WO2020119216A1 - 一种充电方法及装置 - Google Patents

一种充电方法及装置 Download PDF

Info

Publication number
WO2020119216A1
WO2020119216A1 PCT/CN2019/107321 CN2019107321W WO2020119216A1 WO 2020119216 A1 WO2020119216 A1 WO 2020119216A1 CN 2019107321 W CN2019107321 W CN 2019107321W WO 2020119216 A1 WO2020119216 A1 WO 2020119216A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
current
voltage
charge
Prior art date
Application number
PCT/CN2019/107321
Other languages
English (en)
French (fr)
Inventor
路鹏
贺晓虎
吴军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19896022.1A priority Critical patent/EP3890097B1/en
Publication of WO2020119216A1 publication Critical patent/WO2020119216A1/zh
Priority to US17/342,878 priority patent/US20210296921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electronic technology, especially battery technology.
  • a secondary battery is a battery that can continue to be used by activating the electrode active material by charging after discharge.
  • the method of charging the secondary battery is to use a constant current to continuously charge the battery to a certain potential, and then charge the battery at a constant voltage at this potential.
  • the materials, dynamics, ohmic resistance, etc. inside the battery will change.
  • the above charging methods cannot adapt to this change, so that the temperature of the battery will increase faster during the charging process, and the battery will cycle. Low performance and short life.
  • the present application provides a charging method and device, which can effectively solve the problems that the temperature of the battery rises faster during charging, the cycle performance of the battery is lower, and the life is shorter.
  • a charging method is provided, which is applied to a charging device for charging a battery.
  • the charging voltage is greater than the pre-charge termination voltage (the battery is in the normal discharge state and the over-discharge state voltage threshold), and is less than the maximum charge voltage (that is, the positive voltage value used to characterize the battery's positive electrode material, electrolyte or positive electrode current collector)
  • the charging device only uses the constant voltage charging method (the charging voltages used in different time periods are different) to charge the battery, or a combination of constant voltage charging and constant current charging (such as alternating with each other, after constant current charging, execute m (m ⁇ 2) secondary constant voltage charging, etc.) to charge the battery until the battery voltage reaches the maximum charging voltage.
  • the rechargeable battery uses the maximum charging voltage to charge the battery at a constant voltage until the battery's charge reaches full charge (the amount of charge when the battery is fully charged).
  • the charging device uses a current charging voltage that is greater than the pre-charge termination voltage and less than the maximum charging voltage of the battery to charge the battery at a constant voltage; in the process of using the current charging voltage to charge the battery at a constant voltage, the charging device determines to The change reflecting the internal electrochemical reaction rate of the battery is the current relaxation time, and the current state of charge SOC of the battery is obtained, and the current to be charged is calculated according to the current relaxation time and the current SOC of the battery; the current to be charged is calculated After that, the charging device performs step D, or determines the voltage corresponding to the current to be charged as the voltage to be charged and performs step E.
  • Step D is: the charging device uses the current to be charged to charge the battery at a constant current; if during the constant current charging, the battery voltage reaches the first preset threshold (the voltage of the first preset threshold is less than the maximum charging voltage), then The voltage of the first preset threshold is determined as the voltage to be charged, and step E is performed; if the battery voltage reaches the maximum charging voltage during the constant current charging process, the battery is charged at a constant voltage using the maximum charging voltage.
  • Step E The charging device uses the voltage to be charged to charge the battery at a constant voltage. At this time, the voltage to be charged is the current charging voltage, and the charging device repeatedly performs the above charging process until the voltage to be charged reaches the maximum charging voltage.
  • the charging current changes correspond to the changes in the electrochemical reaction rate on the battery electrode surface.
  • the current relaxation time can indirectly reflect the change of the electrochemical reaction rate inside the battery.
  • the charging device of the present application adjusts the charging current and charging voltage according to the current relaxation time, adaptively charges the battery, can better adapt to changes in the battery during the charging process, and improves the safety and reliability of the battery during the charging process. Effectively extend the cycle performance and life of the battery.
  • the above-mentioned “charging device determines the current relaxation time” method is: the charging device determines the first moment and the second moment, and determines the current relaxation time according to the first moment and the second moment.
  • the first moment here is the moment when the charging current peaks during the constant voltage charging of the battery using the current charging voltage.
  • the second moment is the moment when the current charging voltage is used to charge the battery at a constant voltage, the moment when the value of the charging current is the second preset threshold or the moment when the rate of change of the charging current is less than the preset rate of change.
  • the first moment is earlier than the second moment.
  • the charging device can determine the current relaxation time in various ways.
  • the above method for determining the current relaxation time according to the first time and the second time is only one of the achievable methods.
  • I represents the current to be charged
  • represents the current relaxation time
  • SOC represents the current state of charge of the battery
  • K is a proportional coefficient
  • C is a constant greater than or equal to
  • M is an exponential coefficient
  • the charging parameters in this application include at least one of the above-mentioned constant C, the above-mentioned proportional coefficient K, and the above-mentioned index coefficient M.
  • the charging parameters are preset or set according to the battery parameters.
  • the battery parameters here include at least the current SOC of the battery, the current state of health of the battery SOH, the current relaxation time, the current temperature of the battery, and the current safe state of the battery SOS. One.
  • the charging device does not limit the algorithm or formula used to calculate the current to be charged.
  • the charging device can also use other formulas to calculate the current to be charged.
  • the charging device may also adjust the charging parameter according to the battery parameter.
  • the charging device determines whether the battery is aging/internally short-circuited according to the current relaxation time; if the battery is aging/internally short-circuited, the charging device issues a warning or stops charging.
  • the current relaxation time can indirectly reflect the change of the electrochemical reaction rate inside the battery.
  • the charging device can determine whether the battery is aging/internal short circuit according to the current relaxation time, and perform corresponding processing according to the determination result. In this way, the charging is effectively improved The safety and reliability of the battery during the process.
  • a charging device for charging a battery.
  • the charging device of the present application includes a control unit, a charging unit, and a power integration unit.
  • the charging unit is used to perform constant voltage charging or constant current charging on the battery under the control of the control unit.
  • the above-mentioned power integration unit is used to determine the state of charge SOC of the battery.
  • the above control unit is used to execute step A, step B, step C, step D and step E.
  • the above step A is: controlling the charging unit to charge the battery at a constant voltage using the current charging voltage.
  • the current charging voltage is greater than the pre-charge termination voltage and less than the maximum charging voltage.
  • the maximum charging voltage here is used to characterize the battery's positive electrode material and electrolyte Or the withstand voltage value of the positive electrode current collector, the pre-charge termination voltage is the voltage threshold value of the battery in the normal discharge state and the over discharge state.
  • the above step B is: in the process of controlling the charging unit to use the current charging voltage to charge the battery at a constant voltage, determine the current relaxation time for reflecting the change in the electrochemical reaction rate inside the battery.
  • step C is: obtaining the current state-of-charge SOC of the battery from the above-mentioned power integration unit, and calculating the current to be charged according to the current relaxation time and the current SOC of the battery; after calculating the current to be charged, perform step D, or The voltage corresponding to the current to be charged is determined as the voltage to be charged and step E is performed.
  • step D is: controlling the charging unit to use the current to be charged to charge the battery at a constant current; if the battery voltage reaches the first preset threshold during the constant current charging, the voltage at the first preset threshold is determined to be Charging voltage, and performing step E, the voltage of the first preset threshold is less than the maximum charging voltage; if the battery voltage reaches the maximum charging voltage during the constant current charging process, the maximum charging voltage is used to charge the battery at a constant voltage until it is determined The battery is fully charged.
  • the above step E is: controlling the charging unit to charge the battery at a constant voltage using the voltage to be charged, and during the constant voltage charging, repeatedly performing the above step A, the above step B and the above step C until the voltage to be charged reaches the maximum charging voltage , Then the battery is charged at a constant voltage using the maximum charging voltage until the battery's charge reaches a full charge, which is the charge when the battery is fully charged.
  • the above-mentioned control unit for determining the current relaxation time includes: the above-mentioned control unit is specifically used for determining the first moment and the second moment, and according to the first moment and the second moment, the current relaxation is determined Yu time.
  • the first moment is the moment when the charging current peaks in the process of controlling the charging unit to use the current charging voltage to charge the battery at a constant voltage
  • the second moment is the time at which the charging unit is controlled to use the current charging voltage to charge the battery at a constant voltage
  • the moment when the value of the charging current is the second preset threshold or the moment when the rate of change of the charging current is less than the preset rate of change.
  • the first moment is earlier than the second moment.
  • I represents the current to be charged
  • represents the current relaxation time
  • SOC represents the current state of charge of the battery
  • K is a proportional coefficient
  • C is a constant greater than or equal to
  • M is an exponential coefficient
  • M ⁇ 0 is the value of the battery
  • the charging parameters in this application include at least one of the above constant C, the above proportional coefficient K, and the above index coefficient M.
  • the charging parameters are preset or set according to the battery parameters.
  • the battery parameters include the current SOC of the battery and the current battery. At least one of health state SOH, current relaxation time, current temperature of battery, current safety state of battery SOS.
  • the above control unit is also used to adjust the charging parameter according to the battery parameter.
  • the charging device further includes a warning unit.
  • the above control unit is also used to determine whether the battery is aging/internally short-circuited according to the current relaxation time after determining the current relaxation time.
  • the warning unit is used to issue a warning if the control unit determines that the battery is aging/internally short-circuited.
  • the charging device may be divided into functional modules according to the charging method provided in the first aspect or any possible implementation manner in the first aspect, for example, each functional module may be divided corresponding to each function, or Integrate two or more functions in one processing module.
  • a charging device in a third aspect, includes a processor and a memory; the memory is used to store computer execution instructions.
  • the processor executes the computer execution instructions stored in the memory to enable the charging device Perform the charging method described in the first aspect or any possible implementation manner of the first aspect.
  • a control circuit includes a processor and a memory; the memory is used to store computer-executed instructions.
  • the processor executes the computer-executed instructions stored in the memory, so that the control circuit Perform the charging method described in the first aspect or any possible implementation manner of the first aspect.
  • control circuit may be a chip system in the charging device, and the chip system is used to support the charging device to implement the charging method provided by the present application.
  • the chip system includes a chip, and may also include other discrete devices or circuit structures.
  • a computer-readable storage medium in which instructions are stored in the computer-readable storage medium, and when the instructions run on the charging device described in the third aspect above, the charging device is caused to execute the first The charging method described in any possible implementation manner of the aspect or the first aspect.
  • a computer program product containing instructions.
  • the computer program product includes a computer execution instruction.
  • the charging device described in the third aspect above reads and executes the computer execution instruction so that the charging device executes the first
  • Figure 1 is a schematic diagram of the voltage and current of the battery in the existing charging process
  • FIG. 2 is a schematic structural diagram of a charging device in an embodiment of this application.
  • FIG. 3 is a schematic flowchart 1 of a charging method in an embodiment of the present application.
  • FIG. 6 is a schematic diagram 1 of changes in voltage and current of a battery in an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of changes in battery voltage and current in an embodiment of the present application.
  • FIG. 8 is a schematic diagram 3 of changes in battery voltage and current in an embodiment of the present application.
  • FIG. 9 is a schematic diagram 4 of changes in voltage and current of a battery in an embodiment of the present application.
  • FIG. 10 is a second schematic flowchart of a charging method in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the hardware structure of the charging device in the embodiment of the present application.
  • batteries can be divided into primary batteries and secondary batteries.
  • a primary battery is also called a primary battery. It is a battery that cannot be recharged after being discharged to restore it.
  • Secondary batteries also known as accumulators, refer to batteries that can be charged or recharged by applying current or voltage.
  • the secondary battery may be a lithium ion battery, a lithium metal battery, a lithium polymer battery, a lithium manganese oxide battery, a lithium iron phosphate battery, a lithium graphene battery, a lead acid battery, a nickel battery, a nickel hydrogen battery, a lithium sulfur Batteries, lithium-air batteries, sodium ion batteries, etc.
  • This application mainly describes the secondary battery, and all subsequent batteries are used to represent the secondary battery.
  • the battery involved in this application may include a single electrochemical battery cell, or may include multiple electrochemical battery cells, and may also include a battery pack, which is not specifically limited in this application.
  • the capacity of the battery is generally indicated by "C", whose unit is (Ah) or milliampere-hour (mAh).
