WO2020119072A1 - 发光器件、发光器件的制作方法及显示装置 - Google Patents

发光器件、发光器件的制作方法及显示装置 Download PDF

Info

Publication number
WO2020119072A1
WO2020119072A1 PCT/CN2019/093011 CN2019093011W WO2020119072A1 WO 2020119072 A1 WO2020119072 A1 WO 2020119072A1 CN 2019093011 W CN2019093011 W CN 2019093011W WO 2020119072 A1 WO2020119072 A1 WO 2020119072A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
electrode
gap
metal electrode
semiconductor layer
Prior art date
Application number
PCT/CN2019/093011
Other languages
English (en)
French (fr)
Inventor
韦冬
杨小龙
邢汝博
李晓伟
郭恩卿
李旭娜
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Publication of WO2020119072A1 publication Critical patent/WO2020119072A1/zh
Priority to US17/217,298 priority Critical patent/US11495712B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present application relates to the field of display, and in particular to a light-emitting device, a method for manufacturing the light-emitting device, and a display device.
  • the embodiments of the present application provide a light-emitting device, a method of manufacturing the light-emitting device, and a display device, which can support the GaN layer during laser lift-off, balance the impact force generated during the laser lift-off process, avoid the cracking of the GaN layer, and improve the laser Yield of peeled substrate.
  • the present application provides a light-emitting device, including: a driving backplane; at least one group of driving electrodes disposed on the driving backplane, wherein each group of driving electrodes includes a first driving electrode and a second driving electrode; an epitaxial layer is located at At least one group of driving electrodes is away from the side of the driving backplane; at least one group of metal electrodes is located on the side of the epitaxial layer close to the driving backplane, each group of metal electrodes includes a first metal electrode and a second metal electrode, wherein the first metal The electrode and the second metal electrode are respectively connected to the corresponding first driving electrode and the second driving electrode, and a filling material is provided between the first metal electrode and the second metal electrode to fill the space between the epitaxial layer and the driving backplane .
  • a surface isolation material is provided between the filling material and the driving backplane, the surface isolation material is a material that does not infiltrate with the filling material, and the surface isolation material and the first driving electrode and/or the second driving The electrodes are adjacent, and are used to shrink part of the filling material covering the surface insulating material during heat treatment, thereby forming a gap between the filling material and the driving back plate.
  • a first gap is provided between the first metal electrode and the filling material and/or a second gap is provided between the second metal electrode and the filling material, the first gap and/or the second gap
  • the middle is filled with a partially filled material that expands into the first gap and/or the second gap during heat treatment.
  • the epitaxial layer includes a first semiconductor layer, an active layer and a second semiconductor layer
  • the surface of the first semiconductor layer near the driving backplane includes a first region and a second region
  • the first metal electrode is provided Between the first region and the first driving electrode, the active layer and the second semiconductor layer are sequentially stacked on the second region, the second metal electrode is disposed between the second semiconductor layer and the second driving electrode, the first metal A third gap is provided between the electrode and the active layer and the second semiconductor layer, and the third gap is filled with a part of the filler material that expands to the third gap during heat treatment.
  • the epitaxial layer includes a first semiconductor layer, an active layer and a second semiconductor layer
  • the surface of the first semiconductor layer near the driving backplane includes a first region and a second region
  • the first metal electrode is provided Between the first region and the first driving electrode, the active layer and the second semiconductor layer are sequentially stacked on the second region, the second metal electrode is disposed between the second semiconductor layer and the second driving electrode, and the first gap It is arranged between the side of the first metal electrode and the side of the active layer, the second semiconductor layer and the filling material.
  • the filler material includes polyethylene, polyethylene terephthalate, polypropylene, polyimide, polycarbonate, polyvinylidene fluoride, polytetrafluoroethylene, silicone, fluorine
  • the surface isolation material includes any one of silicon dioxide (SiO 2 ), silicon nitride (SiN), octadecyltrichlorosilane, thiol, and silicone rubber.
  • an embodiment of the present application provides a method of manufacturing a light-emitting device, including: growing an epitaxial layer on a substrate; forming at least one group of metal electrodes on the side of the epitaxial layer away from the substrate, each group of metal electrodes includes a A metal electrode and a second metal electrode, and a corresponding set of driving electrodes is provided for each group of metal electrodes on the backplane.
  • the set of driving electrodes includes a first drive electrode and a second drive electrode, wherein the backplane is a temporary substrate or a drive Back plate; filling material between the first metal electrode and the second metal electrode, or filling material between the first drive electrode and the second drive electrode; binding the epitaxial layer and the back plate, so that the first metal electrode and The second metal electrode is respectively connected to the first driving electrode and the second driving electrode, and the filling material fills the space between the epitaxial layer and the back plate; heat-treating the light-emitting device with the substrate; and laser peeling the substrate.
  • the method further includes: providing a surface isolation material on the surface of the filler material away from the substrate, or the epitaxial layer near the backplane A surface isolation material is provided on the surface of the surface, wherein the surface isolation material is a material that does not infiltrate with the filling material, so that after the epitaxial layer and the back plate are bound, the surface isolation material is adjacent to the first driving electrode and/or the second driving electrode, And cover a part of the area of the filler material, so that the portion of the filler material that is in contact with the surface isolation material shrinks during the heat treatment, thereby forming a gap between the filler material and the back plate.
  • the method before the filling material is filled between the first driving electrode and the second driving electrode, the method further includes: providing a surface isolation material on the backplane, wherein the surface isolation material is not infiltrated with the filler material Materials, the surface isolation material is adjacent to the first drive electrode and/or the second drive electrode, and covers part of the back plate, so that after filling the filler material, the portion of the filler material that contacts the surface isolation material shrinks during heat treatment, Thus, a gap is formed between the filling material and the back plate.
  • a first gap is provided between the filler material and the first metal electrode and/or a second gap is provided between the second metal electrode and the filler material, so that during heat treatment, the filler material The portion of the surface insulation material that is in contact shrinks and expands into the first gap and/or the second gap.
  • the epitaxial layer includes a first semiconductor layer, an active layer, and a second semiconductor layer
  • a surface of the first semiconductor layer near the backplane includes a first region and a second region
  • the first metal electrode is disposed at Between the first region and the first driving electrode, the active layer and the second semiconductor layer are sequentially stacked on the second region, the second metal electrode is disposed between the second semiconductor layer and the second driving electrode, and the first metal electrode
  • There is a third gap between the active layer and the second semiconductor layer so that during the heat treatment, the portion in contact with the surface isolation material shrinks and expands into the third gap.
  • the epitaxial layer includes a first semiconductor layer, an active layer, and a second semiconductor layer
  • a surface of the first semiconductor layer near the backplane includes a first region and a second region
  • the first metal electrode is disposed at Between the first region and the first driving electrode, the active layer and the second semiconductor layer are sequentially stacked on the second region
  • the second metal electrode is disposed between the second semiconductor layer and the second driving electrode
  • the first gap is disposed Between the side of the first metal electrode and the side of the active layer, the second semiconductor layer and the filling material.
  • the present application provides a display device, including the light emitting device according to the first aspect.
  • Embodiments of the present application provide a light-emitting device, a method for manufacturing the light-emitting device, and a display device.
  • the filler material is used to fill the space between the epitaxial layer and the driving backplane, thereby peeling off the laser
  • the epitaxial layer is supported to avoid the damage or fragmentation of the epitaxial layer caused by the excessive impact of laser peeling.
  • FIG. 1 is a schematic structural diagram of a light emitting device (after heat treatment) provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a light-emitting device (before heat treatment) provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for manufacturing a light emitting device provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for manufacturing a light emitting device provided by another embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a light emitting device (after heat treatment) provided by an embodiment of the present application.
  • the light emitting device includes: a driving backplane 110, at least one group of driving electrodes, an epitaxial layer 120, at least one group of metal electrodes, and a filling material 130.
