-voltage AC voltage, via the phases u, v and w, in particular via the phase lines assigned to the phases u, v and w respectively
- the circuit arrangement 10 also includes a converter 16, by means of which the high-voltage DC voltage that can be provided or provided by the high-voltage battery 12 can be converted into high-voltage AC voltage for operating the electrical machine 14.
- the high-voltage battery 12 has a high-voltage DC voltage, which is, for example, 800 volts. This means that the high-voltage battery 12 can provide the high-voltage DC voltage.
- the converter 16 converts the high-voltage DC voltage provided by the high-voltage battery 12 into high-voltage AC voltage, which is provided by the converter 16.
- the high-voltage AC voltage provided by the converter 16 can be the electrical
- Machine 14 in particular via the phase lines, are supplied so that the electrical machine 14, in particular the phase lines, with which the Power converter 16 provided high-voltage AC voltage can be supplied
- the electrical machine 14 becomes as one by means of the high-voltage AC voltage provided by the converter 16
- the motor vehicle can be driven electrically by means of the electric motor.
- the circuit arrangement 10 has a charging connection 20.
- the charging connection 20 can provide electrical energy, in particular with a high-voltage direct voltage, wherein the high-voltage battery 12 can be charged with the electrical energy provided by the charging connection 20. This means that from that
- Charging connection 20 provided electrical energy is fed into the high-voltage battery 12 and can thus be stored in the battery.
- FIG. 1 also shows, particularly schematically, an external one that is additionally provided with respect to the motor vehicle and thus with respect to the circuit arrangement 10
- the charging station 22 can provide electrical energy with which the high-voltage battery 12 can be charged.
- the charging station 22 can be electrically connected to the charging connection 20.
- the electrical energy provided by the charging station 22 can be transmitted to the charging connection 20 and provided by the charging connection 20, so that the electrical energy provided by the charging station 22 can be transmitted via the
- Charging port 20 can be transmitted to the high-voltage battery 12. As a result, the electrical energy provided by the charging station 22 can be stored in the battery.
- the charging connection 20 has a line arrangement 18 with a first line 34 and a second line 36, through which the electrical energy that can be provided or provided by the charging connection 20 can flow.
- the electrical energy which is provided by the charging station 22 and used to charge the battery, can flow or flow through the lines 34 and 36.
- the charging connection 20 furthermore has a first contact 38, which is electrically connected to the line 34, and a second contact 40, which is connected to the line 36 and to which the charging station 22 can be electrically connected.
- the electrical energy provided by the charging station 22 can thus be transmitted to the contacts 38, 40 and via the contacts 38, 40 into the lines 34 and 36 or into the charging connection 20 be fed.
- the lines 34 and 36 and thus the charging connection 20 are electrically connected to the converter 16.
- An optionally provided contactor 24, which comprises two switches 42 and 44, is arranged in the line arrangement 18.
- the switch 42 is arranged in the line 34 and the switch 44 is arranged in the line 36.
- the respective switch 42 or 44 can be switched between a respective open state and a respective closed state. For example, if the switch 42 is in its open state, the line 34 is interrupted, so that the contact 38 decouples from the converter 16
- Converter 16 is decoupled or separated, in particular galvanically isolated. However, if the switch 44 is in its closed state, the line 36 is closed, as a result of which the contact 40 is electrically connected to the converter 16. A particularly safe operation can be achieved by using the contactor 24.
- the converter is designed as a three-stage converter, the converter 16, in particular precisely, having three switch units 46, 48 and 50.
- Switch unit 46 is assigned to phase u, switch unit 48 being assigned to phase v and switch unit 50 being assigned to phase w of electrical machine 14.
- the electrical machine 14 is thus designed as a multi-phase, in particular as a three-phase, electrical machine.
- switch unit 46 is electrically connected or connectable to phase u, switch unit 48 being electrically connected or connectable to phase v and switch unit 50 being connected to phase w.
- the respective switch unit 46, 48 or 50 has, in particular exactly, two switch groups 52 and 54 or 56 and 58 connected in series
- the switch group 52 has, in particular precisely, two IGBTs T1 1 and T12 connected in series.
- the switch group 54 has, in particular precisely, two IGBTs T13 and T14 connected in series, the switch groups 52 and 54 being connected in series with one another.
- the switch group 56 has two, in particular exactly two, IGBTs T21 and T22 connected in series with one another, and the switch group 58 has, in particular exactly, two in series with one another switched on IGBTs T23 and T24.
- the switch group 60 has in particular exactly two IGBTs T31 and T32 connected in series with one another, and the switch group 62 has, in particular exactly two IGBTs T33 and T34 connected in series with one another.
- a first connection 64 Arranged between the IGBTs T 11 and T12 of the switch group 52 is a first connection 64, also referred to as a first tap, which is electrically connected directly to the line 34 of the charging connection 20.
- a second connection 66 also referred to as a second tap, is arranged between the IGBTs T23 and T24 of the switch group 58 and is electrically connected directly to the line 36 of the charging connection 20.
- Connections 64 and 66 additionally provided connections, these additional connections 64 and 66 being connected directly to the charging connection 20. Additional separating elements are not required and are not provided.
- the high-voltage battery 12 has at least two battery segments 28 and 30, which are connected to one another in series or series, for example.
- the converter 16 is designed as a three-stage converter.
- the three-stage converter is also referred to as a three-level inverter, which is integrated, for example, in the motor vehicle.
- the converter 16 comprises individual IGBTs T1 1, T12, T13, T14, T21, T22, T23, T24, T31, T32, T33 and T34 (IGBT - bipolar transistor with insulated gate electrode - insulated-gate bipolar transistor).
- IGBTs T1 1, T12, T13, T14, T21, T22, T23, T24, T31, T32, T33 and T34 IGBTs T1 1, T12, T13, T14, T21, T22, T23, T24, T31, T32, T33 and T34 (IGBT - bipolar transistor with insulated gate electrode - insulated-gate bipolar transistor).
- Intermediate circuit 26 both by means of such charging stations, which provide electrical energy with a high-voltage DC voltage of 800 volts, and by means of such charging stations, which provide electrical energy with a high-voltage DC voltage of 400 volts.
- the three-stage converter makes it possible to charge an intermediate circuit voltage of 800 volts with 400 volt charging stations and with 800 volt charging stations.
- DC link voltage to be able to charge with an existing charging infrastructure, which can provide a maximum of 400 volts DC, is an additional one
- the circuit arrangement 10 now makes it possible to charge the high-voltage battery 12, the high-voltage direct voltage of which is, for example, 800 volts, both by means of charging infrastructures which can provide 800 volts of direct voltage and by means of charging infrastructures which can provide a maximum of 400 volts of direct voltage.
- the converter 16 designed as a three-stage converter is used for this purpose.
- the converter 16 has a first switching state shown in FIG. 2 or can be operated in the first switching state shown in FIG. 2.
- the charging station 22 provides, for example, electrical energy with a high-voltage DC voltage U1, which is 400 volts. It is in the first switching state
- Battery segment 28 is electrically connected to the charging connection 20 via the converter 16, while the battery segment 30 is decoupled from the charging connection 20, in particular by means of the converter 16. As a result, the battery segment 28 is charged with the electrical energy provided by the charging station 22, while the battery segment 30 is not charged.
- the converter 16 also has a second switching state shown in FIG. 3.
- the charging station 22 likewise provides the electrical energy with the high-voltage DC voltage U1, which is 400 volts.
- the battery segment 30 is electrically connected to the charging connection 20 via the converter 16, while the battery segment 28, in particular by means of the converter 16, is separated from the charging connection 20, in particular electrically isolated, or is decoupled. As a result, the battery segment 30 is charged with the electrical energy provided by the charging station 22.
- FIG. 4 shows an exemplary embodiment in which the charging station 22 provides electrical energy with a high-voltage DC voltage U2.
- the high-voltage DC voltage U2 is 800 volts.
- the high-voltage DC voltage U2 thus corresponds to High voltage DC voltage of the battery.
- both the battery segment 28 and the battery segment 30 are connected to the charging connection 20 via the converter 16, so that the battery segments 28 and 30 are connected via the
- Power converter 16 are charged simultaneously with the electrical energy provided by the charging station 22.
