WO2014110982A1 - 一种基于激光剥离的半导体发光器件的制备方法 - Google Patents

一种基于激光剥离的半导体发光器件的制备方法 Download PDF

Info

Publication number
WO2014110982A1
WO2014110982A1 PCT/CN2014/000054 CN2014000054W WO2014110982A1 WO 2014110982 A1 WO2014110982 A1 WO 2014110982A1 CN 2014000054 W CN2014000054 W CN 2014000054W WO 2014110982 A1 WO2014110982 A1 WO 2014110982A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
emitting device
semiconductor light
epitaxial layer
light emitting
Prior art date
Application number
PCT/CN2014/000054
Other languages
English (en)
French (fr)
Inventor
朱浩
范振灿
Original Assignee
易美芯光(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 易美芯光(北京)科技有限公司 filed Critical 易美芯光(北京)科技有限公司
Publication of WO2014110982A1 publication Critical patent/WO2014110982A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a process for preparing a semiconductor light emitting device. More specifically, the present invention relates to a method of protecting a GaN-based epitaxial layer using a laser lift-off process.
  • the sapphire substrate is the main substrate for epitaxial growth of GaN-based LEDs, and its conductivity and heat dissipation are relatively poor. Due to the poor conductivity of sapphire substrates, conventional GaN-based LEDs have a lateral structure that causes current blockage and heat generation. The poor thermal conductivity limits the power of the light emitting device. After the sapphire substrate is removed by laser stripping technology, the LED is made into a vertical structure, which can effectively solve the problem of heat dissipation and light emission. In order to improve the light efficiency and power of GaN-based LEDs, a laser-peeled sapphire substrate technology is proposed.
  • the epitaxial layer is prepared on a sapphire substrate, the epitaxial layer is bonded to the support substrate, and then the sapphire substrate is removed by laser lift-off.
  • the device is constructed in a vertical configuration.
  • the low yield is the bottleneck for the industrial application of laser-peeled sapphire substrate technology. Due to power limitations, stripping of the entire sapphire substrate is required to be performed on the die-by-die scan. In general, the dies that are most initially illuminated by the laser spot are intact, and the GaN absorption laser at the growth interface decomposes to form nitrogen, which escapes the edges of adjacent unpeeled dies. The stress between the partially peeled portion and the unstripped GaN film also ruptures the GaN film.
  • the present invention provides a method for fabricating a semiconductor light emitting device, comprising the steps of: sequentially growing a buffer layer, N-type GaN on a sapphire substrate. a layer, an active layer, a P-type GaN layer, forming an epitaxial layer; Etching the epitaxial layer to expose the sapphire substrate to create a plurality of discrete dies, leaving a portion of the epitaxial layer between each two adjacent dies as a spacer, and at least one spacer around the die It is not connected; the sapphire substrate is removed by laser stripping.
  • the spacers around the die are separated from one another.
  • the etching is performed by ICP or RIE dry etching.
  • the separator has a width of 5 to 100 ⁇ m.
  • the separator has a width of 20 to 40 ⁇ m.
  • the width of the groove between the spacer and the edge of the adjacent die is from 1 to 100 microns.
  • the sapphire substrate is thinned and polished prior to laser stripping the sapphire substrate.
  • the etched epitaxial layer is bonded to the support substrate prior to laser stripping the sapphire substrate.
  • the method of bonding the etched epitaxial layer to the support substrate is eutectic bonding or post-coating curing.
  • a resin paste is applied on the other side of the support substrate, an auxiliary substrate is disposed on the resin paste, and the resin paste is cured by ultraviolet light.
  • the sapphire substrate is laser-peeled to remove the resin paste; and the auxiliary substrate and the resin paste may be removed together after the laser-peeled sapphire substrate.
  • the etched epitaxial layer is coated and cured with the first temporary substrate; after the laser detaching the sapphire substrate, the peeling surface is bonded to the second temporary substrate; Removing the first temporary substrate; bonding with the support substrate; removing the second temporary substrate.
  • the nitrogen generated by the decomposition of GaN during laser stripping breaks the spacer before contacting the adjacent die, so that the influence of nitrogen on the edge of the adjacent die becomes small, and the portion that has been stripped
  • the stress between the unpeeled GaN film is also released at the isolation tape, which solves the problem of cracking of the edge of the die, ensures the integrity of the die after laser stripping of the sapphire substrate, and improves the yield.
  • Figure 1 is a partial schematic view of the epitaxial layer after etching.
  • FIGS. 2a-2h are schematic views of a manufacturing process in accordance with one embodiment of the present invention.
  • 3a-3i are schematic views of a manufacturing process in accordance with another embodiment of the present invention.