  • At least one group of driving electrodes is disposed on the driving backplane 110, wherein each group of driving electrodes includes a first driving electrode 141 and a second driving electrode 142; the epitaxial layer 120 is located on a side of the at least one group of driving electrodes away from the driving backplane 110; at least A group of metal electrodes is located on the side of the epitaxial layer 120 close to the driving backplane 110, and each group of metal electrodes includes a first metal electrode 151 and a second metal electrode 152, wherein the first metal electrode 151 and the second metal electrode 152 respectively correspond to The first driving electrode 141 and the second driving electrode 142 are connected, and a filling material 130 is provided between the first metal electrode 151 and the second metal electrode 152 to fill the space between the epitaxial layer 120 and the driving backplane 110.
  • the epitaxial layer 120 is a GaN epitaxial layer.
  • the light-emitting device may further include a substrate 160, which may be removed in the later laser lift-off .
  • the substrate 160 may be a sapphire substrate or a SiC substrate.
  • One or more sets of metal electrodes may be provided on the epitaxial layer 120.
  • the epitaxial layer 120 may be a whole, or a plurality of independent GaN cells cut, each GaN A group of metal electrodes is provided on the cell, and the number of GaN cells can be the same as the group of driving electrodes.
  • the epitaxial layer 120 in the embodiment of the present application is described by taking a GaN cell as an example.
  • the materials of the first metal electrode 151 and the second metal electrode 152 may be one or a combination of Cr, Pt, Au, Ti, Al, Cu, Ag, Ni, Mo, such as Cr/Pt/ For Au, Ti/Cu, Mo/Al/Mo, Ni/Ag, etc., the materials of the first metal electrode 151 and the second metal electrode 152 may be the same or different.
  • the materials of the first driving electrode 141 and the second driving electrode 142 are similar to those of the metal electrode, and are not repeated here.
  • solder can be provided between the metal electrode and the driving electrode, that is, the first solder 191 and the second metal are provided between the first metal electrode 151 and the first driving electrode 141 A second solder 192 is provided between the electrode 152 and the second drive electrode 142.
  • the filling material 130 may fill the space between the epitaxial layer 120 and the driving backplane 110 to support the epitaxial layer 120 when the laser peeling the substrate 160 generates an impact force.
  • the filling material 130 may not fill the space between the epitaxial layer 120 and the driving back plate 110, that is, a certain gap is left, so that when the impact force is too large, the filling material 130 may be deformed into the gap to release part of the impact Force to further prevent the epitaxial layer 120 from being damaged or fragmented.
  • the filling material may be polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyimide (PI), polycarbonate (PC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTPE), silica gel, fluorine rubber and other resin materials.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PP polypropylene
  • PI polyimide
  • PC polycarbonate
  • PVDF polyvinylidene fluoride
  • PTPE polytetrafluoroethylene
  • silica gel silica gel
  • fluorine rubber and other resin materials other resin materials.
  • Embodiments of the present application provide a light-emitting device, by providing a filler material between metal electrodes, the filler material is used to fill the space between the epitaxial layer and the driving backplane, thereby supporting the epitaxial layer when the substrate is peeled off by the laser to avoid Excessive impact of laser peeling causes damage or fragmentation of the epitaxial layer.
  • a surface isolation material is provided between the filler material 130 and the driving back plate 110, the surface isolation material is a material that does not infiltrate with the filler material 130, and the surface isolation material is The first driving electrode 141 and/or the second driving electrode 142 are adjacent to each other, so that a part of the filling material covering the surface isolation material shrinks during the heat treatment, thereby forming a gap between the filling material 130 and the driving back plate 110.
  • the surface isolation material covers a part of the area of the filler material 130, so that the portion of the filler material 130 in contact with the surface isolation material shrinks during the heat treatment, so that the filler material 130 and the drive A gap is formed between the back plates 110, so that when the substrate 160 is peeled off by the laser, the filling material 130 is deformed in the direction of the gap to release the impact force.
  • the surface isolation material may be disposed on a partial area of the surface of the driving backplane 110 close to the filling material 130, and the filling material 130 fills the space between the driving backplane 110 and the epitaxial layer 120 at this time
  • the epitaxial layer 120 is supported when the substrate 160 is laser peeled.
  • the filler material 130 is a material that does not infiltrate with the surface insulation material, and shrinks and the volume becomes smaller when heated, so that during the heat treatment, the filler material 130 becomes fluid and contacts the surface insulation material Shrinkage occurs, leaving gaps.
  • the gap allows the filling material 130 to be deformed in the direction of the gap to release a part of the impact force, thereby further preventing the epitaxial layer 120 from being damaged or chipped.
  • the surface isolation material may be disposed at the edge of the filling material 130, may be disposed at one location, or may be disposed at multiple locations, and if disposed at multiple locations, the size of each location may be the same or different.
  • the first surface isolation material 171 and the second surface isolation material 172 of the same size are provided at positions close to the first driving electrode 141 and the second driving electrode 142 respectively, which can make the structure of the filling material 130 It is more stable and releases impact force more uniformly when deformation occurs, avoiding stress concentration.
  • the surface isolation material may also be disposed between the side of the metal electrode and the side of the filling material 130, that is, the surface isolation material is perpendicular to the surface of the driving back plate 110 and is disposed close to the inner side of the metal electrode.
  • the filling material 130 may be resin materials such as PE, PET, PP, PI, PC, PVDF, PTPE, silica gel, fluorine glue, etc.; the surface isolation material may be silicon dioxide (SiO 2 ), silicon nitride (SiN) and other inorganic materials, or octadecyl trichlorosilane (OTS), thiol, silicone rubber and other organic materials.
  • resin materials such as PE, PET, PP, PI, PC, PVDF, PTPE, silica gel, fluorine glue, etc.
  • the surface isolation material may be silicon dioxide (SiO 2 ), silicon nitride (SiN) and other inorganic materials, or octadecyl trichlorosilane (OTS), thiol, silicone rubber and other organic materials.
  • a gap may be provided around the filler material 130, so that during heat treatment, the portion of the filler material 130 that contacts the first surface isolation material 171 and the second surface isolation material 172 will shrink, and at the same time, the filler material 130 will The surrounding gap is expanded to prevent the filling material 130 from expanding too much and damaging surrounding devices.
  • the gap may be provided somewhere or around the filling material 130.
  • the position between the first surface isolation material 171 and the second surface isolation material 172 may be filled with the filling material 130 to ensure the supporting effect of the filling material 130 on the epitaxial layer 120.
  • an irregular gap can be provided between the filling material and the surrounding structure, for example, the shape of the gap is arc-shaped, optionally, the gap can be provided at the edge or corner of the filling material, which can ensure a good At the same time as supporting, it also cushions the impact.
  • a first gap 181 is provided between the first metal electrode 151 and the filler material 130 and/or a second gap 182 is provided between the second metal electrode 152 and the filler material 130.
  • the first gap 181 and/or the second gap 182 are filled with a partially filled material that expands to the first gap 181 and/or the second gap 182 during heat treatment.
  • the filling material 130 shrinks the portion in contact with the surface insulating material and expands into the first gap 181 and/or the second gap 182. Providing the first gap 181 and the second gap 182 around the filling material 130 at the same time can make the filling material 130 expand quickly and evenly away from the surface isolation material during heat treatment, avoiding a large pressure on surrounding devices.
  • the epitaxial layer 120 includes a first semiconductor layer 121, an active layer 122 and a second semiconductor layer 123.
  • the surface of the first semiconductor layer 121 near the driving backplane 110 includes a first region And the second region, the first metal electrode 151 is disposed between the first region and the first driving electrode 141, the active layer 122 and the second semiconductor layer 123 are sequentially stacked on the second region, and the second metal electrode 152 is disposed on Between the second semiconductor layer 123 and the second driving electrode 142.
  • a third gap may be provided between the first metal electrode 151 and the active layer 122 and the second semiconductor layer 123, and the third gap is filled with a part of the filler material that expands to the third gap during heat treatment.
  • the first gap 181 is specifically disposed between the side surfaces of the active layer 122, the second semiconductor layer 123 and the filling material 130 and the side surfaces of the first metal electrode 151, which can be omitted
  • the step of filling the position between the active layer 122 and the second semiconductor layer 123 and the first metal electrode 151 can simplify the process and save materials.
  • a first gap 181 is provided between the sides of the active layer 122, the second semiconductor layer 123 and the filler material 130 and the sides of the first metal electrode 151 and the first solder 191, while the second A second gap 182 is provided between the metal electrode 152 and the side of the second solder 192 and the side of the filler 130.
  • FIG. 3 is a flowchart of a method for manufacturing a light emitting device provided by an embodiment of the present application. As shown in FIG. 3, the method includes the following.