- the contactor 24 is closed in the first switching state, in the second switching state and in the third switching state, so that the charging connection 20 is electrically connected to the converter 16.
- the charging connection 20 is, for example, a charging junction box to which both charging stations with 400 volts and charging stations with 800 volts can be connected.
- the battery segments 28 and 30 are also referred to as blocks into which the battery is divided.
- the respective block has a respective high-voltage DC voltage, which is, for example, 400 volts.
- the high-voltage DC voltages of the blocks thus add up to the total high-voltage DC voltage of the battery.
- the high-voltage DC voltages of the blocks are at least essentially the same.
- a center tap 32 also referred to as an intermediate voltage tap, is provided.
- the center tap 32 is, for example, electrically connected to a so-called neutral point of the three-stage converter.
- the electrical energy or its electrical voltage that can be provided by the charging station 22 is also referred to as the charging voltage.
- the IGBTs T22 and T23 are switched in order, for example, to electrically connect the charging connection 20 and, via this, the charging column 22 to the battery segment 28.
- the battery segment 28 can be charged, in particular charged, with or to 400 volts.
- the IGBTs T12 and T13 are switched and thus conductive. 4, the battery can be charged directly via the diodes with the charging column 22, the energy provided according to FIG. 4 being 800 volts.
- the lines 34 and 36 can be connected directly to the converter 16, so that the lines 34 and 36 connect the Phase management of the phases u, v and w can bypass.
- the lines 34 and 36 do not have to be connected to the phase line of the phases u, v and w, but the lines 34 and 36 are bypassing the phase lines of the phases u, v and w directly to the converter 16 and thereby to the Connections 64 and 66 electrically connected.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Die Erfindung betrifft eine Schaltungsanordnung (10) für ein Kraftfahrzeug, mit einer Hochvolt-Batterie (12) zum Speichern von elektrischer Energie, mit wenigstens einer elektrischen Maschine (14) zum Antreiben des Kraftfahrzeugs, mit einem Stromrichter (16), mittels welchem von der Hochvolt-Batterie (12) bereitstellbare Hochvolt-Gleichspannung in Hochvolt-Wechselspannung zum Betreiben der elektrischen Maschine (14) umwandelbar ist, und mit einem Ladeanschluss (20) zum Bereitstellen von elektrischer Energie zum Laden der Hochvolt-Batterie (12), wobei der Stromrichter (16) als ein Drei-Stufen-Stromrichter ausgebildet ist und wenigstens eine einer Phase (u) der elektrischen Maschine (14) zugeordnete Schaltereinheit (46) aufweist, welche zwei in Reihe geschaltete Schaltergruppen (52, 54) umfasst, die jeweils zwei in Reihe geschaltete IGBTs (T11, T12, T13, T14) aufweisen, wobei zwischen den IGBTs (T11, T12) einer der Schaltergruppen (52, 54) ein Anschluss (64) angeordnet ist, welcher direkt mit einer Leitung (34) des Ladeanschlusses (20) elektrisch verbunden ist.
Description
Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder
Elektrofahrzeug
Die Erfindung betrifft eine Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug gemäß dem Oberbegriff von Patentanspruch 1.
Derartige Schaltungsanordnungen für Kraftfahrzeuge, insbesondere für Hybrid- oder Elektrofahrzeuge, sind aus dem allgemeinen Stand der Technik bereits hinlänglich bekannt. Die Schaltungsanordnung weist eine Hochvolt-Batterie zum Speichern von elektrischer Energie beziehungsweise elektrischem Strom auf. Die Schaltungsanordnung weist außerdem wenigstens eine elektrische Maschine zum, insbesondere elektrischen, Antreiben des Kraftfahrzeugs auf. Außerdem ist ein Stromrichter vorgesehen, mittels welchem von der Hochvolt-Batterie bereitstellbare oder bereitgestellte Hochvolt- Gleichspannung in Hochvolt-Wechselspannung zum Betreiben der elektrischen Maschine umwandelbar ist. Mit anderen Worten ist die elektrische Maschine mit der Hochvolt- Wechselspannung betreibbar, die aus der Hochvolt-Gleichspannung dadurch resultiert, dass der Stromrichter die Hochvolt-Gleichspannung in die Hochvolt-Wechselspannung umwandelt. Des Weiteren umfasst die Schaltungsanordnung einen Ladeanschluss zum Bereitstellen von elektrischer Energie zum Laden der Hochvolt-Batterie. Mit anderen Worten kann die Hochvolt-Batterie mit elektrischer Energie geladen werden, die von dem Ladeanschluss bereitgestellt wird.
Außerdem offenbart die DE 10 2015 008 175 A1 eine Schaltungsanordnung zum Laden einer Hochvolt-Batterie in einem Kraftfahrzeug, mit einem Hochvolt-Batteriestrang, welcher eine zwischen zwei Lastanschlusspole eines zweipoligen Lastanschlusses elektrisch gekoppelte Serienschaltung von Batteriezellen aufweist, wobei mittels des Hochvolt-Batteriestrangs eine erste Hochvolt-Gleichspannung an dem Lastanschluss bereitstellbar ist.
Auch die DE 10 2016 218 304 A1 zeigt eine Vorrichtung zur Spannungswandlung mit einem Umrichter, der drei Halbbrücken mit jeweils vier Transistoren aufweist. Die
Vorrichtung ist zudem mit einem Traktionsmotor, einer Batterie, einem Steuergerät und einem Ladeanschluss verbunden und kann in einem Verfahren zum Laden der Batterie mittels einer externen Gleichspannungsquelle genutzt werden.
Aufgabe der vorliegenden Erfindung ist es, eine Schaltungsanordnung der eingangs genannten Art derart weiterzuentwickeln, dass die Hochvolt-Batterie besonders vorteilhaft geladen werden kann.
Diese Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen des
Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen
Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
Um nun die Hochvolt-Batterie besonders vorteilhaft laden zu können, ist der Stromrichter als ein Drei-Stufen-Stromrichter ausgebildet. Dabei weist der Stromrichter wenigstens eine Schaltereinheit auf, welche, insbesondere genau, einer Phase der beispielsweise mehrphasigen, insbesondere dreiphasigen, elektrischen Maschine zugeordnet ist. Dies bedeutet, dass die Schaltereinheit mit der Phase, der die Schaltereinheit zugeordnet ist, elektrisch verbunden oder verbindbar ist. Dadurch kann beispielsweise die Phase über die der Phase zugeordneten Schaltereinheit mit elektrischer Energie beziehungsweise mit einer aus der von Hochvolt-Batterie bereitstellbaren oder bereitgestellten Hochvolt- Gleichspannung resultierenden Hochvolt-Wechselspannung, die von dem Stromrichter bereitstellbar ist beziehungsweise bereitgestellt ist, versorgt werden.
Die Schaltereinheit weist dabei zwei in Reihe zueinander geschaltete Schaltergruppen auf. Die jeweilige Schaltergruppe weist zwei in Reihe zueinander geschaltete IGBTs auf. Wie aus dem allgemeinen Stand der Technik bereits hinlänglich bekannt ist, ist der IGBT ein Bipolartransistor mit isolierter Gate-Elektrode.
Zwischen den zwei IGBTS einer der Schaltergruppen ist ein auch als Abgriff bezeichneter Anschluss angeordnet, welcher direkt mit einer Leitung des Ladeanschlusses elektrisch verbunden ist. Die Leitung ist von der von dem Ladeanschluss bereitgestellten oder bereitstellbaren elektrischen Energie zum Laden der Hochvolt-Batterie durchströmbar. Mit anderen Worten kann die elektrische Energie, die von dem Ladeanschluss bereitgestellt und zum Laden der Hochvolt-Batterie genutzt wird, durch die Leitung strömen
beziehungsweise fließen.
Der Stromrichter weist beispielsweise einen ersten Schaltzustand, einen zweiten
Schaltzustand und einen dritten Schaltzustand auf, sodass der Stromrichter zwischen dem ersten Schaltzustand, dem zweiten Schaltzustand und dem dritten Schaltzustand umgeschaltet werden kann. Außerdem weist die einfach auch als Batterie bezeichnete Hochvolt-Batterie beispielsweise wenigstens ein erstes Batteriesegment und wenigstens ein zweites Batteriesegment auf, wobei die Batteriesegmente beispielsweise in Reihe zueinander geschaltet oder zu schalten sind. Mittels des ersten Batteriesegments kann beispielsweise eine erste Hochvolt-Gleichspannung bereitgestellt werden, wobei beispielsweise mittels des zweiten Batteriesegments eine zweite Hochvolt- Gleichspannung bereitgestellt werden kann.