  • the charging current or discharging current of a battery is expressed as a fraction (or several times) of C, and is called a charging rate or a discharging rate.
  • the charging of the battery is to force the current into the battery in the opposite way to the discharge process, so that the battery accumulates charge and then accumulates energy, and converts the electrical energy into chemical energy and stores it in the battery.
  • the charging conditions such as: charging voltage, charging current, temperature, cut-off voltage and other parameters need to be strictly controlled, they have an important impact on the cycle performance and life of the battery, improper control may lead to serious degradation of battery performance, scrapped, Even catastrophic accidents.
  • the battery will enter an overcharged state, which may cause side reactions at the electrode interface of the battery and a phase change in the material of the electrode body, resulting in severe degradation of battery performance.
  • the battery resistance will increase, and the charging current that the battery positive and negative materials can withstand will decrease.
  • the charging method is not adjusted adaptively, it will result in battery performance. Fast decline.
  • a constant current and constant voltage stage charging method is often used to charge the battery. Specifically, the battery is continuously charged to a certain potential with a constant current, and then the battery is charged at a constant voltage at this potential.
  • FIG. 1 shows a process of charging the lithium-ion battery in the prior art.
  • the charging process includes three different charging stages, which are the trickle charging stage, the constant current (CC) stage, and the constant voltage (CV) stage.
  • the battery In the trickle charging stage, the battery is charged with a small current (the general range is C/20 ⁇ C/5), or a pulse with a low duty cycle is used to charge the battery, so that the average current for charging is small.
  • the battery voltage reaches the pre-charge termination voltage (for example: 3.5 volts (V)), it transfers to the constant current charging stage to continue charging.
  • the pre-charge termination voltage is the voltage threshold of the battery in the normal discharge state and the over-discharge state.
  • the battery may be in an over-discharge state due to its self-discharge characteristics. In this way, first pre-charge the battery with a small current (such as 0.01C). When the battery voltage reaches the pre-charge termination voltage, it enters the CC phase.
  • a small current such as 0.01C
  • Pre-charging plays a role in activating and protecting the battery. If the battery is over-discharged, it will cause the negative electrode solid electrolyte interface (SEI) film of the battery to dissolve, and also cause partial copper decomposition of the negative electrode current collector and copper precipitation in the positive electrode current collector. In addition, for lithium ion batteries, if the battery is over-discharged, it will also cause the cathode material to exhibit semiconductor characteristics.
  • SEI solid electrolyte interface
  • the battery In the constant current charging stage, the battery is charged with a relatively large current (the general range is 0.7C to 1C), or it is divided into multiple sub-stages (Multi-Stage) to adjust the charging current as the battery charge increases.
  • the charging current in this sub-stage remains constant.
  • the maximum charging voltage also known as the charging cut-off voltage, for example, 4.4V
  • the maximum charging voltage is pre-configured and its value will not change.
  • the maximum charge voltage is used to characterize the withstand voltage of the battery's positive electrode material, electrolyte or positive electrode current collector.
  • the maximum charging voltage may be the common withstand voltage value of the battery's positive electrode material, electrolyte and positive electrode current collector, or it may be the withstand voltage value of at least one of the battery's positive electrode material, electrolyte and positive electrode current collector, this application The embodiment does not specifically limit this.
  • the charging voltage is greater than the maximum charging voltage, it will cause irreversible damage to the structure of the positive electrode material of the battery, decomposition of the electrolyte to produce by-products, accelerate battery aging, and cause hidden safety hazards.
  • the battery In the constant voltage charging stage, the battery is charged with a constant voltage. Correspondingly, the current flowing into the battery will gradually decrease as the battery is gradually charged. When the current is less than a predetermined value (eg 0.05C), charging is complete.
  • a predetermined value eg 0.05C
  • the above charging method monitors the temperature, voltage and current of the battery while controlling the charging current and the charging cut-off voltage to avoid the problems of overcharging and thermal runaway of the battery.
  • the electrochemical reactions of different states of charge (SOC) are completely different due to the combined influence of the charge transfer process, diffusion mass transfer process, electric double layer charging process and ion conduction process.
  • SOC states of charge
  • SEI solid electrolyte interface film
  • the existing charging methods cannot adapt to the above changes, so that the temperature of the battery during the charging process increases faster, the cycle performance of the battery is lower, and the life is shorter.
  • embodiments of the present application provide a charging method and device.
  • the charging device determines that the battery is in the charging process Current relaxation time, and adjust the charging current and charging voltage according to the current relaxation time to adaptively charge the battery.
  • the above current relaxation time refers to the length of time during which the current relaxation process occurs. In the constant voltage charging stage, there will be a phenomenon that the charging current decreases exponentially. This process is called the current relaxation process. Over time, during the charging process, the charging current changes. The change in charging current corresponds to the change in the electrochemical reaction rate on the battery electrode surface. Correspondingly, the current relaxation time can reflect the change of the electrochemical reaction rate inside the battery.
  • the charging device adjusts the charging current and charging voltage according to the current relaxation time, which can better adapt to the changes in the battery during the charging process and improve the charging process.
  • the safety and reliability of the battery effectively extend the cycle performance and life of the battery.
  • the charging device can also determine whether the battery is aging or whether an internal short circuit occurs according to the value of the current relaxation time, which effectively reduces the occurrence of safety accidents.
  • the charging method provided in the present application is mainly used in the constant current charging stage shown in FIG. 1, that is to say, the present application mainly improves the charging method in the second stage.
  • the charging method provided by the present application can also be applied to the trickle charging stage and the constant voltage charging stage shown in FIG. 1 described above.
  • the charging method provided by the present application is applied to the constant current charging stage shown in FIG. 1 as an example for description.
  • the charging method provided in the embodiments of the present application is applicable to charging devices that do not include rechargeable batteries, such as: electric vehicle charging piles, mobile phone universal chargers, etc., and can also be applied to various types of charging devices that include rechargeable batteries, such as : Tablet PCs, smart phones, portable computers, cameras, game consoles, small computers, laptop computers, smart watches, wearable gadgets, electric cars, etc.
  • the charging device in the embodiment of the present application may be any of the above charging devices, or may be a part of any of the above charging devices, for example: a chip system in a smartphone, the chip system is used to support the smartphone to implement the application The charging method provided by the embodiment.
  • the chip system includes a chip, and may also include other discrete devices or circuit structures.
  • the charging device in the embodiment of the present application includes a current measurement unit 21, a voltage measurement unit 22, a control unit 23, a charging unit 24, a power integration unit 25, and a temperature measurement unit 26.
  • the current measuring unit 21 is used to measure the charging current of the battery, and can be implemented by an ammeter.
  • the specific layout of the current meter reference may be made to the layout of any current meter for measuring current in the prior art, which is not specifically limited in the embodiment of the present application.
  • the voltage measuring unit 22 is used to measure the charging voltage of the battery, and can be implemented by a voltmeter.
  • a voltmeter In the embodiment of the present application, for the specific layout of the voltmeter, reference may be made to the layout of any voltmeter for measuring voltage in the prior art, which is not specifically limited in the embodiment of the present application.
  • the control unit 23 is used to calculate the current relaxation time based on the data measured by the current measurement unit 21, the voltage measurement unit 22, and the temperature measurement unit 26, and determine the charging current and charging voltage to be input to the battery according to the current relaxation time, and the output The corresponding control signal is sent to the charging unit 24.
  • the control unit 23 may send a control signal to the charging unit 24 to indicate constant current charging; if the voltage input to the battery remains unchanged, the current occurs If it changes, the control unit 23 may send a control signal to the charging unit 24 for instructing constant voltage charging.
  • control unit 23 can also be used to determine whether the battery is aging/internally short-circuited according to the calculated current relaxation time.
  • the charging unit 24 is used to provide a controllable constant charging current for the battery or a controllable constant charging voltage for the battery according to the control signal sent by the control unit 23.
  • the power integration unit 25 is used to calculate the power accumulated in the battery according to the charging current, that is, to determine the SOC of the battery.
  • the temperature measuring unit 26 is used to measure the temperature of the battery, and may be implemented by a thermal sensor.
  • a thermal sensor In the embodiment of the present application, for the specific layout of the thermal sensor, reference may be made to the layout of any thermal sensor for measuring temperature in the prior art, which is not specifically limited in the embodiment of the present application. In practical applications, the temperature of the battery will affect the current relaxation time.
  • the charging device further includes a warning unit 27. If the control unit 23 determines that the battery is aging/internally short-circuited based on the calculated current relaxation time, a warning is issued.
  • the charging device further includes a battery.
  • the above units are divided according to their respective functions, and the above two or more units may also be integrated into one processing unit.
  • the above units can be implemented in the form of hardware or software function modules.
  • FIG. 2 above is a schematic diagram of the charging device in the embodiment of the present application, which is only a logical function division, and there may be other division manners in actual implementation.
  • the current measurement unit 21 may be an ammeter in the charging device
  • the voltage measurement unit 22 may be a voltmeter in the charging device
  • the control unit 23 and the power integration unit 25 may be processors or the The processor calls the program in the cache to realize
  • the charging unit 24 may be a controlled power supply in the charging device
  • the temperature measuring unit 26 may be a thermal sensor in the charging device
  • the warning unit 27 may be a display or warning indication of the charging device light.
  • the charging method includes:
  • the charging device uses a preset current to charge the battery at a constant current until the battery voltage reaches the pre-charge termination voltage.
  • the voltage measuring unit in the charging device measures the voltage of the battery in this process in real time.
  • the voltage measurement unit measures that the battery voltage reaches the pre-charge termination voltage, this process ends.
  • the pre-charge termination voltage is 3.5V
  • the charging device uses a C/20 current to charge the battery at a constant current until the battery voltage reaches 3.5V.
  • This stage is the first stage in which the charging device charges the battery, and this stage is equivalent to the trickle charging stage in FIG. 1 described above.
  • the charging device After the voltage of the battery reaches the pre-charge termination voltage, the charging device continues to execute S301, which is equivalent to the second stage of charging the battery by the charging device in the prior art (the constant current charging stage shown in FIG. 1).
  • the charging device uses a different charging voltage to charge the battery at a constant voltage at different time periods until the battery voltage reaches the maximum charging voltage, or the charging device performs constant voltage charging and constant current charging to the battery until the battery voltage reaches charging Maximum voltage.
  • the charging device may only use constant voltage charging (the charging voltages used in different time periods are different) to charge the battery, or a mixture of constant voltage charging and constant current charging (such as alternating, After constant current charging, the battery is charged by performing m (m ⁇ 2) constant voltage charging, etc.), which is not specifically limited in the embodiments of the present application.
  • the charging device determines the current relaxation time, and determines the current to be charged according to the current relaxation time and the current SOC of the battery. Subsequently, the charging device uses the current to be charged to charge the battery at a constant current, or the charging device determines the voltage corresponding to the current to be charged as the voltage to be charged, and uses the voltage to be charged to charge the battery at a constant voltage.
  • S301 may be represented by the following S301a to S301e. Now, S301a to S301e will be described.
  • the charging device uses the current charging voltage to charge the battery at a constant voltage.
  • the current charging voltage is greater than the pre-charge termination voltage and less than the maximum charging voltage.
  • the charging device in the embodiment of the present application can charge the battery multiple times with constant voltage. In the process of different constant voltage charging, the charging voltage used by the charging device is different.
  • the current charging voltage refers to the charging voltage used by the charging device during the current constant voltage charging.
  • the charging device uses the voltage V 0 to charge the battery at a constant voltage, and the current charging voltage is V 0 .
  • the charging device uses the voltage V 1 to charge the battery at a constant voltage, and the current charging voltage is V 1 .
  • the charging device determines the current relaxation time.
  • the current relaxation time refers to the length of time during which the current relaxation process occurs
  • the current relaxation process refers to the process in which the charging current decreases exponentially during the constant voltage charging stage.
  • the value of the current relaxation time varies with changes in the battery SOC, battery SOH, battery SOS, battery temperature, etc.
  • the charging device may also use other methods to determine the current relaxation time, which is not specifically limited in the embodiments of the present application.
  • the charging device determines the current relaxation time by determining the first moment and the second moment.
  • the first moment is the moment when the charging current peaks during the constant voltage charging of the battery using the current charging voltage; the second moment is the charging current during the constant voltage charging of the battery using the current charging voltage.
