WO2023015501A1 - 一种充电电流的测试方法、装置及充电测试系统 - Google Patents

一种充电电流的测试方法、装置及充电测试系统 Download PDF

Info

Publication number
WO2023015501A1
WO2023015501A1 PCT/CN2021/112141 CN2021112141W WO2023015501A1 WO 2023015501 A1 WO2023015501 A1 WO 2023015501A1 CN 2021112141 W CN2021112141 W CN 2021112141W WO 2023015501 A1 WO2023015501 A1 WO 2023015501A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
tested
current
state
Prior art date
Application number
PCT/CN2021/112141
Other languages
English (en)
French (fr)
Inventor
刘智
王羽臻
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/112141 priority Critical patent/WO2023015501A1/zh
Priority to CN202180080186.4A priority patent/CN116529620A/zh
Priority to EP21904626.5A priority patent/EP4160234A4/en
Priority to US17/831,359 priority patent/US20230064748A1/en
Publication of WO2023015501A1 publication Critical patent/WO2023015501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular, to a charging current testing method, device and charging testing system.
  • the most common approach is to fabricate a three-electrode cell with a reference electrode to study the current and its relationship to the state of charge. Specifically, during the charging process of the battery, the voltage of the negative electrode to the reference electrode is monitored, that is, the change of the anode potential. It is generally believed that the battery is charged with the current I0.
  • SOC State Of Charge, state of charge
  • the charging current I0 at this time is defined as the maximum charging current allowed when the battery is charged to A%SOC.
  • the above method is only suitable for laminated batteries with simple structure and small capacity.
  • the placement and manufacturing method of the reference electrode will have a significant impact on the test results of current and state of charge.
  • the purpose of the embodiments of the present application is to provide a charging current testing method, device and charging testing system, so as to easily and accurately test the corresponding relationship between the charging current and the maximum state of charge value.
  • an embodiment of the present application provides a charging current testing method, including: at a first temperature, charging the battery to be tested with a first current until the battery to be tested is charged to a preset cut-off voltage, at which time During the charging process of the battery to be tested, the charging is stopped whenever the increment of the state of charge value of the battery to be tested reaches a preset value, and the charging is continued after the duration of the stopped charging reaches the first preset duration; the calculated The impedance of the battery to be tested during the first preset time period; based on the impedance, determine the maximum state of charge value allowed to be reached by charging with the first current at the first temperature.
  • the charging is stopped whenever the increment of the state of charge value of the battery to be tested reaches a preset value, Continue charging after the duration of stopping charging reaches the first preset time length, and determine the maximum charge allowed by charging with the first current at the first temperature by calculating the impedance during each first preset time length status value. In this way, the change in impedance of the battery under test during charging can be determined. Wherein, through the impedance change, it can be determined whether a side reaction occurs in the battery to be tested, and then the corresponding relationship between the charging current of the battery to be tested and the state of charge value can be accurately determined.
  • the above method does not need to make a special three-electrode battery, and can directly test most of the commercial batteries on the market.
  • this method takes into account the temperature factor, thereby improving the accuracy of the test results.
  • this method can also test batteries in any aging state, and has a wide range of applications.
  • the impedance (the voltage of the battery to be tested when the charging is stopped-the voltage of the battery to be tested after the charging is stopped for the first preset duration. The voltage of the battery)/the first current.
  • the maximum state-of-charge value allowed to be achieved by charging with the first current at the first temperature is determined based on the impedance , including: acquiring the state of charge value corresponding to each of the impedances; when after a preset state of charge value, the impedance corresponding to the latter state of charge value is smaller than the impedance corresponding to the previous state of charge value for the first time, determining the The maximum SOC value is the previous SOC value.
  • the impedance of the battery to be tested will decrease during the first preset time period after the preset state of charge value.
  • the maximum state-of-charge value allowed to be achieved by charging with the first current at the first temperature is determined based on the impedance , including: obtaining the state of charge value corresponding to each of the impedances; when after the preset state of charge value, the impedance corresponding to the latter state of charge value is greater than the impedance corresponding to the previous state of charge value, determine the The maximum state of charge value is a state of charge value corresponding to the preset cut-off voltage.
  • the impedance of the battery to be tested during the first preset time period will show a monotonically increasing trend.
  • the impedance corresponding to the latter state of charge value is greater than the impedance corresponding to the previous state of charge value after the preset state of charge value, determine that the maximum state of charge value is the charge corresponding to the preset cut-off voltage.
  • the state of charge value is the maximum state of charge value allowed to be achieved when the battery to be tested is charged with the first current at the first temperature.
  • the method before charging the battery to be tested with the first current at the first temperature, the method further includes: obtaining the battery to be tested Actual capacity at room temperature: discharging the battery to be tested after standing at room temperature for a second preset period of time until the voltage of the battery to be tested reaches a lower limit cut-off voltage.
  • the subsequent test can start from the state of charge value of the battery to be tested at 0%, and then the test data of the complete charging process can be obtained.
  • charging the battery to be tested with a first current at the first temperature includes: charging the battery at the first temperature with the first current The battery under test is charged after standing at the temperature for a third preset time.
  • the stability of the battery to be tested in the subsequent charging process is improved.
  • the method before charging the battery to be tested with the first current at the first temperature, the method further includes: charging the battery to be tested The current state of charge value is estimated.
  • the current state of charge value of the battery to be tested is estimated first, so as to obtain test data during the charging process starting from the current state of charge value.
  • the method further includes: at a second temperature, charging the battery to be tested with a second current until the battery to be tested is charged To the preset cut-off voltage, during the charging process of the battery to be tested, whenever the increment of the state of charge value of the battery to be tested reaches the preset value, the charging is stopped, and the duration of the charging stop Continue charging after the first preset duration is reached; calculate the impedance of the battery to be tested during the first preset duration during charging with the second current; based on charging with the second current The obtained impedance determines the maximum state-of-charge value allowed to be achieved by charging with the second current at the second temperature.
  • the battery to be tested may also be tested under conditions different from the first temperature and the first current, so as to obtain more test data about the battery to be tested.
  • the impedance obtained by charging through the second current (the voltage of the battery to be tested when charging is stopped-the first voltage when charging is stopped Voltage of the battery to be tested after a preset period of time)/the second current.
  • the method when the impedance obtained by charging through the second current is determined to be at the second temperature, the second current After charging the maximum allowed SOC value, the method further includes: based on the first temperature, the first current, the second temperature, the second current, when at the first temperature , constructing a charging current matrix table using the maximum state of charge value allowed to be achieved by the first current charging and the maximum state of charge value allowed to be achieved by the second current charging at the second temperature.
  • the charging current matrix table is constructed by constructing the test data so as to intuitively obtain the corresponding relationship between the current, the temperature and the maximum state of charge.
  • an embodiment of the present application provides a charging current testing device, including: a charging control module, configured to charge a battery to be tested with a first current at a first temperature until the battery to be tested is charged to a predetermined level. Set the cut-off voltage, during the charging process of the battery to be tested, stop charging whenever the increment of the state of charge value of the battery to be tested reaches a preset value, and stop charging when the duration of stopping charging reaches the first preset duration After continuing to charge; a calculation module, used to calculate the impedance of the battery to be tested during the first preset duration; a determination module, based on the impedance, to determine at the first temperature, at the first temperature The maximum state of charge value allowed by a current charge.
  • an embodiment of the present application provides a charging test system, including: a charging device and a temperature control device; the temperature control device is used to control the test temperature of the battery to be tested; the charging device includes a controller, a charging control circuit, voltage acquisition circuit; the controller is respectively connected to the charging control circuit and the voltage acquisition circuit; the charging control circuit is used to charge the battery to be tested, and the voltage acquisition circuit is used to obtain The voltage of the battery to be tested; the controller is configured to execute the method provided in the embodiment of the first aspect above and/or in combination with some possible implementation manners of the embodiment of the first aspect above.
  • the embodiments of the present application provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned embodiment of the first aspect and/or in combination with the above-mentioned first aspect Some possible implementations of the embodiments provide methods.
  • FIG. 1 is a block diagram of a charging test system provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of steps of a charging current testing method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a change relationship between impedance and a state of charge value provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another variation relationship between impedance and a state of charge value provided by an embodiment of the present application.
  • Fig. 5 is a flow chart of steps of another charging current testing method provided by the embodiment of the present application.
  • FIG. 6 is a block diagram of a charging current testing device provided in an embodiment of the present application.
  • Icons 100-charging test system; 10-charging equipment; 101-controller; 102-charging control circuit; 103-voltage acquisition circuit; 20-temperature control equipment; 300-charging current test device; 301-charging control module; 302-computing module; 303-determining module.
  • the embodiment of the present application provides a charging test system 100 , including a charging device 10 and a temperature control device 20 .
  • the charging test system 100 is used for testing the battery to be tested, wherein the battery to be tested may be, but not limited to, a lithium battery or a sodium battery.
  • the battery to be tested When the battery to be tested is tested, the battery to be tested needs to be placed in the temperature control device 20 , and the battery to be tested is connected to the charging device 10 .
  • the charging device 10 includes a controller 101 , a charging control circuit 102 , and a voltage acquisition circuit 103 .
  • the controller 101 is connected to the charging control circuit 102 and the voltage acquisition circuit 103 respectively.
  • the battery to be tested is electrically connected to the charging control circuit 102 and the voltage acquisition circuit 103 respectively.
  • the charging control circuit 102 is used to control the charging of the battery to be tested, and the voltage acquisition circuit 103 is used to acquire the voltage of the battery to be tested.
  • both the charging control circuit 102 and the voltage acquisition circuit 103 are circuit structures well known in the art, they are not described in detail in this application.