In dem ersten Schaltzustand ist das erste Batteriesegment der Hochvolt-Batterie über den Drei-Stufen-Stromrichter mit dem Ladeanschluss elektrisch verbunden beziehungsweise gekoppelt, während das zweite Batteriesegment mittels des Stromrichters von dem Ladeanschluss entkoppelt ist. Dadurch ist das erste Batteriesegment über den Drei- Stufen-Stromrichter mit von dem Ladeanschluss bereitgestellter elektrischer Energie ladbar.
In dem zweiten Schaltzustand ist das zweite Batteriesegment der Hochvolt-Batterie über den Drei-Stufen-Stromrichter mit dem Ladeanschluss elektrisch verbunden
beziehungsweise gekoppelt, während das erste Batteriesegment der Hochvolt-Batterie mittels des Stromrichters von dem Ladeanschluss entkoppelt ist. Dadurch kann das zweite Batteriesegment über den Drei-Stufen-Stromrichter mit von dem Ladeanschluss bereitgestellter elektrischer Energie geladen werden. In dem dritten Schaltzustand schließlich sind sowohl das erste Batteriesegment als auch das zweite Batteriesegment der Hochvolt-Batterie über den Drei-Stufen-Stromrichter mit dem Ladeanschluss elektrisch verbunden, sodass sowohl das erste Batteriesegment als auch das zweite Batteriesegment über den Drei-Stufen-Stromrichter mit von dem Ladeanschluss bereitgestellter elektrischer Energie geladen werden können.
Der Ladeanschluss kann beispielsweise mit einer bezüglich des Kraftfahrzeugs externen Energiequelle wie beispielsweise mit einer sogenannten Ladesäule, insbesondere mit einer auch als DC-Ladesäule bezeichneten Gleichspannungs-Ladesäule, elektrisch verbunden werden. Hierdurch kann eine von der Energiequelle bereitgestellte und beispielsweise als Hochspannung ausgebildete elektrische Spannung, insbesondere elektrische Gleichspannung und vorzugsweise eine elektrisch Hochvolt-Gleichspannung,
von der externen Energiequelle an den Ladeanschluss übertragen und in der Folge von dem Ladeanschluss bereitgestellt werden. Mit anderen Worten kann die Energiequelle elektrische Energie bereitstellen, welche auf den Ladeanschluss übertragen und somit von dem Ladeanschluss bereitgestellt werden kann. Dadurch kann die Hochvolt-Batterie über den Ladeanschluss mit der von der externen Energiequelle bereitgestellten elektrischen Energie geladen werden. Der erfindungsgemäß vorgesehene Drei-Stufen- Stromrichter ermöglicht es dabei, insbesondere in Abhängigkeit von der von der
Energiequelle bereitgestellten elektrischen Spannung, wahlweise das erste
Batteriesegment, das zweite Batteriesegment oder sowohl das erste Batteriesegment als auch das zweite Batteriesegment mit dem Ladeanschluss elektrisch zu verbinden und somit mit der von der Energiequelle bereitgestellten elektrischen Energie zu laden.
Beispielsweise dann, wenn die von der Energiequelle bereitgestellte elektrische Energie eine elektrische Spannung aufweist, die der Hochvolt-Gleichspannung der Hochvolt- Batterie entspricht, wird der dritte Schaltzustand eingestellt. Dadurch sind das erste Batteriesegment und das zweite Batteriesegment, insbesondere die gesamte Hochvolt- Batterie, mit dem Ladeanschluss elektrisch verbunden, sodass das erste Batteriesegment und das zweite Batteriesegment, insbesondere die gesamte Hochvolt-Batterie, gleichzeitig mit der von dem Ladeanschluss beziehungsweise über den Ladeanschluss von der Energiequelle bereitgestellten elektrischen Energie geladen werden können.
Beispielsweise dann, wenn die von der Energiequelle bereitgestellte elektrische Energie eine elektrische Spannung aufweist, die zwar eine elektrische Hochspannung, jedoch geringer als die Hochvolt-Gleichspannung der Hochvolt-Batterie, ist, wird der erste Schaltzustand oder der zweite Schaltzustand eingestellt. Dadurch kann das erste
Batteriesegment beziehungsweise das zweite Batteriesegment über den Drei-Stufen- Stromrichter mit der über den Ladeanschluss von der Energiequelle bereitgestellten elektrischen Energie geladen werden. Dabei ist es vorzugsweise während eines
Ladevorgangs, während welchem die Batteriesegmente beziehungsweise die Hochvolt- Batterie mit der über den Ladeanschluss von der Energiequelle bereitgestellten elektrischen Energie geladen werden, vorgesehen, dass beispielsweise zunächst während eines ersten Teils des Ladevorgangs der erste Schaltzustand eingestellt wird. Während eines sich beispielsweise zeitlich an den ersten Teil des Ladevorgangs anschließenden zweiten Ladevorgangs wird beispielsweise der zweite Schaltzustand eingestellt. Insbesondere kann vorgesehen sein, dass sich der erste Schaltzustand und der zweite Schaltzustand während des Ladevorgangs mehrmals abwechseln. Während des jeweiligen ersten Teils wird das erste Batteriesegment über den Drei-Stufen-
Stromrichter geladen, und während des jeweiligen zweiten Teils wird über den Drei- Stufen-Stromrichter das zweite Batteriesegment geladen. Dadurch werden während des Ladevorgangs die Batteriesegmente sequentiell und dabei beispielsweise mehrmals abwechselnd geladen, sodass während des Ladevorgangs die Hochvolt-Batterie insgesamt geladen wird. Während beispielsweise das erste Batteriesegment geladen wird, unterbleibt ein Laden des zweiten Batteriesegments, und während beispielsweise das zweite Batteriesegment geladen wird, unterbleibt ein Laden des ersten
Batteriesegments. Dadurch ist es möglich, die Hochvolt-Batterie insgesamt vorteilhaft laden zu können, obwohl die elektrische Spannung der von der Energiequelle
bereitgestellten elektrischen Energie geringer als die Hochvolt-Gleichspannung der Hochvolt-Batterie ist.
Im Rahmen der Erfindung ist unter der Hochvolt-Gleichspannung, unter der Hochvolt- Wechselspannung sowie unter der zuvor genannten Hochspannung und unter einer Hochspannung im Allgemeinen eine elektrische Spannung zu verstehen, welche größer als 50 Volt, insbesondere größer als 60 Volt, ist. Vorzugsweise beträgt die
Hochspannung, die Hochvolt-Gleichspannung beziehungsweise die Hochvolt- Wechselspannung mehrere hundert Volt. Die Hochvolt-Gleichspannungen der
Batteriesegmente ergeben beispielsweise in Summe die Hochvolt-Gleichspannung der Hochvolt-Batterie insgesamt. Vorzugsweise beträgt beispielsweise die jeweilige Hochvolt- Gleichspannung des jeweiligen Batteriesegments 400 Volt, wobei es vorzugsweise vorgesehen ist, dass die Hochvolt-Gleichspannung der Batteriesegmente gleich ist. Somit beträgt vorzugsweise die Hochvolt-Gleichspannung der Hochvolt-Batterie 800 Volt.
Der erfindungsgemäß zum Einsatz kommende Drei-Stufen-Stromrichter ermöglicht es dabei, die Hochvolt-Batterie sowohl mittels einer solchen Ladeinfrastruktur zu laden, welche elektrische Energie mit 800 Volt Gleichspannung bereitstellen kann, als auch mittels einer solchen Ladeinfrastruktur, welche eine elektrische Energie mit 400 Volt Gleichspannung bereitstellen kann.