  • At least one group of metal electrodes is formed on the side of the epitaxial layer away from the substrate, each group of metal electrodes includes a first metal electrode and a second metal electrode, and a corresponding group of driving electrodes is provided for each group of metal electrodes on the backplane,
  • a group of driving electrodes includes a first driving electrode and a second driving electrode, wherein the backplane is a temporary substrate or a driving backplane.
  • the substrate may be a sapphire substrate or a SiC substrate.
  • the materials of the metal electrode, the driving electrode, and the structure of the epitaxial layer are similar to those described in FIG. 1 and FIG. 2 above, and will not be repeated here.
  • the structure between the substrate and the backplane can be referred to as a light-emitting unit.
  • the backplane is a temporary substrate, after the substrate is subsequently removed, the light-emitting unit on the temporary substrate can be removed and set on the actual backplane. For example, it is set on the drive backplane.
  • the epitaxial layer is a GaN epitaxial layer.
  • multiple groups of metal electrodes can be formed on the epitaxial layer.
  • the epitaxial layer can be cut into multiple layers by laser cutting according to each group of metal electrodes. Separate GaN unit.
  • the epitaxial layer can be cut into a plurality of individual GaN cells after laser peeling the substrate. The specific time for cutting the epitaxial layer into multiple individual GaN cells can be set according to actual conditions.
  • the following is an example of a group of metal electrodes and a group of driving electrodes on the epitaxial layer.
  • the filling material may be formed on the epitaxial layer, the temporary substrate or the driving backplane by means of leveling, exposure, and development, or may be formed on the epitaxial layer, the temporary substrate or the driving backplane by printing.
  • the driving backplane As an example, you can set the filling material on the driving backplane first, and then bind the epitaxial layer and the driving backplane; or, first set the filling material on the epitaxial layer, and then bind the epitaxial layer and the driving backplane; Or, first set a part of the filling material on the driving backplane and the epitaxial layer, and then bind the epitaxial layer and the driving backplane.
  • This application does not limit the specific method of setting the filler material between the epitaxial layer and the driving backplane.
  • the purpose of the heat treatment is to make the portion of the filler material that contacts the surface isolation material shrink, leave a gap, and expand into the first gap and the second gap, so that when the substrate is peeled off by the laser, the filler material can resist the impact force , Support the epitaxial layer, and when the impact force is too large, it will deform in the direction of the gap and release part of the impact force, thereby further preventing the epitaxial layer from being damaged or fragmented.
  • KrF excimer laser or solid state laser can be used for laser peeling the substrate.
  • DPSS Diode Pumped Solid State Laser
  • Embodiments of the present application provide a method for manufacturing a light-emitting device, by providing a filler material between metal electrodes, and using the filler material to fill the space between the epitaxial layer and the driving backplane, thereby supporting the epitaxy when the laser peels off the substrate Layer, to avoid damage or fragmentation of the epitaxial layer caused by excessive laser peeling impact.
  • the method of FIG. 3 further includes: providing a surface isolation material on the surface of the filling material away from the substrate, or A surface isolation material is provided on the surface of the backplane close to the epitaxial layer, wherein the surface isolation material is a material that does not infiltrate with the filling material, so that after the epitaxial layer and the backplane are bound, the surface isolation material and the first driving electrode and/or the second The driving electrode is adjacent to and covers a part of the area of the filler material, so that the portion of the filler material that contacts the surface isolation material shrinks during the heat treatment, thereby forming a gap between the filler material and the back plate.
  • the surface isolation material may continue to be provided on the filling material.
  • the surface of the surface isolation material close to the back plate and the surface of the filling material close to the back plate Level and then bind the epitaxial layer and the backplane; or, you can set the surface isolation material on the surface of the backplane close to the epitaxial layer, and then bind the epitaxial layer and the backplane.
  • the surface isolation material can be set on the backplane by photolithography, printing, steaming and other methods.
  • a surface isolation material may be provided on the backplane first, and then on the backplane and the surface isolation material Set the filling material, and finally bind the epitaxial layer and the backplane.
  • a first gap is provided between the filler material and the first metal electrode and/or a second gap is provided between the second metal electrode and the filler material, so that when the filler material is heat-treated, The portion in contact with the surface insulation material shrinks and expands into the first gap and/or the second gap.
  • the first gap and the second gap are provided around the filling material at the same time, so that the filling material can be quickly and uniformly expanded away from the surface isolation material during heat treatment, and a large pressure on surrounding devices can be avoided.
  • first gap and the second gap For a detailed description of the first gap and the second gap, refer to the descriptions in FIG. 1 and FIG. 2 above.
  • an irregular gap can be provided between the filling material and the surrounding structure, for example, the shape of the gap is arc-shaped, optionally, the gap can be provided at the edge or corner of the filling material, which can ensure a good At the same time as supporting, it also cushions the impact.
  • the epitaxial layer includes a first semiconductor layer, an active layer, and a second semiconductor layer, and there is a third gap between the first metal electrode and the active layer and the second semiconductor layer, so that the filling material is heat-treated At this time, the part in contact with the surface isolation material shrinks and expands into the third gap.
  • a surface isolation material and a filler material may be provided on the backplane, and only a third gap may be left between the backplane and the epitaxial layer, which can simplify the process.
  • the first gap is specifically provided between the side of the active layer, the second semiconductor layer and the filling material and the side of the first metal electrode, so that the filling of the active layer and the second semiconductor layer and the first gap can be omitted
  • a step of positioning between metal electrodes can simplify the process and save materials.
  • FIG. 4 is a flowchart of a method for manufacturing a light emitting device provided by another embodiment of the present application. As shown in FIG. 4, the method includes the following.
  • first surface isolation material and the second surface isolation material having the same size are provided at positions close to the first driving electrode and the second driving electrode, respectively.
  • a filler material is provided on the driving backplane and the surface isolation material, and the filler material partially covers the first surface isolation material and the second surface isolation material, that is, a gap is left between the filler material and the first driving electrode, and There is a gap between the second driving electrodes.
  • the surface isolation material is a material that does not infiltrate the filling material.
  • Filling materials can be resin materials such as PE, PET, PP, PI, PC, PVDF, PTPE, silica gel, fluorine rubber; surface isolation materials can be inorganic materials such as SiO 2 , SiN, or octadecyl trichlorosilane, thiol , Silicone rubber and other organic materials.
  • first metal electrode and the second metal electrode are connected to the first driving electrode and the second driving electrode, respectively.
  • the epitaxial layer includes a first semiconductor layer, an active layer and a second semiconductor layer.
  • a first gap is provided between the sides of the active layer, the second semiconductor layer and the filling material and the sides of the first metal electrode, and at the same time the second metal electrode
  • a second gap is provided between the side of the side and the side of the filling material.
  • the filler material becomes fluid, and since the filler material and the surface isolation material do not infiltrate, the portion where the filler material contacts the surface isolation material shrinks, and the filler material
  • the other parts of the X-ray will expand into the first gap and the second gap, and the gap between the epitaxial layer and the first metal electrode can be seamlessly filled, so that the epitaxial layer can be better supported.
  • the temperature of the heat treatment can be selected according to the material characteristics of the filling material, which is not limited in this application.
  • the filler material seamlessly fills the gap near the epitaxial layer after heat treatment, so that the impact force generated during laser peeling can be better balanced.
  • the filler material can be deformed in the direction of the void caused by the shrinkage of the heat treatment, thereby releasing part of the impact force and preventing the epitaxial layer from cracking.
  • An embodiment of the present application further provides a display device including the above light-emitting device, wherein the display device may be a car screen, a computer display screen, a smart watch, a smart bracelet, or a TV screen.
  • the light-emitting device is provided with a filling material between metal electrodes, and filling the space between the epitaxial layer and the driving backplane with the filling material, so as to support the epitaxial layer when the substrate is peeled off by laser, to avoid damage to the epitaxial layer caused by excessive impact Or cracked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种发光器件、发光器件的制作方法及显示装置,该发光器件包括:驱动背板;至少一组驱动电极,设置在所述驱动背板上,其中每组驱动电极包括第一驱动电极和第二驱动电极;外延层,位于所述至少一组驱动电极远离所述驱动背板的一侧;至少一组金属电极,位于所述外延层接近所述驱动背板的一侧,每组金属电极包括第一金属电极和第二金属电极,其中,所述第一金属电极和所述第二金属电极分别与对应的第一驱动电极和第二驱动电极相连,所述第一金属电极和所述第二金属电极之间设置有填充材料,用于填充所述外延层和所述驱动背板之间的空间。