  • the controller 101 is used to trigger the charging control circuit 102 to charge the battery to be tested, and calculate the impedance according to the voltage of the battery to be tested collected by the voltage collection circuit 103 . Specifically, the controller 101 is used to trigger the charging control circuit 102 to charge the battery to be tested with the first current until the battery to be tested is charged to a preset cut-off voltage.
  • the controller 101 may be an integrated circuit chip with signal processing capability.
  • the controller 101 can also be a general-purpose processor, for example, can be a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a discrete Gate or transistor logic devices, and discrete hardware components can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the temperature control device 20 is used to control the test temperature of the battery to be tested.
  • the above-mentioned temperature control device 20 may be, but not limited to, an incubator or a temperature controller.
  • the temperature control device 20 can be manually controlled by the tester. For example, if the current test temperature of the battery to be tested is 20°C, the tester manually adjusts the temperature of the temperature control device 20 to 20°C.
  • the temperature control device 20 may also be connected to the controller 101, and the controller 101 controls the temperature of the temperature control device 20 according to a preset strategy.
  • the preset strategy is set by the tester. For example, when the strategy is to charge the battery to be tested with the current IA at 15°C, the controller 101 controls the temperature of the temperature control device 20 to be 15°C, and controls the charging The control circuit 102 charges the battery to be tested with the current IA.
  • the above-mentioned temperature control device 20 can also be connected with the battery to be tested, and then monitor the surface temperature change of the battery to be tested during the test, so as to ensure safety during the test.
  • FIG. 1 is only for illustration, and the charging test system 100 provided by the embodiment of the present application may also have fewer or more components than that shown in FIG. 1 , or have a different configuration from that shown in FIG. 1 .
  • each component shown in FIG. 1 may be realized by software, hardware or a combination thereof.
  • FIG. 2 is a flow chart of the steps of the charging current testing method provided by the embodiment of the present application. The method is applied to the controller 101 of the charging testing system 100 shown in FIG. 1 . It should be noted that the charging current testing method provided in the embodiment of the present application is not limited to the sequence shown in FIG. 2 and the following, and the method includes: step S101 to step S103.
  • Step S101 At the first temperature, charge the battery to be tested with the first current until the battery to be tested is charged to the preset cut-off voltage. During the charging process of the battery to be tested, every time the state of charge value of the battery to be tested Charging is stopped when the increment reaches a preset value, and charging is continued after the duration of the stopped charging reaches a first preset duration.
  • the above-mentioned first temperature, first current, preset value, and first preset duration can all be set according to actual needs.
  • the first temperature is 15°C (temperature unit: Celsius), 20°C;
  • the first current is 30A (current unit: ampere), 40A.
  • the preset value may be 5%, 10%, or 20%, and the first preset duration may be any duration from 1 to 100 seconds, which is not limited in this application.
  • the preset cut-off voltage is the upper limit cut-off voltage of the battery to be tested.
  • the upper limit cut-off voltage refers to the voltage when the battery reaches a fully charged state during the specified constant current charging period.
  • the upper limit cut-off voltage is used to determine the relationship between the first current and the maximum state of charge value corresponding to the upper limit cut-off voltage during the whole process from the beginning of charging to the charging until the voltage reaches the upper limit cut-off voltage of the battery to be tested.
  • the preset cut-off voltage can also be set according to requirements, for example, the preset cut-off voltage can be any voltage lower than the upper limit cut-off voltage of the battery to be tested. In this regard, this application does not make a limitation.
  • step S101 is a cyclic process. During the process of charging the battery to be tested with the first current to the preset cut-off voltage at the first temperature, whenever the charging increment of the battery to be tested reaches a preset value, the controller will control the battery to be tested to stop charging The first preset time, and then continue to charge.
  • the controller will control the battery to be tested to stop charging for 50 seconds, and then continue charging after 50 seconds, when the charge increment of the battery to be tested reaches 10%, the controller will again Control the battery to be tested to stop charging for 50 seconds, and then continue charging after 50 seconds until the voltage of the battery to be tested reaches 4V, then stop the charging test.
  • the charging current testing method provided in the embodiment of the present application can be tested on a fully charged battery to be tested, or can be tested on a battery to be tested with any state of charge value.
  • the method further includes: obtaining the actual capacity of the battery to be tested at room temperature; The battery to be tested is discharged until the voltage of the battery to be tested reaches the lower limit cut-off voltage.
  • room temperature is generally defined as 25°C.
  • the aforementioned second preset duration is any duration greater than 1 hour.
  • the second preset duration may be 1.2 hours or 2 hours, which is not limited in this application.
  • the lower limit cut-off voltage usually refers to the minimum working voltage of the battery when the battery is discharged to the point where it is not suitable for further discharge.
  • the actual capacity of the battery to be tested is first tested, and then the battery to be tested is left at room temperature for a second preset time to ensure that the battery to be tested reaches thermal equilibrium at room temperature. Finally, the battery to be tested after standing still is discharged until the voltage reaches the lower limit cut-off voltage to obtain a fully discharged battery to be tested.
  • the method of testing the actual capacity of the battery to be tested may adopt a commonly used testing method.
  • the discharge rate can be selected from 0.04 to 1.0C, C is the ratio of the charge and discharge current of the battery
  • C is the ratio of the charge and discharge current of the battery
  • charge rate Optional 0.04 ⁇ 1.0C
  • discharge rate can be selected from 0.04 ⁇ 1.0C
  • the subsequent test can start from the state of charge value of the battery to be tested at 0%, and then the test data of the complete charging process can be obtained.
  • a battery whose actual capacity has been determined and has been fully discharged can also be directly selected as the battery to be tested.
  • the method further includes: estimating the current state of charge value of the battery to be tested.
  • the estimation method of the battery to be tested can adopt any method known in the art, for example, the current state of charge value can be determined according to the method of checking the table according to the detected voltage of the battery to be tested, which is not limited in this application .
  • the battery to be tested starts to be charged from 20%.
  • the battery to be tested starts to be charged from 30%.
  • step S101 at the first temperature charging the battery to be tested with the first current specifically includes: charging the battery to be tested with the first current at the first temperature The battery to be tested is charged after the third preset time period.
  • the aforementioned third preset duration is any duration greater than 1 hour.
  • the third preset duration may be 1.3 hours or 1.5 hours, which is not limited in this application.
  • Step S102 Calculate the impedance of the battery to be tested during the first preset time period.
  • the controller is used to calculate the impedance of the battery to be tested within the time period.
  • the calculation formula of impedance is:
  • Impedance (the voltage of the battery to be tested when charging is stopped-the voltage of the battery to be tested after stopping charging for a first preset time period)/first current.
  • the controller obtains the voltage of the battery to be tested through the voltage acquisition circuit at this time, and when the duration of stopping charging reaches the first preset time length, the controller then Obtain the voltage of the battery to be tested through the voltage acquisition circuit, and then subtract the voltage obtained at the previous time from the voltage obtained at the next time and divide it by the first current for charging the battery to be tested to obtain the battery to be tested during the first preset period of time. of impedance.
  • the controller will obtain a corresponding impedance during each first preset period of time when the battery to be tested is not charged.
  • the controller may acquire the impedance during each period of the first preset time period of stopping charging, or the controller may only acquire the voltage values at two terminal moments during each period of stopping charging of the first preset time period, and then After the charging is finished, the impedance of the battery to be tested in each period is calculated uniformly.
  • the calculation of the impedance may also be calculated by using the voltage difference corresponding to two arbitrary moments during the first preset time period, which is not limited in this application.
  • Step S103 Based on the impedance, determine the maximum state-of-charge value allowed to be achieved by charging with the first current at the first temperature.
  • the controller determines, based on the obtained impedance, a maximum SOC value allowed for charging with the first current at the first temperature.
  • the maximum state-of-charge value allowed to be achieved by charging with the first current at the first temperature is determined according to the state-of-charge value corresponding to each impedance. There are two different situations in this way.
  • the maximum state of charge value is determined to be the previous state of charge value value.
  • the preset state of charge value is a state value set according to different batteries to be tested. It should be noted that due to the characteristics of the battery to be tested, when the state of charge of the battery to be tested is within the range of 20% to 60%, the calculated impedance will have an obvious numerical fluctuation. Therefore, in order to avoid the The impact of fluctuations on test results, set a state of charge value, and determine the maximum state of charge value that can be achieved by charging with the first current at the first temperature according to the impedance change after the preset state of charge value .
  • the state of charge value may be 50% or 60%, which is not limited in this application.
  • the first case is that after the preset state of charge value, when the impedance value decreases for the first time, the state of charge value corresponding to the previous impedance value is determined as the charge allowed by the first current at the first temperature The maximum state of charge value reached.
  • the maximum state of charge value allowed to be achieved by charging with the first current at the first temperature can be determined directly through the value of the impedance value, or it can be the difference between the built impedance and the state of charge value. To determine the maximum state of charge value allowed to be achieved by charging with the first current at the first temperature.
  • FIG. 3 is a schematic diagram of the relationship between impedance and state of charge, wherein the abscissa is the state of charge SOC of the battery to be tested, and the ordinate is the calculated impedance R. Assume that 50% is used as the preset state of charge value. When the impedance value corresponding to the state of charge value of 94% of the battery to be tested is less than the impedance value corresponding to the state of charge value of 90% for the first time, it is determined that the state of charge value of 90% is at the first temperature, and the first temperature is used. The maximum SOC value allowed for current charging.
  • the reason for the decrease in impedance is that a side reaction occurs during the charging process of the battery to be tested (the process of the side reaction is equivalent to adding a parallel branch, thereby reducing the overall impedance), for example, when the first current is used to When the lithium battery is charged to 90%, the lithium battery will have a phenomenon of lithium precipitation at this time, which will lead to a decrease in the impedance of the lithium battery.
  • the state of charge value 90% in FIG. 3 is determined as the maximum state of charge value that can be charged with the first current.
  • the preset state of charge value in the second case is set in the same way as the preset state of charge value in the first case, and the same parts can be referred to each other, and will not be repeated here.
  • the second case is that after the preset state of charge value, the impedance corresponding to each state of charge value has been monotonically increasing, and at this time, the state of charge value corresponding to the preset cut-off voltage is determined as the maximum state of charge.