  • the logo in the figure shows:
  • the present invention provides a method for fabricating a semiconductor light emitting device, comprising the steps of: sequentially growing a buffer layer, an N-type GaN layer, an active layer, and a P-type GaN layer on the sapphire substrate 100 to form an epitaxial layer 110; etching the epitaxial layer Layer 110 to expose sapphire substrate 100 to create a plurality of discrete dies 1 with a portion of epitaxial layer 110 remaining between each two adjacent dies 1 as isolation strip 2, and between different dies 1
  • the spacer 2 is discrete; the sapphire substrate 100 is removed by a laser lift-off method.
  • the structure of the etched epitaxial layer 110 is as shown in FIG. 1.
  • a portion of the epitaxial layer remains as an isolation strip 2 between each two adjacent dies 1, and the spacer 2 is discontinuous, and the width of the spacer 2 is 5-100 Micron.
  • a groove 3 is formed between the separator 2 and the adjacent die 1, and the groove 3 has a width of 1-100 ⁇ m.
  • a buffer layer, an N-type GaN layer, an active layer, and a P-type GaN layer are sequentially grown on the sapphire substrate 100 to form an epitaxial layer 110.
  • the sapphire substrate 100 is mechanically ground and thinned and polished.
  • the epitaxial layer 110 is etched by ICP or RIE, and the epitaxial layer 110 is etched through the exposed sapphire substrate 100 to form a plurality of discrete dies 1 while each two adjacent tubes A portion of the epitaxial layer 110 remains as a spacer 2 between the cores 1, and the spacers 2 between the different cores 1 are discontinuous.
  • the spacer 2 has a width of 20 ⁇ m and a width of 10 ⁇ m from the edge of the adjacent die 1 .
  • the etched epitaxial layer U0 is bonded to the support substrate 120 by eutectic bonding, and may also be adhered to the support substrate 120 after the etched epitaxial layer 110 is applied and cured.
  • the support substrate 120 is any one of Si, ceramic, W, Cu, Mo, GaAs, graphite, and glass.
  • a resin paste 210 is applied on the other side of the support substrate 120.
  • the resin glue 210 functions to relieve stress during the laser lift-off process. In order to flatten the applied resin paste 210, as shown in Fig.
  • the resin paste 210 is flattened using a transparent auxiliary substrate 220 such as glass or sapphire, and then the resin paste 210 is cured by ultraviolet light to remove the auxiliary substrate 220.
  • a transparent auxiliary substrate 220 such as glass or sapphire
  • the resin paste 210 is cured by ultraviolet light to remove the auxiliary substrate 220.
  • the sapphire substrate 100 is removed by laser lift-off.
  • the resin glue 210 is removed.
  • the auxiliary substrate 220 and the resin paste 210 may also be removed together after laser lift-off. Remove the residual barrier 2 .
  • the P and N electrodes are formed by a general process to complete the fabrication of the semiconductor light-emitting device.
  • a buffer layer, an N-type GaN layer, an active layer, and a P-type GaN layer are sequentially grown on the sapphire substrate 100 to form an epitaxial layer 110.
  • the epitaxial layer 110 is dry etched by ICP or RIE, and the epitaxial layer 110 is etched through the exposed sapphire substrate 100 to form a plurality of discrete dies 1 while each two adjacent tubes A portion of the epitaxial layer 110 remains as a spacer 2 between the cores 1, and the spacers 2 between the different cores 1 are discontinuous.
  • the width of the spacer 2 is 40 microns, and the width of the slot 3 between the edges of the adjacent die 1 is 10 microns.
  • a high-temperature epoxy resin modified adhesive is applied on the etched epitaxial layer 110, and is cured after being bonded to the first temporary substrate 310 silicon substrate.
  • the sapphire substrate 100 was removed using a laser lift-off method using a 248 nm excimer laser with a power of 550 milliwatts.
  • the modified heterocyclic resin paste is applied to the release surface, and then bonded to the second temporary substrate 320 silicon substrate to be cured.
  • the second temporary substrate 320 silicon substrate after depositing the TiAu protective layer on the peeling surface.
  • the first temporary silicon substrate 310 is etched by hydrofluoric acid plus hydrogen peroxide plus nitric acid (5:2:2), and the high temperature is etched at 100 ° C with toluene.
  • Epoxy Resin Modified Adhesive As shown in Figure 3g, the exposed epitaxial layer is bonded to a support substrate 120, which is a silicon substrate. As shown in FIG.
  • the support substrate 120 is protected by wax, the second temporary silicon substrate 320 is etched by hydrofluoric acid plus hydrogen peroxide plus nitric acid (5:2:2), and the modified heterocyclic resin glue is etched away with sulfuric acid hydrogen peroxide.
  • the surface of the obtained N-type GaN layer is then cleaned. Remove the residual barrier 2 .
  • a P, N electrode is formed by a general process to complete the preparation of the semiconductor light emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