Description

发光器件、发光器件的制作方法及显示装置 技术领域
本申请涉及显示领域,具体涉及一种发光器件、发光器件的制作方法及显示装置。
发明背景
在GaN基半导体器件的制备过程中,需要利用激光剥离技术将GaN层的衬底剥离掉,在该激光剥离过程中,容易产生氢气,且氢气急速聚集会产生巨大冲击力,容易使得GaN层碎裂。
发明内容
有鉴于此,本申请实施例提供了发光器件、发光器件的制作方法及显示装置,能够在激光剥离时支撑GaN层,平衡激光剥离过程中产生的冲击力,避免GaN层的碎裂,提高激光剥离衬底的良率。
第一方面,本申请提供了发光器件,包括:驱动背板;至少一组驱动电极,设置在驱动背板上,其中每组驱动电极包括第一驱动电极和第二驱动电极;外延层,位于至少一组驱动电极远离驱动背板的一侧;至少一组金属电极,位于外延层接近驱动背板的一侧,每组金属电极包括第一金属电极和第二金属电极,其中,第一金属电极和第二金属电极分别与对应的第一驱动电极和第二驱动电极相连,第一金属电极和第二金属电极之间设置有填充材料,用于填充外延层和驱动背板之间的空间。
在本申请某些实施例中,填充材料和驱动背板之间设置有表面隔离材料,表面隔离材料为与填充材料不相浸润的材料,表面隔离材料与第一驱动电极和/或第二驱动电极相邻,用于使得覆盖表面隔离材料的部分填充材料在热处理时收缩,从而在填充材料与驱动背板之间形成空隙。
在本申请某些实施例中,第一金属电极与填充材料之间设有第一间隙和/或第二金属电极与填充材料之间设有第二间隙,第一间隙和/或第二间隙中填充有在热处理时向第一间隙和/或第二间隙扩充的部分填充材料。
在本申请某些实施例中,外延层包括第一半导体层、有源层和第二半导体层,第一半导体层靠近驱动背板的表面包括第一区域和第二区域,第一金属电极设置在第一区域与第一驱动电极之间,有源层和第二半导体层依次层叠设置在第二区域上,第二金属电极设置在第二半导体层与第二驱动电极之间,第一 金属电极与有源层和第二半导体层之间设有第三间隙,第三间隙中填充有在热处理时向第三间隙扩充的部分填充材料。
在本申请某些实施例中,外延层包括第一半导体层、有源层和第二半导体层,第一半导体层靠近驱动背板的表面包括第一区域和第二区域,第一金属电极设置在第一区域与第一驱动电极之间,有源层和第二半导体层依次层叠设置在第二区域上,第二金属电极设置在第二半导体层与第二驱动电极之间,第一间隙设置在第一金属电极的侧面与有源层、第二半导体层和填充材料的侧面之间。
在本申请某些实施例中,填充材料为包括聚乙烯、聚对苯二甲酸乙二酯、聚丙烯、聚酰亚胺、聚碳酸酯、聚偏氟乙烯、聚四氟乙烯、硅胶、氟胶中的任一种,表面隔离材料为包括二氧化硅(SiO 2)、氮化硅(SiN)、十八烷基三氯硅烷、硫醇、硅橡胶中的任一种。
第二方面,本申请的实施例提供了一种发光器件的制作方法,包括:在衬底上生长外延层;在外延层远离衬底一侧形成至少一组金属电极,每组金属电极包括第一金属电极和第二金属电极,并在背板上为每组金属电极设置对应的一组驱动电极,一组驱动电极包括第一驱动电极和第二驱动电极,其中背板为临时基板或驱动背板;在第一金属电极和第二金属电极之间填充填充材料,或在第一驱动电极和第二驱动电极之间填充填充材料;绑定外延层和背板,使得第一金属电极和第二金属电极分别与第一驱动电极和第二驱动电极相连,填充材料填充外延层和背板之间的空间;对带有衬底的发光器件进行热处理;激光剥离衬底。
在本申请某些实施例中,在第一金属电极和第二金属电极之间填充填充材料之后,还包括:在填充材料远离衬底的表面上设置表面隔离材料,或在背板靠近外延层的表面上设置表面隔离材料,其中表面隔离材料为与填充材料不相浸润的材料,使得绑定外延层和背板之后,表面隔离材料与第一驱动电极和/或第二驱动电极相邻,并覆盖填充材料的部分区域,以使填充材料在热处理时,与表面隔离材料接触的部分收缩,从而在填充材料与背板之间形成空隙。
在本申请某些实施例中,在第一驱动电极和第二驱动电极之间填充填充材料之前,还包括:在背板上设置表面隔离材料,其中表面隔离材料为与填充材料不相浸润的材料,表面隔离材料与第一驱动电极和/或第二驱动电极相邻,并覆盖背板的部分区域,使得在填充填充材料后,填充材料在热处理时,与表面隔离材料接触的部分收缩,从而在填充材料与背板之间形成空隙。
在本申请某些实施例中,填充材料与第一金属电极之间设有第一间隙和/或第二金属电极与填充材料之间设有第二间隙,以使填充材料在热处理时,与表 面隔离材料接触的部分收缩,并向第一间隙和/或所述第二间隙中扩充。
在本申请某些实施例中,外延层包括第一半导体层、有源层和第二半导体层,第一半导体层靠近背板的表面包括第一区域和第二区域,第一金属电极设置在第一区域与第一驱动电极之间,有源层和第二半导体层依次层叠设置在第二区域上,第二金属电极设置在第二半导体层与第二驱动电极之间,第一金属电极与有源层和第二半导体层之间具有第三间隙,以使得填充材料在热处理时,与表面隔离材料接触的部分收缩,并向第三间隙中扩充。
在本申请某些实施例中,外延层包括第一半导体层、有源层和第二半导体层,第一半导体层靠近背板的表面包括第一区域和第二区域,第一金属电极设置在第一区域与第一驱动电极之间,有源层和第二半导体层依次层叠设置在第二区域上,第二金属电极设置在第二半导体层与第二驱动电极之间,第一间隙设置在第一金属电极的侧面与有源层、第二半导体层和填充材料的侧面之间。
第三方面,本申请提供了一种显示装置,包括如第一方面所述的发光器件。
本申请实施例提供了一种发光器件、发光器件的制作方法及显示装置,通过在金属电极之间设置填充材料,利用该填充材料填充外延层和驱动背板之间的空间,从而在激光剥离衬底时,支撑外延层,避免激光剥离的冲击过大造成外延层的损伤或碎裂。
附图简要说明
图1所示为本申请一实施例提供的发光器件(热处理后)的结构示意图。
图2所示为本申请一实施例提供的发光器件(热处理前)的结构示意图。
图3所示为本申请一实施例提供的发光器件的制作方法的流程图。
图4所示为本申请另一实施例提供的发光器件的制作方法的流程图。
实施本发明的方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1所示为本申请一实施例提供的发光器件(热处理后)的结构示意图。如图1所示,该发光器件包括:驱动背板110,至少一组驱动电极,外延层120,至少一组金属电极,填充材料130。
至少一组驱动电极设置在驱动背板110上,其中每组驱动电极包括第一驱动电极141和第二驱动电极142;外延层120位于至少一组驱动电极远离驱动背板 110的一侧;至少一组金属电极位于外延层120接近驱动背板110的一侧,每组金属电极包括第一金属电极151和第二金属电极152,其中,第一金属电极151和第二金属电极152分别与对应的第一驱动电极141和第二驱动电极142相连,第一金属电极151和第二金属电极152之间设置有填充材料130,用于填充外延层120和驱动背板110之间的空间。
具体地,外延层120为GaN外延层。
在GaN基半导体器件的制备过程中,首先要在衬底上生长GaN外延层,因此,根据本申请一实施例,发光器件还可以包括衬底160,衬底160可以在后期的激光剥离中去除。衬底160可以为蓝宝石衬底,也可以为SiC衬底。
外延层120上可以设置有一组或多组金属电极,当外延层120上设置有多组金属电极时,外延层120可以是一个整体,或者是切割好的多个独立的GaN单元,每个GaN单元上设有一组金属电极,GaN单元的个数可以与驱动电极的组数相同。本申请实施例中的外延层120以一个GaN单元为例进行说明。