  • the moment when the value is the second preset threshold or the moment when the rate of change of the charging current is less than or equal to the preset rate of change.
  • the first moment is earlier than the second moment.
  • the values of the second preset threshold and the preset change rate in the embodiment of the present application may be pre-configured according to requirements.
  • Fig. 7, Fig. 8 and Fig. 9 also show the current relaxation time ⁇ during a constant voltage charging process.
  • the principle of calculating the current relaxation time is basically the same. Therefore, the current relaxation time ⁇ shown in FIGS. 7, 8 and 9 will not be described here.
  • the charging device obtains the current SOC of the battery, and calculates the current to be charged according to the current relaxation time and the current SOC of the battery.
  • the current SOC of the battery refers to the SOC of the battery at the beginning of the current relaxation time.
  • the current SOC of the battery is the SOC of the battery at time t 1 .
  • the charging device can convert the voltage value to the battery's SOC according to the charge-discharge voltage state-of-charge curve to obtain the battery's current SOC, or it can integrate the charging current to obtain the battery's current SOC, and Other technical means may be used to determine the current SOC of the battery, which is not specifically limited in the embodiments of the present application.
  • the charging device After obtaining the current SOC and current relaxation time of the battery, the charging device calculates the current to be charged and the voltage to be charged.
  • the charging device calculates the current I to be charged according to the following formula:
  • represents the current relaxation time
  • SOC represents the current state of charge of the battery
  • K is a proportional coefficient
  • C is a constant greater than or equal to
  • M is an exponential coefficient
  • M ⁇ 0 is the current relaxation time
  • the charging parameter includes at least one of the above constant C, proportional coefficient K, and exponential coefficient M.
  • the value of the charging parameter may be set in advance (that is, a fixed value), or may be set according to the battery parameter (that is, change according to the battery parameter).
  • the battery parameters include at least one of the current SOC of the battery, the current state of health of the battery (SOH), the current relaxation time, the current temperature of the battery, and the current state of safety of the battery (SOS).
  • the charging device can apply formula (1) to adaptively adjust the charging current I based on the current relaxation time ⁇ and the change in the current SOC of the battery .
  • the charging device adjusts the value of the charging parameter according to the change of the battery parameter, and then adaptively adjusts the charging current according to the adjusted charging parameter.
  • the value or value range of the charging parameter depends on the temperature of the battery.
  • the charging device can charge the battery with a relatively small charging current.
  • normal temperature such as 25° C.
  • the diffusion rate of the lithium ion battery using graphite as the negative electrode material is small, and at this time, the charging device can charge the battery with a relatively small charging current.
  • normal temperature 25°C
  • the diffusion rate of the lithium ion battery using graphite as the negative electrode material is large, and at this time, the charging device can charge the battery with a relatively large charging current.
  • the charging device may adjust the value and/or range of the charging parameters based on the temperature of the battery.
  • the value or range of the charging parameter depends on the current SOC of the battery.
  • the charging device can charge the battery with a relatively small charging current.
  • the charging device may adjust the value and/or value range of the charging parameter based on the current SOC of the battery.
  • the value or range of the charging parameter depends on the current SOH of the battery.
  • the method for the charging device to obtain the current SOH of the battery is as follows: the charging device measures the current relaxation time ⁇ of the battery, and obtains the variation curve of the current relaxation time ⁇ (as shown in FIG. 4); In the case of the same SOC, the change value of the battery relaxation time ⁇ of the healthy battery and the aging battery to determine the current SOH of the battery.
  • the charging device After determining the current SOH of the battery, the charging device can adapt the charging parameters according to the current SOH of the battery.
  • the value or range of the charging parameter depends on the current SOS of the battery.
  • the method for the charging device to obtain the current SOS of the battery is: the method for the charging device to obtain the current SOS of the battery is: the charging device measures the current relaxation time ⁇ of the battery and obtains the variation curve of the current relaxation time ⁇ (as shown in the figure 5); Then, the charging device compares the change value of the battery relaxation time ⁇ of the safety battery and the internal short-circuit battery under the same SOC to determine the current SOS of the battery.
  • the SOS of the battery affects the value change of the charging parameters to a certain extent. For example, when a micro-short circuit occurs in a battery, its self-discharge rate increases, and the internal diffusion path of the battery changes, such as the electrode reaction area, which eventually leads to a change in the electrode dynamic behavior of the battery. Correspondingly, the value of the charging parameter changes.
  • the charging device may adapt the charging parameters according to the current SOS of the battery.
  • the charging device calculates the current I to be charged according to the following formula:
  • represents the current relaxation time
  • SOC represents the current state of charge of the battery
  • K is the proportionality coefficient
  • C is a constant greater than or equal to 0
  • N is the polynomial coefficient
  • the charging parameter includes at least one of the above constant C, proportional coefficient K, and polynomial coefficient N.
  • the value of the charging parameter may be a fixed value, or it may change according to the battery parameter.
  • the above formula (1) and formula (2) are only examples of “the charging device calculates the current to be charged according to the current relaxation time and the current SOC of the battery” in the embodiment of the present application, not to the charging device Limitation of the method for calculating the current to be charged.
  • other formulas can also be used to calculate the current to be charged.
  • the charging device executes S301d or S301e.
  • the charging device may execute S301d or S301e after executing S301c according to the configuration or actual requirements.
  • the charging device may directly use the calculated current to be charged to perform constant current charging, that is, execute S301d.
  • the charging device After determining the current to be charged, the charging device gradually raises the voltage to make the charging current reach the current to be charged. Correspondingly, the charging device will change the voltage at this time (i.e. The voltage corresponding to the current to be charged is determined to be the voltage to be charged, and the battery to be charged with a constant voltage is charged with the voltage to be charged, that is, S301e is executed.
  • the charging device uses the current to be charged to charge the battery at a constant current.
  • the charging device determines the voltage of the first preset threshold as the voltage to be charged, and executes The following S301e.
  • the first preset threshold value is a pre-configured voltage value. In practical applications, the first preset threshold may be pre-configured according to requirements.
  • the charging device executes S302.
  • the charging device uses the voltage to be charged to charge the battery at a constant voltage.
  • the voltage to be charged is the current charging voltage. If the voltage to be charged is less than the maximum charging voltage, during the constant voltage charging, the charging device repeatedly executes the above S301a, S301b, and S301c until the voltage to be charged reaches the maximum charging voltage.
  • the charging device executes S302.
  • the charging device may execute S301d or S301e. Therefore, if the battery is charged by the charging method provided in the embodiment of the present application, the current and voltage curves of the battery may be as shown in FIG. 6, or as shown in FIG. 7, or as shown in FIG. 8. Can be shown in Figure 9.
  • FIGS. 6 to 9 are merely examples of battery current and voltage graphs when the battery is charged by the charging method provided in the embodiment of the present application, and are not intended to limit the battery current and voltage graphs.
  • the charging device uses different charging voltages at different time periods to charge the battery at a constant voltage until the charging voltage reaches the maximum charging voltage.
  • the value of the charging current decreases, and the charging device determines the current relaxation time of the stage, and then calculates the current to be charged in the next charging stage according to the current relaxation time, and determines the current to be charged Voltage to be charged.
  • the charging device charges the battery by alternately charging constant voltage charging and constant current charging until the charging voltage reaches the maximum charging voltage.
  • the charging device first charges the battery by constant current charging, and then charges the battery by constant voltage charging until charging The voltage reaches the maximum charging voltage.
  • the charging device first charges the battery by constant voltage charging, and then uses a combination of constant current charging and constant voltage charging to charge the battery Charge until the charging voltage reaches the maximum charging voltage.
  • the charging device determines the current relaxation time of this stage, and then calculates the next charging stage based on the current relaxation time Current to be charged.
  • the charging device uses the voltage at the threshold to charge the battery at a constant voltage.
  • FIGS. 6 to 9 are only examples of the charging process, and are not a limitation of the charging process.
  • the charging device can monitor, measure, and calculate the current relaxation time in units of time T, the current SOC of the battery, and the battery voltage. Furthermore, the current to be charged and the voltage to be charged are adjusted.
  • the charging device uses the maximum charging voltage to charge the battery at a constant voltage until the battery reaches a full charge.
  • Full charge refers to the amount of electricity when the battery is fully charged.
  • the charging device Since the charging voltage has reached the maximum charging voltage, the charging device cannot change the charging voltage. In the process of charging the battery with the maximum charging voltage, the charging current gradually decreases as time passes. When the current is less than a certain predetermined value (such as 0.05C), it is determined that the battery has reached full charge, and the battery charging process ends.
  • a certain predetermined value such as 0.05C
  • the change of the charging current corresponds to the change of the electrochemical reaction rate on the battery electrode surface. Therefore, the current relaxation time can reflect the change of the electrochemical reaction rate inside the battery.
  • the charging device in the embodiment of the present application adjusts the charging current and charging voltage according to the current relaxation time, and charges the battery adaptively, which can better adapt to the internal changes of the battery during the charging process and effectively improve the battery during the charging process The safety and reliability of the battery extend the cycle performance and life of the battery.
  • the charging device increases the current to be charged; when the current relaxation time is less than the threshold, the charging device reduces the current to be charged, thereby controlling the charging speed, effectively increasing The cycling performance of the battery extends the life of the battery.
  • the charging device of the embodiment of the present application can also determine whether the battery is aging/internal short circuit based on the calculated current relaxation time to improve the safety of the battery To extend battery life.
  • the charging method provided by the embodiments of the present application includes:
  • the charging device uses the current charging voltage to charge the battery at a constant voltage.
  • S100 can refer to the above S301a.
  • the charging device determines the current relaxation time.
  • S101 can refer to the above S301b.
  • the charging device determines whether the battery is aging/internally short-circuited according to the current relaxation time.
  • the charging device obtains the current SOC of the battery, and compares the calculated current relaxation time with the current relaxation time of the battery in the healthy state under the current SOC, and determines whether the battery is aging/internally short-circuited according to the comparison result.
  • the value of the current relaxation time of the internal short-circuit battery is less than or equal to the current relaxation time of the safety battery. Therefore, for the same SOC, if the "calculated current relaxation time" is less than "the current relaxation time of a healthy battery at the current SOC", and the difference between the two is greater than a certain threshold (such as threshold 2) , It is determined that the battery is short-circuited.
  • a certain threshold such as threshold 2
  • the charging device issues a warning or stops charging.
  • the charging device can determine whether the battery is aging/internal short circuit based on the current relaxation time, which effectively improves the safety and reliability of the battery during the charging process.
  • the charging device uses the charging method shown in FIG. 3 to charge the battery.
  • the charging method provided by the embodiments of the present application can effectively improve the safety and reliability of the battery during the charging process, and extend the cycle performance and life of the battery.
  • An embodiment of the present application provides a charging device.
  • the charging device may be various types of charging devices, or may be a part of devices in the charging device, such as a chip system in the charging device.
  • the chip system is used to support the charging device to implement the functions involved in the above method embodiments, for example, to determine the data and/or information involved in the above method.
  • the chip system includes a chip, and may also include other discrete devices or circuit structures.
  • the charging device is used to perform the steps performed by the charging device in the above charging method.
  • the charging device provided by the embodiment of the present application may include a module corresponding to the corresponding step.
  • the charging device may be divided into function modules according to the above method examples.
  • each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules.
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions, and there may be other division manners in actual implementation.
  • FIG. 2 above shows a possible structural schematic diagram of the charging device in this embodiment.
  • FIG. 11 shows a schematic diagram of the composition of the charging device provided by the embodiment of the present application.
  • the charging device may include at least one processor 111, memory 112, and communication bus 113.
  • the processor 111 is a control center of the charging device, and may be a processor or a collective name of multiple processing elements.
  • the processor 111 is a central processing unit (CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or one or more integrated circuits configured to implement embodiments of the present application
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processor 111 can execute various functions of the charging device by running or executing the software program stored in the memory 112 and calling the data stored in the memory 112.
  • the processor 111 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 11.
  • the charging device may include multiple processors, such as the processor 111 and the processor 114 shown in FIG. 11.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 112 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Access to any other media, but not limited to this.
  • the memory 112 may exist independently, and is connected to the processor 111 through the communication bus 113.
  • the memory 112 may also be integrated with the processor 111.
  • the memory 112 is used to store a software program that executes the solution of the present application, and is controlled and executed by the processor 111.