提供了一种在激光剥离蓝宝石衬底过程中,对LED管芯进行保护的方法。在刻蚀外延层(110)以形成分立的管芯(1)时,在管芯(1)之间保留了部分外延层(110)以作为隔离带(2),解决了激光剥离过程中管芯(1)边缘破裂的问题,提高了成品率。将相应技术应用于GaN基半导体发光器件的制备。

Description

一种基于激光剥离的半导体发光器件的制备方法
技术领域
本发明涉及半导体发光器件的制备工艺。 更具体而言, 本发明涉及采用 激光剥离过程中对 GaN基外延层保护的方法。
背景技术
蓝宝石衬底作为 GaN基 LED外延生长的主要衬底, 其导电性和散热性都 比较差。 由于蓝宝石衬底导电性差, 传统的 GaN基 LED要采用横向结构, 导 致电流堵塞和发热。 而较差的导热性能限制了发光器件的功率。 采用激光剥 离技术将蓝宝石衬底去除后, 将发光二极管做成垂直结构, 可以有效解决散 热和出光问题。 为了提高 GaN基 LED的光效和功率, 提出了激光剥离蓝宝石 衬底技术, 即在蓝宝石衬底上制备外延层之后, 将外延层与支撑基板结合, 然后采用激光剥离方法去除蓝宝石衬底, 将器件做成垂直结构。 但是成品率 低是产业化应用激光剥离蓝宝石衬底技术的瓶颈。 由于功率限制, 必需对外 延片逐个管芯扫描才能完成整个蓝宝石衬底的剥离。 通常而言, 激光光斑最 幵始照射的管芯是完整的, 生长界面处的 GaN吸收激光分解生成了氮气, 氮 气的逸出会使得相邻未剥离管芯的边缘破裂。 同时已经剥离的部分与未剥离 的 GaN薄膜之间的应力也会使 GaN薄膜破裂。
发明内容
为解决在激光剥离蓝宝石衬底过程中存在的分立的管芯边缘破裂的问 题, 本发明提出一种半导体发光器件的制备方法, 包括以下步骤: 在蓝宝石 衬底上依次生长缓冲层、 N型 GaN层、 活性层、 P型 GaN层, 形成外延层; 刻 蚀所述外延层至暴露蓝宝石衬底以产生多个分立的管芯, 每两个相邻的所述 管芯之间都保留部分外延层作为隔离带, 并且管芯四周的隔离带至少有一处 是不相连的; 采用激光剥离方法去除蓝宝石衬底。
作为本发明的优选方案, 其中所述管芯四周的隔离带是相互分立的。 作为本发明的优选方案, 其中所述刻蚀是采用 ICP或 RIE干法刻蚀。 作为本发明的优选方案, 其中所述隔离带的宽度为 5-100微米。
作为本发明的优选方案, 其中所述隔离带的宽度为 20- 40微米。
作为本发明的优选方案, 所述隔离带与相邻管芯边缘之间槽的宽度为 1 - 100微米。
作为本发明的优选方案, 在激光剥离蓝宝石衬底之前, 对蓝宝石衬底进 行减薄和抛光。
作为本发明的优选方案, 在激光剥离蓝宝石衬底之前, 将刻蚀后的外延 层与支撑基板结合。
作为本发明的优选方案, 所述刻蚀后的外延层与支撑基板结合的方法为 共晶键合或涂胶后固化。