Des Weiteren kommt dem Drei-Stufen-Wechselrichter eine Doppelfunktion zu. Eine erste Funktion des Drei-Stufen-Stromrichters umfasst, dass die Hochvolt-Batterie über den Drei-Stufen-Stromrichter auf die beschriebene Weise geladen werden kann. Dabei können beispielsweise die Batteriesegmente über einen zwischen diesen vorgesehenen Zwischenspannungsabgriff jeweils einzeln beziehungsweise separat voneinander geladen werden, insbesondere in dem ersten Schaltzustand und in dem zweiten Schaltzustand. In dem dritten Schaltzustand können die Batteriesegmente gleichzeitig beziehungsweise
gemeinsam geladen werden. Eine zweite Funktion des Drei-Stufen-Stromrichters umfasst, dass die beispielsweise in einem Motorbetrieb und somit als Elektromotor zum
elektrischen Antreiben des Kraftfahrzeugs betreibbare elektrische Maschine über den Drei-Stufen-Stromrichter mit Hochvolt-Wechselspannung versorgt und mittels der
Hochvolt-Wechselspannung betrieben werden kann. Hierzu wandelt der Drei-Stufen- Stromrichter, beispielsweise in einem vierten Schaltzustand, die von der Hochvolt-Batterie bereitgestellte Hochvolt-Gleichspannung der Hochvolt-Batterie in die zuvor genannte Hochvolt-Wechselspannung um, welche von dem Drei-Stufen-Stromrichter, insbesondere in dem vierten Schaltzustand, bereitgestellt wird. Somit arbeitet beispielsweise der Drei- Stufen-Stromrichter in dem vierten Schaltzustand als ein Drei-Stufen-Inverter
beziehungsweise als ein Drei-Stufen-Wechselrichter. Dabei ist beziehungsweise wird die elektrische Maschine, insbesondere im vierten Schaltzustand, mit der von dem Drei- Stufen-Stromrichter bereitgestellten Hochvolt-Wechselspannung versorgbar
beziehungsweise versorgt, wodurch die elektrische Maschine, insbesondere als
Elektromotor, betreibbar ist beziehungsweise betrieben wird. Durch diese Doppelfunktion des Drei-Stufen-Stromrichters können die Teileanzahl und das Gewicht und die Kosten der Schaltungsanordnung und somit des Kraftfahrzeugs insgesamt besonders gering gehalten werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und
Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in:
Fig. 1 eine schematische Darstellung einer erfindungsgemäßen
Schaltungsanordnung für ein beispielsweise als Hybrid- oder Elektrofahrzeug ausgebildetes Kraftfahrzeug;
Fig. 2 eine schematische Darstellung der Schaltungsanordnung in einem ersten
Schaltzustand;
Fig. 3 eine schematische Darstellung der Schaltungsanordnung in einem zweiten
Schaltzustand; und
Fig. 4 eine schematische Darstellung der Schaltungsanordnung in einem dritten
Schaltzustand.
In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt in einer schematischen Darstellung eine Schaltungsanordnung 10 für ein Kraftfahrzeug. Dies bedeutet, dass das Kraftfahrzeug in seinem vollständig hergestellten Zustand die Schaltungsanordnung 10 aufweist. Das Kraftfahrzeug ist dabei beispielsweise als Hybrid- oder vorzugsweise als Elektrofahrzeug, insbesondere als batterieelektrisches Fahrzeug, ausgebildet. Die Schaltungsanordnung 10 weist dabei eine in Fig. 1 besonders schematisch dargestellte und einfach auch als Batterie bezeichnete Flochvolt-Batterie 12 zum Speichern von elektrischer Energie beziehungsweise elektrischem Strom auf.
Außerdem umfasst die Schaltungsanordnung wenigstens eine elektrische Maschine 14, welche, insbesondere genau, drei Phasen u, v und w, aufweist die elektrische Maschine 14 ist dabei beispielsweise in einem Motorbetrieb und somit als Elektromotor betreibbar. Um die elektrische Maschine 14 in dem Motorbetrieb zu betreiben, wird die elektrische Maschine 14 über die Phasen u, v und w mit einer elektrischen Wechselspannung, insbesondere mit einer elektrischen Hochvolt-Wechselspannung, versorgt, insbesondere über den Phasen u, v und w zugeordnete Phasenleitungen beziehungsweise
Phasenanschlüsse.
Die Schaltungsanordnung 10 umfasst darüber hinaus einen Stromrichter 16, mittels welchem von der Hochvolt-Batterie 12 bereitstellbare beziehungsweise bereitgestellte Hochvolt-Gleichspannung in Hochvolt-Wechselspannung zum Betreiben der elektrischen Maschine 14 umwandelbar ist. Mit anderen Worten, die Hochvolt-Batterie 12 weist eine Hochvolt-Gleichspannung auf, welche beispielsweise 800 Volt beträgt. Dies bedeutet, dass die Hochvolt-Batterie 12 die Hochvolt-Gleichspannung bereitstellen kann. In zumindest einem Schaltzustand des Stromrichters 16 wandelt der Stromrichter 16 die von der Hochvolt-Batterie 12 bereitgestellte Hochvolt-Gleichspannung in Hochvolt- Wechselspannung um, welche von dem Stromrichter 16 bereitgestellt wird. Die von dem Stromrichter 16 bereitgestellte Hochvolt-Wechselspannung kann der elektrischen
Maschine 14, insbesondere über die Phasenleitungen, zugeführt werden, sodass die elektrische Maschine 14, insbesondere die Phasenleitungen, mit der von dem
Stromrichter 16 bereitgestellten Hochvolt-Wechselspannung versorgbar ist
beziehungsweise versorgt wird. In der Folge wird die elektrische Maschine 14 mittels der von dem Stromrichter 16 bereitgestellten Hochvolt-Wechselspannung als ein
Elektromotor und somit in dem Motorbetrieb betrieben. Dadurch kann das Kraftfahrzeug mittels des Elektromotors elektrisch angetrieben werden.
Die Schaltungsanordnung 10 weist einen Ladeanschluss 20 auf. Der Ladeanschluss 20 kann elektrische Energie, insbesondere mit einer Hochvolt-Gleichspannung, bereitstellen, wobei die Hochvolt-Batterie 12 mit der von dem Ladeanschluss 20 bereitgestellten elektrischen Energie geladen werden kann. Dies bedeutet, dass die von dem
Ladeanschluss 20 bereitgestellte elektrische Energie in die Hochvolt-Batterie 12 eingespeist und somit in der Batterie gespeichert werden kann.
In Fig. 1 ist auch besonders schematisch eine bezüglich des Kraftfahrzeugs und somit bezüglich der Schaltungsanordnung 10 externe, zusätzlich dazu vorgesehene
Energiequelle vorliegend in Form einer Ladesäule 22 gezeigt. Die Ladesäule 22 kann elektrische Energie bereitstellen, mit welcher die Hochvolt-Batterie 12 geladen werden kann. Hierzu kann die Ladesäule 22 mit dem Ladeanschluss 20 elektrisch verbunden werden. Dadurch kann die von der Ladesäule 22 bereitgestellte elektrische Energie auf den Ladeanschluss 20 übertragen und von dem Ladeanschluss 20 bereitgestellt werden, sodass die von der Ladesäule 22 bereitgestellte elektrische Energie über den
Ladeanschluss 20 an die Hochvolt-Batterie 12 übertragen werden kann. Hierdurch kann die von der Ladesäule 22 bereitgestellte elektrische Energie in der Batterie gespeichert werden.
Der Ladeanschluss 20 weist eine Leitungsanordnung 18 mit einer ersten Leitung 34 und einer zweiten Leitung 36 auf, welche von der von dem Ladeanschluss 20 bereitstellbaren beziehungsweise bereitgestellten elektrischen Energie durchströmbar sind. Mit anderen Worten kann die elektrische Energie, welche von der Ladesäule 22 bereitgestellt und zum Laden der Batterie genutzt wird, durch die Leitungen 34 und 36 strömen beziehungsweise fließen.