  • the communication bus 113 may be an industry standard architecture (ISA) bus, an external device interconnection (peripheral component, PCI) bus, or an extended industry standard architecture (extended industry standard architecture, EISA) bus, or the like.
  • ISA industry standard architecture
  • PCI peripheral component
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only a thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 11 does not constitute a limitation on the charging device.
  • the charging device may include more or fewer components than the illustration, or a combination Some components, or different component arrangements.
  • the charging device provided by the embodiment of the present application may further include at least one of a communication interface, a controlled power supply, an ammeter, a voltmeter, and a thermal sensor.
  • the communication interface is used to provide a charging port for the battery
  • the controlled power supply is used to provide a constant voltage or constant current power supply for the current
  • the ammeter is used to measure the charging current
  • the voltmeter is used to measure the charging voltage
  • the thermal sensor is used to measure the temperature of the battery .
  • Another embodiment of the present application also provides a computer-readable storage medium that stores instructions, and when the instructions run on the charging device, the charging device performs charging as shown in FIG. 3 or FIG. 10 method.
  • a computer program product containing instructions.
  • the computer program product includes computer execution instructions, and the charging device reads and executes the computer execution instructions, so that the charging device executes as shown in FIG. 3 or FIG.
  • An embodiment of the present application also provides a control circuit.
  • the control circuit includes a processor and a memory.
  • the memory is used to store computer-executed instructions.
  • the processor executes the computer-executed instructions stored in the memory, so that the control circuit executes the embodiment shown in FIG. 3 or FIG. 10 Charging method.
  • control circuit may correspond to the control unit 23 in FIG. 2.
  • control circuit is a chip system in the charging device.
  • the chip system is used to support the charging device to implement the functions involved in the above method embodiments, for example, to determine the data and/or information involved in the above method.
  • the chip system includes a chip, and may also include other discrete devices or circuit structures.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website site, computer, server, or data center via wire (eg, Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data terminal including one or more available medium integrated servers, data centers, and the like.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), or the like.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a division of logical functions.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed in multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application may essentially be part of or contribute to the existing technology, or all or part of the technical solutions may be embodied in the form of software products, which are stored in a storage medium
  • several instructions are included to enable a device (which may be a single-chip microcomputer, chip, etc.) or processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种充电方法及装置,在采用大于预充电终止电压、且小于充电最大电压的充电电压对电池进行恒压充电的过程中,充电装置确定电流弛豫时间,并根据电流弛豫时间对充电电流和充电电压进行控制,自适应地对电池进行充电,较好的适应充电过程中电池内部的变化,有效的提高了充电过程中电池的安全可靠性、提高了电池的循环性能、延长了电池的寿命。

Description

一种充电方法及装置
本申请要求于2018年12月10日提交国家知识产权局、申请号为201811506444.7、发明名称为“一种充电方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及电池技术。
背景技术
二次电池是一种在放电后可通过充电使电极活性材料激活而继续使用的电池。
目前,对二次电池进行充电的方法为:使用恒定电流对电池持续充电至某一电位,再在此电位对电池进行恒压充电。在充电过程中,电池内部的材料、动力学过程、欧姆阻抗等均会发生变化,但是,上述充电方法无法适应该变化,从而使得电池在充电过程中温度的升高速度较快、电池的循环性能较低、寿命较短。
发明内容
本申请提供一种充电方法及装置,能够有效的解决电池在充电过程中温度的升高速度较快、电池的循环性能较低、寿命较短的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种充电方法,应用于为电池充电的充电装置。在充电电压大于预充电终止电压(电池处于正常放电状态和过放电状态的电压临界值)、且小于充电最大电压(即用于表征电池的正极材料、电解液或正极集流体的耐压值)的情况下,充电装置仅采用恒压充电的方式(不同时间段采用的充电电压不同)对电池进行充电,或者采用恒压充电和恒流充电混合(如相互交替、恒流充电后在执行m(m≥2)次恒压充电等)的方式对电池进行充电,直到电池的电压达到充电最大电压。在电池的电压达到充电最大电压后,充电电池采用充电最大电压对电池进行恒压充电,直到电池的电量达到满充电量(电池充满电时的电量)。
具体的,充电装置采用大于预充电终止电压、且小于电池的充电最大电压的当前充电电压对电池进行恒压充电;在采用当前充电电压对电池进行恒压充电的过程中,充电装置确定用于反映所述电池内部电化学反应速率的变化是电流弛豫时间,并获取电池的当前荷电状态SOC,以及根据电流弛豫时间和电池的当前SOC,计算待充电电流;在计算出待充电电流后,充电装置执行步骤D,或者,将与待充电电流对应的电压确定为待充电电压并执行步骤E。步骤D为:充电装置采用待充电电流对电池进行恒流充电;若在恒流充电过程中,电池的电压达到第一预设阈值(第一预设阈值的电压小于充电最大电压),则将第一预设阈值的电压确定为待充电电压,并执行步骤E;若在恒流充电过程中,电池的电压达到充电最大电压,则采用充电最大电压对电池进行恒压充电。步骤E为:充电装置采用待充电电压对电池进行恒压充电,此时,待充电电压为当前充电电压,充电装置重复执行上述充电过程,直到待充电电压达到充电最大电压。
在充电过程中,充电电流发生变化,充电电流的变化对应着电池电极表面的电化学反应速率的变化。相应的,电流弛豫时间可以间接的反映电池内部电化学反应速率的变化。本申请的充电装置根据电流弛豫时间,调整充电电流和充电电压,自适应地对电池进行充电,能够较好的适应充电过程中电池内部的变化,提高了充电过程中电池的安全可靠性,有效的延长了电池的循环性能以及寿命。
在一种可能的实现方式中,上述“充电装置确定电流弛豫时间”的方法为:充电装置确定第一时刻和第二时刻,并根据第一时刻和第二时刻,确定电流弛豫时间。这里的第一时刻为在采用当前充电电压对电池进行恒压充电的过程中,充电电流出现峰值的时刻。第二时刻为在采用当前充电电压对电池进行恒压充电的过程中,充电电流的数值为第二预设阈值的时刻或者为充电电流的变化率小于预设变化率的时刻。第一时刻早于第二时刻。
充电装置可以采用多种方式确定电流弛豫时间。上述根据第一时刻和第二时刻确定电流弛豫时间的方式只是其中一种可实现的方式。
在另一种可能的实现方式中,上述“充电装置根据电流弛豫时间和电池的当前SOC,计算待充电电流”的方法为:根据公式I=C+K×τ M(SOC)计算待充电电流。上述公式中,I表示待充电电流,τ表示电流弛豫时间,SOC表示电池的当前荷电状态,K为比例系数,C为大于或等于0的常数,M为指数系数,M≠0。
本申请中的充电参数包括上述常数C、上述比例系数K、上述指数系数M中的至少一个。充电参数为预先设置的或者是根据电池参数设置的,这里的电池参数包括电池的当前SOC、电池的当前健康状态SOH、电流弛豫时间、电池的当前温度、电池的当前安全状态SOS中的至少一个。
当然,充电装置对计算待充电电流所使用的算法或公式不做限定。除了上述公式外,充电装置还可以采用其他公式计算待充电电流。
在另一种可能的实现方式中,若充电参数是根据电池参数设置的,则充电装置还可以根据电池参数调整充电参数。
在另一种可能的实现方式中,在确定电流弛豫时间后,充电装置根据电流弛豫时间确定电池是否老化/内短路;若电池老化/内短路,则充电装置发出警告或者停止充电。
电流弛豫时间可以间接的反映电池内部电化学反应速率的变化,充电装置根据电流弛豫时间能够确定出电池是否老化/内短路,并根据确定结果进行相应的处理,这样,有效的提高了充电过程中电池的安全可靠性。
第二方面,提供一种充电装置,该充电装置用于为电池充电。本申请的充电装置包括控制单元、充电单元以及电量积分单元。
具体的,上述充电单元,用于在上述控制单元的控制下,对电池进行恒压充电或恒流充电。上述电量积分单元,用于确定电池的荷电状态SOC。上述控制单元用于执行步骤A、步骤B、步骤C、步骤D、步骤E。
上述步骤A为:控制上述充电单元采用当前充电电压对电池进行恒压充电,当前充电电压大于预充电终止电压、且小于充电最大电压,这里的充电最大电压用于表征电池的正极材料、电解液或正极集流体的耐压值,预充电终止电压为电池处于正常放电状态和过放电状态的电压临界值。上述步骤B为:在控制上述充电单元采用当前充 电电压对电池进行恒压充电的过程中,确定用于反映电池内部电化学反应速率的变化的电流弛豫时间。上述步骤C为:从上述电量积分单元获取电池的当前荷电状态SOC,并根据电流弛豫时间和电池的当前SOC,计算待充电电流;在计算出待充电电流后,执行步骤D,或者将与待充电电流对应的电压确定为待充电电压并执行步骤E。上述步骤D为:控制上述充电单元采用待充电电流对电池进行恒流充电;若在恒流充电过程中,电池的电压达到第一预设阈值,则将第一预设阈值的电压确定为待充电电压,并执行步骤E,第一预设阈值的电压小于充电最大电压;若在恒流充电过程中,电池的电压达到充电最大电压,则采用充电最大电压对电池进行恒压充电,直到确定电池的电量达到满充电量。上述步骤E为:控制上述充电单元采用待充电电压对电池进行恒压充电,并在恒压充电过程中,重复执行上述步骤A、上述步骤B和上述步骤C,直到待充电电压达到充电最大电压,则采用充电最大电压对电池进行恒压充电,直到电池的电量达到满充电量,该满充电量为电池充满电时的电量。