作为本发明的优选方案, 将刻蚀后的外延层与支撑基板结合之后, 在支 撑基板的另一侧涂敷树脂胶, 在树脂胶上设置辅助基板, 并使用紫外光固化 所述树脂胶, 去除所述辅助基板后激光剥离蓝宝石衬底, 去除所述树脂胶; 也可以在激光剥离蓝宝石衬底之后将所述辅助基板和树脂胶一并去除。
作为本发明的优选方案, 在激光剥离蓝宝石衬底之前, 在刻蚀后的外延 层上涂胶并与第一临时基板固化; 激光剥离蓝宝石衬底之后, 将剥离面与第 二临时基板结合; 去除第一临时基板; 与支撑基板键合; 去除第二临时基板。 本发明的有益效果如下:
由于保留了隔离带, 激光剥离过程中 GaN分解产生的氮气在接触相邻的 管芯之前先破坏隔离带, 使得相邻的管芯边缘受到的氮气的影响变的很小, 同时已经剥离的部分与未剥离的 GaN薄膜之间的应力也在隔离带处得到释 放, 解决了管芯边缘破裂的问题, 保证了激光剥离蓝宝石衬底后管芯的完整 性, 提高了成品率。
附图说明
图 1为外延层刻蚀之后的局部示意图。
图 2a- 2h为本发明一个实施例的制造过程的示意图。
图 3a-3i为本发明另一个实施例的制造过程的示意图。
图中标识说明:
管芯 1, 隔离带 2, 槽 3, 蓝宝石衬底 100, 外延层 110, 支撑基板 120, 树脂胶 210, 辅助基板 220, 第一临时基板 310, 第二临时基板 320,。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明提出一种半导体发光器件的制备方法, 包括以下步骤: 在蓝宝石 衬底 100上依次生长缓冲层、 N型 GaN层、 活性层、 P型 GaN层, 形成外延层 110; 刻蚀所述外延层 110至暴露蓝宝石衬底 100以产生多个分立的管芯 1, 每两个相邻的所述管芯 1之间都保留部分外延层 110作为隔离带 2, 并且不 同管芯 1之间的隔离带 2是分立的;采用激光剥离方法去除蓝宝石衬底 100。
刻蚀后的外延层 110结构如图 1所示, 每两个相邻的管芯 1之间都保留 部分外延层作为隔离带 2,并且隔离带 2是不连续的,隔离带 2的宽度为 5-100 微米。 隔离带 2与相邻的管芯 1之间形成有槽 3, 槽 3的宽度为 1-100微米。 实施例 1
如图 2a所示, 在蓝宝石衬底 100上依次生长缓冲层、 N型 GaN层、 活性 层、 P型 GaN层, 形成外延层 110。对蓝宝石衬底 100进行机械研磨减薄并抛 光。 如图 2b所示, 采用 ICP或 RIE千法刻蚀外延层 110, 将外延层 110刻穿 至暴露蓝宝石衬底 100,形成多个分立的管芯 1, 同时每两个相邻的所述管芯 1之间都保留部分外延层 110作为隔离带 2,不同管芯 1之间的隔离带 2是不 连续的。 隔离带 2的宽度为 20微米, 与相邻管芯 1边缘之间槽 3的宽度为 10微米。 