Der Ladeanschluss 20 weist ferner einen mit der Leitung 34 elektrisch verbundenen ersten Kontakt 38 und einen mit der Leitung 36 verbundenen zweiten Kontakt 40 auf, mit welchen die Ladesäule 22 elektrisch verbindbar ist. Somit kann die von der Ladesäule 22 bereitgestellte elektrische Energie auf die Kontakte 38, 40 übertragen und über die Kontakte 38, 40 in die Leitungen 34 und 36 beziehungsweise in den Ladeanschluss 20
eingespeist werden. Die Leitungen 34 und 36 und somit der Ladeanschluss 20 sind dabei mit dem Stromrichter 16 elektrisch verbunden. Dabei ist in der Leitungsanordnung 18 ein optional vorgesehener Schütz 24 angeordnet, welcher zwei Schalter 42 und 44 umfasst. Der Schalter 42 ist in der Leitung 34 angeordnet und der Schalter 44 ist in der Leitung 36 angeordnet. Der jeweilige Schalter 42 beziehungsweise 44 ist zwischen einem jeweiligen geöffneten Zustand und einem jeweiligen geschlossenen Zustand umschaltbar. Befindet sich beispielsweise der Schalter 42 in seinem geöffneten Zustand, so ist die Leitung 34 unterbrochen, sodass der Kontakt 38 von dem Stromrichter 16 entkoppelt
beziehungsweise getrennt, insbesondere galvanisch getrennt, ist. Ist der Schalter 42 geschlossen, so ist die Leitung 34 geschlossen, sodass der Kontakt 38 elektrisch mit dem Stromrichter 16 verbunden ist. Befindet sich der Schalter 44 in seinem geöffneten
Zustand, so ist die Leitung 36 unterbrochen, wodurch der Kontakt 40 von dem
Stromrichter 16 entkoppelt beziehungsweise getrennt, insbesondere galvanisch getrennt, ist. Befindet sich der Schalter 44 jedoch in seinem geschlossenen Zustand, so ist die Leitung 36 geschlossen, wodurch der Kontakt 40 elektrisch mit dem Stromrichter 16 verbunden ist. Durch Verwendung des Schützes 24 kann ein besonders sicherer Betrieb realisiert werden.
Um nun die Batterie besonders vorteilhaft laden zu können ist der Stromrichter als ein Drei-Stufen-Stromrichter ausgebildet, wobei der Stromrichter 16, insbesondere genau, drei Schaltereinheiten 46, 48 und 50 aufweist. Die Schaltereinheit 46 ist dabei der Phase u zugeordnet, wobei die Schaltereinheit 48 der Phase v und die Schaltereinheit 50 der Phase w der elektrischen Maschine 14 zugeordnet ist. Die elektrische Maschine 14 ist so als mehrphasige, insbesondere als dreiphasige, elektrische Maschine ausgebildet. Bei dem in Fig. 1 veranschaulichten Ausführungsbeispiel ist die Schaltereinheit 46 mit der Phase u elektrisch verbunden oder verbindbar, wobei die Schaltereinheit 48 mit der Phase v und die Schaltereinheit 50 mit der Phase w elektrisch verbunden oder verbindbar ist.
Die jeweilige Schaltereinheit 46, 48 beziehungsweise 50 weist, insbesondere genau, zwei in Reihe geschaltete Schaltergruppen 52 und 54 beziehungsweise 56 und 58
beziehungsweise 60 und 62 auf. Die Schaltergruppe 52 weist, insbesondere genau, zwei in Reihe geschaltete IGBTs T1 1 und T12 auf. Des Weiteren weist die Schaltergruppe 54, insbesondere genau, zwei in Reihe geschaltete IGBTs T13 und T14 auf, wobei die Schaltergruppen 52 und 54 in Reihe zueinander geschaltet sind. Die Schaltergruppe 56 weist zwei, insbesondere genau zwei, in Reihe zueinander geschaltete IGBTs T21 und T22 auf, und die Schaltergruppe 58 weist, insbesondere genau, zwei in Reihe zueinander
geschaltete IGBTs T23 und T24 auf. Die Schaltergruppe 60 weist insbesondere genau, zwei in Reihe zueinander geschaltete IGBTs T31 und T32 auf, und die Schaltergruppe 62 weist, insbesondere genau zwei in Reihe zueinander geschaltete IGBTs T33 und T34 auf.
Zwischen den IGBTs T 1 1 und T12 der Schaltergruppe 52 ist ein auch als erster Abgriff bezeichneter erster Anschluss 64 angeordnet, welcher direkt mit der Leitung 34 des Ladeanschlusses 20 elektrisch verbunden ist. Dabei ist zwischen den IGBTs T23 und T24 der Schaltergruppe 58 ein auch als zweiter Abgriff bezeichneter zweiter Anschluss 66 angeordnet, welcher direkt mit der Leitung 36 des Ladeanschlusses 20 elektrisch verbunden ist. Im Vergleich zu herkömmlichen Drei-Stufen-Stromrichtern sind die
Anschlüsse 64 und 66 zusätzlich vorgesehene Anschlüsse, wobei diese zusätzlichen Anschlüsse 64 und 66 direkt mit dem Ladeanschluss 20 verbunden sind. Zusätzliche Trennelemente sind nicht erforderlich und nicht vorgesehen.
Die Hochvolt-Batterie 12 weist dabei wenigstens zwei Batteriesegmente 28 und 30 auf, welche beispielsweise in Reihe beziehungsweise Serie zueinander geschaltet sind. Um nun die Batterie besonders vorteilhaft laden zu können, ist der Stromrichter 16 als ein Drei-Stufen-Stromrichter ausgebildet. Der Drei-Stufen-Stromrichter wird auch als Drei- Level- Inverter bezeichnet, welcher beispielsweise in das Kraftfahrzeug integriert ist. Der Stromrichter 16 umfasst dabei einzelne IGBTs T1 1 , T12, T13, T14, T21 , T22, T23, T24, T31 , T32, T33 und T34 (IGBT - Bipolartransistor mit isolierter Gate- Elektrode - insulated- gate bipolar transistor). Wie im Folgenden noch erläutert wird, ermöglicht es die
Verwendung des Drei-Stufen-Stromrichters, die Batterie, insbesondere über den
Zwischenkreis 26, sowohl mittels solcher Ladesäulen zu laden, welche eine elektrische Energie mit einer Hochvolt-Gleichspannung von 800 Volt bereitstellen, als auch mittels solcher Ladesäulen, die eine elektrische Energie mit einer Hochvolt-Gleichspannung von 400 Volt bereitstellen. Mit anderen Worten ermöglicht es der Drei-Stufen-Stromrichter, eine Zwischenkreisspannung von 800 Volt mit 400-Volt-Ladesäulen und mit 800-Volt- Ladesäulen zu laden.
Üblicherweise kommen bislang bei Kraftfahrzeugen, insbesondere bei vollelektrischen Kraftfahrzeugen, Antriebssysteme mit einer Zwischenkreisspannung von 400 Volt insbesondere in Verbindung mit einem Zwei-Stufen-Stromrichter zum Einsatz. Eine Zwischenkreisspannung von 800 Volt, das heißt eine 800 Volt betragende Hochvolt- Gleichspannung der Hochvolt-Batterie 12, ist jedoch von besonderem Vorteil, da dadurch besonders große elektrische Leistungen zum elektrischen Antreiben realisiert werden können.
Um jedoch derartige Batterien mit 800 Volt Spannung, insbesondere
Zwischenkreisspannung, mit einer vorhandenen Ladeinfrastruktur laden zu können, welche maximal 400 Volt Gleichspannung bereitstellen kann, ist ein zusätzlicher
Spannungswandler in das Kraftfahrzeug zu integrieren oder aber es sind neue
Ladesäulen erforderlich, welche 800 Volt Gleichspannung bereitstellen. Dies führt zu hohen Kostenaufwänden. Die Schaltungsanordnung 10 ermöglicht es nun, die Hochvolt- Batterie 12, deren Hochvolt-Gleichspannung beispielsweise 800 Volt beträgt, sowohl mittels Ladeinfrastrukturen zu laden, welche 800 Volt Gleichspannung bereitstellen können, als auch mittels Ladeinfrastrukturen, welche maximal 400 Volt Gleichspannung bereitstellen können.