  • the maximum state of charge value allowed to be achieved by charging with the first current at the first temperature can be determined directly through the value of the impedance value, or it can be the difference between the built impedance and the state of charge value. To determine the maximum state of charge value allowed to be achieved by charging with the first current at the first temperature.
  • FIG. 4 is another schematic diagram of the relationship between impedance and state of charge, where the abscissa is the state of charge of the battery to be tested, and the ordinate is the calculated impedance.
  • 60% is used as the preset state of charge value.
  • the state of charge value corresponding to the preset cut-off voltage of 95% is determined as the maximum charge. power state.
  • the impedance shown in Figure 4 is between 60% of the preset state of charge value and 95% of the state of charge value corresponding to the preset cut-off voltage, and the impedance has been increasing, which means that during this period, the battery under test does not appear As a side reaction, it is considered that the first current can be used to charge the battery to be tested to the state of charge corresponding to the preset cut-off voltage.
  • step S103 the method further includes: step S104-step S106.
  • Step S104 At the second temperature, charge the battery to be tested with a second current until the battery to be tested is charged to the preset cut-off voltage.
  • the state of charge value of the battery to be tested Charging is stopped when the increment reaches a preset value, and charging is continued after the duration of the stopped charging reaches a first preset duration.
  • Step S105 Calculate the impedance of the battery to be tested during the first preset time period during charging with the second current.
  • step S105 The formula for calculating the impedance in step S105 is:
  • Impedance (the voltage of the battery to be tested when the charging is stopped-the voltage of the battery to be tested after the charging is stopped for a first preset time period)/second current.
  • the controller obtains the voltage of the battery to be tested through the voltage acquisition circuit at this time, and when the duration of stopping charging reaches the first preset time length, the controller then The voltage of the battery to be tested is obtained by the voltage acquisition circuit, and then the voltage obtained by the previous acquisition minus the voltage obtained the next time is divided by the second current for charging the battery to be tested to obtain the voltage of the battery to be tested during the first preset time period. impedance.
  • Step S106 Based on the obtained impedance obtained by charging with the second current, determine the maximum state of charge value allowed to be reached when charging with the second current at the second temperature.
  • steps S104 to S106 are tests performed on the battery to be tested at different temperatures and/or different currents from those in steps S101 to S103.
  • the descriptions of the test methods of the battery to be tested in steps S101 to S103 can be used in steps S104 to S106 , and will not be repeated here to avoid redundancy.
  • the method further includes: based on the first temperature, the first current, the second temperature, the second current, at At the first temperature, the charging current matrix table is constructed by using the maximum state of charge value allowed by the first current charging and at the second temperature by using the maximum charge state value allowed by the second current charging.
  • the first set of data includes the first temperature, the first current, and the maximum state of charge allowed to be achieved by charging with the first current at the first temperature.
  • the second set of data includes the second temperature, the second current, and the maximum state-of-charge value allowed to be reached by charging with the second current at the second temperature.
  • the charging current matrix table can be constructed based on two sets of data. Please refer to Table 1 for the charging current matrix table.
  • SOC11 represents the maximum state of charge allowed to be achieved by charging with the first current at the first temperature
  • SOC22 represents the maximum state of charge allowed to be achieved by charging with the second current at the second temperature
  • Table 1 can be stored in the controller.
  • the controller can control the charging current of the target battery of the same type as the battery to be tested according to the data in Table 1, and then Ensure that the target battery is always charged at a safe charging current. For example, at the first temperature, during the process of charging to SOC11, the target battery is charged with a current less than or equal to the first current.
  • the charging current test method provided in the embodiment of the present application can also test the battery to be tested at more currents and temperatures, or control different temperatures under the same current to test the battery to be tested, It is also possible to control different currents at the same temperature to test the battery to be tested.
  • a charging current matrix table containing more data can also be constructed according to the above test results.
  • SOC11 indicates the maximum state of charge allowed to be achieved by charging with the first current at the first temperature
  • SOC21 indicates the maximum state of charge allowed to be achieved by charging with the second current at the first temperature
  • SOC12 indicates the maximum state of charge value allowed by charging with the first current at the second temperature
  • SOCmn indicates the maximum state of charge value corresponding to the mth current at the nth temperature.
  • the first step is to obtain the battery to be tested, and then test the actual capacity of the battery to be tested. Specifically, at room temperature, discharge the battery to be tested with a constant current (discharge rate can be selected from 0.04 to 1.0C) to the lower limit cut-off voltage, and then charge the battery to be tested with a constant current (with a charge rate of 0.04 to 1.0C) to the upper limit Cut-off voltage and constant voltage charging with the upper limit cut-off voltage to the minimum rate (0.01 ⁇ 0.1C), and then discharge the battery to be tested at a constant current (discharge rate can be selected from 0.04 ⁇ 1.0C) to the lower limit cut-off voltage, record the released capacity To ensure the accuracy of C0, repeat the above process N times (N is a natural number greater than 1), and record the C0 of the Nth time as the actual capacity.
  • N is a natural number greater than 1
  • the battery to be tested is left to stand at room temperature for a second preset time period, so as to ensure that the battery to be tested reaches thermal equilibrium at room temperature.
  • the battery to be tested is left to stand at the first temperature for a third preset time to ensure that the battery to be tested reaches thermal equilibrium at the first temperature.
  • the battery to be tested is charged with the first current.
  • stop charging for the first preset time then record the voltage change before and after the first preset time, and calculate the impedance corresponding to the current voltage change.
  • continue charging when the increment of the state of charge value of the battery to be tested reaches the preset value again, stop charging for the first preset time, then record the voltage change before and after the first preset time, and calculate the current voltage change Corresponding impedance...Then continue to test in this way until the voltage of the battery under test reaches the preset cut-off voltage.
  • the maximum SOC value SOC11 allowed to be reached by charging with the first current at the first temperature can be determined.
  • the fifth step is to change the test temperature and/or charging current, and repeat the above-mentioned second to fourth steps to obtain SOC12, SOC21, . . . , SOCm1, . . . , SOC1n, . . . , SOCmn.
  • the sixth step is to construct a charging current matrix table (as shown in Table 2) based on all the data.
  • Table 2 can be stored in the controller.
  • the controller can control the charging current of the target battery of the same type as the battery to be tested according to the data in Table 2, and then Ensure that the target battery is always charged at a safe charging current.
  • the above method does not need to make a special three-electrode battery, and can directly test most of the commercial batteries on the market.
  • this method takes into account the temperature factor, thereby improving the accuracy of the test results.
  • this method can also test batteries in any aging state, and has a wide range of applications.
  • the embodiment of the present application also provides a charging current testing device 300 , including: a charging control module 301 , a calculation module 302 and a determination module 303 .
  • the charging control module 301 is used to charge the battery to be tested with a first current at a first temperature until the battery to be tested is charged to a preset cut-off voltage. During the charging process of the battery to be tested, whenever the battery to be tested Charging is stopped when the increment of the state of charge value of the battery to be tested reaches a preset value, and charging is continued after the duration of the stopped charging reaches a first preset duration.
  • the calculation module 302 is used to calculate the impedance of the battery to be tested during the first preset time period.
  • the determination module 303 is configured to determine a maximum state of charge value that is allowed to be achieved by charging with the first current at the first temperature based on the impedance.
  • the determining module 303 is specifically configured to acquire the state of charge value corresponding to each impedance; when after the preset state of charge value, the impedance corresponding to the latter state of charge value is smaller than the previous state of charge value for the first time When the corresponding impedance is determined, the maximum state of charge value is determined as the previous state of charge value.
  • the determination module 303 is specifically configured to obtain the state of charge value corresponding to each impedance; after the preset state of charge value, the impedance corresponding to the latter state of charge value is greater than the previous state of charge value When the corresponding impedance is determined, the maximum state of charge value is determined to be the state of charge value corresponding to the preset cut-off voltage.
  • the charging control module 301 is also configured to obtain the actual capacity of the battery under test at room temperature before charging the battery under test with the first current at the first temperature; The battery to be tested after standing still for a second preset period of time is discharged until the voltage of the battery to be tested reaches a lower limit cut-off voltage.
  • the charging control module 301 is specifically configured to charge the battery under test after standing at the first temperature for a third preset time period with the first current.
  • the charging control module 301 is further configured to estimate the current state of charge value of the battery to be tested before charging the battery to be tested with the first current at the first temperature.
  • the charging control module 301 is further configured to charge the battery to be tested with a second current at a second temperature until the battery to be tested is charged to the preset cut-off voltage.
  • the charging is stopped whenever the increment of the state of charge value of the battery to be tested reaches the preset value, and the charging is continued after the duration of the stopped charging reaches the first preset duration.
  • the calculation module 302 is further configured to calculate the impedance of the battery under test during the first preset time period during charging with the second current.
  • the determination module 303 is further configured to determine the maximum state-of-charge value that is allowed to be achieved by charging with the second current at the second temperature based on the impedance obtained by charging with the second current.
  • the device further includes building blocks.
  • the building block is configured to determine, based on the impedance obtained by charging with the second current, at the second temperature, the maximum state-of-charge value that is allowed to be achieved by charging with the second current, based on the The first temperature, the first current, the second temperature, the second current, at the first temperature, the maximum state of charge value allowed to be achieved by charging with the first current, and at the At the second temperature, the charging current matrix table is constructed based on the maximum charge state value allowed by the second current charging.
  • an embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed, the method provided in the above-mentioned embodiments is executed.
  • the storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种充电电流的测试方法、装置及充电测试系统。测试方法包括:在第一温度时,以第一电流对待测试电池进行充电,直至待测试电池充电至预设截止电压,在待测试电池充电的过程中,每当待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电(S101);计算待测试电池在第一预设时长期间的阻抗(S102);基于阻抗,确定在第一温度时,以第一电流充电所允许达到的最大荷电状态值(S103)。因此,无需制作特殊的三电极电池,可以直接对市面上的大多数商用电池进行直接测试。此外,考虑了温度的因素,进而提高测试结果的准确性。