如图 2c所示, 将刻蚀后的外延层 U0通过共晶键合的方法与支撑 基板 120结合, 也可以在刻蚀后的外延层 110上涂胶后与支撑基板 120粘结 并固化。 所述支撑基板 120为 Si、 陶瓷、 W、 Cu、 Mo、 GaAs、 石墨、 玻璃中 的任意一种。 如图 2d所示, 在支撑基板 120的另一侧涂敷树脂胶 210。 所述 树脂胶 210在激光剥离过程中起到缓解应力的作用。 为了使涂敷上去的树脂 胶 210平整, 如图 2e所示, 使用透明的辅助基板 220如玻璃、蓝宝石将树脂 胶 210压平, 然后采用紫外光将树脂胶 210固化, 去除辅助基板 220。 如图 2f所示,采用激光剥离的方法去除蓝宝石衬底 100。如图 2g所示, 去除所述 树脂胶 210。也可以将辅助基板 220和树脂胶 210在激光剥离之后一并去除。 去除残留的隔离带 2。 如图 2h所示, 采用通用工艺形成 P、 N电极, 完成半 导体发光器件的制备。
实施例 2
如图 3a所示, 在蓝宝石衬底 100上依次生长缓冲层、 N型 GaN层、 活性 层、 P型 GaN层, 形成外延层 110。对蓝宝石衬底 100进行机械研磨减薄并抛 光。 如图 3b所示, 采用 ICP或 RIE干法刻蚀外延层 110, 将外延层 110刻穿 至暴露蓝宝石衬底 100,形成多个分立的管芯 1, 同时每两个相邻的所述管芯 1之间都保留部分外延层 110作为隔离带 2,不同管芯 1之间的隔离带 2是不 连续的。 隔离带 2的宽度为 40微米, 与相邻管芯 1边缘之间槽 3的宽度为 10微米。 如图 3c所示, 在刻蚀后的外延层 110上涂敷高温环氧树脂改性胶, 与第一临时基板 310硅基板粘结之后固化。如图 3d所示,使用激光剥离的方 法去除蓝宝石衬底 100, 采用 248纳米准分子激光, 功率 550毫瓦。 如图 3e 所示, 在剥离面上涂敷改性杂环树脂胶后与第二临时基板 320硅基板粘结之 后固化。也可以在剥离面上沉积 TiAu保护层之后与第二临时基板 320硅基板 键合。如图 3f所示, 用蜡保护第二临时基板 320之后, 用氢氟酸加双氧水加 硝酸 (5: 2: 2) 腐蚀第一临时硅基板 310, 采用甲苯在 100°C下进行腐蚀该 高温环氧树脂改性胶. 如图 3g所示,将暴露出的外延层键合到支撑基板 120 上, 所述支撑基板 120为硅基板。如图 3h所示, 将支撑基板 120用蜡进行保 护, 用氢氟酸加双氧水加硝酸(5: 2: 2 )腐蚀第二临时硅基板 320, 并用硫 酸双氧水腐蚀掉改性杂环树脂胶,然后对于得到的 N型 GaN层表面进行清洗。 去除残留的隔离带 2。 如图 3i所示, 采用通用工艺形成 P、 N电极, 完成半 导体发光器件的制备。