在一种可能的实现方式中,上述控制单元用于确定电流弛豫时间包括:上述控制单元,具体用于确定第一时刻和第二时刻,并根据第一时刻和第二时刻,确定电流弛豫时间。这里,第一时刻为在控制充电单元采用当前充电电压对电池进行恒压充电的过程中,充电电流出现峰值的时刻,第二时刻为在控制充电单元采用当前充电电压对电池进行恒压充电的过程中,充电电流的数值为第二预设阈值的时刻或者为充电电流的变化率小于预设变化率的时刻。第一时刻早于第二时刻。
在另一种可能的实现方式中,上述控制单元用于根据电流弛豫时间和电池的当前SOC,计算待充电电流包括:上述控制单元,具体用于根据公式I=C+K×τ M(SOC)计算待充电电流。
上述公式中,I表示待充电电流,τ表示电流弛豫时间,SOC表示电池的当前荷电状态,K为比例系数,C为大于或等于0的常数,M为指数系数,M≠0。
本申请中的充电参数包括上述常数C、上述比例系数K、上述指数系数M中的至少一个,充电参数为预先设置的或者是根据电池参数设置的,电池参数包括电池的当前SOC、电池的当前健康状态SOH、电流弛豫时间、电池的当前温度、电池的当前安全状态SOS中的至少一个。
在另一种可能的实现方式中,若充电参数是根据电池参数设置的,则上述控制单元还用于根据电池参数调整充电参数。
在另一种可能的实现方式中,充电装置还包括警告单元。上述控制单元,还用于在确定电流弛豫时间后,根据电流弛豫时间确定电池是否老化/内短路。上述警告单元,用于若上述控制单元确定电池老化/内短路,则发出警告。
可选的,可以根据上述第一方面或第一方面中任意一种可能的实现方式所提供的充电方法对该充电装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
第三方面,提供一种充电装置,该充电装置包括处理器和存储器;该存储器用于存储计算机执行指令,当充电装置运行时,该处理器执行该存储器存储的计算机执行指令,以使充电装置执行上述第一方面或第一方面任意一种可能的实现方式所述的充电方法。
第四方面,提供一种控制电路,该控制电路包括处理器和存储器;该存储器用于存储计算机执行指令,当控制电路运行时,该处理器执行该存储器存储的计算机执行指令,以使控制电路执行上述第一方面或第一方面任意一种可能的实现方式所述的充电方法。
可选的,该控制电路可以为充电装置中的芯片系统,该芯片系统用于支持充电装置实现本申请提供的充电方法。该芯片系统包括芯片,也可以包括其他分立器件或电路结构。
第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当指令在如上述第三方面所述的充电装置上运行时,使得该充电装置执行上述第一方面或第一方面任意一种可能的实现方式所述的充电方法。
第六方面,提供了一种包含指令的计算机程序产品,该计算机程序产品包括计算机执行指令,上述第三方面所述的充电装置读取并执行该计算机执行指令,使得该充电装置执行上述第一方面或第一方面任意一种可能的实现方式所述的充电方法。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
图1为电池在现有的充电过程中电压和电流的示意图;
图2为本申请实施例中充电装置的结构示意图;
图3为本申请实施例中充电方法的流程示意图一;
图4为本申请实施例中电流弛豫时间与电池健康状态的关系示意图;
图5为本申请实施例中电流弛豫时间与电池安全状态的关系示意图;
图6为本申请实施例中电池的电压和电流的变化示意图一;
图7为本申请实施例中电池的电压和电流的变化示意图二;
图8为本申请实施例中电池的电压和电流的变化示意图三;
图9为本申请实施例中电池的电压和电流的变化示意图四;
图10为本申请实施例中充电方法的流程示意图二;
图11为本申请实施例中充电装置的硬件结构示意图。
具体实施方式
下面结合附图详细介绍本申请实施例提供的充电方法。
一般的,电池可以被分成一次电池和二次电池。一次电池也称为原电池(primary battery),是放电后不能再充电使其复原的电池。二次电池(secondary battery)也称为蓄电池,是指可通过施加电流或电压而被充电或再充电的电池。
其中,二次电池可以为锂离子电池、锂金属电池、锂聚合物电池、锂锰氧化物电池、磷酸铁锂电池、石墨烯锂电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池、钠离子电池等。
本申请主要针对二次电池进行描述,后续涉及到的电池均用于表示二次电池。
此外,本申请涉及到的电池可以包括单个电化学电池单元,也可以包括多个电化学电池单元,还可以包括电池组,本申请对此不作具体限定。
电池的容量一般采用“C”表示,其单位为(Ah)或毫安·小时(mAh)。电池 的充电电流或放电电流以C的几分之一(或几倍)来表示,被称为充电倍率或放电倍率。
例如,若以4.0安培(4.0A)或2.0*C的恒定电流对容量为2.0Ah的电池进行快速充电,在正常情况下,在1/2小时内完成对该电池的充电。
电池的充电是采用与放电过程相反的方式迫使电流进入电池,使电池积聚电荷进而积聚能量,将电能转换成化学能储存在电池中。在此过程中的充电条件,例如:充电电压、充电电流、温度、截止电压等参数需要进行严格控制,它们对电池的循环性能与寿命产生重要影响,控制不当可能导致电池性能严重退化,报废,甚至灾难性事故。
例如,若在电池完成充电后,仍然继续进行充电,则电池就会进入过充电状态,这会导致电池的电极界面发生副反应以及电极本体材料出现相变,从而致使电池性能出现严重退化。
又例如,当电池经历多次循环充放电老化之后,电池电阻将增大,电池正负极材料能承受的充电电流将降低,这时如果不对充电方法加以适应性的调整,将会导致电池性能快速衰退。
综上,有必要对电池的充电方法进行自适应控制,并且需要增加避免或拦截电池安全风险的措施,进一步提高电池使用过程中的循环性能、寿命,避免或减少安全事故的发生。
目前,常常采用恒流恒压阶段式充电方法对电池进行充电,具体的,使用恒定电流对电池持续充电至某一电位,再在此电位对电池进行恒压充电。
示例性的,以电池为锂离子电池为例,图1示出了现有技术中对该锂离子电池进行充电的过程。该充电过程包括三个不同的充电阶段,这三个充电阶段分别为涓流充电(trickle charging)阶段、恒流充电(constant current,CC)阶段、恒压充电(constant voltage,CV)阶段。
在涓流充电阶段,采用小电流(普遍范围在C/20~C/5)对电池进行充电,或者采用具有低占空比的脉冲对电池进行充电,使得充电的平均电流较小。当电池的电压达到预充电终止电压(例如:3.5伏(V))后,则转入恒流充电阶段继续充电。
预充电终止电压为电池处于正常放电状态和过放电状态的电压临界值。
一般的,若长期未使用,电池可能会由于其自放电特性而处于过放电状态。这样,先以小电流(如0.01C)对电池进行预充电。当电池的电压达到预充电终止电压后,再进入CC阶段。
预充电对电池起激活和保护的作用。若电池过放电会导致电池的负极固体电解质界面(solid electrolyte interface,SEI)膜溶解,还会导致负极集流体出现部分铜分解,正极集流体出现析铜。此外,对于锂离子电池而言,若电池过放电,还会导致正极材料表现为半导体特性。
在恒流充电阶段,采用相对较大的电流(普遍范围在0.7C~1C)对电池进行充电,或者随着电池充入电量的增加分为多个子阶段(Multi-Stage)调整充电电流,每个子阶段的充电电流保持恒定。当电池的电压达到充电最大电压(也可称为充电截止电压,例如4.4V)后,则转入恒压充电阶段继续充电。充电最大电压是预先配置的,其数值 不会发生变化。
充电最大电压用于表征电池的正极材料、电解液或正极集流体的耐压值。具体的,充电最大电压可以是电池的正极材料、电解液以及正极集流体共同的耐压值,也可以是电池的正极材料、电解液以及正极集流体中的至少一个的耐压值,本申请实施例对此不作具体限定。
一般的,若充电电压大于充电最大电压,会导致电池的正极材料的结构发生不可逆破坏,电解液分解产生副产物,加速电池老化,造成安全隐患。
在恒压充电阶段,采用恒定电压对电池进行充电,相应的,流入电池的电流将随着电池的电量逐渐充满而逐渐减小。当电流小于一个预定值(例0.05C)时,充电完成。
上述充电方法,在控制充电电流和充电截止电压的同时,监控电池的温度、电压和电流,以避免电池出现过充电及热失控的问题。
在充电过程中,受传荷过程、扩散传质过程、双电层充电过程和离子导电过程的综合影响,不同荷电状态(state of charge,SOC)的电化学反应是完全不同的。同时,当电池使用一段时间后,势必会出现固体电解质界面膜(solid electrolyte interface,SEI)膜变厚、电解液的性能衰退,电极表面反应面积的变化、极化阻抗增加等。而现有的充电方法无法适应上述变化,从而使得电池在充电过程中温度的升高速度较快、电池的循环性能较低、寿命较短。
此外,随着电池能量密度的不断提升,单颗电池或电池单元所具备的能量也越来越高,一旦电池使用不当将会出现严重甚至是灾难性的安全事故。在各种造成电池安全事故的原因中,电池发生内短路是最为隐蔽并很难在线实时检测和预防的现象。特别是在充电过程中,由于电池内部电量持续不断积累,所包含的能量将越来越多。一旦出现内短路,将造成极大危害。现有的充电方法无法实现内短路的检测和预防。
针对上述问题,本申请实施例提供一种充电方法及装置,在采用大于电池的预充电终止电压、且小于电池的充电最大电压进行恒压充电的过程中,充电装置确定电池在该充电过程中的电流弛豫时间,并根据电流弛豫时间对充电电流和充电电压进行调整,自适应地对电池进行充电。
上述电流弛豫时间是指电流弛豫过程所发生的时长。在恒压充电阶段,会产生充电电流指数下降的现象,这一过程被称为电流弛豫过程。随着时间的流逝,在充电过程中,充电电流发生变化,充电电流的变化对应着电池电极表面的电化学反应速率的变化。相应的,电流弛豫时间可以反映电池内部电化学反应速率的变化。
由于电流弛豫时间可以反映电池内部电化学反应速率的变化,因此,充电装置根据电流弛豫时间调整充电电流和充电电压,能够较好的适应充电过程中电池内部的变化,提高了充电过程中电池的安全可靠性,有效的延长了电池的循环性能以及寿命。
此外,在充电过程中,充电装置还可以根据电流弛豫时间的数值确定电池是否老化或者是否发生内短路,有效的减少了安全事故的发生。
本申请提供的充电方法主要用于上述图1示出的恒流充电阶段,也就是说,本申请主要是对第二阶段的充电方法进行改进。当然,本申请提供的充电方法也可应用于上述图1示出的涓流充电阶段和恒压充电阶段。
后续,以本申请提供的充电方法应用于上述图1示出的恒流充电阶段为例进行说明。
本申请实施例提供的充电方法适用于不包括可充电电池的充电设备,例如:电动汽车充电桩、手机万能充电器等,也可以适用于包括可充电电池的各种不同类型的充电设备,例如:平板电脑、智能手机、便携式计算机、相机、游戏控制台、小型计算机、膝上型计算机、智能手表、可穿戴小配件、电动汽车等。
本申请实施例中的充电装置可以是上述任意一种充电设备,也可以是上述任一充电设备中的一部分装置,例如:智能手机中的芯片系统,该芯片系统用于支持智能手机实现本申请实施例提供的充电方法。该芯片系统包括芯片,也可以包括其他分立器件或电路结构。
示例性的,如图2所示,本申请实施例中的充电装置包括电流测量单元21、电压测量单元22、控制单元23、充电单元24、电量积分单元25以及温度测量单元26。
其中,电流测量单元21用于测量电池的充电电流,可以采用电流计实现。本申请实施例中,电流计的具体布局可以参考现有技术中任意一种用于测量电流的电流计的布局,本申请实施例对此不作具体限定。
电压测量单元22用于测量电池的充电电压,可以采用电压计实现。本申请实施例中,电压计的具体布局可以参考现有技术中任意一种用于测量电压的电压计的布局,本申请实施例对此不作具体限定。
控制单元23用于根据电流测量单元21、电压测量单元22以及温度测量单元26测量的数据,计算电流弛豫时间,并根据电流弛豫时间确定待输入至电池的充电电流以及充电电压,以及输出相应的控制信号到充电单元24。可选的,若输入至电池的电流保持不变,电压发生变化,则控制单元23可向充电单元24发送用于指示恒流充电的控制信号;若输入至电池的电压保持不变,电流发生变化,则控制单元23可向充电单元24发送用于指示恒压充电的控制信号。
此外,控制单元23还可以用于根据计算出的电流弛豫时间,确定电池是否老化/内短路。
充电单元24用于根据控制单元23发送的控制信号,为电池提供可控制的恒定充电电流或为电池提供可控制的恒定充电电压。
电量积分单元25用于根据充电电流,计算电池中积累的电量,即确定电池的SOC。
温度测量单元26用于测量电池的温度,可以采用热传感器实现。本申请实施例中,热传感器的具体布局可以参考现有技术中任意一种用于测量温度的热传感器的布局,本申请实施例对此不作具体限定。在实际应用中,电池的温度会影响电流弛豫时间。
可选的,充电装置还包括警告单元27。若控制单元23根据计算出的电流弛豫时间,确定电池老化/内短路,则发出警告。
可选的,充电装置还包括电池。
由于电池和警告单元27均是可选的,图2中采用虚线框表示。
上述各个单元是根据各自实现的功能进行划分的,也可以将上述两个或两个以上的单元集成在一个处理单元中。上述单元既可以采用硬件的形式实现,也可以采用软 件功能模块的形式实现。
需要说明的是,上述图2是对本申请实施例中充电装置的一种示意,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在硬件实现上,电流测量单元21可以是充电装置中的电流计,电压测量单元22可以是充电装置中的电压计,控制单元23以及电量积分单元25可以是充电装置中的处理器或所述处理器调用缓存中的程序来实现,充电单元24可以是充电装置中的受控电源,上述温度测量单元26可以是充电装置中的热传感器,上述警告单元27可以是充电装置的显示器或者警告指示灯。
以下,结合上述图2示出的充电装置对本申请实施例提供的充电方法进行详细描述。
参见图3,该充电方法包括:
S300、充电装置采用预设电流对电池进行恒流充电,直到电池的电压达到预充电终止电压。
具体的,在恒流充电过程中,充电装置中的电压测量单元实时测量这一过程中电池的电压。在电压测量单元测量出电池的电压达到预充电终止电压时,这一过程结束。
示例性的,预充电终止电压为3.5V,充电装置采用C/20的电流对电池进行恒流充电,直到电池的电压达到3.5V。
这一阶段为充电装置对电池进行充电的第一阶段,该阶段等同于上述图1中的涓流充电阶段。
在电池的电压达到预充电终止电压后,充电装置继续执行S301,S301相当于现有技术中充电装置对电池进行充电的第二阶段(如图1示出的恒流充电阶段)。
S301、充电装置在不同时间段采用不同的充电电压对电池进行恒压充电,直到电池的电压达到充电最大电压,或者,充电装置对电池进行恒压充电以及恒流充电,直到电池的电压达到充电最大电压。
可选的,充电装置在执行S300后,可以仅采用恒压充电的方式(不同时间段采用的充电电压不同)对电池进行充电,也可以采用恒压充电和恒流充电混合(如相互交替、恒流充电后在执行m(m≥2)次恒压充电等)的方式对电池进行充电,本申请实施例对此不作具体限定。