Description

一种充电电流的测试方法、装置及充电测试系统 技术领域
本申请涉及电池技术领域,具体而言,涉及一种充电电流的测试方法、装置及充电测试系统。
背景技术
随着电动车的普及,充电电池(如锂电池)的充电安全得到了广泛的关注。如何在不影响电池使用寿命和安全性能的前提下尽可能地提高充电电流,减少充电时间,一直是研究人员研究的方向。
目前,最常用的方法是制作带有参比电极的三电极电池来研究电流和与荷电状态的关系。具体的,在电池充电过程中监控负极对参比电极的电压,即阳极电位变化。一般认为,电池以电流I0充电,当充电SOC(State Of Charge,荷电状态)达到A%(0≤A≤100)时,若阳极电位开始下降到0mV以下,则认为电池开始出现异常(如锂电池出现析锂现象),继续充电会影响电池的使用寿命和性能,此时的充电电流I0被定义为电池充电至A%SOC时允许使用的最大充电电流。
上述方法仅适用于结构简单且容量小的叠片电池,对于结构复杂的电池,参比电极的摆放位置和制作方法会对电流和荷电状态的测试结果产生显著的影响。
发明内容
本申请实施例的目的在于提供一种充电电流的测试方法、装置及充电测试系统,以简便且准确地测试出充电电流与最大荷电状态值的对应关系。
本发明是这样实现的:
第一方面,本申请实施例提供一种充电电流的测试方法,包括:在第一温度时,以第一电流对待测试电池进行充电,直至所述待测试电池充电至预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电;计算所述待测试电池在所述第一预设时长期间的阻抗;基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值。
本申请实施例所提供的测试方法,在第一温度时,以第一电流对待测试电池进行充电的过程中,每当待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电, 并通过计算每个第一预设时长期间的阻抗,来确定出第一温度时,以第一电流充电所允许达到的最大荷电状态值。通过该方式,能够确定出充电过程中待测试电池的阻抗变化。其中,通过阻抗变化可以确定出待测试电池是否出现副反应,进而准确地确定出待测试电池的充电电流与荷电状态值的对应关系。与现有技术相比,上述方式无需制作特殊的三电极电池,可以直接对市面上的大多数商用电池进行直接测试。此外,该方式考虑了温度的因素,进而提高了测试结果的准确性。此外,该方式也可对任意老化状态的电池进行测试,适用范围广泛。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述阻抗=(停止充电时的所述待测试电池的电压-停止充电所述第一预设时长后的所述待测试电池的电压)/所述第一电流。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值,包括:获取每个所述阻抗对应的荷电状态值;当在预设荷电状态值之后,后一个荷电状态值对应的阻抗首次小于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述前一个荷电状态值。
在本申请实施例中,若待测试电池在充电过程中出现了副反应,则在预设荷电状态值之后,待测试电池在第一预设时长期间的阻抗将会减小。通过上述原理,当在预设荷电状态值之后,后一个荷电状态值对应的阻抗首次小于前一个荷电状态值对应的阻抗时,确定最大荷电状态值为前一个荷电状态值,即可得到待测试电池在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值,包括:获取每个所述阻抗对应的荷电状态值;当在预设荷电状态值之后,后一个荷电状态值对应的阻抗均大于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述预设截止电压对应的荷电状态值。
在本申请实施例中,若待测试电池未出现副反应,则在预设荷电状态值之后,待测试电池在第一预设时长期间的阻抗的大小会呈单调递增趋势。通过上述原理,当在预设荷电状态值之后,后一个荷电状态值对应的阻抗均大于前一个荷电状态值对应的阻抗时,确定最大荷电状态值为预设截止电压对应的荷电状态值,即可得到待测试电池在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,在所述在第一温度时,以第一电流对待测试电池进行充电之前,所述方法还包括:获取所述待测试电池在室温时的实际容量;对在所述室温下静置第 二预设时长后的所述待测试电池进行放电,直至所述待测试电池的电压达到下限截止电压。
在本申请实施例中,通过对室温下静置第二预设时长后的待测试电池进行放电,直至待测试电池的电压达到下限截止电压,一来可以保证待测试电池在室温下达到热平衡,二来能够使得后续测试是从待测试电池的荷电状态值为0%时开始,进而得到完整的充电过程的测试数据。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述在第一温度时,以第一电流对待测试电池进行充电,包括:以所述第一电流对在所述第一温度下静置第三预设时长后的所述待测试电池进行充电。
在本申请实施例中,通过将待测试电池在第一温度下静置第三预设时长以保证待测试电池在第一温度下达到热平衡,进而提高了后续待测试电池充电过程中的稳定性。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,在所述在第一温度时,以第一电流对待测试电池进行充电之前,所述方法还包括:对所述待测试电池的当前荷电状态值进行预估。
在本申请实施例中,在充电之前,先对待测试电池的当前荷电状态值进行预估,以便于得到从当前荷电状态值开始的充电过程中的测试数据。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述方法还包括:在第二温度时,以第二电流对所述待测试电池进行充电,直至所述待测试电池充电至所述预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到所述预设值时停止充电,在停止充电的持续时间达到所述第一预设时长后继续充电;计算在以所述第二电流进行充电期间,所述待测试电池在所述第一预设时长期间的阻抗;基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值。
在本申请实施例中,还可以采用不同于第一温度和第一电流的条件对待测试电池进行测试,进而得到关于待测试电池的更多的测试数据。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,通过所述第二电流进行充电所获取的阻抗=(停止充电时的所述待测试电池的电压-停止充电所述第一预设时长后的所述待测试电池的电压)/所述第二电流。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,在所述基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值之后,所述方法还包括:基于所述第一温度、所述第一电流、所述第二温度、所述第二电流、在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态 值及在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值构建充电电流矩阵表。
在本申请实施例中,通过将测试的数据构建充电电流矩阵表以便于直观地得到电流、温度与最大荷电状态的对应关系。
第二方面,本申请实施例提供一种充电电流的测试装置,包括:充电控制模块,用于在第一温度时,以第一电流对待测试电池进行充电,直至所述待测试电池充电至预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电;计算模块,用于计算所述待测试电池在所述第一预设时长期间的阻抗;确定模块,用于基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值。
第三方面,本申请实施例提供一种充电测试系统,包括:充电设备及温控设备;所述温控设备用于控制所述待测试电池的测试温度;所述充电设备包括控制器、充电控制电路、电压采集电路;所述控制器分别与所述充电控制电路及所述电压采集电路连接;所述充电控制电路用于对所述待测试电池进行充电,所述电压采集电路用于获取所述待测试电池的电压;所述控制器用于执行如上述第一方面实施例和/或结合上述第一方面实施例的一些可能的实现方式提供的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器运行时执行如上述第一方面实施例和/或结合上述第一方面实施例的一些可能的实现方式提供的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种充电测试系统的模块框图。
图2为本申请实施例提供的一种充电电流的测试方法的步骤流程图。
图3为本申请实施例提供的一种阻抗与荷电状态值之间的变化关系示意图。
图4为本申请实施例提供的另一种阻抗与荷电状态值之间的变化关系示意图。
图5为本申请实施例提供的另一种充电电流的测试方法的步骤流程 图。
图6为本申请实施例提供的一种充电电流的测试装置的模块框图。
图标:100-充电测试系统;10-充电设备;101-控制器;102-充电控制电路;103-电压采集电路;20-温控设备;300-充电电流的测试装置;301-充电控制模块;302-计算模块;303-确定模块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
请参阅图1,本申请实施例提供一种充电测试系统100,包括充电设备10及温控设备20。
该充电测试系统100用于对待测试电池进行测试,其中,待测试电池可以是但不限于锂电池、钠电池。
在待测试电池进行测试时,待测试电池需放置于温控设备20中,且待测试电池与充电设备10连接。
其中,充电设备10包括控制器101、充电控制电路102、电压采集电路103。控制器101分别与充电控制电路102和电压采集电路103连接。
待测试电池分别与充电控制电路102及电压采集电路103电连接。充电控制电路102用于控制待测试电池进行充电,电压采集电路103用于获取待测试电池的电压。
由于充电控制电路102和电压采集电路103均为本领域所熟知的电路结构,因此,本申请不作详述。