Claims

权 利 要 求 书
1. 一种半导体发光器件的制备方法, 包括- 在蓝宝石衬底上依次生长缓冲层、 N型 GaN层、 活性层、 P型 GaN层, 形 成外延层;
刻蚀所述外延层至暴露蓝宝石衬底以产生多个分立的管芯,每两个相邻的 所述管芯之间都保留部分外延层作为隔离带,并且管芯四周的隔离带至少 有一处是不相连的;
采用激光剥离方法去除蓝宝石衬底。
2.根据权利要求 1所述的半导体发光器件的制备方法, 其特征在于: 所述管 芯四周的隔离带是相互分立的。
3.根据权利要求 1或 2所述的半导体发光器件的制备方法, 其特征在于: 所 述刻蚀是采用 ICP或 RIE干法刻蚀。
4.根据权利要求 1或 2所述的半导体发光器件的制备方法, 其特征在于: 所 述隔离带的宽度为 5-100微米。
5.根据权利要求 1或 2所述的半导体发光器件的制备方法, 其特征在于: 所 述隔离带的宽度为 20-40微米。
6.根据权利要求 1或 2所述的半导体发光器件的制备方法, 其特征在于: 所 述隔离带与相邻管芯边缘之间槽的宽度为 1-100微米。
7.根据权利要求 1或 2所述的半导体发光器件的制备方法, 其特征在于: 在 激光剥离蓝宝石衬底之前, 对蓝宝石衬底进行减薄和抛光。
8.根据权利要求 1或 2所述的半导体发光器件的制备方法, 其特征在于: 在 激光剥离蓝宝石衬底之前, 将刻蚀后的外延层与支撑基板结合。
9.根据权利要求 8所述的半导体发光器件的制备方法, 其特征在于: 所述刻 蚀后的外延层与支撑基板结合的方法为共晶键合或涂胶后固化。
10.根据权利要求 8所述的半导体发光器件的制备方法,其特征在于:将刻蚀 后的外延层与支撑基板结合之后, 在支撑基板的另一侧涂敷树脂胶, 在树脂 胶上设置辅助基板, 并使用紫外光固化所述树脂胶, 去除所述辅助基板后激 光剥离蓝宝石衬底, 去除所述树脂胶; 也可以在激光剥离蓝宝石衬底之后将 所述辅助基板和树脂胶一并去除。
11.根据权利要求 1所述的半导体发光器件的制备方法,其特征在于:在激光 剥离蓝宝石衬底之前, 在刻蚀后的外延层上涂胶并与第一临时基板固化; 激 光剥离蓝宝石衬底之后,将剥离面与第二临时基板结合;去除第一临时基板; 与支撑基板键合; 去除第二临时基板。
PCT/CN2014/000054 2013-01-17 2014-01-17 一种基于激光剥离的半导体发光器件的制备方法 WO2014110982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310017195.6 2013-01-17
CN201310017195.6A CN103943741A (zh) 2013-01-17 2013-01-17 一种基于激光剥离的半导体发光器件的制备方法

Publications (1)

Publication Number Publication Date
WO2014110982A1 true WO2014110982A1 (zh) 2014-07-24

Family

ID=51191328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000054 WO2014110982A1 (zh) 2013-01-17 2014-01-17 一种基于激光剥离的半导体发光器件的制备方法

Country Status (2)