具体地,第一金属电极151和第二金属电极152的材料可以分别是Cr、Pt、Au、Ti、Al、Cu、Ag、Ni、Mo中的一种或几种组合,如Cr/Pt/Au、Ti/Cu、Mo/Al/Mo、Ni/Ag等,第一金属电极151和第二金属电极152的材料可以相同,或不同。第一驱动电极141和第二驱动电极142的材料与金属电极的类似,在此不再赘述。
为了保证金属电极和驱动电极之间的电连接效果,可以在金属电极和驱动电极之间设置焊料,即第一金属电极151和第一驱动电极141之间设有第一焊料191,第二金属电极152和第二驱动电极142之间设有第二焊料192。
填充材料130可以填满外延层120和驱动背板110之间的空间,用以在激光剥离衬底160产生冲击力时,支撑外延层120。填充材料130也可以不填满外延层120和驱动背板110之间的空间,即留有一定的空隙,这样在冲击力过大时,填充材料130可以向空隙中产生形变,以释放一部分冲击力,进一步防止外延层120损伤或碎裂。
具体地,填充材料可以是聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯(PP)、聚酰亚胺(PI)、聚碳酸酯(PC)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTPE)、硅胶、氟胶等树脂材料。
本申请实施例提供了一种发光器件,通过在金属电极之间设置填充材料,利用该填充材料填充外延层和驱动背板之间的空间,从而在激光剥离衬底时,支撑外延层,避免激光剥离的冲击过大造成外延层的损伤或碎裂。
可选地,作为另一实施例,如图1所示,填充材料130和驱动背板110之间设置有表面隔离材料,表面隔离材料为与填充材料130不相浸润的材料,表面隔 离材料与第一驱动电极141和/或第二驱动电极142相邻,用于使得覆盖表面隔离材料的部分填充材料在热处理时收缩,从而在填充材料130与驱动背板110之间形成空隙。
在对发光器件进行热处理之前,如图2所示,表面隔离材料覆盖填充材料130的部分区域,以使填充材料130在热处理时,与表面隔离材料接触的部分收缩,从而在填充材料130与驱动背板110之间形成空隙,使得在激光剥离衬底160时,填充材料130向空隙方向发生形变,以释放冲击力。
根据本申请一实施例,表面隔离材料可以设置在驱动背板110靠近填充材料130的表面的部分区域上,此时填充材料130填满驱动背板110和外延层120之间的空间,用以在激光剥离衬底160时支承外延层120。填充材料130为与表面隔离材料不浸润的材料,且在加热时会发生收缩、体积会变小的现象,这样在热处理时,填充材料130变得有流动性,从而与表面隔离材料接触的部分发生收缩,留出空隙。该空隙在激光剥离衬底160产生的冲击力过大时,使得填充材料130可以向空隙方向发生形变,以释放一部分冲击力,从而可以进一步地防止外延层120损伤或碎裂。
表面隔离材料可以设置在填充材料130的边缘位置,可以设置在一处,也可以设置在多处,若设置在多处,每处的大小可以相同,也可以不同。例如,如图2所示,分别在靠近第一驱动电极141和第二驱动电极142的位置设置大小相同的第一表面隔离材料171和第二表面隔离材料172,这样可以使得填充材料130的结构更稳定,且在发生形变时更均匀地释放冲击力,避免应力集中。
可选地,表面隔离材料也可以设置在金属电极的侧面与填充材料130的侧面之间,即表面隔离材料垂直于驱动背板110的表面,且紧贴着金属电极的内侧设置。
根据本申请一实施例,填充材料130可以是PE、PET、PP、PI、PC、PVDF、PTPE、硅胶、氟胶等树脂材料;表面隔离材料可以是二氧化硅(SiO 2)、氮化硅(SiN)等无机材料、或十八烷基三氯硅烷(OTS)、硫醇、硅橡胶等有机材料。在该实施例中,可以在填充材料130周围设置间隙,这样在热处理时,填充材料130与第一表面隔离材料171和第二表面隔离材料172接触的部分会发生收缩,同时填充材料130会向周围的间隙中扩充,避免填充材料130过于膨胀,而损伤周围的器件。间隙可以设置在填充材料130周围的某处、或多处。
第一表面隔离材料171与第二表面隔离材料172之间的位置可以被填充材料130充满,以保证填充材料130对外延层120的支撑作用。
本申请实施例对间隙的具体设置位置、形状和数量不做限定。例如,可以在填充材料与周围的结构之间设置不规则的间隙,例如,间隙的形状为弧形的,可 选地,间隙可以设置在填充材料的边缘或者拐角处,这样可以在保证具有良好支撑作用的同时,又起到缓冲冲击力的作用。
具体的,结合图1和图2所示,第一金属电极151与填充材料130之间设有第一间隙181和/或第二金属电极152与填充材料130之间设有第二间隙182,第一间隙181和/或第二间隙182中填充有在热处理时向第一间隙181和/或第二间隙182扩充的部分填充材料。
填充材料130在热处理时,与表面隔离材料接触的部分收缩,并向第一间隙181和/或第二间隙182中扩充。在填充材料130周围同时设置第一间隙181和第二间隙182,可以使填充材料130在热处理时快速并均匀地向远离表面隔离材料的方向扩充,避免对周围器件产生较大压力。
根据本申请一实施例,如图1所示,外延层120包括第一半导体层121、有源层122和第二半导体层123,第一半导体层121靠近驱动背板110的表面包括第一区域和第二区域,第一金属电极151设置在第一区域与第一驱动电极141之间,有源层122和第二半导体层123依次层叠设置在第二区域上,第二金属电极152设置在第二半导体层123和第二驱动电极142之间。第一金属电极151与有源层122和第二半导体层123之间可以设有第三间隙,第三间隙中填充有在热处理时向第三间隙扩充的部分填充材料。
根据本申请一实施例,如图2所示,第一间隙181具体设置于有源层122、第二半导体层123和填充材料130的侧面与第一金属电极151的侧面之间,这样可以省略填充有源层122和第二半导体层123与第一金属电极151之间的位置的步骤,可以简化工艺和节约材料。
具体地,如图2所示,有源层122、第二半导体层123和填充材料130的侧面与第一金属电极151和第一焊料191的侧面之间设置有第一间隙181,同时第二金属电极152和第二焊料192的侧面与填充材料130的侧面之间设置有第二间隙182。在对发光器件进行热处理后,由于填充材料130不附着在表面隔离材料上,使得填充材料130与表面隔离材料接触的部分发生收缩,进而在表面隔离材料附近留出空隙,且此时填充材料130向第一间隙181和第二间隙182中扩充,进而填满外延层120附近的空间,如图1所示。这样可以增大填充材料130与外延层120的接触面积,使得在激光剥离衬底160的过程中,可以增强外延层120抵抗冲击力的能力。而且,当冲击力过大,超出填充材料130的支撑能力时,填充材料130可以向表面隔离材料附近的空隙方向反生形变,以释放部分冲击力,进一步避免外延层120损伤或碎裂。
图3所示为本申请一实施例提供的发光器件的制作方法的流程图。如图3所示,该方法包括以下内容。
310:在衬底上生长外延层。
320:在外延层远离衬底一侧形成至少一组金属电极,每组金属电极包括第一金属电极和第二金属电极,并在背板上为每组金属电极设置对应的一组驱动电极,一组驱动电极包括第一驱动电极和第二驱动电极,其中背板为临时基板或驱动背板。