控制器101用于触发充电控制电路102对待测试电池进行充电,及根据电压采集电路103所采集的待测试电池的电压计算阻抗。具体的,控制器101用于触发充电控制电路102以第一电流对待测试电池进行充电,直至待测试电池充电至预设截止电压,在待测试电池充电的过程中,每当待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电;计算待测试电池在第一预设时长期间的阻抗;基于阻抗,确定在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
上述控制器101的具体控制逻辑在后续实施例中进行详细说明,此处不作展开说明。
控制器101可以是一种集成电路芯片,具有信号处理能力。控制器101也可以是通用处理器,例如,可以是中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated  Circuit,ASIC)、分立门或晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。此外,通用处理器可以是微处理器或者任何常规处理器等。
温控设备20用于控制待测试电池的测试温度。
上述的温控设备20可以是但不限于恒温箱,温控仪。
作为一种实施方式,温控设备20可以由测试人员手动控制,比如当前需要对待测试电池进行测试的测试温度为20℃,则测试人员手动将温控设备20的温度调至20℃。
作为另一种实施方式,温控设备20还可以与控制器101连接,由控制器101根据预先设定的策略来实现对温控设备20的温度的控制。其中,预先设定的策略由测试人员进行设定,比如该策略为在15℃时,以电流IA对待测试电池进行充电,则控制器101控制温控设备20的温度为15℃,并控制充电控制电路102以电流IA对待测试电池进行充电。
可选地,上述的温控设备20还可以与待测试电池连接,进而监测待测试电池在测试过程中的表面温度变化,以保证测试过程中的安全。
需要说明的是,图1所示的结构仅为示意,本申请实施例提供的充电测试系统100还可以具有比图1更少或更多的组件,或是具有与图1所示不同的配置。此外,图1所示的各组件可以通过软件、硬件或其组合实现。
请参阅图2,图2为本申请实施例提供的充电电流的测试方法的步骤流程图,该方法应用于图1所示的充电测试系统100的控制器101中。需要说明的是,本申请实施例提供的充电电流的测试方法不以图2及以下所示的顺序为限制,该方法包括:步骤S101~步骤S103。
步骤S101:在第一温度时,以第一电流对待测试电池进行充电,直至待测试电池充电至预设截止电压,在待测试电池充电的过程中,每当待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电。
上述的第一温度、第一电流、预设值、第一预设时长均可以根据实际需求设定。比如第一温度为15℃(温度单位:摄氏度)、20℃;第一电流为30A(电流单位:安培)、40A。预设值可以是5%、10%、20%,第一预设时长可以是1~100秒中的任意时长,对此,本申请均不作限定。
于本申请实施例中,预设截止电压为待测试电池的上限截止电压。上限截止电压指在规定的恒流充电期间,电池达到完全充电状态时的电压。通过上限截止电压以便于确定出待测试电池从充电开始至充电至电压达到上限截止电压的整个过程中,第一电流与上限截止电压所对应的最大荷电状态值的关系。当然,预设截止电压也可以根据需求进行设定,比如,预设截止电压可以是小于待测试电池的上限截止电压的任意电压。对此,本申请不作限定。
需要说明的是,步骤S101为一个循环过程。待测试电池在第一温度下,以第一电流进行充电至预设截止电压的过程中,每当待测试电池的充电的增量达到预设值时,则控制器会控制待测试电池停止充电第一预设时长,然后再继续充电。
以第一温度为25℃、第一电流为30A,预设值为10%、第一预设时长为50秒,预设截止电压为4V为例。在测试温度为25℃的环境中,以30A的充电电流将待测试电池充电至电压达到4V的过程中,当待测试电池的充电增量达到10%时(比如待测试电池的荷电状态值从40%增加到了50%),则控制器会控制待测试电池停止充电50秒,然后在50秒之后继续进行充电,当待测试电池的充电增量又达到10%时,则控制器又会控制待测试电池停止充电50秒,然后在50秒之后继续进行充电,直至待测电池的电压达到4V则停止充电测试。
可选地,本申请实施例提供的充电电流的测试方法可以对满放的待测电池进行测试,也可以对任意荷电状态值的待测试电池进行测试。
当该方法应用于对满放的待测试电池进行测试时,在步骤S101之前,该方法还包括:获取待测试电池在室温时的实际容量;对在室温下静置第二预设时长后的待测试电池进行放电,直至待测试电池的电压达到下限截止电压。
需要说明的是,本领域中,室温一般定义为25℃。上述的第二预设时长为大于1小时的任意时长,比如第二预设时长可以是1.2小时、2小时,本申请不作限定。下限截止电压通常指电池放电至不宜再放电时电池的最低工作电压。
具体的,在获取到待测试电池后,先对待测试电池的实际容量进行测试,然后将该待测试电池在室温下静置第二预设时长,以保证该待测试电池在室温下达到热平衡。最后,再将静置后的待测试电池放电至电压达到下限截止电压即可得到满放的待测试电池。
其中,对待测试电池的实际容量进行测试的方式可以采用常用的测试方式。比如,在室温下,对待测试电池以恒流进行放电(放电倍率可选0.04~1.0C,C为电池充放电电流大小的比率)至下限截止电压,再对待测试电池以恒流充电(充电倍率可选0.04~1.0C)至上限截止电压且以上限截止电压进行恒压充电至最小倍率(0.01~0.1C),再次对待测试电池以恒流进行放电(放电倍率可选0.04~1.0C)至下限截止电压,记录此次放出容量为C0,为保证C0的准确性,重复上述过程N次(N为大于1的自然数),记录第N次的C0为实际容量。
在本申请实施例中,通过对室温下静置第二预设时长后的待测试电池进行放电,直至待测试电池的电压达到下限截止电压,一来可以保证待测试电池在室温下达到热平衡,二来能够使得后续测试是从待测试电池的荷电状态值为0%时开始,进而得到完整的充电过程的测试数据。
此外,当该方法应用于对满放的待测试电池进行测试时,也可以直接选择已经确定好实际容量且已经完全放电的电池作为待测试电池。
当该方法应用于对任意荷电状态值的待测试电池进行测试时,为了便于后续的测试统计,在步骤S101之前,该方法还包括:对待测试电池的当前荷电状态值进行预估。
需要说明的是,待测试电池的预估方式可以采用本领域所熟知的任意方式,比如可以根据检测出待测试电池的电压,根据查表的方式确定出当前荷电状态值,本申请不作限定。
假设预估出待测试电池的当前荷电状态值为20%,则从20%开始对待测试电池进行充电。假设预估出待测试电池的当前荷电状态值为30%,则从30%开始对待测试电池进行充电。
可选地,为了保证待测试电池在充电的过程中的稳定性,步骤S101在第一温度时,以第一电流对待测试电池进行充电具体包括:以第一电流对在第一温度下静置第三预设时长后的待测试电池进行充电。
上述的第三预设时长为大于1小时的任意时长,比如第三预设时长可以是1.3小时、1.5小时,本申请不作限定。当获取到待测试电池后,若是确定好第一温度,将该待测试电池在第一温度下静置第三预设时长,以保证该待测试电池在第一温度下达到热平衡。
步骤S102:计算待测试电池在第一预设时长期间的阻抗。
在待测试电池停止充电第一预设时长期间,控制器用于计算出待测试电池在该时间段内的阻抗。其中,阻抗的计算公式为:
阻抗=(停止充电时的待测试电池的电压-停止充电第一预设时长后的所述待测试电池的电压)/第一电流。
当待测试电池的荷电状态值的增量达到预设值时,此时控制器通过电压采集电路获取待测试电池的电压,当停止充电的持续时间达到第一预设时长后,控制器再通过电压采集电路获取待测试电池的电压,然后将前一次获取的电压减去后一次获取的电压再除以对待测试电池进行充电的第一电流即可得到待测试电池在第一预设时长期间的阻抗。
需要说明的是,在待测试电池每个停止充电第一预设时长的期间,控制器均会获取一个对应的阻抗。其中,控制器可以是在每个停止充电第一预设时长的期间获取该阻抗,控制器也可以是在每个停止充电第一预设时长的期间仅获取两个端点时刻的电压值,然后在充电结束后,再统一计算每个期间的待测试电池的阻抗。
在其他实施例中,阻抗的计算还可以采用第一预设时长期间两个任意时刻所对应的电压的差值来计算,本申请不作限定。
步骤S103:基于阻抗,确定在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
最后,控制器基于所获取的阻抗,确定在第一温度时,以第一电流 充电所允许达到的最大荷电状态值。
于本申请实施例中,根据每个阻抗所对应的荷电状态值来确定在第一温度时,以第一电流充电所允许达到的最大荷电状态值。采用该方式存在两种不同的情况。
第一种情况,当在预设荷电状态值之后,后一个荷电状态值对应的阻抗首次小于前一个荷电状态值对应的阻抗时,则确定最大荷电状态值为前一个荷电状态值。
其中,预设荷电状态值为根据待测试电池的不同而设定的状态值。需要说明的是,由于待测试电池本身的特性,当待测试电池的荷电状态值在20%~60%的区间内,计算出的阻抗会出现一次明显的数值波动,因此,为了避免此处波动对测试结果的影响,设定一个荷电状态值,并根据预设荷电状态值后的阻抗变化来确定出在第一温度时,以第一电流充电所允许达到的最大荷电状态值。其中,荷电状态值可以为50%、60%,本申请不作限定。
第一种情况为预设荷电状态值之后,阻抗值首次出现减小的情况时,则将前一个阻抗值对应的荷电状态值确定为在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
于本申请实施例中,可以直接通过阻抗值的数值大小来确定出在第一温度时,以第一电流充电所允许达到的最大荷电状态值,也可以是构建阻抗与荷电状态值之间的变化关系示意图来确定出在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
请参阅图3,图3为一种阻抗与荷电状态值之间的变化关系示意图,其中,横坐标为待测试电池的荷电状态值SOC,纵坐标为计算出的阻抗R。假设以50%作为预设荷电状态值。当待测试电池在荷电状态值为94%对应的阻抗值为首次小于荷电状态值为90%对应的阻抗值时,则确定出荷电状态值90%为在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