Hierzu wird anstelle eines Zwei-Stufen-Stromrichter der als Drei-Stufen-Stromrichter ausgebildete Stromrichter 16 verwendet. Der Stromrichter 16 weist einen in Fig. 2 gezeigten ersten Schaltzustand auf beziehungsweise ist in dem in Fig. 2 gezeigten ersten Schaltzustand betreibbar. Bei dem in Fig. 2 veranschaulichten Ausführungsbeispiel stellt die Ladesäule 22 beispielsweise elektrische Energie mit einer Hochvolt-Gleichspannung U1 bereit, welche 400 Volt beträgt. Dabei ist in dem ersten Schaltzustand das
Batteriesegment 28 über den Stromrichter 16 mit dem Ladeanschluss 20 elektrisch verbunden, während das Batteriesegment 30 von dem Ladeanschluss 20, insbesondere mittels des Stromrichters 16, entkoppelt ist. Dadurch wird das Batteriesegment 28 mit der von der Ladesäule 22 bereitgestellten elektrischen Energie geladen, während ein Laden des Batteriesegments 30 unterbleibt.
Der Stromrichter 16 weist darüber hinaus einen in Fig. 3 gezeigten zweiten Schaltzustand auf. Bei dem in Fig. 3 gezeigten Ausführungsbeispiel stellt die Ladesäule 22 ebenfalls die elektrische Energie mit der Hochvolt-Gleichspannung U1 bereit, welche 400 Volt beträgt. In dem zweiten Schaltzustand jedoch ist das Batteriesegment 30 über den Stromrichter 16 mit dem Ladeanschluss 20 elektrisch verbunden, während das Batteriesegment 28, insbesondere mittels des Stromrichters 16, von dem Ladeanschluss 20 getrennt, insbesondere galvanisch getrennt, beziehungsweise entkoppelt ist. Dadurch wird das Batteriesegment 30 mit der von der Ladesäule 22 bereitgestellten elektrischen Energie geladen.
Fig. 4 zeigt ein Ausführungsbeispiel, bei welchem die Ladesäule 22 elektrische Energie mit einer Hochvolt-Gleichspannung U2 bereitstellt. Dabei beträgt die Hochvolt- Gleichspannung U2 800 Volt. Somit entspricht die Hochvolt-Gleichspannung U2 der
Hochvolt-Gleichspannung der Batterie. In dem dritten Schaltzustand sind sowohl das Batteriesegment 28 als auch das Batteriesegment 30 über den Stromrichter 16 mit dem Ladeanschluss 20 verbunden, sodass die Batteriesegmente 28 und 30 über den
Stromrichter 16 gleichzeitig mit der von der Ladesäule 22 bereitgestellten elektrischen Energie geladen werden. Außerdem ist in dem ersten Schaltzustand, in dem zweiten Schaltzustand und in dem dritten Schaltzustand das Schütz 24 geschlossen, sodass der Ladeanschluss 20 elektrisch mit dem Stromrichter 16 verbunden ist.
Der Ladeanschluss 20 ist beispielsweise eine Lade-Anschlussdose, an die sowohl Ladesäulen mit 400 Volt als auch Ladesäulen mit 800 Volt angeschlossen werden können. Die Batteriesegmente 28 und 30 werden auch als Blöcke bezeichnet, in welche die Batterie unterteilt ist. Der jeweilige Block weist eine jeweilige Hochvolt- Gleichspannung auf, welche beispielsweise 400 Volt beträgt. Somit ergeben die Hochvolt- Gleichspannungen der Blöcke in Summe die Hochvolt-Gleichspannung der Batterie insgesamt. Außerdem sind die Hochvolt-Gleichspannungen der Blöcke zumindest im Wesentlichen gleich. Um die Batterie in die Blöcke zu unterteilen beziehungsweise um die Blöcke unabhängig beziehungsweise separat voneinander laden zu können, ist ein auch als Zwischenspannungsabgriff bezeichneter Mittelabgriff 32 vorgesehen. Der Mittelabgriff 32 ist beispielsweise mit einem sogenannten Neutralpunkt des Drei-Stufen-Stromrichters elektrisch verbunden.
Die von der Ladesäule 22 bereitstellbare elektrische Energie beziehungsweise deren elektrische Spannung wird auch als Ladespannung bezeichnet.
Um beispielsweise das Batteriesegment 28 mittels der Ladesäule 22 gemäß Fig. 2 zu laden, werden die IGBTs T22 und T23 geschaltet, um beispielsweise den Ladeanschluss 20 und über diesen die Ladesäule 22 mit dem Batteriesegment 28 elektrisch zu verbinden. Dadurch kann das Batteriesegment 28 mit beziehungsweise auf 400 Volt geladen, insbesondere aufgeladen, werden.
Um beispielsweise wie gemäß Fig. 3 das Batteriesegment 30 mittels der Ladesäule 22 zu laden, werden die IGBTs T12 und T13 geschaltet und somit leitend. Gemäß Fig. 4 kann die Batterie direkt über die Dioden mit der Ladesäule 22 geladen werden, deren bereitgestellte Energie gemäß Fig. 4 800 Volt beträgt.
Durch den Einsatz der zusätzlichen Anschlüsse 64 und 66 können die Leitungen 34 und 36 direkt mit dem Stromrichter 16 verbunden werden, sodass die Leitungen 34 und 36 die
Phasenleitung der Phasen u, v und w umgehen können. Mit anderen Worten müssen die Leitungen 34 und 36 nicht an die Phasenleitung der Phasen u, v und w angeschlossen werden, sondern die Leitungen 34 und 36 sind unter Umgehung der Phasenleitungen der Phasen u, v und w direkt mit dem Stromrichter 16 und dabei mit den Anschlüssen 64 und 66 elektrisch verbunden.
Claims
1 . Schaltungsanordnung (10) für ein Kraftfahrzeug, mit einer Hochvolt-Batterie (12) zum Speichern von elektrischer Energie, mit wenigstens einer elektrischen
Maschine (14) zum Antreiben des Kraftfahrzeugs, mit einem Stromrichter (16), mittels welchem von der Hochvolt-Batterie (12) bereitstellbare Hochvolt- Gleichspannung in Hochvolt-Wechselspannung zum Betreiben der elektrischen Maschine (14) umwandelbar ist,
und mit einem Ladeanschluss (20) zum Bereitstellen von elektrischer Energie zum Laden der Hochvolt-Batterie (12) der eine ersten Leitung (34) und eine zweite Leitung (36) aufweist,
wobei die Hochvolt-Batterie (12) ein erstes Batteriesegment (28) und ein zweites Batteriesegment (30) aufweist, die über einen Mittelabgriff (32) der Hochvolt-Batterie (12) miteinander verschaltet sind,
und wobei der Stromrichter (16) als ein Drei-Stufen-Stromrichter ausgebildet ist
- mit einer ersten Schaltereinheit (46) die einer ersten Phase (u) der elektrischen Maschine (14) zugeordnet ist,
- mit einer zweiten Schaltereinheit (48) die einer zweiten Phase (v) der elektrischen Maschine (14) zugeordnet ist, und
- mit einer dritten Schaltereinheit (50) die einer dritten Phase (w) der elektrischen Maschine (14) zugeordnet ist,
dadurch gekennzeichnet, dass
der Stromrichter (16) aufweist:
- einen ersten Schaltzustand, in welchem wenigstens das erstes Batteriesegment (28) der Hochvolt-Batterie (12) über den Drei-Stufen-Stromrichter mit dem Ladeanschluss (20) verbunden und wenigstens das zweites Batteriesegment (30) der Hochvolt-Batterie (12) mittels des Stromrichters (16) von dem Ladeanschluss (20) entkoppelt ist, sodass das erste Batteriesegment (28) über den Drei-Stufen- Stromrichter mit von dem Ladeanschluss (20) bereitgestellter elektrischer Energie ladbar ist;
- einen zweiten Schaltzustand, in welchem das zweite Batteriesegment (30) der Hochvolt-Batterie (12) über den Drei-Stufen-Stromrichter mit dem Ladeanschluss (20) verbunden und das erste Batteriesegment (30) der Hochvolt-Batterie (12) mittels des Stromrichters (16) von dem Ladeanschluss (20) entkoppelt ist, sodass das zweite Batteriesegment (20) über den Drei-Stufen-Stromrichter mit von dem Ladeanschluss (20) bereitgestellter elektrischer Energie ladbar ist; und
- einen dritten Schaltzustand, in welchem sowohl das erste Batteriesegment (28) als auch das zweite Batteriesegment (30) der Hochvolt-Batterie (12) über den Drei-Stufen-Stromrichter mit dem Ladeanschluss (20) verbunden, sodass das erste Batteriesegment (28) und das zweite Batteriesegment (30) über den Drei- Stufen-Stromrichter mit von dem Ladeanschluss (20) bereitgestellter elektrischer Energie ladbar sind.