无论充电装置采用上述哪种方式对电池进行充电,在每个恒压充电的过程中,充电装置均确定电流弛豫时间,并根据电流弛豫时间以及电池的当前SOC,确定待充电电流。后续,充电装置采用待充电电流对电池进行恒流充电,或者,充电装置将与待充电电流对应的电压确定为待充电电压,并采用该待充电电压对电池进行恒压充电。
具体的,S301所描述的充电过程可以通过下述S301a~S301e表示。现在对S301a~S301e进行描述。
S301a、充电装置采用当前充电电压对电池进行恒压充电。
其中,当前充电电压大于预充电终止电压、且小于充电最大电压。
本申请实施例中的充电装置可以对电池进行多次恒压充电。在不同恒压充电的过程中充电装置采用的充电电压不同。当前充电电压是指在当前恒压充电的过程中,充电装置所采用的充电电压。
示例性的,如图6所示,在t 0到t 1的时间段内,充电装置采用电压V 0对电池进行恒压充电,则当前充电电压为V 0。在t 1到t 2的时间段内,充电装置采用电压V 1对电池进行恒压充电,则当前充电电压为V 1
S301b、在采用当前充电电压对电池进行恒压充电的过程中,充电装置确定电流弛豫时间。
这里,电流弛豫时间是指电流弛豫过程所发生的时长,电流弛豫过程是指在恒压充电阶段,充电电流指数下降的过程。
一般的,电流弛豫时间的数值随着电池的SOC、电池的SOH、电池的SOS、电池的温度等的变化而变化。
在采用当前充电电压对电池进行恒压充电的过程中,本申请实施例以从充电电流出现峰值的时刻起,到充电电流的数值为第二预设阈值或者充电电流的变化率小于预设变化率的时刻为止的时间段作为电流弛豫时间。当然,充电装置还可采用其他方式确定电流弛豫时间,本申请实施例对此不作具体限定。
示例性的,充电装置通过确定第一时刻和第二时刻,进而确定电流弛豫时间。其中,第一时刻为在采用当前充电电压对电池进行恒压充电的过程中,充电电流出现峰值的时刻;第二时刻为在采用当前充电电压对电池进行恒压充电的过程中,充电电流的数值为第二预设阈值的时刻或者为充电电流的变化率小于或等于预设变化率的时刻。第一时刻早于第二时刻。
如图6所示,在采用该充电电压V1对电池进行恒压充电的过程中,若充电电流在t 1时刻出现峰值I 2,在t 2时刻充电电流的变化率小于预设变化率,则将t 1时刻到t 2时刻的时长确定为电流弛豫时间τ,也就是说,τ=t 2-t 1
本申请实施例中的第二预设阈值和预设变化率的数值可以根据需求预先配置。
同理,图7、图8、图9也示出了某一恒压充电过程中的电流弛豫时间τ。计算电流弛豫时间的原理基本一致,因此,这里不再对图7、图8、图9示出的电流弛豫时间τ进行描述。
S301c、充电装置获取电池的当前SOC,并根据电流弛豫时间和电池的当前SOC,计算待充电电流。
电池的当前SOC是指:在电流弛豫时间开始的时刻,电池的SOC。结合图6,在采用该充电电压V 1对电池进行恒压充电的过程中,电池的当前SOC为t 1时刻电池的SOC。
可选的,充电装置可以根据充放电电压荷电状态曲线,将电压值转换为电池的SOC,从而获取到电池的当前SOC,也可以将充电电流进行积分计算,以获取电池的当前SOC,还可以采用其他技术手段确定电池的当前SOC,本申请实施例对此不作具体限定。
充电装置在获取到电池的当前SOC和电流弛豫时间后,计算待充电电流和待充电电压。
在一个示例中,充电装置根据下述公式计算待充电电流I:
I=C+K×τ M(SOC)     (1)
公式(1)中,τ表示电流弛豫时间,SOC表示电池的当前荷电状态,K为比例 系数,C为大于或等于0的常数,M为指数系数,M≠0。
充电参数包括上述常数C、比例系数K、指数系数M中的至少一个。充电参数的数值可以为预先设置的(即为固定值),也可以是根据电池参数设置的(即根据电池参数发生变化)。
这里,电池参数包括电池的当前SOC、电池的当前健康状态(state of health,SOH)、电流弛豫时间、电池的当前温度、电池的当前安全状态(state of safety,SOS)中的至少一个。
在常数C、比例系数K以及指数系数M的数值均为固定值的情况下,充电装置可以应用公式(1)基于电流驰豫时间τ以及电池的当前SOC的变化,自适应地调整充电电流I。
在充电参数的数值根据电池参数发生变化的情况下,充电装置根据电池参数的变化,调整充电参数的数值,进而根据调整后的充电参数,自适应调整充电电流。
在一种可选的实现方式中,充电参数的数值或取值范围取决于电池的温度。
例如,当电池的温度低于常温(如25℃)时,以石墨作为负极材料的锂离子电池的扩散速率较小,此时,充电装置可以采用相对较小的充电电流对电池进行充电。当电池的温度高于常温(25℃)高时,以石墨作为负极材料的锂离子电池的扩散速率较大,此时,充电装置可以采用相对较大的充电电流对电池进行充电。
相应的,充电装置可以基于电池的温度对充电参数的数值和/或取值范围进行调整。
在另一种可选的实现方式中,充电参数的数值或取值范围取决于电池的当前SOC。
例如,对于以钴酸锂作为正极材料的锂离子二次电池,当电池的当前SOC小于50%时,锂离子从钴酸锂材料脱出的扩散速率较大,充电装置可以采用相对较大的充电电流对该电池进行充电;当电池的当前SOC高于50%时,锂离子从钴酸锂材料脱出的扩散速率较小。因此,充电装置可以采用相对较小的充电电流对该电池进行充电。
相应的,充电装置可以基于电池的当前SOC对充电参数的数值和/或取值范围进行调整。
在另一种可选的实现方式中,充电参数的数值或取值范围取决于电池的当前SOH。
示例性的,充电装置获取电池的当前SOH的方法为:充电装置测量电池的电流弛豫时间τ,并获取电流弛豫时间τ的变化曲线(如图4所示);然后,充电装置对比在相同SOC的情况下,健康电池与老化电池的电池驰豫时间τ的变化值,以确定电池的当前SOH。
充电装置在确定出电池的当前SOH后,可以根据该电池的当前SOH适应调整充电参数。
在另一种可选的实现方式中,充电参数的数值或取值范围取决于电池的当前SOS。
示例性的,充电装置获取电池的当前SOS的方法为:充电装置获取电池的当前SOS的方法为:充电装置测量电池的电流弛豫时间τ,并获取电流弛豫时间τ的变化曲线(如图5所示);然后,充电装置对比在相同SOC的情况下,安全电池与内短路电池的电池驰豫时间τ的变化值,以确定电池的当前SOS。
电池的SOS在一定程度影响着充电参数的数值变化。例如,当电池出现微短路现象时,其自放电率增加,电池内部扩散路径出现变化,如电极反应面积,最终导致电 池的电极动力学行为发生变化,相应的,充电参数的数值发生变化。
充电装置在确定出电池的当前SOS后,可以根据该电池的当前SOS适应调整充电参数。
在另一示例中,充电装置根据下述公式计算待充电电流I:
I=C+K×(1+τ(SOC)+τ 2(SOC)+……+τ N(SOC))    (2)
公式(2)中,τ表示电流弛豫时间,SOC表示电池的当前荷电状态,K为比例系数,C为大于或等于0的常数,N为多项式系数,N≠0。
在充电装置采用公式(2)计算待充电电流的场景中,充电参数包括上述常数C、比例系数K、多项式系数N中的至少一个。与上述描述相同,该充电参数的数值可以为固定值,也可以根据电池参数发生变化。
需要说明的是,上述公式(1)和公式(2)仅仅是对本申请实施例中“充电装置根据电流弛豫时间和电池的当前SOC,计算待充电电流”的示例说明,并不是对充电装置计算待充电电流的方法的限定。除了上述公式(1)和公式(2)之外,还可以利用其它公式计算待充电电流。
在执行S301c之后,充电装置执行S301d或S301e。
需要说明的是,在实际应用中,充电装置可根据配置或实际需求在执行S301c之后,执行S301d或S301e。
若下一充电阶段为恒流充电阶段,则充电装置直接利用计算出的待充电电流进行恒流充电即可,即执行S301d。
若下一充电阶段为恒压充电阶段,则充电装置在确定出待充电电流后,通过逐步抬升电压的方式,使得充电电流达到待充电电流,相应的,充电装置将此时的电压(即与待充电电流对应的电压)确定为待充电电压,并采用待充电电压对电池进行恒压充电,即执行S301e。
S301d、充电装置采用待充电电流对电池进行恒流充电。
容易理解的是,在恒流充电过程中,对着时间的流逝,电池的电压会随之变大。
若在恒流充电过程中,电池的电压达到第一预设阈值(第一预设阈值的电压小于充电最大电压),则充电装置将第一预设阈值的电压确定为待充电电压,并执行下述S301e。这里,第一预设阈值为预先配置的电压值。在实际应用中,可以根据需求预先配置第一预设阈值。
若在恒流充电过程中,电池的电压达到充电最大电压,则充电装置执行S302。
S301e、充电装置采用待充电电压对电池进行恒压充电。
充电装置采用待充电电压对电池进行恒压充电的过程中,待充电电压为当前充电电压。若待充电电压小于充电最大电压,则在该恒压充电的过程中,充电装置重复执行上述S301a、S301b以及S301c,直到待充电电压达到充电最大电压。
若待充电电压达到充电最大电压,则充电装置执行S302。
综上,由于在执行S301c之后,充电装置可执行S301d或S301e。因此,若采用本申请实施例提供的充电方法对电池进行充电,则电池的电流和电压的曲线图可以如图6所示,也可以如图7所示,也可以如图8所示,还可以如图9所示。
当然,图6~图9仅仅是采用本申请实施例提供的充电方法对电池进行充电时,电 池的电流和电压的曲线图的示例,并不是对电池的电流和电压的曲线图的限定。
如图6所示,在电池的电压达到预充电终止电压(如V 0)后,充电装置在不同时间段采用不同的充电电压,对电池进行恒压充电,直到充电电压达到充电最大电压。在每一恒压充电的阶段,充电电流的数值下降,充电装置确定该阶段的电流弛豫时间,进而根据电流弛豫时间,计算下一充电阶段的待充电电流,并根据该待充电电流确定待充电电压。
如图7所示,在电池的电压达到预充电终止电压(如V 0)后,充电装置采用充电恒压充电和恒流充电相互交替的方式对电池进行充电,直到充电电压达到充电最大电压。
如图8所示,在电池的电压达到预充电终止电压(如V 0)后,充电装置先采用恒流充电的方式对电池进行充电,然后采用恒压充电的方式对电池进行充电,直到充电电压达到充电最大电压。
如图9所示,在电池的电压达到预充电终止电压(如V 0)后,充电装置先采用恒压充电的方式对电池进行充电,然后采用恒流充电和恒压充电混合的方式对电池进行充电,直到充电电压达到充电最大电压。
对于图7、图8、图9而言,在每一恒压充电的阶段,充电电流的数值下降,充电装置确定该阶段的电流弛豫时间,进而根据电流弛豫时间,计算下一充电阶段的待充电电流。在每一恒流充电的阶段,在电池的电压达到某一阈值后,充电装置采用该数值为该阈值的电压对电池进行恒压充电。
需要说明的是,本申请实施例对充电装置执行恒流充电的次数和恒压充电的次数不限定。上述图6~图9仅仅是对充电过程的示例,并不是对充电过程的限定。
在实际应用中,需要根据需求或者配置,确定充电装置执行恒流充电的次数以及恒压充电的次数。
可选的,在充电电压从预充电终止电压到充电最大电压的过程中,充电装置可以以时间T、电池的当前SOC、电池的电压为单位,对电流弛豫时间进行监视、测量、计算,进而调整待充电电流和待充电电压。
S302、充电装置采用充电最大电压对电池进行恒压充电,直到电池的电量达到满充电量。
满充电量是指电池充满电时的电量。
由于充电电压已经达到充电最大电压,因此,充电装置无法改变该充电电压。在充电装置采用充电最大电压对电池进行充电的过程中,随着时间的流逝,充电电流逐渐减小。当电流小于某一预定值(如0.05C)时,确定电池的电量达到满充电量,这样,电池的充电过程结束。
充电电流的变化对应着电池电极表面的电化学反应速率的变化,因此,电流弛豫时间可以反映出电池内部电化学反应速率的变化。本申请实施例中的充电装置根据电流弛豫时间调整充电电流和充电电压,自适应地对电池进行充电,能够较好的适应充电过程中电池内部的变化,有效的提高了在充电过程中电池的安全可靠性,延长了电池的循环性能以及寿命。
示例性的,当电流弛豫时间大于某一阈值时,充电装置增大待充电电流;当电流 弛豫时间小于该阈值时,充电装置减小待充电电流,进而控制充电速度,有效的提高了电池的循环性能,延长了电池的寿命。
此外,在充电过程中,本申请实施例的充电装置在计算出电流弛豫时间后,还可以根据计算出的电流弛豫时间,确定电池是否老化/是否发生内短路,以提高电池的安全性,延长电池的寿命。
如图10所示,本申请实施例提供的充电方法包括:
S100、充电装置采用当前充电电压对电池进行恒压充电。
S100可以参考上述S301a。
S101、在采用当前充电电压对电池进行恒压充电的过程中,充电装置确定电流弛豫时间。
S101可以参考上述S301b。
S102、充电装置根据电流弛豫时间,确定电池是否老化/内短路。
可选的,充电装置获取电池的当前SOC,并将计算出的电流弛豫时间与健康状态的电池在当前SOC下的电流弛豫时间进行比较,并根据比较结果确定电池是否老化/内短路。
在一个示例中,结合图4可以看出,对于同一SOC,若“计算出的电流弛豫时间”大于“健康状态的电池在当前SOC下的电流弛豫时间”,且二者之间的差值大于某一阈值(如阈值1),则确定电池老化。
在另一个示例中,结合图5可以看出,对于同一SOC而言,内短路电池的电流弛豫时间的数值小于或等于安全电池的电流弛豫时间。因此,对于同一SOC,若“计算出的电流弛豫时间”小于“健康状态的电池在当前SOC下的电流弛豫时间”,且二者之间的差值大于某一阈值(如阈值2),则确定电池内短路。
S103、若电池老化/内短路,充电装置发出警告或者停止充电。
可以看出,在充电过程中,充电装置根据电流弛豫时间,能够确定出电池是否发生老化/内短路,有效的提高了充电过程中电池的安全可靠性。
容易理解的是,若电池未老化/未内短路,充电装置则采用图3示出的充电方法对电池进行充电。
综上,采用本申请实施例提供的充电方法,有效的提高充电过程中电池的安全可靠性,延长电池的循环性能以及寿命。
本申请实施例提供一种充电装置,该充电装置可以为各种类型的充电设备,也可以为充电设备中的部分装置,例如充电设备中的芯片系统。可选的,该芯片系统,用于支持充电设备实现上述方法实施例中所涉及的功能,例如,确定上述方法中所涉及的数据和/或信息。该芯片系统包括芯片,也可以包括其他分立器件或电路结构。
该充电装置用于执行以上充电方法中的充电装置所执行的步骤。本申请实施例提供的充电装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对充电装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际 实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,上述图2示出了本实施例中充电装置的一种可能的结构示意图。
在硬件实现上,图11示出了本申请实施例提供的充电装置的组成示意图。如图11所示,该充电装置可以包括至少一个处理器111,存储器112、通信总线113。下面结合图11对充电装置的各个构成部件进行具体的介绍:
处理器111是充电装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器111是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器111可以通过运行或执行存储在存储器112内的软件程序,以及调用存储在存储器112内的数据,执行充电装置的各种功能。