Country Link
CN (1) CN103943741A (zh)
WO (1) WO2014110982A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103405A (ja) * 2015-12-04 2017-06-08 株式会社ディスコ ウエーハの加工方法
CN107622977B (zh) * 2017-08-31 2020-05-22 西安交通大学 一种渐进式微米级蓝宝石衬底激光剥离工艺
CN107579139B (zh) * 2017-08-31 2019-08-23 西安交通大学 一种垂直结构半导体器件的制造方法
CN111326463B (zh) * 2018-12-14 2023-06-23 云谷(固安)科技有限公司 一种半导体器件激光剥离方法
CN109887869B (zh) * 2019-03-14 2022-11-08 南通中铁华宇电气有限公司 一种激光剥离结构
WO2023010292A1 (zh) * 2021-08-03 2023-02-09 重庆康佳光电技术研究院有限公司 发光器件及发光器件的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1848026A1 (en) * 2002-04-09 2007-10-24 LG Electronics Inc. LED having vertical structure and method for fabricating the same
CN101241964A (zh) * 2007-12-24 2008-08-13 厦门三安电子有限公司 一种应用合成分隔法激光剥离GaN基发光器件及其制造方法
CN102790137A (zh) * 2011-05-19 2012-11-21 晶能光电(江西)有限公司 GaN基薄膜芯片的制备方法
CN102790138A (zh) * 2011-05-19 2012-11-21 易美芯光(北京)科技有限公司 一种GaN基薄膜芯片的生产方法
CN103489979A (zh) * 2013-09-12 2014-01-01 易美芯光(北京)科技有限公司 一种半导体发光器件的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496667B (zh) * 2011-12-20 2014-05-07 中国科学院半导体研究所 GaN基薄膜芯片的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1848026A1 (en) * 2002-04-09 2007-10-24 LG Electronics Inc. LED having vertical structure and method for fabricating the same
CN101241964A (zh) * 2007-12-24 2008-08-13 厦门三安电子有限公司 一种应用合成分隔法激光剥离GaN基发光器件及其制造方法
CN102790137A (zh) * 2011-05-19 2012-11-21 晶能光电(江西)有限公司 GaN基薄膜芯片的制备方法
CN102790138A (zh) * 2011-05-19 2012-11-21 易美芯光(北京)科技有限公司 一种GaN基薄膜芯片的生产方法
CN103489979A (zh) * 2013-09-12 2014-01-01 易美芯光(北京)科技有限公司 一种半导体发光器件的制备方法

Also Published As

Publication number Publication date
CN103943741A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2014110982A1 (zh) 一种基于激光剥离的半导体发光器件的制备方法
TWI764872B (zh) 工程基板上晶片尺寸封裝之固態裝置的剝離方法
JP4584785B2 (ja) 半導体発光素子の製造方法
US7625778B2 (en) Method of manufacturing a substrate-free flip chip light emitting diode
JP2013211443A (ja) 発光装置の製造方法
WO2016197966A1 (zh) 一种具备散热特性的高光效垂直led结构芯片及其制作方法
WO2015035736A1 (zh) 一种半导体发光器件的制备方法
TW201037859A (en) Light emitting diode chip and manufacturing method thereof
TW200939518A (en) Method of fabricating photoelectric device of III-nitride based semiconductor and structure thereof
TWI488334B (zh) 發光元件及其製造方法
GB2426123A (en) Substrate-free flip chip light emitting diode
US10944024B1 (en) Method for manufacturing micro light-emitting diode chips
CN102683280B (zh) 半导体制程方法
JP2006012914A (ja) 集積回路チップの製造方法及び半導体装置
JP2004363213A (ja) 半導体装置の製造方法
US8623669B2 (en) Method of fabricating epitaxial semiconductor devices
JP2016046461A (ja) 半導体発光素子ウエハ及び半導体発光素子並びに半導体発光素子の製造方法
JP4382419B2 (ja) 半導体素子のエピタキシャル層分離方法
US20130130420A1 (en) Method of laser lift-off for leds
JP4542508B2 (ja) 垂直型発光ダイオードおよびその製造方法
TWI446583B (zh) 半導體製程方法
JP5931803B2 (ja) 窒化物半導体装置の製造方法
JP2010028140A (ja) 窒化物系化合物半導体発光素子の製造方法
JP5324821B2 (ja) 半導体装置の製造方法
TWI427821B (zh) Method for fabricating planar conduction type light emitting diodes with thermal guide substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740268

Country of ref document: EP

Kind code of ref document: A1