2. Schaltungsanordnung (10) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
im ersten Schaltzustand des Stromrichters (16) das erste Batteriesegment (28) mit von dem Ladeanschluss (20) bereitgestellter elektrischer Energie der Spannung (U1 ) des Ladeanschluss (20) ladbar ist,
und zwar ausgehend vom Ladeanschluss (20) über die erste Leitung (34) des Ladeanschlusses (20), die erste Schaltereinheit (46) des Stromrichters (16), das erste Batteriesegment (28) der Hochvolt-Batterie (12), den Mittelabgriff (32) der Hochvolt-Batterie (12), über die zweite Schaltereinheit (48) des Stromrichters (16) und über die zweite Leitung (36) des Ladeanschluss (20).
3. Schaltungsanordnung (10) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
im zweiten Schaltzustand des Stromrichters (16) das zweite Batteriesegment (30) mit von dem Ladeanschluss (20) bereitgestellter elektrischer Energie der Spannung (U1 ) des Ladeanschluss (20) ladbar ist,
und zwar ausgehend vom Ladeanschluss (20) über die erste Leitung (34) des Ladeanschlusses (20), die erste Schaltereinheit (46) des Stromrichters (16), den Mittelabgriff (32) der Hochvolt-Batterie (12), das zweite Batteriesegment (30) der Hochvolt-Batterie (12), über die zweite Schaltereinheit (48) des Stromrichters (16) und über die zweite Leitung (36) des Ladeanschluss (20).
4. Schaltungsanordnung (10) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
im dritten Schaltzustand des Stromrichters (16) das erste Batteriesegment (28) mit dem zweite Batteriesegment (30) in Reihe geschaltet ist, so dass die
Reihenschaltung des erste Batteriesegment (28) mit dem zweite Batteriesegment (30) über den Stromrichter (16) mit von dem Ladeanschluss (20) bereitgestellter elektrischer Energie der Spannung (U2) ladbar ist
und zwar ausgehend vom Ladeanschluss (20) über die erste Leitung (34) des Ladeanschlusses (20), die erste Schaltereinheit (46) des Stromrichters (16), das erste Batteriesegment (28) der Hochvolt-Batterie (12), den Mittelabgriff (32) der Hochvolt-Batterie (12), das zweite Batteriesegment (30) der Hochvolt-Batterie (12), über die zweite Schaltereinheit (48) des Stromrichters (16) und über die zweite Leitung (36) des Ladeanschluss (20).
5. Schaltungsanordnung (10) nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
kein Schaltzustand des Stromrichters (16) existiert, bei dem die dritte
Schaltereinheit (50) des Stromrichters (16) direkt mit der ersten Leitung (34) des Ladeanschlusses (20) und/oder der zweiten Leitung (36) des Ladeanschlusses (20) elektrisch verbunden ist.
6. Schaltungsanordnung (10) nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
in der ersten Schaltereinheit (46), welche zwei in Reihe geschaltete
Schaltergruppen (52, 54) umfasst, die jeweils zwei in Reihe geschaltete IGBTs (T1 1 , T12, T13, T14) aufweisen, zwischen den IGBTs (T1 1 , T12) einer der
Schaltergruppen (52, 54) ein Anschluss (64) angeordnet ist, welcher direkt mit der ersten Leitung (34) des Ladeanschlusses (20) elektrisch verbunden ist.
7. Schaltungsanordnung (10) nach Anspruch 6,
dadurch gekennzeichnet, dass
in der Leitung (34) wenigstens ein Schütz (24) des Ladeanschlusses (20) angeordnet ist.
8. Schaltungsanordnung (10) nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
in der zweiten Schaltereinheit (48), welche zwei in Reihe geschaltete zweite Schaltergruppen (56, 58) umfasst, die jeweils zwei in Reihe geschaltete zweite IGBTs (T21 , T22, T23, T24) aufweisen, zwischen den zweiten IGBTs (T23, T24) einer der zweiten Schaltergruppen (56, 58) ein zweiter Anschluss (66) angeordnet ist, welcher direkt mit der zweiten Leitung (36) des Ladeanschlusses (20) elektrisch verbunden ist.
9. Schaltungsanordnung (10) nach Anspruch 8,
dadurch gekennzeichnet, dass
in der zweiten Leitung (36) wenigstens ein Schütz (24) des Ladeanschlusses (20) angeordnet ist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980082912.9A CN113195297B (zh) | 2018-12-14 | 2019-12-10 | 用于机动车尤其是混合动力车或电动车的电路装置 |
US17/312,128 US11724610B2 (en) | 2018-12-14 | 2019-12-10 | Circuit arrangement for a motor vehicle, in particular for a hybrid or electric vehicle |
EP19828226.1A EP3894266A1 (de) | 2018-12-14 | 2019-12-10 | Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018009848.7 | 2018-12-14 | ||
DE102018009848.7A DE102018009848A1 (de) | 2018-12-14 | 2018-12-14 | Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020120446A1 true WO2020120446A1 (de) | 2020-06-18 |
Family
ID=66768319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/084368 WO2020120446A1 (de) | 2018-12-14 | 2019-12-10 | Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug |
Country Status (5)
Country | Link |
---|---|
US (1) | US11724610B2 (de) |
EP (1) | EP3894266A1 (de) |
CN (1) | CN113195297B (de) |
DE (1) | DE102018009848A1 (de) |
WO (1) | WO2020120446A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022156171A1 (zh) * | 2021-01-25 | 2022-07-28 | 蔚来汽车科技(安徽)有限公司 | 用于电动汽车的电压转换装置方法及电驱动系统 |
GB2614718B (en) * | 2022-01-13 | 2024-10-02 | Mcmurtry Automotive Ltd | Battery system for an electric vehicle |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114728593A (zh) | 2019-11-27 | 2022-07-08 | Abb瑞士股份有限公司 | 用于agv的车载动力总成 |
US11091041B1 (en) | 2020-07-14 | 2021-08-17 | Bayerische Motoren Werke Aktiengesellschaft | Electric system for a motor vehicle comprising a switching matrix, and motor vehicle |
DE102021003852A1 (de) | 2021-07-27 | 2021-09-23 | Daimler Ag | Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zum Betreiben eines entsprechenden elektrischen Antriebssystems |
DE102021003851A1 (de) | 2021-07-27 | 2021-09-23 | Daimler Ag | Elektrisches Antriebssystem für ein Fahrzeugs, sowie Verfahren zum Betreiben eines entsprechenden elektrischen Antriebssystems |
DE102021003882A1 (de) | 2021-07-27 | 2021-09-09 | Daimler Ag | Elektrisches Antriebssystem für ein Fahrzeug, sowie Verfahren zum Betreiben eines elektrischen Antriebssystems |
DE102021003883A1 (de) | 2021-07-27 | 2023-02-02 | Mercedes-Benz Group AG | Elektrisches Antriebssystem für ein Fahrzeug, Fahrzeug mit einem entsprechenden elektrischen Antriebssystem sowie Verfahren zum Betreiben eines entsprechenden elektrischen Antriebssystems |
CN114619909B (zh) * | 2022-04-22 | 2023-06-02 | 广东汇天航空航天科技有限公司 | 充电控制方法、装置、充电系统及电动飞行器的充电设备 |
DE102022002607B8 (de) | 2022-07-18 | 2023-10-19 | Mercedes-Benz Group AG | Fahrzeug mit einer elektrischen Schaltungsanordnung und zwei elektrischen Antriebseinheiten und Verfahren zu dessen Betrieb |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2514627A1 (de) * | 2011-04-20 | 2012-10-24 | Siemens Aktiengesellschaft | Wechselrichteranordnung zum Laden der Batterie in einem Elektrofahrzeug und zum Rückspeisen in das öffentliche Netz |
DE102015008175A1 (de) | 2015-06-25 | 2016-01-21 | Daimler Ag | Schaltungsanordnung zum Laden einer Hochvolt-Batterie in einem Kraftfahrzeug und Ladesystem |