需要说的是,阻抗降低的原因为待测试电池的充电过程中出现了副反应(副反应的过程相当于增加了一条并联的支路,进而降低整体的阻抗),比如当以第一电流将锂电池充电至90%时,此时锂电池会出现析锂现象,进而导致锂电池的阻抗降低。为了避免待测试电池在充电过程中出现了副反应,则将图3中的荷电状态值90%确定为采用第一电流能够充电至的最大荷电状态值。
第二种情况,当在预设荷电状态值之后,后一个荷电状态值对应的阻抗均大于前一个荷电状态值对应的阻抗时,确定最大荷电状态值为预设截止电压对应的荷电状态值。
其中,第二种情况中预设荷电状态值与第一种情况中的预设荷电状态值设定方式相同,相同部分互相参考即可,此处不作赘述。
第二种情况为预设荷电状态值之后,各个荷电状态值对应的阻抗一直为单调递增,则此时将预设截止电压对应的荷电状态值确定为最大荷电状态。
于本申请实施例中,可以直接通过阻抗值的数值大小来确定出在第一温度时,以第一电流充电所允许达到的最大荷电状态值,也可以是构建阻抗与荷电状态值之间的变化关系示意图来确定出在第一温度时,以第一电流充电所允许达到的最大荷电状态值。
为了便于理解,请参阅图4,图4为另一种阻抗与荷电状态值之间的变化关系示意图,其中,横坐标为待测试电池的荷电状态值,纵坐标为计算出的阻抗。假设以60%作为预设荷电状态值。当待测试电池在预设荷电状态值60%之后,每个荷电状态值所对应的阻抗呈单调递增的趋势时,则将预设截止电压对应的荷电状态值95%确定为最大荷电状态。
通过前述分析可知,当待测试电池出现副反应时,阻抗会降低。而图4所示出的阻抗在预设荷电状态值60%~预设截止电压对应的荷电状态值95%之间,阻抗一直在增大,则说明在此期间,待测试电池未出现副反应,此时认为采用第一电流能够将待测试电池充电至预设截止电压所对应的荷电状态。
请参阅图5,在步骤S103之后,该方法还包括:步骤S104~步骤S106。
步骤S104:在第二温度时,以第二电流对待测试电池进行充电,直至待测试电池充电至预设截止电压,在待测试电池充电的过程中,每当待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电。
步骤S105:计算在以第二电流进行充电期间,待测试电池在第一预设时长期间的阻抗。
步骤S105中阻抗的计算公式为:
阻抗=(停止充电时的待测试电池的电压-停止充电第一预设时长后的所述待测试电池的电压)/第二电流。
当待测试电池的荷电状态值的增量达到预设值时,此时控制器通过电压采集电路获取待测试电池的电压,当停止充电的持续时间达到第一预设时长后,控制器再通过电压采集电路获取待测试电池的电压,然后将前一次获取电压减去后一次获取的电压再除以对待测试电池进行充电的第二电流即可得到待测试电池在第一预设时长期间的阻抗。
步骤S106:基于通过第二电流进行充电所获取的阻抗,确定在第二温度时,以第二电流充电所允许达到的最大荷电状态值。
需要说明的是,步骤S104~步骤S106为通过与步骤S101~步骤S103中不同的温度和/或不同的电流对待测试电池进行的测试。在步骤S101~步骤S103中对待测试电池的测试方式的说明均可用在步骤S104~步骤S106 中,为了避免累赘,此处不作赘述。
为了便于观察待测试电池的不同电流和不同温度值所对应的最大荷电状态值,在步骤S106之后,该方法还包括:基于第一温度、第一电流、第二温度、第二电流、在第一温度时,以第一电流充电所允许达到的最大荷电状态值及在第二温度时,以第二电流充电所允许达到的最大荷电状态值构建充电电流矩阵表。
在步骤S106之后,即可得到两组数据,第一组数据包括第一温度、第一电流及在第一温度时,以第一电流充电所允许达到的最大荷电状态值。第二组数据包括第二温度、第二电流及在第二温度时,以第二电流充电所允许达到的最大荷电状态值。然后基于两组数据即可构建充电电流矩阵表。充电电流矩阵表请参考表一。
表一
Figure PCTCN2021112141-appb-000001
在表一中,SOC11表示在第一温度时,以第一电流充电所允许达到的最大荷电状态值,SOC22表示在第二温度时,以第二电流充电所允许达到的最大荷电状态值。
在获取到表一之后,可以将表一存储至控制器中,在后续的充电控制中,控制器可以根据表一的数据来对与待测试电池相同类型的目标电池的充电电流进行控制,进而保证目标电池始终保持在安全的充电电流下进行充电。比如,在第一温度时,在充电至SOC11的过程中,以小于等于第一电流的电流对目标电池进行充电。
可以理解的是,本申请实施例所提供的充电电流的测试方法还可以在更多的电流和温度下对待测试电池进行测试,也可以在同一电流下控制不同的温度来对待测试电池进行测试,还可以在同一温度下,控制不同的电流来对待测试电池进行测试。相应的,还可以根据以上测试结果构建包含更多的数据量的充电电流矩阵表。
其中,构建的包含更多的数据量的充电电流矩阵表请参考表二。
表二
Figure PCTCN2021112141-appb-000002
在表二中,SOC11表示在第一温度时,以第一电流充电所允许达到的最大荷电状态值,SOC21表示在第一温度时,以第二电流充电所允许达到的最大荷电状态值,SOC12表示在第二温度时,以第一电流充电所允许达到的最大荷电状态值......SOCmn表示在第n温度时,第m电流所对应的最大荷电状态值。
下面结合表二,再以一个完整的例子对本申请实施例所提供的充电电流的测试方法进行说明。
第一步,获取待测试电池,然后对待测试电池的实际容量进行测试。具体的,在室温下,对待测试电池以恒流进行放电(放电倍率可选0.04~1.0C)至下限截止电压,再对待测试电池以恒流充电(充电倍率可选0.04~1.0C)至上限截止电压且以上限截止电压进行恒压充电至最小倍率(0.01~0.1C),再次待测试电池以恒流进行放电(放电倍率可选0.04~1.0C)至下限截止电压,记录此次放出容量为C0,为保证C0的准确性,重复上述过程N次(N为大于1的自然数),记录第N次的C0为实际容量。
第二步,将该待测试电池在室温下静置第二预设时长,以保证该待测试电池在室温下达到热平衡。
第三步,若需测试的温度为第一温度时,则将待测试电池静置在第一温度下第三预设时长,以保证待测试电池在第一温度下达到热平衡。
第四步,从待测试电池的荷电状态值为0%开始,以第一电流对待测试电池进行充电。当待测试电池的荷电状态值的增量达到预设值后,停止充电第一预设时长,然后记录静置第一预设时长前后的电压变化,并计算当前电压变化对应的阻抗。然后继续充电,当待测试电池的荷电状态值的增量再次达到预设值后,停止充电第一预设时长,然后记录静置第一 预设时长前后的电压变化,并计算当前电压变化对应的阻抗......然后继续采用该方式进行测试,直至待测试电池的电压达到预设截止电压。最后,基于所有阻抗,即可确定出第一温度时,以第一电流充电所允许达到的最大荷电状态值SOC11。
第五步,改变测试温度和/或充电电流,重复上述的第二步至第四步,即可得到SOC12、SOC21、...、SOCm1、...、SOC1n、...、SOCmn。
第六步,基于所有数据构建充电电流矩阵表(如表二所示)。
在获取到表二之后,可以将表二存储至控制器中,在后续的充电控制中,控制器可以根据表二的数据来对与待测试电池相同类型的目标电池的充电电流进行控制,进而保证目标电池始终保持在安全的充电电流下进行充电。
综上,本申请实施例所提供的测试方法,在第一温度时,以第一电流对待测试电池进行充电的过程中,每当待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电,并通过计算每个第一预设时长期间的阻抗,来确定出第一温度时,以第一电流充电所允许达到的最大荷电状态值。通过该方式,能够确定出充电过程中待测试电池的阻抗变化。其中,通过阻抗变化可以确定出待测试电池是否出现副反应,进而准确地确定出待测试电池的充电电流与荷电状态值的对应关系。与现有技术相比,上述方式无需制作特殊的三电极电池,可以直接对市面上的大多数商用电池进行直接测试。此外,该方式考虑了温度的因素,进而提高了测试结果的准确性。此外,该方式也可对任意老化状态的电池进行测试,适用范围广泛。
请参阅图6,基于同一发明构思,本申请实施例还提供一种充电电流的测试装置300,包括:充电控制模块301、计算模块302及确定模块303。
充电控制模块301用于在第一温度时,以第一电流对待测试电池进行充电,直至所述待测试电池充电至预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电。
计算模块302用于计算待测试电池在所述第一预设时长期间的阻抗。
确定模块303用于基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值。
可选地,确定模块303具体用于获取每个所述阻抗对应的荷电状态值;当在预设荷电状态值之后,后一个荷电状态值对应的阻抗首次小于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述前一个荷电状态值。
可选地,确定模块303具体用于获取每个所述阻抗对应的荷电状 态值;当在预设荷电状态值之后,后一个荷电状态值对应的阻抗均大于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述预设截止电压对应的荷电状态值。
可选地,充电控制模块301还用于在所述在第一温度时,以第一电流对待测试电池进行充电之前,获取所述待测试电池在室温时的实际容量;对在所述室温下静置第二预设时长后的所述待测试电池进行放电,直至所述待测试电池的电压达到下限截止电压。
可选地,充电控制模块301具体用于以所述第一电流对在所述第一温度下静置第三预设时长后的所述待测试电池进行充电。
可选地,充电控制模块301还用于在所述在第一温度时,以第一电流对待测试电池进行充电之前,对所述待测试电池的当前荷电状态值进行预估。
可选地,充电控制模块301还用于在第二温度时,以第二电流对所述待测试电池进行充电,直至所述待测试电池充电至所述预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到所述预设值时停止充电,在停止充电的持续时间达到所述第一预设时长后继续充电。相应的,计算模块302还用于计算在以所述第二电流进行充电期间,所述待测试电池在所述第一预设时长期间的阻抗。相应的,确定模块303还用于基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值。
可选地,该装置还包括构建模块。构建模块用于在所述基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值之后,基于所述第一温度、所述第一电流、所述第二温度、所述第二电流、在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值及在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值构建充电电流矩阵表。