在具体的实现中,作为一种实施例,处理器111可以包括一个或多个CPU,例如图11中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,充电装置可以包括多个处理器,例如图11中所示的处理器111和处理器114。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器112可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器112可以是独立存在,通过通信总线113与处理器111相连接。存储器112也可以和处理器111集成在一起。
其中,存储器112用于存储执行本申请方案的软件程序,并由处理器111来控制执行。
通信总线113,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
需要指出的是,图11中示出的设备结构并不构成对该充电装置的限定,除图11所示部件之外,该充电装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
例如,本申请实施例提供的充电装置还可以包括通信接口、受控电源、电流计、电压计、热传感器中的至少一种。通信接口用于为电池提供充电端口,受控电源用于为电流提供恒压电源或恒流电源,电流计用于测量充电电流,电压计用于测量充电电压,热传感器用于测量电池的温度。
本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在充电装置上运行时,该充电装置执行如图3或图10所示的充电方法。
在本申请的另一实施例中,还提供一种包含指令的计算机程序产品,该计算机程序产品包括计算机执行指令,充电设备读取并执行该计算机执行指令,使得充电装置执行如图3或图10所示的实施例的充电方法。
本申请实施例还提供一种控制电路。该控制电路包括处理器和存储器,该存储器用于存储计算机执行指令,当控制电路运行时,处理器执行存储器存储的计算机执行指令,使得控制电路执行如图3或图10所示的实施例的充电方法。
结合上述图2,控制电路可以与图2中的控制单元23对应。
示例性的,控制电路为充电装置中的芯片系统。可选的,该芯片系统,用于支持充电装置实现上述方法实施例中所涉及的功能,例如,确定上述方法中所涉及的数据和/或信息。该芯片系统包括芯片,也可以包括其他分立器件或电路结构。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据终端。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘solid state disk(SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种充电方法,应用于为电池充电的充电装置,其特征在于,所述充电方法包括:
    步骤A、采用当前充电电压对所述电池进行恒压充电,所述当前充电电压大于所述电池的预充电终止电压、且小于所述电池的充电最大电压,所述充电最大电压用于表征所述电池的正极材料、电解液或正极集流体的耐压值,所述预充电终止电压为所述电池处于正常放电状态和过放电状态的电压临界值;
    步骤B、在采用所述当前充电电压对所述电池进行恒压充电的过程中,确定电流弛豫时间,所述电流弛豫时间用于反映所述电池内部电化学反应速率的变化;
    步骤C、获取所述电池的当前荷电状态SOC,并根据所述电流弛豫时间和所述电池的当前SOC,计算待充电电流;执行下述步骤D,或者,将与所述待充电电流对应的电压确定为待充电电压并执行下述步骤E;
    步骤D、采用所述待充电电流对所述电池进行恒流充电;若在恒流充电过程中,所述电池的电压达到第一预设阈值,则将第一预设阈值的电压确定为待充电电压,并执行下述步骤E,所述第一预设阈值的电压小于所述充电最大电压;若在恒流充电过程中,所述电池的电压达到所述充电最大电压,则采用所述充电最大电压对所述电池进行恒压充电,直到所述电池的电量达到满充电量;
    步骤E、采用所述待充电电压对所述电池进行恒压充电,并在恒压充电过程中,重复执行所述步骤A、所述步骤B和所述步骤C,直到所述待充电电压达到所述充电最大电压,则采用所述充电最大电压对所述电池进行恒压充电,直到所述电池的电量达到满充电量;
    其中,所述满充电量为所述电池充满电时的电量。
  2. 根据权利要求1所述的充电方法,其特征在于,所述确定电流弛豫时间,具体包括:
    确定第一时刻和第二时刻;所述第一时刻为在采用所述当前充电电压对所述电池进行恒压充电的过程中,充电电流出现峰值的时刻;所述第二时刻为在采用所述当前充电电压对所述电池进行恒压充电的过程中,所述充电电流的数值为第二预设阈值的时刻或者为所述充电电流的变化率小于预设变化率的时刻,所述第一时刻早于所述第二时刻;
    根据所述第一时刻和所述第二时刻,确定所述电流弛豫时间。
  3. 根据权利要求1或2所述的充电方法,其特征在于,所述根据所述电流弛豫时间和所述电池的当前SOC,计算待充电电流,具体包括:
    根据公式I=C+K×τ M(SOC)计算所述待充电电流;其中,I表示所述待充电电流,τ表示所述电流弛豫时间,SOC表示所述电池的当前荷电状态,K为比例系数,C为大于或等于0的常数,M为指数系数,M≠0,充电参数包括所述常数C、所述比例系数K、所述指数系数M中的至少一个,所述充电参数为预先设置的或者是根据电池参数设置的,所述电池参数包括所述电池的当前SOC、所述电池的当前健康状态SOH、所述电流弛豫时间、所述电池的当前温度、所述电池的当前安全状态SOS中的至少一个。
  4. 根据权利要求3所述的充电方法,其特征在于,若所述充电参数是根据电池参数设置的,所述充电方法还包括:
    根据电池参数调整所述充电参数。
  5. 一种充电装置,所述充电装置用于为电池充电,其特征在于,所述充电装置包括控制单元、充电单元以及电量积分单元;其中,
    所述充电单元,用于在所述控制单元的控制下,对所述电池进行恒压充电或恒流充电;
    所述电量积分单元,用于确定所述电池的荷电状态SOC;
    所述控制单元用于执行步骤A、步骤B、步骤C、步骤D、步骤E;
    其中,所述步骤A为:控制所述充电单元采用当前充电电压对所述电池进行恒压充电,所述当前充电电压大于所述电池的预充电终止电压、且小于所述电池的充电最大电压,所述充电最大电压用于表征所述电池的正极材料、电解液或正极集流体的耐压值,所述预充电终止电压为所述电池处于正常放电状态和过放电状态的电压临界值;
    所述步骤B为:在控制所述充电单元采用所述当前充电电压对所述电池进行恒压充电的过程中,确定电流弛豫时间,所述电流弛豫时间用于反映所述电池内部电化学反应速率的变化;
    所述步骤C为:从所述电量积分单元获取所述电池的当前荷电状态SOC,并根据所述电流弛豫时间和所述电池的当前SOC,计算待充电电流;执行下述步骤D,或者,将与所述待充电电流对应的电压确定为待充电电压并执行下述步骤E;
    所述步骤D为:控制所述充电单元采用所述待充电电流对所述电池进行恒流充电;若在恒流充电过程中,所述电池的电压达到第一预设阈值,则将第一预设阈值的电压确定为待充电电压,并执行下述步骤E,所述第一预设阈值的电压小于所述充电最大电压;若在恒流充电过程中,所述电池的电压达到所述充电最大电压,则采用所述充电最大电压对所述电池进行恒压充电,直到确定所述电池的电量达到满充电量;
    所述步骤E为:控制所述充电单元采用所述待充电电压对所述电池进行恒压充电,并在恒压充电过程中,重复执行所述步骤A、所述步骤B和所述步骤C,直到所述待充电电压达到所述充电最大电压,则采用所述充电最大电压对所述电池进行恒压充电,直到所述电池的电量达到满充电量;
    所述满充电量为所述电池充满电时的电量。
  6. 根据权利要求5所述的充电装置,其特征在于,所述控制单元用于确定电流弛豫时间,包括:
    所述控制单元,具体用于确定第一时刻和第二时刻,所述第一时刻为在控制所述充电单元采用所述当前充电电压对所述电池进行恒压充电的过程中,充电电流出现峰值的时刻,所述第二时刻为在采用所述当前充电电压对所述电池进行恒压充电的过程中,所述充电电流的数值为第二预设阈值的时刻或者为所述充电电流的变化率小于预设变化率的时刻;根据所述第一时刻和所述第二时刻,确定所述电流弛豫时间,所述第一时刻早于所述第二时刻。
  7. 根据权利要求5或6所述的充电装置,其特征在于,所述控制单元用于根据所述电流弛豫时间和所述电池的当前SOC,计算待充电电流,包括:
    所述控制单元,具体用于根据公式I=C+K×τ M(SOC)计算所述待充电电流;其中,I表示所述待充电电流,τ表示所述电流弛豫时间,SOC表示所述电池的当前荷电状态,K为比例系数,C为大于或等于0的常数,M为指数系数,M≠0,充电参数包括所述常数C、所述比例系数K、所述指数系数M中的至少一个,所述充电参数为预先设置的或者是根据电池参数设置的,所述电池参数包括所述电池的当前SOC、所述电池的当前健康状态SOH、所述电流弛豫时间、所述电池的当前温度、所述电池的当前安全状态SOS中的至少一个。
  8. 根据权利要求7所述的充电装置,其特征在于,若所述充电参数是根据电池参数设置的,所述控制单元还用于,根据电池参数调整所述充电参数。
  9. 一种充电装置,其特征在于,所述充电装置包括处理器和存储器;所述存储器用于存储计算机执行指令,当所述充电装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述充电装置执行如权利要求1-4中任意一项所述的充电方法。
  10. 一种控制电路,其特征在于,所述控制电路包括处理器和存储器;所述存储器用于存储计算机执行指令,当所述控制电路运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述控制电路执行如权利要求1-4中任意一项所述的充电方法。
PCT/CN2019/107321 2018-12-10 2019-09-23 一种充电方法及装置 WO2020119216A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19896022.1A EP3890097B1 (en) 2018-12-10 2019-09-23 Charging method and device
US17/342,878 US20210296921A1 (en) 2018-12-10 2021-06-09 Charging Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811506444.7A CN111293739B (zh) 2018-12-10 2018-12-10 一种充电方法及装置
CN201811506444.7 2018-12-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/342,878 Continuation US20210296921A1 (en) 2018-12-10 2021-06-09 Charging Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020119216A1 true WO2020119216A1 (zh) 2020-06-18

Family

ID=71027503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107321 WO2020119216A1 (zh) 2018-12-10 2019-09-23 一种充电方法及装置

Country Status (4)

Country Link
US (1) US20210296921A1 (zh)
EP (1) EP3890097B1 (zh)
CN (1) CN111293739B (zh)
WO (1) WO2020119216A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952052A1 (en) * 2020-08-07 2022-02-09 Beijing Xiaomi Mobile Software Co., Ltd. Charging control method, charging control device and storage medium
CN114512733A (zh) * 2022-01-21 2022-05-17 厦门大学 一种提升锂硫电池电化学性能的方法
EP4020751A1 (en) * 2020-12-23 2022-06-29 Prime Planet Energy & Solutions, Inc. Battery control device and mobile battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293739B (zh) * 2018-12-10 2022-05-17 华为技术有限公司 一种充电方法及装置
CN113728528B (zh) * 2020-12-18 2023-10-13 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
JP7209450B2 (ja) * 2021-02-15 2023-01-20 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスの自己放電検査方法及び蓄電デバイスの製造方法
CN112952883B (zh) * 2021-04-22 2023-02-07 国网甘肃省电力公司电力科学研究院 一种分布式储能系统的充电控制方法及系统
CN113364835A (zh) * 2021-05-24 2021-09-07 苏州优博达机器人有限公司 一种共享移动电源的云管理系统以及管理方法
CN113525117A (zh) * 2021-08-13 2021-10-22 泉州市贝瓦电子技术有限公司 一种智能反馈电池健康状态的系统和方法
CN114142549A (zh) * 2021-10-29 2022-03-04 深圳市普渡科技有限公司 一种自适应充电方法、充电器及存储介质
CN117642952A (zh) * 2022-06-23 2024-03-01 宁德时代新能源科技股份有限公司 充电控制方法、充电控制装置、电子设备及存储介质
CN117117358A (zh) * 2023-02-25 2023-11-24 荣耀终端有限公司 一种电池处理方法和电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561360A (en) * 1994-05-02 1996-10-01 General Motors Corporation Battery cycle life improvements through bifurcated recharge method
CN102057553A (zh) * 2008-04-11 2011-05-11 苹果公司 扩散限制的适应性电池充电