DE102014220834A1 (de) * | 2014-10-15 | 2016-04-21 | Robert Bosch Gmbh | Elektrisches Antriebssystem und Verfahren zum Betreiben einer elektrischen Maschine |
DE102015225574A1 (de) * | 2015-12-17 | 2017-06-22 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Laden einer Batterie |
DE102016015311A1 (de) * | 2016-12-22 | 2017-07-20 | Daimler Ag | Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zu dessen Betrieb |
DE102016218304B3 (de) | 2016-09-23 | 2018-02-01 | Volkswagen Aktiengesellschaft | Vorrichtung zur Spannungswandlung, Traktionsnetz und Verfahren zum Laden einer Batterie |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2791124C (en) * | 2010-02-23 | 2016-03-29 | Abb Research Ltd. | An electric plant with capacity to charge electric batteries |
DE102012202764A1 (de) * | 2012-02-23 | 2013-08-29 | Siemens Aktiengesellschaft | Ladevorrichtung eines elektrisch betriebenen Fahrzeugs |
DE102012013890A1 (de) * | 2012-07-13 | 2014-01-16 | Audi Ag | Ladeeinrichtung für eine Hochspannungsbatterie eines Kraftfahrzeugs und Kraftfahrzeug |
DE102015203008A1 (de) * | 2015-02-19 | 2016-08-25 | Robert Bosch Gmbh | Schaltungsanordnung zum Betreiben einer elektrischen Maschine |
US9616879B2 (en) * | 2015-05-14 | 2017-04-11 | Ford Global Technologies, Llc | Battery state of charge control with preview information classification |
DE102016216324A1 (de) * | 2016-08-30 | 2018-03-01 | Robert Bosch Gmbh | Antriebssystem, insbesondere für ein Fahrzeug, und Verfahren zum Aufheizen eines Antriebssystems |
US11124137B2 (en) * | 2016-08-30 | 2021-09-21 | Illinois Tool Works Inc. | Methods and apparatus to power a crane on a work truck using an engine-powered service pack |
EP3729599B1 (de) * | 2017-12-22 | 2022-05-11 | Heliox B.V. | Ladesystem und verfahren zum laden eines elektrischen energiespeichers |
DE102018204126A1 (de) * | 2018-03-19 | 2019-09-19 | Siemens Aktiengesellschaft | Ladesysteme zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen sowie dazugehörige Verfahren |
-
2018
- 2018-12-14 DE DE102018009848.7A patent/DE102018009848A1/de active Pending
-
2019
- 2019-12-10 CN CN201980082912.9A patent/CN113195297B/zh active Active
- 2019-12-10 US US17/312,128 patent/US11724610B2/en active Active
- 2019-12-10 WO PCT/EP2019/084368 patent/WO2020120446A1/de unknown
- 2019-12-10 EP EP19828226.1A patent/EP3894266A1/de active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2514627A1 (de) * | 2011-04-20 | 2012-10-24 | Siemens Aktiengesellschaft | Wechselrichteranordnung zum Laden der Batterie in einem Elektrofahrzeug und zum Rückspeisen in das öffentliche Netz |
DE102014220834A1 (de) * | 2014-10-15 | 2016-04-21 | Robert Bosch Gmbh | Elektrisches Antriebssystem und Verfahren zum Betreiben einer elektrischen Maschine |
DE102015008175A1 (de) | 2015-06-25 | 2016-01-21 | Daimler Ag | Schaltungsanordnung zum Laden einer Hochvolt-Batterie in einem Kraftfahrzeug und Ladesystem |
DE102015225574A1 (de) * | 2015-12-17 | 2017-06-22 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Laden einer Batterie |
DE102016218304B3 (de) | 2016-09-23 | 2018-02-01 | Volkswagen Aktiengesellschaft | Vorrichtung zur Spannungswandlung, Traktionsnetz und Verfahren zum Laden einer Batterie |
DE102016015311A1 (de) * | 2016-12-22 | 2017-07-20 | Daimler Ag | Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zu dessen Betrieb |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022156171A1 (zh) * | 2021-01-25 | 2022-07-28 | 蔚来汽车科技(安徽)有限公司 | 用于电动汽车的电压转换装置方法及电驱动系统 |
GB2614718B (en) * | 2022-01-13 | 2024-10-02 | Mcmurtry Automotive Ltd | Battery system for an electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
DE102018009848A1 (de) | 2019-06-27 |
CN113195297B (zh) | 2024-09-24 |
US20220032798A1 (en) | 2022-02-03 |
US11724610B2 (en) | 2023-08-15 |
CN113195297A (zh) | 2021-07-30 |
EP3894266A1 (de) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020120446A1 (de) | Schaltungsanordnung für ein kraftfahrzeug, insbesondere für ein hybrid- oder elektrofahrzeug | |
EP3481675B1 (de) | Batterieanordnung für ein kraftfahrzeug | |
DE102018009840A1 (de) | Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug | |
DE102005016177B4 (de) | Schaltungsanordnung und zugehöriges Ansteuerverfahren für ein Elektro- oder Hybridfahrzeug mit zwei Gleichstromquellen | |
DE102017222192A1 (de) | HV-Batterieanordnung für ein Kraftfahrzeug, Bordnetz, Kraftfahrzeug und Verfahren zum Steuern einer HV-Batterieanordnung | |
DE102019130741A1 (de) | Batterie mit einer Batteriezelle und Verfahren zu deren Betrieb | |
DE102010041040A1 (de) | Energieversorgungsnetz und Verfahren zum Laden mindestens einer als Energiespeicher für einen Gleichspannungszwischenkreis dienenden Energiespeicherzelle in einem Energieversorgungsnetz | |
DE102009052680A1 (de) | Ladevorrichtung zum Laden einer Batterie eines Kraftfahrzeugs mit Tiefsetzsteller | |
WO2019141494A1 (de) | Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug | |
DE102017116107B3 (de) | Topologie für ein Fahrzeug, Verfahren zum Laden eines Fahrzeugs | |
DE102016011238A1 (de) | Schaltungsanordnung für ein Kraftfahrzeug, Kraftfahrzeug sowie Verfahren zum Betreiben einer Schaltungsanordnung für ein Kraftfahrzeug | |
DE102015225574A1 (de) | Verfahren und Vorrichtung zum Laden einer Batterie | |
DE102017212844A1 (de) | Bidirektionaler Inverterlader | |
EP2619873B1 (de) | System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems | |
WO2012038210A2 (de) | Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz | |
WO2023006726A1 (de) | Elektrisches antriebssystem für ein fahrzeug, fahrzeug mit einem entsprechenden elektrischen antriebssystem sowie verfahren zum betreiben eines entsprechenden elektrischen antriebssystems | |
DE102016200682A1 (de) | Elektrisch antreibbares Fortbewegungsmittel, elektrischer Antriebsstrang und Anordnung zum Laden, Invertieren und Rückspeisen | |
DE102021209389B3 (de) | Bordnetz für ein Kraftfahrzeug sowie Kraftfahrzeug | |
WO2019020460A2 (de) | Inverter-lader-schaltungstopologie mit mindestens zwei parallel geschalteten b6-brücken | |
DE102020204336B4 (de) | Fahrzeugseitige Hochvolt-Ladeschaltung und Fahrzeugbordnetz | |
DE2050787B2 (de) | Brueckenwechselrichter mit gleichstromkommutierung | |
DE102021213459B3 (de) | Schalteinrichtung und Verfahren zum Aufladen eines elektrischen Energiespeichers und Elektrofahrzeug | |
DE102022002607B3 (de) | Fahrzeug mit einer elektrischen Schaltungsanordnung und zwei elektrischen Antriebseinheiten und Verfahren zu dessen Betrieb | |
WO2019001943A1 (de) | Ladevorrichtung zum laden eines energiespeichers eines fahrzeugs, sowie fahrzeug mit einer solchen ladevorrichtung | |
DE102017220098A1 (de) | Stromrichtervorrichtung, elektrisches Antriebssystem und Verfahren zum Betreiben einer elektrischen Maschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19828226 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019828226 Country of ref document: EP Effective date: 20210714 |