具体地,衬底可以为蓝宝石衬底,也可以为SiC衬底。金属电极、驱动电极的材料,以及外延层的结构与上述图1和图2中的描述类似,在此不再赘述。衬底与背板之间的结构可以称为发光单元,当背板为临时基板时,可以在后续去除衬底后,将临时基板上的发光单元取下,设置在实际使用的背板上,例如设置在驱动背板上。
330:在第一金属电极和第二金属电极之间填充填充材料,或在第一驱动电极和第二驱动电极之间填充填充材料。
具体地,外延层为GaN外延层,外延层在衬底上生长好以后,外延层上可以形成多组金属电极,此时可以根据每组金属电极采用激光切割的方式将外延层切割成多个单独的GaN单元。或者可以在激光剥离衬底之后将外延层切割成多个单独的GaN单元。将外延层切割成多个单独的GaN单元的具体时间可以根据实际情况进行设定。
为了描述的方便,下面以外延层上的一组金属电极和一组驱动电极为例进行说明。
340:绑定外延层和背板,使得第一金属电极和第二金属电极分别与第一驱动电极和第二驱动电极相连,填充材料填充外延层和背板之间的空间。
具体地,填充材料可以利用匀胶、曝光、显影的方式形成在外延层上、临时基板或者驱动背板上,也可以通过印刷的方式形成在外延层上、临时基板或者驱动背板上。
以驱动背板为例,可以先在驱动背板上设置填充材料,然后绑定外延层和驱动背板;或者,先在外延层上设置填充材料,然后绑定外延层和驱动背板;再或者,先分别在驱动背板和外延层上设置一部分填充材料,然后绑定外延层和驱动背板。本申请对填充材料设置在外延层和驱动背板之间的具体做法不做限定。
350:对带有衬底的发光器件进行热处理。
360:激光剥离衬底。
具体地,热处理的目的是为了使得填充材料与表面隔离材料接触的部分收缩,留出空隙,并向第一间隙和第二间隙中扩展,这样在激光剥离衬底时,填充材料可以抵抗冲击力,支撑外延层,并在冲击力过大时,向空隙方向发生形变,释放部分冲击力,从而进一步防止外延层损伤或碎裂。
激光剥离衬底时可以采用KrF准分子激光器或者固态激光器(DPSS,Diode Pumped Solid State laser)等。
本申请实施例提供了一种发光器件的制作方法,通过在金属电极之间设置填充材料,利用该填充材料填充外延层和驱动背板之间的空间,从而在激光剥离衬底时,支撑外延层,避免激光剥离的冲击过大造成外延层的损伤或碎裂。
可选地,作为另一实施例,在第一金属电极和第二金属电极之间填充填充材料之后,图3的方法还包括:在填充材料远离衬底的表面上设置表面隔离材料,或在背板靠近外延层的表面上设置表面隔离材料,其中表面隔离材料为与填充材料不相浸润的材料,使得绑定外延层和背板之后,表面隔离材料与第一驱动电极和/或第二驱动电极相邻,并覆盖填充材料的部分区域,以使填充材料在热处理时,与表面隔离材料接触的部分收缩,从而在填充材料与背板之间形成空隙。
具体地,在第一金属电极和第二金属电极之间填充填充材料之后,可以继续在填充材料上设置表面隔离材料,此时,表面隔离材料靠近背板的表面与填充材料靠近背板的表面平齐,然后绑定外延层和背板;或者,可以在背板靠近外延层的表面上设置表面隔离材料,然后绑定外延层和背板。表面隔离材料可以通过光刻、打印、蒸渡等方法设置在背板上。
可选地,作为另一实施例,在背板的第一驱动电极和第二驱动电极之间填充填充材料之前,可以先在背板上设置表面隔离材料,然后在背板和表面隔离材料上设置填充材料,最后绑定外延层和背板。
表面隔离材料的在发光器件中的具体位置,以及填充材料和表面隔离材料的材料选取,与上述图1和图2中的类似,在此不再赘述。
可选地,作为另一实施例,填充材料与第一金属电极之间设有第一间隙和/或第二金属电极与填充材料之间设有第二间隙,以使填充材料在热处理时,与表面隔离材料接触的部分收缩,并向第一间隙和/或所述第二间隙中扩充。
具体地,在填充材料周围同时设置第一间隙和第二间隙,可以使填充材料在热处理时快速并均匀地向远离表面隔离材料的方向扩充,避免对周围器件产生较大压力。
第一间隙和第二间隙的详细描述可以参见上述图1和图2中的描述。
本申请实施例对间隙的具体设置位置、形状和数量不做限定。例如,可以在填充材料与周围的结构之间设置不规则的间隙,例如,间隙的形状为弧形的,可选地,间隙可以设置在填充材料的边缘或者拐角处,这样可以在保证具有良好支撑作用的同时,又起到缓冲冲击力的作用。
根据本申请一实施例,外延层包括第一半导体层、有源层和第二半导体层,第一金属电极与有源层和第二半导体层之间具有第三间隙,以使得填充材料在热 处理时,与表面隔离材料接触的部分收缩,并向第三间隙中扩充。在该实施例中,可以在背板上设置表面隔离材料和填充材料,且背板和外延层之间可以只保留第三间隙,这样可以简化工艺过程。外延层的具体结构,以及第三间隙的具体位置,可以参见图1和图2中的描述,为避免重复,在此不再赘述。
根据本申请一实施例,第一间隙具体设置于有源层、第二半导体层和填充材料的侧面与第一金属电极的侧面之间,这样可以省略填充有源层和第二半导体层与第一金属电极之间的位置的步骤,可以简化工艺和节约材料。
图4所示为本申请另一实施例提供的发光器件的制作方法的流程图。如图4所示,该方法包括以下内容。
410:在衬底上生长外延层,并在外延层远离衬底一侧形成第一金属电极和第二金属电极。
420:在驱动背板上形成第一驱动电极和第二驱动电极,并在驱动背板上设置表面隔离材料。
具体地,分别在靠近第一驱动电极和第二驱动电极的位置设置大小相同的第一表面隔离材料和第二表面隔离材料。
430:在驱动背板和表面隔离材料上设置填充材料。
具体地,在驱动背板和表面隔离材料上设置填充材料,填充材料与覆盖第一表面隔离材料和第二表面隔离材料的部分区域,即填充材料与第一驱动电极之间留有间隙,与第二驱动电极之间留有间隙。
表面隔离材料为与填充材料不相浸润的材料。填充材料可以是PE、PET、PP、PI、PC、PVDF、PTPE、硅胶、氟胶等树脂材料;表面隔离材料可以是SiO 2、SiN等无机材料、或十八烷基三氯硅烷、硫醇、硅橡胶等有机材料。
440:绑定外延层和驱动背板。
具体地,第一金属电极和所述第二金属电极分别与第一驱动电极和第二驱动电极相连。
外延层包括第一半导体层、有源层和第二半导体层,有源层、第二半导体层和填充材料的侧面与第一金属电极的侧面之间设置有第一间隙,同时第二金属电极的侧面与填充材料的侧面之间设置有第二间隙。外延层的具体结构,以及第一间隙和第二间隙的具体位置,可以参见图1和图2中的描述,为避免重复,在此不再赘述。
450:对带有衬底的发光器件进行热处理。
460:激光剥离衬底。
具体地,对带有衬底的发光器件进行热处理时,填充材料会变得具有流动性,由于填充材料与表面隔离材料不发生浸润,所以填充材料与表面隔离材料接触的 部分发生收缩,填充材料的其它部分会向第一间隙和第二间隙中扩充,可以实现无缝填充外延层与第一金属电极之间的间隙,从而可以更好地支撑外延层。热处理的温度可以根据填充材料的材料特性进行选择,本申请对此不做限定。
在激光剥离衬底时,由于填充材料经过热处理后无缝填充外延层附近的间隙,从而可以更好地平衡激光剥离时所产生的冲击力。此外,当冲击力过大,超过填充材料的承受能力时,填充材料可以向热处理因收缩所产生的空隙方向发生形变,进而释放部分冲击力,防止外延层碎裂。
本申请实施例还提供了一种显示装置,该显示装置包括上述的发光器件,其中,该显示装置可以是车载屏幕、电脑显示屏、智能手表、智能手环或电视屏幕等。该发光器件通过在金属电极之间设置填充材料,利用该填充材料填充外延层和驱动背板之间的空间,从而在激光剥离衬底时,支撑外延层,避免冲击过大造成外延层的损伤或碎裂。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种发光器件,包括:
    驱动背板;
    至少一组驱动电极,设置在所述驱动背板上,其中每组驱动电极包括第一驱动电极和第二驱动电极;
    外延层,位于所述至少一组驱动电极远离所述驱动背板的一侧;
    至少一组金属电极,位于所述外延层接近所述驱动背板的一侧,每组金属电极包括第一金属电极和第二金属电极,其中,所述第一金属电极和所述第二金属电极分别与对应的第一驱动电极和第二驱动电极相连,所述第一金属电极和所述第二金属电极之间设置有填充材料,用于填充所述外延层和所述驱动背板之间的空间。
  2. 根据权利要求1所述的发光器件,其中,所述填充材料和所述驱动背板之间设置有表面隔离材料,所述表面隔离材料为与所述填充材料不相浸润的材料,所述表面隔离材料与所述第一驱动电极和/或所述第二驱动电极相邻,用于使得覆盖所述表面隔离材料的部分所述填充材料在热处理时收缩,从而在所述填充材料与所述驱动背板之间形成空隙。
  3. 根据权利要求2所述的发光器件,其中,所述第一金属电极与所述填充材料之间设有第一间隙和/或所述第二金属电极与所述填充材料之间设有第二间隙,所述第一间隙和/或所述第二间隙中填充有在热处理时向所述第一间隙和/或所述第二间隙扩充的部分所述填充材料。
  4. 根据权利要求2所述的发光器件,其中,所述外延层包括第一半导体层、有源层和第二半导体层,所述第一半导体层靠近所述驱动背板的表面包括第一区域和第二区域,所述第一金属电极设置在所述第一区域与所述第一驱动电极之间,所述有源层和所述第二半导体层依次层叠设置在所述第二区域上,所述第二金属电极设置在所述第二半导体层与所述第二驱动电极之间,所述第一金属电极与所述有源层和所述第二半导体层之间设有第三间隙,所述第三间隙中填充有在热处理时向所述第三间隙扩充的部分所述填充材料。
  5. 根据权利要求3所述的发光器件,其中,所述外延层包括第一半导体层、有源层和第二半导体层,所述第一半导体层靠近所述驱动背板的表面包括第一区域和第二区域,所述第一金属电极设置在所述第一区域与所述第一驱动电极之间,所述有源层和所述第二半导体层依次层叠设置在所述第二区域上,所述第二金属电极设置在所述第二半导体层与所述第二驱动电极之间,所述第一间隙设置在所 述第一金属电极的侧面与所述有源层、所述第二半导体层和所述填充材料的侧面之间。
  6. 根据权利要求2至5中任一项所述的发光器件,其中,所述填充材料为包括聚乙烯、聚对苯二甲酸乙二酯、聚丙烯、聚酰亚胺、聚碳酸酯、聚偏氟乙烯、聚四氟乙烯、硅胶、氟胶中的任一种,所述表面隔离材料为包括二氧化硅、氮化硅、十八烷基三氯硅烷、硫醇、硅橡胶中的任一种。
  7. 一种发光器件的制作方法,包括:
    在衬底上生长外延层;
    在所述外延层远离所述衬底一侧形成至少一组金属电极,每组金属电极包括第一金属电极和第二金属电极,并在背板上为每组金属电极设置对应的一组驱动电极,所述一组驱动电极包括第一驱动电极和第二驱动电极,其中所述背板为临时基板或驱动背板;
    在所述第一金属电极和所述第二金属电极之间填充填充材料,或在所述第一驱动电极和所述第二驱动电极之间填充填充材料;
    绑定所述外延层和所述背板,使得所述第一金属电极和所述第二金属电极分别与所述第一驱动电极和所述第二驱动电极相连,所述填充材料填充所述外延层和所述背板之间的空间;
    对带有衬底的发光器件进行热处理;
    激光剥离所述衬底。
  8. 根据权利要求7所述的发光器件的制作方法,其中,在所述在所述第一金属电极和所述第二金属电极之间填充填充材料之后,还包括:
    在所述填充材料远离所述衬底的表面上设置表面隔离材料,或在所述背板靠近所述外延层的表面上设置表面隔离材料,其中所述表面隔离材料为与所述填充材料不相浸润的材料,使得绑定所述外延层和所述背板之后,所述表面隔离材料与所述第一驱动电极和/或所述第二驱动电极相邻,并覆盖所述填充材料的部分区域,以使所述填充材料在热处理时,与所述表面隔离材料接触的部分收缩,从而在所述填充材料与所述背板之间形成空隙。
  9. 根据权利要求7所述发光器件的制作方法,其中,在所述在所述第一驱动电极和所述第二驱动电极之间填充填充材料之前,还包括:
    在所述背板上设置表面隔离材料,其中所述表面隔离材料为与所述填充材料不相浸润的材料,所述表面隔离材料与所述第一驱动电极和/或所述第二驱动电极相邻,并覆盖所述背板的部分区域,使得在填充所述填充材料后,所述填充材料在热处理时,与所述表面隔离材料接触的部分收缩,从而在所述填充材料与所述背板之间形成空隙。
  10. 根据权利要求8所述的发光器件的制作方法,其中,所述填充材料与所述第一金属电极之间设有第一间隙和/或所述第二金属电极与所述填充材料之间设有第二间隙,以使所述填充材料在热处理时,与所述表面隔离材料接触的部分收缩,并向所述第一间隙和/或所述第二间隙中扩充。
  11. 根据权利要求8所述的发光器件的制作方法,其中,所述外延层包括第一半导体层、有源层和第二半导体层,所述第一半导体层靠近所述背板的表面包括第一区域和第二区域,所述第一金属电极设置在所述第一区域与所述第一驱动电极之间,所述有源层和所述第二半导体层依次层叠设置在所述第二区域上,所述第二金属电极设置在所述第二半导体层与所述第二驱动电极之间,所述第一金属电极与所述有源层和所述第二半导体层之间具有第三间隙,以使得所述填充材料在热处理时,与所述表面隔离材料接触的部分收缩,并向所述第三间隙中扩充。
  12. 根据权利要求10所述的发光器件的制作方法,其中,所述外延层包括第一半导体层、有源层和第二半导体层,所述第一半导体层靠近所述背板的表面包括第一区域和第二区域,所述第一金属电极设置在所述第一区域与所述第一驱动电极之间,所述有源层和所述第二半导体层依次层叠设置在所述第二区域上,所述第二金属电极设置在所述第二半导体层与所述第二驱动电极之间,所述第一间隙设置在所述第一金属电极的侧面与所述有源层、所述第二半导体层和所述填充材料的侧面之间。
  13. 一种显示装置,包括如权利要求1至6中任一项所述的发光器件。
PCT/CN2019/093011 2018-12-14 2019-06-26 发光器件、发光器件的制作方法及显示装置 WO2020119072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/217,298 US11495712B2 (en) 2018-12-14 2021-03-30 Light emitting device, method for making the same and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811536943.0A CN111326609B (zh) 2018-12-14 2018-12-14 发光器件、发光器件的制作方法及显示装置
CN201811536943.0 2018-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/217,298 Continuation US11495712B2 (en) 2018-12-14 2021-03-30 Light emitting device, method for making the same and display apparatus