需要说明的是,由于所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
基于同一发明构思,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序在被运行时执行上述实施例中提供的方法。
该存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法, 可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种充电电流的测试方法,其特征在于,包括:
    在第一温度时,以第一电流对待测试电池进行充电,直至所述待测试电池充电至预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电;
    计算所述待测试电池在所述第一预设时长期间的阻抗;
    基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值。
  2. 根据权利要求1所述的方法,其特征在于,所述阻抗=(停止充电时的所述待测试电池的电压-停止充电所述第一预设时长后的所述待测试电池的电压)/所述第一电流。
  3. 根据权利要求1所述的方法,其特征在于,所述基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值,包括:
    获取每个所述阻抗对应的荷电状态值;
    当在预设荷电状态值之后,后一个荷电状态值对应的阻抗首次小于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述前一个荷电状态值。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值,包括:
    获取每个所述阻抗对应的荷电状态值;
    当在预设荷电状态值之后,后一个荷电状态值对应的阻抗均大于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述预设截止电压对应的荷电状态值。
  5. 根据权利要求1所述的方法,其特征在于,在所述在第一温度时,以第一电流对待测试电池进行充电之前,所述方法还包括:
    获取所述待测试电池在室温时的实际容量;
    对在所述室温下静置第二预设时长后的所述待测试电池进行放电,直至所述待测试电池的电压达到下限截止电压。
  6. 根据权利要求1所述的方法,其特征在于,所述在第一温度时,以第一电流对待测试电池进行充电,包括:
    以所述第一电流对在所述第一温度下静置第三预设时长后的所述待测试电池进行充电。
  7. 根据权利要求1所述的方法,其特征在于,在所述在第一温度时, 以第一电流对待测试电池进行充电之前,所述方法还包括:
    对所述待测试电池的当前荷电状态值进行预估。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在第二温度时,以第二电流对所述待测试电池进行充电,直至所述待测试电池充电至所述预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到所述预设值时停止充电,在停止充电的持续时间达到所述第一预设时长后继续充电;
    计算在以所述第二电流进行充电期间,所述待测试电池在所述第一预设时长期间的阻抗;
    基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值。
  9. 根据权利要求8所述的方法,其特征在于,通过所述第二电流进行充电所获取的阻抗=(停止充电时的所述待测试电池的电压-停止充电所述第一预设时长后的所述待测试电池的电压)/所述第二电流。
  10. 根据权利要求8所述的方法,其特征在于,在所述基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值之后,所述方法还包括:
    基于所述第一温度、所述第一电流、所述第二温度、所述第二电流、在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值及在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值构建充电电流矩阵表。
  11. 一种充电电流的测试装置,其特征在于,包括:
    充电控制模块,用于在第一温度时,以第一电流对待测试电池进行充电,直至所述待测试电池充电至预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到预设值时停止充电,在停止充电的持续时间达到第一预设时长后继续充电;
    计算模块,用于计算所述待测试电池在所述第一预设时长期间的阻抗;
    确定模块,用于基于所述阻抗,确定在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值。
  12. 根据权利要求11所述的装置,其特征在于,所述阻抗=(停止充电时的所述待测试电池的电压-停止充电所述第一预设时长后的所述待测试电池的电压)/所述第一电流。
  13. 根据权利要求11所述的装置,其特征在于,所述确定模块具体用于获取每个所述阻抗对应的荷电状态值;当在预设荷电状态值之后,后一个荷电状态值对应的阻抗首次小于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述前一个荷电状态值。
  14. 根据权利要求11所述的装置,其特征在于,所述确定模块具体用 于获取每个所述阻抗对应的荷电状态值;当在预设荷电状态值之后,后一个荷电状态值对应的阻抗均大于前一个荷电状态值对应的阻抗时,确定所述最大荷电状态值为所述预设截止电压对应的荷电状态值。
  15. 根据权利要求11所述的装置,其特征在于,所述充电控制模块还用于在所述在第一温度时,以第一电流对待测试电池进行充电之前,获取所述待测试电池在室温时的实际容量;对在所述室温下静置第二预设时长后的所述待测试电池进行放电,直至所述待测试电池的电压达到下限截止电压。
  16. 根据权利要求11所述的装置,其特征在于,所述充电控制模块具体用于以所述第一电流对在所述第一温度下静置第三预设时长后的所述待测试电池进行充电。
  17. 根据权利要求11所述的装置,其特征在于,所述充电控制模块还用于在所述在第一温度时,以第一电流对待测试电池进行充电之前,对所述待测试电池的当前荷电状态值进行预估。
  18. 根据权利要求11所述的装置,其特征在于,所述充电控制模块还用于在第二温度时,以第二电流对所述待测试电池进行充电,直至所述待测试电池充电至所述预设截止电压,在所述待测试电池充电的过程中,每当所述待测试电池的荷电状态值的增量达到所述预设值时停止充电,在停止充电的持续时间达到所述第一预设时长后继续充电;
    所述计算模块还用于计算在以所述第二电流进行充电期间,所述待测试电池在所述第一预设时长期间的阻抗;
    所述确定模块还用于基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值。
  19. 根据权利要求18所述的装置,其特征在于,通过所述第二电流进行充电所获取的阻抗=(停止充电时的所述待测试电池的电压-停止充电所述第一预设时长后的所述待测试电池的电压)/所述第二电流。
  20. 根据权利要求18所述的装置,其特征在于,所述装置还包括构建模块;
    所述构建模块用于在所述基于通过所述第二电流进行充电所获取的阻抗,确定在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值之后,基于所述第一温度、所述第一电流、所述第二温度、所述第二电流、在所述第一温度时,以所述第一电流充电所允许达到的最大荷电状态值及在所述第二温度时,以所述第二电流充电所允许达到的最大荷电状态值构建充电电流矩阵表。
  21. 一种充电测试系统,其特征在于,包括:充电设备及温控设备;
    所述温控设备用于控制所述待测试电池的测试温度;
    所述充电设备包括控制器、充电控制电路、电压采集电路;所述控制 器分别与所述充电控制电路及所述电压采集电路连接;所述充电控制电路用于对所述待测试电池进行充电,所述电压采集电路用于获取所述待测试电池的电压;所述控制器用于执行如权利要求1-10中任一项所述的方法。
PCT/CN2021/112141 2021-08-11 2021-08-11 一种充电电流的测试方法、装置及充电测试系统 WO2023015501A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/112141 WO2023015501A1 (zh) 2021-08-11 2021-08-11 一种充电电流的测试方法、装置及充电测试系统
CN202180080186.4A CN116529620A (zh) 2021-08-11 2021-08-11 一种充电电流的测试方法、装置及充电测试系统
EP21904626.5A EP4160234A4 (en) 2021-08-11 2021-08-11 CHARGING CURRENT TEST METHOD AND DEVICE AND CHARGING TEST SYSTEM
US17/831,359 US20230064748A1 (en) 2021-08-11 2022-06-02 Charge current test method and device, and charge test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112141 WO2023015501A1 (zh) 2021-08-11 2021-08-11 一种充电电流的测试方法、装置及充电测试系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/831,359 Continuation US20230064748A1 (en) 2021-08-11 2022-06-02 Charge current test method and device, and charge test system