CN102906961A (zh) * 2010-05-21 2013-01-30 奇诺沃公司 自适应地给电池/电池单元充电的方法和电路系统
US20150028819A1 (en) * 2013-07-29 2015-01-29 Leadtrend Technology Corporation Methods for charging a rechargeable battery
CN105548889A (zh) * 2014-10-24 2016-05-04 奇诺沃公司 用于估计电池的膨胀的方法和系统及自适应充电技术
CN105932734A (zh) * 2016-05-18 2016-09-07 成都雅骏新能源汽车科技股份有限公司 一种多级恒压间歇式充电控制方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080150491A1 (en) * 2004-02-25 2008-06-26 Koninklijke Philips Electronics, N.V. Method Of Estimating The State-Of-Charge And Of The Use Time Left Of A Rechageable Battery, And Apparatus For Executing Such A Method
JP2006286562A (ja) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd 二次電池の充電方法
JP2007215309A (ja) * 2006-02-08 2007-08-23 Sanyo Electric Co Ltd パック電池の制御方法
JP4509040B2 (ja) * 2006-02-08 2010-07-21 三洋電機株式会社 パック電池の制御方法
FR2916099B1 (fr) * 2007-05-11 2009-07-31 Commissariat Energie Atomique Procede de charge d'une batterie d'un systeme autonome
US8193778B2 (en) * 2007-07-13 2012-06-05 Sanyo Electric Co., Ltd. Method of charging a battery array
EP2065997B1 (en) * 2007-11-29 2011-07-13 National University of Ireland Galway Battery charger and method
US11397216B2 (en) * 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using a battery model
US11397215B2 (en) * 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using battery physical phenomena
JP5949510B2 (ja) * 2012-12-10 2016-07-06 アイコム株式会社 充電制御装置および充電制御方法
DE102013105119B4 (de) * 2013-05-17 2016-03-03 H-Tech Ag Verfahren und Vorrichtung zum Laden von wiederaufladbaren Zellen
EP2860842B1 (en) * 2013-10-11 2019-04-24 Dialog Semiconductor GmbH Method for charging a battery
JP6289899B2 (ja) * 2013-12-26 2018-03-07 株式会社東芝 非水電解質電池、組電池及び蓄電池装置
US20160020618A1 (en) * 2014-07-21 2016-01-21 Ford Global Technologies, Llc Fast Charge Algorithms for Lithium-Ion Batteries
US20160099593A1 (en) * 2014-10-03 2016-04-07 Infineon Technologies Austria Ag Battery charge state evaluation coincident with constant current charging
CN105738815B (zh) * 2014-12-12 2019-10-22 国家电网公司 一种在线检测锂离子电池健康状态的方法
KR102530220B1 (ko) * 2016-01-06 2023-05-09 삼성전자주식회사 배터리 충전 방법 및 배터리 충전 장치
CN107508008A (zh) * 2016-06-14 2017-12-22 中兴通讯股份有限公司 终端的充电方法和装置
KR101792975B1 (ko) * 2017-04-25 2017-11-02 한국기술교육대학교 산학협력단 수치적 시뮬레이션 데이터 기반 배터리의 수명 상태 예측 방법
US11258285B2 (en) * 2017-06-06 2022-02-22 The Regents Of The University Of Michigan User aware charging algorithm that reduces battery fading
CN109768587B (zh) * 2017-11-10 2022-03-04 马克西姆综合产品公司 电池充电器及相关联系统和方法
EP3721529A1 (en) * 2017-12-07 2020-10-14 Yazami Ip Pte. Ltd. Non-linear voltammetry-based method for charging a battery and fast charging system implementing this method
EP3763013A1 (en) * 2017-12-07 2021-01-13 Yazami Ip Pte. Ltd. Non-linear voltammetry-based method for charging a battery and fast charging system implementing this method
US11791504B2 (en) * 2018-03-30 2023-10-17 Panasonic Energy Co., Ltd. Battery pack and charging control method therefor
GB2578828B (en) * 2018-10-22 2021-03-10 O2Micro Inc Managing power in a portable device comprising multiple batteries
CN111211587A (zh) * 2018-11-21 2020-05-29 联正电子(深圳)有限公司 一种均衡电路、充电装置及储能装置
CN111293739B (zh) * 2018-12-10 2022-05-17 华为技术有限公司 一种充电方法及装置
TWI707521B (zh) * 2019-07-01 2020-10-11 飛宏科技股份有限公司 智慧型交流/直流最大功率電池充電管理方法
US20220190614A1 (en) * 2020-07-21 2022-06-16 Purdue Research Foundation System and methods for rechargeable battery diagnostics
KR20230009660A (ko) * 2021-07-09 2023-01-17 현대자동차주식회사 차량용 배터리 진단 방법 및 시스템
WO2023004716A1 (zh) * 2021-07-29 2023-02-02 宁德时代新能源科技股份有限公司 充放电装置、电池充电和放电的方法、以及充放电系统
CN117242621A (zh) * 2022-04-28 2023-12-15 宁德时代新能源科技股份有限公司 电池系统的充电控制方法和充电控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561360A (en) * 1994-05-02 1996-10-01 General Motors Corporation Battery cycle life improvements through bifurcated recharge method
CN102057553A (zh) * 2008-04-11 2011-05-11 苹果公司 扩散限制的适应性电池充电
CN102906961A (zh) * 2010-05-21 2013-01-30 奇诺沃公司 自适应地给电池/电池单元充电的方法和电路系统
US20150028819A1 (en) * 2013-07-29 2015-01-29 Leadtrend Technology Corporation Methods for charging a rechargeable battery
CN105548889A (zh) * 2014-10-24 2016-05-04 奇诺沃公司 用于估计电池的膨胀的方法和系统及自适应充电技术
CN105932734A (zh) * 2016-05-18 2016-09-07 成都雅骏新能源汽车科技股份有限公司 一种多级恒压间歇式充电控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952052A1 (en) * 2020-08-07 2022-02-09 Beijing Xiaomi Mobile Software Co., Ltd. Charging control method, charging control device and storage medium
EP4020751A1 (en) * 2020-12-23 2022-06-29 Prime Planet Energy & Solutions, Inc. Battery control device and mobile battery
CN114512733A (zh) * 2022-01-21 2022-05-17 厦门大学 一种提升锂硫电池电化学性能的方法
CN114512733B (zh) * 2022-01-21 2024-02-27 厦门大学 一种提升锂硫电池电化学性能的方法

Also Published As

Publication number Publication date
EP3890097A1 (en) 2021-10-06
EP3890097B1 (en) 2023-11-01
CN111293739B (zh) 2022-05-17
CN111293739A (zh) 2020-06-16
EP3890097A4 (en) 2022-01-19
US20210296921A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020119216A1 (zh) 一种充电方法及装置
US10468900B2 (en) Management of high-voltage lithium-polymer batteries in portable electronic devices
KR102634816B1 (ko) 배터리의 전하 균형을 탐지하는 배터리 모니터링 장치 및 방법
US10084333B2 (en) Charging method, power adapter, mobile terminal, and charging system
US11159039B2 (en) Apparatus and method for battery charging with lithium plating detection and battery degradation detection and separation
EP3872957B1 (en) Charging method, electronic apparatus, and storage medium
US9231282B2 (en) Method of receiving a potential value of a negative electrode to charge a lithium-ion cell
US9197096B2 (en) Charging techniques for solid-state batteries in portable electronic devices
US11063306B2 (en) Lithium-ion battery cut-off voltage adjustment
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
US20220190626A1 (en) Charging control method and charging control apparatus
WO2021077273A1 (zh) 充电方法、电子装置以及存储介质
US20210328449A1 (en) Battery charging method and apparatus
TW201503464A (zh) 電池模組
US20210119461A1 (en) Electronic device and method for charging battery
CN103872727A (zh) 一种锂离子动力电池最大使用电流的确定方法
WO2023015501A1 (zh) 一种充电电流的测试方法、装置及充电测试系统
WO2021077274A1 (zh) 充电方法、电子装置以及存储介质
KR20160063757A (ko) 배터리 충전방법 및 이를 이용한 배터리 팩
TW201527940A (zh) 整合式行動電源
WO2023000739A1 (zh) 电池充电方法及电路、多电芯电池、终端设备与电子设备
WO2023272661A1 (zh) 电化学装置、充电装置、充电方法、系统及电子装置
CN109586373B (zh) 一种电池充电方法和装置
Yang et al. Residual Capacity Estimation for Lead–Acid Batteries Used in Automobiles by the Method of Median Internal Resistance
CN116027205A (zh) 一种容量衰减系数确定方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019896022

Country of ref document: EP

Effective date: 20210630