Publications (1)

Publication Number Publication Date
WO2020119072A1 true WO2020119072A1 (zh) 2020-06-18

Family

ID=71076280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093011 WO2020119072A1 (zh) 2018-12-14 2019-06-26 发光器件、发光器件的制作方法及显示装置

Country Status (3)

Country Link
US (1) US11495712B2 (zh)
CN (1) CN111326609B (zh)
WO (1) WO2020119072A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145562A (ja) * 1997-11-07 1999-05-28 Sharp Corp 半導体レーザ装置
WO2012077884A1 (en) * 2010-12-10 2012-06-14 Chung Hoon Lee Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
CN103682038A (zh) * 2012-08-31 2014-03-26 日亚化学工业株式会社 发光装置及其制造方法
CN103887377A (zh) * 2014-03-12 2014-06-25 江苏新广联科技股份有限公司 减少GaN基垂直结构LED漏电的器件工艺
CN106299040A (zh) * 2016-08-18 2017-01-04 厦门市三安光电科技有限公司 一种薄膜倒装发光组件的制作方法及其薄膜倒装发光组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100580965C (zh) 2007-12-12 2010-01-13 厦门市三安光电科技有限公司 一种基于复合式低阻缓冲结构的薄膜led芯片器件及其制造方法
KR101969334B1 (ko) * 2011-11-16 2019-04-17 엘지이노텍 주식회사 발광 소자 및 이를 구비한 발광 장치
TWI483434B (zh) * 2013-02-18 2015-05-01 Lextar Electronics Corp 發光二極體的轉置基材與使用該轉置基材的發光裝置製造方法
CN103199187B (zh) * 2013-04-19 2015-11-25 安徽三安光电有限公司 一种发光二极管封装基板与封装结构及其制作方法
CN106816387B (zh) * 2015-12-01 2019-06-25 上海和辉光电有限公司 一种半导体结构激光剥离方法
CN107464859A (zh) * 2016-06-03 2017-12-12 光宝光电(常州)有限公司 发光二极管结构、组件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145562A (ja) * 1997-11-07 1999-05-28 Sharp Corp 半導体レーザ装置
WO2012077884A1 (en) * 2010-12-10 2012-06-14 Chung Hoon Lee Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
CN103682038A (zh) * 2012-08-31 2014-03-26 日亚化学工业株式会社 发光装置及其制造方法
CN103887377A (zh) * 2014-03-12 2014-06-25 江苏新广联科技股份有限公司 减少GaN基垂直结构LED漏电的器件工艺
CN106299040A (zh) * 2016-08-18 2017-01-04 厦门市三安光电科技有限公司 一种薄膜倒装发光组件的制作方法及其薄膜倒装发光组件

Also Published As

Publication number Publication date
CN111326609A (zh) 2020-06-23
US11495712B2 (en) 2022-11-08
US20210217928A1 (en) 2021-07-15
CN111326609B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
KR102531884B1 (ko) 디스플레이 장치 및 디스플레이 장치 형성 방법
TWI772864B (zh) 使用雷射剝離將led晶粒從基板剝離至接收板件的製造方法
TW200308000A (en) Alloying method, and wiring forming method, display device forming method, and image display unit fabricating method
US8313968B2 (en) Fabrication of GaN and III-nitride alloys freestanding epilayers membranes using a nonbonding laser
JP2003163337A5 (zh)
EP1681713A4 (en) SURFACE PROTECTION FILM AND SEMICONDUCTOR WAFER LAPPING METHOD
JP2010504649A5 (zh)
JP2007088480A (ja) 垂直構造発光ダイオードの製造方法
WO2014110982A1 (zh) 一种基于激光剥离的半导体发光器件的制备方法
WO2020119072A1 (zh) 发光器件、发光器件的制作方法及显示装置
JP2009212439A (ja) 半導体装置の製造方法および半導体製造装置
JP2012054388A (ja) 薄膜化合物太陽電池の製造方法
CN113284826A (zh) 可巨量转移的微元件及其制作和转移方法、显示装置
JP2009212357A (ja) 窒化物系半導体発光素子とその製造方法
JP2009267420A (ja) 垂直電極構造の素子
CN215118846U (zh) 可巨量转移的微元件及显示装置
TWI452621B (zh) Separation method of epitaxial element
US7696068B2 (en) Method for manufacturing vertical light-emitting diode
JP2016046461A (ja) 半導体発光素子ウエハ及び半導体発光素子並びに半導体発光素子の製造方法
JP5891437B2 (ja) 縦型構造発光素子の製造方法
KR20090015712A (ko) 수직구조 발광다이오드 소자의 제조방법
JP2006228817A (ja) 半導体装置及びその製造方法
TWI837710B (zh) 使用雷射剝離將led晶粒從基板剝離至接收板件的製造方法
JP2003149649A (ja) スペーサー、画像表示装置、間隔保持方法、素子の転写方法、及び素子の配列方法
TWI702733B (zh) 發光元件的安裝方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897470

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24-01-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19897470

Country of ref document: EP

Kind code of ref document: A1