Publications (1)

Publication Number Publication Date
WO2023015501A1 true WO2023015501A1 (zh) 2023-02-16

Family

ID=85200486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112141 WO2023015501A1 (zh) 2021-08-11 2021-08-11 一种充电电流的测试方法、装置及充电测试系统

Country Status (4)

Country Link
US (1) US20230064748A1 (zh)
EP (1) EP4160234A4 (zh)
CN (1) CN116529620A (zh)
WO (1) WO2023015501A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117310507B (zh) * 2023-11-29 2024-03-29 上海泰矽微电子有限公司 一种充电截止电流估算方法、装置、设备和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825159A (en) * 1997-09-29 1998-10-20 Motorola, Inc. Battery charging method for properly terminating rapid charge
CN102323553A (zh) * 2011-05-31 2012-01-18 惠州市亿能电子有限公司 一种电池峰值功率的测试方法
CN106125002A (zh) * 2016-08-23 2016-11-16 北京新能源汽车股份有限公司 动力电池峰值功率的测试方法、装置
CN106680726A (zh) * 2016-12-22 2017-05-17 力神动力电池系统有限公司 一种锂离子电池循环性能的检验方法
CN110687468A (zh) * 2018-06-19 2020-01-14 华为技术有限公司 一种电池荷电状态的估计方法及装置
CN112684356A (zh) * 2020-10-31 2021-04-20 浙江锋锂新能源科技有限公司 一种锂离子电池的循环测试方法
CN113125981A (zh) * 2021-04-13 2021-07-16 三一汽车制造有限公司 电池静置方法、装置、电子设备和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388426A (zh) * 2015-12-10 2016-03-09 东软集团股份有限公司 估计电池健康寿命soh的方法和装置
CN109752663A (zh) * 2017-11-01 2019-05-14 微宏动力系统(湖州)有限公司 一种电池内阻的测量方法
DE102018220251A1 (de) * 2018-11-26 2020-05-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abschätzung des Gesundheitszustands eines Wechselakkus
CN111007417A (zh) * 2019-12-06 2020-04-14 重庆大学 基于不一致性评估的电池组soh和rul预测方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825159A (en) * 1997-09-29 1998-10-20 Motorola, Inc. Battery charging method for properly terminating rapid charge
CN102323553A (zh) * 2011-05-31 2012-01-18 惠州市亿能电子有限公司 一种电池峰值功率的测试方法
CN106125002A (zh) * 2016-08-23 2016-11-16 北京新能源汽车股份有限公司 动力电池峰值功率的测试方法、装置
CN106680726A (zh) * 2016-12-22 2017-05-17 力神动力电池系统有限公司 一种锂离子电池循环性能的检验方法
CN110687468A (zh) * 2018-06-19 2020-01-14 华为技术有限公司 一种电池荷电状态的估计方法及装置
CN112684356A (zh) * 2020-10-31 2021-04-20 浙江锋锂新能源科技有限公司 一种锂离子电池的循环测试方法
CN113125981A (zh) * 2021-04-13 2021-07-16 三一汽车制造有限公司 电池静置方法、装置、电子设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160234A4 *

Also Published As

Publication number Publication date
US20230064748A1 (en) 2023-03-02
CN116529620A (zh) 2023-08-01
EP4160234A4 (en) 2023-05-03
EP4160234A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2019144646A1 (zh) 电池的电量状态估算方法、装置及电子设备
CN109586373B (zh) 一种电池充电方法和装置
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
EP3480613B1 (en) Method for measuring the internal resistance of batteries
WO2017143830A1 (zh) 检测电池健康状态的方法、装置和电池管理系统
EP2851700B1 (en) Method and terminal for displaying capacity of battery
EP3872957B1 (en) Charging method, electronic apparatus, and storage medium
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
WO2015106691A1 (zh) 一种混合动力车用动力电池soc估算方法
WO2021258657A1 (zh) 一种电池健康状态获取方法及装置、存储介质
WO2014161325A1 (zh) 一种检测电池电量的方法、装置及终端
CN110015175B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN107817448B (zh) 一种适用于复杂工况的在线实时监测电池电量的方法
WO2018120769A1 (zh) 电池间容量差值的获取方法和装置
Moo et al. State-of-charge estimation with open-circuit-voltage for lead-acid batteries
WO2023197939A1 (zh) Ocv-soc标定及估算方法、装置、介质和车辆
CN112327180A (zh) 一种锂离子电池自放电评价及其电压均衡调节方法
CN110632520A (zh) 一种动力电池soc的估算装置及其估算方法
WO2023015501A1 (zh) 一种充电电流的测试方法、装置及充电测试系统
EP3779485A1 (en) Available battery energy determination method and device, management system and storage medium
WO2023109088A1 (zh) 电池总容量计算方法、装置、系统和存储介质
WO2021056864A1 (zh) 电池剩余能量的估算方法、装置及车辆
CN115097338A (zh) Soc校准方法、soh估计方法、装置及存储介质
CN112557933B (zh) 一种计算电池健康状态的方法和装置
CN108872867A (zh) 一种电池自放电测试方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021904626

Country of ref document: EP

Effective date: 20220622

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180080186.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE